ADC0834CIWMX [TI]

4-CH 8-BIT SUCCESSIVE APPROXIMATION ADC, SERIAL ACCESS, PDSO14, 0.300 INCH, PLASTIC, SOP-14;
ADC0834CIWMX
型号: ADC0834CIWMX
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

4-CH 8-BIT SUCCESSIVE APPROXIMATION ADC, SERIAL ACCESS, PDSO14, 0.300 INCH, PLASTIC, SOP-14

文件: 总13页 (文件大小:178K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ADC0834A, ADC0838A, ADC0834B, ADC0838B  
A/D PERIPHERALS WITH SERIAL CONTROL  
SLAS007 – AUGUST 1985 – REVISED OCTOBER 1986  
AD0834 . . . N PACKAGE  
(TOP VIEW)  
8-Bit Resolution  
Easy Microprocessor Interface or Stand-  
Alone Operation  
V+  
CS  
V
DI  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
CC  
Operates Ratiometrically or With 5-V  
Reference  
CH0  
CLK  
4- or 8-Channel Multiplexer Options With  
CH1  
CH2  
SARS  
DO  
Address Logic  
Shunt Regulator Allows Operation With  
CH3  
REF  
High-Voltage Supplies  
DGTL GND  
ANLG GND  
8
Input Range 0 to 5 V With Single 5-V  
ADC0838 . . . N PACKAGE  
(TOP VIEW)  
Supply  
Remote Operation With Serial Data Link  
Inputs and Outputs are Compatible With  
CH0  
CH1  
CH2  
CH3  
CH4  
CH5  
CH6  
CH7  
COM  
V
CC  
V+  
CS  
DI  
CLK  
SARS  
DO  
SE  
REF  
ANLG GND  
1
2
3
4
5
6
7
8
9
10  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
TTL and MOS  
Conversion Time of 32 µs at  
f
= 250 kHz  
clock  
Designed to Be Interchangeable With  
National Semiconductor ADC0834 and  
ADC0838  
TOTAL UNADJUSTED ERROR  
DEVICE  
A SUFFIX  
± 1 LSB  
± 1 LSB  
B SUFFIX  
± 1/2 LSB  
± 1/2 LSB  
DGTL GND  
ADC0834  
ADC0838  
ADC0838 . . . FN PACKAGE  
(TOP VIEW)  
description  
These devices are 8-bit successive- approxima-  
tion analog-to-digital converters, each with an  
input-configurable  
multichannel  
multi-  
3
2
1
20 19  
18  
CS  
CH3  
CH4  
CH5  
CH6  
CH7  
4
5
6
7
8
plexer and serial input/output. The serial input/  
output is configured to interface with standard shift  
registers or microprocessors. Detailed informa-  
tion on interfacing with most popular microproces-  
sors is readily available from the factory.  
DI  
17  
16  
15  
14  
CLK  
SARS  
DO  
9 10 11 12 13  
The ADC0834 (4-channel) and ADC0838  
(8-channel) multiplexer is software configured  
forsingle-ended or differential inputs as well as  
pseudo-differential input assignments. The differ-  
ential analog voltage input allows for common-  
mode rejection or offset of the analog zero input  
voltage value. In addition, the voltage reference  
input can be adjusted to allow encoding any  
smaller analog voltage span to the full 8 bits of  
resolution.  
The ADC0834AC, ADC0834BC, ADC0838AC, and ADC0838BC are characterized for operation from 0°C to  
70°C. The ADC0834AI, ADC0834BI, ADC0838AI, and ADC0838BI are characterized for operation from 40°C  
to 85°C.  
Copyright 1986, Texas Instruments Incorporated  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of Texas Instruments  
standard warranty. Production processing does not necessarily include  
testing of all parameters.  
1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
functional block diagram  
Start  
Flip-Flop  
CS  
CLK  
CS  
CLK  
SARS  
DI  
R
D
(see Note A)  
S
R
5-Bit Shift Register  
CLK  
SELECT0 SELECT1 ODD\EVEN SGL\DIF START  
ADC0838  
Only  
SE  
To Internals  
Circuits  
CLK  
CH0  
CH1  
CH2  
CH3  
CH4  
CH5  
CH6  
CH7  
COM  
ADC0834  
S
R
Analog  
MUX  
Time  
Delay  
ADC0838  
EN  
CS  
CS  
Comparator  
CS  
R
CS  
R
CS  
EN  
R
CLK  
CLK  
REF  
SAR  
Ladder  
EOC  
Logic  
DO  
9-Bit  
Shift  
Register  
Bits 0–7  
Bits 0–7  
Bit 1  
and  
and  
D
Decoder  
Latch  
To Internal  
LSB  
First  
Circuits  
MSB  
First  
V
CC  
One  
Shot  
7 V  
V +  
7 V  
NOTE A: For the ADC0834, DI is input directly to the D input of SELECT 1; SELECT 0 is forced to a high.  
ADC0834A, ADC0838A, ADC0834B, ADC0838B  
A/D PERIPHERALS WITH SERIAL CONTROL  
SLAS007 – AUGUST 1985 – REVISED OCTOBER 1986  
functional description  
The ADC0834 and ADC0838 use a sample data comparator structure that converts differential analog inputs  
by a successive-approximation routine. Operation of both devices is similar with the exception of SE, an analog  
common input, and multiplexer addressing. The input voltage to be converted is applied to a channel terminal  
and is compared to ground (single-ended), to an adjacent input (differential), or to a common terminal  
(pseudo-differential) that can be an arbitrary voltage. The input terminals are assigned a positive (+) or negative  
(–) polarity. If the signal input applied to the assigned positive terminal is less than the signal on the negative  
terminal, the converter output is all zeros.  
Channel selection and input configuration are under software control using a serial data link from the controlling  
processor. A serial-communication format allows more functions to be included in a converter package with no  
increase in size. In addition, it eliminates the transmission of low-level analog signals by locating the converter  
at the analog sensor and communicating serially with the controlling processor. This process returns noise-free  
digital data to the processor.  
A particular input configuration is assigned during the multiplexer addressing sequence. The multiplexer  
address is shifted into the converter through the data input (DI) line. The multiplexer address selects the analog  
inputs to be enabled and determines whether the input is single-ended or differential. When the input is  
differential, the polarity of the channel input is assigned. Differential inputs are assigned to adjacent channel  
pairs . For example, channel 0 and channel 1 may be selected as a differential pair. These channels cannot act  
differentially with any other channel. In addition to selecting the differential mode, the polarity may also be  
selected. Either channel of the channel pair may be designated as the negative or positive input.  
The common input on the ADC0838 can be used for a pseudo-differential input. In this mode, the voltage on  
the common input is considered to be the negative differential input for all channel inputs. This voltage can be  
any reference potential common to all channel inputs. Each channel input can then be selected as the positive  
differential input. This feature is useful when all analog circuits are biased to a potential other than ground.  
A conversion is initiated by setting CS low, which enables all logic circuits. CS must be held low for the complete  
conversionprocess. Aclockinputisthenreceivedfromtheprocessor. Oneachlow-to-hightransitionoftheclock  
input, the data on DI is clocked into the multiplexer address shift register. The first logic high on the input is the  
start bit. A 3- to 4-bit assignment word follows the start bit. On each successive low-to-high transition of the clock  
input, the start bit and assignment word are shifted through the shift register. When the start bit is shifted into  
the start location of the multiplexer register, the input channel is selected and conversion starts. The SAR Status  
output (SARS) goes high to indicate that a conversion is in progress, and DI to the multiplexer shift register is  
disabled the duration of the conversion.  
An interval of one clock period is automatically inserted to allow the selected multiplexed channel to settle. The  
data output DO comes out of the high-impedance state and provides a leading low for this one clock period of  
multiplexer settling time. The SAR comparator compares successive outputs from the resistive ladder with the  
incoming analog signal. The comparator output indicates whether the analog input is greater than or less than  
the resistive ladder output. As the conversion proceeds, conversion data is simultaneously output from the DO  
output pin, with the most significant bit (MSB) first.  
After eight clock periods, the conversion is complete and the SARS output goes low.  
The ADC0834 outputs the least-significant-bit-first data after the MSB-first data stream. If SE is held high on  
the ADC0838, the value of the least significant bit (LSB) will remain on the data line. When SE is forced low,  
the data is then clocked out as LSB-first data. (To output LSB first, SE must first go low, then the data stored  
in the 9-bit shift register outputs LSB first.) When CS goes high, all internal registers are cleared. At this time  
the output circuits go to the high-impedance state. If another conversion is desired, CS must make a high-to-low  
transition followed by address information.  
3
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ADC0834A, ADC0838A, ADC0834B, ADC0838B  
A/D PERIPHERALS WITH SERIAL CONTROL  
SLAS007 – AUGUST 1985 – REVISED OCTOBER 1986  
functional description (continued)  
DI and DO can be tied together and controlled by a bidirectional processor I/O bit received on a single wire.  
This is possible because DI is only examined during the multiplexer addressing interval and DO is still in a  
high-impedance state.  
Detailed information on interfacing to most popular microprocessors is readily available from the factory.  
sequence of operation  
ADC0834  
1
2
3
4
5
6
7
10  
11  
12  
13  
14  
15  
18  
19  
20  
21  
CLK  
t
conv  
t
su  
CS  
DI  
t
su  
+Sign  
Bit  
Select  
CH Bit 1  
Start  
Bit SGL Odd  
Don’t Care  
DIF Even  
1
Hi-Z  
SARS  
Max  
Settling  
Time  
MSB-First Data  
LSB-First Data  
Hi-Z  
Hi-Z  
MSB  
7
LSB  
0
MSB  
7
DO  
6
2
1
1
2
6
ADC0834 MUX ADDRESS CONTROL LOGIC TABLE  
MUX ADDRESS  
ODD/EVEN  
CHANNEL NUMBER  
SELECT BIT 1  
O
1
2
3
SGL/DIF  
+
L
L
L
L
L
L
+
+
L
H
L
+
H
H
H
+
H
H
H
H
L
L
+
L
H
L
+
H
H
+
H
H = high level, L = low level, – or + = polarity of selected input pin  
4
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ADC0834A, ADC0838A, ADC0834B, ADC0838B  
A/D PERIPHERALS WITH SERIAL CONTROL  
SLAS007 – AUGUST 1985 – REVISED OCTOBER 1986  
sequence of operation  
ADC0838  
1
2
3
4
5
6
7
8
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
CLK  
t
t
su  
conv  
CS  
MUX  
Addressing  
t
SU  
+
SEL SEL  
Sign Bit1 Bit0  
SGL Odd  
DIF Even  
1
1
0
Start  
Bit  
DI  
Dont Care  
0
HI-Z  
HI-Z  
SARS  
SE  
MUX Settling  
Time  
LSB-First Data  
MSB-First Data  
HI-Z  
DO  
HI-Z  
LSB  
1
MSB  
7
MSB  
7
6
2
0
1
2
3
4
5
6
SE Used to Control LSB First Data  
SE  
MUX Settling  
Time  
LSB-Held  
LSB  
MSB-First Data  
LSB-First Data  
MSB  
7
DO  
MSB  
7
6
2
1
0
1
2
3
4
5
6
5
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ADC0834A, ADC0838A, ADC0834B, ADC0838B  
A/D PERIPHERALS WITH SERIAL CONTROL  
SLAS007 – AUGUST 1985 – REVISED OCTOBER 1986  
ADC0838 MUX ADDRESS CONTROL LOGIC TABLE  
MUX ADDRESS  
SELECTED CHANNEL NUMBER  
SELECT  
0
1
1
2
3
COM  
SGL/DIF  
ODD/EVEN  
1
L
0
L
0
+
2
+
3
4
+
5
6
+
+
7
L
L
L
L
L
H
L
+
L
L
H
H
L
+
L
L
H
L
+
L
H
H
H
H
L
+
+
L
L
H
L
+
L
H
H
L
+
L
H
L
H
H
H
H
H
H
H
H
L
L
H
L
L
H
H
L
L
H
L
H
H
H
H
+
L
H
L
+
H
H
+
H
+
H = high level, L = low level, – or + = polarity of selected input  
absolute maximum ratings over recommended operating free-air temperature range (unless  
otherwise noted)  
Supply voltage, V  
(see Notes 1 and 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.5 V  
CC  
Input voltage range: Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.3 V to 15 V  
Analog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.3 V to V + 0.3 V  
CC  
Input current: V+ input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 mA  
Any other input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±5 mA  
Total input current for package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±20 mA  
Operating free-air temperature range: AC and BC suffixes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0°C to 70°C  
AI and BI suffixes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40°C to 85°C  
Storage temperature range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65°C to 150°C  
Case temperature for 10 seconds: FN package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260°C  
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: N package . . . . . . . . . . . . . . . . . . . . . 260°C  
NOTES: 1. All voltage values, except differential voltages, are with respect to the network ground terminal.  
2. Internal zener diodes are connected from the V  
input to ground and from the V+ input to ground. The breakdown voltage of each  
CC  
zener diode is approximately 7 V. One zener diode can be used as a shunt regulator and connects to V  
through a regular diode.  
CC  
Whenthe voltage regulator powers the converter, this zener and regular diode combination ensures that the V  
than the zener breakdown voltage. A series resist or is recommended to limit current into the V+ input.  
input (6.4 V) is less  
CC  
6
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ADC0834A, ADC0838A, ADC0834B, ADC0838B  
A/D PERIPHERALS WITH SERIAL CONTROL  
SLAS007 – AUGUST 1985 – REVISED OCTOBER 1986  
recommended operating conditions  
MIN NOM MAX  
UNIT  
V
V
V
V
Supply voltage  
4.5  
2
5
6.3  
CC  
IH  
High-level input voltage  
V
Low-level input voltage  
0.8  
400  
60  
V
IL  
f
Clock frequency  
10  
40  
kHz  
%
clock  
Clock duty cycle (see Note 3)  
Pulse duration, CS high  
t
t
t
220  
350  
90  
ns  
ns  
ns  
wH(CS)  
Setup time, CS low, SE low, or data valid before clock↑  
Hold time, data valid after clock↑  
su  
h
AC and BC suffixes  
Operating free-air temperature  
0
70  
85  
T
A
°C  
AI and BI suffixes  
40  
NOTE 3: The clock duty cycle range ensures proper operation at all clock frequencies. If a clock frequency is used outside the recommended  
duty cycle range, the minimum pulse duration (high or low) is 1 µs.  
electrical characteristics over recommended range of operating free-air temperature,  
V
= V+ = 5 V, f  
= 250 kHz (unless otherwise noted)  
CC  
clock  
digital section  
AC, BC SUFFIX  
AI, BI SUFFIX  
PARAMETER  
TEST CONDITIONS  
UNIT  
TYP  
TYP  
MIN  
2.8  
MAX MIN  
MAX  
V
V
V
V
V
V
V
V
V
= 4.75 V,  
= 4.75 V,  
= 5.25 V,  
I
I
I
= 360 µA  
= 10 µA  
= 1.6 mA  
2.4  
CC  
CC  
CC  
OH  
OH  
OH  
V
V
High-levl output voltage  
V
OH  
4.6  
4.5  
Low-levl output voltage  
0.34  
1
0.4  
1
V
OL  
I
I
I
I
High-level input current  
= 5 V  
= 0  
0.005  
0.005  
14  
0.005  
0.005  
14  
16  
µA  
µA  
mA  
mA  
IH  
IH  
IL  
Low-level input current  
–1  
6.5  
8
–1  
IL  
High-leveloutput(source)current  
Low-level output (sink) current  
T
A
T
A
= 25°C  
= 25°C  
= 25°C  
= 25°C  
6.5  
8
OH  
OL  
OH = 0,  
= V  
,
16  
OL  
CC  
= 5 V,  
= 0,  
T
0.01  
3
0.01  
0.01  
5
3
High-impedance-state output  
current (DO or SARS)  
O
O
A
I
OZ  
µA  
T
A
0.01  
–3  
–3  
C
C
Input capacitance  
Output capacitance  
pF  
pF  
i
5
o
All parameters are measured under open-loop conditions with zero common-mode input voltage (unless otherwise specified).  
All typical values are at V = V+ = 5 V, T = 25°C.  
CC  
A
7
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ADC0834A, ADC0838A, ADC0834B, ADC0838B  
A/D PERIPHERALS WITH SERIAL CONTROL  
SLAS007 – AUGUST 1985 – REVISED OCTOBER 1986  
electrical characteristics over recommended range of operating free-air temperature,  
V
= V + = 5 V, f  
= 250 kHz (unless otherwise noted) (continued)  
CC  
clock  
analog and converter section  
TYP  
PARAMETER  
TEST CONDITIONS  
MIN  
0.05  
to  
MAX  
UNIT  
V
ICR  
Common-mode input voltage range  
See Note 3  
V
V
CC  
+0.05  
On-channel  
Off-channel  
On-channel  
Off–channel  
V = 5 V  
1
I
V = 0  
I
V = 0  
I
V = 5 V  
I
–1  
–1  
1
I
Standby input current (see Note 4)  
Input resistance to reference ladder  
µA  
kΩ  
I(stdby)  
r
1.3  
2.4  
5.9  
i(REF)  
total device  
PARAMETER  
TEST CONDITIONS  
I = 15 mA at V+ pin, See Note 2  
MIN TYP  
MAX  
8.5  
UNIT  
V
V
Z
Internal zener diode breakdown voltage  
Supply current  
6.3  
7
1
I
I
2.5  
mA  
CC  
All parameters are measured under open-loop conditions with zero common-mode input voltage.  
All typical values are at V  
= 5 V, V+ = 5 V, T = 25°C.  
A
CC  
NOTES: 4. Internal zener diodes are connected from the V  
input to ground and from the V+ input to ground. The breakdown voltage of each  
through a regular diode.  
CC  
zener diode is approximately 7 V. One zener diode can be used as a shunt regulator and connects to V  
CC  
Whenthe voltage regulator powers the converter, this zener and regular diode combination ensures that the V  
than the zener breakdown voltage. A series resistor is recommended to limit current into the V+ input.  
input (6.4 V) is less  
CC  
5. If channel IN– is more positive than channel IN+, the digital output code will be 0000 0000. Connected to each analog input are two  
on-chip diodes that conduct forward current for analog input voltages one diode drop above V .Care must be taken during testing  
CC  
levels (4.5 V) because high-level analog input voltage (5 V) can, especially at high temperatures, cause this input diode  
at low V  
CC  
to conduct and cause errors for analog input s that are near full-scale. As long as the analog voltage does not exceed the supply  
voltagebymorethan50mV, theoutputcodewillbecorrect. Toachieveanabsolute0Vto5Vinputvoltagerangerequiresaminimum  
V
CC  
of 4.950 V for all variations of temperature and load.  
6. Standby input currents are currents going into or out of the on or off channels when the A/D converter is not performing conversion  
and the clock is in a high or low steady-state condition.  
8
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ADC0834A, ADC0838A, ADC0834B, ADC0838B  
A/D PERIPHERALS WITH SERIAL CONTROL  
SLAS007 – AUGUST 1985 – REVISED OCTOBER 1986  
operating characteristicsV+=5V, f  
=250kHz, t =t =20ns, T =25°C (unless otherwise noted)  
clock  
r
f
A
AI, AC SUFFIX  
BI, BC SUFFIX  
MIN TYP MAX  
PARAMETER  
Supply-voltage variation error  
Total unadjusted error (see Note 6)  
Common-mode error  
TEST CONDITIONS  
UNIT  
LSB  
LSB  
LSB  
LSB  
MIN  
TYP  
MAX  
V
= 4.75 V to 5.25 V  
= 5 V,  
= MIN to MAX  
±1/16  
±1/4  
±1/16  
±1/16  
±1/4  
±1/2  
±1/4  
1
CC  
V
T
ref  
±1  
A
Differential mode  
= 5 V to internal I = 15 mA at V+ pin,  
±1/16  
±1/4  
1
Change in zero-error from V  
CC  
I
V
zener diode operation (see Note 2)  
= 5 V, V  
open  
CC  
ref  
Propagation delay time, output MSB-first data  
650  
250  
125  
1500  
600  
250  
500  
650 1500  
t
t
t
C
= 100 pF  
ns  
ns  
pd  
L
data after CLK, (see Note 7)  
Output disable time,  
LSB-first data  
250  
125  
600  
250  
500  
C
C
= 10 pF, R = 10 kΩ  
L
L
L
dos  
conv  
DO or SARS after CS↑  
= 100 pF, R = 2 kΩ  
L
Conversion time (multiplexer addressing  
time not included)  
clock  
periods  
8
8
All parameters are measured under open-loop conditions with zero common-mode input voltage. For conditions shown as MIN or MAX, use the  
appropriate value specified under recommended operating conditions.  
NOTES:2. InternalzenerdiodesareconnectedfromtheV  
inputtogroundandfromtheV+inputtoground. Thebreakdownvoltageofeachzener  
through a regular diode. When  
input (6.4 V) is less than  
CC  
diode is approximately 7 V. One zener diode can be used as a shunt regulator and connects to V  
CC  
the voltage regulator powers the converter, this zener and regular diode combination ensures that the V  
the zener breakdown voltage. A series resistor is recommended to limit current into the V+ input.  
6. Total unadjusted error includes offset, full-scale, linearity, and multiplexer errors.  
CC  
7. Themostsignificantbit(MSB)dataisoutputdirectlyfromthecomparatorandthereforerequiresadditionaldelaytoallowforcomparatorresponse  
time.  
PARAMETER MEASUREMENT INFORMATION  
V
CC  
CLK  
CS  
50%  
50%  
GND  
t
su  
t
su  
V
CC  
0.4 V  
2 V  
GND  
t
h
t
h
V
CC  
2 V  
DI  
0.4 V  
0.4 V  
GND  
Figure 1. Data Input Timing  
9
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ADC0834A, ADC0838A, ADC0834B, ADC0838B  
A/D PERIPHERALS WITH SERIAL CONTROL  
SLAS007 – AUGUST 1985 – REVISED OCTOBER 1986  
PARAMETER MEASUREMENT INFORMATION  
V
CC  
50%  
50%  
CLK  
DO  
GND  
t
pd  
t
pd  
V
CC  
50%  
50%  
GND  
t
su  
V
CC  
50%  
SE  
GND  
Figure 2. Data Output Timing  
V
CC  
Test  
Point  
S1  
S2  
R
L
From Output  
Under Test  
C
L
(see Note A)  
LOAD CIRCUIT  
t
r
t
r
V
V
CC  
CC  
90%  
90%  
10%  
50%  
CS  
CS  
50%  
10%  
GND  
GND  
t
t
dis  
dis  
V
–V  
CC  
CC  
S1 open  
S2 closed  
90%  
S1 open  
S2 closed  
DO and SARS  
DO and SARS  
10%  
GND  
GND  
VOLTAGE WAVEFORMS  
NOTE A: C includes probe and jig capacitance.  
VOLTAGE WAVEFORMS  
L
Figure 3. Output Disable Time Test Circuit and Voltage Waveforms  
10  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ADC0834A, ADC0838A, ADC0834B, ADC0838B  
A/D PERIPHERALS WITH SERIAL CONTROL  
SLAS007 – AUGUST 1985 – REVISED OCTOBER 1986  
TYPICAL CHARACTERISTICS  
UNADJUSTED OFFSET ERROR  
vs  
LINEARITY ERROR  
vs  
REFERENCE VOLTAGE  
REFERENCE VOLTAGE  
16  
14  
1.5  
V
I(+)  
= V  
= 0 V  
V
= 5 V  
= 250 kHz  
= 25°C  
I(–)  
CC  
f
T
clock  
A
1.25  
12  
1
10  
8
0.75  
6
4
0.5  
0.25  
2
0
0
0.01  
0.1  
1
10  
0
1
2
3
4
5
V
ref  
– Reference Voltage – V  
V
ref –  
Reference Voltage – V  
Figure 4  
Figure 5  
LINEARITY ERROR  
vs  
LINEARITY ERROR  
vs  
FREE-AIR TEMPERATURE  
CLOCK FREQUENCY  
0.5  
3
V
= 5 V  
= 5 V  
V
ref  
clock  
= 5 V  
= 250 kHz  
ref  
V
CC  
f
2.5  
0.45  
2
0.4  
1.5  
85°C  
0.35  
1
25°C  
0.3  
40°C  
0.5  
0.25  
0
–50  
–25  
0
25  
50  
75  
100  
0
100  
200  
300  
400  
500  
600  
T
A
– Free-Air Tempertature – °C  
f
– Clock Frequency – kHz  
clock  
Figure 6  
Figure 7  
11  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ADC0834A, ADC0838A, ADC0834B, ADC0838B  
A/D PERIPHERALS WITH SERIAL CONTROL  
SLAS007 – AUGUST 1985 – REVISED OCTOBER 1986  
TYPICAL CHARACTERISTICS  
SUPPLY CURRENT  
vs  
SUPPLY CURRENT  
vs  
FREE-AIR TEMPERATURE  
CLOCK FREQUENCY  
1.5  
1.5  
f
= 250 kHz  
clock  
CS = High  
V
T
A
= 5 V  
= 25°C  
CC  
V
= 5.5 V  
= 5 V  
CC  
1
V
CC  
1
0.5  
V
CC  
= 4.5 V  
0.5  
–50  
0
–25  
0
25  
50  
75  
100  
0
100  
200  
300  
400  
500  
T
A
– Free-Air Temperature — °C  
f
– Clock Frequency – kHz  
clock  
Figure 8  
Figure 9  
OUTPUT CURRENT  
vs  
FREE-AIR TEMPERATURE  
25  
V
CC  
= 5 V  
20  
15  
10  
5
I
(V = 5 V)  
OL OL  
–I = 0 V)  
(V  
OH OH  
–I = 2.4 V)  
(V  
OH OH  
I
(V  
= 0.4 V)  
0
OL OL  
0
50  
25  
25  
50  
75  
100  
T
A
– Free-Air Temperature – °C  
Figure 10  
12  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
IMPORTANT NOTICE  
Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue  
any product or service without notice, and advise customers to obtain the latest version of relevant information  
to verify, before placing orders, that information being relied on is current and complete. All products are sold  
subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those  
pertaining to warranty, patent infringement, and limitation of liability.  
TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in  
accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent  
TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily  
performed, except those mandated by government requirements.  
CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF  
DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL  
APPLICATIONS”). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR  
WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER  
CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO  
BE FULLY AT THE CUSTOMER’S RISK.  
In order to minimize risks associated with the customer’s applications, adequate design and operating  
safeguards must be provided by the customer to minimize inherent or procedural hazards.  
TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent  
that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other  
intellectual property right of TI covering or relating to any combination, machine, or process in which such  
semiconductor products or services might be or are used. TI’s publication of information regarding any third  
party’s products or services does not constitute TI’s approval, warranty or endorsement thereof.  
Copyright 1998, Texas Instruments Incorporated  

相关型号:

ADC0834MDC

IC 4-CH 8-BIT SUCCESSIVE APPROXIMATION ADC, SERIAL ACCESS, UUC, DIE, Analog to Digital Converter
TI

ADC0834MWC

4-CH 8-BIT SUCCESSIVE APPROXIMATION ADC, SERIAL ACCESS, UUC, WAFER
TI

ADC08351

8-Bit, 42 MSPS, 40 mW A/D Converter
NSC

ADC08351

8 位、42MSPS 模数转换器 (ADC)
TI

ADC08351CILQ

8-Bit, 42 MSPS, 40 mW A/D Converter
NSC

ADC08351CILQ/NOPB

IC,A/D CONVERTER,SINGLE,8-BIT,CMOS,LLCC,24PIN
TI

ADC08351CILQX

8-Bit, 42 MSPS, 40 mW A/D Converter
NSC

ADC08351CILQX/NOPB

8 位、42MSPS 模数转换器 (ADC) | NHW | 24 | -40 to 85
TI

ADC08351CIMTC

8-Bit, 42 MSPS, 40 mW A/D Converter
NSC

ADC08351CIMTC/NOPB

1-CH 8-BIT RESISTANCE LADDER ADC, PARALLEL ACCESS, PDSO20, TSSOP-20
TI

ADC08351CIMTCX

8-Bit, 42 MSPS, 40 mW A/D Converter
NSC

ADC08351CIMTCX/NOPB

IC 1-CH 8-BIT RESISTANCE LADDER ADC, PARALLEL ACCESS, PDSO20, TSSOP-20, Analog to Digital Converter
NSC