73M1903 [TERIDIAN]

Modem Analog Front End; 调制解调器模拟前端
73M1903
型号: 73M1903
厂家: TERIDIAN SEMICONDUCTOR CORPORATION    TERIDIAN SEMICONDUCTOR CORPORATION
描述:

Modem Analog Front End
调制解调器模拟前端

调制解调器
文件: 总46页 (文件大小:530K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
73M1903  
Modem Analog Front End  
Simplifying System IntegrationTM  
DATA SHEET  
February 2009  
DESCRIPTION  
FEATURES  
The Teridian 73M1903 Analog Front End (AFE)  
IC includes fully differential hybrid driver outputs,  
which connect to the telephone line interface  
through a transformer-based DAA. The receive  
pins are also fully differential for maximum  
flexibility and performance. This arrangement  
allows for the design of a high performance  
hybrid circuit to improve signal to noise  
Up to 56 kbps (V.92) performance  
Programmable sample rates (7.2 - 14.4 kHz)  
Reference clock range of 9-40 MHz  
Crystal frequency range of 9-27 MHz  
Host synchronous serial interface operation  
Pin compatible with 73M2901CL/CE  
modems  
performance under low receive level conditions,  
and compatibility with any standard transformer  
intended for PSTN communications applications.  
Low power modes  
On board line interface drivers  
Fully differential receiver and transmitter  
Drivers for transformer interface  
3.0 V – 3.6 V operation  
The device incorporates a programmable  
sample rate circuit to support soft modem and  
DSP based implementations of all speeds up to  
V.92 (56 kbps). The sampling rates supported  
are from 7.2 kHz to 14.4 kHz by programming  
pre-scaler NCO and PLL NCO.  
5 V tolerant I/O  
Industrial temperature range (-40 to +85 °C)  
JATE compliant transmit spectrum  
Package options:  
The 73M1903 device incorporates a digital host  
interface that is compatible with the serial ports  
found on most commercially available DSPs and  
processors and exchanges both payload and  
control information with the host.  
32-pin QFN  
20-pin TSSOP  
RoHS compliant (6/6) lead-free packages  
Cost-saving features of the device include an  
input reference frequency circuit, which accepts  
a range of crystals from 9-27 MHz. It also  
accepts external reference clock values between  
9-40 MHz generated by the host processor. In  
most applications, this eliminates the need for a  
dedicated crystal oscillator and reduces the bill  
of material (BOM).  
APPLICATIONS  
Set Top Boxes  
Personal Video Recorders (PVR)  
Multifunction Peripherals (MFP)  
Fax Machines  
Internet Appliances  
Game Consoles  
The 73M1903 also supports two analog loop  
back and one digital loop back test modes.  
Point of Sale Terminals  
Automatic Teller Machines  
Speaker Phones  
VBG  
(HYBRID)  
Transmit  
Drivers/  
Filters  
Analog  
Sigma  
Delta  
TXAP  
TXAN  
Ref.  
RF Modems  
SCLK  
SDIN  
Receive  
Mux/  
Filters  
RXAP  
RXAN  
Control  
Registers  
Serial  
Port  
SDOUT  
DAC  
FSB  
GPIO  
DAA  
Controls  
Control  
Logic  
Clocks  
Crystal  
HOOK  
Rev. 2.0  
© 2009 Teridian Semiconductor Corporation  
1
73M1903 Data Sheet  
DS_1903_032  
Table of Contents  
1
2
Signal Description.................................................................................................................................4  
1.1 Serial Interface.............................................................................................................................5  
Control and Status Registers................................................................................................................8  
2.1 GPIO ..........................................................................................................................................10  
2.1.1 GPIO Data (GPIO): Address 02h..................................................................................10  
2.1.2 GPIO Direction (DIR): Address 03h..............................................................................10  
2.2 Analog I/O..................................................................................................................................10  
2.2.1 Control Register (CTRL 11): Address 0Bh ....................................................................11  
2.2.2 Control Register (CTRL 12): Address 0Ch....................................................................11  
2.2.3 Control Register (CTRL 13): Address 0Dh....................................................................12  
2.2.4 Control Register (CTRL 14): Address 0Eh ....................................................................12  
3
Clock Generation ................................................................................................................................13  
3.1 Crystal Oscillator and Pre-scaler NCO ......................................................................................13  
3.1.1 Control Register (CTRL 8): Address 08h.......................................................................13  
3.1.2 Control Register (CTRL 9): Address 09h.......................................................................13  
3.1.3 Control Register (CTRL 10): Address 0Ah ....................................................................13  
4
5
Modem Receiver.................................................................................................................................18  
Modem Transmitter.............................................................................................................................21  
5.1 Transmit Levels..........................................................................................................................22  
5.2 Transmit Power - dBm ...............................................................................................................23  
5.3 Control Register (CTRL1): Address 00h...................................................................................23  
5.4 Control Register (CTRL2): Address 01h...................................................................................24  
5.5 Revision Register: Address 06h ................................................................................................24  
6
7
8
Test Modes .........................................................................................................................................25  
Power Saving Modes..........................................................................................................................25  
Electrical Specifications ......................................................................................................................26  
8.1 Absolute Maximum Ratings.......................................................................................................26  
8.2 Recommended Operating Conditions........................................................................................26  
8.3 Digital Specifications..................................................................................................................27  
8.3.1 DC Characteristics.........................................................................................................27  
8.3.2 AC Timing ......................................................................................................................28  
8.4 Analog Specifications.................................................................................................................29  
8.4.1 DC Specifications ..........................................................................................................29  
8.4.2 AC Specifications...........................................................................................................29  
8.5 Performance ..............................................................................................................................30  
8.5.1 Receiver.........................................................................................................................30  
8.5.2 Transmitter.....................................................................................................................31  
9
Pinouts ................................................................................................................................................33  
9.1 32-Pin QFN Pinout.....................................................................................................................33  
9.2 20-Pin TSSOP Pinout ................................................................................................................34  
10 Mechanical Specifications...................................................................................................................35  
10.1 32-Pin QFN Mechanical Drawings.............................................................................................35  
10.2 20-Pin TSSOP Mechanical Drawings........................................................................................36  
11 Ordering Information...........................................................................................................................37  
Appendix A – 73M1903 DAA Resistor Calculation Guide ..........................................................................38  
Appendix B – Crystal Oscillator ..................................................................................................................41  
Revision History ..........................................................................................................................................46  
2
Rev. 2.0  
DS_1903_032  
73M1903 Data Sheet  
Figures  
Figure 1: SCLK and FS with SckMode = 0 ...................................................................................................7  
Figure 2: Control Frame Position versus SPOS ...........................................................................................7  
Figure 3: Serial Port Timing Diagram............................................................................................................9  
Figure 4: Analog Block Diagram .................................................................................................................11  
Figure 5: Clock Generation .........................................................................................................................17  
Figure 6: Overall Receiver Frequency Response.......................................................................................19  
Figure 7: Rx Passband Response ..............................................................................................................19  
Figure 8: RXD Spectrum of 1 kHz Tone .....................................................................................................20  
Figure 9: RXD Spectrum of 0.5 kHz, 1 kHz, 2 kHz, 3 kHz and 3.5 kHz Tones of Equal Amplitudes .........20  
Figure 10: Frequency Response of TX Path for DC to 4 kHz in Band Signal ............................................21  
Figure 11: Serial Port Data Timing..............................................................................................................28  
Figure 12: 32-Pin QFN Pinout.....................................................................................................................33  
Figure 13: 20-Pin TSSOP Pinout................................................................................................................34  
Figure 14: 32-Pin QFN Mechanical Specifications .....................................................................................35  
Figure 15: 20-Pin TSSOP Mechanical Specifications.................................................................................36  
Figure 15: NCO Block Diagram ..................................................................................................................41  
Figure 16: PLL Block Diagram....................................................................................................................42  
Tables  
Table 1: Inputs Selected in Regular and Alternate Multiplexer Cycles.........................................................4  
Table 2: Memory Map ...................................................................................................................................8  
Table 3: PLL Loop Filter Settings................................................................................................................11  
Table 4: Kvco versus Settings at Vc=1.6 V, 25 °C......................................................................................13  
Table 5: PLL Power Down ..........................................................................................................................14  
Table 6: Examples of NCO Settings ...........................................................................................................14  
Table 7: Clock Generation Register Settings for Fxtal = 27 MHz...............................................................15  
Table 8: Clock Generation Register Settings for Fxtal = 24.576 MHz........................................................16  
Table 9: Clock Generation Register Settings for Fxtal = 9.216 MHz..........................................................16  
Table 10: Clock Generation Register Settings for Fxtal = 24.000 MHz......................................................17  
Table 11: Clock Generation Register Settings for Fxtal = 25.35 MHz........................................................17  
Table 12: Receive Gain...............................................................................................................................18  
Table 13: Peak to RMS Ratios for Various Modulation Types....................................................................23  
Table 14: Serial I/F Timing..........................................................................................................................28  
Table 15: Reference Voltage Specifications...............................................................................................29  
Table 16: Maximum Transmit Levels..........................................................................................................29  
Table 17: Receiver Performance Specifications.........................................................................................30  
Table 18: Transmitter Performance Specifications.....................................................................................31  
Table 19: 32-Pin QFN Pin Definitions.........................................................................................................33  
Table 20: 20-Pin TSSOP Pin Definitions ....................................................................................................34  
Rev. 2.0  
3
73M1903 Data Sheet  
DS_1903_032  
1 Signal Description  
The Teridian 73M1903 modem AFE IC is available in a 20-pin TSSOP or 32-pin QFN package with the  
same pin out. The following table describes the function of each pin. There are two pairs of power  
supply pins, VPA (analog) and VPD (digital). They should be separately decoupled from the supply  
source in order to isolate digital noise from the analog circuits internal to the chip. Failure to adequately  
isolate and decouple these supplies will compromise device performance.  
Table 1: Inputs Selected in Regular and Alternate Multiplexer Cycles  
32QFN  
Pin #  
20VT  
Pin#  
Pin Name  
Type  
Description  
VND  
GND  
GND  
PWR  
PWR  
PWR  
PWR  
1,22  
16  
2,18 Negative Digital Ground  
VNA  
13  
3
Negative Analog Ground  
VPD  
2,25  
10  
Positive Digital Supply  
VPA  
8
Positive Analog Supply  
VPPLL  
VNPLL  
20  
17  
14  
Positive PLL Supply, shared with VPD  
Negative PLL Ground  
17  
Master reset. When this pin is a logic 0 all registers are  
reset to their default states; Weak-pulled high- default.  
RST  
I
9
7
Crystal oscillator input. When providing an external clock  
source, drive OSCIN.  
OSCIN  
I
19  
18  
16  
15  
OSCOUT  
O
Crystal oscillator circuit output pin.  
3, 4, 5, 6,  
23,  
Software definable digital input/output pins. Not available in  
the 20VT (TSSOP) package.  
GPIO(0-7)  
I/O  
N/A  
24,30,31  
VREF  
RXAP  
RXAN  
TXAP  
TXAN  
O
I
13  
15  
14  
12  
11  
6
Reference voltage pin (Reflects VREF).  
Receive analog positive input.  
12  
11  
10  
9
I
Receive analog negative input.  
Transmit analog positive output.  
Transmit analog negative output.  
O
O
Serial interface clock. With SCLK continuous selected,  
Frequency = 256*Fs ( =2.4576 MHz for Fs=9.6 kHz)  
SCLK  
O
8
5
SDOUT  
SDIN  
O
I
32  
29  
1
Serial data output (or input to the host).  
Serial data input (or output from the host).  
20  
4
Frame synchronization. (Active Low)  
FS  
O
I
7
19  
Type of frame sync. Open, weak-pulled high = early  
(mode1); tied low = late (mode0).  
TYPE  
27  
Controls the SCLK behavior after FS. Open, weak-pulled  
high = SCLK Continuous; tied low = 32 clocks per R/W  
cycle. Not available in 20VT.  
SckMode  
I
28  
NA  
4
Rev. 2.0  
 
 
DS_1903_032  
73M1903 Data Sheet  
1.1 Serial Interface  
The serial data port is a bi-directional port that can be supported by most DSPs. Although the 73M1903  
is a peripheral to the DSP (host controller), the 73M1903 is the master of the serial port. It generates a  
serial bit clock, Sclk, from a system clock, Sysclk, which is normally an output from an on-chip PLL that  
can be programmed by the user. The serial bit clock is always derived by dividing the system clock by  
18. The sclk rate, Fsclk, is related to the frame synchronization rate, Fs, by the relationship Fsclk = 256 x  
Fs or Fs = Fsclk / 256 = Fsys / 18 / 256 = Fsys / 4608, where Fsys is the frequency of Sysclk. Fs is also  
the rate at which both the transmit and receive data bytes are sent (received) to (by) the Host.  
Throughout this document two pairs of sample rate, Fs, and crystal frequency, Fxtal, will be often cited to  
facilitate discussions. They are:  
1. Fxtal1 = 27 MHz, Fs1 = 7.2 kHz  
2. Fxtal2 = 18.432 MHz, Fs2 = 8 kHz.  
3. Fxtal3 = 24.576 MHz, Fs3 = 9.6 kHz – chip default.  
Upon reset, until a switch to the PLL based clock, Pllclk, occurs, the system clock will be at the crystal  
frequency, Fxtal, and therefore the serial bit clock will be Sclk = Fsys/18 = Fxtal/18.  
Examples:  
1. If Fxtal1 = 27.000 MHz, then sclk=1.500 MHz and Fs=sclk/256 = 5.859375 kHz.  
2. If Fxtal2 = 18.432 MHz, then sclk=1.024 MHz and Fs=sclk/256 = 4.00 kHz.  
3. If Fxtal3 = 24.576 MHz, then sclk=1.3653 MHz and Fs=sclk/256 = 5.33 kHz.  
When 73M1903 is programmed through the serial port to a desired Fs and the PLL has settled out, the  
system clock will transition to the PLL-based clock in a glitch-less manner.  
Examples:  
1. If Fs1 = 7.2 kHz, Fsys = 4608 * Fs = 33.1776 MHz and sclk = Fsys / 18 = 1.8432 MHz.  
2. If Fs2 = 8.0 kHz, Fsys = 4608 * Fs = 36.8640 MHz and sclk = Fsys / 18 = 2.048 MHz.  
3. If Fs3 = 9.6 kHz, Fsys = 4608 * Fs = 44.2368 MHz and sclk = Fsys / 18 = 2.4576 MHz.  
This transition is entirely controlled by the host. Upon reset or power down of PLL and/or analog front  
end, the chip will automatically run off the crystal until the host forces the transition by setting a bit in a  
designated serial port register – location bit 7, 0Eh. The transition should be forced on or after the  
second Frame Synch period following the write to a designated PLL programming register (0Dh).  
When reprogramming the PLL the host should first transition the system clock to the crystal before  
reprogramming the PLL so that any transients associated with it will not adversely impact the serial port  
communication.  
Power saving is accomplished by disabling the analog front end by clearing bit 7 of CTRL1 (address 00h),  
ENFE=0.  
During the normal operation, a data FS is generated by the 73M1903 at the rate of Fs. For every data FS  
there are 16 bits transmitted and 16 bits received. The frame synchronization (FS) signal is pin  
programmable for type. FS can either be early or late determined by the state of the TYPE input pin.  
When the TYPE pin is left open, an early FS is generated in the bit clock prior to the first data bit  
transmitted or received. When held low, a late FS operates as a chip select; the FS signal is active for all  
bits that are transmitted or received. The TYPE input pin is sampled when the reset pin is active and  
ignored at all other times. The final state of the TYPE pin as the reset pin is de-asserted determines the  
frame synchronization mode used.  
Rev. 2.0  
5
 
73M1903 Data Sheet  
DS_1903_032  
The bits transmitted on the SDOUT pin are defined as follows:  
Bit15 Bit14 Bit13 Bit12 Bit11 Bit10 Bit9 Bit8 Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0  
RX15 RX14 RX13 RX12 RX11 RX10 RX9 RX8 RX7 RX6 RX5 RX4 RX3 RX2 RX1 RX0  
If the Hardware Control bit (bit 0 of register 01h) is set to zero, the 16 bits that are received on the SDIN  
are defined as follows:  
Bit15 Bit14 Bit13 Bit12 Bit11 Bit10 Bit9 Bit8 Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0  
TX15 TX14 TX13 TX12 TX11 TX10 TX9 TX8 TX7 TX6 TX5 TX4 TX3 TX2 TX1 CTL  
In this case TX0=0 is forced.  
If the Hardware Control bit (bit 0 of register 01h) is set to one, the 16 bits that are received on the SDIN  
input are defined as follows:  
Bit15 Bit14 Bit13 Bit12 Bit11 Bit10 Bit9 Bit8 Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0  
TX15 TX14 TX13 TX12 TX11 TX10 TX9 TX8 TX7 TX6 TX5 TX4 TX3 TX2 TX1 TX0  
Bit 15 is transmitted/received first. Bits RX15:0 are the receive code word. Bits TX15:0 are the transmit  
code word. If the hardware control bit is set to one, a control frame is initiated between every pair of data  
frames. If the hardware control bit is set to zero, CTL is used by software to request a control frame. If  
CTL is high, a control frame will be initiated before the next data frame. A control frame allows the  
controller to read or write status and control to the 73M1903.  
The control word received on the SDIN pin is defined as follows:  
Bit15 Bit14 Bit13 Bit12 Bit11 Bit10 Bit9 Bit8 Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0  
R/W A6  
A5  
A4  
A3  
A2  
A1  
A0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
The control word transmitted on the SDOUT pin is defined as follows:  
Bit15 Bit14 Bit13 Bit12 Bit11 Bit10 Bit9 Bit8 Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0  
D7 D6 D5 D4 D3 D2 D1 D0  
0
0
0
0
0
0
0
0
If the R/W bit is set to a 0, the data byte transmitted on the SDOUT pin is all zeros and the data received  
on the SDIN pin is written to the register pointed to by the received address bits; A6-A0. If the R/W bit is  
set to a 1, there is no write to any register and the data byte transmitted on the SDOUT pin is the data  
contained in the register pointed to by address bits A6-A0. Only one control frame can occur between  
any two data frames.  
Writes to unimplemented registers are ignored. Reading an unimplemented register returns a value of 0.  
The position of a control data frame is controlled by the SPOS; bit 1 of register 01h. If SPOS is set to a 0  
the control frames occur mid way between data frames, i.e., the time between data frames is equal. If  
SPOS is set to a 1, the control frame is ¼ of the way between consecutive data frames, i.e., the control  
frame is closer to the first data frame. This is illustrated in Figure 3.  
New to the 73M1903 modem AFE IC is a feature that shuts off the serial clock (SCLK) after 32 cycles of  
SCLK following the frame synch (Figure 2). This feature is unavailable in the 20 TSSOP package  
option. This mode is controlled by the SckMode pin. If this pin is left open the clock will run  
continuously. If SckMode is low the clock will be gated on for 32 clocks for each FS. The SDOUT and FS  
pins change values following a rising edge of SCLK. The SDIN pin is sampled on the falling edge of  
SCLK. Figure 4 shows the timing diagrams for the serial port.  
6
Rev. 2.0  
DS_1903_032  
73M1903 Data Sheet  
32 Cycles of sclk  
SCLK  
FS(mode1)  
SCLK and FS in mode 1  
32 Cycles of sclk  
SCLK  
FS(mode0)  
SCLK and FS in mode 0  
Figure 1: SCLK and FS with SckMode = 0  
Figure 2: Control Frame Position versus SPOS  
Rev. 2.0  
7
 
 
73M1903 Data Sheet  
DS_1903_032  
2 Control and Status Registers  
Table 2 shows the memory map of addressable registers in the 73M1903. Each register and its bits are  
described in detail in the following sections.  
Table 2: Memory Map  
Address Default Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
00  
08h  
00h  
FFh  
FFh  
00h  
00h  
10h  
00h  
00h  
0Ah  
22h  
12h  
00h  
C0h  
00h  
ENFE  
TMEN  
Unused  
DIGLB  
TXBST1 TXBST0 TXDIS  
RXG1  
RXG0  
RXGAIN  
HC  
01  
ANALB  
GPIO 5  
DIR5  
INTLB  
Reserved RXPULL SPOS  
02  
GPIO7 GPIO 6  
DIR7 DIR6  
GPIO 4 GPIO 3 GPIO 2 GPIO 1 GPIO 0  
DIR4 DIR3 DIR2 DIR1 DIR0  
03  
04  
Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved  
Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved  
05  
06  
Rev3  
Rev2  
Rev1  
Rev0  
Unused Reserved Reserved Reserved  
07  
Unused Reserved Reserved Reserved Reserved Reserved Reserved Reserved  
08  
Pseq7  
Prst2  
Ichp3  
Pseq6  
Prst1  
Ichp2  
Pseq5  
Prst0  
Pseq4  
Pdvsr4  
Ichp0  
Pseq3  
Pdvsr3  
FL  
Pseq2  
Pdvsr2  
Kvco2  
Ndvsr2  
Nseq2  
Pseq1  
Pdvsr1  
Kvco1  
Ndvsr1  
Nseq1  
Nrst1  
Pseq0  
Pdvsr0  
Kvco0  
Ndvsr0  
Nseq0  
Nrst0  
09  
0A  
0B  
0C  
0D  
0E  
0E-7F  
Ichp1  
Unused Ndvsr6  
Ndvsr5  
Nseq5  
Ndvsr4  
Nseq4  
Ndvsr3  
Nseq3  
Nseq7  
Xtal1  
Nseq6  
Xtal0  
Reserved Reserved Unused Nrst2  
Frcvco PwdnPLL Reserved Unused Unused Unused Unused Unused  
Unused Unused Unused Unused Unused Unused Unused Unused  
To prevent unintended operation, do not write to reserved or unused locations. These locations are for  
factory test or future use only and are not intended for customer programming.  
8
Rev. 2.0  
 
 
DS_1903_032  
73M1903 Data Sheet  
SCLK  
FS(mode1)  
SDIN  
TX15 TX14 TX13 TX12 TX11 TX10  
RX15 RX14 RX13 RX12 RX11 RX10  
TX9  
RX9  
TX8  
RX8  
TX7  
RX7  
TX6  
RX6  
TX5  
RX5  
TX4  
RX4  
TX3  
RX3  
TX2  
RX2  
TX1  
RX1  
CTL  
RX0  
SDOUT  
Data Frame With Early Frame Sync  
SCLK  
FS(mode1)  
SDIN  
R/W  
zero  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
DI7  
DI6  
DI5  
DI4  
DI3  
DI2  
DI1  
DI0  
SDOUT  
zero  
zero  
zero  
zero  
zero  
zero  
zero  
DO7  
DO6  
DO5  
DO4  
DO3  
DO2  
DO1  
DO0  
Control Frame With Early Frame Sync  
SCLK  
FS(mode0)  
SDIN  
R/W  
zero  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
DI7  
DI6  
DI5  
DI4  
DI3  
DI2  
DI1  
DI0  
zero  
zero  
zero  
zero  
zero  
zero  
zero  
DO7  
DO6  
DO5  
DO4  
DO3  
DO2  
DO1  
DO0  
SDOUT  
Control Frame With Late Frame Sync  
7.2KHz (8KHz)  
SCLK  
FS  
SDIN  
SDOUT  
TX  
RX  
TX  
RX  
TX  
RX  
TX  
RX  
TX  
RX  
1
R
0
A
0
A
0
DI  
DI  
DI  
DO  
TX  
RX  
TX  
RX  
TX  
RX  
TX  
RX  
TX  
RX  
0
A
0
RX  
DO  
DO  
RX  
Control Frame  
Data Frame  
Data Frame  
Relation Between the Data and Control Frames  
Figure 3: Serial Port Timing Diagram  
Rev. 2.0  
9
 
73M1903 Data Sheet  
DS_1903_032  
2.1 GPIO  
The 73M1903 modem AFE device provides 8 user defined I/O pins. Each pin is programmed separately  
as either an input or an output by a bit in a direction register. If the bit in the direction register is set high,  
the corresponding pin is an input whose value is read from the GPIO data register. If it is low, the pin will  
be treated as an output whose value is set by the GPIO data register.  
To avoid unwanted current contention and consumption in the system from the GPIO port before the  
GPIO is configured after a reset, the GPIO port I/Os are initialized to a high impedance state. The input  
structures are protected from floating inputs, and no output levels are driven by any of the GPIO pins.  
The GPIO pins are configured as inputs or outputs when the host controller (or DSP) writes to the GPIO  
direction register. The GPIO direction and data registers are initialized to all ones (FFh) upon reset.  
2.1.1 GPIO Data (GPIO): Address 02h  
Reset State FFh  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
GPIO7  
GPIO6  
GPIO5  
GPIO4  
GPIO3  
GPIO2  
GPIO1  
GPIO0  
Bits in this register will be asserted on the GPIO(7:0) pins if the corresponding direction register bit is a 0.  
Reading this address will return data reflecting the values of pins GPIO(7:0).  
2.1.2 GPIO Direction (DIR): Address 03h  
Reset State FFh  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
DIR7  
DIR6  
DIR5  
DIR4  
DIR3  
DIR2  
DIR1  
DIR0  
This register is used to designate the GPIO pins as either inputs or outputs. If the register bit is low, the  
corresponding GPIO pin is programmed as an output. If the register bit is a 1, the corresponding pin will  
be treated as an input.  
2.2 Analog I/O  
Figure 4 shows the block diagram of the analog front end. The analog interface circuit uses differential  
transmit and receive signals to and from the external circuitry.  
The hybrid driver in the 73M1903 IC is capable of connecting directly, but not limited to, a transformer-  
based Direct Access Arrangement (DAA). The hybrid driver is capable of driving the DAA’s line coupling  
transformer, which carries an impedance on the primary side that is typically rated at 600 Ω, depending  
on the transformer and matching network. The hybrid drivers can also drive high impedance loads  
without modification. The class AB behavior of the amplifiers provides load dependent power  
consumption.  
An on-chip band gap voltage is used to provide an internal voltage reference and bias currents for the  
analog receive and transmit channels. The reference derived from the bandgap, nominally 1.25 Volts, is  
multiplied to 1.36 Volts and output at the VREF pin. Several voltage references, nominally 1.25 Volts, are  
used in the analog circuits. The band gap and reference circuits are disabled after a chip reset since the  
ENFE bit is reset to a default state of zero. When ENFE=0, the band gap voltage and the analog bias  
currents are disabled. In this case all of the analog circuits are powered down and draw less than 5 μA of  
current.  
A clock generator (CKGN) is used to create all of the non-overlapping phase clocks needed for the time  
sampled switched-capacitor circuits, ASDM, DAC1, and TLPF. The CKGN input is two times the  
analog/digital interface sample rate or 3.072 MHz clock for Fs=8 kHz.  
10  
Rev. 2.0  
 
 
 
 
DS_1903_032  
73M1903 Data Sheet  
Figure 4: Analog Block Diagram  
Table 3: PLL Loop Filter Settings  
FL  
0
PLLloop Filter Settings  
R1=32 kΩ,C1=100 pF,C2=2.5 pF  
R1=16 kΩ, C1=100 pF,C2=2.5 pF  
1
2.2.1 Control Register (CTRL 11): Address 0Bh  
Reset State 12h  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Ndvsr6  
Ndvsr5  
Ndvsr4  
Ndvsr3  
Ndvsr2  
Ndvsr1  
Ndvsr0  
Ndvsr[6:0] represents the divisor. If Nrst{2:0] =0 this register is ignored.  
2.2.2 Control Register (CTRL 12): Address 0Ch  
Reset State 00h  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Nseq7  
Nseq6  
Nseq5  
Nseq4  
Nseq3  
Nseq2  
Nseq1  
Nseq0  
Nseq[7:0] represents the divisor sequence.  
Rev. 2.0  
11  
 
 
 
 
73M1903 Data Sheet  
DS_1903_032  
2.2.3 Control Register (CTRL 13): Address 0Dh  
Reset State 48h  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Xtal1  
Xtal0  
Reserved Reserved Unused  
Nrst2  
Nrst1  
Nrst0  
Xtal[1:0] : 00 = Xtal osc. bias current at 120 μA  
01 = Xtal osc. bias current at 180 μA  
10 = Xtal osc. bias current at 270 μA  
11 = Xtal osc. bias current at 450 μA  
If OSCIN is used as a Clock input, “00” setting should be used to save power(=167 μA at 27.648 MHz).  
Nrst[3:0] represents the rate at which the NCO sequence register is reset.  
The address 0Dh must be the last register to be written to when effecting a change in PLL.  
2.2.4 Control Register (CTRL 14): Address 0Eh  
Reset State 00h  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Frcvco  
PwdnPLL Reserved Unused  
Unused  
Unused  
Unused  
Unused  
Frcvco = 1 forces VCO as system clock. This is reset upon RST, PwdnPLL = 1 or ENFE = 0. Both  
PwdnPLL and ENFE are delayed coming out of digital section to keep PLL alive long enough to transition  
the system clock to crystal clock when Frcvco is reset by PwdnPLL or ENFE.  
PwdnPll = 1 forces Power down of PLL analog section.  
12  
Rev. 2.0  
 
 
DS_1903_032  
73M1903 Data Sheet  
3 Clock Generation  
3.1 Crystal Oscillator and Pre-scaler NCO  
The crystal oscillator operates over wide choice of crystals (from 9 MHz to 27 MHz) and it is first input to  
an NCO based pre-scaler (divider) prior to being passed onto an on-chip PLL. The intent of the pre-  
scaler is to convert the crystal oscillator frequency, Fxtal, to a convenient frequency to be used as a  
reference frequency, Fref, for the PLL. The NCO pre-scaler requires a set of three numbers to be  
entered through the serial port (Pseq[7:0], Prst[2:0] and Pdvsr[2:0]. The PLL also requires 3 numbers as  
for programming; Ndvsr[6:0], Nseq[7:0], and Nrst[2:0]. The following is a brief description of the registers  
that control the NCOs, PLLs, and sample rates for the 73M1903 IC. The tables show some examples of  
the register settings for different clock and sample rates. A more detailed discussion on how these values  
are derived can be found in Appendix B.  
3.1.1 Control Register (CTRL 8): Address 08h  
Reset State 00h  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Pseq7  
Pseq6  
Pseq5  
Pseq4  
Pseq3  
Pseq2  
Pseq1  
Pseq0  
This corresponds to the sequence of divisor. If Prst{2:0] =0 this register is ignored.  
3.1.2 Control Register (CTRL 9): Address 09h  
Reset State 0Ah  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Prst2  
Prst1  
Prst0  
Pdvsr4  
Pdvsr3  
Pdvsr2  
Pdvsr1  
Pdvsr0  
Prst[2:0] represents the rate at which the sequence register is reset.  
Pdvsr[4:0] represents the divisor.  
3.1.3 Control Register (CTRL 10): Address 0Ah  
Reset State 22h  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
FL  
Bit 2  
Bit 1  
Bit 0  
Ichp3  
Ichp2  
Ichp1  
Ichp0  
Kvco2  
Kvco1  
Kvco0  
Kvco2:0 represents the magnitude of Kvco associated with the VCO within PLL. This indicates the center  
frequency of the VCO when the control voltage is 1.6 Volts and the slope of the VCO freq versus control  
voltage (i.e., Kvco.). FL represents the PLL loop filter settings.  
Table 4: Kvco versus Settings at Vc=1.6 V, 25 °C  
Kvco2  
Kvco1  
Kvco0  
Fvco  
Kvco  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
33 MHz  
36 MHz  
44 MHz  
48 MHz  
57 MHz  
61 MHz  
69 MHz  
73 MHz  
38 MHz/v  
38 MHz/v  
40 MHz/v  
40 MHz/v  
63 MHz/v  
63 MHz/v  
69 MHz/v  
69 MHz/v  
Rev. 2.0  
13  
 
 
 
 
 
 
73M1903 Data Sheet  
DS_1903_032  
Table 5: PLL Power Down  
Addr. 00h bit 7  
ENFE  
Addr. 0Eh bit 6  
PwdnPLL  
PLL  
0
1
1
X
0
1
PLL Power Off  
PLL Power On  
PLL Power Off  
Table 6: Examples of NCO Settings  
Fs  
(kHz)  
Nnco1  
Dnco1  
PsSeq(7:0) PsRst  
Nnco2  
PllSeq(7:0) PllRst  
Fvco  
PPM  
=Dnco1 Dnco2  
-1  
=Dnco2 (Mhz)  
-1  
7.2  
8/125  
8/125  
8/169  
15  
11011010  
7
5/96  
3/64  
3/89  
19  
XXX10000  
4
33.177600  
0
8.0  
15  
11011010  
7
21  
XXXXX100  
2
36.864000  
0
2.4*8/7*3  
=8.22857142858  
21  
15  
15  
15  
10000000  
11011010  
11011010  
11011010  
7
7
7
7
29  
22  
XXXXX110  
XXX10100  
2
4
0
4
37.917160*  
38.707200  
41.472000  
44.236800  
-3  
0
8.4  
9.0  
9.6  
8/125  
8/125  
8/125  
8/125  
5/112  
1/24  
24 XXXXXXXX  
0
5/128  
7/192  
25  
XXX11010  
0
2.4*10/7*3  
=10.2857142857  
15  
11011010  
7
27  
X1010110  
6
47.396571  
0
2.4*8/7*4  
7/50  
8/107  
=10.9714285714  
7
7
X1000000  
X1010100  
11011010  
10000000  
6
6
7
7
13  
14  
10100100  
XXX10000  
7
4
0
3
50.557500*  
51.611538*  
55.296000  
58.984615*  
23  
38  
0
11.2*  
12.0  
7/52  
8/125  
8/65  
7/80  
5/71  
1/32  
4/71  
4/107  
15  
8
32 XXXXXXXX  
12.8*  
17  
XXXX1110  
38  
2.4*10/7*4  
=13.7142857143  
11  
15  
X1010100  
11011010  
6
7
0
0
26  
38  
13  
XXXX1110  
XXX10100  
XXXXXX10  
3
4
1
0
63.196875*  
66.355200  
33.177600  
36.864000  
23  
0
14.4  
7.2  
8/125  
1/10  
1/10  
4/35  
5/192  
2/27  
1/15  
10 XXXXXXXX  
10 XXXXXXXX  
0
8.0  
15 XXXXXXXX  
0
2.4*8/7*3  
=8.22857142858  
8
XXXX1110  
3
0
0
0
2/27  
4/63  
13  
15  
16  
XXXXXX10  
XXXX1110  
11111110  
1
3
7
0
37.917257…  
38.707200  
41.472000  
44.236800  
0
0
0
0
8.4  
1/10  
1/10  
1/10  
10 XXXXXXXX  
10 XXXXXXXX  
10 XXXXXXXX  
9.0  
8/135  
1/18  
9.6  
18 XXXXXXXX  
2.4*10/7*3  
=10.2857142857 3/28  
9
XXXXX100  
2
1/18  
18 XXXXXXXX  
0
47.3965714..  
0
2.4*8/7*4  
=10.9714285714 4/35  
8
XXXX1110  
3
0
0
0
1/18  
1/21  
2/45  
1/24  
18 XXXXXXXX  
21 XXXXXXXX  
0
0
1
0
50.5563429..  
51.609600  
55.296000  
58.982400  
0
0
0
0
11.2  
1/10  
1/10  
1/10  
10 XXXXXXXX  
10 XXXXXXXX  
10 XXXXXXXX  
12  
22  
XXXXXX10  
12.8  
24 XXXXXXXX  
2.4*10/7*4  
=13.7142857143 1/7  
7
XXXXXXXX  
0
0
0
0
0
0
0
1/18  
1/27  
5/72  
1/16  
5/84  
1/18  
5/96  
5/96  
18 XXXXXXXX  
27 XXXXXXXX  
0
0
4
0
4
0
4
63.19542…  
66.355200  
33.177600  
36.864000  
38.707200  
41.472000  
44.236800  
0
0
0
0
0
0
0
14.4  
7.2  
8.0  
8.4  
9.0  
9.6  
1/10  
10 XXXXXXXX  
1/4  
1/4  
1/4  
1/4  
1/4  
2/7  
4
4
4
4
4
XXXXXXXX  
XXXXXXXX  
XXXXXXXX  
XXXXXXXX  
XXXXXXXX  
14  
16 XXXXXXXX  
16 XXX11110  
18 XXXXXXXX  
XXX10100  
19  
XXX10000  
2.4*8/7*4  
=10.9714285714  
6
4
4
XXXXXX10  
XXXXXXXX  
XXXXXXXX  
4
0
0
19  
22  
XXX10000  
XXX10100  
4
4
0
50.556343  
51.609600  
55.296000  
0
0
0
11.2  
12  
1/4  
1/4  
5/112  
1/24  
24 XXXXXXXX  
14  
Rev. 2.0  
 
 
DS_1903_032  
73M1903 Data Sheet  
Fs  
(kHz)  
Nnco1  
Dnco1  
PsSeq(7:0) PsRst  
Nnco2  
PllSeq(7:0) PllRst  
Fvco  
=Dnco2 (Mhz)  
-1  
PPM  
=Dnco1 Dnco2  
-1  
12.8  
1/4  
4
8
XXXXXXXX  
XXXXXXXX  
11011010  
0
0
7
1
5/128  
5/288  
5/108  
5/96  
25  
57  
21  
19  
XXX11010  
XXX11010  
XXX11010  
XXX10000  
4
4
4
4
58.982400  
66.355200  
33.1776  
0
0
0
0
14.4  
1/8  
7.2  
8/125  
2/25  
15  
12  
8.0  
XXXXXX10  
36.864  
2.4*8/7*3  
=8.22857142858 4/73  
18  
15  
6
XXXX1000  
11011010  
XXXX1000  
11011010  
3
7
3
7
6/173  
5/126  
5/54  
28  
25  
10  
28  
XX111110  
XXX10000  
XXX11110  
XXX11110  
5
4
4
4
37.91781*  
38.7072  
41.472  
15  
0
8.4  
8/125  
4/25  
9.0  
0
9.6  
8/125  
15  
5/144  
44.2368  
0
2.4*10/7*3  
=10.2857142857 8/125  
15  
11011010  
7
7/216  
30  
X1111110  
6
47.39657  
0
2.4*8/7*4  
=10.9714285714 6/59  
9
15  
6
XX111110  
11011010  
XXXX1000  
11011010  
5
7
3
7
7/145  
5/168  
5/72  
20  
33  
14  
38  
X1110110  
XXX11010  
XXX10100  
XXX10100  
6
4
4
4
50.5569*  
51.6096  
55.296  
12  
0
11.2  
12.0  
12.8  
8/125  
4/25  
0
8/125  
15  
5/192  
58.9824  
0
2.4*10/7*4  
=13.7142857143 5/61  
12  
10  
20  
XXX10000  
X1010100  
10010010  
4
6
7
8/257  
6/173  
3/80  
32  
28  
26  
10000000  
XX111110  
110  
7
5
2
63.19672*  
66.35616*  
33.177914*  
21  
15  
10  
14.4  
7.2  
7/73  
8/163  
Table 7: Clock Generation Register Settings for Fxtal = 27 MHz  
Reg Address  
Fs (kHz)  
7.2  
Ichp Kvco  
(μA) [2:0]  
Dh  
*
8h 9h Ah Bh Ch  
DA EF 20 13 10 C4  
8
0
1
8.0  
DA EF 31 15 04 C2 10  
2.4*8/7*3  
=8.22857142858  
80 F5 41 1D 06 C2 12  
1
8.4  
9.0  
9.6  
DA EF 31 16 14 C4 10  
DA EF 31 18 XX C0 10  
DA EF 32 19 1A C4 10  
1
1
2
2.4*10/7*3  
=10.2857142857  
DA EF 43 1B 54 C6 12  
3
3
2.4*8/7*4  
=10.9714285714*  
40 C7 23 0D A4 C7  
8
11.2*  
12.0  
54 C7 23 0E 10 C4  
DA EF 24 20 XX C0  
80 E8 15 11 0E C3  
8
8
6
3
4
5
12.8*  
2.4*10/7*4  
=13.7142857143  
54 CB 26 1A 0E C3  
8
6
6
14.4  
DA EF 46 26 14 C4 12  
Rev. 2.0  
15  
 
73M1903 Data Sheet  
DS_1903_032  
Table 8: Clock Generation Register Settings for Fxtal = 24.576 MHz  
Reg Address  
Ichp Kvco  
Fs (kHz)  
7.2  
8h 9h Ah Bh Ch Dh* (μA) [2:0]  
XX 0A 10 0D 02 C1  
XX 0A 11 0F XX C0  
6
6
0
1
8.0  
2.4*8/7*3  
=8.22857142858  
0E 68 11 0D 02 C1  
6
1
8.4  
9.0  
9.6  
XX 0A 21 0F 0E C3  
XX 0A 21 10 FE C7  
XX 0A 22 12 XX C0  
8
8
8
1
1
2
2.4*10/7*3  
=10.2857142857  
04 49 23 12 XX C0  
0E 68 23 12 XX C0  
8
8
3
3
2.4*8/7*4  
=10.9714285714  
11.2  
12  
XX 0A 23 15 XX C0  
XX 0A 14 16 02 C1  
XX 0A 15 18 XX C0  
8
6
6
3
4
5
12.8  
2.4*10/7*4  
=13.7142857143  
XX 07 16 12 XX C0  
XX 0A 26 1B XX C0  
6
8
6
6
14.4  
Table 9: Clock Generation Register Settings for Fxtal = 9.216 MHz  
Reg  
Address  
Ichp Kvco  
Fs (kHz)  
7.2  
8h 9h Ah Bh Ch Dh* (μA) [2:0]  
XX 04 20 0E 14 C4  
8
0
1
1
1
2
8.0  
XX 04 31 10 XX C0 10  
XX 04 31 10 1E C4 10  
XX 04 31 12 XX C0 10  
XX 04 32 13 10 C4 10  
8.4  
9.0  
9.6  
2.4*8/7*4  
=10.9714285714  
02 23 33 13 10 C4 10  
XX 04 33 16 14 C4 10  
3
11.2  
12  
3
4
5
6
XX 04 24 18 XX C0  
8
12.8  
14.4  
XX 04 35 19 1A C4 10  
XX 08 66 39 1A C4 16  
16  
Rev. 2.0  
 
 
DS_1903_032  
73M1903 Data Sheet  
Table 10: Clock Generation Register Settings for Fxtal = 24.000 MHz  
Reg Address  
Ichp  
Kvco  
[2:0]  
Fs (kHz)  
7.2  
8h  
DA  
02  
9h Ah Bh Ch Dh* (μA)  
EF 30 15 1A C4  
2C 31 13 10 C4  
10  
10  
0
1
8.0  
2.4*8/7*3  
=8.22857142858  
08  
72 41 1C 3E C5  
12  
1
8.4  
9.0  
9.6  
DA  
08  
EF 41 19 10 C4  
66 11 0A 1E C4  
EF 42 1C 1E C4  
12  
6
1
1
2
DA  
12  
2.4*10/7*3  
=10.2857142857  
DA  
3E  
EF 43 1E 7E C6  
A9 33 14 76 C6  
12  
10  
3
3
2.4*8/7*4  
=10.9714285714  
11.2  
12  
DA  
08  
EF 53 21 1A C4  
66 14 0E 14 C4  
EF 45 26 14 C4  
14  
6
3
4
5
12.8  
DA  
12  
2.4*10/7*4  
=13.7142857143  
10  
54  
8C 46 20 80 C7  
CA 46 1C 3E C5  
12  
12  
6
6
14.4  
Table 11: Clock Generation Register Settings for Fxtal = 25.35 MHz  
Reg Address  
Ichp Kvco  
9h Ah Bh Ch Dh* (μA) [2:0]  
FS (KHz)  
8h  
7.2  
92  
F4 50 1A 06 C2  
14  
0
FrcVco  
0
1
System  
Clock  
2
Loop Filter Control  
VCO Locked  
Xtal Oscillator  
Up  
Kd  
NCO  
Prescaler  
Fref  
Fvco  
R1  
VCO  
Kvco  
Charge  
Pump  
Fxtal  
C2  
PFD  
C1  
Dn  
Ichp Control  
2
Kvco Control  
2
NCO  
Figure 5: Clock Generation  
Rev. 2.0  
17  
 
 
 
73M1903 Data Sheet  
DS_1903_032  
4 Modem Receiver  
A differential receive signal applied at the RXAP and RXAN pins or the output signal at TXAP and TXAN  
pass through a multiplexer, which selects the inputs to the ADC. In normal mode, RXAP/RXAN are  
selected. In analog loopback mode, TXAP/TXAN are selected. The DC bias for the RXAP/RXAN inputs  
is supplied from TXAP/TXAN through the external DAA in normal conditions. (See Appendix A) It can be  
supplied internally, in the absence of the external DAA, by setting RXPULL bit in Control Register 2.  
The output of the multiplexer goes into a second-order continuous time, Sallen-Key, low-pass filter (AAF)  
with a 3 dB point at approximately 40 kHz. The filtered output signal is the input to an analog sigma-delta  
modulator (ASDM), clocked at an over sampling frequency of 1.536 MHz for Fs = 8 kHz, which converts  
the analog signal to a serial bit stream with a pulse density that is proportional to the amplitude of the  
analog input signal.  
There are three gain control bits for the receive path. The RXGAIN bit in control register one results in a  
+20 dB gain of the receive signal when set to a “1”. This 20 dB of gain compensates for the loss through  
the DAA while on hook. It is used for Caller ID reception. This gain is realized in the front end of ASDM.  
The other gain bits in control register 1, RXG1:0, compensate for differences in loss through the receive  
path.  
Table 12: Receive Gain  
RXG1  
RXG0  
Receive Gain Setting  
0
0
1
1
0
1
0
1
6 dB  
9 dB  
12 dB  
0 dB  
The output of ASDM is a serial bit stream that feeds three digital sinc3 filters. Each filter has a [sin(x)/x]3  
frequency response and provides a 16 bit sample every 288 clock cycles. The filters are synchronized so  
that there is one sample available after every 96 analog samples or at a rate of 16 kHz for Fs=8 kHz. The  
output of the sinc3 filter is a 17 bit, two’s compliment number representing the amplitude of the input  
signal. The sinc3 filter, by virtue of holding action (for 96 sample period), introduces a droop in the  
passband that is later corrected for by a 48 tap FIR filter that follows. The maximum digital word that can  
be output from the filter is 0d800h. The minimum word is 12800h.  
The output of the sinc3 filter is input to another 48 tap digital FIR filter that provides an amplitude  
correction in the passband to the output of the sinc3 filter as well as rejecting noise above Fs/2 or 4 kHz  
for Fs=8 kHz. The output of this filter is then decimated by a factor of 2; so, the final output is 16 bit, two’s  
compliment samples at a rate of 8 kHz.  
Figure 6 and Figure 7 depict the sinc3 filter’s frequency response of ASDM along with the 48 tap digital  
FIR response that compensates for it and the resulting overall response of the receiver.  
18  
Rev. 2.0  
 
 
DS_1903_032  
73M1903 Data Sheet  
Figure 6: Overall Receiver Frequency Response  
Figure 7: Rx Passband Response  
It is important to keep in mind that the receive signal should not exceed 1.16 Vpk-diff for proper  
performance for Rxg=11 (0 dB). In particular, if the input level exceeds a value such that one’s density of  
RBS exceeds 99.5%, sinc3 filter output will exceed the maximum input range of the decimation filter and  
consequently the data will be corrupted. Also for stability reasons, the receive signal should not exceed  
1.16 Vpk differentially. This value is set at around 65% of the full receive signal of 1.791 Vpkdiff at  
RXAP/RXAN pins that “would” corresponds to ASDM putting out all ones.  
Figure 8 and Figure 9 show the spectrum of 1 kHz tone received at RXAP/RXAN of 1.16 Vpk-diff and  
0.5 kHz and 1.0 kHz tones of 0.6 Vpk-diff each, respectively for Fs=8 kHz. Note the effect of FIR  
suppressing the noise above 4 kHz but at the same time enhancing (in order to compensate for the  
passband droop of sinc3 filter) it near the passband edge of 4 kHz.  
Rev. 2.0  
19  
 
 
73M1903 Data Sheet  
DS_1903_032  
Figure 8: RXD Spectrum of 1 kHz Tone  
Figure 9: RXD Spectrum of 0.5 kHz, 1 kHz, 2 kHz, 3 kHz and 3.5 kHz Tones of Equal Amplitudes  
20  
Rev. 2.0  
 
 
DS_1903_032  
73M1903 Data Sheet  
5 Modem Transmitter  
The modem transmitter begins with an 48 tap Transmit Interpolation Filter (TIF) that takes in the 16-bit,  
two’s compliment numbers (TXD) at SDIN pin at Fs=8 kHz rate. It up-samples (interpolates) the data to  
16 kHz rate rejecting the images at multiples of 8 kHz that exist in the original TXD data stream and  
outputs 16-bit, two’s compliment numbers to a digital sigma-delta modulator. The gain of the interpolation  
filter is 0.640625 (–3.8679 dB) at DC.  
The digital sigma-delta modulator (DSDM) takes 16-bit, two’s compliment numbers as input and  
generates a 1’s bit stream which feeds into a D to A converter (DAC1). The gain through DSDM is 1.0.  
DSDM takes 16-bit, two’s compliment numbers as input and generates a 1’s bit stream that feeds into a D  
to A converter (DAC1).  
DAC1 consists of a 5-tap FIR filter and a first order switched capacitor low pass filter both operating at  
1.536 MHz. It possesses nulls at multiples of 384 kHz to allow decimation by the succeeding filter.  
DAC1’s differential output is fed to a 3rd-order switched-capacitor low pass filter (TLPF). The output of  
TLPF drives a continuous time smoothing filter. The sampling nature of the transmitter leads to an  
additional filter response that affects the in-band signals. The response is in the form of sin(x)/x and can  
be expressed as 20*log [(sin(PI*f/fs))/(PI*f/fs)] where f = signal frequency and fs = sample frequency = 16  
kHz. Figure 10 shows the frequency response of the transmit path from TXD to TXAP/TXAN for a dc to 4  
kHz in-band signal including the effect of this sampling process plus those of DAC1, TLPF and SMFLT. It  
is important to note that as TXD is sampled at 8 kHz, it be band-limited to 4 kHz.  
Figure 10: Frequency Response of TX Path for DC to 4 kHz in Band Signal  
Rev. 2.0  
21  
 
 
73M1903 Data Sheet  
DS_1903_032  
5.1 Transmit Levels  
The 16-bit transmit code word written by the DSP to the Digital Sigma-Delta Modulator (DSDM) (via TIF)  
has a linear relationship with the analog output signal. So, decreasing a code word by a factor of 0.5 will  
result in a 0.5 (-6 dB) gain change in the analog output signal.  
The following formula describes the relationship between the transmit code word and the output level at  
the transmit pins (TXAP/TXAN):  
Vout (V) = 2 * code/32,767 * DSDMgain * dacGAIN * VREF * TLPFgain * SMFLTgain * FreqFctr  
Vout is the differential peak voltage at the TXAP and TXAN pins.  
Code is the 16-bit, two’s compliment transmit code word written out by the DSP to the DSDM (via TIF).  
The code word falls within a range of ± 32,767. For a sinusoidal waveform, the peak code word should  
be used in the formula to obtain the peak output voltage.  
DSDMgain is the scaling factor used on the transmit code word to reduce the possibility of saturating the  
modulator. This value is set to 0.640625(–3.555821 dB) at dc in the 48 tap transmit interpolation filter  
(TIF) that precedes DSDM.  
dacGAIN is the gain of the DAC. The value dacGAIN is calculated based on capacitor values inside  
DAC1 and dacGAIN=8/9=0.8889. The number 32,767 refers to the code word that generates an 82%  
“1’s” pulse density at the output of the DSDM. As one can see from the formula, the D to A conversion is  
dependent on the level of VREF. Also when TXBST1 bit is set, VREF is increased from 1.36 V to 1.586 V  
to allow higher transmit level or 16.6% increase in gain. This bit is intended for enhancing the DTMF  
transmit level and should not be used in data mode.  
TLPFgain is the gain of TLPF and nominally equals to 0.00 dB or 1.0.  
SMFLTgain is the gain of SMFLT and nominally equal to 1.445 or 3.2 dB.  
When TXBST0 bit is set, the gain is further increased by 1.65 dB (1.21) for the total of 4.85 dB. This is to  
accommodate greater hybrid insertion loss encountered in some applications.  
FreqFctr shows dependency of the entire transmit path on frequency. See Figure 10.  
With the transmit code word of +/- 32,767, the nominal differential swing at the transmit pins at dc is:  
Vout (V) = 2 * code/32,767 * DSDMgain * dacGAIN * VREF * TLPFgain * SMFLTgain * FreqFctr  
= 2 * 32,767/32767 * 0.6640625 * 0.8889 * 1.36 * 1.0 * 1.4454 * 1.0 = 2.31Vpk diff.  
When TXBST1 bit is set, Vout (V) = 1.166 * 2.31= 2.693 Vpk diff.  
When TXBST0 bit is set, Vout (V) = 1.21 * 2.31= 2.795 Vpk diff, if not limited by power supply or internal  
reference.  
When both TXBST1 and TXBST0 are set to 1, Vout (V) = 1.166 * 1.21 * 2.31 = 3.259 Vpk diff.  
22  
Rev. 2.0  
 
DS_1903_032  
73M1903 Data Sheet  
5.2 Transmit Power - dBm  
To calculate the analog output power, the peak voltage must be calculated and the peak to rms ratio  
(crest factor) must be known. The following formula can be used to calculate the output power, in dBm  
referenced to 600 Ω.  
Pout (dBm) = 10 * log [ ( Vout (V) / cf )2 / ( 0.001 * 600 ) ]  
The following example demonstrates the calculation of the analog output power given a 1.2 kHz FSK tone  
(sine wave) with a peak code word value of 11,878 sent out by the DSP.  
The differential output voltage at TXAP-TXAN will be:  
With FreqFctr = 1.02, (See Figure 10)  
Vout (V) = 2 * (11,878/32,767) * 0.6640625 * 0.8889 * 1.36 * 1.0 * 1.4454 * 1.02 = 0.841 Vpk.  
The output signal power will be:  
Pout (dBm) = 10 * log [(0.841 / 1.41)2 / (0.001 * 600) ] = - 2.29 dBm.  
Table 13: Peak to RMS Ratios for Various Modulation Types  
Transmit Type Crest Factor Max Line Level  
V.90  
QAM  
DPSK  
4.0  
-12 dBm  
-9 dBm  
-9 dBm  
2.31  
1.81  
FSK  
1.41  
1.99  
-9 dBm  
DTMF  
-5.7 dBm  
5.3 Control Register (CTRL1): Address 00h  
Reset State 08h  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
ENFE  
Unused  
TXBST1 TXBST0 TXDIS  
RXG1  
RXG0  
RXGAIN  
ENFE  
1 = Enable the digital filters and analog front end.  
0 = Disable the analog blocks shut off the clocks to the digital and analog receive/transmit  
circuits.  
TXBST1  
1 = Add a gain of 1.335 dB (16.6%) to the transmitter; also the common mode voltage of the  
transmit path is increased to 1.375 V. This is intended for enhancing DTMF transmit  
power only and should not be used in data mode.  
0 = No gain is added  
TXBST0  
1 = A gain of 1.65 dB (21%) is added to the transmitter  
0 = The gain of the transmitter is nominal  
TXDIS  
1 = Tri-state the TXAP and TXAN pins, provides a bias of VBG into 80 kΩ for each output pin  
These bits control the receive gain as shown in Table 12.  
RXG1:0  
RXGAIN  
1 = Increase the gain of the receiver by 20 dB.  
Rev. 2.0  
23  
 
 
 
73M1903 Data Sheet  
DS_1903_032  
5.4 Control Register (CTRL2): Address 01h  
Reset State 00h  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
TMEN  
DIGLB  
ANALB  
INTLB  
CkoutEn RXPULL SPOS  
HC  
TMEN  
DIGLB  
1 = Enable test modes.  
1 = Tie the serial bit stream from the digital transmit filter output to the digital receive filter  
input. DIGITAL LOOPBACK  
ANALB  
INTLB  
1 = Tie the analog output of the transmitter to the analog input of the receiver. ANALOG  
LOOPBACK  
1 = Tie the digital serial bit stream from the analog receiver output to the analog transmitter  
input. INTERNAL LOOPBACK  
CkoutEn  
RXPULL  
1 = Enable the CLKOUT output; 0 = CLKOUT tri-stated. For test purposes only; do not use  
in normal operation.  
1 = Pulls DC Bias to RXAP/RXAN pins, through 100 keach, to VREF, to be used in testing  
Rx path.  
0 = No DC Bias to RXAP/RXAN pins.  
SPOS  
HC  
1 = Control frames occur after one quarter of the time between data frames has elapsed.  
0 = Control frames occur half way between data frames.  
1 = FS is under hardware control, bit 0 of data frames on SDIN is bit 0 of the transmit word  
and control frames happen automatically after every data frame.  
0 = FS is under software control, bit 0 of data frames on SDIN is a control frame request bit  
and control frames happen only on request.  
5.5 Revision Register: Address 06h  
Reset State 30h  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Rev3  
Rev2  
Rev1  
Rev0  
Unused  
Reserved Reserved Reserved  
Bits 7-4 contain the revision level of the 73M1903 device. The rest of this register is for chip development  
purposes only and is not intended for customer use. Do not write to shaded locations.  
24  
Rev. 2.0  
 
 
DS_1903_032  
73M1903 Data Sheet  
6
Test Modes  
There are two loop back test modes that affect the configuration of the analog front end. The internal  
loop back mode connects the serial bit stream generated by the analog receiver to the input of the analog  
transmitter. This loop back mode is similar to a remote analog loop back mode and can be used to  
evaluate the operation of the analog circuits. When using this loop back mode, the TXAN/TXAP pins  
should not be externally coupled to the RXAP/RXAN pins. Set bit 4 (INTLB) in register 1h (CTRL2) to  
enter this loop back mode.  
The second loop back test mode is the external loop back mode, or local analog loop back mode. In this  
mode, the analog transmitter outputs are fed back into the input of the analog receiver. Set bit 5 (ANALB)  
in register 1h (CTRL2) to enter this loop back mode. In this mode, TBS must be kept to below a value  
that corresponds to less than 1.16 V/2.31 V x -6 dB = 25% of the full scale code of +/- 32768 at TXD in  
order to ensure that the receiver is not overdriven beyond the maximum of 1.16 Vpkpk diff for Rxg=11(0  
dB) setting. See Table 18 for the maximum allowed transmit levels. Check the transmitted data against  
received data via serial interface. This tests the functionality of essentially all blocks, both digital and  
analog, of the chip.  
There is a third loopback mode that bypasses the analog circuits entirely. Digital loop back forces the  
transmitter digital serial bit stream (from DSDM) to be routed into the digital receiver’s sinc3 filters. Set bit  
6 (DIGLB) in register 1h (CTRL2) to enter this loop back mode.  
7
Power Saving Modes  
The 73M1903 has only one power conservation mode. When the ENFE, bit 7 in register 0h, is zero the  
clocks to the filters and the analog are turned off. The transmit pins output a nominal 80 kΩ impedance.  
The clock to the serial port is running and the GPIO and other registers can be read or updated.  
Rev. 2.0  
25  
 
 
73M1903 Data Sheet  
DS_1903_032  
8 Electrical Specifications  
8.1 Absolute Maximum Ratings  
Operation above maximum rating may permanently damage the device.  
Parameter  
Rating  
Supply Voltage  
-0.5 V to +4.0 V  
-0.5 V to 6.0 V  
-0.5 V to VDD + 0.5 V  
Pin Input Voltage (except OSCIN)  
Pin Input Voltage (OSCIN)  
8.2 Recommended Operating Conditions  
Parameter  
Rating  
Supply Voltage (VDD) with respect to VSS  
Oscillator Frequency  
3.0 V to 3.6 V  
24.576 MHz ±100ppm  
-40 C to +85 °C  
Operating Temperature  
26  
Rev. 2.0  
 
 
 
DS_1903_032  
73M1903 Data Sheet  
8.3 Digital Specifications  
8.3.1 DC Characteristics  
Parameter  
Symbol  
Conditions  
Min  
-0.5  
Nom  
Max  
0.2 * VDD  
5.5  
Unit  
V
Input Low Voltage  
VIL  
Input High Voltage  
(Except OSCIN)  
VIH1  
0.7 VDD  
V
Input High Voltage  
OSCIN  
VIH2  
VOL  
0.7 VDD  
VDD + 5.5  
0.45  
V
V
Output Low Voltage  
(Except OSCOUT, FS,  
SCLK, SDOUT)  
IOL = 4 mA  
Output Low Voltage  
OSCOUT  
VOLOSC  
VOL  
IOL = 3.0 mA  
IOL = 1 mA  
IOH = -4 mA  
0.7  
V
V
V
Output Low Voltage  
FS,SCLK,SDOUT  
0.45  
Output High Voltage  
(Except OSCOUT, FS,  
SCLK, SDOUT)  
VOH  
VDD - 0.45  
Output High Voltage  
OSCOUT  
VOHOSC  
VOH  
IOH = -3.0 mA  
IOH = -1 mA  
VDD - 0.9  
V
V
Output High Voltage  
VDD - 0.45  
FS, SCLK, SDOUT  
Input Low Leakage  
Current  
(Except OSCIN)  
IIL1  
VSS < Vin < VIL1  
1
1
μA  
Input High Leakage  
Current  
(Except OSCIN)  
VIH1 < Vin < 5.5  
VSS < Vin < VIL2  
VIH2 < Vin <VDD  
μA  
μA  
μA  
IIH1  
IIL2  
Input Low Leakage  
Current  
OSCIN  
1
1
30  
30  
Input High Leakage  
Current  
IIH2  
OSCIN  
IDD current at 3.0V – 3.6V Nominal at 3.3V  
IDD Total current  
IDD Total current  
IDD Total current  
IDD  
IDD  
IDD  
IDD  
Fs=8 kHz,  
Xtal=27 MHz  
9
12.0  
13.4  
14.5  
2.5  
mA  
mA  
mA  
mA  
Fs=11.2 kHz,  
Xtal=27 MHz  
10.3  
11.8  
2
Fs=14.4 kHz,  
Xtal=27 MHz  
IDD Total current  
ENFE=0  
Rev. 2.0  
27  
 
 
73M1903 Data Sheet  
DS_1903_032  
8.3.2 AC Timing  
Table 14: Serial I/F Timing  
Min  
Parameter  
Nom  
Max  
Unit  
SCLK Period (Tsclk) (Fs=8 kHz)  
SCLK to FS Delay (td1) – mode1  
SCLK to FS Delay (td2) – mode1  
SCLK to SDOUT Delay (td3) (With 10pf load)  
Setup Time SDIN to SCLK (tsu)  
Hold Time SDIN to SCLK (th)  
SCLK to FS Delay (td4) – mode0  
SCLK to FS Delay (td5) – mode0  
1/2.048 MHz  
ns  
ns  
20  
20  
ns  
ns  
ns  
ns  
ns  
ns  
20  
15  
10  
20  
20  
td1  
td2  
Tsclk  
SCLK  
FS  
(mode1)  
RX15  
RX14  
RX1  
TX1  
RX0  
TX0  
SDOut  
SDIN  
td3  
tsu  
TX15  
th  
TX14  
FS  
(mode0)  
td5  
td4  
Figure 11: Serial Port Data Timing  
28  
Rev. 2.0  
 
 
 
DS_1903_032  
73M1903 Data Sheet  
8.4 Analog Specifications  
8.4.1 DC Specifications  
VREF should be connected to an external bypass capacitor with a minimum value of 0.1 μF. This pin is  
not intended for any other external use.  
Table 15: Reference Voltage Specifications  
Parameter  
VREF  
Test Condition  
VDD= 3.0 V - 3.6 V.  
300Hz-3.3 kHz  
Min  
Nom  
1.36  
-86  
Max  
Units  
V
VREF Noise  
-80  
dBm600  
dB  
VREF PSRR 300Hz-30 kHz  
40*  
8.4.2 AC Specifications  
Table 16 shows the maximum transmit levels that the output drivers can deliver before distortion through  
the DAA starts to become significant. The loss though the DAA transmit path is assumed to be 7 dB.  
The signals presented at TXAP and TXAN are symmetrical. The transmit levels can be increased by  
setting either TXBST0 (+1.5 dB) or/and TXBST1 (+0.83 dB) for the combined total gain of 2.33 dB.  
These can be used where higher-level DTMF tones are required.  
Table 16: Maximum Transmit Levels  
Transmit Type  
Maximum Different Maximum Single-  
Peak to  
Single-Ended Single-Ended  
Line Level (dBm0)  
Ended Level at  
TXA Pins (dBm)  
rms Ratio rms Voltage at Peak Voltage  
TXA Pins (V) at TXA Pins (v)  
VPA=2.7 V to 3.6 V. All rms and peak voltages are relative to VREF.  
V.90  
-12.0  
-11.0  
-6.3  
-4.1  
-2.0  
-6.8  
-8.8  
4
0.2175  
0.377  
0.481  
0.616  
0.354  
0.283  
0.87  
0.87  
QAM  
-7.3  
-5.1  
-3.0  
-7.8  
-9.8  
2.31  
1.81  
1.41  
1.41  
1.41  
DPSK  
0.87  
FSK  
0.87  
DTMF (high tone)  
DTMF (low tone)  
0.500  
0.400  
Rev. 2.0  
29  
 
 
 
 
 
73M1903 Data Sheet  
DS_1903_032  
8.5 Performance  
8.5.1 Receiver  
Table 17: Receiver Performance Specifications  
Parameter  
Test Conditions  
Min  
Nom  
Max  
Units  
kΩ  
Input Impedance  
Measured at RXAP/N relative to VREF  
RXPULL=HI  
230  
Measured at RXAP/N relative to VREF  
RXPULL=LO  
1.0  
MΩ  
Receive Gain  
Boost  
Rxgain = 1; 1 kHz; RXAP/N=0.116 Vpk-diff  
Gain Measured relative to Rxgain=0  
RXGAIN=1 for Fs=8 kHz  
17.0  
16.2  
15.7  
18.5  
17.4  
17.2  
20.0  
18.7  
18.7  
dB  
dB  
dB  
RXGAIN =1 for Fs=12 kHz  
RXGAIN =1 for Fs=14.4 kHz  
THD = 2nd and 3rd harmonic.  
RXGAIN =1  
Total Harmonic  
Distortion (THD)  
64  
70  
RXG Gain  
Gain Measured relative to RXG[1:0]=11  
(0 dB) @1 kHz  
RXG[1:0]=00  
RXG[1:0]=01  
RXG[1:0]=10  
5.8  
8.8  
11.8  
6
9
12  
6.2  
9.2  
12.2  
dB  
dB  
dB  
Passband Gain  
Input offset  
Input 1.16 Vpk-diff at RXA. Measure gain at  
0.5 kHz, and 2 kHz. Normalized to 1 kHz.  
Gain at 0.5 kHz  
Gain at 1 kHz (Normalized)  
Gain at 2.0 kHz  
-0.29  
-0.042  
0.000  
0.183  
0.21  
0.43  
dB  
dB  
dB  
-0.067  
Short RXAP to RXAN. Measure input  
voltage relative to VREF  
-30  
0
30  
mV  
Normalized to VBG=1.25 V.  
Includes the effect of AAF(-0.4 dB) with  
Bits 1, 0 of CTRL2 register (01h) = 00.  
Sigma-Delta ADC  
Modulation gain  
41  
µV/bit  
Vpk-diff  
Maximum Analog Peak voltage measured differentially  
Signal Level at  
RXAP/RXAN  
across RXAP/RXAN.  
1.16  
-80  
1 kHz 1.16 Vpk-diff at RXA with Rxg=11  
THD = 2nd and 3rd harmonic.  
Total Harmonic  
Distortion (THD)  
80  
85  
dB  
Transmit V.22bis low band; FFT run on  
ADC samples. Noise in 0 to 4 kHz band  
Noise  
-85  
dBm  
0 dBm 1000Hz sine wave at TXAP; FFT  
on Rx ADC samples, 1st four harmonics  
Reflected back to receiver inputs.  
Crosstalk  
-100  
dB  
Note: RXG[1:0] and RXGAIN are assumed to have settings of ‘0’ unless they are specified otherwise.  
30  
Rev. 2.0  
 
 
 
DS_1903_032  
73M1903 Data Sheet  
8.5.2 Transmitter  
Table 18: Transmitter Performance Specifications  
Parameter  
Test Condition  
Min  
Nom  
Max  
Units  
Code word of ± 32,767 @1 kHz;  
TXBST0=0; TXBST1=0  
DAC gain  
(Transmit Path Gain)  
70  
µv/bit  
Across TXAP and TXAN for  
DAC input = 0  
DC offset –Differential  
Mode  
-100  
-80  
100  
80  
mV  
mV  
DC offset -Common  
Mode  
Average of TXAP and TXAN for DAC  
input = 0; relative to VREF  
Code word of ± 32,767 @1 kHz;  
relative to TXBST0=0; TXBST1=0  
TXBST0 Gain  
TXBST1 Gain  
1.65  
dB  
dB  
Code word of ± 32,767 @1 kHz;  
relative to TXBST0=0; TXBST1=0  
1.335  
Code word of ± 32,767 @1 kHz; relative  
to TXBST0=0;TXBST1=0 THD = 2nd and  
3rd harmonic.  
Total Harmonic  
Distortion (THD)  
-75  
-80  
-60  
-85  
-85  
-70  
dB  
dB  
dB  
Code word of ± ( 32,767*0.8) @1 kHz;  
relative to TXBST0=0;TXBST1=0 THD =  
2
nd and 3rd harmonic.  
Code word of ± ( 32,767*0.9) @1 kHz;  
1200 Ω Resistor  
across TNAN/TXAP  
relative to TXBST0=1;TXBST1=1 THD =  
2
nd and 3rd harmonic.  
Code word of ± 32,767 @1 kHz;  
relative to TXBST0=1;TXBST1=1  
THD = 2nd and 3rd harmonic  
-70  
70  
At output (TXAP-TXAN): DTMF  
1.0 kHz, 1.2 kHz sine waves, summed  
2.0 Vpk (-2 dBm tone summed with  
0 dBm tone)  
dB  
below  
low  
Intermod Distortion  
tone  
Refer to TBR 21 specifications for  
description of complete requirements.  
Idle Channel Noise  
PSRR  
200 Hz - 4.0 kHz  
110  
μV  
dB  
dB  
-30 dBm signal at VPA  
300 Hz – 30kHz  
40  
Passband Ripple  
300 Hz - 3.2kHz  
-0.125  
0.125  
Code word of ± 32,767 @1 kHz.  
Measure gain at 0.5 kHz, and 2 kHz  
relative to 1 kHz.  
Gain at 0.5 kHz  
Gain at 1 kHz (Normalized)  
Gain at 2.0 kHz  
Transmit Gain  
Flatness  
0.17  
0
0.193  
-0.12  
dB  
dB  
dB  
dB  
Gain at 3.3 kHz  
Rev. 2.0  
31  
 
 
73M1903 Data Sheet  
DS_1903_032  
Parameter  
Test Condition  
Min  
Nom  
Max  
Units  
TXAP/N Output  
Impedance  
Differentially  
(TXDIS=1)  
TXDIS=1  
Measure impedance differentially  
between TXAP and TXAN.  
160  
kΩ  
TXAP/N Common  
Output Offset  
(TXDIS=1)  
TXDIS=1  
-20  
0
20  
mV  
Short TXAP and TXAN. Measure the  
voltage respect to Vbg.  
Note: TXBST0 and DTMFBS are assumed to have setting 0’s unless they are specified otherwise.  
32  
Rev. 2.0  
DS_1903_032  
73M1903 Data Sheet  
9 Pinouts  
9.1 32-Pin QFN Pinout  
VND  
1
2
3
4
5
6
7
8
GPIO5  
24  
23  
22  
21  
20  
19  
18  
17  
VPD  
GPIO4  
VND  
N/C  
GPIO0  
GPIO1  
TERIDIAN  
73M1903  
GPIO2  
GPIO3  
FS  
VPPLL  
OSCIN  
OSCOUT  
VNPLL  
SCLK  
Figure 12: 32-Pin QFN Pinout  
Table 19: 32-Pin QFN Pin Definitions  
Pin  
1
Name  
VND  
Pin  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
Name  
VNPLL  
OSCOUT  
OSCIN  
VPPLL  
CLKOUT  
VND  
2
VPD  
3
GPIO0  
GPIO1  
GPIO2  
GPIO3  
FS  
4
5
6
7
GPIO4  
GPIO5  
VPD  
8
SCLK  
RST  
9
10  
11  
12  
13  
14  
15  
16  
VPA  
N/C  
TXAN  
TXAP  
VREF  
RXAN  
RXAP  
VNA  
TYPE  
SckMode  
SDIN  
GPIO6  
GPIO7  
SDOUT  
Rev. 2.0  
33  
 
 
 
 
73M1903 Data Sheet  
DS_1903_032  
9.2 20-Pin TSSOP Pinout  
1
2
3
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
SDIN  
TYPE  
SDOUT  
VND  
VPD  
VND  
4
FS  
VPPLL  
5
6
SCLK  
VREF  
RST  
OSCIN  
OSCOUT  
VNPLL  
VNA  
73M1903  
7
8
VPA  
9
TXAN  
TXAP  
RXAP  
RXAN  
10  
Figure 13: 20-Pin TSSOP Pinout  
Table 20: 20-Pin TSSOP Pin Definitions  
Pin  
1
Name  
SDOUT  
VND  
Pin  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
Name  
RXAN  
RXAP  
VNA  
2
3
VPD  
4
FS  
VNPLL  
OSCOUT  
OSCIN  
VPPLL  
VND  
5
SCLK  
VREF  
RST  
6
7
8
VPA  
9
TXAN  
TXAP  
TYPE  
10  
SDIN  
34  
Rev. 2.0  
 
 
 
DS_1903_032  
73M1903 Data Sheet  
10 Mechanical Specifications  
10.1 32-Pin QFN Mechanical Drawings  
Dimensions in mm.  
0.85 NOM./ 0.9MAX.  
0.00 / 0.005  
0.20 REF.  
5
2.5  
1
2
3
SEATING  
PLANE  
SIDE VIEW  
TOP VIEW  
3.0 / 3.75  
0.18 / 0.3  
CHAMFERED  
0.30  
1.5 / 1.875  
1
2
3
0.2 MIN.  
0.35 / 0.45  
0.25  
0.5  
BOTTOM VIEW  
Figure 14: 32-Pin QFN Mechanical Specifications  
Rev. 2.0  
35  
 
 
 
73M1903 Data Sheet  
DS_1903_032  
10.2 20-Pin TSSOP Mechanical Drawings  
Dimensions in mm.  
Figure 15: 20-Pin TSSOP Mechanical Specifications  
36  
Rev. 2.0  
 
 
DS_1903_032  
73M1903 Data Sheet  
11 Ordering Information  
Part Description  
Order Number  
73M1903-IM/F  
73M1903-IMR/F  
73M1903-IVT/F  
73M1903-IVTR/F  
Package Mark  
73M1903-M  
73M1903-M  
73M190IVT  
73M1903 32-Lead QFN Lead Free  
73M1903 32-Lead QFN, Tape and Reel, Lead Free  
73M1903 20-Lead TSSOP Lead Free  
73M1903 20-Lead TSSOP, Tape and Reel, Lead Free  
73M190IVT  
Rev. 2.0  
37  
 
73M1903 Data Sheet  
DS_1903_032  
Appendix A – 73M1903 DAA Resistor Calculation Guide  
The following procedure can be used to approximate the component values for the DAA. The optimal  
values will be somewhat different due to the effects of the reactive components in the DAA (this is a DC  
approximation). Simulations with the reactive components accurately modeled will yield optimal values.  
The procedures for calculating the component values in the DAA are as follows. First set up R1. The  
DAA should be designed to reflect 600 Ω when looking in at TIP/RING. If the transformer is 1 to 1, the  
holding coil and ring detect circuit are high impedance, Cblock is a high value so in the frequency band of  
interest it is negligible, the sum of R2 and R3 is much greater than R1, and the output impedance of the  
drivers driving TXAP/TXAN are low then:  
.
.
Rin 2 R1 RW Rohswitch 2 Rbead  
RW is the sum of the winding resistance of both sides of the transformer. Measure each side of the  
transformer with an Ohmmeter and sum them.  
Rohswitch is the on resistance of the Off Hook Switch. Mechanical Relay switches can be ignored, but  
Solid State Relays sometimes have an appreciable on resistance.  
Rbead is the DC resistance of whatever series RF blocking devices may be in the design.  
For Rin equal to 600 Ω:  
.
600 RW Rohswitch 2 Rbead  
R1  
2
To maximize THL (Trans-Hybrid Loss), or to minimize the amount of transmit signal that shows up back  
on the Receive pins. The RXAP/RXAN pins get their DC bias from the TXAP/TXAN pins. By capacitively  
coupling the R3 resistors with the C1 caps, the DC offset can be minimized from the TXAP/TXAN to the  
RXAP/RXAN because the DC offset will be divided by the ratio of the R1 resistors to the winding  
resistance on the one side of the transformer.  
Next make the sum of R2 + R3 much higher than 600 Ω. Make sure they are lower than the input  
impedance of the RXAP/RXAN pins; otherwise they can move the frequency response of the input filter.  
So let R2 + R3 = 100K.  
38  
Rev. 2.0  
 
DS_1903_032  
73M1903 Data Sheet  
100 K  
R3  
Rwtot 600  
1
1200  
where  
.
Rwtot RW Rohswitch 2 Rbead  
R2 100 K R3  
Use 1% resistors for R1, R2, and R3  
To select the value for C1, make the zero at around 10Hz.  
1
10  
. .  
.
2 π 100 K C1  
1
C1  
. .  
.
2 π 100 K 10  
C1 0.15 uF  
The blocking cap Cblock should also have the same frequency response, but due to the low impedance,  
its value will be much higher, usually requiring a polarized cap. A blocking cap may also be needed on  
the modem side of the transformer if the DC offset current of the transmit pins will exceed the current  
rating of the transformer.  
1
Cblock  
. .  
.
2 π 600 10  
Cblock 27 uF  
If you are using a Wet transformer design, as in the following figure:  
The only difference is that the blocking capacitor, Cblock, it is removed. All other equations still hold true.  
Rev. 2.0  
39  
73M1903 Data Sheet  
DS_1903_032  
Trans-Hybrid Loss (THL)  
Trans-Hybrid Loss is by definition the loss of transmit signal from Tip/Ring to the receive inputs on the  
modem IC. This definition is only valid when driving a specific phone line impedance. In reality, phone  
line impedances are never perfect, so this definition isn’t of much help. Instead, as an alternate definition  
that helps in analysis for this modem design, THL is the loss from the transmit pins to the receive pins. In  
this definition the worst-case THL from the transmit pins to the Receive pins is 10.8 dB. An insertion loss  
of 7 dB is assumed accounting for losses due to switch, bridge and transformer.  
40  
Rev. 2.0  
DS_1903_032  
73M1903 Data Sheet  
Appendix B – Crystal Oscillator  
The crystal oscillator is designed to operate over wide choice of crystals (from 9 MHz to 27 MHz). The  
crystal oscillator output is input to an NCO based pre-scaler (divider) prior to being passed onto an on-  
chip PLL. The intent of the pre-scaler is to convert the crystal oscillator frequency, Fxtal, to a convenient  
frequency to be used as a reference frequency, Fref, for the PLL. A set of three numbers– Pdvsr (5 bit),  
Prst (3 bit) and Pseq (8 bit) must be entered through the serial port as follows:  
Pdvsr = Integer [Fref/Fxtal];  
Prst = Denominator of the ratio (Fref/Fxtal) minus 1 when it is expressed as a ratio of two smallest  
integers = Nnco1/Dnco1;  
Pseq = Divide Sequence  
overflow  
Fxtal  
Fref  
Counter  
count ctrl  
Pdvsr  
Pdvsr +1  
mux  
Sequence  
Register  
Sequence  
Counter  
Rst  
Prst[2:0]  
Pseq[7:0]  
Figure 16: NCO Block Diagram  
Please note that in all cases, pre-scaler should be designed such that pre-scaler output frequency, Fref,  
is in the range of 2 ~ 4 MHz.  
In the first example below, the exact divide ratio required is Fxtal/Fref = 15.625 =125/8. If a divide  
sequence of {÷16,÷16,÷15,÷16,÷16,÷15,÷16,÷15} is repeated, the effective divide ratio would be exactly  
15.625. Consequently, Pdvsr of 15, the length of the repeating pattern, Prst = 8 –1 =7, and the pattern,  
{1,1,0,1,1,0,1,0}, where 0 means Pdvsr, or ÷15, and 1 means Pdvsr +1, or ÷16 must be entered as below.  
Example 1:  
Fxtal = 27 MHz, Fref = 1.728 MHz.  
Pdvsr = Integer [Fxtal/Fref] = 15 =0Fh  
Prst[2:0] = 8 – 1 = 7 from Fxtal/Fref = 15.625 =125/8;  
Pseq = ÷16,÷16,÷15,÷16,÷16,÷15,÷16,÷15 => {1,1,0,1,1,0,1,0} =DAh.  
In the second example, Fxtal/Fref =4.0. This is a constant divide by 4. Thus Pdvsr is 4, Prst = 1 –1 =0  
and Pseq = {x,x,x,x,x,x,x,x).  
Rev. 2.0  
41  
 
 
 
73M1903 Data Sheet  
DS_1903_032  
Example 2:  
Fxtal = 18.432 MHz, Fref = 2.304 MHz.  
Pdvsr = Integer [Fxtal/Fref] = 8 = 8h;  
Prst[2:0] = 1- 1 = 0 from Fref/Fxtal = 18.432/2.304 = 8/1;  
Pseq = {x,x,x,x,x,x,x,x} = xxh  
Example 3:  
Fxtal = 24.576 MHz, fref = 2.4576 MHz.  
Pdvsr = Integer [ Fxtal/Fref] = 10 = Ah;  
Prst[2:0] = 1- 1 = 0 from Fref/Fxtal = 24.576/2.4576 = 10/1;  
Pseq = {x,x,x,x,x,x,x,x} = xxh  
It is also important to note that when Fxtal/Fref is an integer the output of the pre-scaler is a straight  
frequency divider (example 2). As such there will be no jitter generated at Fref. However if Fxtal/Fref is  
a fractional number, Fref, at the output of the pre-scaler NCO would be exact only in an average sense  
(example 1) and there will be a certain amount of fixed pattern (repeating) jitter associated with Fref which  
can be filtered out by the PLL that follows by appropriately programming the PLL. It is important to note,  
however, that the fixed pattern jitter does not degrade the performance of the sigma delta modulators so  
long as its frequency is >> 4 kHz.  
PLL  
NCO  
Prescaler  
Up  
Kd  
Fref  
Divide  
by 2/1  
R1  
C1  
VCO  
Kvco  
Charge  
Pump  
C2  
PFD  
Dn  
Ichp Control  
3
Kvco Control  
3
NCO  
Figure 17: PLL Block Diagram  
1903B has a built in PLL circuit to allow an operation over wide range of Fs. It is of a conventional design  
with the exception of an NCO based feedback divider. See Figure 17. The architecture of the 73m1903  
dictates that the PLL output frequency, Fvco, be related to the sampling rate, fs, by fvco = 2 x 2304 x fs.  
The nco must function as a divider whose divide ratio equals Fref/Fvco.  
Just as in the NCO pre-scaler, a set of three numbers– Ndvsr (7 bits), Nrst (3 bit ) and Nseq (8 bits)  
must be entered through a serial port to effect this divide:  
Ndvsr = Integer [ Fref/Fxtal ] ;  
Nrst = denominator of the ratio (Fvco/Fref), Dnco1, minus 1, when it is expressed as a ratio of two  
smallest integers = Nnco1/Dnco1;  
Nseq = Divide Sequence  
Example 1:  
Fs = 7.2 kHz or Fvco = 2 x 2304 x 7.2 kHz =33.1776 MHz, Fref = 1.728 MHz.  
Ndvsr = Integer [ Fvco/Fref ] = 19  
Nrst = 5 – 1 = 4 from Fvco/Fref = 19.2 = 96/5;  
Nseq = ÷19, ÷19, ÷19, ÷19, ÷20 => {0,0,0,0,1} =xxx00001 = 01h.  
42  
Rev. 2.0  
 
DS_1903_032  
73M1903 Data Sheet  
Example 2:  
Fs = 8.0 kHz or Fvco = 2 x 2304 x 8 kHz =36.864 MHz, Fref = 2.304 MHz.  
Ndvsr = Integer [Fvco/Fref] = 16 = 10h;  
Nrst= 1-1 = 0 from Fvco/Fref = 16/1;  
Nseq = {x,x,x,x,x,x,x,x} = xxh.  
Example 3:  
Fs = 9.6 kHz or Fvco = 2 x 2304 x 9.6 kHz =44.2368 MHz, Fref = 2.4576 MHz.  
Ndvsr = Integer [Fvco/Fref] = 18 = 16h;  
Nrst= 1-1 = 0 from Fvco/Fref = 18/1;  
Nseq = {x,x,x,x,x,x,x,x} = xxh.  
It is important to note that in general the NCO based feedback divider will generate a fixed jitter pattern  
whose frequency components are at Fref/Accreset2 and its integer multiples. The overall jitter frequency  
will be a nonlinear combination of jitters from both pre-scaler and PLL NCO. The fundamental frequency  
component of this jitter is at Fref/Prst/Nrst. The PLL parameters should be selected to remove this jitter.  
Three separate controls are provided to fine tune the PLL as shown in the following sections.  
To ensure quick settling of PLL, a feature was designed into the 73m1903 where Ichp is kept at a higher  
value until lokdet becomes active or Frcvco bit is set to 1, whichever occurs first. Thus PLL is guaranteed  
to have the settling time of less than one frame synch period after a new set of NCO parameters had  
been written to the appropriate registers. The serial port register writes for a particular sample rate should  
be done in sequence starting from register 08h ending in register 0dh. 0dh register should be the last one  
to be written to. This will be followed by a write to the next register in sequence (0eh) to force the  
transition of Sysclk from Xtal to Pllclk.  
Upon the system reset, the system clock is reset to Fxtal/9. The system clock will remain at Fxtal/9 until  
the host forces the transition, but no sooner the second frame synch period after the write to 0dh. When  
this happens, the system clock will transition to pllclk without any glitches through a specially designed  
deglitch mux.  
Examples of NCO Settings  
Example 1:  
Crystal Frequency = 24.576 MHz; Desired Sampling Rate, Fs = 13.714 kHz(=2.4 kHz x 10/7 x 4)  
Step 1. First compute the required VCO frequency, Fvco, corresponding to  
Fs = 2.4 kHz x 10/7 x 4 = 13.714 kHz, or  
Fvco = 2 x 2304 x Fs = 2 x 2304 x 2.4 kHz x 10/7 x 4 = 63.19543 MHz.  
Step 2. Express the required VCO frequency divided by the Crystal Frequency as a ratio of two integers.  
This is initially given by:  
2 2304 2.4kHz 10/7 4  
.
Fvco / Fxtal  
=
24.576MHz  
After a few rounds of simplification this ratio reduces to:  
18  
7
Nnco1  
1
7
18  
Fvco/ Fxtal  
=
=
= (  
) (  
)
1
1
Dnco1  
Nnco2  
7
1
=
Dnco2  
18  
Rev. 2.0  
43  
73M1903 Data Sheet  
DS_1903_032  
where Nnco1 and Nnco2 must be < or equal to 8.  
The ratio, Nnco1/Dnco1 = 1/7, is used to form a divide ratio for the NCO in prescaler and Nnco2/Dnco2 =  
1/18 for the NCO in the PLL.  
Prescaler NCO: From Nnco1/Dnco1 = 1/7,  
Pdvsr = Integer [ Dnco1/Nnco1 ] = 7;  
Prst[2:0] = Nnco1 – 1 = 0; this means NO fractional divide. It always does ÷7. Thus Pseq becomes  
“don’t care” and is ignored.  
Pseq = {x,x,x,x,x,x,x,x} = xxh.  
PLL NCO: From Nnco2/Dnco2 = 1/18,  
Ndvsr = Integer [ Dnco2/Nnco2 ] = 18;  
Nrst[2:0] = Nnco2 – 1 = 0; this means NO fractional divide. It always does ÷18. Thus Pseq becomes  
“don’t care” and is ignored.  
Nseq = {x,x,x,x,x,x,x,x} = xxh.  
Example 2:  
Crystal Frequency = 24.576 MHz; Desired Sampling Rate, Fs = 10.971 kHz=2.4 kHz x 8/7 x4  
Step 1. First compute the required VCO frequency, Fvco, corresponding to  
Fs = 2.4 kHz x 8/7 x 4 =10.971 kHz.  
Fvco = 2 x 2304 x Fs = 2 x 2304 x 2.4 kHz x 8/7 x 4 = 50.55634 MHz.  
Step 2. Express the required VCO frequency divided by the Crystal Frequency as a ratio of two integers.  
This is initially given by:  
2 2304 2.4kHz 8/7 4  
.
Fvco / Fxtal  
=
24.576MHz  
After a few rounds of simplification this ratio reduces to:  
4
18  
1
Fvco/ Fxtal = (  
) (  
)
35  
Nnco1  
4
Dnco1  
Nnco2  
35  
1
=
=
Dnco2  
18  
, where Nnco1 and Nnco2 must be < or equal to 8.  
The ratio, Nnco1/Dnco1 = 4/35, is used to form a divide ratio for the NCO in pre-scaler and Nnco2/Dnco2  
=1/18 for the NCO in the PLL.  
Pre-scaler NCO: From Nnco1/Dnco1 = 4/35,  
Pdvsr = Integer [ Dnco1/Nnco1 ] = 8;  
Prst[2:0] = Nnco1 – 1 = 3;  
Dnco1/Nnco1 = 35/4 = 8.75 suggests a divide sequence of {÷9,÷9,÷9,÷8}, or  
Pseq = {x,x,x,x,1,1,1,0} = xDh.  
PLL NCO: From Nnco2/Dnco2 = 1/18,  
Ndvsr = Integer [ Dnco2/Nnco2 ] = 18;  
Nrst[2:0] = Nnco2 – 1 = 0; this means NO fractional divide. It always does ÷18. Thus Pseq becomes  
“don’t care”.  
Nseq = {x,x,x,x,x,x,x,x} = xxh.  
44  
Rev. 2.0  
DS_1903_032  
73M1903 Data Sheet  
Example 3:  
Crystal Frequency = 27 MHz; Desired Sampling Rate, Fs = 7.2 kHz  
Step 1. First compute the required VCO frequency, Fvco, corresponding to  
Fs = 2.4 kHz x 3 = 7.2 kHz.  
Fvco = 2 x 2304 x Fs = 2 x 2304 x 2.4 kHz x 3 = 33.1776 MHz.  
Step 2. Express the required VCO frequency divided by the Crystal Frequency as a ratio of two integers.  
This is initially given by:  
2 2304 2.4kHz 3  
.
Fvco / Fxtal  
=
27MHz  
After a few rounds of simplification this reduces to:  
8
96  
5
Fvco/ Fxtal = (  
) (  
)
125  
Nnco1  
8
Dnco1  
Nnco2  
125  
5
=
=
Dnco2  
96  
The two ratios are not unique and many other possibilities exist. But for this particular application, they  
are found to be the best set of choices within the constraints of Prst and Nrst allowed. (Nnco1, Nnco2  
must be less than or equal to 8.)  
The ratio, Nnco1/Dnco1 = 8/125, is used to form a divide ratio for the NCO in prescaler and Nnco2/Dnco2  
=5/96 for the NCO in the PLL.  
Pre-scaler NCO: From Nnco1/Dnco1 = 8/125,  
Pdvsr = Integer [ Dnco1/Nnco1 ] = 15;  
Prst[2:0] = Nnco1 – 1 = 7;  
Dnco1/Nnco1 = 125/8 = 15.625 suggests a divide sequence of {÷16,÷16,÷15,÷16,÷16,÷15,÷16,÷15}, or  
Pseq = {1,1,0,1,1,0,1,0} = DAh.  
PLL NCO: From Nnco2/Dnco2 = 5/96,  
Ndvsr = Integer [ Dnco2/Nnco2 ] = 19;  
Nrst[2:0] = Nnco2 – 1 = 4;  
Dnco2/Nnco2 = 19.2 suggests a divide sequence of {÷19, ÷19, ÷19, ÷19, ÷20}, or  
Nseq = {x,x,x,0,0,0,0,1} = x1h.  
Rev. 2.0  
45  
73M1903 Data Sheet  
DS_1903_032  
Revision History  
Rev. #  
1.0  
Date  
Comments  
4/16/2004  
12/13/2004  
7/15/2005  
9/14/2006  
9/14/2006  
5/23/2007  
12/14/2007  
First publication.  
1.1  
Minor modification for format.  
Company logo change and minor modification for format.  
Corrected QFN pin-out drawing.  
Corrected QFN pin-out drawing.  
Added 20-VT package information.  
1.2  
1.3  
1.4  
1.5  
1.6  
Changed 32-QFN from punched to SAWN.  
Removed the leaded package option.  
1.7  
2.0  
1/17/2008  
2/23/2009  
Changed the bottom view package dimension for 32-QFN package.  
Removed all references to the 32-pin TQFP package.  
Formatted to the new corporate standard.  
© 2009 Teridian Semiconductor Corporation. All rights reserved.  
Teridian Semiconductor Corporation is a registered trademark of Teridian Semiconductor Corporation.  
Simplifying System Integration is a trademark of Teridian Semiconductor Corporation.  
MicroDAA is a registered trademark of Teridian Semiconductor Corporation.  
All other trademarks are the property of their respective owners.  
Teridian Semiconductor Corporation makes no warranty for the use of its products, other than expressly  
contained in the Company’s warranty detailed in the Teridian Semiconductor Corporation standard Terms  
and Conditions. The company assumes no responsibility for any errors which may appear in this  
document, reserves the right to change devices or specifications detailed herein at any time without  
notice and does not make any commitment to update the information contained herein. Accordingly, the  
reader is cautioned to verify that this document is current by comparing it to the latest version on  
http://www.teridian.com or by checking with your sales representative.  
Teridian Semiconductor Corp., 6440 Oak Canyon, Suite 100, Irvine, CA 92618  
TEL (714) 508-8800, FAX (714) 508-8877, http://www.teridian.com  
46  
Rev. 2.0  
 

相关型号:

73M1903-IGV

Consumer Circuit, PQFP32, TQFP-32
TERIDIAN

73M1903-IGV/F

Modem, PQFP32
TDK

73M1903-IGV/F

Consumer Circuit, PQFP32, LEAD FREE, TQFP-32
TERIDIAN

73M1903-IM

Modem, PQCC32
TDK

73M1903-IM

Consumer Circuit, QFN-32
TERIDIAN

73M1903-IM/F

Modem Analog Front End
TERIDIAN

73M1903-IM/F

Modem, PQCC32
TDK

73M1903-IMR/F

Modem Analog Front End
TERIDIAN

73M1903-IVT/F

Modem Analog Front End
TERIDIAN

73M1903-IVTR/F

Modem Analog Front End
TERIDIAN

73M1903C

Modem Analog Front End
TERIDIAN

73M1903C-IM

Consumer Circuit, LEAD FREE, QFN-32
TERIDIAN