MD1811K6-G [SUPERTEX]

HIGH SPEED QUAD MOSFET DRIVER; 高速四通道MOSFET驱动器
MD1811K6-G
型号: MD1811K6-G
厂家: Supertex, Inc    Supertex, Inc
描述:

HIGH SPEED QUAD MOSFET DRIVER
高速四通道MOSFET驱动器

驱动器
文件: 总6页 (文件大小:459K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MD1811  
Initial Release  
High Speed Quad MOSFET Driver  
General Description  
Features  
The Supertex MD1811 is a high speed, quad MOSFET driver designed to  
drive high voltage P/N-channel MOSFETs for medical ultrasound applications  
and other applications requiring a high output current for a capacitive load.  
The high-speed input stage of the MD1811 can operate from a 1.2 to 5.0  
volt logic interface with an optimum operating input signal range of 1.8 to 3.3  
volts. An adaptive threshold circuit is used to set the level translator switch  
threshold to the average of the input logic 0 and logic 1 levels. The input  
logic levels may be ground referenced, even though the driver is putting  
out bipolar signals. The level translator uses a proprietary circuit, which  
provides DC coupling together with high-speed operation.  
6ns rise and fall time  
2 A peak output source/sink current  
1.2V to 5V input CMOS compatible  
5V to 12V total supply voltage  
Smart Logic threshold  
Low jitter design  
Quad matched channels  
Drives two N and two P Channel MOSFETs  
Outputs can swing below ground  
Low inductance quad flat no-lead package  
High-performance thermally-enhanced  
The output stage of the MD1811 has separate power connections enabling  
the output signal L and H levels to be chosen independently from the supply  
voltages used for the majority of the circuit. As an example, the input logic  
levels may be 0 and 1.8 volts, the control logic may be powered by +5 and  
–5 volts, and the output L and H levels may be varied anywhere over the  
range of –5 to +5 volts. The output stage is capable of peak currents of up  
to 2 amps, depending on the supply voltages used and load capacitance  
present. The OE pin serves a dual purpose. First, its logic H level is used  
to compute the threshold voltage level for the channel input level translators.  
Secondly, when OE is low, the outputs are disabled, with the A & C output  
high and the B & D output low. This assists in properly pre-charging the AC  
coupling capacitors that may be used in series in the gate drive circuit of an  
external PMOS and NMOS transistor pair.  
Applications  
Medical ultrasound imaging  
Piezoelectric transducer drivers  
Nondestructive evaluation  
PIN diode driver  
Clock driver/buffer  
High speed level translator  
Typical Application Circuit  
+100V  
+10V  
+10V  
1 F  
0.22 F  
0.47 F  
V
V
10nF  
DD  
H
To Piezoelectric  
Transducer #1  
OE  
ENAB  
OUTA  
INA  
+PLS1  
#1  
10nF  
-100V  
1 F  
+100V  
1 F  
OUTB  
INB  
3.3V CMOS  
Logic Inputs  
-PLS1  
Supertex  
TC6320  
OUTC  
OUTD  
INC  
IND  
+PLS2  
#2  
-PLS2  
V
SS  
V
L
GND  
10nF  
10nF  
To Piezoelectric  
Transducer #2  
Supertex MD1811  
-100V  
1 F  
Supertex  
TC6320  
NR090105  
1
MD1811  
Ordering Information  
Package Options  
DEVICE  
16-Lead 4x4x0.9 QFN  
MD1811  
θJA  
MD1811K6-G  
45°C/W (1oz. 4-layer 3x4inch PCB)  
-G indicates package is RoHS compliant (‘Green’)  
Product Marking Information  
Device Number  
1ST Line  
2ND Line  
1811  
Absolute Maximum Ratings*  
VDD-VSS, Logic Supply Voltage  
-0.5V to +13.5V  
Year, Week Code, Lot Number  
YWLL  
VH, Output High Supply Voltage  
VL, Output Low Supply Voltage  
Vss, Low Side Supply Voltage  
Logic Input Levels  
VL-0.5V to VDD+0.5V  
VSS-0.5V to VH+0.5V  
-7V to +0.5V  
VSS-0.5V to VSS+7V  
+125°C  
Example: 5A88 means Lot #88 of first or second week in 2005  
Pin 1  
1811  
YWLL  
Maximum Junction Temperature  
Storage Temperature  
-65°C to 150°C  
235°C  
Soldering Temperature  
Package Power Dissipation  
2.2W  
Top View  
*Absolute Maximum Ratings are those values beyond which damage to the device may occur.  
Functional operation under these conditions is not implied. Continuous operation of the device  
at the absolute rating level may affect device reliability. All voltages are referenced to device  
ground.  
DC Electrical Characteristics (VH = VDD = 12V, VL = VSS = GND = 0V, VOE = 3.3V, TJ = 25°C)  
Sym.  
VDD-VSS  
VSS  
VH  
Parameter  
Min.  
Typ.  
Max.  
Units  
Conditions  
Logic supply voltage  
Low side supply voltage  
Output high supply voltage  
Output low supply voltage  
VDD quiescent current  
VH quiescent current  
VDD average current  
4.5  
13  
V
-5.5  
VSS+2  
VSS  
0
V
VDD  
VDD-2  
V
VL  
V
IDDQ  
IHQ  
0.8  
mA  
µA  
mA  
mA  
V
No input transitions, OE = 1  
10  
IDD  
8.0  
26  
One channel on at 5.0Mhz, No load  
IH  
VH average current  
VIH  
VIL  
Input logic voltage high  
Input logic voltage low  
Input logic current high  
Input logic current low  
OE Input logic voltage high  
OE Input logic voltage low  
VOE-0.3  
0
5
0.3  
1.0  
1.0  
5
V
For logic inputs INA, INB, INC, and IND  
For logic input OE  
IIH  
µA  
µA  
V
IIL  
VIH  
VIL  
1.2  
0
0.3  
V
RIN  
CIN  
Input logic impedance to GND  
Logic input capacitance  
12  
20  
5
30  
10  
KΩ  
pF  
Outputs (VH = VDD = 12V, VL = VSS = GND = 0V, VOE = 3.3V, TJ = 25°C)  
Sym.  
Parameter  
Min.  
Typ. Max.  
Units  
Conditions  
A
A
RSINK  
Output sink resistance  
12.5  
12.5  
ISINK = 50mA  
RSOURCE  
ISINK  
Output source resistance  
Peak output sink current  
Peak output source current  
ISOURCE = 50mA  
2.0  
2.0  
ISOURCE  
NR090105  
2
MD1811  
AC Electrical Characteristics (VH = VDD = 12V, VL = VSS = GND = 0V, VOE = 3.3V, TJ = 25°C)  
Sym.  
tirf  
Parameter  
Min.  
Typ.  
Max.  
Units  
ns  
Conditions  
Input or OE rise & fall time  
10  
Logic input edge speed requirement  
Propagation delay when output  
is from low to high  
Propagation delay when output  
is from high to low  
tPLH  
7
7
ns  
tPHL  
ns  
CLOAD = 1000pF, see timing diagram  
Input signal rise/fall time 2ns  
tPOE  
Propagation delay OE to output  
Output rise time  
9
6
ns  
ns  
ns  
ns  
tr  
tf  
Output fall time  
6
l tr - tf l  
Rise and fall time matching  
1.0  
for each channel  
Propagation low to high and  
high to low matching  
l tPLH-tPHL  
l
1.0  
2.0  
ns  
ns  
tdm  
Propagation delay matching  
Device to device delay match  
Logic Truth Table  
Logic Inputs  
Output  
OE  
H
INA  
INB  
L
OUTA  
VH  
OUTB  
L
L
VH  
VL  
H
H
VH  
H
H
L
VL  
VH  
H
H
H
VL  
VL  
L
X
X
VH  
VL  
OE  
H
INC  
L
IND  
L
OUTC  
VH  
OUTD  
VH  
H
L
H
VH  
VL  
H
H
L
VL  
VH  
H
H
H
VL  
VL  
L
X
X
VH  
VL  
V
vs V  
Timing Diagram and VTH / VOE Curve  
TH  
OE  
VTH  
2.0  
VOE/2  
1.8V  
50%  
50%  
IN  
1.5  
0V  
tPLH  
tPHL  
1.0  
12V  
OUT  
0.6V  
90%  
90%  
0.5  
0
10%  
10%  
0V  
tr  
t
f
0
1.0  
2.0  
3.0  
4.0  
5.0  
VOE  
NR090105  
3
MD1811  
Simplified Block Diagram  
VDD  
VH  
MD1811  
OE  
OUTA  
OUTB  
INA  
INB  
OUTC  
OUTD  
INC  
IND  
GND  
VSS  
VL  
Detailed Block Diagram  
VH  
VDD  
Level  
Shifter  
OE  
OUTA  
Level  
Shifter  
INA  
VSS  
VDD  
V
VLH  
OUTB  
OUTC  
OUTD  
Level  
INB  
Shifter  
VSS  
VDD  
VL  
VH  
Level  
Shifter  
INC  
IND  
VSS  
VDD  
V
VLH  
Level  
Shifter  
SUB  
VL  
VSS  
GND  
NR090105  
4
MD1811  
Application Information  
For proper operation of the MD1811, low inductance bypass next to the chip pins. A ceramic capacitor of up to 1.0µF may be  
capacitors should be used on the various supply pins. The GND appropriate, with a series ferrite bead to prevent resonance in the  
pin should be connected to the logic ground. The INA, INB INC, power supply lead coming to the capacitor. Pay particular attention  
IND, and OE pins should be connected to a logic source with a to minimizing trace lengths, current loop area and using sufficient  
swing of GND to VLL, where VLL is 1.2 to 5.0 volts. Good trace trace width to reduce inductance. Surface mount components are  
practices should be followed corresponding to the desired operating highly recommended. Since the output impedance of this driver is  
speed. The internal circuitry of the MD1811 is capable of operating very low, in some cases it may be desirable to add a small series  
up to 100MHz, with the primary speed limitation being the loading resistance in series with the output signal to obtain better waveform  
effects of the load capacitance. Because of this speed and the transitions at the load terminals. This will of course reduce the  
high transient currents that result with capacitive loads, the bypass output voltage slew rate at the terminals of a capacitive load.  
capacitors should be as close to the chip pins as possible. Unless  
the load specifically requires bipolar drive, the VSS, and VL pins Pay particular attention that parasitic couplings are minimized from  
should have low inductance feed-through connections directly to a the output to the input signal terminals. The parasitic feedback may  
ground plane. If these voltages are not zero, then they need bypass cause oscillations or spurious waveform shapes on the edges of  
capacitors in a manner similar to the positive power supplies. The signal transitions. Since the input operates with signals down to  
power connection V should have a ceramic bypass capacitor to 1.2V even small coupled voltages may cause problems. Use of  
the ground plane wiDthD short leads and decoupling components to a solid ground plane and good power and signal layout practices  
prevent resonance in the power leads.  
will prevent this problem. Be careful that a circulating ground  
return current from a capacitive load cannot react with common  
The voltages of VH and VL decide the output signal levels. These inductance to cause noise voltages in the input logic circuitry.  
two pins can draw fast transient currents of up to 2A, so they  
should be provided with an appropriate bypass capacitor located  
Pin Description  
VDD  
High side analog circuit, level shifter and gate drive supply voltage.  
Low side analog circuit, level shifter and gate drive supply voltage. VSS must be connected to the most negative  
potential of voltage supplies and powered-up first.  
VSS  
VH  
Supply voltage for P-channel output stage  
Supply voltage for N-channel output stage  
Logic input ground reference  
VL  
GND  
Output-Enable logic input. When OE is high, (V +V )/2 sets the logic threshold level for inputs, When OE is low,  
OUTA and OUTC are at VH, OUTB and OUTD aOreE atGVNLD, regardless of the inputs INA, INB, INC or IND. Keep OE  
low until IC powered up  
OE  
INA, INB,  
INC, IND  
Logic input. Controls output when OE is high. Input logic high will cause the output to swing to VL. Input logic low  
will cause the output to swing to VH. Keep all logic inputs low until IC powered up.  
Output driver. Swings from VH to V . Intended to drive the gate of an external P-channel MOSFET via a series  
capacitor. When OE is low, the outLput is disabled. OUTA will swing to VH turning off the external P-channel  
MOSFET.  
OUTA  
OUTB  
OUTC  
Output driver. Swings from VH to V . Intended to drive the gate of an external N-channel MOSFET via a series  
capacitor. When OE is low, the outLput is disabled. OUTB will swing to VL turning off the external N-channel  
MOSFET.  
Output driver. Swings from VH to V . Intended to drive the gate of an external P-channel MOSFET via a series  
capacitor. When OE is low, the outLput is disabled. OUTC will swing to VH turning off the external P-channel  
MOSFET.  
Output driver. Swings from VH to V . Intended to drive the gate of an external N-channel MOSFET via a series  
capacitor. When OE is low, the outLput is disabled. OUTD will swing to VL turning off the external N-channel  
MOSFET.  
OUTD  
Substrate  
The IC substrate is internally connected to the thermal pad. Thermal Pad and VSS must be connected externally.  
NR090105  
5
MD1811  
Pin Configuration  
Pin #  
1
Function  
INB  
2.64  
16  
13  
2
VL  
3
GND  
VL  
4
1
4
12  
5
INC  
6
IND  
QFN-16  
4x4x0.9  
2.64  
7
VSS  
8
OUTD  
OUTC  
VH  
9
9
10  
11  
12  
13  
14  
15  
16  
VH  
OUTB  
OUTA  
VDD  
5
8
0.65  
0.325  
0.28  
INA  
(Top View, mm)  
OE  
Thermal Pad, and Pin #7 (V ), must be  
connected externaSllSy  
Note  
Doc.# DSFP - MD1811  
NR090105  
6

相关型号:

MD1811_07

High Speed Quad MOSFET Driver
SUPERTEX

MD1812

High Speed Quad MOSFET Driver
SUPERTEX

MD1812K6-G

High Speed Quad MOSFET Driver
SUPERTEX

MD1813

High Speed Quad MOSFET Driver
SUPERTEX

MD18130S-BM2MM

Rectifier Diode, 1 Phase, 2 Element, 130A, 1800V V(RRM), Silicon, MODULE-3
LITTELFUSE

MD18130S-DKM2MM

Rectifier Diode, 1 Phase, 2 Element, 130A, 1800V V(RRM), Silicon, MODULE-3
LITTELFUSE

MD1813K6-G

High Speed Quad MOSFET Driver
SUPERTEX

MD18160S-BM2MM

RECTIFIER MOD 1800V 160A DUAL B
LITTELFUSE

MD18160S-DKM2MM

RECTIFIER MOD 1800V 160A DUAL DK
LITTELFUSE

MD18180S-BM2MM

RECTIFIER MOD 1800V 180A DUAL B
LITTELFUSE

MD182

Analog IC
ETC

MD18200S-BM2MM

Rectifier Diode, 1 Phase, 2 Element, 200A, 1800V V(RRM), Silicon, MODULE-3
LITTELFUSE