HV9112NG-G [SUPERTEX]

High-Voltage Current-Mode PWM Controller; 高压电流模式PWM控制器
HV9112NG-G
型号: HV9112NG-G
厂家: Supertex, Inc    Supertex, Inc
描述:

High-Voltage Current-Mode PWM Controller
高压电流模式PWM控制器

稳压器 开关式稳压器或控制器 电源电路 开关式控制器 光电二极管 信息通信管理 高压
文件: 总8页 (文件大小:701K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
HV9112  
High-Voltage Current-Mode PWM Controller  
General Description  
Features  
10V to 120V Input Voltage Range  
Current-mode control  
High efficiency  
Up to 1.0MHz internal oscillator  
Internal start-up circuit  
Low internal noise  
The Supertex HV9112 is a BiCMOS/DMOS single-output,  
pulse width modulator IC intended for use in high-speed,  
high-efficiency switch mode power supplies. It provides all the  
functions necessary to implement a single-switch current mode  
PWM, in any topology, with a minimum of external parts.  
Because the HV9112 utilizes Supertex’s proprietary BiCMOS/  
DMOS technology, it requires less than one tenth of the operating  
power of conventional bipolar PWM ICs, and can operate at  
more than twice their switching frequency. The dynamic range  
for regulation is also increased, to approximately 8 times that  
of similar bipolar parts. It starts directly from any DC input  
voltage between 10 and 120VDC, requiring no external power  
resistor. The output stage is push-pull CMOS and thus requires  
no clamping diodes for protection, even when significant lead  
length exists between the output and the external MOSFET. The  
clock frequency is set with a single external resistor.  
Applications  
DC/DC converters  
Distributed power systems  
ISDN equipment  
PBX systems  
Modems  
Accessory functions are included to permit fast remote shutdown  
(latching or nonlatching) and under voltage shutdown.  
Ordering Information  
For similar ICs intended to operate directly from up to 450VDC  
input, please consult the data sheets for the HV9120 and  
HV9123.  
Package Option  
Device  
14-Lead Narrow Body SOIC (NG)  
HV9112  
HV9112NG-G  
For detailed circuit and application information, please refer to  
application notes AN-H13 and AN-H21 to AN-H24.  
-G indicates package is RoHS compliant (‘Green’)  
Pin Configuration  
OSC IN  
DISCHARGE  
VREF  
SHUTDOWN  
RESET  
COMP  
FB  
Absolute Maximum Ratings  
OSC OUT  
VDD  
Parameter  
Value  
80V  
-VIN  
OUTPUT  
SENSE  
Input voltage, VIN  
Logic voltage, VDD  
Logic linear input,  
FB and sense input voltage  
Storage temperature  
Power dissipation  
+VIN  
BIAS  
15.5V  
14-Lead Narrow Body SOIC (NG)  
-0.3V to VDD +0.3V  
Product Marking  
-65°C to +150°C  
750mW  
Top Marking  
Y = Last Digit of Year Sealed  
HV9112NG  
WW = Week Sealed  
L = Lot Number  
YWW LLLLLLLL  
Bottom Marking  
CCCCCCCCC AAA  
Stresses beyond those listed under “Absolute Maximum Ratings” may  
cause permanent damage to the device. These are stress ratings only,  
and functional operation of the device at these or any other conditions  
beyond those indicated in the operational sections of the specifications  
is not implied. Exposure to absolute maximum rating conditions for  
extended periods may affect device reliability.  
C = Country of Origin*  
A = Assembler ID*  
= “Green” Packaging  
*May be part of top marking  
14-Lead Narrow Body SOIC (NG)  
HV9112  
Electrical Characteristics  
(Unless otherwise specified, VDD = 10V, +VIN = 48V, Discharge = -VIN = 0V, RBIAS = 390KΩ, ROSC = 330KΩ, TA = 25°C.)  
Sym  
Parameter  
#
Min  
Typ  
Max  
Units  
Conditions  
Reference  
VREF  
Output voltage  
-
#
-
3.88  
4.00  
30  
4.12  
45  
V
RL = 10MΩ  
---  
ZOUT  
ISHORT  
ΔVREF  
Output impedence  
15  
-
KΩ  
μA  
Short circuit current  
Change in VREF with temperature  
125  
0.25  
250  
-
VREF = -VIN  
#
-
mV/°C TA = -55°C to 125°C  
Oscillator  
fMAX  
Oscillator frequency  
Initial accuracy(1)  
-
-
1.0  
80  
160  
-
3.0  
100  
200  
-
-
MHz  
KHz  
%
ROSC = 1.0MΩ  
ROSC = 330KΩ  
ROSC = 150KΩ  
VSYNC = 0.1V  
120  
240  
15  
-
fOSC  
-
-
-
Voltage stability  
-
Temperature coefficient  
#
-
170  
ppm/°C TA = -55°C to 125°C  
PWM  
DMAX  
Maximum duty cycle  
Deadtime  
-
#
-
49.0  
49.4  
49.6  
%
ns  
%
---  
---  
---  
-
-
-
-
-
Minimum duty cycle  
0
DMIN  
Maximum pulse width before pulse  
drops out  
#
-
80  
125  
ns  
---  
Current Limit  
Maximum input signal  
-
1.0  
-
1.2  
80  
1.4  
V
VFB = 0V  
VSENSE = 1.5V,  
VCOMP ≤ 2.0V  
tD  
Delay to output  
#
120  
ns  
Error Amplifier  
VFB  
IIN  
Feedback voltage  
-
-
3.92  
-
4.00  
25  
4.08  
500  
V
nA  
-
VFB shorted to comp  
Input bias current  
VFB = 4.0V  
VOS  
Input offset voltage  
Open loop voltage gain  
Unity gain bandwidth  
Out impedance  
-
nulled during trim  
---  
AVOL  
GB  
#
#
#
-
60  
80  
1.3  
-
-
dB  
MHz  
Ω
---  
1.0  
---  
ZOUT  
ISOURCE  
ISINK  
see Fig. 1  
-2.0  
---  
Output source current  
Output sink current  
Power supply rejection  
-1.4  
-
-
mA  
mA  
dB  
VFB = 3.4V  
VFB = 4.5V  
---  
-
0.12  
0.15  
PSRR  
#
see Fig. 2  
Notes:  
#
Guaranteed by design. Not subject to production test.  
(1) Stray capacitance on OSC In pin must be ≤5pF.  
2
HV9112  
Electrical Characteristics (cont.)  
(Unless otherwise specified, VDD = 10V, +VIN = 48V, Discharge = -VIN = 0V, RBIAS = 390KΩ, ROSC = 330KΩ, TA = 25°C.)  
Sym  
Parameter  
#
Min  
Typ  
Max  
Units  
Conditions  
Pre-regulator/Startup  
+VIN  
Input voltage  
-
-
9.0  
-
-
-
80  
10  
V
IIN < 10µA; VCC > 9.4V  
VDD > 9.4V  
+
Input leakage current  
μA  
IIN  
Vdd pre-regulator turn-off threshold  
voltage  
VTH  
-
-
8.0  
7.0  
8.7  
8.1  
9.4  
8.9  
V
V
IPREREG = 10µA  
---  
VLOCK  
Undervoltage lockout  
Supply  
IDD  
Supply current  
-
-
-
-
-
-
0.75  
0.55  
20  
1.0  
mA  
mA  
μA  
V
CL < 75pF  
IQ  
Quiescent supply current  
Nominal Bias current  
Operating range  
-
-
Shutdown = -VIN  
IBIAS  
VDD  
-
---  
---  
9.0  
-
13.5  
Shutdown Logic  
tSD  
tSW  
tRW  
tLW  
VIL  
VIH  
IIH  
Shutdown delay  
#
#
#
#
-
-
50  
50  
25  
-
50  
100  
-
ns  
ns  
ns  
ns  
V
CL = 500pF, VSENSE = -VIN  
Shutdown pulse width  
RESET pulse width  
-
-
-
-
---  
Latching pulse width  
-
Shutdown and reset low  
Input low voltage  
-
2.0  
-
---  
Input high voltage  
-
7.0  
-
-
V
---  
Input current, input high voltage  
Input current, input low voltage  
-
1.0  
-25  
5.0  
-35  
μA  
μA  
VIN = VDD  
VIN = 0V  
IIL  
-
-
Output  
VOH  
Output high voltage  
Output low voltage  
-
-
VDD - 0.3  
-
-
V
V
IOUT = 10mA,  
IOUT = -10mA  
VOL  
-
-
-
-
-
-
-
-
0.2  
25  
20  
30  
30  
75  
75  
Pull up  
-
15  
8.0  
20  
10  
30  
20  
Ω
IOUT = 10mA  
Pull down  
Pull up  
-
Ω
ROUT  
Output resistance  
-
Ω
IOUT = 10mA,  
TA = -55°C to 125°C  
Pull down  
-
Ω
tR  
tF  
Rise time  
Fall time  
#
#
ns  
ns  
CL = 500pF  
CL = 500pF  
Notes:  
# Guaranteed by design. Not subject to production test.  
3
HV9112  
Truth Table  
Shutdown  
Reset  
Output  
H
H
Normal operation  
Normal operation, no change  
Off, not latched  
H
H → L  
L
L
H
L
L
Off, latched  
L → H  
Off, latched, no change  
Shutdown Timing Waveforms  
tF 10ns  
1.5V  
V
DD  
50%  
50%  
Sense  
Shutdown  
Output  
tR 10ns  
0
0
t
t
SD  
d
V
V
DD  
DD  
90%  
90%  
Output  
0
0
t
SW  
V
DD  
50%  
50%  
Shutdown  
tR, tF 10ns  
0
t
LW  
V
DD  
50%  
50%  
50%  
Reset  
0
t
RW  
Functional Block Diagram  
OSC  
IN  
OSC  
OUT  
FB  
14  
COMP  
13  
(18)  
Discharge  
9
(12)  
8 (11)  
7 (10)  
(19)  
Error  
Amplifier  
OSC  
10 (14)  
To VDD  
VREF  
+
2V  
T
Q
Modulator  
Comparator  
+
+
4V  
R
Q
S
4 (6)  
Output  
REF  
GEN  
5 (8)  
Current Limit  
Comparator  
-VIN  
To  
Internal  
Circuits  
1 (20)  
Current  
Sources  
1.2V  
BIAS  
3 (5)  
Current Sense  
6 (9)  
2 (3)  
VDD  
VDD  
+VIN  
11 (16)  
Undervoltage  
Comparator  
+
Shutdown  
Reset  
S
Q
R
8.1V  
8.6V  
+
12 (17)  
Pre-regulator/Startup  
4
HV9112  
Typical Performance Curves  
Output Switching Frequency  
vs. Oscillator Resistance  
Fig. 1  
Fig. 4  
Error Amplifier Output Impedance (Z0)  
106  
105  
104  
103  
102  
10  
1
1M  
100k  
.1  
100Hz  
10k  
10k  
100 k  
1M  
1KHz  
100KHz  
10KHz  
1MHz  
10MHz  
Frequency  
PSRR — Error Amplifier and Reference  
ROSC ()  
Fig. 2  
Fig. 5  
Error Amplifier  
Open Loop Gain/Phase  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
80  
70  
60  
50  
40  
30  
20  
10  
0
180  
120  
60  
0
-60  
-120  
-180  
-10  
10  
100  
1K  
10K  
100K  
1M  
100  
1K  
10K  
100K  
1M  
Frequency (Hz)  
Frequency (Hz)  
RDISCHARGE vs. tOFF (9113 only)  
100  
104  
Fig. 3  
Fig. 6  
ROSC = 100K  
VDD = 12V  
VDD = 10V  
10  
103  
ROSC = 10K  
ROSC = 1K  
103 104  
1
102  
106  
105  
107  
10-1  
100  
101  
102  
105  
106  
RDISCHARGE ()  
Bias Resistance ()  
5
HV9112  
Test Circuits  
Error Amp ZOUT  
PSRR  
0.1V swept 10Hz – 1MHz  
+10V  
1.0V swept 100Hz – 2.2MHz  
(VDD  
)
100K1%  
60.4K  
+
100K1%  
10.0V  
V1  
+
(FB)  
Tektronix  
P6021  
(1 turn  
4.00V  
Reference  
Reference  
V1  
V2  
secondary)  
V2  
40.2K  
GND  
(–VIN  
0.1µF  
)
0.1µF  
NOTE: Set Feedback Voltage so that  
COMP = VDIVIDE 1mV before connecting transformer  
V
Detailed Description  
Preregulator  
Bias Circuit  
The preregulator/startup circuit for the HV9112 consists of An external bias resistor, connected between the BIAS pin  
a high-voltage n-channel depletion-mode DMOS transis- and VSS is required by the HV9112 to set currents in a se-  
tor driven by an error amplifier to form a variable current ries of current mirrors used by the analog sections of the  
path between the VIN terminal and the VDD terminal. The chip. The nominal external bias current requirement is 15 to  
maximum current (about 20 mA) occurs when VDD = 0, with 20µA, which can be set by a 390KΩ to 510KΩ resistor if a  
current reducing as VDD rises. This path shuts off altogether 10V VDD is used, or a 510kΩ to 680KΩ resistor if VDD will be  
when V rises to somewhere between 7.8 and 9.4V, so that 12V. A precision resistor is not required; 5% is fine.  
if VDD isDhDeld at 10 or 12V by an external source(generally the  
supply the chip is controlling). No current other than leakage  
is drawn through the high voltage transistor. This minimizes  
dissipation.  
Clock Oscillator  
The clock oscillator of the HV9112 consists of a ring of CMOS  
inverters, timing capacitors, a capacitor discharge FET, and,  
in the 50% maximum duty cycle versions, a frequency divid-  
ing flip-flop. A single external resistor between the OSC IN  
and OSC OUT is required to set the oscillator frequency (see  
graph). For the 50% maximum duty cycle versions the Dis-  
charge pin is internally connected to GND. For the 99% duty  
cycle version, the Discharge pin can either be connected to  
VSS directly or connected to VSS through a resistor used  
to set a deadtime. One major difference exists between the  
Supertex HV9112 and competitive 9110’s. On the Supertex  
part, the oscillator is shut off when a shutoff command is re-  
ceived. This saves about 150µA of quiescent current, which  
aids in the construction of power supplies that meet CCITT  
specification I-430, and in other situations where an abso-  
lute minimum of quiescent power dissipation is required.  
An external capacitor between VDD and VSS is generally  
required to store energy used by the chip in the time be-  
tween shutoff of the high voltage path and the VDD supply’s  
output rising enough to take over powering the chip. This  
capacitor should have a value of 100X or more the effective  
gate capacitance of the MOSFET being driven, i.e.,  
CSTORAGE ≥ 100 x (gate charge of FET at 10V ÷ 10V)  
as well as very good high frequency characteristics. Stacked  
polyester or ceramic caps work well. Electrolytic capacitors  
are generally not suitable.  
A common resistor divider string is used to monitor VDD for  
both the under voltage lockout circuit and the shutoff circuit  
of the high voltage FET. Setting the under voltage sense  
point about 0.6V lower on the string than the FET shutoff  
point guarantees that the under voltage lockout always re-  
leases before the FET shuts off.  
6
HV9112  
Reference  
Current Sense Comparators  
The Reference of the HV9112 consists of a stable bandgap The HV9112 uses a true dual comparator system with in-  
reference followed by a buffer amplifier which scales the dependent comparators for modulation and current limiting.  
voltage up to approximately 4.0V. The scaling resistors of This allows the designer greater latitude in compensation  
the reference buffer amplifier are trimmed during manufac- design, as there are no clamps (except ESD protection) on  
ture so that the output of the error amplifier, when connected the compensation pin. Like the error amplifier, the compara-  
in a gain of –1 configuration, is as close to 4.0V as possible. tors are of low-noise BiCMOS construction.  
This nulls out any input offset of the error amplifier. As a con-  
sequence, even though the observed reference voltage of a  
Remote Shutdown  
specific part may not be exactly 4.0V, the feedback voltage  
required for proper regulation will be.  
The shutdown and reset pins of the 9110 can be used to  
perform either latching or non-latching shutdown of a con-  
verter as required. These pins have internal current source  
pull-ups so they can be driven from open drain logic. When  
not used they should be left open, or connected to VDD.  
A ≈ 50KΩ resistor is placed internally between the output of  
the reference buffer amplifier and the circuitry it feeds (refer-  
ence output pin and non-inverting input to the error ampli-  
fier). This allows overriding the internal reference with a low  
impedance voltage source ≤6.0V. Using an external refer-  
ence reinstates the input offset voltage of the error amplifier,  
and its effect of the exact value of feedback voltage required.  
Because the reference of the HV9112 is a high impedance  
node, and usually there will be significant electrical noise  
near it, a bypass capacitor between the reference pin and  
VSS is strongly recommended. The reference buffer ampli-  
fier is intentionally compensated to be stable with a capaci-  
tive load of 0.01 to 0.1µF.  
Output Buffer  
The output buffer of the HV9112 is of standard CMOS con-  
struction (P-channel pull-up, N-channel pull-down). Thus the  
body-drain diodes of the output stage can be used for spike  
clipping if necessary, and external Schottky diode clamping  
of the output is not required.  
Error Amplifier  
The error amplifier in the HV9112 is a true low-power dif-  
ferential input operational amplifier intended for around the  
amplifier compensation. It is of mixed CMOS-bipolar con-  
struction: A PMOS input stage is used so the common mode  
range includes ground and the input impedance is very high.  
This is followed by bipolar gain stages which provide high  
gain without the electrical noise of all-MOS amplifiers. The  
amplifier is unity gain stable.  
7
HV9112  
14-Lead SOIC (Narrow Body) Package Outline (NG)  
8.65x3.90mm body, 1.27mm pitch  
θ1  
D
14  
E1  
E
Note 1  
(Index Area  
D/2 x E1/2)  
Gauge  
Plane  
L2  
1
Seating  
Plane  
L
θ
L1  
Top View  
View B  
A
View  
B
h
Note 1  
A A2  
A1  
h
Seating  
Plane  
e
b
A
Side View  
View A-A  
Note 1:  
This chamfer feature is optional. If it is not present, then a Pin 1 identifier must be located in the index area indicated.The Pin 1 identifier may be either a  
mold, or an embedded metal or marked feature.  
Symbol  
A
1.35  
-
A1  
0.10  
-
A2  
1.25  
-
b
0.31  
-
D
E
E1  
e
h
0.25  
-
L
0.40  
-
L1  
L2  
θ
0O  
-
θ1  
5O  
-
MIN  
NOM  
MAX  
8.55  
8.65  
8.75  
5.80  
6.00  
6.20  
3.80  
3.90  
4.00  
Dimension  
(mm)  
1.27  
BSC  
1.04  
REF  
0.25  
BSC  
1.75  
0.25  
1.65  
0.51  
0.50  
1.27  
8O  
15O  
JEDEC Registration MS-012, Variation AB, Issue E, Sept. 2005.  
Drawinngs not to scale.  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline  
information go to http://www.supertex.com/packaging.html.)  
Doc.# DSFP-HV9112  
A101007  
8

相关型号:

HV9112NG-GM905

SWITCHING CONTROLLER
MICROCHIP

HV9112NG-GM905

Switching Controller
SUPERTEX

HV9112P

High-Voltage Current-Mode PWM Controller
SUPERTEX

HV9112PJ

High-Voltage Current-Mode PWM Controller
SUPERTEX

HV9112X

High-Voltage Current-Mode PWM Controller
SUPERTEX

HV9112_07

High-Voltage Current-Mode PWM Controller
SUPERTEX

HV9113

High-Voltage Current-Mode PWM Controller
SUPERTEX

HV9113C

IC,SMPS CONTROLLER,CURRENT-MODE,BCDMOS,DIP,14PIN,CERAMIC
SUPERTEX

HV9113NG

High-Voltage Current-Mode PWM Controller
SUPERTEX

HV9113NG-G

High-Voltage Current-Mode PWM Controller
SUPERTEX

HV9113P

High-Voltage Current-Mode PWM Controller
SUPERTEX

HV9113PJ

High-Voltage Current-Mode PWM Controller
SUPERTEX