HV9112NG-GM905 [MICROCHIP]

SWITCHING CONTROLLER;
HV9112NG-GM905
型号: HV9112NG-GM905
厂家: MICROCHIP    MICROCHIP
描述:

SWITCHING CONTROLLER

开关
文件: 总8页 (文件大小:597K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Supertex inc.  
HV9112  
High-Voltage, Current-Mode  
PWM Controller  
General Description  
Features  
The Supertex HV9112 is a BiCMOS/DMOS single-output, pulse width  
modulator IC intended for use in high-speed, high-efficiency switch  
mode power supplies. It provides all the functions necessary to  
implement a single-switch current mode PWM, in any topology, with a  
minimum of external parts.  
9.0 to 80V input voltage range  
Current-mode control  
High efficiency  
Up to 1.0MHz internal oscillator  
Internal start-up circuit  
Low internal noise  
Because the HV9112 utilizes Supertex’s proprietary BiCMOS/DMOS  
technology, it requires less than one tenth of the operating power of  
conventional bipolar PWM ICs, and can operate at more than twice  
their switching frequency. The dynamic range for regulation is also  
increased, to approximately 8 times that of similar bipolar parts. It starts  
directly from any DC input voltage between 9.0 and 80VDC, requiring  
no external power resistor. The output stage is push-pull CMOS and  
thus requires no clamping diodes for protection, even when significant  
lead length exists between the output and the external MOSFET. The  
clock frequency is set with a single external resistor.  
50% maximum duty cycle  
Applications  
DC/DC converters  
Distributed power systems  
ISDN equipment  
PBX systems  
Modems  
Accessory functions are included to permit fast remote shutdown  
(latching or nonlatching) and under voltage shutdown.  
For similar ICs intended to operate directly from up to 450VDC input,  
please consult the data sheets for the HV9120 and HV9123.  
For detailed circuit and application information, please refer to  
application notes AN-H13 and AN-H21 to AN-H24.  
Functional Block Diagram  
OSC  
IN  
8
OSC  
OUT  
7
FB  
COMP  
13  
14  
Error  
Amplifier  
OSC  
10  
VREF  
+
2V  
T
Q
Modulator  
To VDD  
+
+
Comparator  
R
S
4V  
Q
REF  
GEN  
4
5
OUTPUT  
-VIN  
Current Limit  
Comparator  
1
To  
Current  
Sources  
BIAS  
Internal  
Circuits  
3
6
2
1.2V  
VDD  
+VIN  
SENSE  
VDD  
Undervoltage  
Comparator  
+
11  
12  
+
8.1V  
8.6V  
SHUTDOWN  
RESET  
S
R
Q
Pre-regulator/Startup  
Doc.# DSFP-HV9112  
A031314  
Supertex inc.  
www.supertex.com  
HV9112  
Ordering Information  
Pin Configuration  
OSC IN  
Part Number  
Package Options  
Packing  
NC  
VREF  
HV9112NG-G  
14-Lead SOIC (Narrow Body) 53/Tube  
SHUTDOWN  
RESET  
COMP  
FB  
HV9112NG-G M905 14-Lead SOIC (Narrow Body) 2500/Reel  
-G denotes a lead (Pb)-free / RoHS compliant package  
OSC OUT  
VDD  
-VIN  
OUTPUT  
Absolute Maximum Ratings  
Parameter  
SENSE  
+VIN  
Value  
80V  
BIAS  
14-Lead SOIC (Narrow Body)  
Input voltage, VIN  
Logic voltage, VDD  
15.5V  
Product Marking  
Logic linear input,  
FB and sense input voltage  
-0.3V to VDD +0.3V  
Top Marking  
Y = Last Digit of Year Sealed  
HV9112NG  
Operating temperature range  
Storage temperature range  
Power dissipation  
-55°C to +125°C  
-65°C to +150°C  
750mW  
WW = Week Sealed  
L = Lot Number  
YWW LLLLLLLL  
C = Country of Origin*  
A = Assembler ID*  
Bottom Marking  
= “Green” Packaging  
CCCCCCCCC AAA  
*May be part of top marking  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause  
permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in  
the operational sections of the specifications is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect device reliability.  
Package may or may not include the following marks: Si or  
14-Lead SOIC (Narrow Body)  
Typical Thermal Resistance  
Package  
θja  
14-Lead SOIC (Narrow Body) 75°C/W  
Electrical Characteristics  
(Unless otherwise specified, VDD = 10V, +VIN = 48V, -VIN = 0V, RBIAS = 390kΩ, ROSC = 330kΩ, TA = 25°C.)  
Sym  
Parameter  
#
Min  
Typ  
Max  
Units  
Conditions  
Reference  
VREF  
Output voltage  
-
#
-
3.88  
4.00  
30  
4.12  
45  
V
RL = 10MΩ  
---  
ZOUT  
ISHORT  
ΔVREF  
Output impedence  
15  
-
kΩ  
μA  
Short circuit current  
Change in VREF with temperature  
125  
0.25  
250  
-
VREF = -VIN  
#
-
mV/°C TA = -55°C to 125°C  
Oscillator  
fMAX  
Oscillator frequency  
Initial accuracy1  
-
-
1.0  
80  
160  
-
3.0  
100  
200  
-
-
MHz  
kHz  
%
ROSC = 0Ω  
120  
240  
15  
-
ROSC = 330kΩ  
ROSC = 150kΩ  
9.5V< VDD <13.5V  
fOSC  
-
-
Voltage stability  
-
-
Temperature coefficient  
#
-
170  
ppm/°C TA = -55°C to 125°C  
Notes:  
#
Guaranteed by design.  
1. Stray capacitance on OSC IN pin must be ≤5.0pF.  
Doc.# DSFP-HV9112  
A031314  
Supertex inc.  
www.supertex.com  
2
HV9112  
Electrical Characteristics (cont.)  
(Unless otherwise specified, VDD = 10V, +VIN = 48V, -VIN = 0V, RBIAS = 390kΩ, ROSC = 330kΩ, TA = 25°C.)  
Sym  
Parameter  
#
Min  
Typ  
Max  
Units  
Conditions  
PWM  
DMAX  
Maximum duty cycle  
Minimum duty cycle  
#
-
49.0  
49.4  
49.6  
%
%
---  
---  
-
-
0
DMIN  
Maximum pulse width before  
pulse drops out  
#
-
80  
125  
ns  
---  
Current Limit  
Maximum input signal  
Delay to output  
Error Amplifier  
-
1.0  
-
1.2  
80  
1.4  
V
VFB = 0V  
tD  
#
120  
ns  
VSENSE = 1.5V, VCOMP ≤ 2.0V  
VFB  
IIN  
Feedback voltage  
-
-
3.92  
-
4.00  
4.08  
V
nA  
-
VFB shorted to COMP  
Input bias current  
25  
500  
VFB = 4.0V  
VOS  
Input offset voltage  
Open loop voltage gain  
Unity gain bandwidth  
Out impedance  
-
nulled during trim  
---  
AVOL  
GB  
#
#
#
-
60  
80  
1.3  
-
-
dB  
MHz  
Ω
---  
1.0  
---  
ZOUT  
ISOURCE  
ISINK  
see Fig. 1  
-2.0  
---  
Output source current  
Output sink current  
Power supply rejection  
-1.4  
-
-
mA  
mA  
dB  
VFB = 3.4V  
VFB = 4.5V  
---  
-
0.12  
0.15  
PSRR  
#
see Fig. 2  
Pre-regulator/Startup  
+VIN  
+IIN  
Input voltage  
-
-
9.0  
-
-
-
80  
10  
V
IIN < 10µA; VCC > 9.4V  
VDD > 9.4V  
Input leakage current  
μA  
VDD pre-regulator turn-off  
threshold voltage  
VTH  
-
-
8.0  
7.0  
8.7  
8.1  
9.4  
V
V
IPREREG = 10µA  
---  
VLOCK  
Undervoltage lockout  
8.9  
Supply  
IDD  
Supply current  
-
-
-
-
-
-
0.75  
0.55  
20  
1.0  
mA  
mA  
μA  
V
CL < 75pF  
IQ  
Quiescent supply current  
Nominal bias current  
Operating range  
-
-
SHUTDOWN = -VIN  
IBIAS  
-
---  
---  
VDD  
9.0  
-
13.5  
Note:  
#
Guaranteed by design.  
Doc.# DSFP-HV9112  
A031314  
Supertex inc.  
www.supertex.com  
3
HV9112  
Electrical Characteristics (cont.)  
(Unless otherwise specified, VDD = 10V, +VIN = 48V, -VIN = 0V, RBIAS = 390kΩ, ROSC = 330kΩ, TA = 25°C.)  
Sym  
Parameter  
#
Min  
Typ  
Max  
Units Conditions  
Shutdown Logic  
tSD  
tSW  
tRW  
tLW  
VIL  
VIH  
IIH  
SHUTDOWN delay  
#
#
#
#
-
-
50  
50  
25  
-
50  
100  
-
ns  
ns  
ns  
ns  
V
CL = 500pF, VSENSE = -VIN  
SHUTDOWN pulse width  
RESET pulse width  
-
-
-
-
---  
Latching pulse width  
-
SHUTDOWN and RESET low  
Input low voltage  
-
2.0  
-
---  
Input high voltage  
-
7.0  
-
-
V
---  
Input current, input high voltage  
Input current, input low voltage  
-
1.0  
-25  
5.0  
-35  
μA  
μA  
VIN = VDD  
VIN = 0V  
IIL  
-
-
Output  
VOH  
Output high voltage  
Output low voltage  
Pull up  
-
-
VDD -0.3  
-
-
V
V
IOUT = 10mA  
IOUT = -10mA  
VOL  
-
-
-
-
-
-
-
-
0.2  
25  
20  
30  
30  
75  
75  
-
15  
8.0  
20  
10  
30  
20  
Ω
Ω
IOUT = ±10mA  
Pull down  
Output resistance  
Pull up  
-
ROUT  
-
IOUT = ±10mA,  
TA = -55°C to 125°C  
Pull down  
-
tR  
tF  
Rise time  
Fall time  
#
#
ns  
ns  
CL = 500pF  
CL = 500pF  
Note:  
# Guaranteed by design.  
Truth Table  
SHUTDOWN  
RESET  
Output  
Normal operation  
H
H
H
H → L  
Normal operation, no change  
Off, not latched  
L
L
H
L
L
Off, latched  
L → H  
Off, latched, no change  
Doc.# DSFP-HV9112  
A031314  
Supertex inc.  
www.supertex.com  
4
HV9112  
Test Circuits  
0.1V swept  
10Hz - 1.0MHz  
Error Amp ZOUT  
PSRR  
+10V  
1.0V swept 100Hz - 2.2MHz  
(VDD  
)
100k 1%  
60.4k  
40.2k  
100k 1%  
10.0V  
4.0V  
+
+
(FB)  
Tektronix  
P6021  
Reference  
Reference  
V2  
V1  
V1  
(1 turn  
V2  
secondary)  
GND  
(-VIN)  
0.1µF  
0.1µF  
NOTE:  
Set Feedback Voltage so that VCOMP = VDIVIDE ꢀ1.0V  
before connecting transfor0er  
Detailed Description  
Preregulator  
Bias Circuit  
The preregulator/startup circuit for the HV9112 consists of An external bias resistor, connected between the BIAS pin  
a high-voltage n-channel depletion-mode DMOS transis- and VSS is required by the HV9112 to set currents in a se-  
tor driven by an error amplifier to form a variable current ries of current mirrors used by the analog sections of the  
path between the VIN terminal and the VDD terminal. The chip. The nominal external bias current requirement is 15  
maximum current (about 20 mA) occurs when VDD = 0, with to 20µA, which can be set by a 390kΩ to 510kΩ resistor if a  
current reducing as VDD rises. This path shuts off altogether 10V VDD is used, or a 510kΩ to 680kΩ resistor if VDD will be  
when VDD rises to somewhere between 7.8 and 9.4V, so that 12V. A precision resistor is not required; ±5% is fine.  
if VDD is held at 10 or 12V by an external source(generally the  
supply the chip is controlling). No current other than leakage  
is drawn through the high voltage transistor. This minimizes  
dissipation.  
Clock Oscillator  
The clock oscillator of the HV9112 consists of a ring of  
CMOS inverters, timing capacitors, and, a frequency divid-  
ing flip-flop. A single external resistor between the OSC IN  
and OSC OUT is required to set the oscillator frequency (see  
graph). One major difference exists between the Supertex  
HV9112 and competitive 9112s. On the Supertex part, the  
oscillator is shut off when a shutoff command is received.  
This saves about 150µA of quiescent current, which aids in  
the construction of power supplies that meet CCITT specifi-  
cation I-430, and in other situations where an absolute mini-  
mum of quiescent power dissipation is required.  
An external capacitor between VDD and VSS is generally  
required to store energy used by the chip in the time be-  
tween shutoff of the high voltage path and the VDD supply’s  
output rising enough to take over powering the chip. This  
capacitor should have a value of 100X or more the effective  
gate capacitance of the MOSFET being driven, i.e.,  
CSTORAGE ≥ 100 x (gate charge of FET at 10V)  
as well as very good high frequency characteristics. Stacked  
polyester or ceramic caps work well. Electrolytic capacitors  
are generally not suitable.  
A common resistor divider string is used to monitor VDD for  
both the under voltage lockout circuit and the shutoff circuit  
of the high voltage FET. Setting the under voltage sense  
point about 0.6V lower on the string than the FET shutoff  
point guarantees that the under voltage lockout always re-  
leases before the FET shuts off.  
Doc.# DSFP-HV9112  
A031314  
Supertex inc.  
www.supertex.com  
5
HV9112  
amplifier compensation. It is of mixed CMOS-bipolar con-  
struction: A PMOS input stage is used so the common mode  
range includes ground and the input impedance is very high.  
This is followed by bipolar gain stages which provide high  
gain without the electrical noise of all-MOS amplifiers. The  
amplifier is unity gain stable.  
Reference  
The Reference of the HV9112 consists of a stable bandgap  
reference followed by a buffer amplifier which scales the  
voltage up to approximately 4.0V. The scaling resistors of  
the reference buffer amplifier are trimmed during manufac-  
ture so that the output of the error amplifier, when connected  
in a gain of –1 configuration, is as close to 4.0V as possible.  
This nulls out any input offset of the error amplifier. As a con- Current Sense Comparators  
sequence, even though the observed reference voltage of a The HV9112 uses a true dual comparator system with in-  
specific part may not be exactly 4.0V, the feedback voltage dependent comparators for modulation and current limiting.  
required for proper regulation will be.  
This allows the designer greater latitude in compensation  
design, as there are no clamps (except ESD protection) on  
A ≈ 50kΩ resistor is placed internally between the output of the compensation pin. Like the error amplifier, the compara-  
the reference buffer amplifier and the circuitry it feeds (refer- tors are of low-noise BiCMOS construction.  
ence output pin and non-inverting input to the error ampli-  
fier). This allows overriding the internal reference with a low  
Remote Shutdown  
impedance voltage source ≤6.0V. Using an external refer-  
ence reinstates the input offset voltage of the error amplifier,  
and its effect of the exact value of feedback voltage required.  
Because the reference of the HV9112 is a high impedance  
node, and usually there will be significant electrical noise  
near it, a bypass capacitor between the reference pin and  
VSS is strongly recommended. The reference buffer ampli-  
fier is intentionally compensated to be stable with a capaci-  
tive load of 0.01 to 0.1µF.  
The SHUTDOWN and RESET pins of the 9112 can be used  
to perform either latching or non-latching shutdown of a con-  
verter as required. These pins have internal current source  
pull-ups so they can be driven from open drain logic. When  
not used they should be left open, or connected to VDD.  
Output Buffer  
The output buffer of the HV9112 is of standard CMOS con-  
struction (P-channel pull-up, N-channel pull-down). Thus the  
body-drain diodes of the output stage can be used for spike  
clipping if necessary, and external Schottky diode clamping  
of the output is not required.  
Error Amplifier  
The error amplifier in the HV9112 is a true low-power dif-  
ferential input operational amplifier intended for around the  
Shutdown Timing Waveforms  
tF ≤ 10ns  
1.5V  
VDD  
SHUTDOWN  
50%  
50%  
SENSE  
tR ≤ 10ns  
0
0
tD  
tSD  
VDD  
0
VDD  
0
90%  
90%  
OUTPUT  
OUTPUT  
VDD  
0
tSW  
50%  
50%  
SHUTDOWN  
RESET  
tR, tF ≤ 10ns  
tLW  
VDD  
0
50%  
50%  
50%  
tRW  
Doc.# DSFP-HV9112  
A031314  
Supertex inc.  
www.supertex.com  
6
HV9112  
Typical Performance Curves  
Output Switching Frequency  
vs. Oscillator Resistance  
Fig. 1  
Fig. 4  
Error Amplifier Output Impedance (Z0)  
106  
105  
104  
103  
102  
10  
1M  
100k  
10k  
HV9113  
HV9110, 9111, 9112  
1.0  
0.1  
100  
1k  
10k  
100k  
1M  
10M  
10k  
100k  
1M  
ROSC (Ω)  
Frequency (Hz)  
Error Amplifier  
Fig. 2  
Fig. 5  
Open Loop Gain/Phase  
PSRR - Error Amplifier and Reference  
0
80  
70  
60  
50  
40  
30  
20  
10  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
180  
120  
60  
0
-60  
-120  
-180  
-10  
10  
100  
1k  
10k  
100k  
1M  
100  
1k  
10k  
100k  
1M  
Frequency (Hz)  
Frequency (Hz)  
Fig. 3  
100  
10  
0
VDD = 12V  
VDD = 10V  
105  
106  
107  
Bias Resistance (Ω)  
Doc.# DSFP-HV9112  
A031314  
Supertex inc.  
www.supertex.com  
7
HV9112  
14-Lead SOIC (Narrow Body) Package Outline (NG)  
8.65x3.90mm body, 1.75mm height (max), 1.27mm pitch  
D
θ1  
14  
Note 1  
(Index Area  
D/2 x E1/2)  
E1  
E
Gauge  
Plane  
L2  
L
Seating  
Plane  
θ
L1  
e
b
1
Top View  
View B  
View B  
A
h
h
A2  
A
Seating  
Plane  
A1  
Side View  
View A-A  
A
Note:  
1. This chamfer feature is optional. If it is not present, then a Pin 1 identifier must be located in the index area indicated. The Pin 1 identifier can be:  
a molded mark/identifier; an embedded metal marker; or a printed indicator.  
Symbol  
A
A1  
MIN 1.35* 0.10 1.25 0.31 8.55* 5.80* 3.80*  
NOM 8.65 6.00 3.90  
MAX 1.75 0.25 1.65* 0.51 8.75* 6.20* 4.00*  
A2  
b
D
E
E1  
e
h
L
L1  
L2  
θ
0O  
-
θ1  
5O  
-
0.25 0.40  
Dimension  
(mm)  
1.27  
BSC  
1.04 0.25  
REF BSC  
-
-
-
-
-
-
0.50 1.27  
8O 15O  
JEDEC Registration MS-012, Variation AB, Issue E, Sept. 2005.  
* This dimension is not specified in the JEDEC drawing.  
Drawings are not to scale.  
Supertex Doc. #: DSPD-14SOICNG, Version F041309.  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline  
information go to http://www.supertex.com/packaging.html.)  
Supertex inc. does not recommend the use of its products in life support applications, and will not knowingly sell them for use in such applications unless it receives  
an adequate “product liability indemnification insurance agreement.” Supertex inc. does not assume responsibility for use of devices described, and limits its liability  
to the replacement of the devices determined defective due to workmanship. No responsibility is assumed for possible omissions and inaccuracies. Circuitry and  
specifications are subject to change without notice. For the latest product specifications refer to the Supertex inc. (website: http//www.supertex.com)  
©2014 Supertex inc.All rights reserved. Unauthorized use or reproduction is prohibited.  
Supertex inc.  
1235 Bordeaux Drive, Sunnyvale, CA 94089  
Tel: 408-222-8888  
www.supertex.com  
Doc.# DSFP-HV9112  
A031314  
8

相关型号:

HV9112P

High-Voltage Current-Mode PWM Controller
SUPERTEX

HV9112PJ

High-Voltage Current-Mode PWM Controller
SUPERTEX

HV9112X

High-Voltage Current-Mode PWM Controller
SUPERTEX

HV9112_07

High-Voltage Current-Mode PWM Controller
SUPERTEX

HV9113

High-Voltage Current-Mode PWM Controller
SUPERTEX

HV9113C

IC,SMPS CONTROLLER,CURRENT-MODE,BCDMOS,DIP,14PIN,CERAMIC
SUPERTEX

HV9113NG

High-Voltage Current-Mode PWM Controller
SUPERTEX

HV9113NG-G

High-Voltage Current-Mode PWM Controller
SUPERTEX

HV9113P

High-Voltage Current-Mode PWM Controller
SUPERTEX

HV9113PJ

High-Voltage Current-Mode PWM Controller
SUPERTEX

HV9113X

High-Voltage Current-Mode PWM Controller
SUPERTEX

HV9113_07

High-Voltage Current-Mode PWM Controller
SUPERTEX