HV803X [SUPERTEX]

High-Voltage EL Lamp Driver; 高压EL灯驱动器
HV803X
型号: HV803X
厂家: Supertex, Inc    Supertex, Inc
描述:

High-Voltage EL Lamp Driver
高压EL灯驱动器

驱动器 高压
文件: 总8页 (文件大小:82K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
HV803  
High-Voltage EL Lamp Driver  
Ordering Information  
Package Options  
8-Lead SO  
HV803LG  
Device  
Input Voltage  
Die  
HV803  
2.4V to 9.5V  
HV803X  
Features  
General Description  
Processed with HVCMOS® technology  
2.4V to 9.5V operating supply voltage  
DC to AC conversion  
TheSupertexHV803isahigh-voltagedriverdesignedfordriving  
EL lamps of up to 30nF. EL lamps greater than 30nF can be  
driven for applications not requiring high brightness. The input  
supplyvoltagerangeisfrom2.4to9.5V.Thedeviceusesasingle  
inductor and a minimum number of passive components. The  
nominal regulated output voltage that is applied to the EL lamp  
is ±90V. The chip can be enabled by connecting the resistors on  
RSW-osc and REL-osc to VDD and disabled when connected to GND.  
180V peak-to-peak typical output voltage  
Large output load capability typically 30nF  
Short circuit protection on outputs  
Adjustable output lamp frequency to control lamp color,  
lamp life, and power consumption  
The HV803 has two internal oscillators, a switching MOSFET,  
and a high-voltage EL lamp driver. The frequency for the switch-  
ing converter MOSFET is set by an external resistor connected  
between the RSW-osc pin and the supply pin VDD. The EL lamp  
driver frequency is set by an external resistor connected be-  
tween REL-osc pin and the VDD pin. An external inductor is  
connected between the Lx and VDD pins. A 0.01µF to 0.1µF  
capacitor is connected between CS and GND pins. The EL lamp  
is connected between VA and VB pins.  
Adjustable converter frequency to eliminate harmonics and  
optimize power consumption  
Enable/disable function  
Low current draw under no load condition  
The switching MOSFET charges the external inductor and  
discharges it into the Cs capacitor. The voltage at Cs will start to  
increase. Once the voltage at Cs reaches a nominal value of 90V,  
the switching MOSFET is turned OFF to conserve power. The  
outputs VA and VB are configured as an H-bridge and are  
switchedinoppositestatestoachieve180Vpeak-to-peakacross  
the EL lamp.  
Applications  
Pagers  
Cellular phones  
Electronic personal organizers  
GPS units  
Handheld personal computers  
Portable instrumentation  
15  
Pin Configuration  
VDD  
RSW-osc  
Cs  
REL-osc  
VA  
1
2
3
4
8
7
6
5
ςΑ  
Absolute Maximum Ratings*  
Supply Voltage, VDD  
-0.5V to +10V  
-0.5V to +120V  
-25°C to +85°C  
-65°C to +150°C  
400mW  
VB  
Output Voltage, VCs  
Lx  
GND  
Operating Temperature Range  
Storage Temperature Range  
Power Dissipation  
SO-8  
Note:  
*All voltages are referenced to GND.  
15-1  
HV803  
Electrical Characteristics  
DC Characteristics (VIN = 3.0V, RSW = 750K, REL = 2.0M, TA = 25°C unless otherwise specified)  
Symbol  
RDS(on)  
VCS  
Parameter  
Min  
Typ  
3.5  
90  
Max  
8.0  
100  
200  
2.0  
100  
300  
500  
35  
Units  
Conditions  
On-resistance of switching transistor  
Output voltage VCS Regulation  
Output peak to peak voltage  
I = 100mA  
80  
V
VIN = 2.4 to 9.5V  
VIN = 2.4V to 9.5V  
RSW-osc = GND  
VA - VB  
IDDQ  
160  
180  
V
Quiescent VDD supply current, disabled  
Input current going into the VDD pin  
µA  
µA  
µA  
µA  
mA  
V
IDD  
VIN = 3.0V ±5%. See Figure 1.  
VIN = 5.0V ±5%. See Figure 2.  
V
IN = 9.0V ±5%. See Figure 3.  
IIN  
Input current including inductor current  
Output voltage on VCS  
VIN = 3.0V. See Figure 1.  
VIN = 3.0V. See Figure 1.  
VIN = 3.0V. See Figure 1.  
VIN = 3.0V. See Figure 1.  
VCS  
fEL  
fSW  
D
45  
300  
50  
70  
VA-B output drive frequency  
Switching transistor frequency  
Switching transistor duty cycle  
430  
90  
Hz  
KHz  
%
88  
Recommended Operating Conditions  
Symbol  
VDD  
Parameter  
Min  
2.4  
-25  
Typ  
Max  
Units  
V
Conditions  
Supply voltage  
Operating temperature  
9.5  
85  
TA  
°C  
Enable/Disable Table (See Figure 4)  
RSW resistor  
HV803  
VDD  
Enabled  
GND  
Disabled  
15-2  
HV803  
Block Diagram  
Lx  
VDD  
RSW-osc  
GND  
Cs  
Switch  
Osc  
Q
Q
VA  
+
_
C
Disable  
Vref  
Output  
Osc  
Q
Q
VB  
REL-osc  
Figure 1: Test Circuit, VIN = 3.0V (Low input current with moderate output brightness).  
ON = VDD  
OFF = 0V  
2M  
VDD  
REL-osc  
VA  
1
8
7
6
5
750KΩ  
2.0KΩ  
560µH1  
RSW-osc  
Cs  
2
3
4
15  
10nF  
VB  
VIN = 3.0V  
1N4148  
GND  
Lx  
Equivalent to 3 square inch lamp.  
0.1µF2  
0.1µF  
100V  
HV803  
Note:  
1. Murata part # LQH4N561K04 (DC resistance < 14.5)  
2. Larger values may be required depending upon supply impedance.  
For additional information, see application note AN-H33.  
15-3  
HV803  
Typical Performance Curves for Figure 1 using 3in2 EL Lamp.  
V
CS vs. VIN  
IIN vs. VIN  
100  
90  
80  
70  
60  
50  
40  
50  
45  
40  
35  
30  
25  
20  
1
2
3
4
5
1
2
3
4
5
VIN (V)  
VIN (V)  
Brightness vs. VIN  
IIN vs. VCS (V)  
50  
45  
40  
35  
30  
25  
20  
12  
10  
8
6
4
2
0
50  
60  
70  
80  
90  
1
2
3
4
5
VIN (V)  
VCS (V)  
IIN, VCS, Brightness vs. Inductor Value  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
9.0  
8.0  
7.0  
6.0  
5.0  
4.0  
3.0  
2.0  
1.0  
VCS (V)  
Brightness (ft-Im)  
IIN (mA)  
0
100  
250  
400  
550  
700  
850  
1000  
Inductor Value (µH)  
15-4  
HV803  
Figure 2: Typical 5.0V Application*  
ON = VDD  
OFF = 0V  
2M  
VDD  
REL-osc  
1
8
7
6
5
750KΩ  
2.0KΩ  
VA  
560µH1  
0.1µF2  
RSW-osc  
Cs  
2
3
4
6 in2 lamp  
VB  
VIN = 5.0V  
1N4148  
GND  
Lx  
HV803  
0.1µF  
1nF  
100V  
Note:  
1. Murata part # LQH4N561K04 (DC resistance < 14.5)  
2. Larger values may be required depending upon supply impedance.  
For additional information, see application note AN-H33.  
Typical Performance Curves for Figure 2  
VCS vs. VIN  
IIN vs. VIN  
90  
85  
80  
75  
70  
65  
40  
38  
36  
34  
32  
30  
4
5
6
7
8
4
5
6
7
8
VIN (V)  
VIN (V)  
15  
Brightness vs. VIN  
IIN vs. VCS (V)  
40  
38  
36  
34  
32  
30  
8
7.5  
7
6.5  
6
5.5  
70  
75  
80  
VCS (V)  
85  
90  
4
5
6
IN (V)  
7
8
V
15-5  
HV803  
Figure 3: Typical 9.0V Application*  
2MΩ  
VDD  
REL-osc  
1
8
7
6
5
330KΩ  
560µH1  
5.1KΩ  
VA  
RSW-osc  
Cs  
2
3
4
10 in2 lamp  
VB  
VIN  
= 9.0V  
1N4148  
GND  
Lx  
0.1µF2  
HV803  
1nF  
0.1µF  
100V  
Note:  
1. Murata part # LQH4N561K04 (DC resistance < 14.5)  
2. Larger values may be required depending upon supply impedance.  
For additional information, see application note AN-H33.  
Typical Performance Curves for Figure 3  
VCS vs. VIN  
IIN vs. VIN  
100  
90  
40  
38  
36  
34  
32  
30  
80  
70  
60  
5.5  
5.5  
6.5  
7.5  
IN (V)  
8.5  
9.5  
6.5  
7.5  
8.5  
9.5  
VIN (V)  
V
Brightness vs. VIN  
IIN vs. VCS (V)  
40  
38  
36  
34  
32  
30  
6
5
4
3
2
1
65  
70  
75  
80  
85  
90  
95  
5.5  
6.5  
7.5  
8.5  
9.5  
VIN (V)  
VCS (V)  
15-6  
HV803  
External Component Description  
External Component  
Selection Guide Line  
Diode  
Fast reverse recovery diode, 1N4148 or equivalent.  
Cs Capacitor  
0.01µF to 0.1µF, 100V capacitor to GND is used to store the energy transferred from the inductor. 0.01µF is  
recommended when driver has large EL lamps.  
REL-osc  
The EL lamp frequency is controlled via an external REL resistor connected between REL-osc and VDD of the  
device. The lamp frequency increases as REL decreases. As the EL lamp frequency increases, the amount  
of current drawn from the battery will increase and the output voltage VCS will decrease. The color of the EL  
lamp is dependent upon its frequency.  
A 2Mresistor would provide lamp frequency of 300 to 430Hz. Decreasing the REL-osc by a factor of 2, the  
lamp frequency will increase by factor of 2.  
RSW-osc  
The switching frequency of the converter is controlled via an external resistor, RSW between RSW-osc and VDD  
of the device. The switching frequency increases as RSW decreases. With a given inductor, as the switching  
frequency increases, the amount of current drawn from the battery will decrease and the output voltage, VCS  
will also decrease.  
,
CSW Capacitor  
Lx Inductor  
A 1nF capacitor is required on RSW-osc pin to GND when the input voltage is equal to or greater than 5V.  
As the input voltage of the device increases, a faster switching converter frequency is required to avoid  
saturating the inductor. With the higher switching frequency, more noise will be introduced. This capacitor  
is used to shunt any switching noise that may couple into the RSW-osc pin.  
The inductor Lx is used to boost the low input voltage by inductive flyback. When the internal switch is on,  
the inductor is being charged. When the internal switch is off, the charge stored in the inductor will be  
transferredtothehighvoltagecapacitorCS. Theenergystoredinthecapacitoristhenavailabletotheinternal  
H-bridge and therefore to the EL lamp. In general, smaller value inductors, which can handle more current,  
are more suitable to drive larger size lamps. As the inductor value decreases, the switching frequency of the  
inductor (controlled by RSW) should be increased to avoid saturation.  
560µH Murata inductors with 14.5series DC resistance is typically recommended. For inductors with the  
sameinductancevaluebutwithlowerseriesDCresistance, lowerRSW valueisneededtopreventhighcurrent  
draw and inductor saturation.  
Lamp  
As the EL lamp size increases, more current will be drawn from the battery to maintain high voltage across  
the EL lamp. The input power, (VIN x IIN), will also increase. If the input power is greater than the power  
dissipation of the package (350mW), an external resistor in series with one side of the lamp is recommended  
to help reduce the package power dissipation.  
Enable/Disable Configuration  
TheHV803canbeeasilyenabledanddisabledviaalogiccontrol  
signal on the RSW and REL resistors as shown in Figure 4 below.  
The control signal can be from a microprocessor. RSW and REL  
are typically very high values. Therefore, only 10’s of microam-  
peres will be drawn from the logic signal when it is at a logic high  
(enable) state. When the microprocessor signal is high the  
device is enabled and when the signal is low, it is disabled.  
Figure 4: Enable/Disable Configuration  
15  
ON =VDD  
Enable  
REL  
OFF = 0V  
VDD  
REL-osc  
VA  
1
8
7
6
5
RSW  
5.1KΩ  
Lx  
RSW-osc  
Cs  
2
EL Lamp  
+
VB  
3
4
VDD  
1N4148  
-
GND  
Lx  
0.1µF  
HV803LG  
CS  
100V  
1nF  
15-7  
HV803  
Split Supply Configuration for Battery  
Voltages of Higher than 9.5V  
Split Supply Configuration Using a Single  
Cell (1.5V) Battery  
The HV803 can also be used for handheld devices operating  
from a single cell 1.5V battery where a regulated voltage is  
available. This is shown in Figure 5. The regulated voltage can  
be used to run the internal logic of the HV803. The amount of  
current necessary to run the internal logic is typically 30 to 60µA.  
Therefore, theregulatedvoltagecouldeasilyprovidethecurrent  
without being loaded down. The HV803 used in this configura-  
tion can also be enabled/disabled via logic control signal on the  
RSW and REL resistors as shown in Figure 4.  
Figure5canalsobeusedwithhighbatteryvoltagessuchas12V  
as long as the input voltage, VDD, to the HV803 device is within  
its specifications of 2.4V to 9.5V.  
Figure 5: Split Supply Configuration  
ON  
REL  
VDD  
Enable  
OFF  
GND  
Regulated  
Voltage  
VDD  
REL-osc  
VA  
1
8
7
6
5
RSW  
RSW-osc  
Cs  
2
3
4
Lx  
EL Lamp  
+
-
VB  
Battery  
Voltage  
1N4148  
GND  
Lx  
0.1µF*  
HV803LG  
CS  
100V  
*Larger values may be required depending upon supply impedance.  
For additional information, see application note AN-H33.  
15-8  

相关型号:

HV8051

High-Voltage EL Lamp Driver
SUPERTEX

HV8051LG

Ballast/Backlight Controller/Driver
ETC

HV8051LGP030

EL Driver, CMOS, PDSO8, SO-8
SUPERTEX

HV8051LGP031

EL Driver, CMOS, PDSO8, SO-8
SUPERTEX

HV8051P

暂无描述
SUPERTEX

HV8051X

EL Driver, 1-Segment, CMOS, 1.78 X 1.47 MM, DIE-11
SUPERTEX

HV8053

High-Voltage EL Lamp Driver
SUPERTEX

HV8053LG

Ballast/Backlight Controller/Driver
ETC

HV8053LGP031

EL Driver, CMOS, PDSO8, SO-8
SUPERTEX

HV8053P

EL Driver, CMOS, PDIP8, PLASTIC, DIP-8
SUPERTEX

HV8053X

EL Driver, 1-Segment, CMOS, 1.78 X 1.47 MM, DIE-11
SUPERTEX

HV8061LG

EL Driver, CMOS, PDSO8, SO-8
SUPERTEX