VN610SP-E [STMICROELECTRONICS]

SINGLE CHANNEL HIGH SIDE DRIVER; 单路高侧驱动器
VN610SP-E
型号: VN610SP-E
厂家: ST    ST
描述:

SINGLE CHANNEL HIGH SIDE DRIVER
单路高侧驱动器

驱动器
文件: 总18页 (文件大小:189K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
VN610SP-E  
SINGLE CHANNEL HIGH SIDE DRIVER  
Figure 1. Package  
Table 1. General Features  
Type  
R
DS(on)  
I
V
CC  
out  
VN610SP-E  
10 mΩ  
45 A  
36 V  
OUTPUT CURRENT: 45 A  
CMOS COMPATIBLE INPUT  
PROPORTIONAL LOAD CURRENT SENSE  
UNDERVOLTAGE AND OVERVOLTAGE  
10  
SHUT-DOWN  
OVERVOLTAGE CLAMP  
THERMAL SHUT DOWN  
CURRENT LIMITATION  
1
PowerSO-10  
VERY LOW STAND-BY POWER DISSIPATION  
PROTECTION AGAINST:  
LOSS OF GROUND AND LOSS OF V  
CC  
REVERSE BATTERY PROTECTION (*)  
IN COMPLIANCE WITH THE 2002/95/EC  
EUROPEAN DIRECTIVE  
DESCRIPTION  
This device integrates an analog current sense  
which delivers a current proportional to the load  
current (according to a known ratio). Active current  
limitation combined with thermal shut-down and  
automatic restart protect the device against  
overload. Device automatically turns off in case of  
ground pin disconnection.  
The VN610SP-E is a monolithic device made  
using  
STMicroelectronics  
VIPower  
M0-3  
technology. It is intended for driving resistive or  
inductive loads with one side connected to ground.  
Active V  
pin voltage clamp protects the device  
CC  
against low energy spikes (see ISO7637 transient  
compatibility table).  
Table 2. Order Codes  
Package  
Tube  
Tape and Reel  
PowerSO-10  
VN610SP-E  
VN610SPTR-E  
Note: (*) See application schematic at page 9  
Rev. 1  
1/18  
October 2004  
VN610SP-E  
Figure 2. Block Diagram  
V
CC  
OVERVOLTAGE  
UNDERVOLTAGE  
V
CC  
CLAMP  
PwCLAMP  
DRIVER  
OUTPUT  
GND  
I
LIM  
V
DSLIM  
LOGIC  
I
OUT  
CURRENT  
SENSE  
INPUT  
K
OVERTEMP.  
Table 3. Absolute Maximum Ratings  
Symbol  
Parameter  
Value  
41  
Unit  
V
V
DC supply voltage  
CC  
-V  
Reverse DC supply voltage  
DC reverse ground pin current  
DC output current  
-0.3  
-200  
V
CC  
- I  
mA  
A
GND  
I
Internally limited  
OUT  
- I  
Reverse DC output current  
DC input current  
-50  
A
OUT  
I
+/- 10  
mA  
IN  
-3  
V
V
V
Current sense maximum voltage  
CSENSE  
+15  
Electrostatic Discharge (Human Body Model:  
R=1.5K; C=100pF)  
4000  
2000  
5000  
5000  
V
V
V
V
- INPUT  
V
ESD  
- CURRENT SENSE  
- OUTPUT  
- V  
CC  
Maximum Switching Energy  
(L=0.05mH; R =0; V =13.5V; T =150ºC;  
jstart  
E
MAX  
193  
mJ  
L
bat  
I =75A)  
L
P
Power dissipation at T <25°C  
139  
W
°C  
°C  
°C  
tot  
C
T
Junction operating temperature  
Case operating temperature  
Storage temperature  
Internally limited  
-40 to 150  
j
T
c
T
-55 to 150  
STG  
2/18  
VN610SP-E  
Figure 3. Configuration Diagram (Top View) & Suggested Connections for Unused and N.C. Pins  
OUTPUT  
OUTPUT  
OUTPUT  
OUTPUT  
OUTPUT  
5
4
3
6
7
8
9
GROUND  
INPUT  
C.SENSE  
N.C.  
2
1
N.C.  
10  
11  
VCC  
Connection / Pin  
Current Sense  
N.C.  
Output  
Input  
Floating  
X
X
X
Through  
1Kresistor  
To Ground  
X
Through 10Kresistor  
Figure 4. Current and Voltage Conventions  
I
S
V
CC  
V
F
V
CC  
I
OUT  
OUTPUT  
I
V
IN  
OUT  
INPUT  
V
IN  
I
SENSE  
CURRENT SENSE  
GND  
V
SENSE  
I
GND  
Table 4. Thermal Data  
Symbol  
Parameter  
Value  
Unit  
°C/W  
°C/W  
°C/W  
R
Thermal resistance junction-case  
(MAX)  
0.9  
thj-case  
1
50.9 ( )  
R
Thermal resistance junction-ambient  
(MAX)  
thj-amb  
2
36( )  
(1)  
2
Note:  
Note:  
When mounted on a standard single-sided FR-4 board with 0.5cm of Cu (at least 35µm thick).  
(2)  
2
When mounted on a standard single-sided FR-4 board with 6 cm of Cu (at least 35µm thick).  
3/18  
VN610SP-E  
ELECTRICAL CHARACTERISTICS  
(8V<V <36V; -40°C<T <150°C; unless otherwise specified)  
CC  
j
(Per each channel)  
Table 5. Power  
Symbol  
Parameter  
Test Conditions  
Min.  
5.5  
3
Typ.  
13  
4
Max.  
36  
Unit  
V
V
Operating supply voltage  
Undervoltage shutdown  
Overvoltage shutdown  
CC  
V
USD  
5.5  
V
V
OV  
(See Note 1)  
36  
V
I
I
I
=15A; T =25°C  
10  
20  
35  
mΩ  
mΩ  
mΩ  
OUT  
OUT  
OUT  
j
R
On state resistance  
Clamp Voltage  
=15A; T =150°C  
j
ON  
=9A; V =6V  
CC  
V
clamp  
I
=20 mA (see note 1)  
41  
48  
10  
55  
25  
V
CC  
Off State; V =13V; V =V  
=0V  
CC  
IN  
OUT  
µA  
Off State; V =13V; V =V  
=0V;  
OUT  
CC  
IN  
I
S
Supply current  
T =25°C  
j
10  
20  
5
µA  
On State; V =13V; V =5V; I =0A  
OUT  
CC  
IN  
mA  
R
=3.9K  
SENSE  
I
I
I
I
Off State Output Current  
Off State Output Current  
Off State Output Current  
Off State Output Current  
V =V =0V  
OUT  
0
50  
0
µA  
µA  
µA  
µA  
L(off1)  
L(off2)  
L(off3)  
L(off4)  
IN  
V =0V; V  
=3.5V  
-75  
IN  
OUT  
V =V  
=0V; V =13V; T =125°C  
OUT  
5
IN  
CC  
j
V =V  
=0V; V =13V; T =25°C  
OUT  
3
IN  
CC  
j
Note: 1. V  
and V are correlated. Typical difference is 5V.  
OV  
clamp  
Table 6. Protection (see note 2)  
Symbol  
Parameter  
Test Conditions  
Min.  
Typ.  
Max.  
Unit  
V
=13V  
45  
75  
120  
120  
A
A
CC  
I
lim  
DC Short circuit current  
5.5V<V <36V  
CC  
Thermal shutdown  
temperature  
T
150  
175  
200  
°C  
TSD  
Thermal reset tempera-  
ture  
T
135  
7
°C  
°C  
R
T
Thermal hysteresis  
15  
HYST  
I
I
=2A; V =0; L=6mH  
IN  
Turn-off output voltage  
clamp  
OUT  
V
V
CC  
-41  
V
-48  
V -55  
CC  
V
DEMAG  
CC  
Output voltage drop limi-  
tation  
V
ON  
=1.5A; T = -40°C...+150°C  
50  
mV  
OUT  
j
Note: 2. To ensure long term reliability under heavy overload or short circuit conditions, protection and related diagnostic signals must be  
used together with a proper software strategy. If the device is subjected to abnormal conditions, this software must limit the duration  
and number of activation cycles  
Table 7. V - Output Diode  
CC  
Symbol  
Parameter  
Test Conditions  
=8A; T =150°C  
Min  
Typ  
Max  
Unit  
V
F
Forward on Voltage  
-I  
0.6  
V
OUT  
j
4/18  
VN610SP-E  
ELECTRICAL CHARACTERISTICS (continued)  
Table 8. Current Sense (9VVCC16V) (See Figure 5)  
Symbol  
Parameter  
Test Conditions  
Min  
Typ  
Max  
Unit  
I
=1.5A; V  
=0.5V;  
OUT  
SENSE  
K
I
/I  
3300  
4400  
6000  
1
OUT SENSE  
T = -40°C...150°C  
j
I
=1.5A; V  
=0.5V;  
OUT  
SENSE  
dK1/K1  
Current Sense Ratio Drift  
I /I  
OUT SENSE  
-10  
+10  
%
T = -40°C...150°C  
j
I
=15A; V  
=4V; T=-40°C  
4200  
4400  
4900  
4900  
6000  
5750  
OUT  
SENSE  
j
K
2
T =25°C...150°C  
j
I
=15A; V  
=4V; T=-40°C  
OUT  
SENSE j  
dK2/K2  
Current Sense Ratio Drift  
I /I  
OUT SENSE  
-6  
+6  
%
%
T =25°C...150°C  
j
I
=45A; V  
=4V; T=-40°C  
4200  
4400  
4900  
4900  
5500  
5250  
OUT  
SENSE  
j
K
3
T =25°C...150°C  
j
I
=45A; V  
=4V; T=-40°C  
OUT  
SENSE j  
dK3/K3  
Current Sense Ratio Drift  
Analog sense current  
-6  
+6  
T =25°C...150°C  
j
Vcc=6...16V; I  
40°C...150°C  
=0A; V  
=0V; Tj=-  
OUT  
SENSE  
I
SENSE0  
Off State; V =0V  
IN  
0
0
5
µA  
µA  
V
On State; V =5V  
IN  
10  
Max analog sense  
output voltage  
V
V
=5.5V; I  
=7.5A; R =10KΩ  
SENSE  
3.5  
5
CC  
CC  
OUT  
V
SENSE  
>8V; I  
=15A; R =10KΩ  
SENSE  
V
OUT  
Analog sense output  
voltage in overtemperature  
condition  
V
V
=13V; R =3.9KΩ  
SENSE  
5.5  
V
SENSEH  
CC  
CC  
Analog sense output  
impedance in  
R
V
=13V; T >T ; Output Open  
TSD  
400  
VSENSEH  
j
overtemperature condition  
Current sense delay  
reponse  
t
to 90% I  
(see note 3)  
500  
µs  
DSENSE  
SENSE  
Note: 3. Current sense signal delay after positive input slope.  
Table 9. Switching (V =13V)  
CC  
Symbol  
Parameter  
Turn-on delay time  
Turn-off delay time  
Test Conditions  
Min  
Typ  
50  
50  
Max  
Unit  
µs  
µs  
t
t
R =0.87Ω  
L
d(on)  
d(off)  
R =0.87Ω  
L
See  
(dV  
(dV  
/dt)  
Turn-on voltage slope  
Turn-off voltage slope  
R =0.87Ω  
relative  
Vs  
Vs  
OUT  
OUT  
on  
off  
L
diagram  
See  
/dt)  
R =0.87Ω  
L
relative  
diagram  
5/18  
VN610SP-E  
Table 10. Logic Input  
Symbol  
Parameter  
Input low level voltage  
Test Conditions  
Min  
Typ  
Max  
Unit  
V
V
IL  
1.25  
I
Low level input current V =1.25V  
1
µA  
V
IL  
IN  
V
Input high level voltage  
3.25  
IH  
IH  
I
High level input current V =3.25V  
10  
8
µA  
V
IN  
V
Input hysteresis voltage  
0.5  
6
I(hyst)  
I =1mA  
6.8  
V
IN  
V
Input clamp voltage  
ICL  
I =-1mA  
IN  
-0.7  
V
Figure 5.  
IOUT/ISENSE  
6500  
6000  
5500  
5000  
4500  
4000  
3500  
3000  
max.Tj=-40°C  
max.Tj=25...150°C  
min.Tj=25...150°C  
typical value  
min.Tj=-40°C  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
IOUT  
Table 11. Truth Table  
CONDITIONS  
INPUT  
OUTPUT  
SENSE  
L
H
L
L
H
L
L
L
L
L
L
L
L
L
H
H
0
Normal operation  
Overtemperature  
Undervoltage  
Nominal  
0
H
L
V
SENSEH  
0
0
H
L
0
0
0
Overvoltage  
H
L
Short circuit to GND  
H
H
L
(T <T  
) 0  
) V  
0
j
TSD  
TSD  
(T >T  
j
SENSEH  
Short circuit to V  
CC  
H
< Nominal  
Negative output voltage  
clamp  
L
L
0
6/18  
VN610SP-E  
Figure 6. Switching Characteristics (Resistive load R =0.87)  
L
V
OUT  
90%  
80%  
dV /dt  
OUT (off)  
dV /dt  
OUT (on)  
10%  
t
f
t
r
t
I
SENSE  
90%  
t
t
DSENSE  
INPUT  
t
d(on)  
t
d(off)  
t
Table 12. Electrical Transient Requirements On V  
ISO T/R 7637/1  
Pin  
CC  
TEST LEVELS  
III  
I
II  
IV  
Delays and  
Impedance  
Test Pulse  
1
2
-25 V  
+25 V  
-25 V  
-50 V  
+50 V  
-50 V  
-75 V  
+75 V  
-100 V  
+75 V  
-6 V  
-100 V  
+100 V  
-150 V  
+100 V  
-7 V  
2 ms 10 Ω  
0.2 ms 10 Ω  
0.1 µs 50 Ω  
0.1 µs 50 Ω  
100 ms, 0.01 Ω  
400 ms, 2 Ω  
3a  
3b  
4
+25 V  
-4 V  
+50 V  
-5 V  
5
+26.5 V  
+46.5 V  
+66.5 V  
+86.5 V  
ISO T/R 7637/1  
Test Pulse  
TEST LEVELS RESULTS  
I
II  
C
C
C
C
C
E
III  
C
C
C
C
C
E
IV  
C
C
C
C
C
E
1
2
C
C
C
C
C
C
3a  
3b  
4
5
CLASS  
CONTENTS  
C
E
All functions of the device are performed as designed after exposure to disturbance.  
One or more functions of the device is not performed as designed after exposure to disturbance  
and cannot be returned to proper operation without replacing the device.  
7/18  
VN610SP-E  
Figure 7. Waveforms  
NORMAL OPERATION  
INPUT  
LOAD CURRENT  
SENSE CURRENT  
UNDERVOLTAGE  
V
CC  
VUSDhyst  
VUSD  
INPUT  
LOAD CURRENT  
SENSE CURRENT  
OVERVOLTAGE  
VOV  
VCC > VUSD  
V
CC  
VOVhyst  
INPUT  
LOAD CURRENT  
SENSE  
SHORT TO GROUND  
INPUT  
LOAD CURRENT  
LOAD VOLTAGE  
SENSE CURRENT  
SHORT TO V  
CC  
INPUT  
LOAD VOLTAGE  
LOAD CURRENT  
SENSE CURRENT  
<Nominal  
<Nominal  
OVERTEMPERATURE  
TTSD  
TR  
T
j
INPUT  
LOAD CURRENT  
SENSE CURRENT  
I
=V  
SENSE  
/(R  
SENSEH  
+R  
SENSE  
)
SENSEH  
8/18  
VN610SP-E  
Figure 8. Application Schematic  
+5V  
V
CC  
R
prot  
INPUT  
D
ld  
R
prot  
µC  
OUTPUT  
CURRENT SENSE  
R
SENSE  
GND  
R
GND  
V
GND  
D
GND  
This small signal diode can be safely shared amongst  
several different HSD. Also in this case, the presence of  
the ground network will produce a shift ( 600mV) in the  
input threshold and the status output values if the  
microprocessor ground is not common with the device  
ground. This shift will not vary if more than one HSD  
shares the same diode/resistor network.  
Series resistor in INPUT line is also required to prevent  
that, during battery voltage transient, the current exceeds  
the Absolute Maximum Rating.  
Safest configuration for unused INPUT pin is to leave it  
unconnected, while unused SENSE pin has to be  
connected to Ground pin.  
GND PROTECTION NETWORK AGAINST  
REVERSE BATTERY  
Solution 1: Resistor in the ground line (R  
can be used with any type of load.  
only). This  
GND  
The following is an indication on how to dimension the  
R
resistor.  
GND  
1) R  
2) R  
600mV / (I  
).  
GND  
GND  
S(on)max  
≥ (−V ) / (-I  
)
GND  
CC  
where -I  
is the DC reverse ground pin current and can  
GND  
be found in the absolute maximum rating section of the  
device’s datasheet.  
LOAD DUMP PROTECTION  
Power Dissipation in R  
(when V <0: during reverse  
CC  
GND  
battery situations) is:  
D
is necessary (Voltage Transient Suppressor) if the  
ld  
2
load dump peak voltage exceeds V  
max DC rating.  
CC  
P = (-V ) /R  
D
CC  
GND  
The same applies if the device will be subject to  
transients on the V  
shown in the ISO T/R 7637/1 table.  
This resistor can be shared amongst several different  
HSD. Please note that the value of this resistor should be  
line that are greater than the ones  
CC  
calculated with formula (1) where I  
becomes the  
S(on)max  
µC I/Os PROTECTION:  
sum of the maximum on-state currents of the different  
devices.  
If a ground protection network is used and negative  
Please note that if the microprocessor ground is not  
transients are present on the V line, the control pins will  
CC  
common with the device ground then the R  
will  
be pulled negative. ST suggests to insert a resistor (R  
in line to prevent the µC I/Os pins to latch-up.  
)
GND  
prot  
produce a shift (I  
* R  
) in the input thresholds  
GND  
S(on)max  
and the status output values. This shift will vary  
The value of these resistors is a compromise between the  
leakage current of µC and the current required by the  
HSD I/Os (Input levels compatibility) with the latch-up  
limit of µC I/Os.  
depending on how many devices are ON in the case of  
several high side drivers sharing the same R  
.
GND  
If the calculated power dissipation leads to a large  
resistor or several devices have to share the same  
resistor then the ST suggests to utilize Solution 2 (see  
below).  
-V  
/I  
R  
(V  
-V -V  
OHµC IH GND  
) / I  
CCpeak latchup  
prot  
IHmax  
Calculation example:  
For V  
= - 100V and I  
20mA; V  
4.5V  
CCpeak  
latchup  
OHµC  
Solution 2: A diode (D  
) in the ground line.  
GND  
5kΩ ≤ R  
65k.  
prot  
A resistor (R  
GND  
=1kΩ) should be inserted in parallel to  
GND  
D
if the device will be driving an inductive load.  
Recommended R  
value is 10kΩ.  
prot  
9/18  
VN610SP-E  
Figure 9. Off State Output Current  
Figure 10. High Level Input Current  
IL(off1) (µA)  
Iih (uA)  
9
5
4.5  
8
Vin=3.25V  
Off state  
Vcc=36V  
4
7
Vin=Vout=0V  
3.5  
3
6
5
4
3
2
1
0
2.5  
2
1.5  
1
0.5  
0
-50  
-25  
0
25  
50  
75  
100  
125  
150  
175  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
175  
Tc (°C)  
Tc (°C)  
Figure 11. Input Low Level  
Figure 13. Input High Level  
Vil (V)  
Vih (V)  
3.6  
2.6  
2.4  
2.2  
2
3.4  
3.2  
3
1.8  
1.6  
1.4  
1.2  
1
2.8  
2.6  
2.4  
2.2  
2
-50  
-25  
0
25  
50  
75  
100  
125  
150  
175  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
175  
Tc (°C)  
Tc (°C)  
Figure 12. Input Clamp Voltage  
Figure 14. Input Hysteresis Voltage  
Vhyst (V)  
Vicl (V)  
1.5  
8
1.4  
1.3  
1.2  
1.1  
1
7.8  
Iin=1mA  
7.6  
7.4  
7.2  
7
0.9  
0.8  
0.7  
0.6  
0.5  
6.8  
6.6  
6.4  
6.2  
6
-50  
-25  
0
25  
50  
75  
100  
125  
150  
175  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
175  
Tc (°C)  
Tc (°C)  
10/18  
VN610SP-E  
Figure 15. Overvoltage Shutdown  
Figure 18. I Vs T  
LIM case  
Vov (V)  
Ilim (A)  
50  
160  
48  
46  
44  
42  
40  
38  
36  
34  
32  
30  
140  
120  
100  
80  
Vcc=13V  
60  
40  
20  
0
-50  
-25  
0
25  
50  
75  
100  
125  
150  
175  
175  
175  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
175  
Tc (°C)  
Tc (ºC)  
Figure 16. Turn-on Voltage Slope  
Figure 19. Turn-off Voltage Slope  
dVout/dt(on) (V/ms)  
dVout/dt(off) (V/ms)  
900  
700  
650  
800  
Vcc=13V  
Rl=0.87Ohm  
Vcc=13V  
Rl=0.87Ohm  
600  
700  
550  
500  
450  
400  
350  
300  
250  
600  
500  
400  
300  
200  
100  
0
-50  
-25  
0
25  
50  
75  
100  
125  
150  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
175  
Tc (ºC)  
Figure 17. On State Resistance Vs T  
Figure 20. On State Resistance Vs V  
case  
CC  
Ron (mOhm)  
Ron (mOhm)  
25  
25  
22.5  
22.5  
Iout=15A  
Iout=15A  
Vcc=8V; 36V  
20  
20  
Tc= 125ºC  
17.5  
17.5  
15  
12.5  
10  
15  
12.5  
10  
Tc= 25ºC  
7.5  
5
7.5  
Tc= - 40ºC  
5
2.5  
0
2.5  
0
-50  
-25  
0
25  
50  
75  
100 125 150  
5
10  
15  
20  
25  
30  
35  
40  
Tc (ºC)  
Vcc (V)  
11/18  
VN610SP-E  
Figure 21. Maximum turn off current versus load inductance  
LMAX (A)  
I
1000  
100  
A
B
C
10  
1
0.01  
0.1  
1
10  
100  
L(mH)  
A = Single Pulse at T  
=150ºC  
Values are generated with R =0Ω  
L
Jstart  
B= Repetitive pulse at T  
=100ºC  
Jstart  
In case of repetitive pulses, T  
(at beginning of  
jstart  
each demagnetization) of every pulse must not  
exceed the temperature specified above for  
curves B and C.  
C= Repetitive Pulse at T  
=125ºC  
Jstart  
Conditions:  
V
=13.5V  
CC  
V , I  
IN  
L
Demagnetization  
Demagnetization  
Demagnetization  
t
12/18  
VN610SP-E  
PowerSO-10™ Thermal Data  
Figure 22. PowerSO-10™ PC Board  
Layout condition of R and Z measurements (PCB FR4 area= 58mm x 58mm, PCB thickness=2mm,  
th  
th  
2
Cu thickness=35µm, Copper areas: from minimum pad lay-out to 8cm ).  
Figure 23. R  
Vs PCB copper area in open box free air condition  
thj-amb  
RTHj_amb (°C/W)  
55  
Tj-Tamb=50°C  
50  
45  
40  
35  
30  
0
2
4
6
8
10  
PCB Cu heatsink area (cm^2)  
13/18  
VN610SP-E  
Figure 24. PowerSO-10 Thermal Impedance Junction Ambient Single Pulse  
ZTH (°C/W)  
100  
10  
Footprint  
2
6 cm  
1
0.1  
0.01  
0.0001  
0.001  
0.01  
0.1  
1
10  
100  
1000  
Time (s)  
Figure 25. Thermal fitting model of a double  
channel HSD in PowerSO-10  
Pulse calculation formula  
ZTHδ = RTH δ + ZTHtp(1 δ)  
δ = tp T  
where  
Table 13. Thermal Parameter  
2
Area/island (cm )  
Footprint  
6
22  
5
Tj_1  
C1  
R1  
C1  
R1  
C2  
R2  
C3  
R3  
C4  
R4  
C5  
R5  
C6  
R6  
R1 (°C/W)  
0.05  
0.3  
R2 (°C/W)  
R3( °C/W)  
R4 (°C/W)  
R5 (°C/W)  
R6 (°C/W)  
C1 (W.s/°C)  
C2 (W.s/°C)  
C3 (W.s/°C)  
C4 (W.s/°C)  
C5 (W.s/°C)  
C6 (W.s/°C)  
Pd1  
0.3  
C2  
Tj_2  
0.8  
R2  
12  
Pd2  
37  
0.001  
T_amb  
5.00E-03  
0.02  
0.3  
0.75  
3
14/18  
VN610SP-E  
PACKAGE MECHANICAL  
Table 14. PowerSO-10™ Mechanical Data  
millimeters  
Typ  
Symbol  
Min  
Max  
A
A (*)  
A1  
B
B (*)  
C
C (*)  
D
D1  
E
E2  
E2 (*)  
E4  
E4 (*)  
e
F
F (*)  
H
3.35  
3.4  
3.65  
3.6  
0.00  
0.40  
0.37  
0.35  
0.23  
9.40  
7.40  
9.30  
7.20  
7.30  
5.90  
5.90  
0.10  
0.60  
0.53  
0.55  
0.32  
9.60  
7.60  
9.50  
7.60  
7.50  
6.10  
6.30  
1.27  
0.50  
1.25  
1.20  
13.80  
13.85  
1.35  
1.40  
14.40  
14.35  
H (*)  
h
L
L (*)  
a
1.20  
0.80  
0º  
1.80  
1.10  
8º  
α (*)  
2º  
8º  
Note: (*) Muar only POA P013P  
Figure 26. PowerSO-10™ Package Dimensions  
B
0.10  
A B  
10  
H
E
E2  
E4  
1
SEATING  
PLANE  
DETAIL "A"  
e
B
A
C
0.25  
D
=
=
=
=
h
D1  
SEATING  
PLANE  
A
F
A1  
L
A1  
DETAIL "A"  
P095A  
α
15/18  
VN610SP-E  
Figure 27. PowerSO-10Suggested Pad Layout and Tube Shipment (no suffix)  
CASABLANCA  
MUAR  
14.6 - 14.9  
B
10.8 - 11  
C
6.30  
C
A
A
B
0.67 - 0.73  
1
2
3
10  
9
0.54 - 0.6  
8
9.5  
All dimensions are in mm.  
Base Q.ty Bulk Q.ty Tube length (± 0.5)  
7
4
5
1.27  
6
A
B
C (± 0.1)  
Casablanca  
Muar  
50  
50  
1000  
1000  
532  
532  
10.4 16.4  
4.9 17.2  
0.8  
0.8  
Figure 28. Tape And Reel Shipment (suffix “TR”)  
REEL DIMENSIONS  
Base Q.ty  
Bulk Q.ty  
A (max)  
B (min)  
C (± 0.2)  
F
600  
600  
330  
1.5  
13  
20.2  
24.4  
60  
G (+ 2 / -0)  
N (min)  
T (max)  
30.4  
All dimensions are in mm.  
TAPE DIMENSIONS  
According to Electronic Industries Association  
(EIA) Standard 481 rev. A, Feb. 1986  
Tape width  
W
P0 (± 0.1)  
P
24  
4
Tape Hole Spacing  
Component Spacing  
Hole Diameter  
24  
D (± 0.1/-0) 1.5  
Hole Diameter  
D1 (min)  
F (± 0.05)  
K (max)  
1.5  
11.5  
6.5  
2
Hole Position  
Compartment Depth  
Hole Spacing  
P1 (± 0.1)  
End  
All dimensions are in mm.  
Start  
Top  
No components  
500mm min  
Components  
No components  
cover  
tape  
Empty components pockets  
saled with cover tape.  
500mm min  
User direction of feed  
16/18  
VN610SP-E  
REVISION HISTORY  
Date  
Revision  
Description of Changes  
Oct. 2004  
1
- First Issue.  
17/18  
VN610SP-E  
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences  
of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted  
by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject  
to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not  
authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.  
The ST logo is a registered trademark of STMicroelectronics.  
All other names are the property of their respective owners  
© 2004 STMicroelectronics - All rights reserved  
STMicroelectronics group of companies  
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -  
Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America  
www.st.com  
18/18  

相关型号:

VN610SP13TR

SINGLE CHANNEL HIGH SIDE SOLID STATE RELAY
ETC

VN610SPTR

BUF OR INV BASED PRPHL DRVR, PDSO10, ROHS COMPLIANT, POWER, SO-10
STMICROELECTR

VN610SPTR-E

SINGLE CHANNEL HIGH SIDE DRIVER
STMICROELECTR

VN66AFD

N-Channel 60-V (D-S) MOSFETs
VISHAY

VN67AD

TRANSISTOR | MOSFET | N-CHANNEL | 60V V(BR)DSS | 1.8A I(D) | TO-220AB
ETC

VN67AFD

TRANSISTOR | MOSFET | N-CHANNEL | 60V V(BR)DSS | 1.4A I(D) | TO-220
ETC

VN7003AH

High-side driver with CurrentSense analog feedback for automotive applications
STMICROELECTR

VN7003AHTR

High-side driver with CurrentSense analog feedback for automotive applications
STMICROELECTR

VN7003ALH

High-side driver with CurrentSense analog feedback for automotive applications
STMICROELECTR

VN7003ALHTR

High-side driver with CurrentSense analog feedback for automotive applications
STMICROELECTR

VN7004AH-E

BUF OR INV BASED PRPHL DRVR, PSSO7, ROHS COMPLIANT, OCTAPAK-7
STMICROELECTR

VN7004AHTR-E

BUF OR INV BASED PRPHL DRVR, PSSO7, ROHS COMPLIANT, OCTAPAK-7
STMICROELECTR