VN610SP13TR [ETC]

SINGLE CHANNEL HIGH SIDE SOLID STATE RELAY ; 单路高侧固态继电器\n
VN610SP13TR
型号: VN610SP13TR
厂家: ETC    ETC
描述:

SINGLE CHANNEL HIGH SIDE SOLID STATE RELAY
单路高侧固态继电器\n

继电器 固态继电器
文件: 总17页 (文件大小:277K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
®
VN610SP  
SINGLE CHANNEL HIGH SIDE SOLID STATE RELAY  
TYPE  
R
I
V
CC  
DS(on)  
OUT  
VN610SP  
10mΩ  
45A  
36 V  
OUTPUT CURRENT: 45 A  
CMOS COMPATIBLE INPUT  
10  
PROPORTIONAL LOAD CURRENT SENSE  
UNDERVOLTAGE AND OVERVOLTAGE  
1
PowerSO-10  
SHUT-DOWN  
OVERVOLTAGE CLAMP  
ORDER CODES  
TUBE  
THERMAL SHUT DOWN  
PACKAGE  
T&R  
CURRENT LIMITATION  
VN610SP VN610SP13TR  
PowerSO-10  
VERY LOW STAND-BY POWER DISSIPATION  
PROTECTION AGAINST:  
voltage clamp protects the device against low  
energy spikes (see ISO7637 transient  
LOSS OF GROUND AND LOSS OF VCC  
REVERSE BATTERY PROTECTION (*)  
compatibility table). This device integrates an  
analog current sense which delivers a current  
proportional to the load current (according to a  
known ratio). Active current limitation combined  
with thermal shut-down and automatic restart  
protect the device against overload. Device  
automatically turns off in case of ground pin  
disconnection.  
DESCRIPTION  
The VN610SP is a monolithic device made using  
STMicroelectronics VIPower M0-3 technology. It  
is intended for driving resistive or inductive loads  
with one side connected to ground. Active VCC pin  
BLOCK DIAGRAM  
V
CC  
OVERVOLTAGE  
UNDERVOLTAGE  
V
CC  
CLAMP  
PwCLAMP  
DRIVER  
OUTPUT  
GND  
I
LIM  
V
DSLIM  
LOGIC  
I
OUT  
CURRENT  
SENSE  
INPUT  
K
OVERTEMP.  
(*) See application schematic at page 9  
October 2002  
1/17  
1
VN610SP  
ABSOLUTE MAXIMUM RATING  
Symbol  
Parameter  
Value  
Unit  
V
V
DC supply voltage  
41  
CC  
-V  
Reverse DC supply voltage  
DC reverse ground pin current  
DC output current  
-0.3  
V
CC  
- I  
-200  
mA  
A
GND  
I
Internally limited  
OUT  
- I  
Reverse DC output current  
DC input current  
-50  
+/- 10  
-3  
A
OUT  
I
mA  
V
IN  
V
Current sense maximum voltage  
CSENSE  
+15  
V
Electrostatic Discharge (Human Body Model: R=1.5K; C=100pF)  
- INPUT  
4000  
2000  
5000  
5000  
V
V
V
V
V
- CURRENT SENSE  
- OUTPUT  
ESD  
MAX  
- V  
CC  
Maximum Switching Energy  
(L=0.05mH; R =0; V =13.5V; T  
E
193  
mJ  
=150ºC; I =75A)  
L
bat  
jstart  
L
P
Power dissipation at T <25°C  
139  
W
°C  
°C  
°C  
tot  
C
T
Junction operating temperature  
Case operating temperature  
Storage temperature  
Internally limited  
-40 to 150  
j
T
c
T
-55 to 150  
STG  
CONNECTION DIAGRAM (TOP VIEW)  
OUTPUT  
OUTPUT  
OUTPUT  
OUTPUT  
OUTPUT  
5
4
3
2
1
6
7
8
9
GROUND  
INPUT  
C.SENSE  
N.C.  
N.C.  
10  
11  
VCC  
CURRENT AND VOLTAGE CONVENTIONS  
IS  
VCC  
VCC  
IOUT  
OUTPUT  
IIN  
INPUT  
VIN  
VOUT  
ISENSE  
CURRENT SENSE  
GND  
VSENSE  
IGND  
2/17  
VN610SP  
THERMAL DATA  
Symbol  
Parameter  
Value  
0.9  
Unit  
°C/W  
°C/W  
R
Thermal resistance junction-case  
Thermal resistance junction-ambient  
(MAX)  
(MAX)  
thj-case  
R
50.9 (*)  
thj-amb  
2
(*) When mounted on a standard single-sided FR-4 board with 50mm of Cu (at least 35µm thick).  
ELECTRICAL CHARACTERISTICS (8V<VCC<36V; -40°C<Tj<150°C; unless otherwise specified)  
POWER  
Symbol  
Parameter  
Test Conditions  
Min  
5.5  
3
Typ  
13  
4
Max  
36  
Unit  
V
V
Operating supply voltage  
Undervoltage shutdown  
Overvoltage shutdown  
CC  
V
5.5  
V
USD  
V
(See Note 1)  
36  
V
OV  
ON  
I
I
I
I
=15A; T =25°C  
10  
20  
35  
55  
mΩ  
mΩ  
mΩ  
V
OUT  
OUT  
OUT  
j
R
On state resistance  
Clamp Voltage  
=15A; T =150°C  
j
=9A; V =6V  
CC  
V
=20 mA (see note 1)  
CC  
41  
48  
10  
clamp  
Off State; V =13V; V =V  
=0V  
CC  
IN  
OUT  
25  
µA  
Off State; V =13V; V =V  
=0V;  
CC  
IN  
OUT  
I
Supply current  
Tj=25°C  
S
10  
20  
5
µA  
On State; V =13V; V =5V; I =0A  
CC  
IN  
OUT  
mA  
R
=3.9K  
SENSE  
I
I
I
I
Off State Output Current  
Off State Output Current  
Off State Output Current  
Off State Output Current  
V =V =0V  
OUT  
0
50  
0
µA  
µA  
µA  
µA  
L(off1)  
L(off2)  
L(off3)  
L(off4)  
IN  
V =0V; V  
=3.5V  
-75  
IN  
OUT  
V =V  
=0V; Vcc=13V; T =125°C  
5
IN  
OUT  
OUT  
j
V =V  
=0V; Vcc=13V; T =25°C  
3
IN  
j
SWITCHING (VCC=13V)  
Symbol  
Parameter  
Test Conditions  
Min  
Typ  
50  
Max Unit  
t
Turn-on delay time  
Turn-off delay time  
R =0.87Ω  
µs  
µs  
d(on)  
L
t
R =0.87Ω  
50  
d(off)  
L
See  
(dV  
(dV  
/dt)  
/dt)  
Turn-on voltage slope  
Turn-off voltage slope  
R =0.87Ω  
relative  
diagram  
See  
Vs  
Vs  
OUT  
OUT  
on  
off  
L
R =0.87Ω  
relative  
diagram  
L
PROTECTIONS  
Symbol  
Parameter  
Test Conditions  
Min  
Typ  
Max Unit  
V
=13V  
45  
75  
120  
120  
A
A
CC  
I
DC Short circuit current  
lim  
5.5V<V <36V  
CC  
Thermal shutdown  
temperature  
T
150  
175  
15  
200  
°C  
TSD  
T
Thermal reset temperature  
Thermal hysteresis  
135  
7
°C  
°C  
R
T
HYST  
I
I
=2A; V =0; L=6mH  
IN  
OUT  
V
Turn-off output voltage clamp  
Output voltage drop limitation  
V
-41 V -48 V -55  
V
DEMAG  
CC  
CC  
CC  
V
=1.5A; T = -40°C...+150°C  
50  
mV  
ON  
OUT  
j
3/17  
1
VN610SP  
ELECTRICAL CHARACTERISTICS (continued)  
CURRENT SENSE (9VVCC16V) (See Figure 2)  
Symbol  
Parameter  
Test Conditions  
=1.5A; V  
Min  
Typ  
Max  
Unit  
I
=0.5V;  
SENSE  
OUT  
K
I
/I  
3300  
4400  
6000  
1
OUT SENSE  
T = -40°C...150°C  
j
I
=1.5A; V  
=0.5V;  
OUT  
SENSE  
dK1/K1  
Current Sense Ratio Drift  
-10  
+10  
%
T = -40°C...150°C  
j
I
=15A; V  
=4V; T =-40°C  
4200  
4400  
4900  
4900  
6000  
5750  
OUT  
SENSE  
j
K
I
/I  
2
OUT SENSE  
T=25°C...150°C  
j
I
=15A; V  
=4V; T =-40°C  
SENSE j  
OUT  
dK2/K2  
Current Sense Ratio Drift  
-6  
+6  
%
%
T=25°C...150°C  
j
I
=45A; V  
=4V; T =-40°C  
4200  
4400  
4900  
4900  
5500  
5250  
OUT  
SENSE  
j
K
I
/I  
3
OUT SENSE  
T=25°C...150°C  
j
I
=45A; V  
=4V; T =-40°C  
SENSE j  
OUT  
dK3/K3  
Current Sense Ratio Drift  
-6  
+6  
T=25°C...150°C  
j
Vcc=6...16V; I  
=0A; V  
=0V;  
SENSE  
OUT  
Tj=-40°C...150°C  
I
Analog sense current  
SENSE0  
Off State; V =0V  
0
0
5
µA  
µA  
IN  
On State; V =5V  
10  
IN  
V
R
=5.5V; I  
=7.5A;  
OUT  
CC  
Max analog sense  
output voltage  
3.5  
5
V
V
=10KΩ  
V
SENSE  
SENSE  
V
>8V; I  
=15A; R  
=10KΩ  
SENSE  
CC  
OUT  
Analog sense output  
voltage in overtemperature  
condition  
V
V
=13V; R  
=3.9KΩ  
SENSE  
5.5  
V
SENSEH  
CC  
Analog sense output  
impedance in  
R
V
=13V; T >T ; Output Open  
TSD  
400  
VSENSEH  
CC  
j
overtemperature condition  
Current sense delay  
reponse  
t
to 90% I  
(see note 2)  
500  
µs  
DSENSE  
SENSE  
LOGIC INPUT  
Symbol  
Parameter  
Test Conditions  
V =1.25V  
Min  
Typ  
Max  
Unit  
V
V
Input low level voltage  
Low level input current  
Input high level voltage  
High level input current  
Input hysteresis voltage  
1.25  
IL  
I
1
µA  
V
IL  
IN  
V
3.25  
IH  
I
V =3.25V  
10  
8
µA  
V
IH  
IN  
V
0.5  
6
I(hyst)  
I =1mA  
6.8  
V
IN  
V
Input clamp voltage  
ICL  
I =-1mA  
-0.7  
V
IN  
Note 1: V  
and V are correlated. Typical difference is 5V.  
OV  
clamp  
Note 2: current sense signal delay after positive input slope.  
Note: Sense pin doesn’t have to be left floating.  
4/17  
2
VN610SP  
TRUTH TABLE  
CONDITIONS  
INPUT  
OUTPUT  
SENSE  
L
H
L
L
H
L
L
L
L
L
L
L
L
L
H
H
0
Normal operation  
Overtemperature  
Undervoltage  
Nominal  
0
H
L
V
SENSEH  
0
H
L
0
0
0
0
Overvoltage  
H
L
Short circuit to GND  
H
H
L
(T <T  
) 0  
) V  
0
j
TSD  
TSD  
(T >T  
j
SENSEH  
Short circuit to V  
CC  
H
< Nominal  
Negative output voltage  
clamp  
L
L
0
5/17  
1
VN610SP  
ELECTRICAL TRANSIENT REQUIREMENTS  
ISO T/R 7637/1  
TEST LEVELS  
III  
I
II  
IV  
Delays and  
Impedance  
Test Pulse  
1
2
-25 V  
+25 V  
-25 V  
-50 V  
+50 V  
-50 V  
-75 V  
+75 V  
-100 V  
+75 V  
-6 V  
-100 V  
+100 V  
-150 V  
+100 V  
-7 V  
2 ms 10 Ω  
0.2 ms 10 Ω  
0.1 µs 50 Ω  
0.1 µs 50 Ω  
100 ms, 0.01 Ω  
400 ms, 2 Ω  
3a  
3b  
4
+25 V  
-4 V  
+50 V  
-5 V  
5
+26.5 V  
+46.5 V  
+66.5 V  
+86.5 V  
ISO T/R 7637/1  
Test Pulse  
TEST LEVELS RESULTS  
I
II  
C
C
C
C
C
E
III  
C
C
C
C
C
E
IV  
C
C
C
C
C
E
1
2
C
C
C
C
C
C
3a  
3b  
4
5
CLASS  
CONTENTS  
C
E
All functions of the device are performed as designed after exposure to disturbance.  
One or more functions of the device is not performed as designed after exposure to disturbance  
and cannot be returned to proper operation without replacing the device.  
Figure 1: Switching Characteristics (Resistive load RL=0.87)  
V
OUT  
90%  
80%  
dV  
/dt  
dV  
/dt  
OUT (off)  
OUT (on)  
10%  
t
t
f
r
t
I
SENSE  
90%  
t
t
DSENSE  
INPUT  
t
t
d(on)  
d(off)  
t
6/17  
1
VN610SP  
Figure 2: I  
/I  
versus I  
OUT SENSE  
OUT  
I
/I  
OUT SENSE  
6500  
6000  
5500  
5000  
4500  
4000  
3500  
max.Tj=-40°C  
max.Tj=25...150°C  
min.Tj=25...150°C  
typical value  
min.Tj=-40°C  
3000  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
I
OUT  
7/17  
1
VN610SP  
Figure 3: Waveforms  
NORMAL OPERATION  
INPUT  
LOAD CURRENT  
SENSE CURRENT  
UNDERVOLTAGE  
V
CC  
V
USDhyst  
V
USD  
INPUT  
LOAD CURRENT  
SENSE CURRENT  
OVERVOLTAGE  
V
OV  
V
CC  
V
V
> V  
USD  
OVhyst  
CC  
INPUT  
LOAD CURRENT  
SENSE  
SHORT TO GROUND  
INPUT  
LOAD CURRENT  
LOAD VOLTAGE  
SENSE CURRENT  
SHORT TO V  
CC  
INPUT  
LOAD VOLTAGE  
LOAD CURRENT  
SENSE CURRENT  
<Nominal  
<Nominal  
OVERTEMPERATURE  
T
TSD  
T
j
T
R
INPUT  
LOAD CURRENT  
SENSE CURRENT  
I
=V  
/(R  
+R  
)
SENSEH  
SENSE SENSEH  
SENSE  
8/17  
1
1
VN610SP  
APPLICATION SCHEMATIC  
+5V  
V
R
CC  
prot  
INPUT  
D
ld  
R
prot  
µC  
OUTPUT  
CURRENT SENSE  
R
GND  
SENSE  
R
GND  
V
GND  
D
GND  
This small signal diode can be safely shared amongst  
several different HSD. Also in this case, the presence of  
the ground network will produce a shift ( 600mV) in the  
input threshold and the status output values if the  
microprocessor ground is not common with the device  
ground. This shift will not vary if more than one HSD  
shares the same diode/resistor network.  
GND PROTECTION NETWORK AGAINST  
REVERSE BATTERY  
Solution 1: Resistor in the ground line (R  
can be used with any type of load.  
only). This  
GND  
The following is an indication on how to dimension the  
R
resistor.  
GND  
1) R  
2) R  
where -I  
600mV / (I  
).  
S(on)max  
LOAD DUMP PROTECTION  
GND  
GND  
≥ (−V ) / (-I  
)
CC  
GND  
D
is necessary (Voltage Transient Suppressor) if the  
ld  
is the DC reverse ground pin current and can  
load dump peak voltage exceeds V max DC rating. The  
GND  
CC  
be found in the absolute maximum rating section of the  
device’s datasheet.  
Power Dissipation in R  
battery situations) is:  
same applies if the device will be subject to transients on  
the V  
line that are greater than the ones shown in the  
CC  
ISO T/R 7637/1 table.  
(when V <0: during reverse  
CC  
GND  
µC I/Os PROTECTION:  
2
P = (-V ) /R  
D
CC  
GND  
If a ground protection network is used and negative  
This resistor can be shared amongst several different  
HSD. Please note that the value of this resistor should be  
transients are present on the V line, the control pins will  
CC  
be pulled negative. ST suggests to insert a resistor (R  
)
prot  
calculated with formula (1) where I  
becomes the  
in line to prevent the µC I/Os pins to latch-up.  
S(on)max  
sum of the maximum on-state currents of the different  
devices.  
The value of these resistors is a compromise between the  
leakage current of µC and the current required by the  
HSD I/Os (Input levels compatibility) with the latch-up limit  
of µC I/Os.  
Please note that if the microprocessor ground is not  
common with the device ground then the R  
will  
GND  
produce a shift (I  
* R  
) in the input thresholds  
S(on)max  
GND  
-V  
/I  
R  
(V  
-V -V  
) / I  
CCpeak latchup  
prot  
OHµC IH GND  
IHmax  
and the status output values. This shift will vary  
depending on how many devices are ON in the case of  
Calculation example:  
several high side drivers sharing the same R  
.
For V  
= - 100V and I  
20mA; V  
4.5V  
GND  
CCpeak  
latchup  
OHµC  
If the calculated power dissipation leads to a large resistor  
or several devices have to share the same resistor then  
the ST suggests to utilize Solution 2 (see below).  
5kΩ ≤ R  
65k.  
prot  
Recommended R  
value is 10kΩ.  
prot  
Solution 2: A diode (D  
) in the ground line.  
GND  
A resistor (R  
GND  
=1kΩ) should be inserted in parallel to  
GND  
D
if the device will be driving an inductive load.  
9/17  
1
1
VN610SP  
High Level Input Current  
Off State Output Current  
IL(off1) (µA)  
Iih (uA)  
9
5
4.5  
8
Vin=3.25V  
Off state  
Vcc=36V  
4
7
Vin=Vout=0V  
3.5  
3
6
5
4
3
2
1
0
2.5  
2
1.5  
1
0.5  
0
-50  
-25  
0
25  
50  
75  
100  
125  
150  
175  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
175  
Tc (°C)  
Tc (°C)  
Input Clamp Voltage  
Overvoltage Shutdown  
Vicl (V)  
Vov (V)  
8
50  
7.8  
48  
46  
44  
42  
40  
38  
36  
34  
32  
30  
Iin=1mA  
7.6  
7.4  
7.2  
7
6.8  
6.6  
6.4  
6.2  
6
-50  
-25  
0
25  
50  
75  
100  
125  
150  
175  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
175  
Tc (°C)  
Tc (°C)  
Turn-on Voltage Slope  
Turn-off Voltage Slope  
dVout/dt(on) (V/ms)  
dVout/dt(off) (V/ms)  
900  
700  
650  
800  
Vcc=13V  
Vcc=13V  
Rl=0.87Ohm  
Rl=0.87Ohm  
600  
700  
550  
500  
450  
400  
350  
300  
250  
600  
500  
400  
300  
200  
100  
0
-50  
-25  
0
25  
50  
75  
100 125  
150  
175  
-50  
-25  
0
25  
50  
75  
100 125  
150  
175  
Tc (ºC)  
10/17  
1
VN610SP  
On State Resistance Vs Tcase  
On State Resistance Vs VCC  
Ron (mOhm)  
Ron (mOhm)  
25  
25  
22.5  
22.5  
Iout=15A  
Iout=15A  
Vcc=8V; 36V  
20  
20  
Tc= 125ºC  
17.5  
17.5  
15  
15  
12.5  
10  
12.5  
10  
Tc= 25ºC  
7.5  
5
7.5  
5
Tc= - 40ºC  
2.5  
0
2.5  
0
-50  
-25  
0
25  
50  
75  
100 125 150  
175  
5
10  
15  
20  
25  
30  
35  
40  
Tc (ºC)  
Vcc (V)  
ILIM Vs Tcase  
Input High Level  
Vih (V)  
Ilim (A)  
3.6  
160  
3.4  
3.2  
3
140  
120  
100  
80  
Vcc=13V  
2.8  
2.6  
2.4  
2.2  
2
60  
40  
20  
0
-50  
-25  
0
25  
50  
75  
100  
125  
150  
175  
-50  
-25  
0
25  
50  
75  
100 125  
150  
175  
Tc (°C)  
Tc (ºC)  
Input Low Level  
Input Hysteresis Voltage  
Vil (V)  
Vhyst (V)  
1.5  
2.6  
1.4  
1.3  
1.2  
1.1  
1
2.4  
2.2  
2
1.8  
1.6  
1.4  
1.2  
1
0.9  
0.8  
0.7  
0.6  
0.5  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
175  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
175  
Tc (°C)  
Tc (°C)  
11/17  
1
VN610SP  
Maximum turn off current versus load inductance  
LMAX (A)  
I
1000  
100  
10  
A
B
C
1
0.01  
0.1  
1
10  
100  
L(mH)  
A = Single Pulse at TJstart=150ºC  
B= Repetitive pulse at TJstart=100ºC  
C= Repetitive Pulse at TJstart=125ºC  
Conditions:  
VCC=13.5V  
Values are generated with RL=0Ω  
In case of repetitive pulses, Tjstart (at beginning of each demagnetization) of every pulse must not exceed  
the temperature specified above for curves B and C.  
VIN, IL  
Demagnetization  
Demagnetization  
Demagnetization  
t
12/17  
1
VN610SP  
PowerSO-10THERMAL DATA  
PowerSO-10PC Board  
Layout condition of R and Z measurements (PCB FR4 area= 58mm x 58mm, PCB thickness=2mm,  
th  
th  
2
Cu thickness=35µm, Copper areas: from minimum pad lay-out to 8cm ).  
Rthj-amb Vs PCB copper area in open box free air condition  
RTHj_amb (°C/W)  
55  
Tj-Tamb=50°C  
50  
45  
40  
35  
30  
0
2
4
6
8
10  
PCB Cu heatsink area (cm^2)  
13/17  
1
VN610SP  
PowerSO-10 Thermal Impedance Junction Ambient Single Pulse  
ZTH (°C/W)  
100  
Footprint  
2
6 cm  
10  
1
0.1  
0.01  
0.0001  
0.001  
0.01  
0.1  
1
10  
100  
1000  
Time (s)  
Thermal fitting model of a single channel HSD  
in PowerSO-10  
Pulse calculation formula  
ZTHδ = RTH δ + ZTHtp(1 δ)  
δ = tp T  
where  
Thermal Parameter  
2
Area/island (cm )  
R1 (°C/W)  
Footprint  
0.016  
0.06  
0.08  
0.8  
6
22  
5
R2 (°C/W)  
R3( °C/W)  
R4 (°C/W)  
R5 (°C/W)  
R6 (°C/W)  
C1 (W.s/°C)  
C2 (W.s/°C)  
C3 (W.s/°C)  
C4 (W.s/°C)  
C5 (W.s/°C)  
C6 (W.s/°C)  
Tj  
C1  
R1  
C2  
R2  
C3  
R3  
C4  
R4  
C5  
R5  
C6  
R6  
12  
Pd  
37  
T_amb  
0.002  
1.00E-02  
0.04  
0.3  
0.75  
3
14/17  
1
VN610SP  
PowerSO-10MECHANICAL DATA  
mm.  
inch  
TYP.  
DIM.  
MIN.  
TYP  
MAX.  
MIN.  
MAX.  
A
A (*)  
A1  
B
B (*)  
C
C (*)  
D
D1  
E
E2  
E2 (*)  
E4  
E4 (*)  
e
F
F (*)  
H
3.35  
3.4  
3.65  
3.6  
0.132  
0.134  
0.000  
0.016  
0.014  
0.013  
0.009  
0.370  
0.291  
0.366  
0.283  
0.287  
0.232  
0.232  
0.144  
0.142  
0.004  
0.024  
0.021  
0.022  
0.0126  
0.378  
0.300  
0.374  
300  
0.00  
0.40  
0.37  
0.35  
0.23  
9.40  
7.40  
9.30  
7.20  
7.30  
5.90  
5.90  
0.10  
0.60  
0.53  
0.55  
0.32  
9.60  
7.60  
9.50  
7.60  
7.50  
6.10  
6.30  
0.295  
0.240  
0.248  
1.27  
0.50  
0.050  
0.002  
1.25  
1.20  
13.80  
13.85  
1.35  
1.40  
14.40  
14.35  
0.049  
0.047  
0.543  
0.545  
0.053  
0.055  
0.567  
0.565  
H (*)  
h
L
L (*)  
α
1.20  
0.80  
0º  
1.80  
1.10  
8º  
0.047  
0.031  
0º  
0.070  
0.043  
8º  
α (*)  
2º  
8º  
2º  
8º  
(*) Muar only POA P013P  
B
0.10  
A B  
10  
H
E
E2  
E4  
1
SEATING  
PLANE  
DETAIL "A"  
e
B
A
C
0.25  
D
=
=
=
h
D1  
=
SEATING  
PLANE  
A
F
A1  
L
A1  
DETAIL "A"  
P095A  
α
15/17  
1
VN610SP  
PowerSO-10SUGGESTED PAD LAYOUT  
TUBE SHIPMENT (no suffix)  
14.6 - 14.9  
CASABLANCA  
MUAR  
B
10.8- 11  
6.30  
C
A
C
A
0.67 - 0.73  
B
1
2
3
10  
9
0.54 - 0.6  
All dimensions are in mm.  
Base Q.ty Bulk Q.ty Tube length (± 0.5)  
8
9.5  
7
4
5
1.27  
A
B
C (± 0.1)  
0.8  
6
Casablanca  
Muar  
50  
50  
1000  
1000  
532  
532  
10.4 16.4  
4.9 17.2  
0.8  
TAPE AND REEL SHIPMENT (suffix “13TR”)  
REEL DIMENSIONS  
Base Q.ty  
Bulk Q.ty  
A (max)  
B (min)  
C (± 0.2)  
F
600  
600  
330  
1.5  
13  
20.2  
24.4  
60  
G (+ 2 / -0)  
N (min)  
T (max)  
30.4  
All dimensions are in mm.  
TAPE DIMENSIONS  
According to Electronic Industries Association  
(EIA) Standard 481 rev. A, Feb. 1986  
Tape width  
W
P0 (± 0.1)  
P
24  
4
Tape Hole Spacing  
Component Spacing  
Hole Diameter  
24  
D (± 0.1/-0) 1.5  
Hole Diameter  
D1 (min)  
F (± 0.05)  
K (max)  
1.5  
11.5  
6.5  
2
Hole Position  
Compartment Depth  
Hole Spacing  
P1 (± 0.1)  
All dimensions are in mm.  
End  
Start  
Top  
No components  
500mm min  
Components  
No components  
cover  
tape  
Empty components pockets  
saled with cover tape.  
500mm min  
User direction of feed  
16/17  
1
1
VN610SP  
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences  
of use of such information nor for any infringement of patents or other rights of third parties which may results from its use. No license is  
granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are  
subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products  
are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.  
The ST logo is a trademark of STMicroelectronics  
2002 STMicroelectronics - Printed in ITALY- All Rights Reserved.  
STMicroelectronics GROUP OF COMPANIES  
Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia -  
Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - U.S.A.  
http://www.st.com  
17/17  
1

相关型号:

VN610SPTR

BUF OR INV BASED PRPHL DRVR, PDSO10, ROHS COMPLIANT, POWER, SO-10
STMICROELECTR

VN610SPTR-E

SINGLE CHANNEL HIGH SIDE DRIVER
STMICROELECTR

VN66AFD

N-Channel 60-V (D-S) MOSFETs
VISHAY

VN67AD

TRANSISTOR | MOSFET | N-CHANNEL | 60V V(BR)DSS | 1.8A I(D) | TO-220AB
ETC

VN67AFD

TRANSISTOR | MOSFET | N-CHANNEL | 60V V(BR)DSS | 1.4A I(D) | TO-220
ETC

VN7003AH

High-side driver with CurrentSense analog feedback for automotive applications
STMICROELECTR

VN7003AHTR

High-side driver with CurrentSense analog feedback for automotive applications
STMICROELECTR

VN7003ALH

High-side driver with CurrentSense analog feedback for automotive applications
STMICROELECTR

VN7003ALHTR

High-side driver with CurrentSense analog feedback for automotive applications
STMICROELECTR

VN7004AH-E

BUF OR INV BASED PRPHL DRVR, PSSO7, ROHS COMPLIANT, OCTAPAK-7
STMICROELECTR

VN7004AHTR-E

BUF OR INV BASED PRPHL DRVR, PSSO7, ROHS COMPLIANT, OCTAPAK-7
STMICROELECTR

VN7004CH

High-side driver with CurrentSense analog feedback for automotive applications
STMICROELECTR