TS4962IQT [STMICROELECTRONICS]

2.8W filter-free mono class D audio power amplifier; 2.8W无滤波器单声道D类音频功率放大器
TS4962IQT
型号: TS4962IQT
厂家: ST    ST
描述:

2.8W filter-free mono class D audio power amplifier
2.8W无滤波器单声道D类音频功率放大器

消费电路 商用集成电路 音频放大器 视频放大器 功率放大器 PC
文件: 总46页 (文件大小:607K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TS4962  
2.8W filter-free mono class D audio power amplifier  
Features  
DFN8 3x3 mm  
Operating from V =2.4V to 5.5V  
CC  
Standby mode active low  
Output power: 2.8W into 4Ω and 1.7W into 8Ω  
with 10% THD+N max and 5V power supply  
Output power: 2.2W @5V or 0.7W @ 3.0V into  
4Ω with 1% THD+N max.  
Output power: 1.4W @5V or 0.5W @ 3.0V into  
8Ω with 1% THD+N max.  
Adjustable gain via external resistors  
Low current consumption 2mA @ 3V  
Efficiency: 88% typ.  
TS4962IQT - Pinout  
Signal to noise ratio: 85dB typ.  
PSRR: 63dB typ. @217Hz with 6dB gain  
PWM base frequency: 280kHz  
Low pop & click noise  
Thermal shutdown protection  
Available in DFN8 3X3 mm package  
Description  
The TS4962 is a differential class-D BTL power  
amplifier. It is able to drive up to 2.2W into a 4Ω  
load and 1.4W into a 8Ω load at 5V. It achieves  
outstanding efficiency (88% typ.) compared to  
standard AB-class audio amps.  
Applications  
The gain of the device can be controlled via two  
external gain-setting resistors. Pop & click  
reduction circuitry provides low on/off switch noise  
while allowing the device to start within 5ms. A  
standby function (active low) allows the reduction  
of current consumption to 10nA typ.  
Cellular phone  
PDA  
Notebook PC  
January 2007  
Rev 7  
1/46  
www.st.com  
1
Contents  
TS4962  
Contents  
1
2
3
Absolute maximum ratings and operating conditions . . . . . . . . . . . . . 6  
Application component information . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
3.1  
3.2  
Electrical characteristics tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Electrical characteristics curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
4
Application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
4.1  
4.2  
4.3  
4.4  
4.5  
4.6  
4.7  
4.8  
4.9  
Differential configuration principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Gain in typical application schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Common mode feedback loop limitations . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Low frequency response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Decoupling of the circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Wake-up time (tWU) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Shutdown time (tSTBY) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Consumption in standby mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Single-ended input configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
4.10 Output filter considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
4.11 Several examples with summed inputs . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Example 1: Dual differential inputs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Example 2: One differential input plus one single ended input . . . . . . . . . . . . . . . 38  
5
6
7
8
9
Demo board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
DFN8 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
2/46  
List of tables  
TS4962  
List of tables  
Table 1.  
Table 2.  
Table 3.  
Table 4.  
Table 5.  
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Dissipation ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Operating conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Component information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Electrical characteristics at V = +5V, with GND = 0V, V  
= 2.5V, and T  
= 25°C  
CC  
icm  
amb  
(unless otherwise specified) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Electrical characteristics at V = +4.2V with GND = 0V, V = 2.1V, and T = 25°C  
Table 6.  
Table 7.  
Table 8.  
Table 9.  
Table 10.  
CC  
icm  
amb  
(unless otherwise specified) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Electrical characteristics at V = +3.6V with GND = 0V, V = 1.8V, T = 25°C  
CC  
icm  
amb  
(unless otherwise specified) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Electrical characteristics at V = +3.0V with GND = 0V, V = 1.5V, T = 25°C  
CC  
icm  
amb  
(unless otherwise specified) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Electrical characteristics at V = +2.5V with GND = 0V, V = 1.25V, T = 25°C  
CC  
icm  
amb  
(unless otherwise specified) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Electrical characteristics at V +2.4V with GND = 0V, V = 1.2V, T = 25°C  
CC  
icm  
amb  
(unless otherwise specified) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Order codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
Table 11.  
Table 12.  
2/46  
List of figures  
TS4962  
List of figures  
Figure 1.  
Figure 2.  
Figure 3.  
Figure 4.  
Figure 6.  
Figure 7.  
Figure 8.  
Figure 9.  
Typical application schematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Schematic used for test measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Schematic used for PSSR measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Current consumption vs. power supply voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Current consumption vs. standby voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Output offset voltage vs. common mode input voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Efficiency vs. output power. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Efficiency vs. output power. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Figure 10. Efficiency vs. output power. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Figure 11. Efficiency vs. output power. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Figure 12. Output power vs. power supply voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Figure 13. Output power vs. power supply voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Figure 14. PSRR vs. frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Figure 15. PSRR vs. frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Figure 16. PSRR vs. frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Figure 17. PSRR vs. frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Figure 18. PSRR vs. frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Figure 19. PSRR vs. frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Figure 20. PSRR vs. common mode input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Figure 21. CMRR vs. frequency. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Figure 22. CMRR vs. frequency. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Figure 23. CMRR vs. frequency. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Figure 24. CMRR vs. frequency. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Figure 25. CMRR vs. frequency. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Figure 26. CMRR vs. frequency. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Figure 27. CMRR vs. common mode input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Figure 28. THD+N vs. output power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Figure 29. THD+N vs. output power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Figure 30. THD+N vs. output power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Figure 31. THD+N vs. output power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Figure 32. THD+N vs. output power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Figure 33. THD+N vs. output power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Figure 34. THD+N vs. output power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Figure 35. THD+N vs. output power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Figure 36. THD+N vs. frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Figure 37. THD+N vs. frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Figure 38. THD+N vs. frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Figure 39. THD+N vs. frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Figure 40. THD+N vs. frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Figure 41. THD+N vs. frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Figure 42. THD+N vs. frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Figure 43. THD+N vs. frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Figure 44. THD+N vs. frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Figure 45. THD+N vs. frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Figure 46. THD+N vs. frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Figure 47. THD+N vs. frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Figure 48. Gain vs. frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Figure 49. Gain vs. frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
2/46  
TS4962  
List of figures  
Figure 50. Gain vs. frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Figure 51. Gain vs. frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Figure 52. Gain vs. frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Figure 53. Gain vs. frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Figure 54. Gain vs. frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Figure 55. Startup & shutdown time V = 5V, G = 6dB, C = 1µF (5ms/div) . . . . . . . . . . . . . . . . . . . 30  
CC  
in  
Figure 56. Startup & shutdown time V = 3V, G = 6dB, C = 1µF (5ms/div) . . . . . . . . . . . . . . . . . . . 30  
CC  
in  
Figure 57. Startup & shutdown time V = 5V, G = 6dB, C = 100nF (5ms/div) . . . . . . . . . . . . . . . . . 30  
CC  
in  
Figure 58. Startup & shutdown time V = 3V, G = 6dB, C = 100nF (5ms/div) . . . . . . . . . . . . . . . . . 31  
CC  
in  
Figure 59. Startup & shutdown time V = 5V, G = 6dB, No C (5ms/div) . . . . . . . . . . . . . . . . . . . . . 31  
CC  
in  
Figure 60. Startup & shutdown time V = 3V, G = 6dB, No C (5ms/div) . . . . . . . . . . . . . . . . . . . . . 31  
CC  
in  
Figure 61. Single-ended input typical application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Figure 62. Typical application schematic with multiple single-ended inputs . . . . . . . . . . . . . . . . . . . . 35  
Figure 63. Method for shorting pertubations to ground . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Figure 64. Typical application schematic with dual differential inputs . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Figure 65. Typical application schematic with one differential input plus one single-ended input . . . . 38  
Figure 66. Schematic diagram of mono class D demoboard for the TS4962 DFN package . . . . . . . . 39  
Figure 67. Top view . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Figure 68. Bottom layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Figure 69. Top layer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Figure 70. Recommended footprint for TS4962 DFN package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Figure 71. DFN8 3x3 exposed pad package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
3/46  
Absolute maximum ratings and operating conditions  
TS4962  
1
Absolute maximum ratings and operating conditions  
Table 1.  
Symbol  
Absolute maximum ratings  
Parameter  
Value  
Unit  
VCC  
Vi  
Supply voltage(1), (2)  
6
V
V
Input voltage (3)  
GND to VCC  
-40 to + 85  
-65 to +150  
150  
Toper  
Tstg  
Tj  
Operating free air temperature range  
Storage temperature  
°C  
°C  
°C  
Maximum junction temperature  
Thermal resistance junction to ambient  
DFN8 package  
Rthja  
120  
°C/W  
Pd  
ESD  
Power dissipation  
Internally limited(4)  
Human body model  
2
200  
kV  
V
ESD  
Machine model  
Latch-up  
VSTBY  
Latch-up immunity  
200  
mA  
V
Standby pin voltage maximum voltage (5)  
GND to VCC  
260  
Lead temperature (soldering, 10sec)  
°C  
1. Caution: This device is not protected in the event of abnormal operating conditions such as, for example,  
short-circuiting between any one output pin and ground, between any one output pin and VCC, and  
between individual output pins.  
2. All voltage values are measured with respect to the ground pin.  
3. The magnitude of the input signal must never exceed VCC + 0.3V / GND - 0.3V.  
4. Exceeding the power derating curves during a long period will provoke abnormal operation.  
5. The magnitude of the standby signal must never exceed VCC + 0.3V / GND - 0.3V.  
Table 2.  
Package  
DFN8  
Dissipation ratings  
Derating factor  
Power rating @25°C  
Power rating @ 85°C  
20 mW / °C  
2.5 W  
1.3 W  
6/46  
TS4962  
Absolute maximum ratings and operating conditions  
Table 3.  
Symbol  
Operating conditions  
Parameter  
Value  
Unit  
VCC  
VIC  
Supply voltage(1)  
2.4 to 5.5  
V
V
Common mode input voltage range(2)  
0.5 to VCC-0.8  
Standby voltage input: (3)  
Device ON  
VSTBY  
1.4 VSTBY VCC  
V
GND VSTBY 0.4 (4)  
Device OFF  
RL  
Load resistor  
4  
Ω
Thermal resistance junction to ambient  
DFN8 package(5)  
Rthja  
50  
°C/W  
1. For VCC between 2.4V and 2.5V, the operating temperature range is reduced to 0°C Tamb 70°C.  
2. For VCC between 2.4V and 2.5V, the common mode input range must be set at VCC/2.  
3. Without any signal on VSTBY, the device will be in standby.  
4. Minimum current consumption is obtained when VSTBY = GND.  
5. When mounted on a 4-layer PCB.  
7/46  
Application component information  
TS4962  
2
Application component information  
Table 4.  
Component information  
Component  
Functional description  
Bypass supply capacitor. Install as close as possible to the TS4962 to  
C
minimize high-frequency ripple. A 100nF ceramic capacitor should be added  
to enhance the power supply filtering at high frequency.  
S
Input resistor used to program the TS4962 differential gain (Gain = 300kΩ/Rin  
with Rin in kΩ).  
Rin  
Because of common mode feedback these input capacitors are optional.  
However, they can be added to form with Rin a 1st order high pass filter with  
-3dB cut-off frequency = 1/(2*π*Rin*Cin).  
Input capacitor  
Figure 1.  
Typical application schematics  
Vcc  
6
Cs  
1u  
Vcc  
Vcc  
In+  
Stdby  
1
Internal  
Bias  
Out+  
GND  
150k  
GND  
5
8
Rin  
Rin  
GND  
Differential  
Input  
+
-
4
3
Output  
H
-
In-  
In+  
PWM  
+
Bridge  
SPEAKER  
In-  
Input  
capacitors  
are optional  
150k  
Oscillator  
Out-  
GND  
7
GND  
GND  
Vcc  
6
Cs  
1u  
Vcc  
Vcc  
In+  
Stdby  
1
Internal  
Bias  
4 Ohms LC Output Filter  
15µH  
Out+  
GND  
150k  
GND  
5
8
Rin  
Rin  
GND  
Differential  
+
-
4
Output  
H
-
2µF  
In-  
In+  
PWM  
Input  
In-  
+
GND  
Bridge  
Load  
3
2µF  
15µH  
Input  
capacitors  
are optional  
150k  
Oscillator  
Out-  
GND  
7
GND  
30µH  
GND  
1µF  
GND  
1µF  
30µH  
8 Ohms LC Output Filter  
8/46  
TS4962  
Electrical characteristics  
3
Electrical characteristics  
3.1  
Electrical characteristics tables  
Table 5.  
Electrical characteristics at V = +5V,  
CC  
with GND = 0V, V  
= 2.5V, and T  
= 25°C (unless otherwise specified)  
icm  
amb  
Symbol  
Parameter  
Min.  
Typ.  
Max.  
Unit  
Supply current  
ICC  
2.3  
3.3  
mA  
No input signal, no load  
Standby current (1)  
ISTBY  
10  
3
1000  
25  
nA  
No input signal, VSTBY = GND  
Output offset voltage  
Voo  
mV  
No input signal, RL = 8Ω  
Output power, G=6dB  
2.2  
2.8  
1.4  
1.7  
THD = 1% Max, f = 1kHz, RL = 4Ω  
THD = 10% Max, f = 1kHz, RL = 4Ω  
THD = 1% Max, f = 1kHz, RL = 8Ω  
THD = 10% Max, f = 1kHz, RL = 8Ω  
Pout  
W
Total harmonic distortion + noise  
Pout = 850 mWRMS, G = 6dB, 20Hz < f < 20kHz  
THD + N  
Efficiency  
2
%
%
RL = 8Ω + 15µH, BW < 30kHz  
Pout = 1WRMS, G = 6dB, f = 1kHz  
RL = 8Ω + 15µH, BW < 30kHz  
0.4  
Efficiency  
78  
88  
Pout = 2 WRMS, RL = 4Ω + 15µH  
Pout =1.2 WRMS, RL = 8Ω+ ≥ 15µH  
Power supply rejection ratio with inputs grounded (2)  
PSRR  
CMRR  
Gain  
63  
57  
dB  
dB  
f = 217Hz, RL = 8Ω, G=6dB, Vripple = 200mVpp  
Common mode rejection ratio  
f = 217Hz, RL = 8Ω, G = 6dB, ΔVic = 200mVpp  
273kΩ  
300kΩ  
327kΩ  
-----------------  
-----------------  
-----------------  
Gain value (Rin in kΩ)  
V/V  
R
R
R
in  
in  
in  
RSTBY  
FPWM  
Internal resistance from standby to GND  
Pulse width modulator base frequency  
Signal to noise ratio (A weighting),  
273  
200  
300  
280  
327  
360  
kΩ  
kHz  
SNR  
85  
dB  
Pout = 1.2W, RL = 8Ω  
tWU  
Wake-up time  
Standby time  
5
5
10  
10  
ms  
ms  
tSTBY  
9/46  
Electrical characteristics  
Table 5.  
TS4962  
Electrical characteristics at V = +5V,  
CC  
with GND = 0V, V  
= 2.5V, and T  
= 25°C (unless otherwise specified)  
icm  
amb  
(continued)  
Symbol  
Parameter  
Min.  
Typ.  
Max.  
Unit  
VN  
Output voltage noise f = 20Hz to 20kHz, G = 6dB  
Unweighted RL = 4Ω  
A-weighted RL = 4Ω  
85  
60  
Unweighted RL = 8Ω  
A-weighted RL = 8Ω  
86  
62  
Unweighted RL = 4Ω+ 15µH  
A-weighted RL = 4Ω + 15µH  
83  
60  
μVRMS  
Unweighted RL = 4Ω+ 30µH  
A-weighted RL = 4Ω + 30µH  
88  
64  
Unweighted RL = 8Ω+ 30µH  
A-weighted RL = 8Ω + 30µH  
78  
57  
Unweighted RL = 4Ω+ Filter  
A-weighted RL = 4Ω + Filter  
Unweighted RL = 4Ω+ Filter  
A-weighted RL = 4Ω + Filter  
87  
65  
82  
59  
1. Standby mode is active when VSTBY is tied to GND.  
2. Dynamic measurements - 20*log(rms(Vout)/rms(Vripple)). Vripple is the superimposed sinusoidal signal to  
VCC @ f = 217Hz.  
10/46  
TS4962  
Electrical characteristics  
Table 6.  
Electrical characteristics at V = +4.2V with GND = 0V, V  
= 2.1V, and  
icm  
CC  
(1)  
T
= 25°C (unless otherwise specified)  
amb  
Symbol  
Parameter  
Min.  
Typ.  
Max.  
Unit  
Supply current  
ICC  
2.1  
3
mA  
No input signal, no load  
Standby current (2)  
ISTBY  
10  
3
1000  
25  
nA  
No input signal, VSTBY = GND  
Output offset voltage  
Voo  
mV  
No input signal, RL = 8Ω  
Output power, G=6dB  
1.5  
1.95  
0.9  
THD = 1% Max, f = 1kHz, RL = 4Ω  
THD = 10% Max, f = 1kHz, RL = 4Ω  
THD = 1% Max, f = 1kHz, RL = 8Ω  
THD = 10% Max, f = 1kHz, RL = 8Ω  
Pout  
W
1.1  
Total harmonic distortion + noise  
Pout = 600 mWRMS, G = 6dB, 20Hz < f < 20kHz  
RL = 8Ω + 15µH, BW < 30kHz  
THD + N  
Efficiency  
2
%
%
Pout = 700mWRMS, G = 6dB, f = 1kHz  
RL = 8Ω + 15µH, BW < 30kHz  
0.35  
Efficiency  
78  
88  
Pout = 1.45 WRMS, RL = 4Ω + 15µH  
Pout = 0.9 WRMS, RL = 8Ω+ ≥ 15µH  
Power supply rejection ratio with inputs grounded (3)  
PSRR  
CMRR  
Gain  
dB  
dB  
f = 217Hz, RL = 8Ω, G=6dB, Vripple = 200mVpp  
63  
57  
Common mode rejection ratio  
f = 217Hz, RL = 8Ω, G = 6dB, ΔVic = 200mVpp  
273kΩ  
300kΩ  
327kΩ  
-----------------  
-----------------  
-----------------  
Gain value (Rin in kΩ)  
V/V  
R
R
R
in  
in  
in  
RSTBY Internal resistance from standby to GND  
273  
200  
300  
280  
327  
360  
kΩ  
FPWM  
SNR  
Pulse width modulator base frequency  
kHz  
Signal to noise ratio (A-weighting)  
85  
dB  
Pout = 0.8W, RL = 8Ω  
tWU  
Wake-up time  
Standby time  
5
5
10  
10  
ms  
ms  
tSTBY  
11/46  
Electrical characteristics  
Table 6.  
TS4962  
Electrical characteristics at V = +4.2V with GND = 0V, V  
= 2.1V, and  
icm  
CC  
(1)  
T
= 25°C (unless otherwise specified) (continued)  
amb  
Symbol  
Parameter  
Min.  
Typ.  
Max.  
Unit  
VN  
Output voltage noise f = 20Hz to 20kHz, G = 6dB  
85  
60  
Unweighted RL = 4Ω  
A-weighted RL = 4Ω  
86  
62  
Unweighted RL = 8Ω  
A-weighted RL = 8Ω  
83  
60  
Unweighted RL = 4Ω + 15µH  
A-weighted RL = 4Ω + 15µH  
μVRMS  
88  
64  
Unweighted RL = 4Ω + 30µH  
A-weighted RL = 4Ω + 30µH  
78  
57  
Unweighted RL = 8Ω + 30µH  
A-weighted RL = 8Ω + 30µH  
87  
65  
82  
59  
Unweighted RL = 4Ω + Filter  
A-weighted RL = 4Ω + Filter  
Unweighted RL = 4Ω + Filter  
A-weighted RL = 4Ω + Filter  
1. All electrical values are guaranteed with correlation measurements at 2.5V and 5V.  
2. Standby mode is active when VSTBY is tied to GND.  
3. Dynamic measurements - 20*log(rms(Vout)/rms(Vripple)). Vripple is the superimposed sinusoidal signal to  
VCC @ f = 217Hz.  
12/46  
TS4962  
Electrical characteristics  
Table 7.  
Electrical characteristics at V = +3.6V  
CC  
(1)  
with GND = 0V, V  
= 1.8V, T  
= 25°C (unless otherwise specified)  
icm  
amb  
Symbol  
Parameter  
Min.  
Typ.  
Max.  
Unit  
Supply current  
ICC  
2
2.8  
mA  
No input signal, no load  
Standby current (2)  
ISTBY  
10  
3
1000  
25  
nA  
No input signal, VSTBY = GND  
Output offset voltage  
Voo  
mV  
No input signal, RL = 8Ω  
Output power, G=6dB  
1.1  
1.4  
THD = 1% Max, f = 1kHz, RL = 4Ω  
THD = 10% Max, f = 1kHz, RL = 4Ω  
THD = 1% Max, f = 1kHz, RL = 8Ω  
THD = 10% Max, f = 1kHz, RL = 8Ω  
Pout  
W
0.7  
0.85  
Total harmonic distortion + noise  
Pout = 450 mWRMS, G = 6dB, 20Hz < f < 20kHz  
RL = 8Ω + 15µH, BW < 30kHz  
THD + N  
Efficiency  
2
%
%
Pout = 500mWRMS, G = 6dB, f = 1kHz  
RL = 8Ω + 15µH, BW < 30kHz  
0.1  
Efficiency  
78  
88  
Pout = 1 WRMS, RL = 4Ω + 15µH  
Pout = 0.65 WRMS, RL = 8Ω+ ≥ 15µH  
Power supply rejection ratio with inputs grounded (3)  
PSRR  
CMRR  
Gain  
62  
56  
dB  
dB  
f = 217Hz, RL = 8Ω, G=6dB, Vripple = 200mVpp  
Common mode rejection ratio  
f = 217Hz, RL = 8Ω, G = 6dB, ΔVic = 200mVpp  
273kΩ  
300kΩ  
327kΩ  
-----------------  
-----------------  
-----------------  
Gain value (Rin in kΩ)  
V/V  
R
R
R
in  
in  
in  
RSTBY Internal resistance from standby to GND  
273  
200  
300  
280  
327  
360  
kΩ  
FPWM  
SNR  
Pulse width modulator base frequency  
kHz  
Signal to noise ratio (A-weighting)  
83  
dB  
Pout = 0.6W, RL = 8Ω  
tWU  
Wake-up time  
Standby time  
5
5
10  
10  
ms  
ms  
tSTBY  
13/46  
Electrical characteristics  
Table 7.  
TS4962  
Electrical characteristics at V = +3.6V  
CC  
(1)  
with GND = 0V, V  
= 1.8V, T  
= 25°C (unless otherwise specified)  
icm  
amb  
(continued)  
Symbol  
Parameter  
Min.  
Typ.  
Max.  
Unit  
VN  
Output voltage noise f = 20Hz to 20kHz, G = 6dB  
83  
57  
Unweighted RL = 4Ω  
A-weighted RL = 4Ω  
83  
61  
Unweighted RL = 8Ω  
A-weighted RL = 8Ω  
81  
58  
Unweighted RL = 4Ω + 15µH  
A-weighted RL = 4Ω+ 15µH  
μVRMS  
87  
62  
Unweighted RL = 4Ω + 30µH  
A-weighted RL = 4Ω+ 30µH  
77  
56  
Unweighted RL = 8Ω + 30µH  
A-weighted RL = 8Ω+ 30µH  
85  
63  
80  
57  
Unweighted RL = 4Ω + Filter  
A-weighted RL = 4Ω+ Filter  
Unweighted RL = 4Ω + Filter  
A-weighted RL = 4Ω+ Filter  
1. All electrical values are guaranteed with correlation measurements at 2.5V and 5V.  
2. Standby mode is actived when VSTBY is tied to GND.  
3. Dynamic measurements - 20*log(rms(Vout)/rms(Vripple)). Vripple is the superimposed sinusoidal signal to  
VCC @ f = 217Hz.  
14/46  
TS4962  
Electrical characteristics  
Table 8.  
Electrical characteristics at V = +3.0V  
CC  
(1)  
with GND = 0V, V  
= 1.5V, T  
= 25°C (unless otherwise specified)  
icm  
amb  
Symbol  
Parameter  
Min.  
Typ.  
Max.  
Unit  
Supply current  
ICC  
1.9  
2.7  
mA  
No input signal, no load  
Standby current (2)  
ISTBY  
10  
3
1000  
25  
nA  
No input signal, VSTBY = GND  
Output offset voltage  
Voo  
mV  
No input signal, RL = 8Ω  
Output power, G=6dB  
0.7  
1
THD = 1% Max, f = 1kHz, RL = 4Ω  
THD = 10% Max, f = 1kHz, RL = 4Ω  
THD = 1% Max, f = 1kHz, RL = 8Ω  
THD = 10% Max, f = 1kHz, RL = 8Ω  
Pout  
W
0.5  
0.6  
Total harmonic distortion + noise  
Pout = 300 mWRMS, G = 6dB, 20Hz < f < 20kHz  
RL = 8Ω + 15µH, BW < 30kHz  
THD + N  
2
%
%
Pout = 350mWRMS, G = 6dB, f = 1kHz  
RL = 8Ω + 15µH, BW < 30kHz  
0.1  
Efficiency  
Efficiency Pout = 0.7 WRMS, RL = 4Ω + 15µH  
Pout = 0.45 WRMS, RL = 8Ω+ ≥ 15µH  
78  
88  
Power supply rejection ratio with inputs grounded (3)  
PSRR  
dB  
dB  
f = 217Hz, RL = 8Ω, G=6dB, Vripple = 200mVpp  
60  
54  
Common mode rejection ratio  
CMRR  
f = 217Hz, RL = 8Ω, G = 6dB, ΔVic = 200mVpp  
273kΩ  
300kΩ  
327kΩ  
-----------------  
-----------------  
-----------------  
Gain  
Gain value (Rin in kΩ)  
V/V  
R
R
R
in  
in  
in  
RSTBY Internal resistance from standby to GND  
273  
200  
300  
280  
327  
360  
kΩ  
FPWM  
SNR  
Pulse width modulator base frequency  
Signal to noise ratio (A-weighting)  
kHz  
82  
dB  
Pout = 0.4W, RL = 8Ω  
tWU  
Wake-up time  
Standby time  
5
5
10  
10  
ms  
ms  
tSTBY  
15/46  
Electrical characteristics  
Table 8.  
TS4962  
Electrical characteristics at V = +3.0V  
CC  
(1)  
with GND = 0V, V  
= 1.5V, T  
= 25°C (unless otherwise specified)  
icm  
amb  
(continued)  
Symbol  
Parameter  
Min.  
Typ.  
Max.  
Unit  
VN  
Output voltage noise f = 20Hz to 20kHz, G = 6dB  
83  
57  
Unweighted RL = 4Ω  
A-weighted RL = 4Ω  
83  
61  
Unweighted RL = 8Ω  
A-weighted RL = 8Ω  
81  
58  
Unweighted RL = 4Ω + 15µH  
A-weighted RL = 4Ω + 15µH  
μVRMS  
87  
62  
Unweighted RL = 4Ω + 30µH  
A-weighted RL = 4Ω + 30µH  
77  
56  
Unweighted RL = 8Ω + 30µH  
A-weighted RL = 8Ω + 30µH  
85  
63  
80  
57  
Unweighted RL = 4Ω + Filter  
A-weighted RL = 4Ω + Filter  
Unweighted RL = 4Ω + Filter  
A-weighted RL = 4Ω + Filter  
1. All electrical values are guaranteed with correlation measurements at 2.5V and 5V.  
2. Standby mode is active when VSTBY is tied to GND.  
3. Dynamic measurements - 20*log(rms(Vout)/rms(Vripple)). Vripple is the superimposed sinusoidal signal to  
VCC @ f = 217Hz.  
16/46  
TS4962  
Electrical characteristics  
Table 9.  
Electrical characteristics at V = +2.5V  
CC  
with GND = 0V, V  
= 1.25V, T  
= 25°C (unless otherwise specified)  
icm  
amb  
Symbol  
Parameter  
Min.  
Typ.  
Max.  
Unit  
Supply current  
ICC  
1.7  
2.4  
mA  
No input signal, no load  
Standby current (1)  
ISTBY  
10  
3
1000  
25  
nA  
No input signal, VSTBY = GND  
Output offset voltage  
Voo  
mV  
No input signal, RL = 8Ω  
Output power, G=6dB  
0.5  
THD = 1% Max, f = 1kHz, RL = 4Ω  
THD = 10% Max, f = 1kHz, RL = 4Ω  
THD = 1% Max, f = 1kHz, RL = 8Ω  
THD = 10% Max, f = 1kHz, RL = 8Ω  
Pout  
0.65  
0.33  
0.41  
W
Total harmonic distortion + noise  
Pout = 180 mWRMS, G = 6dB, 20Hz < f < 20kHz  
THD + N  
Efficiency  
1
%
%
RL = 8Ω + 15µH, BW < 30kHz  
Pout = 200mWRMS, G = 6dB, f = 1kHz  
RL = 8Ω + 15µH, BW < 30kHz  
0.05  
Efficiency  
78  
88  
Pout = 0.47 WRMS, RL = 4Ω + 15µH  
Pout = 0.3 WRMS, RL = 8Ω+ ≥ 15µH  
Power supply rejection ratio with inputs grounded (2)  
PSRR  
CMRR  
Gain  
60  
54  
dB  
dB  
f = 217Hz, RL = 8Ω, G=6dB, Vripple = 200mVpp  
Common mode rejection ratio  
f = 217Hz, RL = 8Ω, G = 6dB, ΔVic = 200mVpp  
273kΩ  
300kΩ  
327kΩ  
-----------------  
-----------------  
-----------------  
Gain value (Rin in kΩ)  
V/V  
R
R
R
in  
in  
in  
RSTBY Internal resistance from standby to GND  
273  
200  
300  
280  
327  
360  
kΩ  
FPWM  
SNR  
Pulse width modulator base frequency  
kHz  
Signal to noise ratio (A-weighting)  
80  
dB  
Pout = 0.3W, RL = 8Ω  
tWU  
Wake-up time  
Standby time  
5
5
10  
10  
ms  
ms  
tSTBY  
17/46  
Electrical characteristics  
Table 9.  
TS4962  
Electrical characteristics at V = +2.5V  
CC  
with GND = 0V, V  
= 1.25V, T  
= 25°C (unless otherwise specified)  
icm  
amb  
(continued)  
Symbol  
Parameter  
Min.  
Typ.  
Max.  
Unit  
VN  
Output voltage noise f = 20Hz to 20kHz, G = 6dB  
85  
60  
Unweighted RL = 4Ω  
A-weighted RL = 4Ω  
86  
62  
Unweighted RL = 8Ω  
A-weighted RL = 8Ω  
76  
56  
Unweighted RL = 4Ω + 15µH  
A-weighted RL = 4Ω + 15µH  
μVRMS  
82  
60  
Unweighted RL = 4Ω + 30µH  
A-weighted RL = 4Ω + 30µH  
67  
53  
Unweighted RL = 8Ω + 30µH  
A-weighted RL = 8Ω + 30µH  
78  
57  
74  
54  
Unweighted RL = 4Ω + Filter  
A-weighted RL = 4Ω + Filter  
Unweighted RL = 4Ω + Filter  
A-weighted RL = 4Ω + Filter  
1. Standby mode is active when VSTBY is tied to GND.  
2. Dynamic measurements - 20*log(rms(Vout)/rms(Vripple)). Vripple is the superimposed sinusoidal signal to  
VCC @ f = 217Hz.  
18/46  
TS4962  
Electrical characteristics  
Table 10. Electrical characteristics at V +2.4V  
CC  
with GND = 0V, V  
= 1.2V, T  
= 25°C (unless otherwise specified)  
icm  
amb  
Symbol  
Parameter  
Min.  
Typ.  
Max.  
Unit  
Supply current  
ICC  
1.7  
mA  
No input signal, no load  
Standby current (1)  
ISTBY  
10  
3
nA  
No input signal, VSTBY = GND  
Output offset voltage  
Voo  
mV  
No input signal, RL = 8Ω  
Output power, G=6dB  
THD = 1% Max, f = 1kHz, RL = 4Ω  
THD = 10% Max, f = 1kHz, RL = 4Ω  
THD = 1% Max, f = 1kHz, RL = 8Ω  
THD = 10% Max, f = 1kHz, RL = 8Ω  
0.42  
0.61  
0.3  
Pout  
W
0.38  
Total harmonic distortion + noise  
THD + N  
Efficiency  
P
out = 150 mWRMS, G = 6dB, 20Hz < f < 20kHz  
1
%
%
RL = 8Ω + 15µH, BW < 30kHz  
Efficiency  
77  
86  
Pout = 0.38 WRMS, RL = 4Ω + 15µH  
Pout = 0.25 WRMS, RL = 8Ω+ ≥ 15µH  
Common mode rejection ratio  
CMRR  
Gain  
54  
dB  
f = 217Hz, RL = 8Ω, G = 6dB, ΔVic = 200mVpp  
300kΩ  
327kΩ  
273kΩ  
-----------------  
-----------------  
-----------------  
Gain value (Rin in kΩ)  
V/V  
R
R
R
in  
in  
in  
RSTBY  
FPWM  
Internal resistance from standby to GND  
Pulse width modulator base frequency  
Signal to noise ratio (A-weighting)  
273  
300  
280  
327  
kΩ  
kHz  
SNR  
80  
dB  
Pout = 0.25W, RL = 8Ω  
tWU  
Wake-up time  
Standby time  
5
5
ms  
ms  
tSTBY  
19/46  
Electrical characteristics  
TS4962  
Table 10. Electrical characteristics at V +2.4V  
CC  
with GND = 0V, V  
= 1.2V, T  
= 25°C (unless otherwise specified)  
icm  
amb  
Symbol  
Parameter  
Min.  
Typ.  
Max.  
Unit  
VN  
Output voltage noise f = 20Hz to 20kHz, G = 6dB  
Unweighted RL = 4Ω  
A-weighted RL = 4Ω  
85  
60  
Unweighted RL = 8Ω  
A-weighted RL = 8Ω  
86  
62  
Unweighted RL = 4Ω + 15µH  
A-weighted RL = 4Ω + 15µH  
76  
56  
μVRMS  
Unweighted RL = 4Ω + 30µH  
A-weighted RL = 4Ω + 30µH  
82  
60  
Unweighted RL = 8Ω + 30µH  
A-weighted RL = 8Ω + 30µH  
67  
53  
Unweighted RL = 4Ω + Filter  
A-weighted RL = 4Ω + Filter  
Unweighted RL = 4Ω + Filter  
A-weighted RL = 4Ω + Filter  
78  
57  
74  
54  
1. Standby mode is active when VSTBY is tied to GND.  
20/46  
TS4962  
Electrical characteristics  
3.2  
Electrical characteristics curves  
The graphs shown in this section use the following abbreviations:  
R + 15μH or 30μH = pure resistor+ very low series resistance inductor  
L
Filter = LC output filter (1µF+30µH for 4Ω and 0.5µF+60µH for 8Ω)  
All measurements are done with C =1µF and C =100nF (see Figure 2), except for the  
S1  
S2  
PSRR where C is removed (see Figure 3).  
S1  
Figure 2.  
Schematic used for test measurements  
Vcc  
1uF  
Cs1  
100nF  
Cs2  
+
GND GND  
In+  
Cin  
Cin  
Rin  
Out+  
4 or 8 Ohms  
RL  
15uH or 30uH  
or  
5th order  
50kHz low pass  
filter  
150k  
TS4962  
Rin  
LC Filter  
In-  
Out-  
150k  
GND  
Audio Measurement  
Bandwidth < 30kHz  
Figure 3.  
Schematic used for PSSR measurements  
100nF  
Cs2  
20Hz to 20kHz  
Vcc  
GND  
GND  
4.7uF  
Rin  
Out+  
4 or 8 Ohms  
In+  
15uH or 30uH  
or  
5th order  
150k  
TS4962  
50kHz low pass  
filter  
RL  
4.7uF  
Rin  
LC Filter  
In-  
Out-  
150k  
GND  
GND  
5th order  
50kHz low pass  
filter  
RMS Selective Measurement  
Bandwidth=1% of Fmeas  
Reference  
21/46  
Electrical characteristics  
TS4962  
Figure 4.  
Current consumption vs. power  
supply voltage  
Figure 5. Current consumption vs. standby  
voltage  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
No load  
Tamb=25  
°
C
Vcc = 5V  
No load  
Tamb=25°C  
0
1
2
3
4
5
0
1
2
3
4
5
Standby Voltage (V)  
Power Supply Voltage (V)  
Figure 6.  
Current consumption vs. standby Figure 7.  
voltage  
Output offset voltage vs. common  
mode input voltage  
2.0  
1.5  
1.0  
0.5  
0.0  
10  
8
G = 6dB  
Tamb = 25°C  
6
Vcc=5V  
Vcc=3.6V  
4
2
Vcc = 3V  
No load  
Tamb=25  
Vcc=2.5V  
°C  
0
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5 3.0  
Common Mode Input Voltage (V)  
Standby Voltage (V)  
Figure 8.  
Efficiency vs. output power  
Figure 9.  
Efficiency vs. output power  
100  
100  
80  
60  
40  
20  
0
200  
150  
100  
50  
600  
500  
400  
300  
200  
100  
0
Efficiency  
Efficiency  
80  
60  
40  
20  
Power  
Dissipation  
Power  
Dissipation  
Vcc=3V  
RL=4  
F=1kHz  
Vcc=5V  
RL=4  
F=1kHz  
THD+N  
Ω
+ 15μH  
Ω
+ 15μH  
THD+N  
1%  
1%  
0
0.0  
0
0.7  
0.5  
1.0  
1.5  
2.0  
0.0  
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
2.2  
Output Power (W)  
Output Power (W)  
22/46  
TS4962  
Electrical characteristics  
Figure 10. Efficiency vs. output power  
Figure 11. Efficiency vs. output power  
100  
80  
60  
40  
20  
0
75  
50  
25  
0
100  
150  
100  
50  
80  
Efficiency  
Efficiency  
60  
40  
Power  
Dissipation  
Power  
Dissipation  
Vcc=3V  
RL=8  
F=1kHz  
Vcc=5V  
RL=8  
F=1kHz  
20  
Ω
+
15μH  
Ω
+
15  
μH  
THD+N  
1%  
THD+N  
1%  
0
0.0  
0
1.4  
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
0.0  
0.1  
0.2  
0.3  
0.4  
0.5  
Output Power (W)  
Output Power (W)  
Figure 12. Output power vs. power supply  
voltage  
Figure 13. Output power vs. power supply  
voltage  
3.5  
2.0  
RL = 8Ω + 15μH  
F = 1kHz  
BW < 30kHz  
Tamb = 25°C  
RL = 4  
F = 1kHz  
BW < 30kHz  
Tamb = 25  
Ω + 15μH  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
THD+N=10%  
°C  
1.5  
1.0  
0.5  
0.0  
THD+N=10%  
THD+N=1%  
THD+N=1%  
4.5  
2.5  
3.0  
3.5  
4.0  
5.0  
5.5  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
Vcc (V)  
Vcc (V)  
Figure 14. PSRR vs. frequency  
Figure 15. PSRR vs. frequency  
0
0
Vripple = 200mVpp  
Inputs = Grounded  
Vripple = 200mVpp  
Inputs = Grounded  
-10  
-10  
G = 6dB, Cin = 4.7  
RL = 4 + 15  
R/R 0.1%  
Tamb = 25  
μ
F
G = 6dB, Cin = 4.7  
RL = 4 + 30  
R/R 0.1%  
Tamb = 25  
μF  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
Ω
μ
H
Ω
μH  
Δ
Δ
°
C
°C  
Vcc=5V, 3.6V, 2.5V  
Vcc=5V, 3.6V, 2.5V  
20  
100  
1000  
Frequency (Hz)  
10000  
20  
100  
1000  
Frequency (Hz)  
10000  
20k  
20k  
23/46  
Electrical characteristics  
TS4962  
Figure 16. PSRR vs. frequency  
Figure 17. PSRR vs. frequency  
0
0
Vripple = 200mVpp  
Inputs = Grounded  
Vripple = 200mVpp  
Inputs = Grounded  
-10  
-10  
G = 6dB, Cin = 4.7  
RL = 4 + Filter  
R/R 0.1%  
Tamb = 25  
μ
F
G = 6dB, Cin = 4.7  
RL = 8 + 15  
R/R 0.1%  
Tamb = 25  
μF  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
Ω
Ω
μH  
Δ
Δ
°C  
°C  
Vcc=5V, 3.6V, 2.5V  
Vcc=5V, 3.6V, 2.5V  
20  
100  
1000  
10000  
20  
100  
1000  
10000  
20k  
20k  
20k  
20k  
Frequency (Hz)  
Frequency (Hz)  
Figure 18. PSRR vs. frequency  
Figure 19. PSRR vs. frequency  
0
0
Vripple = 200mVpp  
Inputs = Grounded  
Vripple = 200mVpp  
Inputs = Grounded  
-10  
-10  
G = 6dB, Cin = 4.7  
RL = 8 + 30  
R/R 0.1%  
Tamb = 25  
μ
F
G = 6dB, Cin = 4.7  
RL = 8 + Filter  
R/R 0.1%  
Tamb = 25  
μF  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
Ω
μ
H
Ω
Δ
Δ
°
C
°C  
Vcc=5V, 3.6V, 2.5V  
Vcc=5V, 3.6V, 2.5V  
20  
100  
1000  
10000  
20  
100  
1000  
10000  
20k  
Frequency (Hz)  
Frequency (Hz)  
Figure 20. PSRR vs. common mode input voltage Figure 21. CMRR vs. frequency  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
0
-20  
-40  
-60  
Vripple = 200mVpp  
F = 217Hz, G = 6dB  
RL=4  
G=6dB  
Ω + 15μH  
RL  
4Ω + 15μH  
Vcc=2.5V  
Δ
Δ
Vicm=200mVpp  
R/R 0.1%  
Tamb = 25  
°C  
Cin=4.7  
Tamb = 25  
μF  
Vcc=5V, 3.6V, 2.5V  
°C  
Vcc=3.6V  
Vcc=5V  
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0  
100  
1000  
10000  
20  
Frequency (Hz)  
Common Mode Input Voltage (V)  
24/46  
TS4962  
Electrical characteristics  
Figure 22. CMRR vs. frequency  
Figure 23. CMRR vs. frequency  
0
0
-20  
-40  
-60  
RL=4  
G=6dB  
Ω
+ 30  
μ
H
RL=4  
Ω + Filter  
G=6dB  
Δ
Δ
Vicm=200mVpp  
R/R 0.1%  
Δ
Δ
Vicm=200mVpp  
R/R 0.1%  
-20  
-40  
-60  
Cin=4.7  
Tamb = 25  
μF  
Cin=4.7  
Tamb = 25°C  
μF  
Vcc=5V, 3.6V, 2.5V  
Vcc=5V, 3.6V, 2.5V  
°C  
100  
1000  
10000  
100  
1000  
10000  
20k  
20  
20k  
20  
Frequency (Hz)  
Frequency (Hz)  
Figure 24. CMRR vs. frequency  
Figure 25. CMRR vs. frequency  
0
0
RL=8  
Ω
+ 15  
μH  
RL=8  
Ω + 30μH  
G=6dB  
G=6dB  
Δ
Δ
Vicm=200mVpp  
R/R 0.1%  
Δ
Δ
Vicm=200mVpp  
R/R 0.1%  
-20  
-40  
-60  
-20  
-40  
-60  
Cin=4.7  
Tamb = 25  
μF  
Cin=4.7  
Tamb = 25°C  
μF  
Vcc=5V, 3.6V, 2.5V  
Vcc=5V, 3.6V, 2.5V  
°C  
100  
1000  
10000  
100  
1000  
10000  
20k  
20  
20k  
20  
Frequency (Hz)  
Frequency (Hz)  
Figure 26. CMRR vs. frequency  
Figure 27. CMRR vs. common mode input  
voltage  
-20  
0
Δ
Vicm = 200mVpp  
RL=8  
G=6dB  
Ω + Filter  
F = 217Hz  
G = 6dB  
RL  
-30  
-40  
-50  
-60  
-70  
Δ
Δ
Vicm=200mVpp  
R/R 0.1%  
Vcc=2.5V  
4Ω + 15μH  
-20  
-40  
-60  
Tamb = 25  
°C  
Cin=4.7  
Tamb = 25  
μF  
Vcc=5V, 3.6V, 2.5V  
°C  
Vcc=3.6V  
Vcc=5V  
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0  
100  
1000  
10000  
20  
20k  
Frequency (Hz)  
Common Mode Input Voltage (V)  
25/46  
Electrical characteristics  
TS4962  
Figure 28. THD+N vs. output power  
Figure 29. THD+N vs. output power  
10  
10  
Vcc=5V  
Vcc=5V  
RL = 4  
Ω
+ 15  
μH  
RL = 4Ω + 30μH or Filter  
F = 100Hz  
G = 6dB  
BW < 30kHz  
F = 100Hz  
G = 6dB  
BW < 30kHz  
Tamb = 25°C  
Vcc=3.6V  
Vcc=2.5V  
Vcc=3.6V  
Vcc=2.5V  
1
0.1  
1
0.1  
Tamb = 25  
°C  
0.01  
1E-3  
0.01  
1E-3  
0.01  
0.1  
1
0.01  
0.1  
1
3
3
Output Power (W)  
Output Power (W)  
Figure 30. THD+N vs. output power  
Figure 31. THD+N vs. output power  
10  
10  
RL = 8  
Ω
+ 15  
μH  
RL = 8Ω + 30μH or Filter  
Vcc=5V  
Vcc=5V  
F = 100Hz  
G = 6dB  
F = 100Hz  
G = 6dB  
Vcc=3.6V  
Vcc=3.6V  
BW < 30kHz  
BW < 30kHz  
Tamb = 25°C  
Vcc=2.5V  
Vcc=2.5V  
1
0.1  
1
0.1  
Tamb = 25  
°C  
0.01  
1E-3  
0.01  
1E-3  
0.01  
0.1  
1
0.01  
0.1  
1
2
2
Output Power (W)  
Output Power (W)  
Figure 32. THD+N vs. output power  
Figure 33. THD+N vs. output power  
10  
10  
RL = 4  
Ω
+ 15  
μH  
RL = 4Ω + 30μH or Filter  
Vcc=5V  
Vcc=5V  
F = 1kHz  
F = 1kHz  
G = 6dB  
G = 6dB  
Vcc=3.6V  
Vcc=3.6V  
BW < 30kHz  
Tamb = 25  
BW < 30kHz  
Tamb = 25°C  
°
C
Vcc=2.5V  
Vcc=2.5V  
1
1
0.1  
0.1  
1E-3  
0.01  
0.1  
1
1E-3  
0.01  
0.1  
1
3
3
Output Power (W)  
Output Power (W)  
26/46  
TS4962  
Electrical characteristics  
Figure 34. THD+N vs. output power  
Figure 35. THD+N vs. output power  
10  
10  
RL = 8  
F = 1kHz  
Ω + 15μH  
RL = 8  
F = 1kHz  
Ω + 30μH or Filter  
Vcc=5V  
Vcc=5V  
G = 6dB  
G = 6dB  
Vcc=3.6V  
Vcc=3.6V  
BW < 30kHz  
Tamb = 25  
BW < 30kHz  
Tamb = 25°C  
°
C
Vcc=2.5V  
Vcc=2.5V  
1
1
0.1  
0.1  
1E-3  
0.01  
0.1  
1
2
1E-3  
0.01  
0.1  
1
2
Output Power (W)  
Output Power (W)  
Figure 36. THD+N vs. frequency  
Figure 37. THD+N vs. frequency  
10  
10  
RL=4  
Ω + 30μH or Filter  
RL=4  
Ω + 15μH  
G=6dB  
G=6dB  
Bw < 30kHz  
Vcc=5V  
Tamb = 25°C  
Bw < 30kHz  
Vcc=5V  
Tamb = 25°C  
Po=1.4W  
1
0.1  
1
0.1  
Po=1.4W  
Po=0.7W  
Po=0.7W  
0.01  
0.01  
100  
1000  
Frequency (Hz)  
10000  
100  
1000  
Frequency (Hz)  
10000  
20k  
50  
20k  
50  
Figure 38. THD+N vs. frequency  
Figure 39. THD+N vs. frequency  
10  
10  
RL=4  
Ω + 15μH  
RL=4  
Ω + 30μH or Filter  
G=6dB  
G=6dB  
Bw < 30kHz  
Vcc=3.6V  
Tamb = 25°C  
Bw < 30kHz  
Vcc=3.6V  
Tamb = 25°C  
Po=0.85W  
1
0.1  
1
0.1  
Po=0.85W  
Po=0.42W  
Po=0.42W  
0.01  
0.01  
100  
1000  
Frequency (Hz)  
10000  
100  
1000  
Frequency (Hz)  
10000  
20k  
50  
20k  
50  
27/46  
Electrical characteristics  
TS4962  
Figure 40. THD+N vs. frequency  
Figure 41. THD+N vs. frequency  
10  
10  
RL=4  
Ω + 30μH or Filter  
RL=4  
Ω + 15μH  
G=6dB  
G=6dB  
Bw < 30kHz  
Vcc=2.5V  
Tamb = 25°C  
Bw < 30kHz  
Vcc=2.5V  
Tamb = 25°C  
Po=0.35W  
1
0.1  
1
0.1  
Po=0.35W  
Po=0.17W  
Po=0.17W  
0.01  
0.01  
100  
1000  
Frequency (Hz)  
10000  
100  
1000  
Frequency (Hz)  
10000  
50  
20k  
20k  
20k  
50  
20k  
20k  
20k  
Figure 42. THD+N vs. frequency  
Figure 43. THD+N vs. frequency  
10  
10  
RL=8  
Ω
+ 15  
μH  
RL=8  
Ω + 30μH or Filter  
G=6dB  
Bw < 30kHz  
Vcc=5V  
G=6dB  
Bw < 30kHz  
Vcc=5V  
Po=0.85W  
Po=0.85W  
1
0.1  
1
0.1  
Tamb = 25  
°C  
Tamb = 25°C  
Po=0.42W  
Po=0.42W  
0.01  
0.01  
100  
1000  
Frequency (Hz)  
10000  
100  
1000  
Frequency (Hz)  
10000  
50  
50  
Figure 44. THD+N vs. frequency  
Figure 45. THD+N vs. frequency  
10  
10  
RL=8  
Ω + 15μH  
RL=8  
Ω + 30μH or Filter  
G=6dB  
Bw < 30kHz  
Vcc=3.6V  
G=6dB  
Bw < 30kHz  
Vcc=3.6V  
Po=0.45W  
Po=0.45W  
1
0.1  
1
0.1  
Tamb = 25°C  
Tamb = 25°C  
Po=0.22W  
Po=0.22W  
0.01  
0.01  
100  
1000  
Frequency (Hz)  
10000  
100  
1000  
Frequency (Hz)  
10000  
50  
50  
28/46  
TS4962  
Electrical characteristics  
Figure 46. THD+N vs. frequency  
Figure 47. THD+N vs. frequency  
10  
10  
RL=8  
Ω
+ 15  
μH  
RL=8  
Ω + 30μH or Filter  
G=6dB  
G=6dB  
Bw < 30kHz  
Vcc=2.5V  
Bw < 30kHz  
Vcc=2.5V  
Tamb = 25°C  
1
0.1  
1
Tamb = 25  
°C  
Po=0.18W  
Po=0.18W  
Po=0.1W  
Po=0.1W  
0.1  
0.01  
0.01  
100  
1000  
Frequency (Hz)  
10000  
100  
1000  
Frequency (Hz)  
10000  
20k  
50  
20k  
50  
Figure 48. Gain vs. frequency  
Figure 49. Gain vs. frequency  
8
8
6
6
Vcc=5V, 3.6V, 2.5V  
4
Vcc=5V, 3.6V, 2.5V  
4
RL=4  
G=6dB  
Vin=500mVpp  
Cin=1  
Tamb = 25  
Ω + 30μH  
RL=4  
G=6dB  
Vin=500mVpp  
Cin=1  
Tamb = 25  
Ω + 15μH  
2
0
2
0
μF  
μF  
°C  
°C  
20  
100  
1000  
10000 20k  
20  
100  
1000  
10000 20k  
Frequency (Hz)  
Frequency (Hz)  
Figure 50. Gain vs. frequency  
Figure 51. Gain vs. frequency  
8
8
6
6
Vcc=5V, 3.6V, 2.5V  
4
Vcc=5V, 3.6V, 2.5V  
4
RL=8  
G=6dB  
Vin=500mVpp  
Cin=1  
Tamb = 25  
Ω + 15μH  
RL=4  
G=6dB  
Vin=500mVpp  
Cin=1  
Tamb = 25  
Ω + Filter  
2
0
2
0
μF  
μF  
°C  
°C  
20  
100  
1000  
10000 20k  
20  
100  
1000  
10000 20k  
Frequency (Hz)  
Frequency (Hz)  
29/46  
Electrical characteristics  
TS4962  
Figure 52. Gain vs. frequency  
Figure 53. Gain vs. frequency  
8
8
6
6
Vcc=5V, 3.6V, 2.5V  
4
Vcc=5V, 3.6V, 2.5V  
4
RL=8  
G=6dB  
Vin=500mVpp  
Cin=1  
Tamb = 25  
Ω + Filter  
RL=8  
G=6dB  
Vin=500mVpp  
Cin=1  
Tamb = 25  
Ω + 30μH  
2
0
2
0
μF  
μF  
°C  
°C  
20  
100  
1000  
10000 20k  
20  
100  
1000  
10000 20k  
Frequency (Hz)  
Frequency (Hz)  
Figure 54. Gain vs. frequency  
Figure 55. Startup & shutdown time  
V
= 5V, G = 6dB, C = 1µF (5ms/div)  
CC  
in  
8
Vo1  
Vo2  
6
Vcc=5V, 3.6V, 2.5V  
4
Standby  
RL=No Load  
G=6dB  
Vo1-Vo2  
2
Vin=500mVpp  
Cin=1μF  
Tamb = 25  
°C  
0
20  
100  
1000  
10000 20k  
Frequency (Hz)  
Figure 56. Startup & shutdown time  
Figure 57. Startup & shutdown time  
V
= 3V, G = 6dB, C = 1µF (5ms/div)  
V
= 5V, G = 6dB, C = 100nF (5ms/div)  
CC  
in  
CC  
in  
Vo1  
Vo2  
Vo1  
Vo2  
Standby  
Standby  
Vo1-Vo2  
Vo1-Vo2  
30/46  
TS4962  
Electrical characteristics  
Figure 58. Startup & shutdown time  
Figure 59. Startup & shutdown time  
V
= 3V, G = 6dB, C = 100nF (5ms/div)  
V
= 5V, G = 6dB, No C (5ms/div)  
CC  
in  
CC  
in  
Vo1  
Vo2  
Vo1  
Vo2  
Standby  
Standby  
Vo1-Vo2  
Vo1-Vo2  
Figure 60. Startup & shutdown time  
V
= 3V, G = 6dB, No C (5ms/div)  
CC  
in  
Vo1  
Vo2  
Standby  
Vo1-Vo2  
31/46  
Application information  
TS4962  
4
Application information  
4.1  
Differential configuration principle  
The TS4962 is a monolithic fully-differential input/output class D power amplifier. The  
TS4962 also includes a common-mode feedback loop that controls the output bias value to  
average it at V /2 for any DC common mode input voltage. This allows the device to  
CC  
always have a maximum output voltage swing, and by consequence, maximize the output  
power. Moreover, as the load is connected differentially compared to a single-ended  
topology, the output is four times higher for the same power supply voltage.  
The advantages of a full-differential amplifier are:  
High PSRR (power supply rejection ratio).  
High common mode noise rejection.  
Virtually zero pop without additional circuitry, giving a faster start-up time compared to  
conventional single-ended input amplifiers.  
Easier interfacing with differential output audio DAC.  
No input coupling capacitors required because of common mode feedback loop.  
The main disadvantage is:  
As the differential function is directly linked to external resistor mismatching, paying  
particular attention to this mismatching is mandatory in order to obtain the best  
performance from the amplifier.  
4.2  
Gain in typical application schematic  
Typical differential applications are shown in Figure 1 on page 8.  
In the flat region of the frequency-response curve (no input coupling capacitor effect), the  
differential gain is expressed by the relation:  
Out+ Out-  
In+ In-  
300  
Rin  
AV = ------------------------------ = ---------  
diff  
with R expressed in kΩ.  
in  
Due to the tolerance of the internal 150kΩ feedback resistor, the differential gain is in the  
range (no tolerance on R ):  
in  
273  
Rin  
327  
Rin  
---------  
---------  
AV  
diff  
32/46  
TS4962  
Application information  
4.3  
Common mode feedback loop limitations  
As explained previously, the common mode feedback loop allows the output DC bias voltage  
to be averaged at V /2 for any DC common mode bias input voltage.  
CC  
However, due to V  
limitation in the input stage (see Table 3: Operating conditions on  
icm  
page 7), the common mode feedback loop can play its role only within a defined range. This  
range depends upon the values of V and R (A ). To have a good estimation of the  
CC  
in  
Vdiff  
V
value, we can apply this formula (no tolerance on R ):  
icm  
in  
VCC × Rin + 2 × VIC × 150kΩ  
-----------------------------------------------------------------------------  
Vicm  
=
(V)  
2 × (Rin + 150kΩ)  
with  
In+ + In-  
---------------------  
VIC  
=
(V)  
2
and the result of the calculation must be in the range:  
0.5V Vicm VCC 0.8V  
Due to the +/-9% tolerance on the 150kΩ resistor, it’s also important to check V  
conditions:  
in these  
icm  
VCC × Rin + 2 × VIC × 136.5kΩ  
----------------------------------------------------------------------------------  
2 × (Rin + 136.5kΩ)  
VCC × Rin + 2 × VIC × 163.5kΩ  
----------------------------------------------------------------------------------  
2 × (Rin + 163.5kΩ)  
Vicm  
If the result of V  
calculation is not in the previous range, input coupling capacitors must  
icm  
be used (with V between 2.4V and 2.5V, input coupling capacitors are mandatory).  
CC  
For example:  
With V =3V, R =150k and V =2.5V, we typically find V =2V, which is lower than  
CC  
in  
IC  
icm  
3V-0.8V=2.2V. With 136.5kΩ we find 1.97V and with 163.5kΩ we have 2.02V. So, no input  
coupling capacitors are required.  
4.4  
Low frequency response  
If a low frequency bandwidth limitation is requested, it is possible to use input coupling  
capacitors.  
In the low frequency region, C (input coupling capacitor) starts to have an effect. C forms,  
in  
in  
with R , a first order high-pass filter with a -3dB cut-off frequency:  
in  
1
-------------------------------------  
FCL  
=
(Hz)  
(F)  
2π × Rin × Cin  
So, for a desired cut-off frequency we can calculate C ,  
in  
1
---------------------------------------  
Cin  
=
2π × Rin × FCL  
with R in Ω and F in Hz.  
in  
CL  
33/46  
Application information  
TS4962  
4.5  
Decoupling of the circuit  
A power supply capacitor, referred to as C , is needed to correctly bypass the TS4962.  
S
The TS4962 has a typical switching frequency at 250kHz and output fall and rise time about  
5ns. Due to these very fast transients, careful decoupling is mandatory.  
A 1µF ceramic capacitor is enough, but it must be located very close to the TS4962 in order  
to avoid any extra parasitic inductance being created by an overly long track wire. In relation  
with dI/dt, this parasitic inductance introduces an overvoltage that decreases the global  
efficiency and, if it is too high, may cause a breakdown of the device.  
In addition, even if a ceramic capacitor has an adequate high frequency ESR value, its  
current capability is also important. A 0603 size is a good compromise, particularly when a  
4Ω load is used.  
Another important parameter is the rated voltage of the capacitor. A 1µF/6.3V capacitor  
used at 5V loses about 50% of its value. In fact, with a 5V power supply voltage, the  
decoupling value is about 0.5µF instead of 1µF. As C has particular influence on the  
S
THD+N in the medium-high frequency region, this capacitor variation becomes decisive. In  
addition, less decoupling means higher overshoots, which can be problematic if they reach  
the power supply AMR value (6V).  
4.6  
4.7  
4.8  
Wake-up time (tWU)  
When the standby is released to set the device ON, there is a wait of about 5ms. The  
TS4962 has an internal digital delay that mutes the outputs and releases them after this  
time in order to avoid any pop noise.  
Shutdown time (tSTBY  
)
When the standby command is set, the time required to put the two output stages into high  
impedance and to put the internal circuitry in standby mode is about 5ms. This time is used  
to decrease the gain and avoid any pop noise during the shutdown phase.  
Consumption in standby mode  
Between the standby pin and GND there is an internal 300kΩ resistor. This resistor forces  
the TS4962 to be in standby mode when the standby input pin is left floating.  
However, this resistor also introduces additional power consumption if the standby pin  
voltage is not 0V.  
For example, with a 0.4V standby voltage pin, Table 3: Operating conditions on page 7  
shows that you must add 0.4V/300kΩ=1.3µA in typical (0.4V/273kΩ=1.46µA in maximum) to  
the standby current specified in Table 5 on page 9.  
34/46  
TS4962  
Application information  
4.9  
Single-ended input configuration  
It's possible to use the TS4962 in a single-ended input configuration. However, input  
coupling capacitors are needed in this configuration. The schematics in Figure 61 show a  
single-ended input typical application.  
Figure 61. Single-ended input typical application  
Vcc  
6
Cs  
1u  
Vcc  
Ve  
Stdby  
1
Internal  
Bias  
Standby  
Rin  
Out+  
GND  
150k  
5
8
Cin  
GND  
4
3
Output  
H
-
In-  
In+  
PWM  
+
Bridge  
SPEAKER  
Rin  
Cin  
150k  
Oscillator  
Out-  
GND  
GND  
7
GND  
All formulas are identical except for the gain with R in kΩ:  
in  
Ve  
300  
Rin  
AV  
= ------------------------------ = ---------  
single  
Out+ Out-  
And, due to the internal resistor tolerance we have:  
273  
Rin  
327  
---------  
---------  
AV  
single  
Rin  
In the event that multiple single-ended inputs are summed, it is important that the  
-
+
impedance on both TS4962 inputs (In and In ) are equal.  
Figure 62. Typical application schematic with multiple single-ended inputs  
Vcc  
Vek  
Standby  
Cink  
6
Cs  
1u  
Vcc  
Stdby  
Rink  
1
Internal  
Bias  
GND  
Ve1  
Out+  
GND  
150k  
5
8
Cin1  
Ceq  
Rin1  
Req  
4
3
Output  
H
-
In-  
In+  
PWM  
+
Bridge  
SPEAKER  
GND  
150k  
Oscillator  
Out-  
GND  
GND  
7
GND  
35/46  
Application information  
TS4962  
We have the following equations:  
+
-
300  
300  
------------  
------------  
Out Out = V  
×
+ + V  
×
ek  
(V)  
e1  
k
R
R
in1  
ink  
C
C
=
C
Σ
eq  
ini  
j=1  
1
= -------------------------------------------------------  
(F)  
ini  
2 × π× R × F  
ini  
CLi  
1
Req = -------------------  
k
1
---------  
R
ini  
j =1  
In general, for mixed situations (single-ended and differential inputs) it is best to use the  
same rule, that is, to equalize impedance on both TS4962 inputs.  
4.10  
Output filter considerations  
The TS4962 is designed to operate without an output filter. However, due to very sharp  
transients on the TS4962 output, EMI radiated emissions may cause some standard  
compliance issues.  
These EMI standard compliance issues can appear if the distance between the TS4962  
outputs and the loudspeaker terminal is long (typically more than 50mm, or 100mm in both  
directions, to the speaker terminals). As the PCB layout and internal equipment device are  
different for each configuration, it is difficult to provide a one-size-fits-all solution.  
However, to decrease the probability of EMI issues, there are several simple rules to follow:  
Reduce, as much as possible, the distance between the TS4962 output pins and the  
speaker terminals.  
Use ground planes for “shielding” sensitive wires.  
Place, as close as possible to the TS4962 and in series with each output, a ferrite bead  
with a rated current at minimum 2.5A and impedance greater than 50Ω at frequencies  
above 30MHz. If, after testing, these ferrite beads are not necessary, replace them by a  
short-circuit.  
Allow enough footprint to place, if necessary, a capacitor to short perturbations to  
ground (see Figure 63).  
36/46  
TS4962  
Application information  
Figure 63. Method for shorting pertubations to ground  
Ferrite chip bead  
To speaker  
about 100pF  
From TS4962 output  
Gnd  
In the case where the distance between the TS4962 output and the speaker terminals is  
high, it's possible to have low frequency EMI issues due to the fact that the typical operating  
frequency is 250kHz. In this configuration, we recommend using an output filter (as  
represented in Figure 1: Typical application schematics on page 8). It should be placed as  
close as possible to the device.  
4.11  
Several examples with summed inputs  
Example 1: Dual differential inputs  
Figure 64. Typical application schematic with dual differential inputs  
Vcc  
Standby  
6
Cs  
1u  
Vcc  
Stdby  
1
Internal  
Bias  
R2  
E2+  
Out+  
GND  
150k  
5
8
R1  
4
3
Output  
H
-
E1+  
E1-  
In-  
In+  
PWM  
+
Bridge  
SPEAKER  
R1  
150k  
Oscillator  
E2-  
Out-  
R2  
GND  
7
GND  
With (R in kΩ):  
i
Out+ Out-  
E1+ E1  
300  
R1  
AV = ------------------------------ = ---------  
1
-
Out+ Out-  
E2+ E2  
300  
R2  
AV = ------------------------------ = ---------  
2
-
VCC × R1 × R2 + 300 × (VIC1 × R2 + VIC2 × R1)  
-------------------------------------------------------------------------------------------------------------------------------  
300 × (R1 + R2) + 2 × R1 × R2  
0.5V ≤  
VCC 0.8V  
-
-
E1+ + E1  
E2+ + E2  
VIC = ------------------------ and VIC = ------------------------  
1
2
2
2
37/46  
Application information  
TS4962  
Example 2: One differential input plus one single ended input  
Figure 65. Typical application schematic with one differential input plus one single-  
ended input  
Vcc  
Standby  
6
Cs  
1u  
Vcc  
Stdby  
1
Internal  
Bias  
R2  
E2+  
C1  
Out+  
GND  
150k  
5
8
R1  
4
3
Output  
H
-
E1+  
In-  
In+  
PWM  
+
E2-  
Bridge  
SPEAKER  
R2  
150k  
Oscillator  
Out-  
R1  
GND C1  
GND  
7
GND  
With (R in kΩ) :  
i
Out+ Out-  
300  
R1  
AV = ------------------------------ = ---------  
1
+
E1  
Out+ Out-  
E2+ E2  
300  
R2  
AV = ------------------------------ = ---------  
2
-
1
--------------------------------------  
C1  
=
(F)  
2π × R1 × FCL  
38/46  
TS4962  
Demo board  
5
Demo board  
A demo board for the TS4962 is available. For more information about this demo board,  
refer to the Application Note AN2406.  
Figure 66. Schematic diagram of mono class D demoboard for the TS4962 DFN  
package  
Vcc  
Cn4  
Vcc  
Cn6  
1
2
3
C3  
1uF  
Gnd  
GND  
6
U1  
Cn2  
GND  
Vcc  
Stdby  
1
Internal  
Bias  
Out+  
C1  
100nF  
150k  
5
8
Cn5  
Cn1  
R1  
4
3
Output  
H
-
1
2
3
Positive Output  
Negative Output  
Negative input  
Positive Input  
In-  
In+  
PWM  
150k  
R2  
+
GND  
Bridge  
Speaker  
150k  
Oscillator  
Input  
Out-  
150k  
100nF  
C2  
GND  
7
TS4962DFN  
Cn3  
GND  
Figure 67. Top view  
39/46  
Demo board  
TS4962  
Figure 68. Bottom layer  
Figure 69. Top layer  
40/46  
TS4962  
Recommended footprint  
6
Recommended footprint  
Figure 70. Recommended footprint for TS4962 DFN package  
1.8mm  
0.8mm  
0.35mm  
2.2mm  
0.65mm  
1.4mm  
41/46  
DFN8 package information  
TS4962  
7
DFN8 package information  
In order to meet environmental requirements, STMicroelectronics offers these devices in  
®
ECOPACK packages. These packages have a lead-free second level interconnect. The  
category of second level interconnect is marked on the package and on the inner box label,  
in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering  
conditions are also marked on the inner box label. ECOPACK is an STMicroelectronics  
trademark. ECOPACK specifications are available at: www.st.com.  
42/46  
TS4962  
DFN8 package information  
Figure 71. DFN8 3x3 exposed pad package  
Dimensions  
Ref.  
Millimeters  
Typ.  
Mils  
Min.  
Max.  
Min.  
Typ.  
Max.  
A
A1  
A2  
A3  
b
0.50  
0.60  
0.02  
0.40  
0.15  
0.30  
3.00  
1.70  
3.00  
1.20  
0.65  
0.55  
0.65  
0.05  
19.70  
23.62  
0.79  
25.60  
1.97  
15.75  
5.90  
0.22  
0.35  
3.15  
1.80  
3.15  
1.30  
8.67  
13.78  
124.00  
70.87  
124.00  
51.18  
0.25  
2.85  
1.60  
2.85  
1.10  
9.85  
112.20  
63.00  
112.20  
43.30  
11.81  
118.10  
66.93  
118.10  
47.25  
25.60  
21.65  
D
D2  
E
E2  
e
L
0.50  
0.60  
19.70  
23.62  
Note:  
DFN8 exposed pad (e2 x d2) is connected to pin number 7.  
For enhanced thermal performance, the exposed pad must be soldered to a copper area on  
the PCB, acting as heatsink. This copper area can be electrically connected to pin7 or left  
floating.  
43/46  
Ordering information  
TS4962  
8
Ordering information  
Table 11. Order codes  
Temperature  
Part number  
Package  
Packaging  
Marking  
K962  
range  
TS4962IQT  
-40° C, +85°C  
DFN8  
Tape & reel  
44/46  
TS4962  
Revision history  
9
Revision history  
Table 12. Document revision history  
Date  
Revision  
Changes  
Modified package information. Now includes only standard DFN8  
package.  
31-May-2006  
5
Added curves in Section 3: Electrical characteristics. Added  
evaluation board information in Section 5: Demo board.  
16-Oct-2006  
10-Jan-2007  
6
7
Added recommended footprint.  
Added paragraph about rated voltage of capacitor in Section 4.5:  
Decoupling of the circuit.  
45/46  
TS4962  
Please Read Carefully:  
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the  
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any  
time, without notice.  
All ST products are sold pursuant to ST’s terms and conditions of sale.  
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no  
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.  
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this  
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products  
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such  
third party products or services or any intellectual property contained therein.  
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED  
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED  
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS  
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.  
UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT  
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING  
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,  
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE  
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.  
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void  
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any  
liability of ST.  
ST and the ST logo are trademarks or registered trademarks of ST in various countries.  
Information in this document supersedes and replaces all information previously supplied.  
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.  
© 2007 STMicroelectronics - All rights reserved  
STMicroelectronics group of companies  
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -  
Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America  
www.st.com  
46/46  

相关型号:

TS4962M

3W filter-free class D audio power amplifier
STMICROELECTR

TS4962MEIJT

3W filter-free class D audio power amplifier
STMICROELECTR

TS4962MEIKJT

3 W filter-free class D audio power amplifier
STMICROELECTR

TS4962M_07

3W filter-free class D audio power amplifier
STMICROELECTR

TS4962_07

2.8W filter-free mono class D audio power amplifier
STMICROELECTR

TS4962_10

2.8 W filter-free mono class D audio power amplifier
STMICROELECTR

TS496T11CKT

Parallel - 3Rd Overtone Quartz Crystal, 49.664MHz Nom, HC-49/US, 2 PIN
CTS

TS496T1XCLT

Parallel - 3Rd Overtone Quartz Crystal, 49.664MHz Nom, HC-49/US, 2 PIN
CTS

TS496T2XIAT

Parallel - 3Rd Overtone Quartz Crystal, 49.664MHz Nom, HC-49/US, 2 PIN
CTS

TS496T32CCT

Parallel - 3Rd Overtone Quartz Crystal, 49.664MHz Nom, HC-49/US, 2 PIN
CTS

TS496T33IBT

Parallel - 3Rd Overtone Quartz Crystal, 49.664MHz Nom, HC-49/US, 2 PIN
CTS

TS496T35CAT

Parallel - 3Rd Overtone Quartz Crystal, 49.664MHz Nom, HC-49/US, 2 PIN
CTS