TS4962M [STMICROELECTRONICS]

3W filter-free class D audio power amplifier; 3W无过滤器,D类音频功率放大器
TS4962M
型号: TS4962M
厂家: ST    ST
描述:

3W filter-free class D audio power amplifier
3W无过滤器,D类音频功率放大器

过滤器 放大器 功率放大器
文件: 总41页 (文件大小:1107K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TS4962M  
3W filter-free class D audio power amplifier  
Features  
Pin connections  
Operating from V = 2.4V to 5.5V  
CC  
GND  
2/A2  
IN+  
OUT-  
3/A3  
Standby mode active low  
1/A1  
Output power: 3W into 4Ω and 1.75W into 8Ω  
VDD  
GND  
6/B3  
VDD  
with 10% THD+N max and 5V power supply.  
5/B2  
4/B1  
Output power: 2.3W @5V or 0.75W @ 3.0V  
into 4Ω with 1% THD+N max.  
STBY  
8/C2  
OUT+  
9/C3  
IN-  
7/C1  
Output power: 1.4W @5V or 0.45W @ 3.0V  
into 8Ω with 1% THD+N max.  
IN+: positive differential input  
IN-: negative differential input  
VDD: analog power supply  
GND: power supply ground  
STBY: standby pin (active low)  
OUT+: positive differential output  
OUT-: negative differential output  
Adjustable gain via external resistors  
Low current consumption 2mA @ 3V  
Efficiency: 88% typ.  
Signal to noise ratio: 85dB typ.  
PSRR: 63dB typ. @217Hz with 6dB gain  
PWM base frequency: 250kHz  
Low pop & click noise  
Block diagram  
B1  
B2  
Vcc  
Stdby  
C2  
Internal  
Bias  
Out+  
150k  
C3  
A3  
Thermal shutdown protection  
Available in flip-chip 9 x 300μm (Pb-free)  
C1  
A1  
Output  
H
-
In-  
In+  
PWM  
+
Bridge  
150k  
Oscillator  
Out-  
Description  
GND  
A2  
The TS4962M is a differential Class-D BTL power  
amplifier. It is able to drive up to 2.3W into a 4Ω  
load and 1.4W into a 8Ω load at 5V. It achieves  
outstanding efficiency (88%typ.) compared to  
classical Class-AB audio amps.  
B3  
Applications  
The gain of the device can be controlled via two  
external gain-setting resistors. Pop & click  
reduction circuitry provides low on/off switch noise  
while allowing the device to start within 5ms. A  
standby function (active low) allows the reduction  
of current consumption to 10nA typ.  
Cellular phone  
PDA  
Notebook PC  
January 2007  
Rev 4  
1/41  
www.st.com  
41  
Contents  
TS4962M  
Contents  
1
2
3
4
5
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Application component information . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Electrical characteristic curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
5.1  
5.2  
5.3  
Differential configuration principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Gain in typical application schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Common mode feedback loop limitations . . . . . . . . . . . . . . . . . . . . . . . . . 29  
For example: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Low frequency response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
5.4  
5.5  
5.6  
5.7  
5.8  
5.9  
Decoupling of the circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Wake-up time: (tWU) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Shutdown time (tSTBY) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Consumption in shutdown mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Single-ended input configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
5.10 Output filter considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
5.11 Different examples with summed inputs . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Example 1: Dual differential inputs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Example 2: One differential input plus one single-ended input . . . . . . . . . . . . . . . 34  
6
Demoboard . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Footprint recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
7
8
9
10  
2/41  
TS4962M  
Absolute maximum ratings  
1
Absolute maximum ratings  
Table 1.  
Symbol  
Absolute maximum ratings  
Parameter  
Value  
Unit  
V
Supply voltage(1), (2)  
6
VCC  
Vin  
Input voltage (3)  
V
GND to VCC  
Toper  
Tstg  
Tj  
Operating free-air temperature range  
Storage temperature  
-40 to + 85  
-65 to +150  
150  
°C  
°C  
Maximum junction temperature  
Thermal resistance junction to ambient (4)  
°C  
Rthja  
Pdiss  
200  
°C/W  
Internally Limited(5)  
Power dissipation  
ESD  
ESD  
Human body model  
2
200  
kV  
V
Machine model  
Latch-up  
VSTBY  
Latch-up immunity  
200  
mA  
V
Standby pin voltage maximum voltage (6)  
Lead temperature (soldering, 10sec)  
GND to VCC  
260  
°C  
1. Caution: This device is not protected in the event of abnormal operating conditions, such as for example,  
short-circuiting between any one output pin and ground, between any one output pin and VCC, and  
between individual output pins.  
2. All voltage values are measured with respect to the ground pin.  
3. The magnitude of the input signal must never exceed VCC + 0.3V / GND - 0.3V.  
4. The device is protected in case of over temperature by a thermal shutdown active @ 150°C.  
5. Exceeding the power derating curves during a long period causes abnormal operation.  
6. The magnitude of the standby signal must never exceed VCC + 0.3V / GND - 0.3V.  
Table 2.  
Symbol  
Operating conditions  
Parameter  
Value  
Unit  
V
Supply voltage(1)  
2.4 to 5.5  
VCC  
VIC  
Common mode input voltage range(2)  
Standby voltage input: (3)  
V
0.5 to VCC - 0.8  
VSTBY  
V
1.4 VSTBY VCC  
Device ON  
Device OFF  
GND VSTBY 0.4 (4)  
RL  
Load resistor  
4  
Ω
Thermal resistance junction to ambient (5)  
90  
°C/W  
Rthja  
1. For VCC from 2.4V to 2.5V, the operating temperature range is reduced to 0°C Tamb 70°C.  
2. For VCC from 2.4V to 2.5V, the common mode input range must be set at VCC/2.  
3. Without any signal on VSTBY, the device will be in standby.  
4. Minimum current consumption is obtained when VSTBY = GND.  
5. With heat sink surface = 125mm2.  
3/41  
Application component information  
TS4962M  
2
Application component information  
Table 3.  
Component information  
Component  
Functional description  
Bypass supply capacitor. Install as close as possible to the TS4962M to  
minimize high-frequency ripple. A 100nF ceramic capacitor should be  
added to enhance the power supply filtering at high frequency.  
Cs  
Input resistor to program the TS4962M differential gain (gain = 300kΩ/Rin  
with Rin in kΩ).  
Rin  
Due to common mode feedback, these input capacitors are optional.  
However, they can be added to form with Rin a 1st order high pass filter with  
-3dB cut-off frequency = 1/(2*π*Rin*Cin).  
Input  
capacitor  
Figure 1.  
Typical application schematics  
Vcc  
Cs  
1u  
B1  
B2  
Vcc  
Vcc  
In+  
Stdby  
C2  
Internal  
Bias  
GND  
Out+  
150k  
GND  
C3  
A3  
Rin  
Rin  
GND  
+
-
C1  
A1  
Output  
H
-
Differential  
Input  
In-  
In+  
PWM  
+
Bridge  
SPEAKER  
In-  
Input  
capacitors  
are optional  
150k  
Oscillator  
Out-  
GND  
A2  
TS4962  
GND  
B3  
GND  
Vcc  
Vcc  
Cs  
1u  
B1  
B2  
Vcc  
In+  
Stdby  
C2  
Internal  
Bias  
4 Ohms LC Output Filter  
15µH  
GND  
C3  
Out+  
150k  
GND  
+
Rin  
Rin  
GND  
C1  
A1  
Output  
H
-
Differential  
Input  
2µF  
GND  
In-  
In+  
PWM  
+
Bridge  
Load  
-
In-  
2µF  
15µH  
A3  
Input  
capacitors  
are optional  
150k  
Oscillator  
Out-  
GND  
A2  
TS4962  
GND  
30µH  
B3  
GND  
1µF  
GND  
1µF  
30µH  
8 Ohms LC Output Filter  
4/41  
TS4962M  
Electrical characteristics  
3
Electrical characteristics  
Table 4.  
Symbol  
V
= +5V, GND = 0V, V = 2.5V, t  
= 25°C (unless otherwise specified)  
CC  
IC  
amb  
Parameter  
Conditions  
No input signal, no load  
No input signal, VSTBY = GND  
Min.  
Typ.  
Max.  
Unit  
ICC  
ISTBY  
VOO  
Supply current  
2.3  
10  
3
3.3  
1000  
25  
mA  
nA  
Standby current (1)  
Output offset voltage No input signal, RL = 8Ω  
mV  
G=6dB  
THD = 1% max, F = 1kHz, RL = 4Ω  
2.3  
3
1.4  
1.75  
Pout  
Output power  
W
%
THD = 10% max, F = 1kHz, RL = 4Ω  
THD = 1% max, F = 1kHz, RL = 8Ω  
THD = 10% max, F = 1kHz, RL = 8Ω  
Pout = 900mWRMS, G = 6dB, 20Hz < F < 20kHz  
Total harmonic  
distortion + noise  
RL = 8Ω + 15µH, BW < 30kHz  
Pout = 1WRMS, G = 6dB, F = 1kHz,  
RL = 8Ω + 15µH, BW < 30kHz  
1
THD + N  
0.4  
Pout = 2WRMS, RL = 4Ω + 15µH  
Pout =1.2WRMS, RL = 8Ω+ ≥ 15µH  
78  
88  
Efficiency Efficiency  
Power supply  
%
F = 217Hz, RL = 8Ω, G=6dB,  
Vripple = 200mVpp  
PSRR rejection ratio with  
63  
57  
dB  
inputs grounded (2)  
Common mode  
CMRR  
F = 217Hz, RL = 8Ω, G = 6dB,  
ΔVicm = 200mVpp  
dB  
V/V  
kΩ  
rejection ratio  
273kΩ  
300kΩ  
327kΩ  
-----------------  
-----------------  
-----------------  
Gain  
RSTBY  
FPWM  
Gain value  
Rin in kΩ  
R
R
R
in  
in  
in  
Internal resistance  
from Standby to GND  
273  
180  
300  
250  
327  
320  
Pulse width modulator  
base frequency  
kHz  
SNR  
tWU  
Signal to noise ratio  
Wake-up time  
A-weighting, Pout = 1.2W, RL = 8Ω  
85  
5
dB  
ms  
ms  
10  
10  
tSTBY  
Standby time  
5
5/41  
Electrical characteristics  
TS4962M  
Table 4.  
Symbol  
V
= +5V, GND = 0V, V = 2.5V, t = 25°C (unless otherwise specified) (continued)  
amb  
CC  
IC  
Parameter  
Conditions  
Min.  
Typ.  
Max.  
Unit  
F = 20Hz to 20kHz, G = 6dB  
Unweighted RL = 4Ω  
A-weighted RL = 4Ω  
85  
60  
Unweighted RL = 8Ω  
A-weighted RL = 8Ω  
86  
62  
Unweighted RL = 4Ω + 15µH  
A-weighted RL = 4Ω + 15µH  
83  
60  
VN  
Output voltage noise  
μVRMS  
Unweighted RL = 4Ω + 30µH  
A-weighted RL = 4Ω + 30µH  
88  
64  
Unweighted RL = 8Ω + 30µH  
A-weighted RL = 8Ω + 30µH  
78  
57  
Unweighted RL = 4Ω + Filter  
A-weighted RL = 4Ω + Filter  
87  
65  
Unweighted RL = 4Ω + Filter  
A-weighted RL = 4Ω + Filter  
82  
59  
1. Standby mode is active when VSTBY is tied to GND.  
2. Dynamic measurements - 20*log(rms(Vout)/rms(Vripple)). Vripple is the superimposed sinusoidal signal to VCC @ F = 217Hz.  
6/41  
TS4962M  
Electrical characteristics  
(1)  
Table 5.  
Symbol  
V
= +4.2V, GND = 0V, V = 2.5V, T  
= 25°C (unless otherwise specified)  
CC  
IC  
amb  
Parameter  
Conditions  
No input signal, no load  
No input signal, VSTBY = GND  
Min.  
Typ.  
Max.  
Unit  
ICC  
ISTBY  
VOO  
Supply current  
2.1  
10  
3
3
mA  
nA  
Standby current (2)  
1000  
25  
Output offset voltage No input signal, RL = 8Ω  
mV  
G=6dB  
THD = 1% max, F = 1kHz, RL = 4Ω  
1.6  
2
0.95  
1.2  
Pout  
Output power  
W
%
THD = 10% max, F = 1kHz, RL = 4Ω  
THD = 1% max, F = 1kHz, RL = 8Ω  
THD = 10% max, F = 1kHz, RL = 8Ω  
Pout = 600mWRMS, G = 6dB, 20Hz < F < 20kHz  
RL = 8Ω + 15µH, BW < 30kHz  
Pout = 700mWRMS, G = 6dB, F = 1kHz,  
RL = 8Ω + 15µH, BW < 30kHz  
Total harmonic  
distortion + noise  
1
THD + N  
0.35  
Pout = 1.45WRMS, RL = 4Ω + 15µH  
Pout =0.9WRMS, RL = 8Ω+ ≥ 15µH  
78  
88  
Efficiency Efficiency  
Power supply  
%
F = 217Hz, RL = 8Ω, G=6dB,  
Vripple = 200mVpp  
PSRR rejection ratio with  
63  
57  
dB  
inputs grounded (3)  
Common mode  
CMRR  
F = 217Hz, RL = 8Ω, G = 6dB,  
ΔVicm = 200mVpp  
dB  
V/V  
kΩ  
rejection ratio  
273kΩ  
300kΩ  
327kΩ  
-----------------  
-----------------  
-----------------  
Gain  
RSTBY  
FPWM  
Gain value  
Rin in kΩ  
R
R
R
in  
in  
in  
Internal resistance  
from Standby to GND  
273  
180  
300  
250  
327  
320  
Pulse width modulator  
base frequency  
kHz  
SNR  
tWU  
Signal to noise ratio  
Wake-uptime  
A-weighting, Pout = 0.9W, RL = 8Ω  
85  
5
dB  
ms  
ms  
10  
10  
tSTBY  
Standby time  
5
7/41  
Electrical characteristics  
TS4962M  
(1)  
Table 5.  
Symbol  
V
= +4.2V, GND = 0V, V = 2.5V, T  
= 25°C (unless otherwise specified)  
CC  
IC  
amb  
Parameter  
Conditions  
Min.  
Typ.  
Max.  
Unit  
F = 20Hz to 20kHz, G = 6dB  
Unweighted RL = 4Ω  
A-weighted RL = 4Ω  
85  
60  
Unweighted RL = 8Ω  
A-weighted RL = 8Ω  
86  
62  
Unweighted RL = 4Ω + 15µH  
A-weighted RL = 4Ω + 15µH  
83  
60  
VN  
Output voltage noise  
μVRMS  
Unweighted RL = 4Ω + 30µH  
A-weighted RL = 4Ω + 30µH  
88  
64  
Unweighted RL = 8Ω + 30µH  
A-weighted RL = 8Ω + 30µH  
78  
57  
Unweighted RL = 4Ω + Filter  
A-weighted RL = 4Ω + Filter  
87  
65  
Unweighted RL = 4Ω + Filter  
A-weighted RL = 4Ω + Filter  
82  
59  
1. All electrical values are guaranteed with correlation measurements at 2.5V and 5V.  
2. Standby mode is active when VSTBY is tied to GND.  
3. Dynamic measurements - 20*log(rms(Vout)/rms(Vripple)). Vripple is the superimposed sinusoidal signal to VCC @ F = 217Hz.  
8/41  
TS4962M  
Electrical characteristics  
(1)  
Table 6.  
Symbol  
V
= +3.6V, GND = 0V, V = 2.5V, T  
= 25°C (unless otherwise specified)  
CC  
IC  
amb  
Parameter  
Conditions  
No input signal, no load  
No input signal, VSTBY = GND  
Min.  
Typ.  
Max.  
Unit  
ICC  
ISTBY  
VOO  
Supply current  
2
10  
3
2.8  
1000  
25  
mA  
nA  
Standby current (2)  
Output offset voltage No input signal, RL = 8Ω  
mV  
G=6dB  
THD = 1% max, F = 1kHz, RL = 4Ω  
1.15  
1.51  
0.7  
Pout  
Output power  
W
%
THD = 10% max, F = 1kHz, RL = 4Ω  
THD = 1% max, F = 1kHz, RL = 8Ω  
THD = 10% max, F = 1kHz, RL = 8Ω  
0.9  
Pout = 500mWRMS, G = 6dB, 20Hz < F< 20kHz  
RL = 8Ω + 15µH, BW < 30kHz  
Pout = 500mWRMS, G = 6dB, F = 1kHz,  
RL = 8Ω + 15µH, BW < 30kHz  
Total harmonic  
distortion + noise  
1
THD + N  
0.27  
Pout = 1WRMS, RL = 4Ω + 15µH  
Pout =0.65WRMS, RL = 8Ω+ ≥ 15µH  
78  
88  
Efficiency Efficiency  
Power supply  
%
F = 217Hz, RL = 8Ω, G=6dB,  
Vripple = 200mVpp  
PSRR rejection ratio with  
62  
56  
dB  
inputs grounded (3)  
Common mode  
CMRR  
F = 217Hz, RL = 8Ω, G = 6dB,  
ΔVicm = 200mVpp  
dB  
V/V  
kΩ  
rejection ratio  
273kΩ  
300kΩ  
327kΩ  
-----------------  
-----------------  
-----------------  
Gain  
RSTBY  
FPWM  
Gain value  
Rin in kΩ  
R
R
R
in  
in  
in  
Internal resistance  
from Standby to GND  
273  
180  
300  
250  
327  
320  
Pulse width modulator  
base frequency  
kHz  
SNR  
tWU  
Signal to noise ratio  
Wake-uptime  
A-weighting, Pout = 0.6W, RL = 8Ω  
83  
5
dB  
ms  
ms  
10  
10  
tSTBY  
Standby time  
5
9/41  
Electrical characteristics  
TS4962M  
(1)  
Table 6.  
Symbol  
V
= +3.6V, GND = 0V, V = 2.5V, T  
= 25°C (unless otherwise specified)  
CC  
IC  
amb  
Parameter  
Conditions  
Min.  
Typ.  
Max.  
Unit  
F = 20Hz to 20kHz, G = 6dB  
Unweighted RL = 4Ω  
A-weighted RL = 4Ω  
83  
57  
Unweighted RL = 8Ω  
A-weighted RL = 8Ω  
83  
61  
Unweighted RL = 4Ω + 15µH  
A-weighted RL = 4Ω + 15µH  
81  
58  
VN  
Output voltage noise  
μVRMS  
Unweighted RL = 4Ω + 30µH  
A-weighted RL = 4Ω + 30µH  
87  
62  
Unweighted RL = 8Ω + 30µH  
A-weighted RL = 8Ω + 30µH  
77  
56  
Unweighted RL = 4Ω + Filter  
A-weighted RL = 4Ω + Filter  
85  
63  
Unweighted RL = 4Ω + Filter  
A-weighted RL = 4Ω + Filter  
80  
57  
1. All electrical values are guaranteed with correlation measurements at 2.5V and 5V.  
2. Standby mode is active when VSTBY is tied to GND.  
3. Dynamic measurements - 20*log(rms(Vout)/rms(Vripple)). Vripple is the superimposed sinusoidal signal to VCC @ F = 217Hz.  
10/41  
TS4962M  
Electrical characteristics  
(1)  
Table 7.  
Symbol  
V
= +3V, GND = 0V, V = 2.5V, T  
= 25°C (unless otherwise specified)  
CC  
IC  
amb  
Parameter  
Conditions  
No input signal, no load  
No input signal, VSTBY = GND  
Min.  
Typ.  
Max.  
Unit  
ICC  
ISTBY  
VOO  
Supply current  
1.9  
10  
3
2.7  
1000  
25  
mA  
nA  
Standby current (2)  
Output offset voltage No input signal, RL = 8Ω  
mV  
G=6dB  
THD = 1% max, F = 1kHz, RL = 4Ω  
0.75  
1
0.5  
0.6  
Pout  
Output power  
W
%
THD = 10% max, F = 1kHz, RL = 4Ω  
THD = 1% max, F = 1kHz, RL = 8Ω  
THD = 10% max, F = 1kHz, RL = 8Ω  
Pout = 350mWRMS, G = 6dB, 20Hz < F < 20kHz  
RL = 8Ω + 15µH, BW < 30kHz  
Pout = 350mWRMS, G = 6dB, F = 1kHz,  
RL = 8Ω + 15µH, BW < 30kHz  
Total harmonic  
distortion + noise  
1
THD + N  
0.21  
Pout = 0.7WRMS, RL = 4Ω + 15µH  
Pout = 0.45WRMS, RL = 8Ω+ ≥ 15µH  
78  
88  
Efficiency Efficiency  
Power supply  
%
F = 217Hz, RL = 8Ω, G=6dB,  
Vripple = 200mVpp  
PSRR rejection ratio with  
60  
54  
dB  
inputs grounded (3)  
Common mode  
CMRR  
F = 217Hz, RL = 8Ω, G = 6dB,  
ΔVicm = 200mVpp  
dB  
V/V  
kΩ  
rejection ratio  
273kΩ  
300kΩ  
327kΩ  
-----------------  
-----------------  
-----------------  
Gain  
RSTBY  
FPWM  
Gain value  
Rin in kΩ  
R
R
R
in  
in  
in  
Internal resistance  
from Standby to GND  
273  
180  
300  
250  
327  
320  
Pulse width modulator  
base frequency  
kHz  
SNR  
tWU  
Signal to noise ratio  
Wake-up time  
A-weighting, Pout = 0.4W, RL = 8Ω  
82  
5
dB  
ms  
ms  
10  
10  
tSTBY  
Standby time  
5
11/41  
Electrical characteristics  
TS4962M  
(1)  
Table 7.  
Symbol  
V
= +3V, GND = 0V, V = 2.5V, T  
= 25°C (unless otherwise specified)  
CC  
IC  
amb  
Parameter  
Conditions  
Min.  
Typ.  
Max.  
Unit  
f = 20Hz to 20kHz, G = 6dB  
Unweighted RL = 4Ω  
A-weighted RL = 4Ω  
83  
57  
Unweighted RL = 8Ω  
A-weighted RL = 8Ω  
83  
61  
Unweighted RL = 4Ω + 15µH  
A-weighted RL = 4Ω + 15µH  
81  
58  
VN  
Output Voltage Noise  
μVRMS  
Unweighted RL = 4Ω + 30µH  
A-weighted RL = 4Ω + 30µH  
87  
62  
Unweighted RL = 8Ω + 30µH  
A-weighted RL = 8Ω + 30µH  
77  
56  
Unweighted RL = 4Ω + Filter  
A-weighted RL = 4Ω + Filter  
85  
63  
Unweighted RL = 4Ω + Filter  
A-weighted RL = 4Ω + Filter  
80  
57  
1. All electrical values are guaranteed with correlation measurements at 2.5V and 5V.  
2. Standby mode is active when VSTBY is tied to GND.  
3. Dynamic measurements - 20*log(rms(Vout)/rms(Vripple)). Vripple is the superimposed sinusoidal signal to VCC @ F = 217Hz.  
12/41  
TS4962M  
Electrical characteristics  
Table 8.  
Symbol  
V
= +2.5V, GND = 0V, V = 2.5V, T  
= 25°C (unless otherwise specified)  
CC  
IC  
amb  
Parameter  
Conditions  
No input signal, no load  
No input signal, VSTBY = GND  
Min.  
Typ.  
Max.  
Unit  
ICC  
ISTBY  
VOO  
Supply current  
1.7  
10  
3
2.4  
1000  
25  
mA  
nA  
Standby current (1)  
Output offset voltage No input signal, RL = 8Ω  
mV  
G=6dB  
THD = 1% max, F = 1kHz, RL = 4Ω  
0.52  
0.71  
0.33  
0.42  
Pout  
Output power  
W
%
THD = 10% max, F = 1kHz, RL = 4Ω  
THD = 1% max, F = 1kHz, RL = 8Ω  
THD = 10% max, F = 1kHz, RL = 8Ω  
Pout = 200mWRMS, G = 6dB, 20Hz < F< 20kHz  
RL = 8Ω + 15µH, BW < 30kHz  
Pout = 200WRMS, G = 6dB, F = 1kHz,  
RL = 8Ω + 15µH, BW < 30kHz  
Total harmonic  
distortion + noise  
1
THD + N  
0.19  
Pout = 0.47WRMS, RL = 4Ω + 15µH  
Pout = 0.3WRMS, RL = 8Ω+ ≥ 15µH  
78  
88  
Efficiency Efficiency  
Power supply  
%
F = 217Hz, RL = 8Ω, G=6dB,  
Vripple = 200mVpp  
PSRR rejection ratio with  
60  
54  
dB  
inputs grounded (2)  
Common mode  
CMRR  
F = 217Hz, RL = 8Ω, G = 6dB,  
ΔVicm = 200mVpp  
dB  
V/V  
kΩ  
rejection ratio  
273kΩ  
300kΩ  
327kΩ  
-----------------  
-----------------  
-----------------  
Gain  
RSTBY  
FPWM  
Gain value  
Rin in kΩ  
R
R
R
in  
in  
in  
Internal resistance  
from Standby to GND  
273  
180  
300  
250  
327  
320  
Pulse width modulator  
base frequency  
kHz  
SNR  
tWU  
Signal to noise ratio  
Wake-up time  
A-weighting, Pout = 1.2W, RL = 8Ω  
80  
5
dB  
ms  
ms  
10  
10  
tSTBY  
Standby time  
5
13/41  
Electrical characteristics  
TS4962M  
Table 8.  
Symbol  
V
= +2.5V, GND = 0V, V = 2.5V, T  
= 25°C (unless otherwise specified)  
CC  
IC  
amb  
Parameter  
Conditions  
Min.  
Typ.  
Max.  
Unit  
F = 20Hz to 20kHz, G = 6dB  
Unweighted RL = 4Ω  
A-weighted RL = 4Ω  
85  
60  
Unweighted RL = 8Ω  
A-weighted RL = 8Ω  
86  
62  
Unweighted RL = 4Ω + 15µH  
A-weighted RL = 4Ω + 15µH  
76  
56  
VN  
Output Voltage Noise  
μVRMS  
Unweighted RL = 4Ω + 30µH  
A-weighted RL = 4Ω + 30µH  
82  
60  
Unweighted RL = 8Ω + 30µH  
A-weighted RL = 8Ω + 30µH  
67  
53  
Unweighted RL = 4Ω + Filter  
A-weighted RL = 4Ω + Filter  
78  
57  
Unweighted RL = 4Ω + Filter  
A-weighted RL = 4Ω + Filter  
74  
54  
1. Standby mode is active when VSTBY is tied to GND.  
2. Dynamic measurements - 20*log(rms(Vout)/rms(Vripple)). Vripple is the superimposed sinusoidal signal to VCC @ F = 217Hz.  
14/41  
TS4962M  
Electrical characteristics  
Table 9.  
Symbol  
V
= +2.4V, GND = 0V, V = 2.5V, T  
= 25°C (unless otherwise specified)  
CC  
IC  
amb  
Parameter  
Conditions  
No input signal, no load  
No input signal, VSTBY = GND  
Min.  
Typ.  
Max.  
Unit  
ICC  
ISTBY  
VOO  
Supply current  
1.7  
10  
3
mA  
nA  
Standby current (1)  
Output offset voltage No input signal, RL = 8Ω  
mV  
G=6dB  
THD = 1% max, F = 1kHz, RL = 4Ω  
0.48  
0.65  
0.3  
Pout  
Output power  
W
THD = 10% max, F = 1kHz, RL = 4Ω  
THD = 1% max, F = 1kHz, RL = 8Ω  
THD = 10% max, F = 1kHz, RL = 8Ω  
0.38  
Total harmonic  
distortion + noise  
P
out = 200mWRMS, G = 6dB, 20Hz < F< 20kHz  
1
THD + N  
%
%
RL = 8Ω + 15µH, BW < 30kHz  
Pout = 0.38WRMS, RL = 4Ω + 15µH  
Pout = 0.25WRMS, RL = 8Ω+ ≥ 15µH  
77  
86  
Efficiency Efficiency  
Common mode  
rejection ratio  
F = 217Hz, RL = 8Ω, G = 6dB,  
ΔVicm = 200mVpp  
CMRR  
Gain  
54  
dB  
V/V  
kΩ  
kHz  
273kΩ  
300kΩ  
327kΩ  
-----------------  
-----------------  
-----------------  
Gain value  
R
in in kΩ  
R
R
R
in  
in  
in  
Internal resistance  
from Standby to GND  
RSTBY  
FPWM  
273  
300  
250  
327  
Pulse width modulator  
base frequency  
SNR  
tWU  
Signal to noise ratio  
Wake-up time  
A Weighting, Pout = 1.2W, RL = 8Ω  
80  
5
dB  
ms  
ms  
tSTBY  
Standby time  
5
F = 20Hz to 20kHz, G = 6dB  
Unweighted RL = 4Ω  
A-weighted RL = 4Ω  
85  
60  
Unweighted RL = 8Ω  
A-weighted RL = 8Ω  
86  
62  
Unweighted RL = 4Ω + 15µH  
A-weighted RL = 4Ω + 15µH  
76  
56  
VN  
Output voltage noise  
μVRMS  
Unweighted RL = 4Ω + 30µH  
A-weighted RL = 4Ω + 30µH  
82  
60  
Unweighted RL = 8Ω + 30µH  
A-weighted RL = 8Ω + 30µH  
67  
53  
Unweighted RL = 4Ω + Filter  
A-weighted RL = 4Ω + Filter  
78  
57  
Unweighted RL = 4Ω + Filter  
A-weighted RL = 4Ω + Filter  
74  
54  
1. Standby mode is active when VSTBY is tied to GND.  
15/41  
Electrical characteristic curves  
TS4962M  
4
Electrical characteristic curves  
The graphs included in this section use the following abbreviations:  
R + 15μH or 30μH = pure resistor + very low series resistance inductor  
Filter = LC output filter (1µF+30µH for 4Ω and 0.5µF+60µH for 8Ω)  
L
All measurements done with C =1µF and C =100nF except for PSRR where Cs1 is  
s1  
s2  
removed.  
Figure 2.  
Test diagram for measurements  
Vcc  
1uF  
Cs1  
100nF  
Cs2  
+
GND GND  
In+  
Cin  
Cin  
Rin  
Out+  
4 or 8 Ohms  
RL  
15uH or 30uH  
5th order  
50kHz low pass  
filter  
150k  
TS4962  
or  
Rin  
LC Filter  
In-  
Out-  
150k  
GND  
Audio Measurement  
Bandwidth < 30kHz  
Figure 3.  
Test diagram for PSRR measurements  
100nF  
Cs2  
20Hz to 20kHz  
Vcc  
GND  
GND  
4.7uF  
Rin  
Out+  
In+  
4 or 8 Ohms  
RL  
15uH or 30uH  
5th order  
50kHz low pass  
filter  
150k  
TS4962  
or  
4.7uF  
Rin  
LC Filter  
In-  
Out-  
150k  
GND  
GND  
5th order  
50kHz low pass  
filter  
RMS Selective Measurement  
Bandwidth=1% of Fmeas  
Reference  
16/41  
TS4962M  
Figure 4.  
Electrical characteristic curves  
Current consumption vs. power  
supply voltage  
Figure 5.  
Current consumption vs. standby  
voltage  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
No load  
Tamb=25  
°
C
Vcc = 5V  
No load  
Tamb=25  
°C  
0
1
2
3
4
5
0
1
2
3
4
5
Standby Voltage (V)  
Power Supply Voltage (V)  
Figure 6.  
Current consumption vs. standby Figure 7.  
voltage  
Output offset voltage vs. common  
mode input voltage  
2.0  
1.5  
1.0  
0.5  
0.0  
10  
8
G = 6dB  
Tamb = 25°C  
6
Vcc=5V  
Vcc=3.6V  
4
2
Vcc = 3V  
No load  
Tamb=25  
Vcc=2.5V  
°C  
0
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5 3.0  
Common Mode Input Voltage (V)  
Standby Voltage (V)  
Figure 8.  
Efficiency vs. output power  
Figure 9.  
Efficiency vs. output power  
100  
80  
60  
40  
20  
100  
80  
60  
40  
20  
0
200  
150  
100  
50  
600  
500  
400  
300  
200  
100  
0
Efficiency  
Efficiency  
Power  
Dissipation  
Power  
Dissipation  
Vcc=5V  
RL=4  
F=1kHz  
THD+N  
Vcc=3V  
RL=4Ω + 15μH  
F=1kHz  
Ω
+
15  
μ
H
THD+N1%  
1%  
0
0
0.0  
0.0  
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.5  
1.0  
1.5  
2.0  
2.3  
Output Power (W)  
Output Power (W)  
17/41  
Electrical characteristic curves  
TS4962M  
Figure 10. Efficiency vs. output power  
Figure 11. Efficiency vs. output power  
100  
75  
50  
25  
100  
150  
100  
50  
80  
80  
Efficiency  
Efficiency  
60  
40  
60  
40  
Power  
Dissipation  
Power  
Vcc=3V  
Vcc=5V  
RL=8  
F=1kHz  
Dissipation  
20  
20  
Ω
+
15μH  
RL=8Ω  
+
15μH  
F=1kHz  
THD+N  
1%  
THD+N  
1%  
0
0.0  
0
1.4  
0
0.0  
0
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
0.1  
0.2  
0.3  
0.4  
0.5  
Output Power (W)  
Output Power (W)  
Figure 12. Output power vs. power supply  
voltage  
Figure 13. Output power vs. power supply  
voltage  
2.0  
3.5  
RL = 4Ω + 15μH  
RL = 8  
F = 1kHz  
BW < 30kHz  
Ω + 15μH  
F = 1kHz  
BW < 30kHz  
Tamb = 25  
THD+N=10%  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
°C  
1.5  
1.0  
0.5  
0.0  
Tamb = 25  
°C  
THD+N=10%  
THD+N=1%  
THD+N=1%  
4.5  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
2.5  
3.0  
3.5  
4.0  
5.0  
5.5  
Vcc (V)  
Vcc (V)  
Figure 14. PSRR vs. frequency  
Figure 15. PSRR vs. frequency  
0
0
Vripple = 200mVpp  
Inputs = Grounded  
Vripple = 200mVpp  
Inputs = Grounded  
-10  
-10  
G = 6dB, Cin = 4.7  
RL = 4 + 30  
R/R 0.1%  
Tamb = 25  
μF  
G = 6dB, Cin = 4.7  
RL = 4 + 15  
R/R 0.1%  
Tamb = 25  
μF  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
Ω
μH  
Ω
μH  
Δ
Δ
°
C
°
C
Vcc=5V, 3.6V, 2.5V  
Vcc=5V, 3.6V, 2.5V  
20  
100  
1000  
Frequency (Hz)  
10000 20k  
20  
100  
1000  
Frequency (Hz)  
10000 20k  
18/41  
TS4962M  
Electrical characteristic curves  
Figure 16. PSRR vs. frequency  
Figure 17. PSRR vs. frequency  
0
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
Vripple = 200mVpp  
Inputs = Grounded  
Vripple = 200mVpp  
Inputs = Grounded  
-10  
G = 6dB, Cin = 4.7  
RL = 4 + Filter  
R/R 0.1%  
Tamb = 25  
μF  
G = 6dB, Cin = 4.7  
RL = 8 + 15  
R/R 0.1%  
Tamb = 25  
μF  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
Ω
Ω
μH  
Δ
Δ
°C  
°C  
Vcc=5V, 3.6V, 2.5V  
Vcc=5V, 3.6V, 2.5V  
20  
20  
100  
1000  
10000  
20k  
100  
1000  
10000 20k  
Frequency (Hz)  
Frequency (Hz)  
Figure 18. PSRR vs. frequency  
Figure 19. PSRR vs. frequency  
0
0
Vripple = 200mVpp  
Inputs = Grounded  
Vripple = 200mVpp  
Inputs = Grounded  
-10  
-10  
G = 6dB, Cin = 4.7  
RL = 8 + 30  
R/R 0.1%  
Tamb = 25  
μF  
G = 6dB, Cin = 4.7  
R/R 0.1%  
RL = 8 + Filter  
Tamb = 25  
μF  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
Ω
μH  
Δ
Δ
Ω
°
C
°C  
Vcc=5V, 3.6V, 2.5V  
Vcc=5V, 3.6V, 2.5V  
20  
100  
1000  
Frequency (Hz)  
10000 20k  
20  
100  
1000  
Frequency (Hz)  
10000 20k  
Figure 20. PSRR vs. common mode input  
voltage  
Figure 21. CMRR vs. frequency  
0
0
Vripple = 200mVpp  
F = 217Hz, G = 6dB  
RL=4  
G=6dB  
Ω + 15μH  
-10  
RL  
4Ω + 15μH  
Δ
Δ
Vicm=200mVpp  
R/R 0.1%  
Vcc=2.5V  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
Tamb = 25  
°C  
-20  
-40  
-60  
Cin=4.7  
Tamb = 25  
μF  
°C  
Vcc=3.6V  
Vcc=5V, 3.6V, 2.5V  
Vcc=5V  
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0  
20  
100  
1000  
10000 20k  
Frequency (Hz)  
Common Mode Input Voltage (V)  
19/41  
Electrical characteristic curves  
TS4962M  
Figure 22. CMRR vs. frequency  
Figure 23. CMRR vs. frequency  
0
0
RL=4  
G=6dB  
Ω + 30μH  
RL=4  
G=6dB  
Ω + Filter  
Δ
Δ
Vicm=200mVpp  
R/R 0.1%  
Δ
Δ
Vicm=200mVpp  
R/R 0.1%  
-20  
-40  
-60  
-20  
-40  
-60  
Cin=4.7  
Tamb = 25  
μF  
Cin=4.7  
Tamb = 25  
μF  
°C  
°C  
Vcc=5V, 3.6V, 2.5V  
Vcc=5V, 3.6V, 2.5V  
20  
100  
1000  
10000 20k  
20  
100  
1000  
10000 20k  
Frequency (Hz)  
Frequency (Hz)  
Figure 24. CMRR vs. frequency  
Figure 25. CMRR vs. frequency  
0
0
RL=8  
G=6dB  
Ω + 15μH  
RL=8  
G=6dB  
Ω + 30μH  
Δ
Δ
Vicm=200mVpp  
R/R 0.1%  
Δ
Δ
Vicm=200mVpp  
R/R 0.1%  
-20  
-40  
-60  
-20  
-40  
-60  
Cin=4.7  
Tamb = 25  
μF  
Cin=4.7  
Tamb = 25  
μF  
°C  
°C  
Vcc=5V, 3.6V, 2.5V  
Vcc=5V, 3.6V, 2.5V  
20  
100  
1000  
Frequency (Hz)  
10000 20k  
20  
100  
1000  
Frequency (Hz)  
10000 20k  
Figure 26. CMRR vs. frequency  
Figure 27. CMRR vs. common mode input  
voltage  
-20  
0
Δ
Vicm = 200mVpp  
RL=8  
G=6dB  
Ω + Filter  
F = 217Hz  
-30  
-40  
-50  
-60  
-70  
G = 6dB  
Δ
Δ
Vicm=200mVpp  
R/R 0.1%  
Vcc=2.5V  
RL  
4Ω + 15μH  
-20  
-40  
-60  
Tamb = 25  
°C  
Cin=4.7  
Tamb = 25  
μF  
°C  
Vcc=3.6V  
Vcc=5V, 3.6V, 2.5V  
Vcc=5V  
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0  
20  
100  
1000  
10000 20k  
Frequency (Hz)  
Common Mode Input Voltage (V)  
20/41  
TS4962M  
Electrical characteristic curves  
Figure 28. THD+N vs. output power  
Figure 29. THD+N vs. output power  
10  
10  
Vcc=5V  
RL = 4  
F = 100Hz  
G = 6dB  
BW < 30kHz  
Tamb = 25°C  
Ω + 15μH  
RL = 4  
F = 100Hz  
G = 6dB  
BW < 30kHz  
Tamb = 25°C  
Ω + 30μH or Filter  
Vcc=5V  
Vcc=3.6V  
Vcc=2.5V  
Vcc=3.6V  
Vcc=2.5V  
1
1
0.1  
0.1  
1E-3  
0.01  
0.1  
1
3
1E-3  
0.01  
0.1  
1
3
Output Power (W)  
Output Power (W)  
Figure 30. THD+N vs. output power  
Figure 31. THD+N vs. output power  
10  
10  
RL = 8  
F = 100Hz  
G = 6dB  
BW < 30kHz  
Ω + 15μH  
RL = 8  
F = 100Hz  
G = 6dB  
Ω + 30μH or Filter  
Vcc=5V  
Vcc=5V  
Vcc=3.6V  
Vcc=3.6V  
BW < 30kHz  
Vcc=2.5V  
Tamb = 25°C  
Tamb = 25°C  
Vcc=2.5V  
1
1
0.1  
0.1  
1E-3  
0.01  
0.1  
1
2
1E-3  
0.01  
0.1  
1
2
Output Power (W)  
Output Power (W)  
Figure 32. THD+N vs. output power  
Figure 33. THD+N vs. output power  
10  
10  
RL = 4  
F = 1kHz  
G = 6dB  
BW < 30kHz  
Tamb = 25  
Ω + 15μH  
Vcc=5V  
RL = 4  
F = 1kHz  
G = 6dB  
BW < 30kHz  
Tamb = 25  
Ω + 30μH or Filter  
Vcc=5V  
Vcc=3.6V  
Vcc=2.5V  
Vcc=3.6V  
Vcc=2.5V  
°C  
°C  
1
1
0.1  
1E-3  
0.1  
1E-3  
0.01  
0.1  
1
3
0.01  
0.1  
1
3
Output Power (W)  
Output Power (W)  
21/41  
Electrical characteristic curves  
TS4962M  
Figure 34. THD+N vs. output power  
Figure 35. THD+N vs. output power  
10  
10  
RL = 8  
F = 1kHz  
G = 6dB  
Ω + 15μH  
RL = 8  
F = 1kHz  
G = 6dB  
Ω + 30μH or Filter  
Vcc=5V  
Vcc=5V  
BW < 30kHz  
Tamb = 25  
BW < 30kHz  
Tamb = 25°C  
Vcc=3.6V  
Vcc=3.6V  
°
C
Vcc=2.5V  
Vcc=2.5V  
1
1
0.1  
1E-3  
0.1  
1E-3  
0.01  
0.1  
1
2
0.01  
0.1  
1
2
Output Power (W)  
Output Power (W)  
Figure 36. THD+N vs. frequency  
Figure 37. THD+N vs. frequency  
10  
10  
RL=4  
G=6dB  
Ω + 30μH or Filter  
RL=4  
G=6dB  
Ω + 15μH  
Bw < 30kHz  
Vcc=5V  
Tamb = 25°C  
Bw < 30kHz  
Vcc=5V  
Tamb = 25°C  
Po=1.5W  
Po=1.5W  
1
1
Po=0.75W  
0.1  
Po=0.75W  
0.1  
50 100  
1000  
Frequency (Hz)  
10000 20k  
50 100  
1000  
Frequency (Hz)  
10000 20k  
Figure 38. THD+N vs. frequency  
Figure 39. THD+N vs. frequency  
10  
10  
RL=4  
G=6dB  
Ω + 15μH  
RL=4  
G=6dB  
Ω + 30μH or Filter  
Bw < 30kHz  
Vcc=3.6V  
Tamb = 25°C  
Bw < 30kHz  
Vcc=3.6V  
Tamb = 25°C  
Po=0.9W  
Po=0.9W  
1
1
Po=0.45W  
Po=0.45W  
0.1  
0.1  
50 100  
1000  
Frequency (Hz)  
10000 20k  
50 100  
1000  
Frequency (Hz)  
10000 20k  
22/41  
TS4962M  
Electrical characteristic curves  
Figure 40. THD+N vs. frequency  
Figure 41. THD+N vs. frequency  
10  
10  
RL=4  
G=6dB  
Ω + 30μH or Filter  
RL=4  
G=6dB  
Ω + 15μH  
Bw < 30kHz  
Vcc=2.5V  
Tamb = 25°C  
Bw < 30kHz  
Vcc=2.5V  
Tamb = 25°C  
Po=0.4W  
Po=0.4W  
1
1
Po=0.2W  
Po=0.2W  
0.1  
0.1  
200  
1000  
Frequency (Hz)  
10000  
20k  
50 100  
1000  
Frequency (Hz)  
10000 20k  
10000 20k  
10000 20k  
Figure 42. THD+N vs. frequency  
Figure 43. THD+N vs. frequency  
10  
10  
RL=8  
G=6dB  
Bw < 30kHz  
Vcc=5V  
Tamb = 25°C  
Ω + 15μH  
RL=8Ω + 30μH or Filter  
G=6dB  
Bw < 30kHz  
Vcc=5V  
Tamb = 25°C  
Po=0.9W  
Po=0.9W  
1
1
Po=0.45W  
0.1  
0.1  
Po=0.45W  
50 100  
1000  
Frequency (Hz)  
50 100  
1000  
Frequency (Hz)  
10000 20k  
Figure 44. THD+N vs. frequency  
Figure 45. THD+N vs. frequency  
10  
10  
RL=8  
G=6dB  
Bw < 30kHz  
Vcc=3.6V  
Tamb = 25°C  
Ω + 15μH  
RL=8Ω + 30μH or Filter  
G=6dB  
Bw < 30kHz  
Vcc=3.6V  
Tamb = 25°C  
Po=0.5W  
Po=0.5W  
1
1
0.1  
0.1  
Po=0.25W  
Po=0.25W  
50 100  
1000  
Frequency (Hz)  
50 100  
1000  
Frequency (Hz)  
10000 20k  
23/41  
Electrical characteristic curves  
TS4962M  
Figure 46. THD+N vs. frequency  
Figure 47. THD+N vs. frequency  
10  
10  
RL=8Ω + 30μH or Filter  
RL=8Ω + 15μH  
G=6dB  
G=6dB  
Bw < 30kHz  
Vcc=2.5V  
Tamb = 25°C  
Bw < 30kHz  
Vcc=2.5V  
Po=0.2W  
Po=0.2W  
1
0.1  
1
0.1  
Tamb = 25  
°C  
Po=0.1W  
Po=0.1W  
0.01  
0.01  
50 100  
1000  
Frequency (Hz)  
10000 20k  
50 100  
1000  
Frequency (Hz)  
10000 20k  
Figure 48. Gain vs. frequency  
Figure 49. Gain vs. frequency  
8
8
6
6
Vcc=5V, 3.6V, 2.5V  
4
Vcc=5V, 3.6V, 2.5V  
4
RL=4  
G=6dB  
Vin=500mVpp  
Cin=1  
Tamb = 25  
Ω + 30μH  
RL=4  
G=6dB  
Vin=500mVpp  
Cin=1  
Tamb = 25  
Ω + 15μH  
2
0
2
0
μF  
μF  
°C  
°C  
20  
100  
1000  
10000 20k  
20  
100  
1000  
10000 20k  
Frequency (Hz)  
Frequency (Hz)  
Figure 50. Gain vs. frequency  
Figure 51. Gain vs. frequency  
8
8
6
6
Vcc=5V, 3.6V, 2.5V  
4
Vcc=5V, 3.6V, 2.5V  
4
RL=8  
G=6dB  
Vin=500mVpp  
Cin=1  
Tamb = 25  
Ω + 15μH  
RL=4  
G=6dB  
Vin=500mVpp  
Cin=1  
Tamb = 25  
Ω + Filter  
2
0
2
0
μF  
μF  
°C  
°C  
20  
100  
1000  
10000 20k  
20  
100  
1000  
10000 20k  
Frequency (Hz)  
Frequency (Hz)  
24/41  
TS4962M  
Electrical characteristic curves  
Figure 52. Gain vs. frequency  
Figure 53. Gain vs. frequency  
8
8
6
4
2
0
6
Vcc=5V, 3.6V, 2.5V  
4
Vcc=5V, 3.6V, 2.5V  
RL=8  
G=6dB  
Vin=500mVpp  
Cin=1  
Tamb = 25  
Ω + Filter  
RL=8  
G=6dB  
Vin=500mVpp  
Cin=1  
Tamb = 25  
Ω + 30μH  
2
0
μF  
μF  
°C  
°C  
20  
100  
1000  
10000 20k  
20  
100  
1000  
10000 20k  
Frequency (Hz)  
Frequency (Hz)  
Figure 54. Gain vs. frequency  
Figure 55. Startup & shutdown time  
= 5V, G = 6dB, C = 1µF  
V
CC  
in  
(5ms/div)  
8
Vo1  
Vo2  
6
Vcc=5V, 3.6V, 2.5V  
4
Standby  
RL=No Load  
G=6dB  
Vo1-Vo2  
2
Vin=500mVpp  
Cin=1μF  
Tamb = 25  
°C  
0
20  
100  
1000  
10000 20k  
Frequency (Hz)  
25/41  
Electrical characteristic curves  
TS4962M  
Figure 56. Startup & shutdown time  
Figure 57. Startup & shutdown time  
= 5V, G = 6dB, C = 100nF  
V
= 3V, G = 6dB, C = 1µF  
V
CC  
CC  
in  
in  
(5ms/div)  
(5ms/div)  
Vo1  
Vo2  
Vo1  
Vo2  
Standby  
Standby  
Vo1-Vo2  
Vo1-Vo2  
Figure 58. Startup & shutdown time  
= 3V, G = 6dB, C = 100nF  
Figure 59. Startup & shutdown time  
V
V
= 5V, G = 6dB, No C (5ms/div)  
CC  
in  
CC  
in  
(5ms/div)  
Vo1  
Vo2  
Vo1  
Vo2  
Standby  
Standby  
Vo1-Vo2  
Vo1-Vo2  
26/41  
TS4962M  
Electrical characteristic curves  
Figure 60. Startup & shutdown time  
V
= 3V, G = 6dB, No C (5ms/div)  
CC  
in  
Vo1  
Vo2  
Standby  
Vo1-Vo2  
27/41  
Application information  
TS4962M  
5
Application information  
5.1  
Differential configuration principle  
The TS4962M is a monolithic fully-differential input/output class D power amplifier. The  
TS4962M also includes a common-mode feedback loop that controls the output bias value  
to average it at V /2 for any DC common mode input voltage. This allows the device to  
CC  
always have a maximum output voltage swing, and by consequence, maximizes the output  
power. Moreover, as the load is connected differentially compared to a single-ended  
topology, the output is four times higher for the same power supply voltage.  
The advantages of a full-differential amplifier are:  
High PSRR (power supply rejection ratio).  
High common mode noise rejection.  
Virtually zero pop without additional circuitry, giving a faster start-up time compared to  
conventional single-ended input amplifiers.  
Easier interfacing with differential output audio DAC.  
No input coupling capacitors required due to common mode feedback loop.  
The main disadvantage is:  
As the differential function is directly linked to external resistor mismatching, paying  
particular attention to this mismatching is mandatory in order to obtain the best  
performance from the amplifier.  
5.2  
Gain in typical application schematic  
Typical differential applications are shown in Figure 1 on page 4.  
In the flat region of the frequency-response curve (no input coupling capacitor effect), the  
differential gain is expressed by the relation:  
Out+ Out-  
In+ In-  
300  
Rin  
AV = ------------------------------ = ---------  
diff  
with R expressed in kΩ.  
in  
Due to the tolerance of the internal 150kΩ feedback resistor, the differential gain will be in  
the range (no tolerance on R ):  
in  
273  
Rin  
327  
Rin  
---------  
---------  
AV  
diff  
28/41  
TS4962M  
Application information  
5.3  
Common mode feedback loop limitations  
As explained previously, the common mode feedback loop allows the output DC bias voltage  
to be averaged at V /2 for any DC common mode bias input voltage.  
CC  
However, due to V  
limitation in the input stage (see Table 2: Operating conditions on  
icm  
page 3), the common mode feedback loop can ensure its role only within a defined range.  
This range depends upon the values of V and R (A ). To have a good estimation of  
CC  
in  
Vdiff  
the V  
value, we can apply this formula (no tolerance on R ):  
icm  
in  
VCC × Rin + 2 × VIC × 150kΩ  
-----------------------------------------------------------------------------  
Vicm  
=
(V)  
2 × (Rin + 150kΩ)  
with  
In+ + In-  
---------------------  
VIC  
=
(V)  
2
and the result of the calculation must be in the range:  
0.5V Vicm VCC 0.8V  
Due to the +/-9% tolerance on the 150kΩ resistor, it’s also important to check V  
conditions:  
in these  
icm  
VCC × Rin + 2 × VIC × 136.5kΩ  
----------------------------------------------------------------------------------  
2 × (Rin + 136.5kΩ)  
VCC × Rin + 2 × VIC × 163.5kΩ  
----------------------------------------------------------------------------------  
2 × (Rin + 163.5kΩ)  
Vicm  
If the result of V  
calculation is not in the previous range, input coupling capacitors must  
icm  
be used (with V from 2.4V to 2.5V, input coupling capacitors are mandatory).  
CC  
For example:  
With V = 3V, R = 150k and V = 2.5V, we typically find V = 2V and this is lower than  
CC  
in  
IC  
icm  
3V - 0.8V = 2.2V. With 136.5kΩwe find 1.97V, and with 163.5kΩwe have 2.02V. So, no input  
coupling capacitors are required.  
5.4  
Low frequency response  
If a low frequency bandwidth limitation is requested, it is possible to use input coupling  
capacitors.  
In the low frequency region, C (input coupling capacitor) starts to have an effect. C forms,  
in  
in  
with R , a first order high-pass filter with a -3dB cut-off frequency:  
in  
1
-------------------------------------  
FCL  
=
(Hz)  
(F)  
2π × Rin × Cin  
So, for a desired cut-off frequency we can calculate C ,  
in  
1
---------------------------------------  
Cin  
=
2π × Rin × FCL  
with R in Ω and F in Hz.  
in  
CL  
29/41  
Application information  
TS4962M  
5.5  
Decoupling of the circuit  
A power supply capacitor, referred to as C is needed to correctly bypass the TS4962M.  
S,  
The TS4962M has a typical switching frequency at 250kHz and output fall and rise time  
about 5ns. Due to these very fast transients, careful decoupling is mandatory.  
A 1µF ceramic capacitor is enough, but it must be located very close to the TS4962M in  
order to avoid any extra parasitic inductance created an overly long track wire. In relation  
with dI/dt, this parasitic inductance introduces an overvoltage that decreases the global  
efficiency and, if it is too high, may cause a breakdown of the device.  
In addition, even if a ceramic capacitor has an adequate high frequency ESR value, its  
current capability is also important. A 0603 size is a good compromise, particularly when a  
4Ω load is used.  
Another important parameter is the rated voltage of the capacitor. A 1µF/6.3V capacitor  
used at 5V, loses about 50% of its value. In fact, with a 5V power supply voltage, the  
decoupling value is about 0.5µF instead of 1µF. As C has particular influence on the  
S
THD+N in the medium-high frequency region, this capacitor variation becomes decisive. In  
addition, less decoupling means higher overshoots, which can be problematic if they reach  
the power supply AMR value (6V).  
5.6  
5.7  
5.8  
Wake-up time (tWU)  
When the standby is released to set the device ON, there is a wait of about 5ms. The  
TS4962M has an internal digital delay that mutes the outputs and releases them after this  
time in order to avoid any pop noise.  
Shutdown time (tSTBY  
)
When the standby command is set, the time required to put the two output stages into high  
impedance and to put the internal circuitry in shutdown mode, is about 5ms. This time is  
used to decrease the gain and avoid any pop noise during shutdown.  
Consumption in shutdown mode  
Between the shutdown pin and GND there is an internal 300kΩresistor. This resistor forces  
the TS4962M to be in standby mode when the standby input pin is left floating.  
However, this resistor also introduces additional power consumption if the shutdown pin  
voltage is not 0V.  
For example, with a 0.4V standby voltage pin, Table 2: Operating conditions on page 3,  
shows that you must add 0.4V/300kΩ= 1.3µA in typical (0.4V/273kΩ= 1.46µA in maximum)  
to the shutdown current specified in Table 4 on page 5.  
5.9  
Single-ended input configuration  
It is possible to use the TS4962M in a single-ended input configuration. However, input  
coupling capacitors are needed in this configuration. The schematic in Figure 61 shows a  
single-ended input typical application.  
30/41  
TS4962M  
Application information  
Figure 61. Single-ended input typical application  
Vcc  
Cs  
1u  
B1  
B2  
Vcc  
Ve  
Stdby  
C2  
Internal  
Bias  
Standby  
Rin  
GND  
Out+  
150k  
C3  
A3  
Cin  
GND  
C1  
A1  
Output  
-
In-  
In+  
H
PWM  
+
Bridge  
SPEAKER  
Rin  
Cin  
150k  
Oscillator  
Out-  
GND  
GND  
A2  
TS4962  
B3  
GND  
All formulas are identical except for the gain (with R in kΩ) :  
in  
Ve  
300  
Rin  
AV  
= ------------------------------ = ---------  
single  
Out+ Out-  
And, due to the internal resistor tolerance we have:  
273  
Rin  
327  
---------  
---------  
AV  
single  
Rin  
In the event that multiple single-ended inputs are summed, it is important that the  
-
+
impedance on both TS4962M inputs (In and In ) are equal.  
Figure 62. Typical application schematic with multiple single-ended inputs  
Vcc  
Vek  
Standby  
Cs  
1u  
B1  
B2  
Vcc  
Cink  
Stdby  
Rink  
C2  
Internal  
Bias  
GND  
Ve1  
Out+  
GND  
150k  
C3  
A3  
Cin1  
Rin1  
C1  
A1  
Output  
H
-
In-  
In+  
PWM  
+
Bridge  
SPEAKER  
Req  
GND  
Ceq  
150k  
Oscillator  
Out-  
GND  
GND  
A2  
TS4962  
B3  
GND  
31/41  
Application information  
TS4962M  
We have the following equations:  
+
-
300  
300  
------------  
------------  
Out Out = V  
×
+ + V  
×
ek  
(V)  
e1  
k
R
R
in1  
ink  
C
=
C
Σ
eq  
inj  
j=1  
1
C
= ------------------------------------------------------  
(F)  
inj  
2 × π× R × F  
inj  
CLj  
1
Req = -------------------  
k
1
---------  
R
inj  
j =1  
In general, for mixed situations (single-ended and differential inputs), it is best to use the  
same rule, that is, to equalize impedance on both TS4962M inputs.  
5.10  
Output filter considerations  
The TS4962M is designed to operate without an output filter. However, due to very sharp  
transients on the TS4962M output, EMI radiated emissions may cause some standard  
compliance issues.  
These EMI standard compliance issues can appear if the distance between the TS4962M  
outputs and loudspeaker terminal is long (typically more than 50mm, or 100mm in both  
directions, to the speaker terminals). As the PCB layout and internal equipment device are  
different for each configuration, it is difficult to provide a one-size-fits-all solution.  
However, to decrease the probability of EMI issues, there are several simple rules to follow:  
Reduce, as much as possible, the distance between the TS4962M output pins and the  
speaker terminals.  
Use ground planes for “shielding” sensitive wires.  
Place, as close as possible to the TS4962M and in series with each output, a ferrite  
bead with a rated current at minimum 2A and impedance greater than 50Ω at  
frequencies above 30MHz. If, after testing, these ferrite beads are not necessary,  
replace them by a short-circuit. Murata BLM18EG221SN1 or BLM18EG121SN1 are  
possible examples of devices you can use.  
Allow enough footprint to place, if necessary, a capacitor to short perturbations to  
ground (see the schematics in Figure 63).  
Figure 63. Method for shorting pertubations to ground  
Ferrite chip bead  
To speaker  
about 100pF  
From TS4962 output  
Gnd  
32/41  
TS4962M  
Application information  
In the case where the distance between the TS4962M outputs and speaker terminals is  
high, it is possible to have low frequency EMI issues due to the fact that the typical operating  
frequency is 250kHz. In this configuration, we recommend using an output filter (as shown  
in Figure 1: Typical application schematics on page 4). It should be placed as close as  
possible to the device.  
5.11  
Different examples with summed inputs  
Example 1: Dual differential inputs  
Figure 64. Typical application schematic with dual differential inputs  
Vcc  
Standby  
Cs  
1u  
B1  
B2  
Vcc  
Stdby  
C2  
Internal  
Bias  
R2  
R1  
E2+  
Out+  
GND  
150k  
C3  
A3  
C1  
A1  
Output  
H
-
E1+  
E1-  
In-  
In+  
PWM  
+
Bridge  
SPEAKER  
R1  
R2  
150k  
Oscillator  
E2-  
Out-  
GND  
A2  
TS4962  
B3  
GND  
With (R in kΩ):  
i
Out+ Out-  
E1+ E1  
300  
R1  
AV = ------------------------------ = ---------  
1
-
Out+ Out-  
E2+ E2  
300  
R2  
AV = ------------------------------ = ---------  
2
-
VCC × R1 × R2 + 300 × (VIC1 × R2 + VIC2 × R1)  
-------------------------------------------------------------------------------------------------------------------------------  
300 × (R1 + R2) + 2 × R1 × R2  
0.5V ≤  
VCC 0.8V  
-
-
E1+ + E1  
E2+ + E2  
VIC = ------------------------ and VIC = ------------------------  
1
2
2
2
33/41  
Application information  
TS4962M  
Example 2: One differential input plus one single-ended input  
Figure 65. Typical application schematic with one differential input plus one single-  
ended input  
Vcc  
Standby  
Cs  
1u  
B1  
B2  
Vcc  
Stdby  
C2  
Internal  
Bias  
R2  
R1  
E2+  
C1  
Out+  
GND  
150k  
C3  
A3  
C1  
A1  
Output  
H
-
E1+  
In-  
In+  
PWM  
+
E2-  
Bridge  
SPEAKER  
R2  
150k  
Oscillator  
Out-  
R1  
GND C1  
GND  
A2  
TS4962  
B3  
GND  
With (R in kΩ):  
i
Out+ Out-  
300  
R1  
AV = ------------------------------ = ---------  
1
+
E1  
Out+ Out-  
E2+ E2  
300  
R2  
AV = ------------------------------ = ---------  
2
-
1
--------------------------------------  
C1  
=
(F)  
2π × R1 × FCL  
34/41  
TS4962M  
Demoboard  
6
Demoboard  
A demoboard for the TS4962M is available with a flip-chip to DIP adapter. For more  
information about this demoboard, refer to Application Note AN2134.  
Figure 66. Schematic diagram of mono class D demoboard for TS4962M  
Vcc  
Vcc  
Cn1 + J1  
+
1
2
3
Cn2  
C1  
2.2uF/10V  
GND  
GND  
GND  
Vcc  
Cn4 + J2  
3
8
U1  
6
Vcc  
Stdby  
4
Internal  
Bias  
C2  
Out+  
R1  
150k  
Cn3  
Cn6  
5
1
Output  
H
150k  
-
Positive Input  
Negative input  
100nF  
100nF  
Positive Output  
Negative Output  
In-  
In+  
PWM  
+
Bridge  
R2  
10  
150k  
Oscillator  
150k  
C3  
Out-  
GND  
TS4962 Flip-Chip to DIP Adapter  
2
3
Cn5 + J3  
GND  
Figure 67. Diagram for flip-chip-to-DIP adapter  
R1  
+
C2  
1uF  
OR  
C1  
100nF  
B1  
B2  
Vcc  
Stdby  
C2  
Internal  
Bias  
Pin4  
Out+  
150k  
C3  
A3  
Pin6  
C1  
A1  
Output  
-
Pin5  
Pin1  
In-  
In+  
H
PWM  
+
Bridge  
Pin10  
150k  
Oscillator  
Out-  
GND  
TS4962  
A2  
B3  
R2  
OR  
35/41  
Demoboard  
TS4962M  
Figure 68. Top view  
Figure 69. Bottom layer  
Figure 70. Top layer  
36/41  
TS4962M  
Footprint recommendations  
7
Footprint recommendations  
Figure 71. Footprint recommendations  
75µm min.  
100μm max.  
500μm  
500μm  
Φ=250μm  
Track  
Φ=400μm typ.  
Φ=340μm min.  
150μm min.  
Non Solder mask opening  
Pad in Cu 18μm with Flash NiAu (2-6μm, 0.2μm max.)  
37/41  
Package information  
TS4962M  
8
Package information  
In order to meet environmental requirements, STMicroelectronics offers these devices in  
®
ECOPACK packages. These packages have a lead-free second level interconnect. The  
category of second level interconnect is marked on the package and on the inner box label,  
in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering  
conditions are also marked on the inner box label. ECOPACK is an STMicroelectronics  
trademark. ECOPACK specifications are available at: www.st.com.  
Figure 72. Pin-out for 9-bump flip-chip (top view)  
GND  
2/A2  
IN+  
OUT-  
3/A3  
1/A1  
Bumps are underneath  
Bump diameter = 300μm  
VDD  
GND  
6/B3  
VDD  
5/B2  
4/B1  
STBY  
8/C2  
OUT+  
9/C3  
IN-  
7/C1  
Figure 73. Marking for 9-bump flip-chip (top view)  
ST Logo  
Symbol for lead-free: E  
E
Two first XX product code: 62  
third X: Assembly code  
Three digits date code: Y for year - WW for week  
The dot is for marking pin A1  
XXX  
YWW  
Figure 74. Mechanical data for 9-bump flip-chip  
Die size: 1.6mm x 1.6mm ±±0μm  
1.60 mm  
Die height (including bumps): 600μm  
Bump diameter: 315μm ±50μm  
Bump diameter before reflow: 300μm ±10μm  
Bump height: 250μm ±ꢀ0μm  
Die height: 350μm ±ꢁ0μm  
1.60 mm  
0.5mm  
0.5mm  
Pitch: 500μm ±50μm  
0.25mm  
Coplanarity: 50μm max  
600µm  
38/41  
TS4962M  
Ordering information  
9
Ordering information  
Table 10. Order codes  
Temperature  
Part number  
range  
Package  
Packing  
Tape & reel  
Marking  
TS4962MEIJT  
-40°C to +85°C  
Lead-free flip-chip  
62  
39/41  
Revision history  
TS4962M  
10  
Revision history  
Date  
Revision  
Changes  
Oct. 2005  
1
First release corresponding to the product preview version.  
Electrical data updated for output voltage noise, see Table 4, Table 5,  
Table 6, Table 7, Table 8 andTable 9  
Nov. 2005  
2
Formatting changes throughout.  
Dec. 2005  
3
4
Product in full production.  
10-Jan-2007  
Template update, no technical changes.  
40/41  
TS4962M  
Please Read Carefully:  
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the  
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any  
time, without notice.  
All ST products are sold pursuant to ST’s terms and conditions of sale.  
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no  
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.  
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this  
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products  
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such  
third party products or services or any intellectual property contained therein.  
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED  
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED  
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS  
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.  
UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT  
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING  
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,  
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE  
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.  
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void  
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any  
liability of ST.  
ST and the ST logo are trademarks or registered trademarks of ST in various countries.  
Information in this document supersedes and replaces all information previously supplied.  
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.  
© 2007 STMicroelectronics - All rights reserved  
STMicroelectronics group of companies  
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -  
Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America  
www.st.com  
41/41  

相关型号:

TS4962MEIJT

3W filter-free class D audio power amplifier
STMICROELECTR

TS4962MEIKJT

3 W filter-free class D audio power amplifier
STMICROELECTR

TS4962M_07

3W filter-free class D audio power amplifier
STMICROELECTR

TS4962_07

2.8W filter-free mono class D audio power amplifier
STMICROELECTR

TS4962_10

2.8 W filter-free mono class D audio power amplifier
STMICROELECTR

TS496T11CKT

Parallel - 3Rd Overtone Quartz Crystal, 49.664MHz Nom, HC-49/US, 2 PIN
CTS

TS496T1XCLT

Parallel - 3Rd Overtone Quartz Crystal, 49.664MHz Nom, HC-49/US, 2 PIN
CTS

TS496T2XIAT

Parallel - 3Rd Overtone Quartz Crystal, 49.664MHz Nom, HC-49/US, 2 PIN
CTS

TS496T32CCT

Parallel - 3Rd Overtone Quartz Crystal, 49.664MHz Nom, HC-49/US, 2 PIN
CTS

TS496T33IBT

Parallel - 3Rd Overtone Quartz Crystal, 49.664MHz Nom, HC-49/US, 2 PIN
CTS

TS496T35CAT

Parallel - 3Rd Overtone Quartz Crystal, 49.664MHz Nom, HC-49/US, 2 PIN
CTS

TS496T35IBT

Parallel - 3Rd Overtone Quartz Crystal, 49.664MHz Nom, HC-49/US, 2 PIN
CTS