STM8L052C6T6 [STMICROELECTRONICS]

Value Line, 8-bit ultralow power MCU, 32-KB Flash, 256-byte data EEPROM, RTC, LCD, timers, USART, I2C, SPI, ADC; 价值线, 8位超低功耗MCU , 32 KB的闪存, 256字节的数据EEPROM , RTC , LCD,定时器, USART , I2C , SPI , ADC
STM8L052C6T6
型号: STM8L052C6T6
厂家: ST    ST
描述:

Value Line, 8-bit ultralow power MCU, 32-KB Flash, 256-byte data EEPROM, RTC, LCD, timers, USART, I2C, SPI, ADC
价值线, 8位超低功耗MCU , 32 KB的闪存, 256字节的数据EEPROM , RTC , LCD,定时器, USART , I2C , SPI , ADC

闪存 CD 可编程只读存储器 电动程控只读存储器 电可擦编程只读存储器
文件: 总102页 (文件大小:1469K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
STM8L052C6  
Value Line, 8-bit ultralow power MCU, 32-KB Flash,  
256-byte data EEPROM, RTC, LCD, timers, USART, I2C, SPI, ADC  
Datasheet production data  
Features  
Operating conditions  
– Operating power supply: 1.8 V to 3.6 V  
Temperature range: -40 °C to 85 °C  
LQFP48  
Low power features  
– 5 low power modes: Wait, Low power run  
DMA  
– 4 channels supporting ADC, SPI, I2C,  
(5.1 µA), Low power wait (3 µA), Active-halt  
with full RTC (1.3 µA), Halt (350 nA)  
– Consumption: 195 µA/MHz + 440 µA  
– Ultra-low leakage per I/0: 50 nA  
– Fast wakeup from Halt: 4.7 µs  
USART, timers  
– 1 channel for memory-to-memory  
12-bit ADC up to 1 Msps/25 channels  
– Internal reference voltage  
Advanced STM8 core  
– Harvard architecture and 3-stage pipeline  
– Max freq. 16 MHz, 16 CISC MIPS peak  
– Up to 40 external interrupt sources  
Timers  
Two 16-bit timers with 2 channels (used as  
IC, OC, PWM), quadrature encoder  
– One 16-bit advanced control timer with 3  
channels, supporting motor control  
– One 8-bit timer with 7-bit prescaler  
– 2 watchdogs: 1 Window, 1 Independent  
– Beeper timer with 1, 2 or 4 kHz frequencies  
Reset and supply management  
– Low power, ultra-safe BOR reset with 5  
selectable thresholds  
– Ultra low power POR/PDR  
– Programmable voltage detector (PVD)  
Communication interfaces  
Clock management  
– Synchronous serial interface (SPI)  
– Fast I2C 400 kHz SMBus and PMBus  
– USART (ISO 7816 interface and IrDA)  
– 32 kHz and 1 to 16 MHz crystal oscillator  
– Internal 16 MHz factory-trimmed RC  
– Internal 38 kHz low consumption RC  
– Clock security system  
Up to 41 I/Os, all mappable on interrupt vectors  
Low power RTC  
Development support  
– BCD calendar with alarm interrupt  
– Auto-wakeup from Halt w/ periodic interrupt  
– Fast on-chip programming and non-  
intrusive debugging with SWIM  
– Bootloader using USART  
LCD: up to 4x28 segments w/ step-up  
converter  
Memories  
– 32 KB Flash program memory and  
256 bytes data EEPROM with ECC, RWW  
– Flexible write and read protection modes  
– 2 Kbytes of RAM  
June 2012  
Doc ID 023331 Rev 1  
1/102  
This is information on a product in full production.  
www.st.com  
1
Contents  
STM8L052C6  
Contents  
1
2
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
2.1  
2.2  
Device overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Ultra low power continuum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
3
Functional overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
3.1  
3.2  
Low power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Central processing unit STM8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
3.2.1  
3.2.2  
Advanced STM8 Core . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Interrupt controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
3.3  
Reset and supply management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
3.3.1  
3.3.2  
3.3.3  
Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Power supply supervisor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Voltage regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
3.4  
3.5  
3.6  
3.7  
3.8  
3.9  
Clock management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Low power real-time clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
LCD (Liquid crystal display) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Memories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
DMA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Analog-to-digital converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
3.10 System configuration controller and routing interface . . . . . . . . . . . . . . . 19  
3.11 Timers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
3.11.1 TIM1 - 16-bit advanced control timer . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
3.11.2 16-bit general purpose timers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
3.11.3 8-bit basic timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
3.12 Watchdog timers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
3.12.1 Window watchdog timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
3.12.2 Independent watchdog timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
3.13 Beeper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
3.14 Communication interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
3.14.1 SPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
3.14.2 I²C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
2/102  
Doc ID 023331 Rev 1  
STM8L052C6  
Contents  
3.14.3 USART . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
3.15 Infrared (IR) interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
3.16 Development support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
4
5
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
4.1  
System configuration options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Memory and register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
5.1  
5.2  
Memory mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
6
7
8
Interrupt vector mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Option bytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
Electrical parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
8.1  
Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
8.1.1  
8.1.2  
8.1.3  
8.1.4  
8.1.5  
Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
8.2  
8.3  
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
8.3.1  
8.3.2  
8.3.3  
8.3.4  
8.3.5  
8.3.6  
8.3.7  
8.3.8  
8.3.9  
General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
Embedded reset and power control block characteristics . . . . . . . . . . . 56  
Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
Clock and timing characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
Memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72  
I/O current injection characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72  
I/O port pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
Communication interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81  
LCD controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86  
8.3.10 Embedded reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87  
8.3.11 12-bit ADC1 characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88  
8.3.12 EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94  
8.4  
Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96  
Doc ID 023331 Rev 1  
3/102  
Contents  
STM8L052C6  
9
Package characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97  
9.1  
9.2  
ECOPACK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97  
Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98  
9.2.1  
48-pin low profile quad flat 7x7mm package (LQFP48) . . . . . . . . . . . . . 98  
10  
11  
Device ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100  
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101  
4/102  
Doc ID 023331 Rev 1  
STM8L052C6  
List of tables  
List of tables  
Table 1.  
Medium density value line STM8L05xxx low power device features and  
peripheral counts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Timer feature comparison. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Legend/abbreviation for Table 4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Medium density value line STM8L05xxx pin description . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Flash and RAM boundary addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
I/O port hardware register map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
General hardware register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
CPU/SWIM/debug module/interrupt controller registers. . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
Interrupt mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Option byte addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
Option byte description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
Voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
Current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
Embedded reset and power control block characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . 56  
Total current consumption in Run mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
Total current consumption in Wait mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
Total current consumption and timing in Low power run mode at VDD = 1.8 V to  
Table 2.  
Table 3.  
Table 4.  
Table 5.  
Table 6.  
Table 7.  
Table 8.  
Table 9.  
Table 10.  
Table 11.  
Table 12.  
Table 13.  
Table 14.  
Table 15.  
Table 16.  
Table 17.  
Table 18.  
Table 19.  
3.6 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
Total current consumption in Low power wait mode at VDD = 1.8 V to 3.6 V . . . . . . . . . . 63  
Total current consumption and timing in Active-halt mode at VDD = 1.8 V to 3.6 V. . . . . . 64  
Typical current consumption in Active-halt mode, RTC clocked by LSE external crystal. . 65  
Total current consumption and timing in Halt mode at VDD = 1.8 to 3.6 V . . . . . . . . . . . . 65  
Peripheral current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66  
Current consumption under external reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66  
HSE external clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
LSE external clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
HSE oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68  
LSE oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
HSI oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70  
LSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71  
RAM and hardware registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72  
Flash program and data EEPROM memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72  
I/O current injection susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
I/O static characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74  
Output driving current (high sink ports). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77  
Output driving current (true open drain ports). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77  
Output driving current (PA0 with high sink LED driver capability). . . . . . . . . . . . . . . . . . . . 77  
NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79  
SPI1 characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81  
I2C characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84  
LCD characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86  
Reference voltage characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87  
ADC1 characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88  
ADC1 accuracy with VDDA = 3.3 V to 2.5 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90  
ADC1 accuracy with VDDA = 2.4 V to 3.6 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90  
Table 20.  
Table 21.  
Table 22.  
Table 23.  
Table 24.  
Table 25.  
Table 26.  
Table 27.  
Table 28.  
Table 29.  
Table 30.  
Table 31.  
Table 32.  
Table 33.  
Table 34.  
Table 35.  
Table 36.  
Table 37.  
Table 38.  
Table 39.  
Table 40.  
Table 41.  
Table 42.  
Table 43.  
Table 44.  
Table 45.  
Table 46.  
Doc ID 023331 Rev 1  
5/102  
List of tables  
STM8L052C6  
Table 47.  
Table 48.  
Table 49.  
Table 50.  
Table 51.  
Table 52.  
Table 53.  
Table 54.  
Table 55.  
ADC1 accuracy with VDDA = VREF = 1.8 V to 2.4 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90  
+
R
max for f  
= 16 MHz. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92  
AIN  
ADC  
EMS data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94  
EMI data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95  
ESD absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95  
Electrical sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95  
Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96  
LQFP48 48-pin low profile quad flat package, mechanical data. . . . . . . . . . . . . . . . . . . . . 98  
Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101  
6/102  
Doc ID 023331 Rev 1  
STM8L052C6  
List of figures  
List of figures  
Figure 1.  
Figure 2.  
Figure 3.  
Figure 4.  
Figure 5.  
Figure 6.  
Figure 7.  
Figure 8.  
Figure 9.  
Medium density value line STM8L05xxx device block diagram . . . . . . . . . . . . . . . . . . . . 12  
Medium density value line STM8L05xxx clock tree diagram . . . . . . . . . . . . . . . . . . . . . . 17  
STM8L052C6 48-pin LQFP48 package pinout (with LCD) . . . . . . . . . . . . . . . . . . . . . . . . 23  
Memory map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Pin loading conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
POR/BOR thresholds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
Typ. IDD(RUN) vs. VDD, fCPU = 16 MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
Typ. IDD(Wait) vs. VDD, fCPU = 16 MHz 1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
Figure 10. Typ. IDD(LPR) vs. VDD (LSI clock source) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
Figure 11. Typ. IDD(LPW) vs. VDD (LSI clock source) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
Figure 12. HSE oscillator circuit diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68  
Figure 13. LSE oscillator circuit diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
Figure 14. Typical HSI frequency vs V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70  
DD  
Figure 15. Typical LSI frequency vs. VDD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71  
Figure 16. Typical VIL and VIH vs VDD (high sink I/Os) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
Figure 17. Typical VIL and VIH vs VDD (true open drain I/Os) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
Figure 18. Typical pull-up resistance R vs V with VIN=VSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76  
PU  
DD  
Figure 19. Typical pull-up current I vs V with VIN=VSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76  
pu  
DD  
Figure 20. Typ. VOL @ VDD = 3.0 V (high sink ports) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78  
Figure 21. Typ. VOL @ VDD = 1.8 V (high sink ports) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78  
Figure 22. Typ. VOL @ VDD = 3.0 V (true open drain ports) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78  
Figure 23. Typ. VOL @ VDD = 1.8 V (true open drain ports) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78  
Figure 24. Typ. VDD - VOH @ VDD = 3.0 V (high sink ports). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78  
Figure 25. Typ. VDD - VOH @ VDD = 1.8 V (high sink ports). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78  
Figure 26. Typical NRST pull-up resistance R vs V  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79  
PU  
DD  
Figure 27. Typical NRST pull-up current I vs V  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80  
pu  
DD  
Figure 28. Recommended NRST pin configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80  
Figure 29. SPI1 timing diagram - slave mode and CPHA=0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82  
(1)  
Figure 30. SPI1 timing diagram - slave mode and CPHA=1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82  
(1)  
Figure 31. SPI1 timing diagram - master mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83  
Figure 32. Typical application with I2C bus and timing diagram 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . 85  
Figure 33. ADC1 accuracy characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91  
Figure 34. Typical connection diagram using the ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91  
Figure 35. Maximum dynamic current consumption on V  
supply pin during ADC  
REF+  
conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92  
Figure 36. Power supply and reference decoupling (V not connected to V ). . . . . . . . . . . . . . 93  
REF+  
DDA  
Figure 37. Power supply and reference decoupling (VREF+ connected to VDDA). . . . . . . . . . . . . . . 93  
Figure 38. LQFP48 48-pin low profile quad flat package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98  
Figure 39. LQFP48 recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99  
Figure 40. Medium density value line STM8L05xxx ordering information scheme . . . . . . . . . . . . . . 100  
Doc ID 023331 Rev 1  
7/102  
Introduction  
STM8L052C6  
1
Introduction  
This document describes the features, pinout, mechanical data and ordering information of  
the medium density value line STM8L052C6 microcontroller with 32-Kbyte Flash memory  
density. For further details on the whole STMicroelectronics medium density family please  
refer to Section 2.2: Ultra low power continuum.  
For detailed information on device operation and registers, refer to the reference manual  
(RM0031).  
For information on to the Flash program memory and data EEPROM, refer to the  
programming manual (PM0054).  
For information on the debug module and SWIM (single wire interface module), refer to the  
STM8 SWIM communication protocol and debug module user manual (UM0470).  
For information on the STM8 core, refer to the STM8 CPU programming manual (PM0044).  
Medium density value line devices provide the following benefits:  
Integrated system  
32 Kbytes of medium density embedded Flash program memory  
256 bytes of data EEPROM  
2 Kbytes of RAM  
Internal high speed and low-power low speed RC  
Embedded reset  
Ultra low power consumption  
195 µA/MHZ + 440 µA (consumption)  
0.9 µA with LSI in Active-halt mode  
Clock gated system and optimized power management  
Capability to execute from RAM for Low power wait mode and low power run mode  
Advanced features  
Up to 16 MIPS at 16 MHz CPU clock frequency  
Direct memory access (DMA) for memory-to-memory or peripheral-to-memory  
access  
Short development cycles  
Application scalability across a common family product architecture with  
compatible pinout, memory map and modular peripherals  
Wide choice of development tools  
Refer to Table 1: Medium density value line STM8L05xxx low power device features and  
peripheral counts and Section 3: Functional overview for an overview of the complete range  
of peripherals proposed in this family.  
Figure 1 shows the block diagram of the medium density value line STM8L05xxx family.  
8/102  
Doc ID 023331 Rev 1  
STM8L052C6  
Description  
2
Description  
The medium density value line STM8L05xxx devices are members of the STM8L ultra low  
power 8-bit family.  
The value line STM8L05xxx ultra low power family features the enhanced STM8 CPU core  
providing increased processing power (up to 16 MIPS at 16 MHz) while maintaining the  
advantages of a CISC architecture with improved code density, a 24-bit linear addressing  
space and an optimized architecture for low power operations.  
The family includes an integrated debug module with a hardware interface (SWIM) which  
allows non-intrusive In-application debugging and ultra-fast Flash programming.  
Medium density value line STM8L05xxx microcontrollers feature embedded data EEPROM  
and low-power, low-voltage, single-supply program Flash memory.  
All devices offer 12-bit ADC, real-time clock, 16-bit timers, one 8-bit timer as well as  
standard communication interface such as SPI, I2C, USART and 4x28-segment LCD. The  
4x 28-segment LCD is available on the medium density value line STM8L05xxx.  
The STM8L05xxx family operates from 1.8 V to 3.6 V and is available in the -40 to +85 °C  
temperature range.  
The modular design of the peripheral set allows the same peripherals to be found in different  
ST microcontroller families including 32-bit families. This makes any transition to a different  
family very easy, and simplified even more by the use of a common set of development  
tools.  
All value line STM8L ultra low power products are based on the same architecture with the  
same memory mapping and a coherent pinout.  
Doc ID 023331 Rev 1  
9/102  
Description  
STM8L052C6  
2.1  
Device overview  
Table 1.  
Medium density value line STM8L05xxx low power device features and  
peripheral counts  
Features  
STM8L052C6  
Flash (Kbytes)  
Data EEPROM (bytes)  
RAM (Kbytes)  
LCD  
32  
256  
2
4x28  
1
Basic  
(8-bit)  
2
Timers  
General purpose  
(16-bit)  
1
Advanced control  
(16-bit)  
SPI  
1
1
Communication  
interfaces  
I2C  
USART  
1
GPIOs  
41(1)  
12-bit synchronized ADC  
(number of channels)  
1
(25)  
RTC, window watchdog, independent watchdog,  
Others  
16-MHz and 38-kHz internal RC,  
1- to 16-MHz and 32-kHz external oscillator  
CPU frequency  
Operating voltage  
Operating temperature  
Package  
16 MHz  
1.8 V to 3.6 V  
-40 to +85 °C  
LQFP48  
1. The number of GPIOs given in this table includes the NRST/PA1 pin but the application can use the  
NRST/PA1 pin as general purpose output only (PA1).  
10/102  
Doc ID 023331 Rev 1  
STM8L052C6  
Description  
2.2  
Ultra low power continuum  
The ultra low power value line STM8L05xxx and STM8L15xxx are fully pin-to-pin, software  
and feature compatible. Besides the full compatibility within the STM8L family, the devices  
are part of STMicroelectronics microcontrollers ultra low power strategy which also includes  
STM8L101xx and STM32L15xxx. The STM8L and STM32L families allow a continuum of  
performance, peripherals, system architecture, and features.  
They are all based on STMicroelectronics 0.13 µm ultra-low leakage process.  
Note:  
1
2
The STM8L05xxx is pin-to-pin compatible with STM8L101xx devices.  
The STM32L family is pin-to-pin compatible with the general purpose STM32F family.  
Please refer to STM32L15x documentation for more information on these devices.  
Performance  
All families incorporate highly energy-efficient cores with both Harvard architecture and  
pipelined execution: advanced STM8 core for STM8L families and ARM Cortex™-M3 core  
for STM32L family. In addition specific care for the design architecture has been taken to  
optimize the mA/DMIPS and mA/MHz ratios.  
This allows the ultra low power performance to range from 5 up to 33.3 DMIPs.  
Shared peripherals  
STM8L05x, STM8L15x and STM32L15xx share identical peripherals which ensure a very  
easy migration from one family to another:  
Analog peripheral: ADC1  
Digital peripherals: RTC and some communication interfaces  
Common system strategy  
To offer flexibility and optimize performance, the STM8L and STM32L devices use a  
common architecture:  
Same power supply range from 1.8 to 3.6 V  
Architecture optimized to reach ultra-low consumption both in low power modes and  
Run mode  
Fast startup strategy from low power modes  
Flexible system clock  
Ultra-safe reset: same reset strategy for both STM8L and STM32L including power-on  
reset, power-down reset, brownout reset and programmable voltage detector  
Features  
ST ultra low power continuum also lies in feature compatibility:  
More than 10 packages with pin count from 20 to 100 pins and size down to 3 x 3 mm  
Memory density ranging from 4 to 128 Kbytes  
Doc ID 023331 Rev 1  
11/102  
Functional overview  
STM8L052C6  
3
Functional overview  
Figure 1.  
Medium density value line STM8L05xxx device block diagram  
OSC_IN,  
OSC_OUT  
@VDD  
1-16 MHz oscillator  
16 MHz internal RC  
32 kHz oscillator  
VDD18  
Clocks  
to core and  
peripherals  
Power  
V
V
=1.8 V  
to 3.6 V  
DD1  
SS1  
Clock  
controller  
and  
VOLT. REG.  
OSC32_IN,  
OSC32_OUT  
CSS  
38 kHz internal RC  
Interrupt controller  
STM8 Core  
NRST  
RESET  
POR/PDR  
BOR  
Debug module  
(SWIM)  
SWIM  
PVD  
PVD_IN  
2 channels  
16-bit Timer 2  
2 channels  
3 channels  
16-bit Timer 3  
16-bit Timer 1  
8-bit Timer 4  
32 Kbytes  
program memory  
256 bytes  
data EEPROM  
IR_TIM  
Infrared interface  
2 Kbytes RAM  
DMA1  
(4 channels)  
PA[7:0]  
PB[7:0]  
Port A  
Port B  
Port C  
Port D  
Port E  
SCL, SDA,  
SMB  
I²C1  
SPI1  
MOSI, MISO,  
SCK, NSS  
PC[7:0]  
PD[7:0]  
PE[7:0]  
RX, TX, CK  
USART1  
V
DDA  
@VDDA/V  
V
SSA  
SSA  
ADC1_INx  
PF0  
Port F  
12-bit ADC1  
V
V
REF+  
REF-  
BEEP  
Beeper  
RTC  
ALARM, CALIB  
Internal reference  
voltage  
VREFINT out  
IWDG  
(38 kHz clock)  
WWDG  
V
= 2.5 V  
3.6 V  
to  
LCD  
LCD booster  
LCD driver  
4x28  
SEGx, COMx  
1. Legend:  
ADC: Analog-to-digital converter  
BOR: Brownout reset  
DMA: Direct memory access  
I²C: Inter-integrated circuit multimaster interface  
LCD: Liquid crystal display  
POR/PDR: Power on reset / power down reset  
RTC: Real-time clock  
SPI: Serial peripheral interface  
SWIM: Single wire interface module  
USART: Universal synchronous asynchronous receiver transmitter  
WWDG: Window watchdog  
IWDG: independent watchdog  
12/102  
Doc ID 023331 Rev 1  
STM8L052C6  
Functional overview  
3.1  
Low power modes  
The medium density value line STM8L05xxx devices support five low power modes to  
achieve the best compromise between low power consumption, short startup time and  
available wakeup sources:  
Wait mode: The CPU clock is stopped, but selected peripherals keep running. An  
internal or external interrupt, event or a Reset can be used to exit the microcontroller  
from Wait mode (WFE or WFI mode).  
Low power run mode: The CPU and the selected peripherals are running. Execution  
is done from RAM with a low speed oscillator (LSI or LSE). Flash memory and data  
EEPROM are stopped and the voltage regulator is configured in ultra low power mode.  
The microcontroller enters Low power run mode by software and can exit from this  
mode by software or by a reset.  
All interrupts must be masked. They cannot be used to exit the microcontroller from this  
mode.  
Low power wait mode: This mode is entered when executing a Wait for event in Low  
power run mode. It is similar to Low power run mode except that the CPU clock is  
stopped. The wakeup from this mode is triggered by a Reset or by an internal or  
external event (peripheral event generated by the timers, serial interfaces, DMA  
controller (DMA1) and I/O ports). When the wakeup is triggered by an event, the  
system goes back to Low power run mode.  
All interrupts must be masked. They cannot be used to exit the microcontroller from this  
mode.  
Active-halt mode: CPU and peripheral clocks are stopped, except RTC. The wakeup  
can be triggered by RTC interrupts, external interrupts or reset.  
Halt mode: CPU and peripheral clocks are stopped, the device remains powered on.  
The RAM content is preserved. The wakeup is triggered by an external interrupt or  
reset. A few peripherals have also a wakeup from Halt capability. Switching off the  
internal reference voltage reduces power consumption. Through software configuration  
it is also possible to wake up the device without waiting for the internal reference  
voltage wakeup time to have a fast wakeup time of 5 µs.  
Doc ID 023331 Rev 1  
13/102  
Functional overview  
STM8L052C6  
3.2  
Central processing unit STM8  
3.2.1  
Advanced STM8 Core  
The 8-bit STM8 core is designed for code efficiency and performance with an Harvard  
architecture and a 3-stage pipeline.  
It contains 6 internal registers which are directly addressable in each execution context, 20  
addressing modes including indexed indirect and relative addressing, and 80 instructions.  
Architecture and registers  
Harvard architecture  
3-stage pipeline  
32-bit wide program memory bus - single cycle fetching most instructions  
X and Y 16-bit index registers - enabling indexed addressing modes with or without  
offset and read-modify-write type data manipulations  
8-bit accumulator  
24-bit program counter - 16-Mbyte linear memory space  
16-bit stack pointer - access to a 64-Kbyte level stack  
8-bit condition code register - 7 condition flags for the result of the last instruction  
Addressing  
20 addressing modes  
Indexed indirect addressing mode for lookup tables located anywhere in the address  
space  
Stack pointer relative addressing mode for local variables and parameter passing  
Instruction set  
80 instructions with 2-byte average instruction size  
Standard data movement and logic/arithmetic functions  
8-bit by 8-bit multiplication  
16-bit by 8-bit and 16-bit by 16-bit division  
Bit manipulation  
Data transfer between stack and accumulator (push/pop) with direct stack access  
Data transfer using the X and Y registers or direct memory-to-memory transfers  
3.2.2  
Interrupt controller  
The medium density value line STM8L05xxx devices feature a nested vectored interrupt  
controller:  
Nested interrupts with 3 software priority levels  
32 interrupt vectors with hardware priority  
Up to 40 external interrupt sources on 11 vectors  
Trap and reset interrupts  
14/102  
Doc ID 023331 Rev 1  
STM8L052C6  
Functional overview  
3.3  
Reset and supply management  
3.3.1  
Power supply scheme  
The device requires a 1.8 V to 3.6 V operating supply voltage (V ). The external power  
DD  
supply pins must be connected as follows:  
V
; V  
= 1.8 to 3.6 V: external power supply for I/Os and for the internal regulator.  
DD1  
SS1  
Provided externally through V  
pins, the corresponding ground pin is V  
.
DD1  
SS1  
V
V
V
= 1.8 to 3.6 V: external power supplies for analog peripherals. V  
and  
SSA ; DDA  
DDA  
must be connected to V  
and V  
, respectively.  
SSA  
DD1  
SS1  
V
; V  
= 1.8 to 3.6 V: external power supplies for I/Os. V  
and V  
must be  
SS2  
DD2  
DD2  
SS2  
connected to V  
and V  
, respectively.  
DD1  
SS1  
V
; V  
(for ADC1): external reference voltage for ADC1. Must be provided  
REF-  
REF+  
externally through V  
and V  
pin.  
REF+  
REF-  
3.3.2  
Power supply supervisor  
The device has an integrated ZEROPOWER power-on reset (POR)/power-down reset  
(PDR), coupled with a brownout reset (BOR) circuitry . At power-on, BOR is always active,  
and ensures proper operation starting from 1.8 V. After the 1.8 V BOR threshold is reached,  
the option byte loading process starts, either to confirm or modify default thresholds, or to  
disable BOR permanently.  
Five BOR thresholds are available through option bytes, starting from 1.8 V to 3 V. To  
reduce the power consumption in Halt mode, it is possible to automatically switch off the  
internal reference voltage (and consequently the BOR) in Halt mode. The device remains  
under reset when V is below a specified threshold, V  
or V  
, without the need  
DD  
POR/PDR  
BOR  
for any external reset circuit.  
The device features an embedded programmable voltage detector (PVD) that monitors the  
/V power supply and compares it to the V threshold. This PVD offers 7 different  
V
DD DDA  
PVD  
levels between 1.85 V and 3.05 V, chosen by software, with a step around 200 mV. An  
interrupt can be generated when V /V drops below the V threshold and/or when  
DD DDA  
PVD  
V
/V  
is higher than the V  
threshold. The interrupt service routine can then generate  
DD DDA  
PVD  
a warning message and/or put the MCU into a safe state. The PVD is enabled by software.  
3.3.3  
Voltage regulator  
The medium density value line STM8L05xxx embeds an internal voltage regulator for  
generating the 1.8 V power supply for the core and peripherals.  
This regulator has two different modes:  
Main voltage regulator mode (MVR) for Run, Wait for interrupt (WFI) and Wait for event  
(WFE) modes  
Low power voltage regulator mode (LPVR) for Halt, Active-halt, Low power run and Low  
power wait modes  
When entering Halt or Active-halt modes, the system automatically switches from the MVR  
to the LPVR in order to reduce current consumption.  
Doc ID 023331 Rev 1  
15/102  
Functional overview  
STM8L052C6  
3.4  
Clock management  
The clock controller distributes the system clock (SYSCLK) coming from different oscillators  
to the core and the peripherals. It also manages clock gating for low power modes and  
ensures clock robustness.  
Features  
Clock prescaler: To get the best compromise between speed and current  
consumption the clock frequency to the CPU and peripherals can be adjusted by a  
programmable prescaler.  
Safe clock switching: Clock sources can be changed safely on the fly in run mode  
through a configuration register.  
Clock management: To reduce power consumption, the clock controller can stop the  
clock to the core, individual peripherals or memory.  
System clock sources: 4 different clock sources can be used to drive the system  
clock:  
1-16 MHz High speed external crystal (HSE)  
16 MHz High speed internal RC oscillator (HSI)  
32.768 kHz Low speed external crystal (LSE)  
38 kHz Low speed internal RC (LSI)  
RTC and LCD clock sources: The above four sources can be chosen to clock the  
RTC and the LCD, whatever the system clock.  
Startup clock: After reset, the microcontroller restarts by default with an internal  
2 MHz clock (HSI/8). The prescaler ratio and clock source can be changed by the  
application program as soon as the code execution starts.  
Clock security system (CSS): This feature can be enabled by software. If a HSE clock  
failure occurs, the system clock is automatically switched to HSI.  
Configurable main clock output (CCO): This outputs an external clock for use by the  
application.  
16/102  
Doc ID 023331 Rev 1  
STM8L052C6  
Figure 2.  
Functional overview  
Medium density value line STM8L05xxx clock tree diagram  
CSS  
HSE (1)  
HSI  
OSC_IN  
HSE OSC  
1-16 MHz  
to core and  
memory  
SYSCLK  
OSC_OUT  
SYSCLK  
Prescaler  
/1;2;4;8;16;32;64;128  
HSI RC  
16 MHz  
LSI  
PCLK  
LSE (2)  
to peripherals  
Peripheral  
Clock enable (15 bits)  
LSE (2)  
BEEPCLK  
IWDGCLK  
to BEEP  
to IWDG  
CLKBEEPSEL[1:0]  
LSI  
LSI RC  
38 kHz  
RTCCLK  
to RTC  
to LCD  
RTCSEL[3:0]  
LCD peripheral  
clock enable (1 bit)  
RTC  
RTCCLK/2  
RTCCLK  
prescaler  
/ 2  
OSC32_IN  
/1;2;4;8;16;32;64  
LSE OSC  
.
32 768 kH  
z
OSC32_OUT  
Halt  
LCDCLK  
to LCD  
SYSCLK  
HSI  
configurable  
CCO  
LCD peripheral  
clock enable (1 bit)  
clock output  
LSI  
CCO  
prescaler  
HSE (1)  
/1;2;4;8;16;32;64  
LSE (2)  
1. The HSE clock source can be either an external crystal/ceramic resonator or an external source (HSE  
bypass). Refer to Section HSE clock in the STM8L15x and STM8L16x reference manual (RM0031).  
2. The LSE clock source can be either an external crystal/ceramic resonator or a external source (LSE  
bypass). Refer to Section LSE clock in the STM8L15x and STM8L16x reference manual (RM0031).  
3.5  
Low power real-time clock  
The real-time clock (RTC) is an independent binary coded decimal (BCD) timer/counter.  
Six byte locations contain the second, minute, hour (12/24 hour), week day, date, month,  
year, in BCD (binary coded decimal) format. Correction for 28, 29 (leap year), 30, and 31  
day months are made automatically.  
It provides a programmable alarm and programmable periodic interrupts with wakeup from  
Halt capability.  
Periodic wakeup time using the 32.768 kHz LSE with the lowest resolution (of 61 µs) is  
from min. 122 µs to max. 3.9 s. With a different resolution, the wakeup time can reach  
36 hours.  
Periodic alarms based on the calendar can also be generated from every second to  
every year.  
Doc ID 023331 Rev 1  
17/102  
Functional overview  
STM8L052C6  
3.6  
LCD (Liquid crystal display)  
The LCD is only available on STM8L052xx devices.  
The liquid crystal display drives up to 4 common terminals and up to 28 segment  
terminals to drive up to 112 pixels. Internal step-up converter to guarantee contrast  
control whatever V  
.
DD  
Static 1/2, 1/3, 1/4 duty supported.  
Static 1/2, 1/3, bias supported.  
Phase inversion to reduce power consumption and EMI.  
Up to 4 pixels which can be programmed to blink.  
The LCD controller can operate in Halt mode.  
Note:  
Unnecessary segments and common pins can be used as general I/O pins.  
3.7  
Memories  
The medium density value line STM8L05xxx devices have the following main features:  
2 Kbytes of RAM  
The non-volatile memory is divided into three arrays:  
32 Kbytes of medium density embedded Flash program memory  
256 bytes of data EEPROM  
Option bytes  
The EEPROM embeds the error correction code (ECC) feature. It supports the read-while-  
write (RWW): it is possible to execute the code from the program matrix while  
programming/erasing the data matrix.  
The option byte protects part of the Flash program memory from write and readout piracy.  
3.8  
DMA  
A 4-channel direct memory access controller (DMA1) offers a memory-to-memory and  
peripherals-from/to-memory transfer capability. The 4 channels are shared between the  
following IPs with DMA capability: ADC1, I2C1, SPI1, USART1and the four timers.  
18/102  
Doc ID 023331 Rev 1  
STM8L052C6  
Functional overview  
3.9  
Analog-to-digital converter  
12-bit analog-to-digital converter (ADC1) with 25 channels (including 1 fast channel)  
and internal reference voltage  
Conversion time down to 1 µs with f  
= 16 MHz  
SYSCLK  
Programmable resolution  
Programmable sampling time  
Single and continuous mode of conversion  
Scan capability: automatic conversion performed on a selected group of analog inputs  
Analog watchdog  
Triggered by timer  
Note:  
ADC1 can be served by DMA1.  
3.10  
System configuration controller and routing interface  
The system configuration controller provides the capability to remap some alternate  
functions on different I/O ports. TIM4 and ADC1 DMA channels can also be remapped.  
The highly flexible routing interface allows application software to control the routing of  
different I/Os to the TIM1 timer input captures. It also controls the routing of internal analog  
signals to ADC1 and the internal reference voltage V  
.
REFINT  
3.11  
Timers  
The medium density value line STM8L05xxx devices contain one advanced control timer  
(TIM1), two 16-bit general purpose timers (TIM2 and TIM3) and one 8-bit basic timer  
(TIM4).  
All the timers can be served by DMA1.  
Table 2 compares the features of the advanced control, general-purpose and basic timers.  
Table 2.  
Timer  
Timer feature comparison  
DMA1  
Counter Counter  
Capture/compare Complementary  
Prescaler factor  
request  
resolution  
type  
channels  
outputs  
generation  
Any integer  
from 1 to 65536  
TIM1  
3 + 1  
3
16-bit  
8-bit  
up/down  
up  
TIM2  
TIM3  
Any power of 2  
from 1 to 128  
Yes  
2
0
None  
Any power of 2  
from 1 to 32768  
TIM4  
Doc ID 023331 Rev 1  
19/102  
 
Functional overview  
STM8L052C6  
3.11.1  
TIM1 - 16-bit advanced control timer  
This is a high-end timer designed for a wide range of control applications. With its  
complementary outputs, dead-time control and center-aligned PWM capability, the field of  
applications is extended to motor control, lighting and half-bridge driver.  
16-bit up, down and up/down autoreload counter with 16-bit prescaler  
3 independent capture/compare channels (CAPCOM) configurable as input capture,  
output compare, PWM generation (edge and center aligned mode) and single pulse  
mode output  
1 additional capture/compare channel which is not connected to an external I/O  
Synchronization module to control the timer with external signals  
Break input to force timer outputs into a defined state  
3 complementary outputs with adjustable dead time  
Encoder mode  
Interrupt capability on various events (capture, compare, overflow, break, trigger)  
3.11.2  
16-bit general purpose timers  
16-bit autoreload (AR) up/down-counter  
7-bit prescaler adjustable to fixed power of 2 ratios (1…128)  
2 individually configurable capture/compare channels  
PWM mode  
Interrupt capability on various events (capture, compare, overflow, break, trigger)  
Synchronization with other timers or external signals (external clock, reset, trigger and  
enable)  
3.11.3  
8-bit basic timer  
The 8-bit timer consists of an 8-bit up auto-reload counter driven by a programmable  
prescaler. It can be used for timebase generation with interrupt generation on timer overflow.  
3.12  
Watchdog timers  
The watchdog system is based on two independent timers providing maximum security to  
the applications.  
3.12.1  
Window watchdog timer  
The window watchdog (WWDG) is used to detect the occurrence of a software fault, usually  
generated by external interferences or by unexpected logical conditions, which cause the  
application program to abandon its normal sequence.  
3.12.2  
Independent watchdog timer  
The independent watchdog peripheral (IWDG) can be used to resolve processor  
malfunctions due to hardware or software failures.  
It is clocked by the internal LSI RC clock source, and thus stays active even in case of a  
CPU clock failure.  
20/102  
Doc ID 023331 Rev 1  
STM8L052C6  
Functional overview  
3.13  
Beeper  
The beeper function outputs a signal on the BEEP pin for sound generation. The signal is in  
the range of 1, 2 or 4 kHz.  
3.14  
Communication interfaces  
3.14.1  
SPI  
The serial peripheral interface (SPI1) provides half/ full duplex synchronous serial  
communication with external devices.  
Maximum speed: 8 Mbit/s (f  
/2) both for master and slave  
SYSCLK  
Full duplex synchronous transfers  
Simplex synchronous transfers on 2 lines with a possible bidirectional data line  
Master or slave operation - selectable by hardware or software  
Hardware CRC calculation  
Slave/master selection input pin  
Note:  
SPI1 can be served by the DMA1 Controller.  
3.14.2  
I²C  
2
2
The I C bus interface (I C1) provides multi-master capability, and controls all I²C bus-  
specific sequencing, protocol, arbitration and timing.  
2
Master, slave and multi-master capability  
Standard mode up to 100 kHz and fast speed modes up to 400 kHz  
7-bit and 10-bit addressing modes  
SMBus 2.0 and PMBus support  
Hardware CRC calculation  
Note:  
I C1 can be served by the DMA1 Controller.  
3.14.3  
USART  
The USART interface (USART1) allows full duplex, asynchronous communications with  
external devices requiring an industry standard NRZ asynchronous serial data format. It  
offers a very wide range of baud rates.  
1 Mbit/s full duplex SCI  
SPI1 emulation  
High precision baud rate generator  
Smartcard emulation  
IrDA SIR encoder decoder  
Single wire half duplex mode  
Note:  
USART1 can be served by the DMA1 Controller.  
Doc ID 023331 Rev 1  
21/102  
Functional overview  
STM8L052C6  
3.15  
Infrared (IR) interface  
The medium density value line STM8L05xxx devices contain an infrared interface which can  
be used with an IR LED for remote control functions. Two timer output compare channels  
are used to generate the infrared remote control signals.  
3.16  
Development support  
Development tools  
Development tools for the STM8 microcontrollers include:  
The STice emulation system offering tracing and code profiling  
The STVD high-level language debugger including C compiler, assembler and  
integrated development environment  
The STVP Flash programming software  
The STM8 also comes with starter kits, evaluation boards and low-cost in-circuit  
debugging/programming tools.  
Single wire data interface (SWIM) and debug module  
The debug module with its single wire data interface (SWIM) permits non-intrusive real-time  
in-circuit debugging and fast memory programming.  
The Single wire interface is used for direct access to the debugging module and memory  
programming. The interface can be activated in all device operation modes.  
The non-intrusive debugging module features a performance close to a full-featured  
emulator. Beside memory and peripherals, CPU operation can also be monitored in real-  
time by means of shadow registers.  
Bootloader  
A bootloader is available to reprogram the Flash memory using the USART1 interface. The  
reference document for the bootloader is UM0560: STM8 bootloader user manual.  
The bootloader is used to download application software into the device memories,  
including RAM, program and data memory, using standard serial interfaces. It is a  
complementary solution to programming via the SWIM debugging interface.  
22/102  
Doc ID 023331 Rev 1  
STM8L052C6  
Pin description  
4
Pin description  
Figure 3.  
STM8L052C6 48-pin LQFP48 package pinout (with LCD)  
48 47 46 45 44 43 42 41 40 39 38 37  
36  
1
PD7  
PD6  
PA0  
NRST/PA1  
PA2  
2
35  
3
34 PD5  
33  
4
PA3  
PD4  
32  
5
PA4  
PF0  
31  
6
PB7  
PA5  
30  
7
PB6  
PA6  
29  
8
PB5  
PA7  
28  
V
SS1/VSSA/VREF-  
9
PB4  
27  
10  
VDD1  
PB3  
26  
VDDA  
11  
12  
PB2  
25  
VREF+  
PB1  
24  
13 14 15 16 17 18 19 20 21 22 23  
Doc ID 023331 Rev 1  
23/102  
Pin description  
Table 3.  
STM8L052C6  
Legend/abbreviation for Table 4  
Type  
I= input, O = output, S = power supply  
FT  
Five-volt tolerant  
Level  
TT  
3.6 V tolerant  
Output  
Input  
Output  
HS = high sink/source (20 mA)  
float = floating, wpu = weak pull-up  
T = true open drain, OD = open drain, PP = push pull  
Port and control  
configuration  
Bold X (pin state after reset release).  
Reset state  
Unless otherwise specified, the pin state is the same during the reset phase (i.e.  
“under reset”) and after internal reset release (i.e. at reset state).  
Table 4.  
Medium density value line STM8L05xxx pin description  
Pin  
number  
Input  
Output  
Pin name  
Default alternate function  
2
3
NRST/PA1(1)  
I/O  
I/O  
X
X
HS  
X Reset PA1  
PA2/OSC_IN/  
HSE oscillator input /  
X Port A2 [USART1 transmit] / [SPI1  
master in- slave out]  
[USART1_TX](8)  
[SPI1_MISO] (8)  
/
X
X
X
X
X
X
X
X
X
HS  
HS  
HS  
HS  
HS  
X
X
X
X
X
HSE oscillator output /  
X Port A3 [USART1 receive]/ [SPI1  
master out/slave in]/  
PA3/OSC_OUT/[USART1_  
4
5
6
7
I/O  
X
X
X
RX](8)/[SPI1_MOSI](8)  
PA4/TIM2_BKIN/  
Timer 2 - break input /  
X Port A4  
I/O TT(2)  
I/O TT(2)  
LCD COM 0 / ADC1 input 2  
LCD_COM0/ADC1_IN2  
Timer 3 - break input /  
X Port A5 LCD_COM 1 / ADC1 input  
PA5/TIM3_BKIN/  
LCD_COM1/ADC1_IN1  
1
[ADC1 - trigger] /  
X Port A6 LCD_COM2 /  
ADC1 input 0  
PA6/[ADC1_TRIG]/  
LCD_COM2/ADC1_IN0  
I/O TT(2)  
I/O FT  
X
X
X
X
8
PA7/LCD_SEG0(3)  
X
X
HS  
HS  
X
X
X Port A7 LCD segment 0  
PB0(4)/TIM2_CH1/  
LCD_SEG10/ADC1_IN18  
Timer 2 - channel 1 / LCD  
X Port B0  
24  
I/O TT(2) X(4) X(4)  
segment 10 / ADC1_IN18  
PB1/TIM3_CH1/  
LCD_SEG11/  
ADC1_IN17  
Timer 3 - channel 1 / LCD  
X Port B1  
25  
26  
I/O TT(2)  
I/O TT(2)  
X
X
X
X
X
X
HS  
HS  
X
X
segment 11 / ADC1_IN17  
PB2/ TIM2_CH2/  
LCD_SEG12/  
ADC1_IN16  
Timer 2 - channel 2 / LCD  
X Port B2  
segment 12 / ADC1_IN16  
24/102  
Doc ID 023331 Rev 1  
 
STM8L052C6  
Pin description  
Table 4.  
Medium density value line STM8L05xxx pin description (continued)  
Pin  
number  
Input  
Output  
Pin name  
Default alternate function  
PB3/TIM2_ETR/  
LCD_SEG13/  
ADC1_IN15  
Timer 2 - external trigger /  
X Port B3 LCD segment 13  
27  
28  
29  
30  
31  
I/O TT(2)  
X
X
X
X
X
X
X
HS  
X
X
X
X
X
/ADC1_IN15  
PB4(4)/[SPI1_NSS](8)  
LCD_SEG14/  
ADC1_IN14  
/
[SPI1 master/slave select] /  
X Port B4 LCD segment 14 /  
I/O TT(2) X(4) X(4)  
HS  
HS  
HS  
HS  
ADC1_IN14  
PB5/[SPI1_SCK](8)  
LCD_SEG15/  
ADC1_IN13  
/
[SPI1 clock] / LCD segment  
15 / ADC1_IN13  
I/O TT(2)  
I/O TT(2)  
I/O TT(2)  
X
X
X
X
X
X
X Port B5  
PB6/[SPI1_MOSI](8)  
LCD_SEG16/  
ADC1_IN12  
/
/
[SPI1 master out/slave in]/  
X Port B6 LCD segment 16 /  
ADC1_IN12  
PB7/[SPI1_MISO](8)  
LCD_SEG17/  
[SPI1 master in- slave out]  
X Port B7 /LCD segment 17 /  
ADC1_IN11  
ADC1_IN11  
37  
38  
PC0(3)/I2C1_SDA  
PC1(3)/I2C1_SCL  
I/O FT  
I/O FT  
X
X
X
X
T(5)  
T(5)  
Port C0 I2C1 data  
Port C1 I2C1 clock  
USART1 receive /  
PC2/USART1_RX/  
LCD_SEG22/ADC1_IN6/  
VREFINT  
LCD segment 22 /  
ADC1_IN6 /Internal voltage  
41  
42  
I/O TT(2)  
I/O TT(2)  
X
X
X
X
X
X
HS  
HS  
X
X
X Port C2  
reference output  
PC3/USART1_TX/  
LCD_SEG23/  
ADC1_IN5  
USART1 transmit /  
X Port C3 LCD segment 23 /  
ADC1_IN5  
USART1 synchronous  
clock / I2C1_SMB /  
X Port C4 Configurable clock output /  
LCD segment 24/  
PC4/USART1_CK/  
I2C1_SMB/CCO/  
LCD_SEG24/  
43  
44  
I/O TT(2)  
X
X
X
X
X
X
HS  
HS  
X
X
ADC1_IN4  
ADC1_IN4  
PC5/OSC32_IN  
LSE oscillator input / [SPI1  
X Port C5 master/slave select] /  
[USART1 transmit]  
/[SPI1_NSS](8)  
/
I/O  
[USART1_TX](8)  
PC6/OSC32_OUT/  
LSE oscillator output /  
X Port C6 [SPI1 clock] / [USART1  
receive]  
45  
46  
[SPI1_SCK](8)  
/
I/O  
X
X
X
X
X
X
HS  
HS  
X
X
[USART1_RX](8)  
PC7/LCD_SEG25/  
ADC1_IN3  
LCD segment 25  
X Port C7  
I/O TT(2)  
/ADC1_IN3  
Doc ID 023331 Rev 1  
25/102  
Pin description  
STM8L052C6  
Table 4.  
Medium density value line STM8L05xxx pin description (continued)  
Pin  
number  
Input  
Output  
Pin name  
Default alternate function  
PD0/TIM3_CH2/  
[ADC1_TRIG](8)  
LCD_SEG7/ADC1_IN22/  
Timer 3 - channel 2 /  
X Port D0 [ADC1_Trigger] / LCD  
segment 7 / ADC1_IN22  
20  
21  
22  
23  
33  
34  
/
I/O TT(2)  
I/O TT(2)  
I/O TT(2)  
I/O TT(2)  
I/O TT(2)  
I/O TT(2)  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
HS  
X
X
X
X
X
X
PD1/TIM3_ETR/  
LCD_COM3/  
ADC1_IN21  
Timer 3 - external trigger /  
X Port D1  
HS  
HS  
HS  
HS  
HS  
LCD_COM3 / ADC1_IN21  
PD2/TIM1_CH1  
/LCD_SEG8/  
ADC1_IN20  
Timer 1 - channel 1 / LCD  
X Port D2  
segment 8 / ADC1_IN20  
Timer 1 - externaltrigger /  
X Port D3 LCD segment 9 /  
ADC1_IN19  
PD3/ TIM1_ETR/  
LCD_SEG9/ADC1_IN19  
PD4/TIM1_CH2  
/LCD_SEG18/  
ADC1_IN10  
Timer 1 - channel 2 / LCD  
X Port D4  
segment 18 / ADC1_IN10  
PD5/TIM1_CH3  
/LCD_SEG19/  
ADC1_IN9  
Timer 1 - channel 3 / LCD  
X Port D5  
segment 19 / ADC1_IN9  
PD6/TIM1_BKIN  
/LCD_SEG20/  
ADC1_IN8/RTC_CALIB/  
/VREFINT  
Timer 1 - break input / LCD  
segment 20 / ADC1_IN8 /  
RTC calibration / Internal  
voltage reference output  
35  
36  
I/O TT(2)  
X
X
X
X
X
X
HS  
HS  
X
X
X Port D6  
Timer 1 - inverted channel  
1/ LCD segment 21 /  
X Port D7 ADC1_IN7 / RTC alarm /  
Internal voltage reference  
output  
PD7/TIM1_CH1N  
/LCD_SEG21/  
ADC1_IN7/RTC_ALARM/V  
REFINT  
I/O TT(2)  
14  
15  
PE0(3)/LCD_SEG1  
I/O FT  
X
X
X
X
X
X
HS  
HS  
X
X
X Port E0 LCD segment 1  
PE1/TIM1_CH2N/  
LCD_SEG2  
Timer 1 - inverted channel  
X Port E1  
I/O TT(2)  
2 / LCD segment 2  
PE2/TIM1_CH3N/  
LCD_SEG3  
Timer 1 - inverted channel  
X Port E2  
16  
I/O TT(2)  
X
X
X
HS  
X
3 / LCD segment 3  
17  
18  
PE3/LCD_SEG4  
PE4/LCD_SEG5  
I/O TT(2)  
I/O TT(2)  
X
X
X
X
X
X
HS  
HS  
X
X
X Port E3 LCD segment 4  
X Port E4 LCD segment 5  
PE5/LCD_SEG6/  
ADC1_IN23  
LCD segment 6 /  
X Port E5  
19  
47  
I/O TT(2)  
I/O TT(2)  
X
X
X
X
X
X
HS  
HS  
X
X
ADC1_IN23  
PE6/LCD_SEG26/  
PVD_IN  
X Port E6 LCD segment 26/PVD_IN  
26/102  
Doc ID 023331 Rev 1  
STM8L052C6  
Pin description  
Table 4.  
Medium density value line STM8L05xxx pin description (continued)  
Pin  
number  
Input  
Output  
Pin name  
Default alternate function  
PE7/LCD_SEG27  
PF0/ADC1_IN24  
48  
32  
I/O TT(2)  
X
X
X
X
X
X
HS  
X
X
X Port E7 LCD segment 27  
ADC1_IN24  
I/O  
S
HS  
X Port F0  
13  
13  
10  
11  
12  
VLCD  
Reserved  
VDD  
LCD booster external capacitor  
Reserved. Must be tied to VDD  
Digital power supply  
S
S
S
VDDA  
Analog supply voltage  
VREF+  
ADC1 positive voltage reference  
I/O ground / Analog ground voltage /  
ADC1 negative voltage reference  
9
VSS1/VSSA/VREF-  
S
39  
40  
VDD2  
VSS2  
S
S
IOs supply voltage  
IOs ground voltage  
[USART1 synchronous  
PA0(6)/[USART1_CK](8)  
/
HS  
clock](8) / SWIM input and  
1
I/O  
X
X(6)  
X
X
X Port A0  
(7)  
SWIM/BEEP/IR_TIM (7)  
output /Beep output  
/ Infrared Timer output  
1. At power-up, the PA1/NRST pin is a reset input pin with pull-up. To be used as a general purpose pin (PA1), it can be  
configured only as output open-drain or push-pull, not as a general purpose input. Refer to Section Configuring NRST/PA1  
pin as general purpose output in the STM8L15x and STM8L16x reference manual (RM0031).  
2. In the 3.6 V tolerant I/Os, protection diode to VDD is not implemented.  
3. In the 5 V tolerant I/Os, protection diode to VDD is not implemented.  
4. A pull-up is applied to PB0 and PB4 during the reset phase. These two pins are input floating after reset release.  
5. In the open-drain output column, ‘T’ defines a true open-drain I/O (P-buffer, weak pull-up and protection diode to VDD are  
not implemented).  
6. The PA0 pin is in input pull-up during the reset phase and after reset release.  
7. High Sink LED driver capability available on PA0.  
8. [ ] Alternate function remapping option (if the same alternate function is shown twice, it indicates an exclusive choice not  
aduplication of the function).  
Note:  
The slope control of all GPIO pins, except true open drain pins, can be programmed. By  
default, the slope control is limited to 2 MHz.  
Doc ID 023331 Rev 1  
27/102  
 
 
 
 
Pin description  
STM8L052C6  
4.1  
System configuration options  
As shown in Table 4: Medium density value line STM8L05xxx pin description, some  
alternate functions can be remapped on different I/O ports by programming one of the two  
remapping registers described in the “ Routing interface (RI) and system configuration  
controller” section in the STM8L15x and STM8L16x reference manual (RM0031).  
28/102  
Doc ID 023331 Rev 1  
STM8L052C6  
Memory and register map  
5
Memory and register map  
5.1  
Memory mapping  
The memory map is shown in Figure 4.  
Figure 4.  
Memory map  
0x00 0000  
(2 Kbytes) (1)  
RAM  
including  
(513 bytes) (1)  
Stack  
0x00 07FF  
0x00 0800  
Reserved  
0x00 0FFF  
0x00 1000  
Data EEPROM  
(256 bytes)  
0x00 10FF  
0x00 1100  
0x00 5000  
GPIO Ports  
Flash  
0x00 5050  
0x00 5070  
0x00 509E  
0x00 50A0  
0x00 50A6  
0x00 50B0  
Reserved  
0x00 47FF  
0x00 4800  
DMA1  
SYSCFG  
ITC-EXTI  
WFE  
Option bytes  
0x00 48FF  
0x00 4900  
RST  
0x00 50B2  
0x00 50C0  
0x00 50D3  
0x00 50E0  
0x00 50F3  
0x00 5140  
0x00 5200  
0x00 5210  
0x00 5230  
0x00 5250  
0x00 5280  
0x00 52B0  
PWR  
CLK  
Reserved  
WWDG  
IWDG  
BEEP  
RTC  
0x00 4FFF  
0x00 5000  
SPI1  
I2C1  
GPIO and peripheral registers  
Reserved  
USART1  
TIM2  
0x00 57FF  
0x00 5800  
TIM3  
0x00 5FFF  
0x00 6000  
TIM1  
0x00 52E0  
0x00 52FF  
0x00 5340  
0x00 5380  
0x00 5400  
0x00 5430  
0x00 5440  
TIM4  
Boot ROM  
(2 Kbytes)  
IRTIM  
ADC1  
0x00 67FF  
0x00 6800  
Reserved  
LCD  
Reserved  
0x00 7EFF  
0x00 7F00  
RI  
CPU/SWIM/Debug/ITC  
Registers  
Reserved  
0x00 7FFF  
0x00 8000  
0x00 807F  
0x00 8080  
Reset and interrupt vectors  
Medium density  
Flash program memory  
(32 Kbytes)  
0x00 FFFF  
1. Table 5 lists the boundary addresses for each memory size. The top of the stack is at the RAM end  
address.  
2. Refer to Table 7 for an overview of hardware register mapping, to Table 6 for details on I/O port hardware  
registers, and to Table 8 for information on CPU/SWIM/debug module controller registers.  
Doc ID 023331 Rev 1  
29/102  
 
Memory and register map  
STM8L052C6  
Table 5.  
Flash and RAM boundary addresses  
Memory area  
Size  
Start address  
End address  
RAM  
2 Kbytes  
0x00 0000  
0x00 8000  
0x00 07FF  
0x00 FFFF  
Flash program memory  
32 Kbytes  
5.2  
Register map  
Table 6.  
I/O port hardware register map  
Reset  
status  
Address  
Block  
Register label  
Register name  
0x00 5000  
0x00 5001  
0x00 5002  
0x00 5003  
0x00 5004  
0x00 5005  
0x00 5006  
0x00 5007  
0x00 5008  
0x00 5009  
0x00 500A  
0x00 500B  
0x00 500C  
0x00 500D  
0x00 500E  
0x00 500F  
0x00 5010  
0x00 5011  
0x00 5012  
0x00 5013  
0x00 5014  
0x00 5015  
0x00 5016  
0x00 5017  
0x00 5018  
PA_ODR  
PA_IDR  
Port A data output latch register  
Port A input pin value register  
Port A data direction register  
Port A control register 1  
0x00  
0xXX  
0x00  
0x01  
0x00  
0x00  
0xXX  
0x00  
0x00  
0x00  
0x00  
0xXX  
0x00  
0x00  
0x00  
0x00  
0xXX  
0x00  
0x00  
0x00  
0x00  
0xXX  
0x00  
0x00  
0x00  
Port A  
PA_DDR  
PA_CR1  
PA_CR2  
PB_ODR  
PB_IDR  
PB_DDR  
PB_CR1  
PB_CR2  
PC_ODR  
PC_IDR  
PC_DDR  
PC_CR1  
PC_CR2  
PD_ODR  
PD_IDR  
PD_DDR  
PD_CR1  
PD_CR2  
PE_ODR  
PE_IDR  
PE_DDR  
PE_CR1  
PE_CR2  
Port A control register 2  
Port B data output latch register  
Port B input pin value register  
Port B data direction register  
Port B control register 1  
Port B  
Port C  
Port D  
Port E  
Port B control register 2  
Port C data output latch register  
Port C input pin value register  
Port C data direction register  
Port C control register 1  
Port C control register 2  
Port D data output latch register  
Port D input pin value register  
Port D data direction register  
Port D control register 1  
Port D control register 2  
Port E data output latch register  
Port E input pin value register  
Port E data direction register  
Port E control register 1  
Port E control register 2  
30/102  
Doc ID 023331 Rev 1  
STM8L052C6  
Table 6. I/O port hardware register map (continued)  
Address  
Memory and register map  
Reset  
Block  
Register label  
Register name  
status  
0x00 5019  
0x00 501A  
0x00 501B  
0x00 501C  
0x00 501D  
PF_ODR  
PF_IDR  
PF_DDR  
PF_CR1  
PF_CR2  
Port F data output latch register  
Port F input pin value register  
Port F data direction register  
Port F control register 1  
0x00  
0xXX  
0x00  
0x00  
0x00  
Port F  
Port F control register 2  
Table 7.  
General hardware register map  
Reset  
status  
Address  
Block  
Register label  
Register name  
0x00 501E to  
0x00 5049  
Reserved area (44 bytes)  
0x00 5050  
0x00 5051  
FLASH_CR1  
FLASH_CR2  
Flash control register 1  
Flash control register 2  
0x00  
0x00  
Flash program memory unprotection key  
register  
0x00 5052  
0x00 5053  
0x00 5054  
FLASH _PUKR  
FLASH _DUKR  
FLASH _IAPSR  
0x00  
0x00  
0x00  
Flash  
Data EEPROM unprotection key register  
Flash in-application programming status  
register  
0x00 5055 to  
0x00 506F  
Reserved area (27 bytes)  
Doc ID 023331 Rev 1  
31/102  
Memory and register map  
Table 7. General hardware register map (continued)  
Address  
STM8L052C6  
Reset  
status  
Block  
Register label  
Register name  
DMA1 global configuration & status  
register  
0x00 5070  
0x00 5071  
DMA1_GCSR  
DMA1_GIR1  
0xFC  
0x00  
DMA1 global interrupt register 1  
Reserved area (3 bytes)  
0x00 5072 to  
0x00 5074  
0x00 5075  
0x00 5076  
DMA1_C0CR  
DMA1 channel 0 configuration register  
DMA1 channel 0 status & priority register  
0x00  
0x00  
DMA1_C0SPR  
DMA1 number of data to transfer register  
(channel 0)  
0x00 5077  
0x00 5078  
DMA1_C0NDTR  
DMA1_C0PARH  
DMA1_C0PARL  
0x00  
0x52  
0x00  
DMA1 peripheral address high register  
(channel 0)  
DMA1 peripheral address low register  
(channel 0)  
0x00 5079  
0x00 507A  
0x00 507B  
Reserved area (1 byte)  
DMA1  
DMA1 memory 0 address high register  
(channel 0)  
DMA1_C0M0ARH  
DMA1_C0M0ARL  
0x00  
0x00  
DMA1 memory 0 address low register  
(channel 0)  
0x00 507C  
0x00 507D  
0x00 507E  
Reserved area (2 bytes)  
0x00 507F  
0x00 5080  
DMA1_C1CR  
DMA1 channel 1 configuration register  
DMA1 channel 1 status & priority register  
0x00  
0x00  
DMA1_C1SPR  
DMA1 number of data to transfer register  
(channel 1)  
0x00 5081  
0x00 5082  
0x00 5083  
DMA1_C1NDTR  
DMA1_C1PARH  
DMA1_C1PARL  
0x00  
0x52  
0x00  
DMA1 peripheral address high register  
(channel 1)  
DMA1 peripheral address low register  
(channel 1)  
32/102  
Doc ID 023331 Rev 1  
STM8L052C6  
Table 7. General hardware register map (continued)  
Address  
Memory and register map  
Reset  
Block  
Register label  
Register name  
status  
0x00 5084  
0x00 5085  
Reserved area (1 byte)  
DMA1 memory 0 address high register  
(channel 1)  
DMA1_C1M0ARH  
DMA1_C1M0ARL  
0x00  
0x00  
DMA1 memory 0 address low register  
(channel 1)  
0x00 5086  
0x00 5087  
0x00 5088  
Reserved area (2 bytes)  
0x00 5089  
0x00 508A  
DMA1_C2CR  
DMA1 channel 2 configuration register  
DMA1 channel 2 status & priority register  
0x00  
0x00  
DMA1_C2SPR  
DMA1 number of data to transfer register  
(channel 2)  
0x00 508B  
0x00 508C  
DMA1_C2NDTR  
DMA1_C2PARH  
DMA1_C2PARL  
0x00  
0x52  
0x00  
DMA1 peripheral address high register  
(channel 2)  
DMA1 peripheral address low register  
(channel 2)  
0x00 508D  
0x00 508E  
0x00 508F  
Reserved area (1 byte)  
DMA1 memory 0 address high register  
(channel 2)  
DMA1_C2M0ARH  
DMA1_C2M0ARL  
0x00  
0x00  
DMA1  
DMA1 memory 0 address low register  
(channel 2)  
0x00 5090  
0x00 5091  
0x00 5092  
Reserved area (2 bytes)  
0x00 5093  
0x00 5094  
DMA1_C3CR  
DMA1 channel 3 configuration register  
DMA1 channel 3 status & priority register  
0x00  
0x00  
DMA1_C3SPR  
DMA1 number of data to transfer register  
(channel 3)  
0x00 5095  
0x00 5096  
DMA1_C3NDTR  
0x00  
0x40  
0x00  
DMA1_C3PARH_  
C3M1ARH  
DMA1 peripheral address high register  
(channel 3)  
DMA1_C3PARL_  
C3M1ARL  
DMA1 peripheral address low register  
(channel 3)  
0x00 5097  
0x00 5098  
0x00 5099  
Reserved area (1 byte)  
DMA1 memory 0 address high register  
(channel 3)  
DMA1_C3M0ARH  
DMA1_C3M0ARL  
0x00  
0x00  
DMA1 memory 0 address low register  
(channel 3)  
0x00 509A  
0x00 509B to  
0x00 509D  
Reserved area (3 bytes)  
0x00 509E  
0x00 509F  
SYSCFG_RMPCR1  
SYSCFG_RMPCR2  
Remapping register 1  
Remapping register 2  
0x00  
0x00  
Doc ID 023331 Rev 1  
33/102  
Memory and register map  
Table 7. General hardware register map (continued)  
Address  
STM8L052C6  
Reset  
status  
Block  
Register label  
Register name  
0x00 50A0  
0x00 50A1  
0x00 50A2  
0x00 50A3  
0x00 50A4  
0x00 50A5  
0x00 50A6  
0x00 50A7  
0x00 50A8  
EXTI_CR1  
EXTI_CR2  
EXTI_CR3  
EXTI_SR1  
EXTI_SR2  
EXTI_CONF1  
WFE_CR1  
WFE_CR2  
WFE_CR3  
External interrupt control register 1  
External interrupt control register 2  
External interrupt control register 3  
External interrupt status register 1  
External interrupt status register 2  
External interrupt port select register 1  
WFE control register 1  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
ITC - EXTI  
WFE control register 2  
WFE  
WFE control register 3  
0x00 50AC to  
0x00 50AF  
Reserved area (4 bytes)  
0x00 50B0  
0x00 50B1  
0x00 50B2  
0x00 50B3  
RST_CR  
RST_SR  
Reset control register  
Reset status register  
0x00  
0x01  
0x00  
0x00  
RST  
PWR_CSR1  
PWR_CSR2  
Power control and status register 1  
Power control and status register 2  
PWR  
0x00 50B4 to  
0x00 50BF  
Reserved area (12 bytes)  
0x00 50C0  
0x00 50C1  
0x00 50C2  
0x00 50C3  
0x00 50C4  
0x00 50C5  
0x00 50C6  
0x00 50C7  
0x00 50C8  
0x00 50C9  
0x00 50CA  
0x00 50CB  
0x00 50CC  
0x00 50CD  
0x00 50CE  
0x00 50CF  
CLK_DIVR  
CLK_CRTCR  
CLK_ICKR  
Clock master divider register  
Clock RTC register  
0x03  
0x00  
Internal clock control register  
Peripheral clock gating register 1  
Peripheral clock gating register 2  
Configurable clock control register  
External clock control register  
System clock status register  
System clock switch register  
Clock switch control register  
Clock security system register  
Clock BEEP register  
0x11  
CLK_PCKENR1  
CLK_PCKENR2  
CLK_CCOR  
0x00  
0x80  
0x00  
CLK_ECKR  
0x00  
CLK_SCSR  
0x01  
CLK  
CLK_SWR  
0x01  
CLK_SWCR  
0bxxxx0000  
0x00  
CLK_CSSR  
CLK_CBEEPR  
CLK_HSICALR  
CLK_HSITRIMR  
CLK_HSIUNLCKR  
CLK_REGCSR  
0x00  
HSI calibration register  
0xxx  
HSI clock calibration trimming register  
HSI unlock register  
0x00  
0x00  
Main regulator control status register  
0bxx11100x  
0x00 50D0 to  
0x00 50D2  
Reserved area (3 bytes)  
34/102  
Doc ID 023331 Rev 1  
STM8L052C6  
Table 7. General hardware register map (continued)  
Address  
Memory and register map  
Reset  
Block  
Register label  
Register name  
status  
0x00 50D3  
0x00 50D4  
WWDG_CR  
WWDG_WR  
WWDG control register  
WWDR window register  
0x7F  
0x7F  
WWDG  
0x00 50D5 to  
00 50DF  
Reserved area (11 bytes)  
0x00 50E0  
0x00 50E1  
0x00 50E2  
IWDG_KR  
IWDG_PR  
IWDG_RLR  
IWDG key register  
IWDG prescaler register  
IWDG reload register  
0xXX  
0x00  
0xFF  
IWDG  
BEEP  
0x00 50E3 to  
0x00 50EF  
Reserved area (13 bytes)  
0x00 50F0  
BEEP_CSR1  
BEEP_CSR2  
BEEP control/status register 1  
Reserved area (2 bytes)  
0x00  
0x1F  
0x00 50F1  
0x00 50F2  
0x00 50F3  
BEEP control/status register 2  
0x00 50F4 to  
0x00 513F  
Reserved area (76 bytes)  
Doc ID 023331 Rev 1  
35/102  
Memory and register map  
Table 7. General hardware register map (continued)  
Address  
STM8L052C6  
Reset  
status  
Block  
Register label  
Register name  
0x00 5140  
0x00 5141  
0x00 5142  
0x00 5143  
0x00 5144  
0x00 5145  
0x00 5146  
0x00 5147  
0x00 5148  
0x00 5149  
0x00 514A  
0x00 514B  
0x00 514C  
0x00 514D  
RTC_TR1  
RTC_TR2  
RTC_TR3  
Time register 1  
Time register 2  
0x00  
0x00  
0x00  
Time register 3  
Reserved area (1 byte)  
Date register 1  
RTC_DR1  
RTC_DR2  
RTC_DR3  
0x01  
0x21  
0x00  
Date register 2  
Date register 3  
Reserved area (1 byte)  
Control register 1  
RTC_CR1  
RTC_CR2  
RTC_CR3  
0x00  
0x00  
0x00  
Control register 2  
Control register 3  
Reserved area (1 byte)  
Initialization and status register 1  
Initialization and Status register 2  
RTC_ISR1  
RTC_ISR2  
0x00  
0x00  
0x00 514E  
0x00 514F  
Reserved area (2 bytes)  
0x00 5150  
0x00 5151  
0x00 5152  
0x00 5153  
0x00 5154  
0x00 5155  
RTC_SPRERH(1)  
RTC_SPRERL(1)  
RTC_APRER(1)  
Synchronous prescaler register high  
Synchronous prescaler register low  
Asynchronous prescaler register  
Reserved area (1 byte)  
0x00(1)  
0xFF(1)  
0x7F(1)  
RTC  
RTC_WUTRH(1)  
RTC_WUTRL(1)  
Wakeup timer register high  
0xFF(1)  
0xFF(1)  
Wakeup timer register low  
0x00 5156 to  
0x00 5158  
Reserved area (3 bytes)  
Write protection register  
Reserved area (2 bytes)  
0x00 5159  
RTC_WPR  
0x00  
0x00 515A  
0x00 515B  
0x00 515C  
0x00 515D  
0x00 515E  
0x00 515F  
RTC_ALRMAR1  
RTC_ALRMAR2  
RTC_ALRMAR3  
RTC_ALRMAR4  
Alarm A register 1  
Alarm A register 2  
Alarm A register 3  
Alarm A register 4  
0x00  
0x00  
0x00  
0x00  
0x00 5160 to  
0x00 51FF  
Reserved area (160 bytes)  
36/102  
Doc ID 023331 Rev 1  
STM8L052C6  
Table 7. General hardware register map (continued)  
Address  
Memory and register map  
Reset  
Block  
Register label  
Register name  
status  
0x00 5200  
0x00 5201  
0x00 5202  
0x00 5203  
0x00 5204  
0x00 5205  
0x00 5206  
0x00 5207  
SPI1_CR1  
SPI1_CR2  
SPI1 control register 1  
SPI1 control register 2  
SPI1 interrupt control register  
SPI1 status register  
0x00  
0x00  
0x00  
0x02  
0x00  
0x07  
0x00  
0x00  
SPI1_ICR  
SPI1_SR  
SPI1  
SPI1_DR  
SPI1 data register  
SPI1_CRCPR  
SPI1_RXCRCR  
SPI1_TXCRCR  
SPI1 CRC polynomial register  
SPI1 Rx CRC register  
SPI1 Tx CRC register  
0x00 5208 to  
0x00 520F  
Reserved area (8 bytes)  
0x00 5210  
0x00 5211  
0x00 5212  
0x00 5213  
0x00 5214  
0x00 5215  
0x00 5216  
0x00 5217  
0x00 5218  
0x00 5219  
0x00 521A  
0x00 521B  
0x00 521C  
0x00 521D  
0x00 521E  
I2C1_CR1  
I2C1_CR2  
I2C1 control register 1  
I2C1 control register 2  
0x00  
0x00  
0x00  
0x00  
0x00  
I2C1_FREQR  
I2C1_OARL  
I2C1_OARH  
I2C1 frequency register  
I2C1 own address register low  
I2C1 own address register high  
Reserved (1 byte)  
I2C1_DR  
I2C1_SR1  
I2C1 data register  
0x00  
0x00  
0x00  
0x0x  
0x00  
0x00  
0x00  
0x02  
0x00  
I2C1 status register 1  
I2C1  
I2C1_SR2  
I2C1 status register 2  
I2C1_SR3  
I2C1 status register 3  
I2C1_ITR  
I2C1 interrupt control register  
I2C1 clock control register low  
I2C1 clock control register high  
I2C1 TRISE register  
I2C1_CCRL  
I2C1_CCRH  
I2C1_TRISER  
I2C1_PECR  
I2C1 packet error checking register  
0x00 521F to  
0x00 522F  
Reserved area (17 bytes)  
Doc ID 023331 Rev 1  
37/102  
Memory and register map  
Table 7. General hardware register map (continued)  
Address  
STM8L052C6  
Reset  
status  
Block  
Register label  
Register name  
0x00 5230  
0x00 5231  
0x00 5232  
0x00 5233  
0x00 5234  
0x00 5235  
0x00 5236  
0x00 5237  
0x00 5238  
0x00 5239  
0x00 523A  
USART1_SR  
USART1_DR  
USART1 status register  
USART1 data register  
0xC0  
undefined  
0x00  
USART1_BRR1  
USART1_BRR2  
USART1_CR1  
USART1_CR2  
USART1_CR3  
USART1_CR4  
USART1_CR5  
USART1_GTR  
USART1_PSCR  
USART1 baud rate register 1  
USART1 baud rate register 2  
USART1 control register 1  
USART1 control register 2  
USART1 control register 3  
USART1 control register 4  
USART1 control register 5  
USART1 guard time register  
USART1 prescaler register  
0x00  
0x00  
USART1  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00 523B to  
0x00 524F  
Reserved area (21 bytes)  
38/102  
Doc ID 023331 Rev 1  
STM8L052C6  
Table 7. General hardware register map (continued)  
Address  
Memory and register map  
Reset  
Block  
Register label  
Register name  
status  
0x00 5250  
0x00 5251  
0x00 5252  
0x00 5253  
0x00 5254  
0x00 5255  
0x00 5256  
0x00 5257  
0x00 5258  
0x00 5259  
0x00 525A  
0x00 525B  
0x00 525C  
0x00 525D  
0x00 525E  
0x00 525F  
0x00 5260  
0x00 5261  
0x00 5262  
0x00 5263  
0x00 5264  
0x00 5265  
0x00 5266  
TIM2_CR1  
TIM2_CR2  
TIM2 control register 1  
TIM2 control register 2  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0xFF  
0xFF  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
TIM2_SMCR  
TIM2_ETR  
TIM2 Slave mode control register  
TIM2 external trigger register  
TIM2 DMA1 request enable register  
TIM2 interrupt enable register  
TIM2 status register 1  
TIM2_DER  
TIM2_IER  
TIM2_SR1  
TIM2_SR2  
TIM2 status register 2  
TIM2_EGR  
TIM2 event generation register  
TIM2 capture/compare mode register 1  
TIM2 capture/compare mode register 2  
TIM2 capture/compare enable register 1  
TIM2 counter high  
TIM2_CCMR1  
TIM2_CCMR2  
TIM2_CCER1  
TIM2_CNTRH  
TIM2_CNTRL  
TIM2_PSCR  
TIM2_ARRH  
TIM2_ARRL  
TIM2_CCR1H  
TIM2_CCR1L  
TIM2_CCR2H  
TIM2_CCR2L  
TIM2_BKR  
TIM2  
TIM2 counter low  
TIM2 prescaler register  
TIM2 auto-reload register high  
TIM2 auto-reload register low  
TIM2 capture/compare register 1 high  
TIM2 capture/compare register 1 low  
TIM2 capture/compare register 2 high  
TIM2 capture/compare register 2 low  
TIM2 break register  
TIM2_OISR  
TIM2 output idle state register  
0x00 5267 to  
0x00 527F  
Reserved area (25 bytes)  
Doc ID 023331 Rev 1  
39/102  
Memory and register map  
Table 7. General hardware register map (continued)  
Address  
STM8L052C6  
Reset  
status  
Block  
Register label  
Register name  
0x00 5280  
0x00 5281  
0x00 5282  
0x00 5283  
0x00 5284  
0x00 5285  
0x00 5286  
0x00 5287  
0x00 5288  
0x00 5289  
0x00 528A  
0x00 528B  
0x00 528C  
0x00 528D  
0x00 528E  
0x00 528F  
0x00 5290  
0x00 5291  
0x00 5292  
0x00 5293  
0x00 5294  
0x00 5295  
0x00 5296  
TIM3_CR1  
TIM3_CR2  
TIM3 control register 1  
TIM3 control register 2  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0xFF  
0xFF  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
TIM3_SMCR  
TIM3_ETR  
TIM3 Slave mode control register  
TIM3 external trigger register  
TIM3 DMA1 request enable register  
TIM3 interrupt enable register  
TIM3 status register 1  
TIM3_DER  
TIM3_IER  
TIM3_SR1  
TIM3_SR2  
TIM3 status register 2  
TIM3_EGR  
TIM3 event generation register  
TIM3 Capture/Compare mode register 1  
TIM3 Capture/Compare mode register 2  
TIM3 Capture/Compare enable register 1  
TIM3 counter high  
TIM3_CCMR1  
TIM3_CCMR2  
TIM3_CCER1  
TIM3_CNTRH  
TIM3_CNTRL  
TIM3_PSCR  
TIM3_ARRH  
TIM3_ARRL  
TIM3_CCR1H  
TIM3_CCR1L  
TIM3_CCR2H  
TIM3_CCR2L  
TIM3_BKR  
TIM3  
TIM3 counter low  
TIM3 prescaler register  
TIM3 Auto-reload register high  
TIM3 Auto-reload register low  
TIM3 Capture/Compare register 1 high  
TIM3 Capture/Compare register 1 low  
TIM3 Capture/Compare register 2 high  
TIM3 Capture/Compare register 2 low  
TIM3 break register  
TIM3_OISR  
TIM3 output idle state register  
0x00 5297 to  
0x00 52AF  
Reserved area (25 bytes)  
40/102  
Doc ID 023331 Rev 1  
STM8L052C6  
Table 7. General hardware register map (continued)  
Address  
Memory and register map  
Reset  
Block  
Register label  
Register name  
status  
0x00 52B0  
0x00 52B1  
0x00 52B2  
0x00 52B3  
0x00 52B4  
0x00 52B5  
0x00 52B6  
0x00 52B7  
0x00 52B8  
0x00 52B9  
0x00 52BA  
0x00 52BB  
0x00 52BC  
0x00 52BD  
0x00 52BE  
0x00 52BF  
0x00 52C0  
0x00 52C1  
0x00 52C2  
0x00 52C3  
0x00 52C4  
0x00 52C5  
0x00 52C6  
0x00 52C7  
0x00 52C8  
0x00 52C9  
0x00 52CA  
0x00 52CB  
0x00 52CC  
0x00 52CD  
0x00 52CE  
0x00 52CF  
0x00 52D0  
0x00 52D1  
TIM1_CR1  
TIM1_CR2  
TIM1 control register 1  
TIM1 control register 2  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0xFF  
0xFF  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
TIM1_SMCR  
TIM1_ETR  
TIM1 Slave mode control register  
TIM1 external trigger register  
TIM1 DMA1 request enable register  
TIM1 Interrupt enable register  
TIM1 status register 1  
TIM1_DER  
TIM1_IER  
TIM1_SR1  
TIM1_SR2  
TIM1 status register 2  
TIM1_EGR  
TIM1 event generation register  
TIM1 Capture/Compare mode register 1  
TIM1 Capture/Compare mode register 2  
TIM1 Capture/Compare mode register 3  
TIM1 Capture/Compare mode register 4  
TIM1 Capture/Compare enable register 1  
TIM1 Capture/Compare enable register 2  
TIM1 counter high  
TIM1_CCMR1  
TIM1_CCMR2  
TIM1_CCMR3  
TIM1_CCMR4  
TIM1_CCER1  
TIM1_CCER2  
TIM1_CNTRH  
TIM1_CNTRL  
TIM1_PSCRH  
TIM1_PSCRL  
TIM1_ARRH  
TIM1_ARRL  
TIM1_RCR  
TIM1 counter low  
TIM1  
TIM1 prescaler register high  
TIM1 prescaler register low  
TIM1 Auto-reload register high  
TIM1 Auto-reload register low  
TIM1 Repetition counter register  
TIM1 Capture/Compare register 1 high  
TIM1 Capture/Compare register 1 low  
TIM1 Capture/Compare register 2 high  
TIM1 Capture/Compare register 2 low  
TIM1 Capture/Compare register 3 high  
TIM1 Capture/Compare register 3 low  
TIM1 Capture/Compare register 4 high  
TIM1 Capture/Compare register 4 low  
TIM1 break register  
TIM1_CCR1H  
TIM1_CCR1L  
TIM1_CCR2H  
TIM1_CCR2L  
TIM1_CCR3H  
TIM1_CCR3L  
TIM1_CCR4H  
TIM1_CCR4L  
TIM1_BKR  
TIM1_DTR  
TIM1 dead-time register  
TIM1_OISR  
TIM1_DCR1  
TIM1 output idle state register  
DMA1 control register 1  
Doc ID 023331 Rev 1  
41/102  
Memory and register map  
Table 7. General hardware register map (continued)  
Address  
STM8L052C6  
Reset  
status  
Block  
Register label  
Register name  
0x00 52D2  
0x00 52D3  
TIM1_DCR2  
TIM1 DMA1 control register 2  
0x00  
0x00  
TIM1  
TIM1_DMA1R  
TIM1 DMA1 address for burst mode  
0x00 52D4 to  
0x00 52DF  
Reserved area (12 bytes)  
0x00 52E0  
0x00 52E1  
0x00 52E2  
0x00 52E3  
0x00 52E4  
0x00 52E5  
0x00 52E6  
0x00 52E7  
0x00 52E8  
0x00 52E9  
TIM4_CR1  
TIM4_CR2  
TIM4_SMCR  
TIM4_DER  
TIM4_IER  
TIM4 control register 1  
TIM4 control register 2  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
TIM4 Slave mode control register  
TIM4 DMA1 request enable register  
TIM4 Interrupt enable register  
TIM4 status register 1  
TIM4  
TIM4_SR1  
TIM4_EGR  
TIM4_CNTR  
TIM4_PSCR  
TIM4_ARR  
TIM4 Event generation register  
TIM4 counter  
TIM4 prescaler register  
TIM4 Auto-reload register  
0x00 52EA to  
0x00 52FE  
Reserved area (21 bytes)  
Infrared control register  
Reserved area (64 bytes)  
0x00 52FF  
IRTIM  
IR_CR  
0x00  
0x00 5300 to  
0x00 533F  
42/102  
Doc ID 023331 Rev 1  
STM8L052C6  
Table 7. General hardware register map (continued)  
Address  
Memory and register map  
Reset  
Block  
Register label  
Register name  
status  
0x00 5340  
0x00 5341  
0x00 5342  
0x00 5343  
0x00 5344  
0x00 5345  
0x00 5346  
0x00 5347  
0x00 5348  
0x00 5349  
0x00 534A  
0x00 534B  
0x00 534C  
0x00 534D  
0x00 534E  
0x00 534F  
0x00 5350  
0x00 5351  
ADC1_CR1  
ADC1_CR2  
ADC1 configuration register 1  
ADC1 configuration register 2  
ADC1 configuration register 3  
ADC1 status register  
0x00  
0x00  
0x1F  
0x00  
0x00  
0x00  
0x0F  
0xFF  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
ADC1_CR3  
ADC1_SR  
ADC1_DRH  
ADC1_DRL  
ADC1 data register high  
ADC1 data register low  
ADC1_HTRH  
ADC1_HTRL  
ADC1_LTRH  
ADC1_LTRL  
ADC1_SQR1  
ADC1_SQR2  
ADC1_SQR3  
ADC1_SQR4  
ADC1_TRIGR1  
ADC1_TRIGR2  
ADC1_TRIGR3  
ADC1_TRIGR4  
ADC1 high threshold register high  
ADC1 high threshold register low  
ADC1 low threshold register high  
ADC1 low threshold register low  
ADC1 channel sequence 1 register  
ADC1 channel sequence 2 register  
ADC1 channel sequence 3 register  
ADC1 channel sequence 4 register  
ADC1 trigger disable 1  
ADC1  
ADC1 trigger disable 2  
ADC1 trigger disable 3  
ADC1 trigger disable 4  
0x00 5352 to  
0x00 53FF  
Reserved area (174 bytes)  
0x00 5400  
0x00 5401  
0x00 5402  
0x00 5403  
0x00 5404  
0x00 5405  
0x00 5406  
0x00 5407  
LCD_CR1  
LCD_CR2  
LCD_CR3  
LCD_FRQ  
LCD_PM0  
LCD_PM1  
LCD_PM2  
LCD control register 1  
LCD control register 2  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
LCD control register 3  
LCD frequency selection register  
LCD Port mask register 0  
LCD Port mask register 1  
LCD Port mask register 2  
Reserved area  
LCD  
Doc ID 023331 Rev 1  
43/102  
Memory and register map  
Table 7. General hardware register map (continued)  
Address  
STM8L052C6  
Reset  
status  
Block  
Register label  
Register name  
0x00 5408 to  
0x00 540B  
Reserved area (4 bytes)  
0x00 540C  
0x00 540D  
0x00 540E  
0x00 540F  
0x00 5410  
0x00 5411  
0x00 5412  
0x00 5413  
0x00 5414  
0x00 5415  
0x00 5416  
0x00 5417  
0x00 5418  
0x00 5419  
LCD_RAM0  
LCD_RAM1  
LCD_RAM2  
LCD_RAM3  
LCD_RAM4  
LCD_RAM5  
LCD_RAM6  
LCD_RAM7  
LCD_RAM8  
LCD_RAM9  
LCD_RAM10  
LCD_RAM11  
LCD_RAM12  
LCD_RAM13  
LCD display memory 0  
LCD display memory 1  
LCD display memory 2  
LCD display memory 3  
LCD display memory 4  
LCD display memory 5  
LCD display memory 6  
LCD display memory 7  
LCD display memory 8  
LCD display memory 9  
LCD display memory 10  
LCD display memory 11  
LCD display memory 12  
LCD display memory 13  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
LCD  
0x00 541A to  
0x00 542F  
Reserved area (22 bytes)  
44/102  
Doc ID 023331 Rev 1  
STM8L052C6  
Table 7. General hardware register map (continued)  
Address  
Memory and register map  
Reset  
Block  
Register label  
Register name  
status  
0x00 5430  
0x00 5431  
0x00 5432  
0x00 5433  
0x00 5434  
0x00 5435  
0x00 5436  
0x00 5437  
0x00 5438  
0x00 5439  
0x00 543A  
0x00 543B  
0x00 543C  
0x00 543D  
0x00 543E  
0x00 543F  
Reserved area (1 byte)  
Timer input capture routing register 1  
Timer input capture routing register 2  
I/O input register 1  
0x00  
0x00  
RI_ICR1  
RI_ICR2  
0x00  
RI_IOIR1  
undefined  
undefined  
undefined  
0x00  
RI_IOIR2  
I/O input register 2  
RI_IOIR3  
I/O input register 3  
RI_IOCMR1  
RI_IOCMR2  
RI_IOCMR3  
RI_IOSR1  
RI_IOSR2  
RI_IOSR3  
RI_IOGCR  
RI_ASCR1  
RI_ASCR2  
RI_RCR  
I/O control mode register 1  
I/O control mode register 2  
I/O control mode register 3  
I/O switch register 1  
0x00  
RI  
0x00  
0x00  
I/O switch register 2  
0x00  
I/O switch register 3  
0x00  
I/O group control register  
Analog switch register 1  
Analog switch register 2  
Resistor control register 1  
0x3F  
0x00  
0x00  
0x00  
0x00 5440 to  
0x00 5444  
Reserved area (5 bytes)  
1. These registers are not impacted by a system reset. They are reset at power-on.  
Table 8.  
Address  
CPU/SWIM/debug module/interrupt controller registers  
Reset  
Status  
Block  
Register Label  
Register Name  
0x00 7F00  
0x00 7F01  
0x00 7F02  
0x00 7F03  
0x00 7F04  
0x00 7F05  
0x00 7F06  
0x00 7F07  
0x00 7F08  
0x00 7F09  
0x00 7F0A  
A
Accumulator  
Program counter extended  
Program counter high  
Program counter low  
X index register high  
X index register low  
Y index register high  
Y index register low  
Stack pointer high  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x03  
0xFF  
0x28  
PCE  
PCH  
PCL  
XH  
CPU(1)  
XL  
YH  
YL  
SPH  
SPL  
CCR  
Stack pointer low  
Condition code register  
Doc ID 023331 Rev 1  
45/102  
Memory and register map  
Table 8. CPU/SWIM/debug module/interrupt controller registers (continued)  
Address  
STM8L052C6  
Reset  
Status  
Block  
Register Label  
Register Name  
0x00 7F0B to  
0x00 7F5F  
Reserved area (85 bytes)  
CPU  
0x00 7F60  
0x00 7F70  
0x00 7F71  
0x00 7F72  
0x00 7F73  
0x00 7F74  
0x00 7F75  
0x00 7F76  
0x00 7F77  
CFG_GCR  
ITC_SPR1  
ITC_SPR2  
ITC_SPR3  
ITC_SPR4  
ITC_SPR5  
ITC_SPR6  
ITC_SPR7  
ITC_SPR8  
Global configuration register  
0x00  
0xFF  
0xFF  
0xFF  
0xFF  
0xFF  
0xFF  
0xFF  
0xFF  
Interrupt Software priority register 1  
Interrupt Software priority register 2  
Interrupt Software priority register 3  
Interrupt Software priority register 4  
Interrupt Software priority register 5  
Interrupt Software priority register 6  
Interrupt Software priority register 7  
Interrupt Software priority register 8  
ITC-SPR  
0x00 7F78 to  
0x00 7F79  
Reserved area (2 bytes)  
SWIM control status register  
Reserved area (15 bytes)  
0x00 7F80  
SWIM  
SWIM_CSR  
0x00  
0x00 7F81 to  
0x00 7F8F  
0x00 7F90  
0x00 7F91  
0x00 7F92  
0x00 7F93  
0x00 7F94  
0x00 7F95  
0x00 7F96  
0x00 7F97  
0x00 7F98  
0x00 7F99  
0x00 7F9A  
DM_BK1RE  
DM_BK1RH  
DM_BK1RL  
DM_BK2RE  
DM_BK2RH  
DM_BK2RL  
DM_CR1  
DM breakpoint 1 register extended byte  
DM breakpoint 1 register high byte  
DM breakpoint 1 register low byte  
DM breakpoint 2 register extended byte  
DM breakpoint 2 register high byte  
DM breakpoint 2 register low byte  
DM Debug module control register 1  
DM Debug module control register 2  
DM Debug module control/status register 1  
DM Debug module control/status register 2  
DM enable function register  
0xFF  
0xFF  
0xFF  
0xFF  
0xFF  
0xFF  
0x00  
0x00  
0x10  
0x00  
0xFF  
DM  
DM_CR2  
DM_CSR1  
DM_CSR2  
DM_ENFCTR  
0x00 7F9B to  
0x00 7F9F  
Reserved area (5 bytes)  
1. Accessible by debug module only  
46/102  
Doc ID 023331 Rev 1  
STM8L052C6  
Interrupt vector mapping  
6
Interrupt vector mapping  
Table 9.  
Interrupt mapping  
Wakeup  
from  
Active-  
halt mode  
Wakeup  
from Wait fromWait  
(WFI  
mode)  
Wakeup  
Wakeup  
from Halt  
mode  
IRQ  
No.  
Source  
block  
Vector  
address  
Description  
(WFE  
mode)(1)  
RESET  
TRAP  
Reset  
Software interrupt  
Yes  
-
Yes  
-
Yes  
-
Yes  
-
0x00 8000  
0x00 8004  
0x00 8008  
0
1
Reserved  
FLASH end of programing/  
write attempted to  
protected page interrupt  
FLASH  
-
-
-
-
-
-
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
0x00 800C  
0x00 8010  
0x00 8014  
DMA1 channels 0/1 half  
transaction/transaction  
complete interrupt  
2
3
DMA1 0/1  
DMA1 channels 2/3 half  
transaction/transaction  
complete interrupt  
DMA1 2/3  
RTC  
RTC alarm A/  
wakeup  
4
5
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
0x00 8018  
0x00 801C  
EXTI E/F/  
PVD(2)  
External interrupt port E/F  
PVD interrupt  
6
EXTIB/G  
EXTID/H  
EXTI0  
EXTI1  
EXTI2  
EXTI3  
EXTI4  
EXTI5  
EXTI6  
EXTI7  
LCD  
External interrupt port B/G  
External interrupt port D/H  
External interrupt 0  
External interrupt 1  
External interrupt 2  
External interrupt 3  
External interrupt 4  
External interrupt 5  
External interrupt 6  
External interrupt 7  
LCD interrupt  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
-
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
-
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
0x00 8020  
0x00 8024  
0x00 8028  
0x00 802C  
0x00 8030  
0x00 8034  
0x00 8038  
0x00 803C  
0x00 8040  
0x00 8044  
0x00 8048  
7
8
9
10  
11  
12  
13  
14  
15  
16  
CLK system clock switch/  
CSS interrupt/  
TIM 1 break  
17  
18  
CLK/TIM1  
ADC1  
-
-
Yes  
Yes  
Yes  
Yes  
0x00 804C  
0x00 8050  
ACD1 end of conversion/  
analog watchdog/  
Yes  
Yes  
overrun interrupt  
Doc ID 023331 Rev 1  
47/102  
Interrupt vector mapping  
STM8L052C6  
Table 9.  
Interrupt mapping (continued)  
Wakeup  
from  
Active-  
halt mode  
Wakeup  
from Wait fromWait  
(WFI  
mode)  
Wakeup  
Wakeup  
from Halt  
mode  
IRQ  
No.  
Source  
block  
Vector  
address  
Description  
(WFE  
mode)(1)  
TIM2 update/overflow/  
trigger/break  
19  
TIM2  
-
-
Yes  
Yes  
0x00 8054  
interrupt  
TIM2capture/  
compare interrupt  
20  
21  
22  
TIM2  
TIM3  
TIM3  
-
-
-
-
-
-
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
0x00 8058  
0x00 805C  
0x00 8060  
TIM3 update/overflow/  
trigger/break interrupt  
TIM3 capture/compare  
interrupt  
Update /overflow/trigger/  
COM  
23  
24  
25  
TIM1  
TIM1  
TIM4  
-
-
-
-
-
-
-
-
Yes  
Yes  
Yes  
0x00 8064  
0x00 8068  
0x00 806C  
Capture/compare  
TIM4 update/overflow/  
trigger interrupt  
Yes  
SPI1 TX buffer empty/  
RX buffer not empty/  
error/wakeup interrupt  
26  
27  
SPI1  
Yes  
-
Yes  
-
Yes  
Yes  
Yes  
Yes  
0x00 8070  
0x00 8074  
USART1transmit data  
register empty/  
transmission complete  
interrupt  
USART1  
USART1 received data  
ready/overrun error/  
idle line detected/parity  
error/global error interrupt  
28  
29  
USART1  
I2C1  
-
-
Yes  
Yes  
Yes  
Yes  
0x00 8078  
0x00 807C  
I2C1 interrupt(3)  
Yes  
Yes  
1. The Low power wait mode is entered when executing a WFE instruction in Low power run mode. In WFE mode, the  
interrupt is served if it has been previously enabled. After processing the interrupt, the processor goes back to WFE mode.  
When the interrupt is configured as a wakeup event, the CPU wakes up and resumes processing.  
2. The interrupt from PVD is logically OR-ed with Port E and F interrupts. Register EXTI_CONF allows to select between Port  
E and Port F interrupt (see External interrupt port select register (EXTI_CONF) in the RM0031).  
3. The device is woken up from Halt or Active-halt mode only when the address received matches the interface address.  
48/102  
Doc ID 023331 Rev 1  
STM8L052C6  
Option bytes  
7
Option bytes  
Option bytes contain configurations for device hardware features as well as the memory  
protection of the device. They are stored in a dedicated memory block.  
All option bytes can be modified in ICP mode (with SWIM) by accessing the EEPROM  
address. See Table 10 for details on option byte addresses.  
The option bytes can also be modified ‘on the fly’ by the application in IAP mode, except for  
the ROP and UBC values which can only be taken into account when they are modified in  
ICP mode (with the SWIM).  
Refer to the STM8Lxx Flash programming manual (PM0054) and STM8 SWIM and Debug  
Manual (UM0470) for information on SWIM programming procedures.  
Table 10. Option byte addresses  
Option  
Option bits  
3
Factory  
default  
setting  
Addr.  
Option name  
byte  
No.  
7
6
5
4
2
1
0
Read-out  
protection  
(ROP)  
0x00 4800  
OPT0  
OPT1  
ROP[7:0]  
UBC[7:0]  
0xAA  
UBC (User  
Boot code size)  
0x00 4802  
0x00 4807  
0x00  
0x00  
Reserved  
Independent  
watchdog  
option  
OPT3  
[3:0]  
WWDG WWDG IWDG IWDG  
_HALT _HW _HALT _HW  
0x00 4808  
Reserved  
0x00  
Number of  
stabilization  
0x00 4809 clock cycles for OPT4  
HSE and LSE  
Reserved  
Reserved  
LSECNT[1:0]  
HSECNT[1:0]  
0x00  
0x01  
oscillators  
Brownout reset OPT5  
0x00 480A  
BOR_  
ON  
BOR_TH  
(BOR)  
[3:0]  
0x00 480B  
0x00 480C  
Bootloader  
option bytes  
(OPTBL)  
0x00  
0x00  
OPTBL  
[15:0]  
OPTBL[15:0]  
Doc ID 023331 Rev 1  
49/102  
 
Option bytes  
STM8L052C6  
Table 11. Option byte description  
Option  
byte  
Option description  
No.  
ROP[7:0] Memory readout protection (ROP)  
0xAA: Disable readout protection (write access via SWIM protocol)  
Refer to Readout protection section in the STM8L05x/15x and STM8L16x reference manual  
(RM0031).  
OPT0  
UBC[7:0] Size of the user boot code area  
0x00: no UBC  
0x01: the UBC contains only the interrupt vectors.  
0x02: Page 0 and 1 reserved for the UBC and read/write protected. Page 0 contains only the interrupt  
vectors.  
0x03 - Page 0 to 2 reserved for UBC, memory write-protected  
0xFF - Page 0 to 254 reserved for UBC, memory write-protected  
Refer to User boot code section in the STM8L05x/15x and STM8L16x reference manual (RM0031).  
OPT1  
OPT2  
Reserved  
IWDG_HW: Independent watchdog  
0: Independent watchdog activated by software  
1: Independent watchdog activated by hardware  
IWDG_HALT: Independent window watchdog off on Halt/Active-halt  
0: Independent watchdog continues running in Halt/Active-halt mode  
1: Independent watchdog stopped in Halt/Active-halt mode  
OPT3  
WWDG_HW: Window watchdog  
0: Window watchdog activated by software  
1: Window watchdog activated by hardware  
WWDG_HALT: Window window watchdog reset on Halt/Active-halt  
0: Window watchdog stopped in Halt mode  
1: Window watchdog generates a reset when MCU enters Halt mode  
HSECNT: Number of HSE oscillator stabilization clock cycles  
0x00 - 1 clock cycle  
0x01 - 16 clock cycles  
0x10 - 512 clock cycles  
0x11 - 4096 clock cycles  
OPT4  
LSECNT: Number of LSE oscillator stabilization clock cycles  
0x00 - 1 clock cycle  
0x01 - 16 clock cycles  
0x10 - 512 clock cycles  
0x11 - 4096 clock cycles  
Refer to Table 29: LSE oscillator characteristics on page 69.  
50/102  
Doc ID 023331 Rev 1  
STM8L052C6  
Option bytes  
Table 11. Option byte description (continued)  
Option  
Option description  
byte  
No.  
BOR_ON:  
0: Brownout reset off  
1: Brownout reset on  
OPT5  
BOR_TH[3:1]: Brownout reset thresholds. Refer to Table 20 for details on the thresholds according to  
the value of BOR_TH bits.  
OPTBL[15:0]:  
This option is checked by the boot ROM code after reset. Depending on  
OPTBL content of addresses 00 480B, 00 480C and 0x8000 (reset vector) the  
CPU jumps to the bootloader or to the reset vector.  
Refer to the UM0560 bootloader user manual for more details.  
Doc ID 023331 Rev 1  
51/102  
Electrical parameters  
STM8L052C6  
8
Electrical parameters  
8.1  
Parameter conditions  
Unless otherwise specified, all voltages are referred to V  
.
SS  
8.1.1  
Minimum and maximum values  
Unless otherwise specified the minimum and maximum values are guaranteed in the worst  
conditions of ambient temperature, supply voltage and frequencies by tests in production on  
100% of the devices with an ambient temperature at T = 25 °C and T = T max (given by  
A
A
A
the selected temperature range).  
Data based on characterization results, design simulation and/or technology characteristics  
is indicated in the table footnotes and are not tested in production. Based on  
characterization, the minimum and maximum values refer to sample tests and represent the  
mean value plus or minus three times the standard deviation (mean 3Σ).  
8.1.2  
Typical values  
Unless otherwise specified, typical data is based on T = 25 °C, V = 3 V. It is given only as  
A
DD  
design guidelines and is not tested.  
Typical ADC accuracy values are determined by characterization of a batch of samples from  
a standard diffusion lot over the full temperature range, where 95% of the devices have an  
error less than or equal to the value indicated (mean 2Σ).  
8.1.3  
8.1.4  
Typical curves  
Unless otherwise specified, all typical curves are given only as design guidelines and are  
not tested.  
Loading capacitor  
The loading conditions used for pin parameter measurement are shown in Figure 5.  
Figure 5.  
Pin loading conditions  
STM8L PIN  
50 pF  
52/102  
Doc ID 023331 Rev 1  
 
STM8L052C6  
Electrical parameters  
8.1.5  
Pin input voltage  
The input voltage measurement on a pin of the device is described in Figure 6.  
Figure 6. Pin input voltage  
STM8L PIN  
V
IN  
8.2  
Absolute maximum ratings  
Stresses above those listed as “absolute maximum ratings” may cause permanent damage  
to the device. This is a stress rating only and functional operation of the device under these  
conditions is not implied. Exposure to maximum rating conditions for extended periods may  
affect device reliability.  
Table 12. Voltage characteristics  
Symbol  
Ratings  
Min  
Max  
Unit  
External supply voltage (including VDDA  
VDD- VSS  
- 0.3  
4.0  
V
(1)  
and VDD2  
)
Input voltage on true open-drain pins  
(PC0 and PC1)  
VSS - 0.3  
VSS - 0.3  
VDD + 4.0  
VDD + 4.0  
Input voltage on five-volt tolerant (FT)  
pins (PA7 and PE0)  
(2)  
VIN  
V
Input voltage on 3.6 V tolerant (TT) pins  
Input voltage on any other pin  
VSS - 0.3  
VSS - 0.3  
4.0  
4.0  
see Absolute maximum  
ratings (electrical sensitivity)  
on page 95  
VESD  
Electrostatic discharge voltage  
1. All power (VDD1, VDD2, VDDA) and ground (VSS1, VSS2, VSSA) pins must always be connected to the  
external power supply.  
2. VIN maximum must always be respected. Refer to Table 13. for maximum allowed injected current values.  
Doc ID 023331 Rev 1  
53/102  
 
 
Electrical parameters  
STM8L052C6  
Table 13. Current characteristics  
Symbol  
Ratings  
Max.  
Unit  
IVDD  
IVSS  
Total current into VDD power line (source)  
Total current out of VSS ground line (sink)  
80  
80  
Output current sunk by IR_TIM pin (with high sink LED driver  
capability)  
80  
IIO  
Output current sunk by any other I/O and control pin  
Output current sourced by any I/Os and control pin  
25  
- 25  
Injected current on true open-drain pins (PC0 and PC1)(1)  
Injected current on five-volt tolerant (FT) pins (PA7 and PE0) (1)  
Injected current on 3.6 V tolerant (TT) pins (1)  
- 5 / +0  
- 5 / +0  
- 5 / +0  
- 5 / +5  
25  
mA  
IINJ(PIN)  
Injected current on any other pin (2)  
Total injected current (sum of all I/O and control pins) (3)  
ΣIINJ(PIN)  
1. Positive injection is not possible on these I/Os. A negative injection is induced by VIN<VSS. IINJ(PIN) must  
never be exceeded. Refer to Table 12. for maximum allowed input voltage values.  
2. A positive injection is induced by VIN>VDD while a negative injection is induced by VIN<VSS. IINJ(PIN) must  
never be exceeded. Refer to Table 12. for maximum allowed input voltage values.  
3. When several inputs are submitted to a current injection, the maximum ΣIINJ(PIN) is the absolute sum of the  
positive and negative injected currents (instantaneous values).  
Table 14. Thermal characteristics  
Symbol  
Ratings  
Storage temperature range  
Maximum junction temperature  
Value  
Unit  
TSTG  
TJ  
-65 to +150  
150  
° C  
54/102  
Doc ID 023331 Rev 1  
 
 
STM8L052C6  
Electrical parameters  
8.3  
Operating conditions  
Subject to general operating conditions for V and T .  
DD  
A
8.3.1  
General operating conditions  
Table 15. General operating conditions  
Symbol Parameter  
System clock  
Conditions  
Min.  
Max.  
Unit  
(1)  
f
1.8 V VDD < 3.6 V  
0
16  
MHz  
SYSCLK  
frequency  
Standard operating  
voltage  
VDD  
1.8  
1.8  
3.6  
3.6  
V
V
Analog operating  
voltage  
Must be at the same  
potential as VDD  
VDDA  
Power dissipation at  
TA= 85 °C  
(2)  
PD  
LQFP48  
288  
85  
mW  
°C  
TA  
TJ  
Temperature range  
1.8 V VDD < 3.6 V  
-40 °C TA < 85 °C  
-40  
-40  
Junction temperature  
range  
105(3)  
°C  
1. fSYSCLK = fCPU  
2. To calculate PDmax(TA), use the formula PDmax=(TJmax -TA)/ΘJA with TJmax in this table and ΘJA in “Thermal  
characteristics” table.  
3. TJmax is given by the test limit. Above this value, the product behavior is not guaranteed.  
Doc ID 023331 Rev 1  
55/102  
 
 
Electrical parameters  
STM8L052C6  
8.3.2  
Embedded reset and power control block characteristics  
Table 16. Embedded reset and power control block characteristics  
Symbol  
Parameter  
Conditions  
Min  
0(1)  
Max  
Unit  
Typ  
BOR detector  
enabled  
(1)  
VDD rise time rate  
tVDD  
µs/V  
BOR detector  
enabled  
20(1)  
(1)  
VDD fall time rate  
VDD rising  
tTEMP  
VPDR  
Reset release delay  
3
ms  
V
Power-down reset threshold Falling edge  
1.30(2)  
1.67  
1.69  
1.87  
1.96  
2.22  
2.31  
2.45  
2.54  
2.68  
2.78  
1.80  
1.88  
1.98  
2.08  
2.2  
1.50  
1.70  
1.75  
1.93  
2.04  
2.3  
1.65  
1.74  
1.80  
1.97  
2.07  
2.35  
2.44  
2.60  
2.7  
Falling edge  
Brown-out reset threshold 0  
(BOR_TH[2:0]=000)  
VBOR0  
VBOR1  
VBOR2  
VBOR3  
VBOR4  
VPVD0  
VPVD1  
VPVD2  
VPVD3  
VPVD4  
VPVD5  
VPVD6  
Rising edge  
Falling edge  
Brown-out reset threshold 1  
(BOR_TH[2:0]=001)  
Rising edge  
Falling edge  
Brown-out reset threshold 2  
(BOR_TH[2:0]=010)  
V
Rising edge  
2.41  
2.55  
2.66  
2.80  
2.90  
1.84  
1.94  
2.04  
2.14  
2.24  
2.34  
2.44  
2.54  
2.64  
2.74  
2.83  
2.94  
3.05  
3.15  
Falling edge  
Brown-out reset threshold 3  
(BOR_TH[2:0]=011)  
Rising edge  
Falling edge  
2.85  
2.95  
1.88  
1.99  
2.09  
2.18  
2.28  
2.38  
2.48  
2.58  
2.69  
2.79  
2.88  
2.99  
3.09  
3.20  
Brown-out reset threshold 4  
(BOR_TH[2:0]=100)  
Rising edge  
Falling edge  
PVD threshold 0  
Rising edge  
Falling edge  
PVD threshold 1  
Rising edge  
Falling edge  
PVD threshold 2  
Rising edge  
2.28  
2.39  
2.47  
2.57  
2.68  
2.77  
2.87  
2.97  
3.08  
Falling edge  
PVD threshold 3  
V
Rising edge  
Falling edge  
PVD threshold 4  
Rising edge  
Falling edge  
PVD threshold 5  
Rising edge  
Falling edge  
PVD threshold 6  
Rising edge  
1. Data guaranteed by design, not tested in production.  
2. Data based on characterization results, not tested in production.  
56/102  
Doc ID 023331 Rev 1  
 
STM8L052C6  
Figure 7.  
Electrical parameters  
POR/BOR thresholds  
Vdd  
Vdd  
3.6 V  
Operating power supply  
Vdd  
BOR threshold  
1.8 V  
BOR Threshold_0  
VBOR0  
VPDR  
without BOR = Battery life extension  
PDR Threshold  
Internal NRST  
with  
BOR  
with without  
BOR BOR  
Time  
BOR always active  
at power up  
BOR activated by user for  
power down detection  
8.3.3  
Supply current characteristics  
Total current consumption  
The MCU is placed under the following conditions:  
All I/O pins in input mode with a static value at V or V (no load)  
DD SS  
All peripherals are disabled except if explicitly mentioned.  
In the following table, data is based on characterization results, unless otherwise specified.  
Subject to general operating conditions for V and T .  
DD  
A
Doc ID 023331 Rev 1  
57/102  
Electrical parameters  
STM8L052C6  
Table 17. Total current consumption in Run mode  
Max  
55 °C  
Para  
meter  
Conditions(1)  
Symbol  
Typ  
Unit  
85 °C  
0.49  
0.58  
0.86  
1.25  
fCPU = 125 kHz  
0.39 0.47  
0.48 0.56  
0.75 0.84  
1.10 1.20  
f
CPU = 1 MHz  
HSI RC osc.  
(16 MHz)(3)  
fCPU = 4 MHz  
f
f
CPU = 8 MHz  
CPU = 16 MHz  
1.85 1.93 2.12(5)  
All  
peripherals  
OFF,  
code  
executed  
from RAM,  
VDD from 1.8  
fCPU = 125 kHz  
0.05 0.06  
0.18 0.19  
0.55 0.62  
0.99 1.20  
0.09  
0.20  
0.64  
1.21  
Supply  
current  
in run  
mode(2)  
f
f
CPU = 1 MHz  
CPU = 4 MHz  
IDD(RUN)  
HSE external  
mA  
clock  
(4)  
(fCPU=fHSE  
)
fCPU = 8 MHz  
CPU = 16 MHz  
V to  
3.6 V  
1.90 2.22 2.23(5)  
f
LSI RC osc.  
(typ. 38 kHz)  
fCPU = fLSI  
0.040 0.045 0.046  
LSE external  
clock  
0.035 0.040 0.048(5)  
fCPU = fLSE  
(32.768 kHz)  
fCPU = 125 kHz  
0.43 0.55  
0.60 0.77  
1.11 1.34  
1.90 2.20  
0.56  
0.80  
1.37  
2.23  
4.75  
0.39  
0.52  
1.40  
2.44  
4.52  
f
CPU = 1 MHz  
HSI RC  
osc.(6)  
fCPU = 4 MHz  
fCPU = 8 MHz  
f
CPU = 16 MHz  
3.8  
4.60  
All  
peripherals  
OFF, code  
executed  
from Flash,  
VDD from  
fCPU = 125 kHz  
0.30 0.36  
0.40 0.50  
1.15 1.31  
2.17 2.33  
Supply  
current  
in Run  
mode  
f
f
f
CPU = 1 MHz  
CPU = 4 MHz  
CPU = 8 MHz  
IDD(RUN)  
mA  
HSE external  
clock  
(4)  
(fCPU=fHSE  
)
1.8 V to 3.6 V  
fCPU = 16 MHz  
fCPU = fLSI  
4.0  
4.46  
LSI RC osc.  
0.110 0.123 0.130  
LSE ext. clock  
(32.768  
kHz)(7)  
fCPU = fLSE  
0.100 0.101 0.104  
1. All peripherals OFF, VDD from 1.8 V to 3.6 V, HSI internal RC osc. , fCPU=fSYSCLK  
2. CPU executing typical data processing  
3. The run from RAM consumption can be approximated with the linear formula:  
IDD(run_from_RAM) = Freq * 90 µA/MHz + 380 µA  
58/102  
Doc ID 023331 Rev 1  
STM8L052C6  
Electrical parameters  
4. Oscillator bypassed (HSEBYP = 1 in CLK_ECKCR). When configured for external crystal, the HSE  
consumption  
(IDD HSE) must be added. Refer to Table 28.  
5. Tested in production.  
6. The run from Flash consumption can be approximated with the linear formula:  
IDD(run_from_Flash) = Freq * 195 µA/MHz + 440 µA  
7. Oscillator bypassed (LSEBYP = 1 in CLK_ECKCR). When configured for extenal crystal, the LSE  
consumption  
(IDD LSE) must be added. Refer to Table 29.  
Figure 8.  
Typ. I  
vs. V , f  
= 16 MHz  
DD(RUN)  
DD CPU  
3.00  
2.75  
2.50  
2.25  
2.00  
1.75  
1.50  
-40°C  
25°C  
85°C  
1.8  
2.1  
2.6  
VDD [V]  
3.1  
3.6  
ai18213V2  
1. Typical current consumption measured with code executed from RAM  
Doc ID 023331 Rev 1  
59/102  
Electrical parameters  
STM8L052C6  
In the following table, data is based on characterization results, unless otherwise specified.  
Table 18. Total current consumption in Wait mode  
Max  
Conditions(1)  
Symbol Parameter  
Typ  
Unit  
85  
°C(2)  
55°C  
fCPU = 125 kHz  
0.33 0.39 0.41  
0.35 0.41 0.44  
0.42 0.51 0.52  
0.52 0.57 0.58  
0.68 0.76 0.79  
0.032 0.056 0.068  
0.078 0.121 0.144  
0.218 0.26 0.30  
0.40 0.52 0.57  
0.760 1.01 1.05  
0.035 0.044 0.046  
fCPU = 1 MHz  
fCPU = 4 MHz  
HSI  
f
CPU = 8 MHz  
CPU = 16 MHz  
CPU not  
clocked,  
f
all peripherals  
OFF,  
code executed  
from RAM  
with Flash in  
fCPU = 125 kHz  
Supply  
IDD(Wait) current in  
Wait mode  
f
CPU = 1 MHz  
CPU = 4 MHz  
HSE external  
mA  
clock  
f
(4)  
(fCPU=fHSE  
)
IDDQ mode(3)  
,
fCPU = 8 MHz  
fCPU = 16 MHz  
VDD from  
1.8 V to 3.6 V  
fCPU = fLSI  
LSI  
LSE(5)  
external clock  
(32.768  
fCPU = fLSE  
0.032 0.036 0.038  
kHz)  
f
f
f
f
f
f
CPU = 125 kHz  
CPU = 1 MHz  
CPU = 4 MHz  
CPU = 8 MHz  
CPU = 16 MHz  
CPU = 125 kHz  
0.38 0.48 0.49  
0.41 0.49 0.51  
0.50 0.57 0.58  
0.60 0.66 0.68  
0.79 0.84 0.86  
0.06 0.08 0.09  
0.10 0.17 0.18  
0.24 0.36 0.39  
0.50 0.58 0.61  
1.00 1.08 1.14  
0.055 0.058 0.065  
HSI  
CPU not  
clocked,  
all peripherals  
OFF,  
code executed  
from Flash,  
VDD from  
Supply  
current in  
HSE(4)  
external clock  
(fCPU=HSE)  
fCPU = 1 MHz  
IDD(Wait)  
Wait  
mA  
fCPU = 4 MHz  
fCPU = 8 MHz  
fCPU = 16 MHz  
fCPU = fLSI  
mode  
1.8 V to 3.6 V  
LSI  
LSE(5)  
external clock  
(32.768 kHz)  
fCPU = fLSE  
0.051 0.056 0.060  
1. All peripherals OFF, VDD from 1.8 V to 3.6 V, HSI internal RC osc. , fCPU = fSYSCLK  
2. For temperature range 6.  
3. Flash is configured in IDDQ mode in Wait mode by setting the EPM or WAITM bit in the Flash_CR1 register.  
60/102  
Doc ID 023331 Rev 1  
STM8L052C6  
Electrical parameters  
4. Oscillator bypassed (HSEBYP = 1 in CLK_ECKCR). When configured for external crystal, the HSE  
consumption  
(IDD HSE) must be added. Refer to Table 28.  
5. Oscillator bypassed (LSEBYP = 1 in CLK_ECKCR). When configured for extenal crystal, the LSE  
consumption  
(IDD HSE) must be added. Refer to Table 29.  
Figure 9.  
Typ. I  
vs. V , f  
= 16 MHz 1)  
DD CPU  
DD(Wait)  
1000  
950  
900  
850  
800  
750  
700  
-40°C  
25°C  
85°C  
650  
600  
550  
500  
1.8  
2.1  
2.6  
DD [V]  
3.1  
3.6  
V
ai18214V2  
1. Typical current consumption measured with code executed from Flash memory.  
Doc ID 023331 Rev 1  
61/102  
Electrical parameters  
STM8L052C6  
In the following table, data is based on characterization results, unless otherwise specified.  
Table 19. Total current consumption and timing in Low power run mode at V = 1.8 V to  
DD  
3.6 V  
Conditions(1)  
Symbol  
Parameter  
Typ  
Max  
Unit  
TA = -40 °C  
to 25 °C  
5.1  
5.4  
all peripherals OFF  
TA = 55 °C  
TA = 85 °C  
5.7  
6.8  
6
7.5  
LSI RC osc.  
(at 38 kHz)  
TA = -40 °C  
to 25 °C  
5.4  
5.7  
with TIM2 active(2)  
all peripherals OFF  
TA = 55 °C  
TA = 85 °C  
6.0  
7.2  
6.3  
7.8  
Supply current in Low  
power run mode  
IDD(LPR)  
μA  
TA = -40 °C  
to 25 °C  
5.25  
5.6  
TA = 55 °C  
TA = 85 °C  
5.67  
5.85  
6.1  
6.3  
LSE (3) external  
clock  
(32.768 kHz)  
TA = -40 °C  
to 25 °C  
5.59  
6
with TIM2 active (2)  
TA = 55 °C  
TA = 85 °C  
6.10  
6.30  
6.4  
7
1. No floating I/Os  
2. Timer 2 clock enabled and counter running  
3. Oscillator bypassed (LSEBYP = 1 in CLK_ECKCR). When configured for extenal crystal, the LSE consumption  
(IDD LSE) must be added. Refer to Table 29  
Figure 10. Typ. I  
vs. V (LSI clock source)  
DD  
DD(LPR)  
18  
16  
14  
12  
10  
8
–40° C  
25° C  
85° C  
6
4
2
0
.
1 8  
2.1  
2.6  
3.1  
3.6  
V
DD [V]  
ai18216V2  
62/102  
Doc ID 023331 Rev 1  
STM8L052C6  
In the following table, data is based on characterization results, unless otherwise specified.  
Table 20. Total current consumption in Low power wait mode at V = 1.8 V to 3.6 V  
Electrical parameters  
DD  
Conditions(1)  
Symbol  
Parameter  
Typ Max Unit  
3.3  
3.3 3.6  
4.4  
3.4 3.7  
3.7  
TA = -40 °C to 25 °C  
3
all peripherals OFF  
TA = 55 °C  
TA = 85 °C  
5
LSI RC osc.  
(at 38 kHz)  
TA = -40 °C to 25 °C  
with TIM2 active(2)  
all peripherals OFF  
TA = 55 °C  
4
TA = 85 °C  
4.8 5.4  
2.35 2.7  
2.42 2.82  
3.10 3.71  
2.46 2.75  
2.50 2.81  
3.16 3.82  
Supply current in  
Low power wait mode  
IDD(LPW)  
μA  
TA = -40 °C to 25 °C  
TA = 55 °C  
LSE external  
clock(3)  
(32.768 kHz)  
TA = 85 °C  
TA = -40 °C to 25 °C  
with TIM2 active (2)  
TA = 55 °C  
TA = 85 °C  
1. No floating I/Os.  
2. Timer 2 clock enabled and counter is running.  
3. Oscillator bypassed (LSEBYP = 1 in CLK_ECKCR). When configured for extenal crystal, the LSE consumption  
(IDD LSE) must be added. Refer to Table 29.  
Figure 11. Typ. I  
vs. V (LSI clock source)  
DD  
DD(LPW)  
16.00  
14.00  
12.00  
10.00  
8.00  
-40°C  
25°C  
85°C  
6.00  
4.00  
2.00  
0.00  
1.8  
2.1  
2.6  
DD [V]  
3.1  
3.6  
ai18217V2  
V
Doc ID 023331 Rev 1  
63/102  
 
Electrical parameters  
In the following table, data is based on characterization results, unless otherwise specified.  
Table 21. Total current consumption and timing in Active-halt mode at V = 1.8 V to 3.6 V  
STM8L052C6  
DD  
Conditions (1)  
Symbol  
Parameter  
Typ Max Unit  
TA = -40 °C to 25 °C  
0.9  
1.2  
1.5  
1.4  
1.5  
2.1  
3
LCD OFF(2)  
TA = 55 °C  
TA = 85 °C  
3.4  
3.1  
3.3  
LCD ON  
(static duty/  
external  
(3)  
TA = -40 °C to 25 °C  
TA = 55 °C  
TA = 85 °C  
1.9  
1.9  
4.3  
4.3  
VLCD  
)
LSI RC  
Supply current in  
Active-halt mode  
IDD(AH)  
μA  
LCD ON  
(1/4 duty/  
external  
TA = -40 °C to 25 °C  
TA = 55 °C  
(at 38 kHz)  
1.95 4.4  
2.4 5.4  
(4)  
TA = 85 °C  
VLCD  
)
LCD ON  
(1/4 duty/  
internal  
(5)  
TA = -40 °C to 25 °C  
TA = 55 °C  
3.9 8.75  
4.15 9.3  
TA = 85 °C  
4.5 10.2  
VLCD  
)
TA = -40 °C to 25 °C  
0.5  
1.2  
LCD OFF(7)  
TA = 55 °C  
0.62 1.4  
0.88 2.1  
0.85 1.9  
0.95 2.2  
TA = 85 °C  
LCD ON  
(static duty/  
external  
(3)  
TA = -40 °C to 25 °C  
TA = 55 °C  
LSE external  
clock  
(32.768 kHz)  
TA = 85 °C  
1.3  
3.2  
VLCD  
)
Supply current in  
Active-halt mode  
IDD(AH)  
μA  
LCD ON  
(1/4 duty/  
external  
TA = -40 °C to 25 °C  
TA = 55 °C  
1.5  
1.6  
2.5  
3.8  
(6)  
(4)  
TA = 85 °C  
1.8  
4.2  
VLCD  
)
LCD ON  
(1/4 duty/  
internal  
(5)  
TA = -40 °C to 25 °C  
TA = 55 °C  
3.4  
3.7  
7.6  
8.3  
TA = 85 °C  
3.9  
9.2  
VLCD  
)
Supply current during  
wakeup time from  
Active-halt mode  
(using HSI)  
IDD(WUFAH)  
2.4  
mA  
Wakeup time from  
Active-halt mode to  
Run mode (using HSI)  
(8)(9)  
4.7  
7
μs  
μs  
tWU_HSI(AH)  
Wakeup time from  
Active-halt mode to  
Run mode (using LSI)  
(8)  
tWU_LSI(AH)  
150  
(9)  
1. No floating I/O, unless otherwise specified.  
2. RTC enabled. Clock source = LSI  
3. RTC enabled, LCD enabled with external VLCD = 3 V, static duty, division ratio = 256, all pixels active, no LCD connected.  
64/102  
Doc ID 023331 Rev 1  
 
STM8L052C6  
Electrical parameters  
4. RTC enabled, LCD enabled with external VLCD, 1/4 duty, 1/3 bias, division ratio = 64, all pixels active, no LCD connected.  
5. LCD enabled with internal LCD booster VLCD = 3 V , 1/4 duty, 1/3 bias, division ratio = 64, all pixels active, no LCD  
connected.  
6. Oscillator bypassed (LSEBYP = 1 in CLK_ECKCR). When configured for extenal crystal, the LSE consumption  
(IDD LSE) must be added. Refer to Table 29.  
7. RTC enabled. Clock source = LSE.  
8. Wakeup time until start of interrupt vector fetch.  
The first word of interrupt routine is fetched 4 CPU cycles after tWU  
.
9. ULP=0 or ULP=1 and FWU=1 in the PWR_CSR2 register.  
Table 22. Typical current consumption in Active-halt mode, RTC clocked by LSE external crystal  
Symbol  
Parameter  
Condition(1)  
Typ  
Unit  
LSE  
LSE/32(3)  
LSE  
1.15  
1.05  
1.30  
1.20  
1.45  
1.35  
V
DD = 1.8 V  
Supply current in Active-halt  
mode  
(2)  
V
DD = 3 V  
µA  
IDD(AH)  
LSE/32(3)  
LSE  
VDD = 3.6 V  
LSE/32(3)  
1. No floating I/O, unless otherwise specified.  
2. Based on measurements on bench with 32.768 kHz external crystal oscillator.  
3. RTC clock is LSE divided by 32.  
In the following table, data is based on characterization results, unless otherwise specified.  
Table 23. Total current consumption and timing in Halt mode at V = 1.8 to 3.6 V  
DD  
Symbol  
Parameter  
Condition(1)  
Typ  
Max  
Unit  
1400(2)  
2000  
TA = -40 °C to 25 °C  
TA = 55 °C  
350  
580  
Supply current in Halt mode  
IDD(Halt)  
nA  
(Ultra-low-power ULP bit =1 in  
the PWR_CSR2 register)  
2800(2)  
TA = 85 °C  
1160  
Supply current during wakeup  
time from Halt mode (using  
HSI)  
IDD(WUHalt)  
2.4  
mA  
Wakeup time from Halt to Run  
mode (using HSI)  
(3)(4)  
4.7  
7
µs  
µs  
tWU_HSI(Halt)  
Wakeup time from Halt mode  
to Run mode (using LSI)  
(3)(4)  
150  
tWU_LSI(Halt)  
1. TA = -40 to 85 °C, no floating I/O, unless otherwise specified.  
2. Tested in production.  
3. ULP=0 or ULP=1 and FWU=1 in the PWR_CSR2 register.  
4. Wakeup time until start of interrupt vector fetch.  
The first word of interrupt routine is fetched 4 CPU cycles after tWU  
.
Doc ID 023331 Rev 1  
65/102  
 
 
 
 
Electrical parameters  
STM8L052C6  
Current consumption of on-chip peripherals  
Table 24. Peripheral current consumption  
Typ.  
Symbol  
Parameter  
Unit  
VDD = 3.0 V  
TIM1 supply current(1)  
TIM2 supply current (1)  
TIM3 supply current (1)  
TIM4 timer supply current (1)  
USART1 supply current (2)  
SPI1 supply current (2)  
I2C1 supply current (2)  
DMA1 supply current(2)  
WWDG supply current(2)  
Peripherals ON(3)  
IDD(TIM1)  
IDD(TIM2)  
IDD(TIM3)  
IDD(TIM4)  
IDD(USART1)  
IDD(SPI1)  
IDD(I2C1)  
13  
8
8
3
6
µA/MHz  
3
5
IDD(DMA1)  
IDD(WWDG)  
IDD(ALL)  
3
2
44  
1500  
µA/MHz  
ADC1 supply current(4)  
IDD(ADC1)  
Power voltage detector and brownout Reset unit supply current  
IDD(PVD/BOR)  
IDD(BOR)  
2.6  
2.4  
(5)  
Brownout Reset unit supply current (5)  
including LSI supply  
current  
Independent watchdog supply current  
excluding LSI  
µA  
0.45  
IDD(IDWDG)  
0.05  
supply current  
1. Data based on a differential IDD measurement between all peripherals OFF and a timer counter running at 16 MHz. The  
CPU is in Wait mode in both cases. No IC/OC programmed, no I/O pins toggling. Not tested in production.  
2. Data based on a differential IDD measurement between the on-chip peripheral in reset configuration and not clocked and  
the on-chip peripheral when clocked and not kept under reset. The CPU is in Wait mode in both cases. No I/O pins  
toggling. Not tested in production.  
3. Peripherals listed above the IDD(ALL) parameter ON: TIM1, TIM2, TIM3, TIM4, USART1, SPI1, I2C1, DMA1, WWDG.  
4. Data based on a differential IDD measurement between ADC in reset configuration and continuous ADC conversion.  
5. Including supply current of internal reference voltage.  
Table 25. Current consumption under external reset  
Symbol  
Parameter  
Conditions  
Typ  
Unit  
VDD = 1.8 V  
DD = 3 V  
VDD = 3.6 V  
48  
76  
91  
Supply current under  
external reset (1)  
All pins are externally  
tied to VDD  
IDD(RST)  
V
µA  
1. All pins except PA0, PB0 and PB4 are floating under reset. PA0, PB0 and PB4 are configured with pull-up under reset.  
66/102  
Doc ID 023331 Rev 1  
 
 
 
STM8L052C6  
Electrical parameters  
8.3.4  
Clock and timing characteristics  
HSE external clock (HSEBYP = 1 in CLK_ECKCR)  
Subject to general operating conditions for V and T .  
DD  
A
Table 26. HSE external clock characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
External clock source  
frequency(1)  
fHSE_ext  
1
16  
MHz  
OSC_IN input pin high level  
voltage  
VHSEH  
VHSEL  
0.7 x VDD  
VSS  
VDD  
V
OSC_IN input pin low level  
voltage  
0.3 x VDD  
OSC_IN input  
capacitance(1)  
Cin(HSE)  
2.6  
pF  
µA  
OSC_IN input leakage  
current  
ILEAK_HSE  
VSS < VIN < VDD  
1
1. Data guaranteed by Design, not tested in production.  
LSE external clock (LSEBYP=1 in CLK_ECKCR)  
Subject to general operating conditions for V and T .  
DD  
A
Table 27. LSE external clock characteristics  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
External clock source frequency(1)  
fLSE_ext  
32.768  
kHz  
(2)  
OSC32_IN input pin high level voltage  
0.7 x VDD  
VSS  
VDD  
VLSEH  
V
(2)  
OSC32_IN input pin low level voltage  
0.3 x VDD  
VLSEL  
OSC32_IN input capacitance(1)  
OSC32_IN input leakage current  
Cin(LSE)  
0.6  
pF  
µA  
ILEAK_LSE  
1
1. Data guaranteed by Design, not tested in production.  
2. Data based on characterization results, not tested in production.  
Doc ID 023331 Rev 1  
67/102  
 
 
Electrical parameters  
STM8L052C6  
HSE crystal/ceramic resonator oscillator  
The HSE clock can be supplied with a 1 to 16 MHz crystal/ceramic resonator oscillator. All  
the information given in this paragraph is based on characterization results with specified  
typical external components. In the application, the resonator and the load capacitors have  
to be placed as close as possible to the oscillator pins in order to minimize output distortion  
and startup stabilization time. Refer to the crystal resonator manufacturer for more details  
(frequency, package, accuracy...).  
Table 28. HSE oscillator characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
High speed external oscillator  
frequency  
fHSE  
1
16  
MHz  
RF  
Feedback resistor  
200  
20  
kΩ  
C(1)  
pF  
Recommended load capacitance (2)  
C = 20 pF,  
OSC = 16 MHz  
2.5 (startup)  
f
0.7 (stabilized)(3)  
IDD(HSE) HSE oscillator power consumption  
mA  
C = 10 pF,  
2.5 (startup)  
fOSC =16 MHz  
0.46 (stabilized)(3)  
gm  
Oscillator transconductance  
Startup time  
3.5(3)  
mA/V  
ms  
(4)  
tSU(HSE)  
VDD is stabilized  
1
1. C=  
C =CL2 is approximately equivalent to 2 x crystal CLOAD.  
L1  
2. The oscillator selection can be optimized in terms of supply current using a high quality resonator with small Rm value.  
Refer to crystal manufacturer for more details  
3. Data guaranteed by Design. Not tested in production.  
4. tSU(HSE) is the startup time measured from the moment it is enabled (by software) to a stabilized 16 MHz oscillation. This  
value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer.  
Figure 12. HSE oscillator circuit diagram  
f
to core  
HSE  
R
m
R
F
C
O
L
m
C
L1  
OSC_IN  
C
m
g
m
Resonator  
Consumption  
control  
Resonator  
STM8  
OSC_OUT  
C
L2  
HSE oscillator critical g formula  
m
gmcrit = (2 × Π × fHSE)2 × Rm(2Co + C)2  
R : Motional resistance (see crystal specification), L : Motional inductance (see crystal specification),  
m
m
C : Motional capacitance (see crystal specification), Co: Shunt capacitance (see crystal specification),  
m
C
=C =C: Grounded external capacitance  
L1  
L2  
g
>> g  
m
mcrit  
68/102  
Doc ID 023331 Rev 1  
 
STM8L052C6  
Electrical parameters  
LSE crystal/ceramic resonator oscillator  
The LSE clock can be supplied with a 32.768 kHz crystal/ceramic resonator oscillator. All  
the information given in this paragraph is based on characterization results with specified  
typical external components. In the application, the resonator and the load capacitors have  
to be placed as close as possible to the oscillator pins in order to minimize output distortion  
and startup stabilization time. Refer to the crystal resonator manufacturer for more details  
(frequency, package, accuracy...).  
Table 29. LSE oscillator characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Low speed external oscillator  
frequency  
fLSE  
32.768  
kHz  
RF  
Feedback resistor  
ΔV = 200 mV  
1.2  
8
MΩ  
pF  
C(1)  
Recommended load capacitance (2)  
1.4(3)  
µA  
V
DD = 1.8 V  
450  
600  
750  
IDD(LSE) LSE oscillator power consumption  
VDD = 3 V  
nA  
VDD = 3.6 V  
gm  
Oscillator transconductance  
Startup time  
3(3)  
µA/V  
s
(4)  
tSU(LSE)  
VDD is stabilized  
1
1. C=  
C =CL2 is approximately equivalent to 2 x crystal CLOAD.  
L1  
2. The oscillator selection can be optimized in terms of supply current using a high quality resonator with a small Rm value.  
Refer to crystal manufacturer for more details.  
3. Data guaranteed by Design. Not tested in production.  
4. tSU(LSE) is the startup time measured from the moment it is enabled (by software) to a stabilized 32.768 kHz oscillation.  
This value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer.  
Figure 13. LSE oscillator circuit diagram  
f
LSE  
R
m
R
F
C
O
L
m
C
L1  
OSC_IN  
C
m
g
m
Resonator  
Consumption  
control  
Resonator  
STM8  
OSC_OUT  
C
L2  
Doc ID 023331 Rev 1  
69/102  
 
Electrical parameters  
STM8L052C6  
Internal clock sources  
Subject to general operating conditions for V , and T .  
DD  
A
High speed internal RC oscillator (HSI)  
In the following table, data is based on characterization results, not tested in production,  
unless otherwise specified.  
Table 30. HSI oscillator characteristics  
Conditions(1)  
Symbol  
Parameter  
Frequency  
Min  
Typ  
Max  
Unit  
fHSI  
VDD = 3.0 V  
DD = 3.0 V, TA = 25 °C  
16  
MHz  
%
V
-1 (2)  
-5  
1(2)  
5
Accuracy of HSI  
oscillator (factory  
calibrated)  
ACCHSI  
TRIM  
1.8 V VDD 3.6 V,  
-40 °C TA 85 °C  
%
Trimming code multiple of 16  
0.4  
0.7  
1.5  
%
%
HSI user trimming  
step(3)  
Trimming code = multiple of 16  
HSI oscillator setup  
time (wakeup time)  
tsu(HSI)  
3.7  
6(4)  
µs  
HSI oscillator power  
consumption  
IDD(HSI)  
100  
140(4)  
µA  
1. VDD = 3.0 V, TA = -40 to 85 °C unless otherwise specified.  
2. Tested in production.  
3. The trimming step differs depending on the trimming code. It is usually negative on the codes which are multiples of 16  
(0x00, 0x10, 0x20, 0x30...0xE0). Refer to the AN3101 “STM8L15x internal RC oscillator calibration” application note for  
more details.  
4. Guaranteed by design, not tested in production.  
Figure 14. Typical HSI frequency vs V  
DD  
18.0  
17.5  
17.0  
16.5  
16.0  
15.5  
15.0  
14.5  
14.0  
13.5  
13.0  
-40°C  
25°C  
85°C  
1.65 1.8 1.95 2.1 2.25 2.4 2.55 2.7 2.85  
3
3.15 3.3 3.45 3.6  
ai18218V2  
VDD [V]  
70/102  
Doc ID 023331 Rev 1  
 
 
STM8L052C6  
Low speed internal RC oscillator (LSI)  
Electrical parameters  
In the following table, data is based on characterization results, not tested in production.  
Table 31. LSI oscillator characteristics  
Parameter (1)  
Conditions(1)  
Symbol  
Min  
Typ  
Max  
Unit  
fLSI  
Frequency  
26  
38  
56  
kHz  
µs  
tsu(LSI) LSI oscillator wakeup time  
200(2)  
LSI oscillator frequency  
IDD(LSI)  
0 °C TA 85 °C  
-12  
11  
%
drift(3)  
1. VDD = 1.8 V to 3.6 V, TA = -40 to 85 °C unless otherwise specified.  
2. Guaranteed by design, not tested in production.  
3. This is a deviation for an individual part, once the initial frequency has been measured.  
Figure 15. Typical LSI frequency vs. V  
DD  
45  
43  
41  
39  
37  
35  
33  
31  
29  
27  
25  
-40°C  
25°C  
85°C  
1.8  
2.1  
2.6  
3.1  
3.6  
VDD [V]  
ai18219V2  
Doc ID 023331 Rev 1  
71/102  
 
Electrical parameters  
STM8L052C6  
8.3.5  
Memory characteristics  
T = -40 to 85 °C unless otherwise specified.  
A
Table 32. RAM and hardware registers  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
VRM  
Data retention mode (1)  
Halt mode (or Reset)  
1.8  
V
1. Minimum supply voltage without losing data stored in RAM (in Halt mode or under Reset) or in hardware  
registers (only in Halt mode). Guaranteed by characterization, not tested in production.  
Flash memory  
Table 33. Flash program and data EEPROM memory  
Max  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Unit  
(1)  
Operating voltage  
(all modes, read/write/erase)  
VDD  
fSYSCLK = 16 MHz  
1.8  
3.6  
V
Programming time for 1 or 64 bytes (block)  
erase/write cycles (on programmed byte)  
6
3
ms  
ms  
tprog  
Programming time for 1 to 64 bytes (block)  
write cycles (on erased byte)  
TA=+25 °C, VDD = 3.0 V  
TA=+25 °C, VDD = 1.8 V  
Iprog  
Programming/ erasing consumption  
0.7  
mA  
Data retention (program memory) after 100  
erase/write cycles at TA= –40 to +85 °C  
TRET = +85 °C  
TRET = +85 °C  
30(1)  
30(1)  
(2)  
tRET  
years  
cycles  
kcycles  
Data retention (data memory) after 100000  
erase/write cycles at TA= –40 to +85 °C  
Erase/write cycles (program memory)  
Erase/write cycles (data memory)  
100(1)  
TA = –40 to +85 °C  
(3)  
NRW  
100(1)  
(4)  
1. Data based on characterization results, not tested in production.  
2. Conforming to JEDEC JESD22a117  
3. The physical granularity of the memory is 4 bytes, so cycling is performed on 4 bytes even when a write/erase operation  
addresses a single byte.  
4. Data based on characterization performed on the whole data memory.  
8.3.6  
I/O current injection characteristics  
As a general rule, current injection to the I/O pins, due to external voltage below V or  
SS  
above V (for standard pins) should be avoided during normal product operation. However,  
DD  
in order to give an indication of the robustness of the microcontroller in cases when  
abnormal injection accidentally happens, susceptibility tests are performed on a sample  
basis during device characterization.  
72/102  
Doc ID 023331 Rev 1  
 
STM8L052C6  
Electrical parameters  
Functional susceptibilty to I/O current injection  
While a simple application is executed on the device, the device is stressed by injecting  
current into the I/O pins programmed in floating input mode. While current is injected into the  
I/O pin, one at a time, the device is checked for functional failures.  
The failure is indicated by an out of range parameter: ADC error, out of spec current  
injection on adjacent pins or other functional failure (for example reset, oscillator frequency  
deviation, LCD levels, etc.).  
The test results are given in the following table.  
Table 34. I/O current injection susceptibility  
Functional susceptibility  
Symbol  
Description  
Unit  
Negative  
injection  
Positive  
injection  
Injected current on true open-drain pins (PC0 and  
PC1)  
-5  
+0  
Injected current on all five-volt tolerant (FT) pins  
Injected current on all 3.6 V tolerant (TT) pins  
Injected current on any other pin  
-5  
-5  
-5  
+0  
+0  
+5  
IINJ  
mA  
8.3.7  
I/O port pin characteristics  
General characteristics  
Subject to general operating conditions for V and T unless otherwise specified. All  
DD  
A
unused pins must be kept at a fixed voltage: using the output mode of the I/O for example or  
an external pull-up or pull-down resistor.  
Doc ID 023331 Rev 1  
73/102  
Electrical parameters  
STM8L052C6  
Table 35. I/O static characteristics  
Conditions(1)  
Symbol  
Parameter  
Min  
Max  
Unit  
Typ  
Input voltage on true open-drain  
pins (PC0 and PC1)  
VSS-0.3  
0.3 x VDD  
Input voltage on five-volt  
tolerant (FT) pins (PA7 and  
PE0)  
VSS-0.3  
VSS-0.3  
0.3 x VDD  
Input low level voltage(2)  
VIL  
V
Input voltage on 3.6 V tolerant  
(TT) pins  
0.3 x VDD  
0.3 x VDD  
VSS-0.3  
Input voltage on any other pin  
Input voltage on true open-drain  
pins (PC0 and PC1)  
with VDD < 2 V  
5.2  
5.5  
0.70 x VDD  
Input voltage on true open-drain  
pins (PC0 and PC1)  
with VDD 2 V  
Input voltage on five-volt  
tolerant (FT) pins (PA7 and  
PE0)  
5.2  
5.5  
Input high level voltage (2)  
VIH  
V
with VDD < 2 V  
Input voltage on five-volt  
tolerant (FT) pins (PA7 and  
PE0)  
0.70 x VDD  
with VDD 2 V  
Input voltage on 3.6 V tolerant  
(TT) pins  
3.6  
0.70 x VDD  
VDD+0.3  
Input voltage on any other pin  
I/Os  
200  
200  
Schmitt trigger voltage  
hysteresis (3)  
Vhys  
mV  
nA  
True open drain I/Os  
VSSVINVDD  
High sink I/Os  
-
-
-
-
50 (5)  
VSSVINVDD  
True open drain I/Os  
200(5)  
Ilkg  
Input leakage current (4)  
VSSVINVDD  
PA0 with high sink LED driver  
capability  
-
-
200(5)  
60  
Weak pull-up equivalent  
resistor(2)(6)  
RPU  
CIO  
VIN=VSS  
30  
45  
5
kΩ  
I/O pin capacitance  
pF  
1. VDD = 3.0 V, TA = -40 to 85 °C unless otherwise specified.  
2. Data based on characterization results, not tested in production.  
3. Hysteresis voltage between Schmitt trigger switching levels. Based on characterization results, not tested.  
4. The max. value may be exceeded if negative current is injected on adjacent pins.  
5. Not tested in production.  
74/102  
Doc ID 023331 Rev 1  
 
 
STM8L052C6  
Electrical parameters  
6. RPU pull-up equivalent resistor based on a resistive transistor(corresponding IPU current characteristics described in  
Figure 19).  
Figure 16. Typical V and V vs V (high sink I/Os)  
IL  
IH  
DD  
3
2.5  
2
-40°C  
25°C  
85°C  
1.5  
1
0.5  
0
1.8  
2.1  
2.6  
VDD [V]  
3.1  
3.6  
ai18220V2  
Figure 17. Typical V and V vs V (true open drain I/Os)  
IL  
IH  
DD  
3
2.5  
2
-40°C  
25°C  
85°C  
1.5  
1
0.5  
0
1.8  
2.1  
2.6  
3.1  
3.6  
VDD [V]  
ai18221V2  
Doc ID 023331 Rev 1  
75/102  
Electrical parameters  
STM8L052C6  
Figure 18. Typical pull-up resistance R vs V with V =V  
PU  
DD  
IN  
SS  
60  
55  
50  
45  
40  
35  
30  
-40°C  
25°C  
85°C  
1.8  
2
2.2  
2.4  
2.6  
VDD [V]  
2.8  
3
3.2  
3.4  
3.6  
ai18222V2  
Figure 19. Typical pull-up current I vs V with V =V  
pu  
DD  
IN  
SS  
120  
100  
80  
60  
40  
20  
0
-40°C  
25°C  
85°C  
1.8 1.95 2.1 2.25 2.4 2.55 2.7 2.85  
DD [V]  
3
3.15 3.3 3.45 3.6  
ai18223V2  
V
76/102  
Doc ID 023331 Rev 1  
STM8L052C6  
Electrical parameters  
Output driving current  
Subject to general operating conditions for V and T unless otherwise specified.  
DD  
A
Table 36. Output driving current (high sink ports)  
I/O  
Symbol  
Parameter  
Conditions  
Min  
Max Unit  
Type  
IIO = +2 mA,  
VDD = 3.0 V  
0.45  
0.45  
0.7  
V
V
V
V
V
V
IIO = +2 mA,  
VDD = 1.8 V  
(1)  
Output low level voltage for an I/O pin  
VOL  
IIO = +10 mA,  
VDD = 3.0 V  
IIO = -2 mA,  
VDD = 3.0 V  
VDD-0.45  
IIO = -1 mA,  
VDD = 1.8 V  
(2)  
VDD-0.45  
Output high level voltage for an I/O pin  
VOH  
IIO = -10 mA,  
VDD = 3.0 V  
VDD-0.7  
1. The IIO current sunk must always respect the absolute maximum rating specified in Table 13 and the sum  
of IIO (I/O ports and control pins) must not exceed IVSS  
.
2. The IIO current sourced must always respect the absolute maximum rating specified in Table 13 and the  
sum of IIO (I/O ports and control pins) must not exceed IVDD  
.
Table 37. Output driving current (true open drain ports)  
I/O  
Symbol  
Parameter  
Conditions  
Min  
Max Unit  
Type  
IIO = +3 mA,  
VDD = 3.0 V  
0.45  
V
(1)  
Output low level voltage for an I/O pin  
VOL  
I
IO = +1 mA,  
0.45  
VDD = 1.8 V  
1. The IIO current sunk must always respect the absolute maximum rating specified in Table 13 and the sum  
of IIO (I/O ports and control pins) must not exceed IVSS  
.
Table 38. Output driving current (PA0 with high sink LED driver capability)  
I/O  
Symbol  
Parameter  
Conditions  
Min  
Max Unit  
Type  
IIO = +20 mA,  
VDD = 2.0 V  
(1)  
Output low level voltage for an I/O pin  
0.45  
V
VOL  
1. The IIO current sunk must always respect the absolute maximum rating specified in Table 13 and the sum  
of IIO (I/O ports and control pins) must not exceed IVSS  
.
Doc ID 023331 Rev 1  
77/102  
Electrical parameters  
STM8L052C6  
Figure 20. Typ. V @ V = 3.0 V (high sink  
Figure 21. Typ. V @ V = 1.8 V (high sink  
OL DD  
OL  
DD  
ports)  
ports)  
1
0.75  
0.5  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
-40°C  
25°C  
85°C  
-40°C  
25°C  
85°C  
0.25  
0
0
1
2
3
4
5
6
7
8
0
2
4
6
8
10  
IOL [mA]  
12  
14  
16  
18  
20  
I
OL [mA]  
ai18227V2  
ai18226V2  
Figure 22. Typ. V @ V = 3.0 V (true open Figure 23. Typ. V @ V = 1.8 V (true open  
OL  
DD  
OL  
DD  
drain ports)  
drain ports)  
0.5  
0.4  
0.3  
0.2  
0.1  
0
0.5  
0.4  
0.3  
0.2  
0.1  
0
-40°C  
25°C  
85°C  
-40°C  
25°C  
85°C  
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
I
OL [mA]  
I
OL [mA]  
BJꢀꢁꢂꢂꢃ7ꢂ  
ai18228V2  
Figure 24. Typ. V  
V
@ V = 3.0 V (high Figure 25. Typ. V  
V
@ V = 1.8 V (high  
DD - OH  
DD  
DD - OH DD  
sink ports)  
sink ports)  
2
1.75  
1.5  
1.25  
1
0.5  
0.4  
0.3  
0.2  
0.1  
0
-40°C  
25°C  
85°C  
-40°C  
25°C  
85°C  
0.75  
0.5  
0.25  
0
0
2
4
6
8
10  
IOH [mA]  
12  
14  
16  
18  
20  
0
1
2
3
4
5
6
7
IOH [mA]  
BJꢀꢁꢂꢄꢀ7ꢂ  
ai12830V2  
78/102  
Doc ID 023331 Rev 1  
STM8L052C6  
Electrical parameters  
NRST pin  
Subject to general operating conditions for V and T unless otherwise specified.  
DD  
A
Table 39. NRST pin characteristics  
Symbol  
VIL(NRST)  
VIH(NRST)  
Parameter  
Conditions  
Min  
VSS  
1.4  
Max  
Unit  
Typ  
NRST input low level voltage (1)  
NRST input high level voltage (1)  
0.8  
VDD  
IOL = 2 mA  
for 2.7 V VDD 3.6  
V
V
NRST output low level voltage (1)  
NRST input hysteresis(3)  
VOL(NRST)  
0.4  
I
OL = 1.5 mA  
for VDD < 2.7 V  
10%VDD  
VHYST  
mV  
(2)  
NRST pull-up equivalent resistor  
RPU(NRST)  
30  
45  
60  
50  
kΩ  
(1)  
NRST input filtered pulse (3)  
VF(NRST)  
ns  
NRST input not filtered pulse (3)  
VNF(NRST)  
300  
1. Data based on characterization results, not tested in production.  
2. 200 mV min.  
3. Data guaranteed by design, not tested in production.  
Figure 26. Typical NRST pull-up resistance R vs V  
PU  
DD  
60  
-40°C  
25°C  
85°C  
55  
50  
45  
40  
35  
30  
1.8  
2
2.2  
2.4  
2.6  
VDD [V]  
2.8  
3
3.2  
3.4  
3.6  
ai18224V2  
Doc ID 023331 Rev 1  
79/102  
 
 
 
Electrical parameters  
Figure 27. Typical NRST pull-up current I vs V  
STM8L052C6  
pu  
DD  
120  
100  
80  
60  
40  
20  
0
-40°C  
25°C  
°C  
85  
1.8 1.95 2.1 2.25 2.4 2.55 2.7 2.85  
VDD [V]  
3
3.15 3.3 3.45 3.6  
ai18225V2  
The reset network shown in Figure 28 protects the device against parasitic resets. The user  
must ensure that the level on the NRST pin can go below the V max. level specified  
IL(NRST)  
in Table 39. Otherwise the reset is not taken into account internally.  
For power consumption sensitive applications, the external reset capacitor value can be  
reduced to limit the charge/discharge current. If the NRST signal is used to reset the  
external circuitry, attention must be paid to the charge/discharge time of the external  
capacitor to fulfill the external devices reset timing conditions. The minimum recommended  
capacity is 10 nF.  
Figure 28. Recommended NRST pin configuration  
V
DD  
RPU  
EXTERNAL  
RESET  
NRST  
INTERNAL RESET  
Filter  
CIRCUIT  
0.1 µF  
STM8  
(Optional)  
80/102  
Doc ID 023331 Rev 1  
 
STM8L052C6  
Electrical parameters  
8.3.8  
Communication interfaces  
SPI1 - Serial peripheral interface  
Unless otherwise specified, the parameters given in Table 40 are derived from tests  
performed under ambient temperature, f frequency and V supply voltage  
SYSCLK  
DD  
conditions summarized in Section 8.3.1. Refer to I/O port characteristics for more details on  
the input/output alternate function characteristics (NSS, SCK, MOSI, MISO).  
Table 40. SPI1 characteristics  
Symbol  
Parameter  
Conditions(1)  
Master mode  
Min  
Max  
Unit  
MHz  
ns  
0
0
8
8
fSCK  
1/tc(SCK)  
SPI1 clock frequency  
Slave mode  
tr(SCK)  
tf(SCK)  
SPI1 clock rise and fall  
time  
Capacitive load: C = 30 pF  
-
30  
(2)  
tsu(NSS)  
NSS setup time  
NSS hold time  
Slave mode  
Slave mode  
4 x 1/fSYSCLK  
80  
-
-
(2)  
th(NSS)  
(2)  
tw(SCKH)  
tw(SCKL)  
Master mode,  
fMASTER = 8 MHz, fSCK= 4 MHz  
SCK high and low time  
Data input setup time  
105  
145  
(2)  
(2)  
Master mode  
30  
3
-
tsu(MI)  
tsu(SI)  
(2)  
Slave mode  
-
(2)  
Master mode  
15  
0
-
th(MI)  
th(SI)  
Data input hold time  
(2)  
Slave mode  
-
(2)(3)  
ta(SO)  
Data output access time  
Data output disable time  
Data output valid time  
Slave mode  
-
3x 1/fSYSCLK  
(2)(4)  
tdis(SO)  
Slave mode  
30  
-
-
(2)  
(2)  
(2)  
(2)  
tv(SO)  
tv(MO)  
th(SO)  
th(MO)  
Slave mode (after enable edge)  
60  
Master mode (after enable  
edge)  
Data output valid time  
-
20  
-
Slave mode (after enable edge)  
15  
1
Data output hold time  
Master mode (after enable  
edge)  
-
1. Parameters are given by selecting 10 MHz I/O output frequency.  
2. Values based on design simulation and/or characterization results, and not tested in production.  
3. Min time is for the minimum time to drive the output and max time is for the maximum time to validate the data.  
4. Min time is for the minimum time to invalidate the output and max time is for the maximum time to put the data in Hi-Z.  
Doc ID 023331 Rev 1  
81/102  
 
 
Electrical parameters  
STM8L052C6  
Figure 29. SPI1 timing diagram - slave mode and CPHA=0  
NSS input  
t
t
t
h(NSS)  
SU(NSS)  
c(SCK)  
CPHA=0  
CPOL=0  
t
t
w(SCKH)  
w(SCKL)  
CPHA=0  
CPOL=1  
t
t
t
t
t
dis(SO)  
v(SO)  
r(SCK)  
f(SCK)  
h(SO)  
t
a(SO)  
MISO  
OUT PUT  
MSB O UT  
BI T6 OUT  
BIT1 IN  
LSB OUT  
t
su(SI)  
MOSI  
M SB IN  
LSB IN  
INPUT  
t
h(SI)  
ai14134  
(1)  
Figure 30. SPI1 timing diagram - slave mode and CPHA=1  
NSS input  
t
t
t
SU(NSS)  
t
c(SCK)  
h(NSS)  
CPHA=1  
CPOL=0  
w(SCKH)  
CPHA=1  
CPOL=1  
t
w(SCKL)  
t
t
r(SCK)  
f(SCK)  
t
t
t
v(SO)  
h(SO)  
dis(SO)  
t
a(SO)  
MISO  
OUT PUT  
MSB O UT  
BI T6 OUT  
LSB OUT  
t
t
su(SI)  
h(SI)  
MOSI  
M SB IN  
BIT1 IN  
LSB IN  
INPUT  
ai14135  
1. Measurement points are done at CMOS levels: 0.3VDD and 0.7VDD  
.
82/102  
Doc ID 023331 Rev 1  
STM8L052C6  
Electrical parameters  
(1)  
Figure 31. SPI1 timing diagram - master mode  
High  
NSS input  
t
c(SCK)  
CPHA=0  
CPOL=0  
CPHA=0  
CPOL=1  
CPHA=1  
CPOL=0  
CPHA=1  
CPOL=1  
t
t
t
t
w(SCKH)  
w(SCKL)  
r(SCK)  
f(SCK)  
t
su(MI)  
MISO  
INPUT  
MSBIN  
BIT6 IN  
LSB IN  
t
h(MI)  
MOSI  
OUTUT  
M SB OUT  
BIT1 OUT  
LSB OUT  
t
t
h(MO)  
v(MO)  
ai14136  
1. Measurement points are done at CMOS levels: 0.3VDD and 0.7VDD  
.
Doc ID 023331 Rev 1  
83/102  
Electrical parameters  
STM8L052C6  
I2C - Inter IC control interface  
Subject to general operating conditions for V  
, and T unless otherwise specified.  
, f  
DD  
A
SYSCLK  
2
2
The STM8L I C interface (I2C1) meets the requirements of the Standard I C communication  
protocol described in the following table with the restriction mentioned below:  
Refer to I/O port characteristics for more details on the input/output alternate function  
characteristics (SDA and SCL).  
Table 41. I2C characteristics  
Standard mode  
Fast mode I2C(1)  
I2C  
Symbol  
Parameter  
Unit  
Min(2)  
4.7  
Max (2)  
Min (2)  
1.3  
Max (2)  
tw(SCLL)  
tw(SCLH)  
tsu(SDA)  
th(SDA)  
SCL clock low time  
μs  
SCL clock high time  
SDA setup time  
4.0  
0.6  
250  
0
100  
0
SDA data hold time  
900  
300  
tr(SDA)  
tr(SCL)  
ns  
SDA and SCL rise time  
1000  
300  
tf(SDA)  
tf(SCL)  
SDA and SCL fall time  
300  
th(STA)  
tsu(STA)  
tsu(STO)  
tw(STO:STA)  
Cb  
START condition hold time  
4.0  
4.7  
4.0  
4.7  
0.6  
0.6  
0.6  
1.3  
μs  
Repeated START condition setup  
time  
STOP condition setup time  
μs  
μs  
pF  
STOP to START condition time (bus  
free)  
Capacitive load for each bus line  
400  
400  
1. fSYSCLK must be at least equal to 8 MHz to achieve max fast I2C speed (400 kHz).  
Data based on standard I2C protocol requirement, not tested in production.  
2.  
Note:  
For speeds around 200 kHz, the achieved speed can have a 5% tolerance  
For other speed ranges, the achieved speed can have a 2% tolerance  
The above variations depend on the accuracy of the external components used.  
84/102  
Doc ID 023331 Rev 1  
 
STM8L052C6  
Figure 32.  
Electrical parameters  
2
Typical application with I C bus and timing diagram1)  
V
V
DD  
DD  
4.7kΩ  
4.7kΩ  
100Ω  
100Ω  
SDA  
SCL  
2
I C BUS  
STM8L  
REPEATED START  
START  
t
t
su(STA)  
w(STO:STA)  
START  
SDA  
t
t
r(SDA)  
f(SDA)  
STOP  
t
t
h(SDA)  
su(SDA)  
SCL  
t
t
t
t
t
su(STO)  
t
h(STA)  
w(SCLH)  
w(SCLL)  
r(SCL)  
f(SCL)  
1. Measurement points are done at CMOS levels: 0.3 x VDD and 0.7 x VDD  
Doc ID 023331 Rev 1  
85/102  
Electrical parameters  
STM8L052C6  
8.3.9  
LCD controller  
In the following table, data is guaranteed by design. Not tested in production.  
Table 42. LCD characteristics  
Symbol  
Parameter  
Min  
Typ  
Max.  
Unit  
VLCD  
VLCD0  
VLCD1  
VLCD2  
VLCD3  
VLCD4  
VLCD5  
VLCD6  
VLCD7  
CEXT  
LCD external voltage  
3.6  
V
V
LCD internal reference voltage 0  
LCD internal reference voltage 1  
LCD internal reference voltage 2  
LCD internal reference voltage 3  
LCD internal reference voltage 4  
LCD internal reference voltage 5  
LCD internal reference voltage 6  
LCD internal reference voltage 7  
VLCD external capacitance  
2.6  
2.7  
2.8  
2.9  
3.0  
3.1  
3.2  
3.3  
V
V
V
V
V
V
V
0.1  
2
µF  
µA  
µA  
MΩ  
kΩ  
V
Supply current(1) at VDD = 1.8 V  
Supply current(1) at VDD = 3 V  
3
3
IDD  
(2)  
RHN  
High value resistive network (low drive)  
Low value resistive network (high drive)  
Segment/Common higher level voltage  
Segment/Common 2/3 level voltage  
Segment/Common 1/2 level voltage  
Segment/Common 1/3 level voltage  
Segment/Common lowest level voltage  
6.6  
360  
(3)  
RLN  
V33  
V23  
V12  
V13  
V0  
VLCDx  
2/3VLCDx  
1/2VLCDx  
1/3VLCDx  
V
V
V
0
V
1. LCD enabled with 3 V internal booster (LCD_CR1 = 0x08), 1/4 duty, 1/3 bias, division ratio= 64, all pixels  
active, no LCD connected.  
2. RHN is the total high value resistive network.  
3. RLN is the total low value resistive network.  
VLCD external capacitor  
The application can achieve a stabilized LCD reference voltage by connecting an external  
capacitor C  
to the V  
pin. C  
is specified in Table 42.  
EXT  
LCD  
EXT  
86/102  
Doc ID 023331 Rev 1  
 
 
STM8L052C6  
Electrical parameters  
8.3.10  
Embedded reference voltage  
In the following table, data is based on characterization results, not tested in production,  
unless otherwise specified.  
Table 43. Reference voltage characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max.  
Unit  
Internal reference voltage  
consumption  
IREFINT  
1.4  
µA  
ADC sampling time when reading  
the internal reference voltage  
(1)(2)  
TS_VREFINT  
5
10  
25  
µs  
Internal reference voltage buffer  
consumption (used for ADC)  
(2)  
IBUF  
13.5  
µA  
V
VREFINT out  
Reference voltage output  
1.202(3) 1.224 1.242(3)  
Internal reference voltage low  
power buffer consumption  
(2)  
ILPBUF  
730  
1200  
nA  
(2)  
IREFOUT  
Buffer output current(4)  
1
µA  
pF  
CREFOUT  
tVREFINT  
Reference voltage output load  
50  
Internal reference voltage startup  
time  
2
3
10  
5
ms  
µs  
Internal reference voltage buffer  
startup time once enabled (1)  
(2)  
tBUFEN  
Accuracy of VREFINT stored in the  
VREFINT_Factory_CONV byte(5)  
ACCVREFINT  
STABVREFINT  
STABVREFINT  
mV  
Stability of VREFINT over  
temperature  
-40 °C TA ≤  
20  
50  
20  
TBD  
ppm/°C  
ppm/°C  
ppm  
85 °C  
Stability of VREFINT over  
temperature  
0 °C TA 50  
°C  
Stability of VREFINT after 1000  
hours  
1. Defined when ADC output reaches its final value 1/2LSB  
2. Data guaranteed by Design. Not tested in production.  
3. Tested in production at VDD = 3 V 10 mV.  
4. To guaranty less than 1% VREFOUT deviation.  
5. Measured at VDD = 3 V 10 mV. This value takes into account VDD accuracy and ADC conversion accuracy.  
Doc ID 023331 Rev 1  
87/102  
 
 
 
 
Electrical parameters  
STM8L052C6  
8.3.11  
12-bit ADC1 characteristics  
In the following table, data is guaranteed by design, not tested in production.  
Table 44. ADC1 characteristics  
Symbol  
Parameter  
Conditions  
Min  
1.8  
2.4  
Typ  
Max  
Unit  
V
VDDA  
Analog supply voltage  
3.6  
2.4 V VDDA3.6 V  
1.8 V VDDA2.4 V  
VDDA  
V
Reference supply  
voltage  
VREF+  
VDDA  
VSSA  
V
VREF-  
IVDDA  
Lower reference voltage  
V
Current on the VDDA  
input pin  
1000  
1450  
µA  
µA  
µA  
700  
(peak)(1)  
Current on the VREF+  
input pin  
IVREF+  
400  
450  
(average)(1)  
Conversion voltage  
range  
0(2)  
-40  
VAIN  
TA  
VREF+  
Temperature range  
85  
°C  
on PF0 fast channel  
on all other channels  
on PF0 fast channel  
on all other channels  
External resistance on  
VAIN  
50(3)  
kΩ  
RAIN  
Internal sample and  
hold capacitor  
CADC  
16  
pF  
2.4 VVDDA3.6 V  
without zooming  
0.320  
0.320  
16  
8
MHz  
ADC sampling clock  
frequency  
fADC  
1.8 VVDDA2.4 V  
MHz  
MHz  
kHz  
with zooming  
VAIN on PF0 fast  
1(4)(5)  
channel  
fCONV  
12-bit conversion rate  
VAIN on all other  
channels  
760(4)(5)  
External trigger  
frequency  
fTRIG  
tLAT  
tconv  
3.5  
1/fADC  
External trigger latency  
1/fSYSCLK  
88/102  
Doc ID 023331 Rev 1  
 
STM8L052C6  
Electrical parameters  
Table 44. ADC1 characteristics (continued)  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
VAIN on PF0 fast  
channel  
0.43(4)(5)  
µs  
VDDA < 2.4 V  
VAIN on PF0 fast  
channel  
2.4 V VDDA3.6 V  
0.22(4)(5)  
µs  
tS  
Sampling time  
VAIN on slow channels  
VDDA < 2.4 V  
0.86(4)(5)  
0.41(4)(5)  
µs  
µs  
VAIN on slow channels  
2.4 V VDDA3.6 V  
12 + tS  
1(4)  
1/fADC  
µs  
tconv  
12-bit conversion time  
16 MHz  
Wakeup time from OFF  
state  
tWKUP  
3
µs  
TA = +25 °C  
TA = +70 °C  
1(7)  
s
Time before a new  
conversion  
(6)  
tIDLE  
20(7)  
ms  
Internal reference  
voltage startup time  
refer to  
Table 43  
tVREFINT  
ms  
1. The current consumption through VREF is composed of two parameters:  
- one constant (max 300 µA)  
- one variable (max 400 µA), only during sampling time + 2 first conversion pulses.  
So, peak consumption is 300+400 = 700 µA and average consumption is 300 + [(4 sampling + 2) /16] x 400 = 450 µA at  
1Msps  
2. VREF- or VDDA must be tied to ground.  
3. Guaranteed by design, not tested in production.  
4. Minimum sampling and conversion time is reached for maximum Rext = 0.5 kΩ.  
5. Value obtained for continuous conversion on fast channel.  
6. The time between 2 conversions, or between ADC ON and the first conversion must be lower than tIDLE.  
7. The tIDLE maximum value is on the “Z” revision code of the device.  
Doc ID 023331 Rev 1  
89/102  
 
 
 
Electrical parameters  
STM8L052C6  
In the following three tables, data is guaranteed by characterization result, not tested in  
production.  
Table 45. ADC1 accuracy with V  
= 3.3 V to 2.5 V  
Conditions  
DDA  
Symbol  
Parameter  
Typ  
Max  
Unit  
fADC = 16 MHz  
1
1.6  
1.6  
1.5  
2
DNL  
Differential non linearity fADC = 8 MHz  
fADC = 4 MHz  
1
1
fADC = 16 MHz  
1.2  
1.2  
1.2  
2.2  
1.8  
1.8  
1.5  
1
INL  
TUE  
Integral non linearity  
Total unadjusted error  
Offset error  
f
ADC = 8 MHz  
1.8  
1.7  
3.0  
2.5  
2.3  
2
LSB  
fADC = 4 MHz  
fADC = 16 MHz  
f
ADC = 8 MHz  
fADC = 4 MHz  
ADC = 16 MHz  
f
Offset  
Gain  
fADC = 8 MHz  
fADC = 4 MHz  
1.5  
1.2  
0.7  
LSB  
f
ADC = 16 MHz  
Gain error  
fADC = 8 MHz  
fADC = 4 MHz  
1
1.5  
Table 46. ADC1 accuracy with V  
Symbol  
= 2.4 V to 3.6 V  
DDA  
Parameter  
Typ  
1
Max  
Unit  
LSB  
LSB  
DNL  
INL  
Differential non linearity  
Integral non linearity  
2
3
1.7  
TUE  
Offset  
Gain  
2
1
4
2
3
LSB  
LSB  
LSB  
Total unadjusted error  
Offset error  
Gain error  
1.5  
Table 47. ADC1 accuracy with V  
Symbol  
= V  
= 1.8 V to 2.4 V  
REF+  
DDA  
Parameter  
Typ  
1
Max  
2
Unit  
LSB  
LSB  
DNL  
INL  
Differential non linearity  
Integral non linearity  
2
3
TUE  
Offset  
Gain  
3
2
2
5
3
3
LSB  
LSB  
LSB  
Total unadjusted error  
Offset error  
Gain error  
90/102  
Doc ID 023331 Rev 1  
STM8L052C6  
Figure 33. ADC1 accuracy characteristics  
Electrical parameters  
VREF+  
VDDA  
4096  
[1LSBIDEAL  
=
(or  
depending on package)]  
4096  
EG  
(1) Example of an actual transfer curve  
4095  
4094  
4093  
(2) The ideal transfer curve  
(3) End point correlation line  
(2)  
ET=Total Unadjusted Error: maximum deviation  
ET  
between the actual and the ideal transfer curves.  
(3)  
7
6
5
4
3
2
1
EO=Offset Error: deviation between the first actual  
transition and the first ideal one.  
(1)  
EG=Gain Error: deviation between the last ideal  
transition and the last actual one.  
EO  
EL  
ED=Differential Linearity Error: maximum deviation  
between actual steps and the ideal one.  
EL=Integral Linearity Error: maximum deviation  
between any actual transition and the end point  
correlation line.  
ED  
1 LSBIDEAL  
0
1
2
3
4
5
6
7
4093 4094 4095 4096  
VDDA  
VSSA  
ai14395b  
Figure 34. Typical connection diagram using the ADC  
STM8L05xxx  
V
DD  
Sample and hold ADC  
V
0.6 V  
T
converter  
(1)  
C
R
R
AIN  
ADC  
AINx  
12-bit  
converter  
V
T
V
AIN  
0.6 V  
C
(1)  
ADC  
parasitic  
I
50 nA  
L
ai17090e  
1. Refer to Table 44 for the values of RAIN and CADC  
.
2. Cparasitic represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the  
pad capacitance (roughly 7 pF). A high Cparasitic value will downgrade conversion accuracy. To remedy  
this, fADC should be reduced.  
Doc ID 023331 Rev 1  
91/102  
Electrical parameters  
Figure 35. Maximum dynamic current consumption on V  
STM8L052C6  
supply pin during ADC  
REF+  
conversion  
Sampling (n cycles)  
Conversion (12 cycles)  
ADC clock  
I
ref+  
700µA  
300µA  
(1)  
Table 48.  
R
max for f  
= 16 MHz  
ADC  
AIN  
RAIN max (kohm)  
Ts  
(cycles)  
Ts  
(µs)  
Slow channels  
Fast channels  
2.4 V < VDDA < 3.6 V 1.8 V < VDDA < 2.4 V 2.4 V < VDDA < 3.3 V 1.8 V < VDDA < 2.4 V  
4
9
0.25  
Not allowed  
0.8  
Not allowed  
Not allowed  
0.8  
0.7  
2.0  
Not allowed  
1.0  
0.5625  
16  
24  
48  
96  
192  
384  
1
1.5  
3
2.0  
4.0  
3.0  
3.0  
1.8  
6.0  
4.5  
6.8  
4.0  
15.0  
30.0  
50.0  
50.0  
10.0  
6
15.0  
32.0  
50.0  
10.0  
20.0  
12  
24  
25.0  
40.0  
50.0  
50.0  
1. Guaranteed by design, not tested in production.  
General PCB design guidelines  
Power supply decoupling should be performed as shown in Figure 36 or Figure 37,  
depending on whether V is connected to V or not. Good quality ceramic 10 nF  
REF+  
DDA  
capacitors should be used. They should be placed as close as possible to the chip.  
92/102  
Doc ID 023331 Rev 1  
STM8L052C6  
Electrical parameters  
Figure 36. Power supply and reference decoupling (V  
not connected to V  
)
DDA  
REF+  
STM8L  
V
REF+  
DDA  
External  
reference  
1 μF // 10 nF  
V
V
Supply  
1 μF // 10 nF  
/V  
SSA REF-  
ai17031b  
Figure 37. Power supply and reference decoupling (V  
connected to V  
)
REF+  
DDA  
STM8L  
VREF+/VDDA  
Supply  
1 μF // 10 nF  
VREF–/VSSA  
ai17032b  
Doc ID 023331 Rev 1  
93/102  
Electrical parameters  
STM8L052C6  
8.3.12  
EMC characteristics  
Susceptibility tests are performed on a sample basis during product characterization.  
Functional EMS (electromagnetic susceptibility)  
Based on a simple running application on the product (toggling 2 LEDs through I/O ports),  
the product is stressed by two electromagnetic events until a failure occurs (indicated by the  
LEDs).  
ESD: Electrostatic discharge (positive and negative) is applied on all pins of the device  
until a functional disturbance occurs. This test conforms with the IEC 61000 standard.  
FTB: A burst of fast transient voltage (positive and negative) is applied to V and V  
DD  
SS  
through a 100 pF capacitor, until a functional disturbance occurs. This test conforms  
with the IEC 61000 standard.  
A device reset allows normal operations to be resumed. The test results are given in the  
table below based on the EMS levels and classes defined in application note AN1709.  
Designing hardened software to avoid noise problems  
EMC characterization and optimization are performed at component level with a typical  
application environment and simplified MCU software. It should be noted that good EMC  
performance is highly dependent on the user application and the software in particular.  
Therefore it is recommended that the user applies EMC software optimization and  
prequalification tests in relation with the EMC level requested for his application.  
Prequalification trials  
Most of the common failures (unexpected reset and program counter corruption) can be  
reproduced by manually forcing a low state on the NRST pin or the Oscillator pins for 1  
second.  
To complete these trials, ESD stress can be applied directly on the device, over the range of  
specification values. When unexpected behavior is detected, the software can be hardened  
to prevent unrecoverable errors occurring (see application note AN1015).  
Table 49. EMS data  
Level/  
Class  
Symbol  
Parameter  
Conditions  
VDD = 3.3 V, TA = +25 °C,  
Voltage limits to be applied on  
VFESD  
any I/O pin to induce a functional fCPU= 16 MHz,  
3B  
disturbance  
conforms to IEC 61000  
Fast transient voltage burst limits  
to be applied through 100 pF on  
VDD and VSS pins to induce a  
VDD = 3.3 V, TA = +25 °C,  
fCPU = 16 MHz,  
conforms to IEC 61000  
4A  
2B  
Using HSI  
Using HSE  
VEFTB  
functional disturbance  
Electromagnetic interference (EMI)  
Based on a simple application running on the product (toggling 2 LEDs through the I/O  
ports), the product is monitored in terms of emission. This emission test is in line with the  
norm IEC61967-2 which specifies the board and the loading of each pin.  
94/102  
Doc ID 023331 Rev 1  
STM8L052C6  
Electrical parameters  
(1)  
Table 50. EMI data  
Max vs.  
Unit  
16 MHz  
Monitored  
frequency band  
Symbol  
Parameter  
Conditions  
0.1 MHz to 30 MHz  
30 MHz to 130 MHz  
130 MHz to 1 GHz  
SAE EMI Level  
-3  
VDD = 3.6 V,  
TA = +25 °C,  
LQFP32  
conforming to  
IEC61967-2  
9
4
2
dBμV  
SEMI  
Peak level  
-
1. Not tested in production.  
Absolute maximum ratings (electrical sensitivity)  
Based on two different tests (ESD and LU) using specific measurement methods, the  
product is stressed in order to determine its performance in terms of electrical sensitivity.  
For more details, refer to the application note AN1181.  
Electrostatic discharge (ESD)  
Electrostatic discharges (a positive then a negative pulse separated by 1 second) are  
applied to the pins of each sample according to each pin combination. The sample size  
depends on the number of supply pins in the device (3 parts*(n+1) supply pin). Two models  
can be simulated: human body model and charge device model. This test conforms to the  
JESD22-A114A/A115A standard.  
Table 51. ESD absolute maximum ratings  
Maximum  
Symbol  
Ratings  
Conditions  
Unit  
value (1)  
Electrostatic discharge voltage  
(human body model)  
VESD(HBM)  
2000  
TA = +25 °C  
V
Electrostatic discharge voltage  
(charge device model)  
VESD(CDM)  
500  
1. Data based on characterization results, not tested in production.  
Static latch-up  
LU: 3 complementary static tests are required on 6 parts to assess the latch-up  
performance. A supply overvoltage (applied to each power supply pin) and a current  
injection (applied to each input, output and configurable I/O pin) are performed on each  
sample. This test conforms to the EIA/JESD 78 IC latch-up standard. For more details,  
refer to the application note AN1181.  
Table 52. Electrical sensitivities  
Symbol  
Parameter  
Class  
LU  
Static latch-up class  
II  
Doc ID 023331 Rev 1  
95/102  
Electrical parameters  
STM8L052C6  
8.4  
Thermal characteristics  
The maximum chip junction temperature (T  
) must never exceed the values given in  
Jmax  
Table 15: General operating conditions on page 55.  
The maximum chip-junction temperature, T  
the following equation:  
, in degree Celsius, may be calculated using  
Jmax  
T
= T  
+ (P  
x Θ )  
Jmax  
Amax  
Dmax JA  
Where:  
T
is the maximum ambient temperature in °C  
is the package junction-to-ambient thermal resistance in °C/W  
Amax  
Θ
P
JA  
is the sum of P  
and P  
(P  
= P  
+ P  
)
I/Omax  
Dmax  
INTmax  
I/Omax  
Dmax  
INTmax  
P
is the product of I and V , expressed in Watts. This is the maximum chip  
INTmax  
DD  
DD  
internal power.  
P
represents the maximum power dissipation on output pins  
I/Omax  
Where:  
P
= Σ (V *I ) + Σ((V -V )*I ),  
I/Omax  
OL OL  
DD OH  
OH  
taking into account the actual V /I and V /I of the I/Os at low and high level in  
OL OL  
OH OH  
the application.  
(1)  
Table 53. Thermal characteristics  
Symbol  
Parameter  
Value  
Unit  
Thermal resistance junction-ambient  
LQFP 48- 7 x 7 mm  
ΘJA  
65  
°C/W  
1. Thermal resistances are based on JEDEC JESD51-2 with 4-layer PCB in a natural convection  
environment.  
96/102  
Doc ID 023331 Rev 1  
STM8L052C6  
Package characteristics  
9
Package characteristics  
9.1  
ECOPACK  
In order to meet environmental requirements, ST offers these devices in different grades of  
ECOPACK® packages, depending on their level of environmental compliance. ECOPACK®  
specifications, grade definitions and product status are available at: www.st.com.  
ECOPACK® is an ST trademark.  
Doc ID 023331 Rev 1  
97/102  
Package characteristics  
STM8L052C6  
9.2  
Package mechanical data  
9.2.1  
48-pin low profile quad flat 7x7mm package (LQFP48)  
Figure 38. LQFP48 48-pin low profile quad flat package outline  
D
ccc  
$
D1  
D3  
"
"ꢂ  
25  
36  
24  
37  
48  
L1  
b
E3  
E1 E  
L
13  
A1  
K
Pin 1  
identification  
1
12  
D
5B_ME  
1. Drawing is not to scale.  
Table 54. LQFP48 48-pin low profile quad flat package, mechanical data  
mm  
Typ  
inches(1)  
Dim.  
Min  
Max  
Min  
Typ  
Max  
A
A1  
A2  
b
1.6  
0.15  
1.45  
0.27  
0.2  
0.063  
0.0059  
0.0571  
0.0106  
0.0079  
0.3622  
0.2835  
0.05  
1.35  
0.17  
0.09  
8.8  
0.002  
0.0531  
0.0067  
0.0035  
0.3465  
0.2677  
1.4  
0.0551  
0.0087  
0.22  
c
D
9
7
9.2  
0.3543  
0.2756  
0.2165  
0.3543  
0.2756  
0.2165  
0.0197  
0.0236  
0.0394  
3.5°  
D1  
D3  
E
6.8  
7.2  
5.5  
9
8.8  
6.8  
9.2  
7.2  
0.3465  
0.2677  
0.3622  
0.2835  
E1  
E3  
e
7
5.5  
0.5  
0.6  
1
L
0.45  
0.0°  
0.75  
0.0177  
0.0°  
0.0295  
L1  
k
3.5°  
7.0°  
0.08  
7.0°  
ccc  
0.0031  
1. Values in inches are converted from mm and rounded to 4 decimal digits.  
98/102  
Doc ID 023331 Rev 1  
STM8L052C6  
Figure 39. LQFP48 recommended footprint  
Package characteristics  
0.50  
1.20  
0.30  
36  
25  
37  
24  
0.20  
7.30  
9.70 5.80  
7.30  
48  
13  
12  
1
1.20  
5.80  
9.70  
5B_FP  
1. Dimensions are in millimeters.  
Doc ID 023331 Rev 1  
99/102  
Device ordering information  
STM8L052C6  
10  
Device ordering information  
Figure 40. Medium density value line STM8L05xxx ordering information scheme  
Example:  
STM8  
L
052  
C
6
T
6
Product class  
STM8 microcontroller  
Family type  
L = Low power  
Sub-family type  
052 = Ultra-low-power with LCD  
Pin count  
C = 48 pins  
Program memory size  
6 = 32 Kbytes  
Package  
T = LQFP  
Temperature range  
6 = - 40 °C to 85 °C  
1. For a list of available options (e.g. memory size, package) and orderable part numbers  
or for further information on any aspect of this device, please contact the ST sales  
office nearest to you  
100/102  
Doc ID 023331 Rev 1  
STM8L052C6  
Revision history  
11  
Revision history  
Table 55. Document revision history  
Date  
Revision  
Changes  
22-Jun-2012  
1
Initial release.  
Doc ID 023331 Rev 1  
101/102  
STM8L052C6  
Please Read Carefully:  
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the  
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any  
time, without notice.  
All ST products are sold pursuant to ST’s terms and conditions of sale.  
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no  
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.  
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this  
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products  
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such  
third party products or services or any intellectual property contained therein.  
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED  
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED  
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS  
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.  
UNLESS EXPRESSLY APPROVED IN WRITING BY TWO AUTHORIZED ST REPRESENTATIVES, ST PRODUCTS ARE NOT  
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING  
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,  
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE  
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.  
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void  
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any  
liability of ST.  
ST and the ST logo are trademarks or registered trademarks of ST in various countries.  
Information in this document supersedes and replaces all information previously supplied.  
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.  
© 2012 STMicroelectronics - All rights reserved  
STMicroelectronics group of companies  
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -  
Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America  
www.st.com  
102/102  
Doc ID 023331 Rev 1  

相关型号:

STM8L052R8

device limitations
STMICROELECTR

STM8L101

8-bit ultralow power microcontroller with up to 8 Kbytes Flash multifunction timers, comparators, USART, SPI, I2C
STMICROELECTR

STM8L101-EVAL

STM8L101-EVAL evaluation board
STMICROELECTR

STM8L101F1

超低功耗8位MCU,具有2 KB Flash、16 MHz CPU和集成EEPROM
STMICROELECTR

STM8L101F1P3

8-bit ultralow power microcontroller with up to 8 Kbytes Flash multifunction timers, comparators, USART, SPI, I2C
STMICROELECTR

STM8L101F1P3A

8-bit ultralow power microcontroller with up to 8 Kbytes Flash multifunction timers, comparators, USART, SPI, I2C
STMICROELECTR

STM8L101F1P3ATR

8-bit ultralow power microcontroller with up to 8 Kbytes Flash multifunction timers, comparators, USART, SPI, I2C
STMICROELECTR

STM8L101F1P3TR

8-bit ultralow power microcontroller with up to 8 Kbytes Flash multifunction timers, comparators, USART, SPI, I2C
STMICROELECTR

STM8L101F1P6

8-bit ultralow power microcontroller with up to 8 Kbytes Flash multifunction timers, comparators, USART, SPI, I2C
STMICROELECTR

STM8L101F1P6A

8-bit ultralow power microcontroller with up to 8 Kbytes Flash multifunction timers, comparators, USART, SPI, I2C
STMICROELECTR

STM8L101F1P6ATR

8-bit ultralow power microcontroller with up to 8 Kbytes Flash multifunction timers, comparators, USART, SPI, I2C
STMICROELECTR

STM8L101F1P6TR

8-bit ultralow power microcontroller with up to 8 Kbytes Flash multifunction timers, comparators, USART, SPI, I2C
STMICROELECTR