STM32F048G6 [STMICROELECTRONICS]

CRC calculation unit;
STM32F048G6
型号: STM32F048G6
厂家: ST    ST
描述:

CRC calculation unit

文件: 总98页 (文件大小:1571K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
STM32F048C6 STM32F048G6  
STM32F048T6  
ARM®-based 32-bit MCU, 32 KB Flash, crystal-less USB FS 2.0,  
9 timers, ADC and comm. interfaces, 1.8 V  
Datasheet - production data  
Features  
®
®
Core: ARM 32-bit Cortex -M0 CPU,  
frequency up to 48 MHz  
UFQFPN48 7x7 mm  
UFQFPN28 4x4 mm  
WLCSP36  
2.6x2.7 mm  
Memories  
– 32 Kbytes of Flash memory  
Nine timers  
– 6 Kbytes of SRAM with HW parity  
– One 16-bit advanced-control timer for six  
channel PWM output  
CRC calculation unit  
Power management  
– One 32-bit and four 16-bit timers, with up to  
four IC/OC, OCN, usable for IR control  
decoding  
– Digital and I/Os supply: V = 1.8 V ± 8%  
DD  
– Analog supply: V  
– Selected I/Os: V  
= from V to 3.6 V  
DDA  
DD  
= 1.65 V to 3.6 V  
– Independent and system watchdog timers  
– SysTick timer  
DDIO2  
– Low power modes: Sleep, Stop  
– V  
supply for RTC and backup registers  
BAT  
Communication interfaces  
2
Clock management  
– One I C interface supporting Fast Mode  
Plus (1 Mbit/s) with extra current sink,  
SMBus/PMBus and wakeup  
– 4 to 32 MHz crystal oscillator  
– 32 kHz oscillator for RTC with calibration  
– Internal 8 MHz RC with x6 PLL option  
– Internal 40 kHz RC oscillator  
– Two USARTs supporting master  
synchronous SPI and modem control, one  
with ISO7816 interface, LIN, IrDA, auto  
baud rate detection and wakeup feature  
– Internal 48 MHz oscillator with automatic  
trimming based on ext. synchronization  
– Up to two SPIs (18 Mbit/s) with 4 to 16  
2
Up to 37 fast I/Os  
programmable bit frames, one with I S  
– All mappable on external interrupt vectors  
interface multiplexed  
– Up to 24 I/Os with 5 V tolerant capability  
– USB 2.0 full-speed interface, able to run  
from internal 48 MHz oscillator and with  
BCD and LPM support  
and 8 with independent supply V  
DDIO2  
5-channel DMA controller  
HDMI CEC, wakeup on header reception  
Serial wire debug (SWD)  
96-bit unique ID  
One 12-bit, 1.0 µs ADC (10 channels)  
– Conversion range: 0 to 3.6 V  
– Separate analog supply: 2.4 V to 3.6 V  
®
Up to 13 capacitive sensing channels for  
All packages ECOPACK 2  
touchkey, linear and rotary touch sensors  
Calendar RTC with alarm and periodic wakeup  
from Stop  
January 2017  
DocID026007 Rev 6  
1/98  
This is information on a product in full production.  
www.st.com  
Contents  
STM32F048C6 STM32F048G6 STM32F048T6  
Contents  
1
2
3
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Functional overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
3.1  
3.2  
3.3  
3.4  
3.5  
ARM®-Cortex®-M0 core . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Memories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Boot modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Cyclic redundancy check calculation unit (CRC) . . . . . . . . . . . . . . . . . . . 13  
Power management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
3.5.1  
3.5.2  
3.5.3  
Power supply schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Power-on reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
3.6  
3.7  
3.8  
3.9  
Clocks and startup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
General-purpose inputs/outputs (GPIOs) . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Direct memory access controller (DMA) . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Interrupts and events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
3.9.1  
3.9.2  
Nested vectored interrupt controller (NVIC) . . . . . . . . . . . . . . . . . . . . . . 16  
Extended interrupt/event controller (EXTI) . . . . . . . . . . . . . . . . . . . . . . 16  
3.10 Analog-to-digital converter (ADC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
3.10.1 Temperature sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
3.10.2 Internal voltage reference (V  
) . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
REFINT  
3.10.3  
V
battery voltage monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
BAT  
3.11 Touch sensing controller (TSC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
3.12 Timers and watchdogs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
3.12.1 Advanced-control timer (TIM1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
3.12.2 General-purpose timers (TIM2, 3, 14, 16, 17) . . . . . . . . . . . . . . . . . . . . 20  
3.12.3 Independent watchdog (IWDG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
3.12.4 System window watchdog (WWDG) . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
3.12.5 SysTick timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
3.13 Real-time clock (RTC) and backup registers . . . . . . . . . . . . . . . . . . . . . . 21  
3.14 Inter-integrated circuit interface (I2C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
3.15 Universal synchronous/asynchronous receiver/transmitter (USART) . . . 23  
2/98  
DocID026007 Rev 6  
STM32F048C6 STM32F048G6 STM32F048T6  
Contents  
3.16 Serial peripheral interface (SPI) / Inter-integrated sound interface (I2S) . 24  
3.17 High-definition multimedia interface (HDMI) - consumer  
electronics control (CEC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
3.18 Universal serial bus (USB) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
3.19 Clock recovery system (CRS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
3.20 Serial wire debug port (SW-DP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
4
5
6
Pinouts and pin descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Memory mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
6.1  
Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
6.1.1  
6.1.2  
6.1.3  
6.1.4  
6.1.5  
6.1.6  
6.1.7  
Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Current consumption measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
6.2  
6.3  
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
6.3.1  
6.3.2  
6.3.3  
6.3.4  
6.3.5  
6.3.6  
6.3.7  
6.3.8  
6.3.9  
General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Operating conditions at power-up / power-down . . . . . . . . . . . . . . . . . . 42  
Embedded reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
Wakeup time from low-power mode . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
External clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
Internal clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
Memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
6.3.10 EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
6.3.11 Electrical sensitivity characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
6.3.12 I/O current injection characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64  
6.3.13 I/O port characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
6.3.14 NRST and NPOR pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 70  
6.3.15 12-bit ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72  
DocID026007 Rev 6  
3/98  
4
Contents  
STM32F048C6 STM32F048G6 STM32F048T6  
6.3.16 Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76  
6.3.17  
V
monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76  
BAT  
6.3.18 Timer characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76  
6.3.19 Communication interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77  
7
Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84  
7.1  
7.2  
7.3  
7.4  
UFQFPN48 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84  
WLCSP36 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87  
UFQFPN28 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90  
Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93  
7.4.1  
7.4.2  
Reference document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93  
Selecting the product temperature range . . . . . . . . . . . . . . . . . . . . . . . 93  
8
9
Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94  
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95  
4/98  
DocID026007 Rev 6  
STM32F048C6 STM32F048G6 STM32F048T6  
List of tables  
List of tables  
Table 1.  
Table 2.  
Table 3.  
Table 4.  
Table 5.  
Table 6.  
Table 7.  
Table 8.  
STM32F048x device features and peripheral counts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Temperature sensor calibration values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Internal voltage reference calibration values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Capacitive sensing GPIOs available on STM32F048x6 devices . . . . . . . . . . . . . . . . . . . . 18  
No. of capacitive sensing channels available on STM32F048x6 devices. . . . . . . . . . . . . . 19  
Timer feature comparison. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
2
Comparison of I C analog and digital filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
2
STM32F048x6 I C implementation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Table 9.  
STM32F048x6 USART implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
STM32F048x6 SPI/I S implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
2
Table 10.  
Table 11.  
Table 12.  
Table 13.  
Table 14.  
Table 15.  
Table 16.  
Table 17.  
Table 18.  
Table 19.  
Table 20.  
Table 21.  
Table 22.  
Table 23.  
Table 24.  
Table 25.  
Table 26.  
Table 27.  
Legend/abbreviations used in the pinout table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
STM32F048x6 pin definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Alternate functions selected through GPIOA_AFR registers for port A . . . . . . . . . . . . . . . 32  
Alternate functions selected through GPIOB_AFR registers for port B . . . . . . . . . . . . . . . 33  
Alternate functions selected through GPIOF_AFR registers for port F. . . . . . . . . . . . . . . . 33  
STM32F048x6 peripheral register boundary addresses. . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Operating conditions at power-up / power-down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
Embedded internal reference voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
Typical and maximum current consumption from V supply at V = 1.8 V . . . . . . . . . . 45  
DD  
DD  
Typical and maximum current consumption from the V  
supply . . . . . . . . . . . . . . . . . 46  
DDA  
Typical and maximum consumption in Stop mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
Typical and maximum current consumption from the V supply. . . . . . . . . . . . . . . . . . . 47  
BAT  
Typical current consumption, code executing from Flash memory,  
running from HSE 8 MHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
Switching output I/O current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
Peripheral current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
Low-power mode wakeup timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
High-speed external user clock characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
Low-speed external user clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
HSE oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
Table 28.  
Table 29.  
Table 30.  
Table 31.  
Table 32.  
Table 33.  
Table 34.  
Table 35.  
Table 36.  
Table 37.  
Table 38.  
Table 39.  
Table 40.  
Table 41.  
Table 42.  
Table 43.  
Table 44.  
Table 45.  
Table 46.  
Table 47.  
LSE oscillator characteristics (f  
= 32.768 kHz) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
LSE  
HSI oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
HSI14 oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
HSI48 oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
LSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
Flash memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
Flash memory endurance and data retention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
EMS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
EMI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
ESD absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64  
Electrical sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64  
I/O current injection susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
I/O static characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
DocID026007 Rev 6  
5/98  
6
List of tables  
STM32F048C6 STM32F048G6 STM32F048T6  
Table 48.  
Table 49.  
Table 50.  
Table 51.  
Table 52.  
Table 53.  
Table 54.  
Table 55.  
Table 56.  
Table 57.  
Table 58.  
Table 59.  
Table 60.  
Table 61.  
Table 62.  
Table 63.  
Table 64.  
Table 65.  
Table 66.  
Table 67.  
Table 68.  
Table 69.  
Table 70.  
Output voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68  
I/O AC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71  
NPOR pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72  
ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72  
R
max for f  
= 14 MHz. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
AIN  
ADC  
ADC accuracy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74  
TS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76  
V
monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76  
BAT  
TIMx characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76  
IWDG min/max timeout period at 40 kHz (LSI). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77  
WWDG min/max timeout value at 48 MHz (PCLK). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77  
2
I C analog filter characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78  
SPI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78  
2
I S characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80  
USB electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83  
UFQFPN48 package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85  
WLCSP36 package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87  
WLCSP36 recommended PCB design rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88  
UFQFPN28 package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90  
Package thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93  
Ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94  
Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95  
6/98  
DocID026007 Rev 6  
STM32F048C6 STM32F048G6 STM32F048T6  
List of figures  
List of figures  
Figure 1.  
Figure 2.  
Figure 3.  
Figure 4.  
Figure 5.  
Figure 6.  
Figure 7.  
Figure 8.  
Figure 9.  
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Clock tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
UFQFPN48 package pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
WLCSP36 package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
UFQFPN28 package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
STM32F048x6 memory map  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Pin loading conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Figure 10. Current consumption measurement scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Figure 11. High-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
Figure 12. Low-speed external clock source AC timing diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
Figure 13. Typical application with an 8 MHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
Figure 14. Typical application with a 32.768 kHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
Figure 15. HSI oscillator accuracy characterization results for soldered parts . . . . . . . . . . . . . . . . . . 58  
Figure 16. HSI14 oscillator accuracy characterization results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
Figure 17. HSI48 oscillator accuracy characterization results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
Figure 18. TC and TTa I/O input characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
Figure 19. Five volt tolerant (FT and FTf) I/O input characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
Figure 20. I/O AC characteristics definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70  
Figure 21. Recommended NRST pin protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71  
Figure 22. ADC accuracy characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
Figure 23. Typical connection diagram using the ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
Figure 24. SPI timing diagram - slave mode and CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79  
Figure 25. SPI timing diagram - slave mode and CPHA = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79  
Figure 26. SPI timing diagram - master mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80  
2
Figure 27. I S slave timing diagram (Philips protocol) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81  
2
Figure 28. I S master timing diagram (Philips protocol). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82  
Figure 29. UFQFPN48 package outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84  
Figure 30. Recommended footprint for UFQFPN48 package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85  
Figure 31. UFQFPN48 package marking example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86  
Figure 32. WLCSP36 package outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87  
Figure 33. Recommended pad footprint for WLCSP36 package. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88  
Figure 34. WLCSP36 package marking example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89  
Figure 35. UFQFPN28 package outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90  
Figure 36. Recommended footprint for UFQFPN28 package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91  
Figure 37. UFQFPN28 package marking example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92  
DocID026007 Rev 6  
7/98  
7
Introduction  
STM32F048C6 STM32F048G6 STM32F048T6  
1
Introduction  
This datasheet provides the ordering information and mechanical device characteristics of  
the STM32F048x6 microcontrollers.  
This document should be read in conjunction with the STM32F0xxxx reference manual  
(RM0091). The reference manual is available from the STMicroelectronics website  
www.st.com.  
®
®
®
For information on the ARM Cortex -M0 core, please refer to the Cortex -M0 Technical  
Reference Manual, available from the www.arm.com website.  
8/98  
DocID026007 Rev 6  
 
STM32F048C6 STM32F048G6 STM32F048T6  
Description  
2
Description  
®
®
The STM32F048x6 microcontrollers incorporate the high-performance ARM Cortex -M0  
32-bit RISC core operating at up to 48 MHz frequency, high-speed embedded memories  
(32 Kbytes of Flash memory and 6 Kbytes of SRAM), and an extensive range of enhanced  
2
peripherals and I/Os. All devices offer standard communication interfaces (one I C, two  
2
SPIs/one I S, one HDMI CEC and two USARTs), one USB Full-speed device (crystal-less),  
one 12-bit ADC, four 16-bit timers, one 32-bit timer and an advanced-control PWM timer.  
The STM32F048x6 microcontrollers operate in the -40 to +85 °C and -40 to +105 °C  
temperature ranges, at a 1.8 V ± 8% power supply. A comprehensive set of power-saving  
modes allows the design of low-power applications.  
The STM32F048x6 microcontrollers include devices in three different packages ranging  
from 36 pins to 48 pins with a die form also available upon request. Depending on the  
device chosen, different sets of peripherals are included.  
These features make the STM32F048x6 microcontrollers suitable for a wide range of  
applications such as application control and user interfaces, hand-held equipment, A/V  
receivers and digital TV, PC peripherals, gaming and GPS platforms, industrial applications,  
PLCs, inverters, printers, scanners, alarm systems, video intercoms and HVACs.  
DocID026007 Rev 6  
9/98  
25  
 
Description  
STM32F048C6 STM32F048G6 STM32F048T6  
Table 1. STM32F048x device features and peripheral counts  
Peripheral  
STM32F048G6  
STM32F048T6  
STM32F048C6  
Flash memory (Kbyte)  
SRAM (Kbyte)  
Advanced  
32  
6
1 (16-bit)  
control  
Timers  
4 (16-bit)  
1 (32-bit)  
General  
purpose  
SPI [I2S](1)  
I2C  
1 [1]  
2 [1]  
1
2
1
1
Comm.  
interfaces  
USART  
USB  
CEC  
12-bit ADC  
1
(number of channels)  
(10 ext. + 3 int.)  
GPIOs  
23  
10  
29  
13  
37  
13  
Capacitive sensing channels  
Max. CPU frequency  
Operating voltage  
48 MHz  
V
DD = 1.8 V ± 8%, VDDA = from VDD to 3.6 V  
Ambient operating temperature: -40°C to 85 °C / -40°C to 105°C  
Junction temperature: -40°C to 105°C / -40°C to 125°C  
Operating temperature  
Packages  
UFQFPN28  
WLCSP36  
UFQFPN48  
1. The SPI1 interface can be used either in SPI mode or in I2S audio mode.  
10/98  
DocID026007 Rev 6  
 
STM32F048C6 STM32F048G6 STM32F048T6  
Description  
Figure 1. Block diagram  
6:&/.ꢄ  
6:',2  
DVꢄ$)  
6HULDOꢄ:LUHꢄ  
'HEXJ  
9''ꢄ ꢄꢌꢇꢃꢄ9ꢄ“ꢃꢑ  
966ꢄ  
32:(5  
9''ꢌꢃ  
)ODVKꢄ*3/ꢄ  
ꢀꢆꢄ.%ꢄ  
#ꢄ9''  
&257(;ꢓ0ꢎꢄ&38ꢄ  
I0$;ꢄ ꢄꢁꢃꢄ0+]  
ꢀꢆꢓELW  
6833/<ꢄ  
683(59,6,21  
325  
5HVHW  
,QW  
1325  
1567  
9''$ꢄ  
65$0ꢄ  
ꢒꢄ.%  
1325  
19,&  
#ꢄ9''$  
966$  
+6,ꢌꢁ  
+6,  
5&ꢄꢌꢁꢄ0+]  
5&ꢄꢃꢄ0+]  
3//  
#ꢄ9''$  
3//&/.  
/6,  
#ꢄ9''  
*3ꢄ'0$ꢄ  
ꢍꢄFKDQQHOV  
;7$/ꢄ26&ꢄ  
ꢁꢓꢀꢆꢄ0+]  
5&ꢄꢁꢎꢄN+]  
5&ꢄꢁꢃ0+]  
26&B,1  
26&B287  
+6,ꢁꢃ  
,QGꢇꢄ:LQGRZꢄ:'*  
325  
3$>ꢌꢍꢅꢎ@  
3%>ꢌꢍꢅꢎ@  
3&>ꢌꢍꢅꢌꢀ@  
*3,2ꢄSRUWꢄ$  
*3,2ꢄSRUWꢄ%  
*3,2ꢄSRUWꢄ&  
9''  
5(6(7ꢄꢔꢄ&/2&.ꢄ  
&21752/  
9%$7ꢄ ꢄꢌꢇꢒꢍꢄWRꢄꢀꢇꢒꢄ9  
#ꢄ9%$7  
26&ꢀꢆB,1ꢄ  
26&ꢀꢆB287  
;7$/ꢀꢆꢄN+]  
%DFNXSꢄ  
6\VWHPꢄDQGꢄSHULSKHUDOꢄ  
FORFNV  
ꢌꢄ7$03(5ꢓ57&  
ꢉ$/$50ꢄ287ꢋ  
57&  
UHJ  
57&ꢄLQWHUIDFH  
&56  
&5&  
3)>ꢌꢌꢈꢌꢅꢎ@  
*3,2ꢄSRUWꢄ)  
3$'ꢄ  
6<1&  
ꢁꢄFKDQQHOV  
ꢀꢄFRPSOꢇꢄFKDQQHOV  
%5.ꢈꢄ(75ꢄLQSXWꢄDVꢄ$)  
3:0ꢄ7,0(5ꢄꢌ  
7,0(5ꢄꢆꢄꢀꢆꢓELW  
7,0(5ꢄꢀ  
ꢍꢄJURXSVꢄRIꢄ  
ꢁꢄFKDQQHOV  
7RXFK  
$QDORJꢄ  
6HQVLQJꢄꢄ  
&RQWUROOHU  
VZLWFKHV  
$+%  
$3%  
ꢁꢄFKꢇꢈꢄ(75ꢄDVꢄ$)  
ꢁꢄFKꢇꢈꢄ(75ꢄDVꢄ$)  
ꢌꢄFKDQQHOꢄDVꢄ$)  
6<1&  
ꢀꢏꢄ$)  
(;7ꢄ,7ꢄꢄ:.83  
7,0(5ꢄꢌꢁ  
86%ꢄ  
86%  
3+<  
'ꢊꢈꢄ'ꢓ  
ꢌꢄFKDQQHO  
#ꢄ9'',2ꢆ  
7,0(5ꢄꢌꢒ  
7,0(5ꢄꢌꢏ  
ꢌꢄFRPSOꢈꢄ%5.ꢄDVꢄ$)  
65$0  
ꢌꢎꢆꢁꢄ%  
ꢌꢄFKDQQHO  
ꢌꢄFRPSOꢈꢄ%5.ꢄDVꢄ$)  
:LQGRZꢄ:'*  
'%*0&8  
,5B287ꢄDVꢄ$)  
5;ꢈꢄ7;ꢈ&76ꢈꢄ576ꢈꢄ  
&.ꢄDVꢄ$)  
026,ꢐ6'ꢄ  
0,62ꢐ0&.ꢄ  
6&.ꢐ&.ꢄ  
86$57ꢌ  
86$57ꢆ  
63,ꢌꢐ,ꢆ6ꢌ  
63,ꢆ  
5;ꢈꢄ7;ꢈ&76ꢈꢄ576ꢈꢄ  
&.ꢄDVꢄ$)  
6<6&)*ꢄ,)  
166ꢐ:6ꢄDVꢄ$)  
026,ꢄ  
0,62ꢄ  
6&.ꢄ  
6&/ꢈꢄ6'$ꢈꢄ60%$ꢄ  
ꢉH[WUDꢄP$ꢄ)0ꢊꢋꢄDVꢄ$)  
,ꢆ&ꢌ  
166ꢄDVꢄ$)  
7HPSꢇꢄ  
VHQVRU  
+'0,ꢓ&(&  
&(&ꢄDVꢄ$)  
ꢌꢎ[ꢄꢄ  
$'ꢄLQSXW  
ꢌꢆꢓELWꢄ$'& ,)  
9''$  
966$  
#ꢄ9''$  
3RZHUꢄGRPDLQꢄRIꢄDQDORJꢄEORFNVꢄꢅ  
9%$7  
9''  
9''$  
9'',2ꢆ  
06Yꢀꢁꢂꢃꢁ9ꢀ  
DocID026007 Rev 6  
11/98  
25  
 
Functional overview  
STM32F048C6 STM32F048G6 STM32F048T6  
3
Functional overview  
Figure 1 shows the general block diagram of the STM32F048x6 devices.  
3.1  
ARM®-Cortex®-M0 core  
®
®
The ARM Cortex -M0 is a generation of ARM 32-bit RISC processors for embedded  
systems. It has been developed to provide a low-cost platform that meets the needs of MCU  
implementation, with a reduced pin count and low-power consumption, while delivering  
outstanding computational performance and an advanced system response to interrupts.  
®
®
The ARM Cortex -M0 processors feature exceptional code-efficiency, delivering the high  
performance expected from an ARM core, with memory sizes usually associated with 8- and  
16-bit devices.  
The STM32F048x6 devices embed ARM core and are compatible with all ARM tools and  
software.  
3.2  
Memories  
The device has the following features:  
6 Kbytes of embedded SRAM accessed (read/write) at CPU clock speed with 0 wait  
states and featuring embedded parity checking with exception generation for fail-critical  
applications.  
The non-volatile memory is divided into two arrays:  
32 Kbytes of embedded Flash memory for programs and data  
Option bytes  
The option bytes are used to write-protect the memory (with 4 KB granularity) and/or  
readout-protect the whole memory with the following options:  
Level 0: no readout protection  
Level 1: memory readout protection, the Flash memory cannot be read from or  
written to if either debug features are connected or boot in RAM is selected  
®
Level 2: chip readout protection, debug features (Cortex -M0 serial wire) and  
boot in RAM selection disabled  
3.3  
Boot modes  
At startup, the boot pin and boot selector option bits are used to select one of the three boot  
options:  
boot from User Flash memory  
boot from System Memory  
boot from embedded SRAM  
The boot pin is shared with the standard GPIO and can be disabled through the boot  
selector option bits. The boot loader is located in System Memory. It is used to reprogram  
2
the Flash memory by using USART on pins PA14/PA15 or PA9/PA10 or I C on pins  
PB6/PB7 or through the USB DFU interface.  
12/98  
DocID026007 Rev 6  
 
 
 
 
STM32F048C6 STM32F048G6 STM32F048T6  
Functional overview  
3.4  
Cyclic redundancy check calculation unit (CRC)  
The CRC (cyclic redundancy check) calculation unit is used to get a CRC code from a 32-bit  
data word and a CRC-32 (Ethernet) polynomial.  
Among other applications, CRC-based techniques are used to verify data transmission or  
storage integrity. In the scope of the EN/IEC 60335-1 standard, they offer a means of  
verifying the Flash memory integrity. The CRC calculation unit helps compute a signature of  
the software during runtime, to be compared with a reference signature generated at link-  
time and stored at a given memory location.  
3.5  
Power management  
3.5.1  
Power supply schemes  
V
= V  
= 1.8 V ± 8%: external power supply for I/Os (V  
) and digital logic. It  
DD  
DDIO1  
DDIO1  
is provided externally through VDD pins.  
V
= from V to 3.6 V: external analog power supply for ADC, RCs and PLL  
DDA  
DD  
(minimum voltage to be applied to V  
externally through VDDA pin. The V  
is 2.4 V when the ADC is used). It is provided  
voltage level must be always greater or equal  
DDA  
DDA  
to the V voltage level and must be established first.  
DD  
V
= 1.65 to 3.6 V: external power supply for marked I/Os. V  
is provided  
DDIO2  
DDIO2  
externally through the VDDIO2 pin. The V  
from V or V  
V
(V  
are disabled by hardware. The output of this comparator is connected to EXTI line 31  
and it can be used to generate an interrupt. Refer to the pinout diagrams or tables for  
concerned I/Os list.  
voltage level is completely independent  
DDIO2  
, but it must not be provided without a valid supply on V . The  
DD  
DDA  
DD  
supply is monitored and compared with the internal reference voltage  
DDIO2  
). When the V  
is below this threshold, all the I/Os supplied from this rail  
REFINT  
DDIO2  
V
= 1.65 to 3.6 V: power supply for RTC, external clock 32 kHz oscillator and  
BAT  
backup registers (through power switch) when V is not present.  
DD  
For more details on how to connect power pins, refer to Figure 9: Power supply scheme.  
3.5.2  
3.5.3  
Power-on reset  
To guarantee a proper power-on reset, the NPOR pin must be held low until V is stable.  
DD  
When V is stable, the reset state can be exited either by:  
DD  
putting the NPOR pin in high impedance (NPOR pin has an internal pull-up), or by  
forcing the pin to high level by connecting it to V  
DDA  
Low-power modes  
The STM32F048x6 microcontrollers support two low-power modes to achieve the best  
compromise between low power consumption, short startup time and available wakeup  
sources:  
Sleep mode  
In Sleep mode, only the CPU is stopped. All peripherals continue to operate and can  
wake up the CPU when an interrupt/event occurs.  
DocID026007 Rev 6  
13/98  
25  
 
 
 
 
 
Functional overview  
STM32F048C6 STM32F048G6 STM32F048T6  
Stop mode  
Stop mode achieves very low power consumption while retaining the content of SRAM  
and registers. All clocks in the 1.8 V domain are stopped, the PLL, the HSI RC and the  
HSE crystal oscillators are disabled.  
The device can be woken up from Stop mode by any of the EXTI lines. The EXTI line  
source can be one of the 16 external lines, RTC, I2C1, USART1, USART2, USB,  
V
supply comparator or the CEC.  
DDIO2  
The CEC, USART1 and I2C1 peripherals can be configured to enable the HSI RC  
oscillator so as to get clock for processing incoming data.  
Note:  
The RTC, the IWDG, and the corresponding clock sources are not stopped by entering Stop  
mode.  
3.6  
Clocks and startup  
System clock selection is performed on startup, however the internal RC 8 MHz oscillator is  
selected as default CPU clock on reset. An external 4-32 MHz clock can be selected, in  
which case it is monitored for failure. If failure is detected, the system automatically switches  
back to the internal RC oscillator. A software interrupt is generated if enabled. Similarly, full  
interrupt management of the PLL clock entry is available when necessary (for example on  
failure of an indirectly used external crystal, resonator or oscillator).  
Several prescalers allow the application to configure the frequency of the AHB and the APB  
domains. The maximum frequency of the AHB and the APB domains is 48 MHz.  
Additionally, also the internal RC 48 MHz oscillator can be selected for system clock or PLL  
input source. This oscillator can be automatically fine-trimmed by the means of the CRS  
peripheral using the external synchronization.  
14/98  
DocID026007 Rev 6  
 
STM32F048C6 STM32F048G6 STM32F048T6  
Functional overview  
Figure 2. Clock tree  
)ODVKꢄPHPRU\ꢄ  
SURJUDPPLQJꢄ  
LQWHUIDFH  
86%ꢄ62)  
)/,7)&/.  
6<1&  
/6(  
6<1&65&  
,ꢆ&ꢌ6:  
+6,  
,ꢆ&ꢌ  
,ꢆ6ꢌ  
6<6&/.  
&56  
+6,  
7ULP  
+6,ꢁꢃ  
+6,ꢁꢃ  
+6,  
ꢁꢃꢄ0+]  
+6,ꢄ5&  
&(&6:  
/6(  
ꢐꢆꢁꢁ  
&(&  
ꢃꢄ0+]  
+6,ꢄ5&  
$+%ꢈꢄFRUHꢈꢄPHPRU\ꢈꢄ'0$ꢈꢄ  
&RUWH[ꢄ)&/.ꢄIUHHꢓUXQꢄFORFN  
+&/.  
ꢐꢃ  
6:  
35(',9  
3//65&  
6<6&/.  
&RUWH[ꢄ  
V\VWHPꢄWLPHUꢄ  
+6,ꢁꢃ  
3//08/  
+6,  
3//&/.  
+6(  
3&/.  
$3%ꢄ  
ꢐꢌꢈꢐꢆꢈ«  
ꢐꢌꢈꢐꢆꢈꢐꢁꢈ  
ꢐꢃꢈꢐꢌꢒ  
3//  
[ꢆꢈ[ꢀꢈꢇꢇ  
ꢇꢇꢇ[ꢌꢒ  
ꢐꢌꢈꢐꢆꢈꢇꢇꢄ  
«ꢐꢍꢌꢆ  
SHULSKHUDOV  
ꢇꢇꢐꢌꢒ  
+35(  
335(  
335(  
[ꢌꢈꢄ[ꢆ  
&66  
7,0ꢌꢈꢆꢈꢀꢈ  
ꢌꢁꢈꢌꢒꢈꢌꢏ  
26&B287  
26&B,1  
+6(  
ꢁꢓꢀꢆꢄ0+]  
+6(ꢄ26&  
86$57ꢌ6:  
3&/.  
/6(  
6<6&/.  
+6,  
86$57ꢌ  
57&  
ꢐꢀꢆ  
/6(  
/6(  
57&&/.  
26&ꢀꢆB,1  
ꢀꢆꢇꢏꢒꢃꢄN+]  
/6(ꢄ26&  
86%6:  
26&ꢀꢆB287  
+6,ꢁꢃ  
3//&/.  
57&6(/  
86%  
/6,  
ꢁꢎꢄN+]  
/6,ꢄ5&  
,:'*  
3//12',9  
ꢐꢌꢈꢐꢆ  
$'&ꢄ  
ꢌꢁꢄ0+]ꢄ5&  
+6,ꢌꢁ  
+6,ꢌꢁ  
DV\QFKURQRXVꢄ  
FORFNꢄLQSXW  
3//&/.  
+6,ꢁꢃ  
+6(  
0&235(  
+6,  
0DLQꢄFORFN  
RXWSXW  
ꢐꢌꢈꢐꢆꢈꢐꢁꢈꢇꢇ  
ꢇꢇꢐꢌꢆꢃ  
+6,ꢌꢁ  
6<6&/.  
/6(  
0&2  
/HJHQG  
EODFN  
ZKLWH  
FORFNꢄWUHHꢄHOHPHQW  
/6,  
FORFNꢄWUHHꢄFRQWUROꢄHOHPHQW  
FORFNꢄOLQH  
WRꢄ7,0ꢌꢁ  
0&2  
FRQWUROꢄOLQH  
06Yꢀꢀꢌꢏꢂ9ꢁ  
3.7  
General-purpose inputs/outputs (GPIOs)  
Each of the GPIO pins can be configured by software as output (push-pull or open-drain), as  
input (with or without pull-up or pull-down) or as peripheral alternate function. Most of the  
GPIO pins are shared with digital or analog alternate functions.  
DocID026007 Rev 6  
15/98  
25  
 
 
Functional overview  
STM32F048C6 STM32F048G6 STM32F048T6  
The I/O configuration can be locked if needed following a specific sequence in order to  
avoid spurious writing to the I/Os registers.  
3.8  
Direct memory access controller (DMA)  
The 5-channel general-purpose DMAs manage memory-to-memory, peripheral-to-memory  
and memory-to-peripheral transfers.  
The DMA supports circular buffer management, removing the need for user code  
intervention when the controller reaches the end of the buffer.  
Each channel is connected to dedicated hardware DMA requests, with support for software  
trigger on each channel. Configuration is made by software and transfer sizes between  
source and destination are independent.  
DMA can be used with the main peripherals: SPIx, I2Sx, I2Cx, USARTx, all TIMx timers  
(except TIM14) and ADC.  
3.9  
Interrupts and events  
3.9.1  
Nested vectored interrupt controller (NVIC)  
The STM32F0xx family embeds a nested vectored interrupt controller able to handle up to  
®
32 maskable interrupt channels (not including the 16 interrupt lines of Cortex -M0) and 4  
priority levels.  
Closely coupled NVIC gives low latency interrupt processing  
Interrupt entry vector table address passed directly to the core  
Closely coupled NVIC core interface  
Allows early processing of interrupts  
Processing of late arriving higher priority interrupts  
Support for tail-chaining  
Processor state automatically saved  
Interrupt entry restored on interrupt exit with no instruction overhead  
This hardware block provides flexible interrupt management features with minimal interrupt  
latency.  
3.9.2  
Extended interrupt/event controller (EXTI)  
The extended interrupt/event controller consists of 24 edge detector lines used to generate  
interrupt/event requests and wake-up the system. Each line can be independently  
configured to select the trigger event (rising edge, falling edge, both) and can be masked  
independently. A pending register maintains the status of the interrupt requests. The EXTI  
can detect an external line with a pulse width shorter than the internal clock period. Up to 37  
GPIOs can be connected to the 16 external interrupt lines.  
3.10  
Analog-to-digital converter (ADC)  
The 12-bit analog-to-digital converter has up to 10 external and 3 internal (temperature  
16/98  
DocID026007 Rev 6  
 
 
 
 
 
STM32F048C6 STM32F048G6 STM32F048T6  
Functional overview  
sensor, voltage reference, VBAT voltage measurement) channels and performs conversions  
in single-shot or scan modes. In scan mode, automatic conversion is performed on a  
selected group of analog inputs.  
The ADC can be served by the DMA controller.  
An analog watchdog feature allows very precise monitoring of the converted voltage of one,  
some or all selected channels. An interrupt is generated when the converted voltage is  
outside the programmed thresholds.  
3.10.1  
Temperature sensor  
The temperature sensor (TS) generates a voltage V  
temperature.  
that varies linearly with  
SENSE  
The temperature sensor is internally connected to the ADC_IN16 input channel which is  
used to convert the sensor output voltage into a digital value.  
The sensor provides good linearity but it has to be calibrated to obtain good overall  
accuracy of the temperature measurement. As the offset of the temperature sensor varies  
from chip to chip due to process variation, the uncalibrated internal temperature sensor is  
suitable for applications that detect temperature changes only.  
To improve the accuracy of the temperature sensor measurement, each device is  
individually factory-calibrated by ST. The temperature sensor factory calibration data are  
stored by ST in the system memory area, accessible in read-only mode.  
Table 2. Temperature sensor calibration values  
Calibration value name  
Description  
Memory address  
TS ADC raw data acquired at a  
temperature of 30 °C (± 5 °C),  
VDDA= 3.3 V (± 10 mV)  
TS_CAL1  
0x1FFF F7B8 - 0x1FFF F7B9  
TS ADC raw data acquired at a  
temperature of 110 °C (± 5 °C),  
TS_CAL2  
0x1FFF F7C2 - 0x1FFF F7C3  
VDDA= 3.3 V (± 10 mV)  
3.10.2  
Internal voltage reference (V  
)
REFINT  
The internal voltage reference (V  
) provides a stable (bandgap) voltage output for the  
REFINT  
ADC. V  
is internally connected to the ADC_IN17 input channel. The precise voltage  
REFINT  
of V  
is individually measured for each part by ST during production test and stored in  
REFINT  
the system memory area. It is accessible in read-only mode.  
Table 3. Internal voltage reference calibration values  
Calibration value name  
Description  
Memory address  
Raw data acquired at a  
VREFINT_CAL  
temperature of 30 °C (± 5 °C),  
0x1FFF F7BA - 0x1FFF F7BB  
VDDA= 3.3 V (± 10 mV)  
DocID026007 Rev 6  
17/98  
25  
 
 
 
 
 
Functional overview  
STM32F048C6 STM32F048G6 STM32F048T6  
3.10.3  
V
battery voltage monitoring  
BAT  
This embedded hardware feature allows the application to measure the V  
battery voltage  
BAT  
using the internal ADC channel ADC_IN18. As the V  
voltage may be higher than V  
,
BAT  
DDA  
and thus outside the ADC input range, the V  
pin is internally connected to a bridge  
BAT  
divider by 2. As a consequence, the converted digital value is half the V  
voltage.  
BAT  
3.11  
Touch sensing controller (TSC)  
The STM32F048x6 devices provide a simple solution for adding capacitive sensing  
functionality to any application. These devices offer up to 13 capacitive sensing channels  
distributed over 5 analog I/O groups.  
Capacitive sensing technology is able to detect the presence of a finger near a sensor which  
is protected from direct touch by a dielectric (glass, plastic...). The capacitive variation  
introduced by the finger (or any conductive object) is measured using a proven  
implementation based on a surface charge transfer acquisition principle. It consists in  
charging the sensor capacitance and then transferring a part of the accumulated charges  
into a sampling capacitor until the voltage across this capacitor has reached a specific  
threshold. To limit the CPU bandwidth usage, this acquisition is directly managed by the  
hardware touch sensing controller and only requires few external components to operate.  
For operation, one capacitive sensing GPIO in each group is connected to an external  
capacitor and cannot be used as effective touch sensing channel.  
The touch sensing controller is fully supported by the STMTouch touch sensing firmware  
library, which is free to use and allows touch sensing functionality to be implemented reliably  
in the end application.  
Table 4. Capacitive sensing GPIOs available on STM32F048x6 devices  
Capacitive sensing  
signal name  
Pin  
name  
Capacitive sensing  
signal name  
Pin  
name  
Group  
Group  
TSC_G1_IO1  
TSC_G1_IO2  
TSC_G1_IO3  
TSC_G1_IO4  
TSC_G2_IO1  
TSC_G2_IO2  
TSC_G2_IO3  
TSC_G2_IO4  
TSC_G3_IO2  
TSC_G3_IO3  
TSC_G3_IO4  
PA0  
PA1  
PA2  
PA3  
PA4  
PA5  
PA6  
PA7  
PB0  
PB1  
PB2  
TSC_G4_IO1  
TSC_G4_IO2  
TSC_G4_IO3  
TSC_G4_IO4  
TSC_G5_IO1  
TSC_G5_IO2  
TSC_G5_IO3  
TSC_G5_IO4  
PA9  
PA10  
PA11  
PA12  
PB3  
1
4
PB4  
2
3
5
PB6  
PB7  
18/98  
DocID026007 Rev 6  
 
 
 
STM32F048C6 STM32F048G6 STM32F048T6  
Functional overview  
Table 5. No. of capacitive sensing channels available on STM32F048x6 devices  
Number of capacitive sensing channels  
Analog I/O group  
STM32F048C6  
UQFPN48  
STM32F048T6  
WLCSP36  
STM32F048G6  
UQFPN28  
G1  
G2  
G3  
G4  
G5  
3
3
1
3
3
3
3
1
3
3
3
3
0
1
3
Number of capacitive sensing  
channels  
13  
13  
10  
3.12  
Timers and watchdogs  
The STM32F048x6 devices include up to five general-purpose timers and an advanced  
control timer.  
Table 6 compares the features of the different timers.  
Table 6. Timer feature comparison  
DMA  
Timer  
type  
Counter  
resolution  
Counter  
type  
Prescaler  
factor  
Capture/compare Complementary  
Timer  
request  
generation  
channels  
outputs  
Advanced  
control  
Up, down, integer from  
up/down 1 to 65536  
TIM1  
TIM2  
TIM3  
TIM14  
16-bit  
32-bit  
16-bit  
16-bit  
16-bit  
Yes  
Yes  
Yes  
No  
4
4
4
1
1
3
-
Up, down, integer from  
up/down 1 to 65536  
Up, down, integer from  
-
up/down  
1 to 65536  
General  
purpose  
integer from  
1 to 65536  
Up  
-
TIM16  
TIM17  
integer from  
1 to 65536  
Up  
Yes  
1
3.12.1  
Advanced-control timer (TIM1)  
The advanced-control timer (TIM1) can be seen as a three-phase PWM multiplexed on six  
channels. It has complementary PWM outputs with programmable inserted dead times. It  
DocID026007 Rev 6  
19/98  
25  
 
 
 
 
Functional overview  
STM32F048C6 STM32F048G6 STM32F048T6  
can also be seen as a complete general-purpose timer. The four independent channels can  
be used for:  
input capture  
output compare  
PWM generation (edge or center-aligned modes)  
one-pulse mode output  
If configured as a standard 16-bit timer, it has the same features as the TIMx timer. If  
configured as the 16-bit PWM generator, it has full modulation capability (0-100%).  
The counter can be frozen in debug mode.  
Many features are shared with those of the standard timers which have the same  
architecture. The advanced control timer can therefore work together with the other timers  
via the Timer Link feature for synchronization or event chaining.  
3.12.2  
General-purpose timers (TIM2, 3, 14, 16, 17)  
There are five synchronizable general-purpose timers embedded in the STM32F048x6  
devices (see Table 6 for differences). Each general-purpose timer can be used to generate  
PWM outputs, or as simple time base.  
TIM2, TIM3  
STM32F048x6 devices feature two synchronizable 4-channel general-purpose timers. TIM2  
is based on a 32-bit auto-reload up/downcounter and a 16-bit prescaler. TIM3 is based on a  
16-bit auto-reload up/downcounter and a 16-bit prescaler. They feature 4 independent  
channels each for input capture/output compare, PWM or one-pulse mode output. This  
gives up to 12 input captures/output compares/PWMs on the largest packages.  
The TIM2 and TIM3 general-purpose timers can work together or with the TIM1 advanced-  
control timer via the Timer Link feature for synchronization or event chaining.  
TIM2 and TIM3 both have independent DMA request generation.  
These timers are capable of handling quadrature (incremental) encoder signals and the  
digital outputs from 1 to 3 hall-effect sensors.  
Their counters can be frozen in debug mode.  
TIM14  
This timer is based on a 16-bit auto-reload upcounter and a 16-bit prescaler.  
TIM14 features one single channel for input capture/output compare, PWM or one-pulse  
mode output.  
Its counter can be frozen in debug mode.  
TIM16 and TIM17  
Both timers are based on a 16-bit auto-reload upcounter and a 16-bit prescaler.  
They each have a single channel for input capture/output compare, PWM or one-pulse  
mode output.  
20/98  
DocID026007 Rev 6  
 
STM32F048C6 STM32F048G6 STM32F048T6  
Functional overview  
TIM16 and TIM17 have a complementary output with dead-time generation and  
independent DMA request generation.  
Their counters can be frozen in debug mode.  
3.12.3  
Independent watchdog (IWDG)  
The independent watchdog is based on an 8-bit prescaler and 12-bit downcounter with  
user-defined refresh window. It is clocked from an independent 40 kHz internal RC and as it  
operates independently from the main clock, it can operate in Stop mode. It can be used  
either as a watchdog to reset the device when a problem occurs, or as a free running timer  
for application timeout management. It is hardware or software configurable through the  
option bytes. The counter can be frozen in debug mode.  
3.12.4  
3.12.5  
System window watchdog (WWDG)  
The system window watchdog is based on a 7-bit downcounter that can be set as free  
running. It can be used as a watchdog to reset the device when a problem occurs. It is  
clocked from the APB clock (PCLK). It has an early warning interrupt capability and the  
counter can be frozen in debug mode.  
SysTick timer  
This timer is dedicated to real-time operating systems, but could also be used as a standard  
down counter. It features:  
a 24-bit down counter  
autoreload capability  
maskable system interrupt generation when the counter reaches 0  
programmable clock source (HCLK or HCLK/8)  
3.13  
Real-time clock (RTC) and backup registers  
The RTC and the five backup registers are supplied through a switch that takes power either  
on V supply when present or through the V  
pin. The backup registers are five 32-bit  
DD  
BAT  
registers used to store 20 bytes of user application data when V power is not present.  
DD  
They are not reset by a system or power reset.  
DocID026007 Rev 6  
21/98  
25  
 
 
 
 
Functional overview  
STM32F048C6 STM32F048G6 STM32F048T6  
The RTC is an independent BCD timer/counter. Its main features are the following:  
calendar with subseconds, seconds, minutes, hours (12 or 24 format), week day, date,  
month, year, in BCD (binary-coded decimal) format  
automatic correction for 28, 29 (leap year), 30, and 31 day of the month  
programmable alarm with wake up from Stop mode capability  
on-the-fly correction from 1 to 32767 RTC clock pulses. This can be used to  
synchronize the RTC with a master clock  
digital calibration circuit with 1 ppm resolution, to compensate for quartz crystal  
inaccuracy  
two anti-tamper detection pins with programmable filter. The MCU can be woken up  
from Stop mode on tamper event detection  
timestamp feature which can be used to save the calendar content. This function can  
be triggered by an event on the timestamp pin, or by a tamper event. The MCU can be  
woken up from Stop mode on timestamp event detection  
reference clock detection: a more precise second source clock (50 or 60 Hz) can be  
used to enhance the calendar precision  
The RTC clock sources can be:  
a 32.768 kHz external crystal  
a resonator or oscillator  
the internal low-power RC oscillator (typical frequency of 40 kHz)  
the high-speed external clock divided by 32  
3.14  
Inter-integrated circuit interface (I2C)  
2
The I C interface (I2C1) can operate in multimaster or slave modes. It can support Standard  
mode (up to 100 kbit/s), Fast mode (up to 400 kbit/s) and Fast Mode Plus (up to 1 Mbit/s)  
with extra output drive.  
It supports 7-bit and 10-bit addressing modes, multiple 7-bit slave addresses (two  
addresses, one with configurable mask). It also includes programmable analog and digital  
noise filters.  
2
Table 7. Comparison of I C analog and digital filters  
Aspect  
Analog filter  
Digital filter  
Pulse width of  
suppressed spikes  
Programmable length from 1 to 15  
I2Cx peripheral clocks  
50 ns  
–Extra filtering capability vs.  
standard requirements  
Benefits  
Available in Stop mode  
–Stable length  
Wakeup from Stop on address  
match is not available when digital  
filter is enabled.  
Variations depending on  
temperature, voltage, process  
Drawbacks  
In addition, I2C1 provides hardware support for SMBUS 2.0 and PMBUS 1.1: ARP  
capability, Host notify protocol, hardware CRC (PEC) generation/verification, timeouts  
verifications and ALERT protocol management. I2C1 also has a clock domain independent  
22/98  
DocID026007 Rev 6  
 
 
STM32F048C6 STM32F048G6 STM32F048T6  
Functional overview  
from the CPU clock, allowing the I2C1 to wake up the MCU from Stop mode on address  
match.  
The I2C peripheral can be served by the DMA controller.  
2
Table 8. STM32F048x6 I C implementation  
I2C features(1)  
I2C1  
7-bit addressing mode  
X
X
X
X
X
X
X
X
10-bit addressing mode  
Standard mode (up to 100 kbit/s)  
Fast mode (up to 400 kbit/s)  
Fast Mode Plus with extra output drive I/Os (up to 1 Mbit/s)  
Independent clock  
SMBus  
Wakeup from STOP  
1. X = supported.  
3.15  
Universal synchronous/asynchronous receiver/transmitter  
(USART)  
The device embeds two universal synchronous/asynchronous receivers/transmitters  
(USART1, USART2) which communicate at speeds of up to 6 Mbit/s.  
They provide hardware management of the CTS, RTS and RS485 DE signals,  
multiprocessor communication mode, master synchronous communication and single-wire  
half-duplex communication mode. USART1 supports also SmartCard communication (ISO  
7816), IrDA SIR ENDEC, LIN Master/Slave capability and auto baud rate feature, and has a  
clock domain independent of the CPU clock, allowing to wake up the MCU from Stop mode.  
The USART interfaces can be served by the DMA controller.  
Table 9. STM32F048x6 USART implementation  
USART modes/features(1)  
USART1  
USART2  
Hardware flow control for modem  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
-
Continuous communication using DMA  
Multiprocessor communication  
Synchronous mode  
Smartcard mode  
Single-wire half-duplex communication  
IrDA SIR ENDEC block  
X
-
LIN mode  
-
Dual clock domain and wakeup from Stop mode  
Receiver timeout interrupt  
-
-
DocID026007 Rev 6  
23/98  
25  
 
 
 
Functional overview  
STM32F048C6 STM32F048G6 STM32F048T6  
Table 9. STM32F048x6 USART implementation (continued)  
USART modes/features(1)  
USART1  
USART2  
Modbus communication  
X
X
X
-
-
Auto baud rate detection  
Driver Enable  
X
1. X = supported.  
3.16  
Serial peripheral interface (SPI) / Inter-integrated sound  
interface (I2S)  
Up to two SPIs are able to communicate up to 18 Mbit/s in slave and master modes in full-  
duplex and half-duplex communication modes. The 3-bit prescaler gives 8 master mode  
frequencies and the frame size is configurable from 4 bits to 16 bits.  
2
One standard I S interface (multiplexed with SPI1) supporting four different audio standards  
can operate as master or slave at half-duplex communication mode. It can be configured to  
transfer 16 and 24 or 32 bits with 16-bit or 32-bit data resolution and synchronized by a  
specific signal. Audio sampling frequency from 8 kHz up to 192 kHz can be set by an 8-bit  
programmable linear prescaler. When operating in master mode, it can output a clock for an  
external audio component at 256 times the sampling frequency.  
2
Table 10. STM32F048x6 SPI/I S implementation  
SPI features(1)  
SPI1  
SPI2  
Hardware CRC calculation  
X
X
X
X
X
X
X
X
-
Rx/Tx FIFO  
NSS pulse mode  
I2S mode  
TI mode  
X
1. X = supported.  
3.17  
High-definition multimedia interface (HDMI) - consumer  
electronics control (CEC)  
The device embeds a HDMI-CEC controller that provides hardware support for the  
Consumer Electronics Control (CEC) protocol (Supplement 1 to the HDMI standard).  
This protocol provides high-level control functions between all audiovisual products in an  
environment. It is specified to operate at low speeds with minimum processing and memory  
overhead. It has a clock domain independent from the CPU clock, allowing the HDMI_CEC  
controller to wakeup the MCU from Stop mode on data reception.  
3.18  
Universal serial bus (USB)  
The STM32F048x6 embeds a full-speed USB device peripheral compliant with the USB  
specification version 2.0. The internal USB PHY supports USB FS signaling, embedded DP  
24/98  
DocID026007 Rev 6  
 
 
 
 
STM32F048C6 STM32F048G6 STM32F048T6  
Functional overview  
pull-up and also battery charging detection according to Battery Charging Specification  
Revision 1.2. The USB interface implements a full-speed (12 Mbit/s) function interface with  
added support for USB 2.0 Link Power Management. It has software-configurable endpoint  
setting with packet memory up-to 1 KB and suspend/resume support. It requires a precise  
48 MHz clock which can be generated from the internal main PLL (the clock source must  
use an HSE crystal oscillator) or by the internal 48 MHz oscillator in automatic trimming  
mode. The synchronization for this oscillator can be taken from the USB data stream itself  
(SOF signalization) which allows crystal-less operation.  
3.19  
3.20  
Clock recovery system (CRS)  
The STM32F048x6 embeds a special block which allows automatic trimming of the internal  
48 MHz oscillator to guarantee its optimal accuracy over the whole device operational  
range. This automatic trimming is based on the external synchronization signal, which could  
be either derived from USB SOF signalization, from LSE oscillator, from an external signal  
on CRS_SYNC pin or generated by user software. For faster lock-in during startup it is also  
possible to combine automatic trimming with manual trimming action.  
Serial wire debug port (SW-DP)  
An ARM SW-DP interface is provided to allow a serial wire debugging tool to be connected  
to the MCU.  
DocID026007 Rev 6  
25/98  
25  
 
 
Pinouts and pin descriptions  
STM32F048C6 STM32F048G6 STM32F048T6  
4
Pinouts and pin descriptions  
Figure 3. UFQFPN48 package pinout  
7RSꢄYLHZ  
9%$7  
3&ꢌꢀ  
ꢀꢒ  
ꢀꢍ  
ꢀꢁ  
ꢀꢀ  
ꢀꢆ  
ꢀꢌ  
ꢀꢎ  
ꢆꢂ  
ꢆꢃ  
ꢆꢏ  
ꢆꢒ  
ꢆꢍ  
9'',2ꢆ  
966  
3&ꢌꢁꢓ26&ꢀꢆB,1  
3&ꢌꢍꢓ26&ꢀꢆB287  
3)ꢎꢓ26&B,1  
3)ꢌꢓ26&B287  
1567  
3$ꢌꢀ  
3$ꢌꢆ  
3$ꢌꢌ  
3$ꢌꢎ  
3$ꢂ  
8)4)31ꢁꢃ  
966$  
3$ꢃ  
9''$  
3%ꢌꢍ  
3%ꢌꢁ  
3%ꢌꢀ  
3%ꢌꢆ  
3$ꢎ  
ꢌꢎ  
ꢌꢌ  
ꢌꢆ  
([SRVHGꢄSDG  
3$ꢌ  
3$ꢆ  
,ꢐ2ꢄVXSSOLHGꢄIURPꢄ9'',2ꢆ  
06Yꢀꢒꢁꢎꢁ9ꢆ  
Figure 4. WLCSP36 package  
7RSꢄYLHZ  
3$ꢌꢆ  
3$ꢌꢀ  
3$ꢌꢎ  
3$ꢂ  
3$ꢌꢍ  
3%ꢁ  
3%ꢏ  
9''  
3)ꢎꢓ  
3&ꢌꢀ  
$
%
&
'
(
)
3&ꢌꢁꢓ  
3%ꢃꢓ  
%227ꢎ  
26&B 26&ꢀꢆB  
3$ꢌꢁ  
3$ꢌꢌ  
3%ꢆ  
3%ꢀ  
3$ꢁ  
3$ꢍ  
3$ꢒ  
3%ꢎ  
,1  
,1  
3)ꢌꢓ  
3&ꢌꢍꢓ  
26&B 26&ꢀꢆB  
3%ꢒ  
3$ꢌ  
3$ꢆ  
3$ꢏ  
287  
287  
1567  
966  
9'',2ꢆ 3$ꢃ  
9''$  
3$ꢀ  
3%ꢍ  
3$ꢎ  
966  
1325  
:/&63ꢀꢒ  
,ꢐ2ꢄVXSSOLHGꢄIURPꢄ9'',2ꢆ  
06Yꢀꢁꢂꢃꢏ9ꢀ  
1. The above figure shows the package in top view, changing from bottom view in the previous document  
versions.  
26/98  
DocID026007 Rev 6  
 
 
 
 
 
STM32F048C6 STM32F048G6 STM32F048T6  
Pinouts and pin descriptions  
Figure 5. UFQFPN28 package  
7RSꢄYLHZ  
ꢆꢌ  
ꢆꢎ  
ꢌꢂ  
ꢌꢃ  
ꢌꢏ  
ꢌꢒ  
ꢌꢍ  
3%ꢃꢓ%227ꢎ  
3$ꢌꢀ  
3)ꢎꢓ26&B,1  
3)ꢌꢓ26&B287  
1567  
3$ꢌꢎꢄ>3$ꢌꢆ@  
3$ꢂꢄ>3$ꢌꢌ@  
9'',2ꢆ  
9''  
966  
1325  
8)4)31ꢆꢃ  
9''$  
3$ꢎ  
3$ꢌ  
,ꢐ2ꢄVXSSOLHGꢄIURPꢄ9'',2ꢆ  
06Yꢀꢁꢂꢃꢃ9ꢆ  
1. Pin pair PA11/12 can be remapped in place of pin pair PA9/10 using the SYSCFG_CFGR1 register.  
Table 11. Legend/abbreviations used in the pinout table  
Name  
Abbreviation  
Definition  
Unless otherwise specified in brackets below the pin name, the pin function during and  
after reset is the same as the actual pin name  
Pin name  
S
I
Supply pin  
Pin type  
Input-only pin  
I/O  
FT  
FTf  
TTa  
TC  
Input / output pin  
5 V-tolerant I/O  
5 V-tolerant I/O, FM+ capable  
3.3 V-tolerant I/O directly connected to ADC  
Standard 3.3 V I/O  
I/O structure  
External power-on reset pin with embedded weak pull-up resistor,  
powered from VDDA  
POR  
RST  
Bidirectional reset pin with embedded weak pull-up resistor  
Unless otherwise specified by a note, all I/Os are set as floating inputs during and after  
reset.  
Notes  
Alternate  
Functions selected through GPIOx_AFR registers  
functions  
Pin  
functions  
Additional  
functions  
Functions directly selected/enabled through peripheral registers  
DocID026007 Rev 6  
27/98  
33  
 
 
Pinouts and pin descriptions  
Pin numbers  
STM32F048C6 STM32F048G6 STM32F048T6  
Table 12. STM32F048x6 pin definitions  
Pin functions  
Pin name  
(function upon  
reset)  
Pin  
type  
Additional  
functions  
Alternate function  
1
2
-
-
-
VBAT  
PC13  
S
-
-
Backup power supply  
WKUP2,  
RTC_TAMP1,  
RTC_TS,  
(1)(2)  
A6  
I/O  
TC  
-
RTC_OUT  
(1)  
(2)  
PC14-OSC32_IN  
(PC14)  
3
4
5
6
7
B6  
C6  
B5  
C5  
D5  
-
-
I/O  
I/O  
I/O  
I/O  
I/O  
TC  
TC  
-
-
OSC32_IN  
OSC32_OUT  
OSC_IN  
(1)  
(2)  
PC15-OSC32_OUT  
(PC15)  
CRS_ SYNC  
I2C1_SDA  
PF0-OSC_IN  
(PF0)  
2
3
4
FTf  
FTf  
RST  
-
-
PF1-OSC_OUT  
(PF1)  
I2C1_SCL  
OSC_OUT  
Device reset input / internal reset output (active  
low)  
NRST  
-
(3)  
8
9
D6  
E5  
16  
5
VSSA  
VDDA  
S
S
Analog ground  
-
-
Analog power supply  
USART2_CTS,  
TIM2_CH1_ETR,  
TSC_G1_IO1  
RTC_ TAMP2,  
WKUP1,  
ADC_IN0,  
10  
F6  
6
PA0  
I/O  
TTa  
USART2_RTS, TIM2_CH2,  
TSC_G1_IO2,  
11  
12  
13  
D4  
E4  
F5  
7
8
9
PA1  
PA2  
PA3  
I/O  
I/O  
I/O  
TTa  
TTa  
TTa  
-
-
-
ADC_IN1  
EVENTOUT  
USART2_TX, TIM2_CH3,  
TSC_G1_IO3  
ADC_IN2,  
WKUP4  
USART2_RX,  
TIM2_CH4,  
TSC_G1_IO4  
ADC_IN3  
ADC_IN4  
ADC_IN5  
ADC_IN6  
SPI1_NSS, I2S1_WS,  
TIM14_CH1, TSC_G2_IO1,  
USART2_CK  
14  
15  
16  
C3  
D3  
E3  
10  
11  
12  
PA4  
PA5  
PA6  
I/O  
I/O  
I/O  
TTa  
TTa  
TTa  
-
-
-
USB_NOE  
SPI1_SCK, I2S1_CK, CEC,  
TIM2_CH1_ETR,  
TSC_G2_IO2  
SPI1_MISO, I2S1_MCK,  
TIM3_CH1, TIM1_BKIN,  
TIM16_CH1, TSC_G2_IO3,  
EVENTOUT  
28/98  
DocID026007 Rev 6  
 
 
STM32F048C6 STM32F048G6 STM32F048T6  
Pinouts and pin descriptions  
Table 12. STM32F048x6 pin definitions (continued)  
Pin functions  
Pin numbers  
Pin name  
(function upon  
reset)  
Pin  
type  
Additional  
functions  
Alternate function  
SPI1_MOSI, I2S1_SD,  
TIM3_CH2, TIM14_CH1,  
TIM1_CH1N, TIM17_CH1,  
TSC_G2_IO4,  
17  
F4  
13  
PA7  
I/O  
TTa  
-
ADC_IN7  
ADC_IN8  
EVENTOUT  
TIM3_CH3, TIM1_CH2N,  
TSC_G3_IO2, EVENTOUT  
18  
19  
F3  
-
14  
-
PB0  
PB1  
I/O  
I/O  
TTa  
TTa  
-
-
TIM3_CH4, TIM14_CH1,  
TIM1_CH3N,  
ADC_IN9  
-
TSC_G3_IO3  
-
D2  
F2  
-
PB2  
I/O  
I
FT  
-
TSC_G3_IO4  
(4)  
20  
15  
NPOR  
POR  
Device power-on reset input  
SPI2_SCK, CEC,  
TSC_SYNC, TIM2_CH3,  
I2C1_SCL  
21  
22  
-
-
-
-
PB10  
PB11  
I/O  
I/O  
FTf  
FTf  
-
-
-
-
TIM2_CH4,  
EVENTOUT,  
I2C1_SDA  
23  
24  
F1  
-
16  
17  
VSS  
VDD  
S
S
-
-
-
-
Ground  
Digital power supply  
TIM1_BKIN, SPI2_NSS,  
EVENTOUT  
25  
26  
-
-
-
-
PB12  
PB13  
I/O  
I/O  
FT  
-
-
-
-
SPI2_SCK,  
TIM1_CH1N,  
I2C1_SCL  
FTf  
SPI2_MISO,  
TIM1_CH2N,  
I2C1_SDA  
27  
28  
29  
-
-
-
-
-
PB14  
PB15  
PA8  
I/O  
I/O  
I/O  
FTf  
FT  
FT  
-
-
WKUP7,  
RTC_REFIN  
-
SPI2_MOSI, TIM1_CH3N  
USART1_CK, TIM1_CH1,  
EVENTOUT, MCO,  
CRS_SYNC  
(5)  
E2  
-
-
-
USART1_TX, TIM1_CH2,  
TSC_G4_IO1,  
(5)  
(5)  
30  
31  
D1  
C1  
19  
20  
PA9  
I/O  
I/O  
FTf  
FTf  
I2C1_SCL  
USART1_RX, TIM1_CH3,  
TIM17_BKIN, TSC_G4_IO2,  
I2C1_SDA  
PA10  
DocID026007 Rev 6  
29/98  
33  
Pinouts and pin descriptions  
STM32F048C6 STM32F048G6 STM32F048T6  
Pin functions  
Table 12. STM32F048x6 pin definitions (continued)  
Pin numbers  
Pin name  
(function upon  
reset)  
Pin  
type  
Additional  
Alternate function  
functions  
USART1_CTS, TIM1_CH4,  
TSC_G4_IO3, EVENTOUT,  
I2C1_SCL  
(5)  
32  
C2  
19(5)  
PA11  
I/O  
FTf  
USB_DM  
USART1_RTS, TIM1_ETR,  
TSC_G4_IO4, EVENTOUT,  
I2C1_SDA  
(5)  
33  
34  
A1  
B1  
20(5)  
21  
PA12  
PA13  
I/O  
I/O  
FTf  
FT  
USB_DP  
-
IR_OUT, SWDIO  
USB_NOE  
(5)(6)  
35  
36  
-
-
VSS  
S
S
-
-
-
-
Ground  
E1  
18  
VDDIO2  
Digital power supply  
(5)  
(6)  
37  
B2  
A2  
22  
23  
PA14  
PA15  
I/O  
FT  
USART2_TX, SWCLK  
-
-
SPI1_NSS, I2S1_WS,  
USART2_RX,  
TIM2_CH1_ETR,  
EVENTOUT,  
(5)  
38  
I/O  
FT  
USB_NOE  
SPI1_SCK, I2S1_CK,  
TIM2_CH2, TSC_G5_IO1,  
EVENTOUT  
39  
40  
41  
B3  
A3  
E6  
24  
25  
26  
PB3  
PB4  
PB5  
I/O  
I/O  
I/O  
FT  
FT  
FT  
-
-
-
-
SPI1_MISO, I2S1_MCK,  
TIM17_BKIN, TIM3_CH1,  
TSC_G5_IO2, EVENTOUT  
-
SPI1_MOSI, I2S1_SD,  
I2C1_SMBA, TIM16_BKIN,  
TIM3_CH2  
WKUP6  
I2C1_SCL, USART1_TX,  
TIM16_CH1N, TSC_G5_I03  
42  
43  
44  
-
C4  
A4  
-
27  
28  
-
PB6  
PB7  
I/O  
I/O  
I/O  
I/O  
I/O  
FTf  
FTf  
FTf  
FTf  
FTf  
-
-
-
-
-
-
-
I2C1_SDA, USART1_RX,  
TIM17_CH1N, TSC_G5_IO4  
Boot memory  
selection  
PF11-BOOT0  
PB8-BOOT0  
PB8  
-
I2C1_SCL, CEC,  
TIM16_CH1, TSC_SYNC  
Boot memory  
selection  
B4  
-
1
I2C1_SCL, CEC,  
TIM16_CH1, TSC_SYNC  
45  
-
-
-
SPI2_NSS,  
I2C1_SDA, IR_OUT,  
TIM17_CH1, EVENTOUT  
46  
-
-
PB9  
I/O  
FTf  
-
30/98  
DocID026007 Rev 6  
STM32F048C6 STM32F048G6 STM32F048T6  
Pinouts and pin descriptions  
Table 12. STM32F048x6 pin definitions (continued)  
Pin functions  
Pin numbers  
Pin name  
(function upon  
reset)  
Pin  
type  
Additional  
functions  
Alternate function  
47  
48  
-
-
-
VSS  
VDD  
S
S
-
-
-
-
Ground  
A5  
Digital power supply  
1. PC13, PC14 and PC15 are supplied through the power switch. Since the switch only sinks a limited amount of current  
(3 mA), the use of GPIOs PC13 to PC15 in output mode is limited:  
- The speed should not exceed 2 MHz with a maximum load of 30 pF.  
- These GPIOs must not be used as current sources (e.g. to drive an LED).  
2. After the first RTC domain power-up, PC13, PC14 and PC15 operate as GPIOs. Their function then depends on the  
content of the RTC registers which are not reset by the system reset. For details on how to manage these GPIOs, refer to  
the RTC domain and RTC register descriptions in the reference manual.  
3. Distinct VSSA pin is only available on 48-pin packages. On all other packages, the pin number corresponds to the VSS pin  
to which VSSA pad of the silicon die is connected.  
4. This pin is powered by VDDA  
.
5. Pin pair PA11/12 can be remapped instead of pin pair PA9/10 using SYSCFG_CFGR1 register.  
6. After reset, these pins are configured as SWDIO and SWCLK alternate functions, and the internal pull-up on the SWDIO  
pin and the internal pull-down on the SWCLK pin are activated.  
DocID026007 Rev 6  
31/98  
33  
Table 13. Alternate functions selected through GPIOA_AFR registers for port A  
Pin name  
AF0  
AF1  
AF2  
AF3  
AF4  
AF5  
AF6  
AF7  
PA0  
PA1  
-
EVENTOUT  
-
USART2_CTS TIM2_CH1_ETR TSC_G1_IO1  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
USART2_RTS  
USART2_TX  
USART2_RX  
USART2_CK  
CEC  
TIM2_CH2  
TIM2_CH3  
TIM2_CH4  
USB_NOE  
TSC_G1_IO2  
TSC_G1_IO3  
TSC_G1_IO4  
TSC_G2_IO1  
-
-
-
PA2  
-
-
-
PA3  
-
-
-
-
PA4  
SPI1_NSS, I2S1_WS  
SPI1_SCK, I2S1_CK  
SPI1_MISO, I2S1_MCK  
SPI1_MOSI, I2S1_SD  
MCO  
TIM14_CH1  
-
-
PA5  
TIM2_CH1_ETR TSC_G2_IO2  
-
-
-
PA6  
TIM3_CH1  
TIM1_BKIN  
TIM1_CH1N  
TIM1_CH1  
TIM1_CH2  
TIM1_CH3  
TIM1_CH4  
TIM1_ETR  
USB_NOE  
-
TSC_G2_IO3  
TSC_G2_IO4  
EVENTOUT  
TSC_G4_IO1  
TSC_G4_IO2  
TSC_G4_IO3  
TSC_G4_IO4  
-
-
TIM16_CH1  
EVENTOUT  
PA7  
TIM3_CH2  
TIM14_CH1  
TIM17_CH1  
EVENTOUT  
PA8  
USART1_CK  
USART1_TX  
USART1_RX  
USART1_CTS  
USART1_RTS  
IR_OUT  
CRS_SYNC  
-
-
-
-
-
-
-
-
-
PA9  
-
I2C1_SCL  
MCO  
PA10  
PA11  
PA12  
PA13  
PA14  
PA15  
TIM17_BKIN  
EVENTOUT  
EVENTOUT  
SWDIO  
I2C1_SDA  
-
-
-
-
-
-
I2C1_SCL  
I2C1_SDA  
-
SWCLK  
USART2_TX  
USART2_RX  
-
-
SPI1_NSS, I2S1_WS  
TIM2_CH1_ETR EVENTOUT  
USB_NOE  
 
Table 14. Alternate functions selected through GPIOB_AFR registers for port B  
Pin name  
AF0  
AF1  
AF2  
AF3  
AF4  
AF5  
PB0  
PB1  
EVENTOUT  
TIM14_CH1  
-
TIM3_CH3  
TIM3_CH4  
-
TIM1_CH2N  
TIM1_CH3N  
-
TSC_G3_IO2  
TSC_G3_IO3  
TSC_G3_IO4  
TSC_G5_IO1  
TSC_G5_IO2  
I2C1_SMBA  
TSC_G5_IO3  
TSC_G5_IO4  
TSC_SYNC  
EVENTOUT  
TSC_SYNC  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
PB2  
-
PB3  
SPI1_SCK, I2S1_CK  
SPI1_MISO, I2S1_MCK  
SPI1_MOSI, I2S1_SD  
USART1_TX  
USART1_RX  
CEC  
EVENTOUT  
TIM3_CH1  
TIM3_CH2  
I2C1_SCL  
I2C1_SDA  
I2C1_SCL  
I2C1_SDA  
I2C1_SCL  
I2C1_SDA  
EVENTOUT  
-
TIM2_CH2  
EVENTOUT  
TIM16_BKIN  
TIM16_CH1N  
TIM17_CH1N  
TIM16_CH1  
TIM17_CH1  
TIM2_CH3  
TIM2_CH4  
TIM1_BKIN  
TIM1_CH1N  
TIM1_CH2N  
TIM1_CH3N  
-
PB4  
TIM17_BKIN  
PB5  
-
PB6  
-
PB7  
-
PB8  
-
PB9  
IR_OUT  
SPI2_NSS  
PB10  
PB11  
PB12  
PB13  
PB14  
PB15  
CEC  
SPI2_SCK  
EVENTOUT  
SPI2_NSS  
-
-
-
SPI2_SCK  
-
I2C1_SCL  
I2C1_SDA  
-
SPI2_MISO  
SPI2_MOSI  
-
-
-
-
Table 15. Alternate functions selected through GPIOF_AFR registers for port F  
Pin name  
AF0  
AF1  
PF0  
PF1  
CRS_SYNC  
-
I2C1_SDA  
I2C1_SCL  
 
 
Memory mapping  
STM32F048C6 STM32F048G6 STM32F048T6  
5
Memory mapping  
Figure 6. STM32F048x6 memory map  
ꢎ[))))ꢄ))))  
ꢎ[ꢁꢃꢎꢎꢄꢌꢏ))  
ꢎ[ꢁꢃꢎꢎꢄꢎꢎꢎꢎ  
5HVHUYHG  
$+%ꢆ  
ꢎ[(ꢎꢌꢎꢄꢎꢎꢎꢎ  
&RUWH[ꢓ0ꢎꢄLQWHUQDOꢄ  
SHULSKHUDOV  
ꢎ[(ꢎꢎꢎꢄꢎꢎꢎꢎ  
5HVHUYHG  
5HVHUYHG  
ꢎ[&ꢎꢎꢎꢄꢎꢎꢎꢎ  
ꢎ[ꢁꢎꢎꢆꢄꢁꢀ))  
ꢎ[ꢁꢎꢎꢆꢄꢎꢎꢎꢎ  
$+%ꢌ  
5HVHUYHG  
5HVHUYHG  
ꢎ[$ꢎꢎꢎꢄꢎꢎꢎꢎ  
ꢎ[ꢁꢎꢎꢌꢄꢃꢎꢎꢎ  
ꢎ[ꢁꢎꢎꢌꢄꢎꢎꢎꢎ  
$3%  
5HVHUYHG  
ꢎ[ꢌ)))ꢄ))))  
ꢎ[ꢌ)))ꢄ)&ꢎꢎ  
5HVHUYHG  
2SWLRQꢄ%\WHV  
ꢎ[ꢌ)))ꢄ)ꢃꢎꢎ  
ꢎ[ꢃꢎꢎꢎꢄꢎꢎꢎꢎ  
5HVHUYHG  
$3%  
6\VWHPꢄPHPRU\  
ꢎ[ꢁꢎꢎꢎꢄꢃꢎꢎꢎ  
ꢎ[ꢁꢎꢎꢎꢄꢎꢎꢎꢎ  
5HVHUYHG  
5HVHUYHG  
ꢎ[ꢌ)))ꢄ&ꢁꢎꢎ  
ꢎ[ꢒꢎꢎꢎꢄꢎꢎꢎꢎ  
5HVHUYHG  
3HULSKHUDOV  
5HVHUYHG  
ꢎ[ꢁꢎꢎꢎꢄꢎꢎꢎꢎ  
ꢎ[ꢎꢃꢎꢎꢄꢃꢎꢎꢎ  
)ODVKꢄPHPRU\  
5HVHUYHG  
65$0  
&2'(  
ꢎ[ꢆꢎꢎꢎꢄꢎꢎꢎꢎ  
ꢎ[ꢎꢃꢎꢎꢄꢎꢎꢎꢎ  
ꢎ[ꢎꢎꢎꢎꢄꢃꢎꢎꢎ  
)ODVKꢈꢄV\VWHPꢄ  
PHPRU\ꢄRUꢄ65$0ꢈꢄ  
GHSHQGLQJꢄRQꢄ%227ꢄ  
FRQILJXUDWLRQ  
ꢎ[ꢎꢎꢎꢎꢄꢎꢎꢎꢎ  
ꢎ[ꢎꢎꢎꢎꢄꢎꢎꢎꢎ  
06Yꢀꢁꢂꢆꢁ9ꢆ  
34/98  
DocID026007 Rev 6  
 
 
STM32F048C6 STM32F048G6 STM32F048T6  
Memory mapping  
Table 16. STM32F048x6 peripheral register boundary addresses  
Bus  
Boundary address  
Size  
Peripheral  
0x4800 1800 - 0x5FFF FFFF  
0x4800 1400 - 0x4800 17FF  
0x4800 0C00 - 0x4800 13FF  
0x4800 0800 - 0x4800 0BFF  
0x4800 0400 - 0x4800 07FF  
0x4800 0000 - 0x4800 03FF  
0x4002 4400 - 0x47FF FFFF  
0x4002 4000 - 0x4002 43FF  
0x4002 3400 - 0x4002 3FFF  
0x4002 3000 - 0x4002 33FF  
0x4002 2400 - 0x4002 2FFF  
0x4002 2000 - 0x4002 23FF  
0x4002 1400 - 0x4002 1FFF  
0x4002 1000 - 0x4002 13FF  
0x4002 0400 - 0x4002 0FFF  
0x4002 0000 - 0x4002 03FF  
0x4001 8000 - 0x4001 FFFF  
0x4001 5C00 - 0x4001 7FFF  
0x4001 5800 - 0x4001 5BFF  
0x4001 4C00 - 0x4001 57FF  
0x4001 4800 - 0x4001 4BFF  
0x4001 4400 - 0x4001 47FF  
0x4001 3C00 - 0x4001 43FF  
0x4001 3800 - 0x4001 3BFF  
0x4001 3400 - 0x4001 37FF  
0x4001 3000 - 0x4001 33FF  
0x4001 2C00 - 0x4001 2FFF  
0x4001 2800 - 0x4001 2BFF  
0x4001 2400 - 0x4001 27FF  
0x4001 0800 - 0x4001 23FF  
0x4001 0400 - 0x4001 07FF  
0x4001 0000 - 0x4001 03FF  
0x4000 8000 - 0x4000 FFFF  
~384 MB  
1 KB  
2 KB  
1 KB  
1 KB  
1 KB  
~128 MB  
1 KB  
3 KB  
1 KB  
3 KB  
1 KB  
3 KB  
1 KB  
3 KB  
1 KB  
32 KB  
9 KB  
1 KB  
3 KB  
1 KB  
1 KB  
2 KB  
1 KB  
1 KB  
1 KB  
1 KB  
1 KB  
1 KB  
7 KB  
1 KB  
1 KB  
32 KB  
Reserved  
GPIOF  
Reserved  
GPIOC  
AHB2  
GPIOB  
GPIOA  
Reserved  
TSC  
Reserved  
CRC  
Reserved  
Flash memory interface  
Reserved  
RCC  
AHB1  
Reserved  
DMA  
Reserved  
Reserved  
DBGMCU  
Reserved  
TIM17  
TIM16  
Reserved  
USART1  
Reserved  
SPI1/I2S1  
TIM1  
APB  
Reserved  
ADC  
Reserved  
EXTI  
SYSCFG  
Reserved  
DocID026007 Rev 6  
35/98  
36  
 
Memory mapping  
STM32F048C6 STM32F048G6 STM32F048T6  
Table 16. STM32F048x6 peripheral register boundary addresses (continued)  
Bus  
Boundary address  
Size  
Peripheral  
0x4000 7C00 - 0x4000 7FFF  
0x4000 7800 - 0x4000 7BFF  
0x4000 7400 - 0x4000 77FF  
0x4000 7000 - 0x4000 73FF  
0x4000 6C00 - 0x4000 6FFF  
0x4000 6400 - 0x4000 6BFF  
0x4000 6000 - 0x4000 63FF  
0x4000 5C00 - 0x4000 5FFF  
0x4000 5800 - 0x4000 5BFF  
0x4000 5400 - 0x4000 57FF  
0x4000 4800 - 0x4000 53FF  
0x4000 4400 - 0x4000 47FF  
0x4000 3C00 - 0x4000 43FF  
0x4000 3800 - 0x4000 3BFF  
0x4000 3400 - 0x4000 37FF  
0x4000 3000 - 0x4000 33FF  
0x4000 2C00 - 0x4000 2FFF  
0x4000 2800 - 0x4000 2BFF  
0x4000 2400 - 0x4000 27FF  
0x4000 2000 - 0x4000 23FF  
0x4000 0800 - 0x4000 1FFF  
0x4000 0400 - 0x4000 07FF  
0x4000 0000 - 0x4000 03FF  
1 KB  
1 KB  
1 KB  
1 KB  
1 KB  
2 KB  
1 KB  
1 KB  
1 KB  
1 KB  
3 KB  
1 KB  
2 KB  
1 KB  
1 KB  
1 KB  
1 KB  
1 KB  
1 KB  
1 KB  
6 KB  
1 KB  
1 KB  
Reserved  
CEC  
Reserved  
PWR  
CRS  
Reserved  
USB RAM  
USB  
Reserved  
I2C1  
Reserved  
USART2  
Reserved  
SPI2  
APB  
Reserved  
IWDG  
WWDG  
RTC  
Reserved  
TIM14  
Reserved  
TIM3  
TIM2  
36/98  
DocID026007 Rev 6  
STM32F048C6 STM32F048G6 STM32F048T6  
Electrical characteristics  
6
Electrical characteristics  
6.1  
Parameter conditions  
Unless otherwise specified, all voltages are referenced to V  
.
SS  
6.1.1  
Minimum and maximum values  
Unless otherwise specified, the minimum and maximum values are guaranteed in the worst  
conditions of ambient temperature, supply voltage and frequencies by tests in production on  
100% of the devices with an ambient temperature at T = 25 °C and T = T max (given by  
A
A
A
the selected temperature range).  
Data based on characterization results, design simulation and/or technology characteristics  
are indicated in the table footnotes and are not tested in production. Based on  
characterization, the minimum and maximum values refer to sample tests and represent the  
mean value plus or minus three times the standard deviation (mean ±3σ).  
6.1.2  
6.1.3  
Typical values  
Unless otherwise specified, typical data are based on T = 25 °C, V = 1.8 V and V  
3.3 V. They are given only as design guidelines and are not tested.  
=
A
DD  
DDA  
Typical ADC accuracy values are determined by characterization of a batch of samples from  
a standard diffusion lot over the full temperature range, where 95% of the devices have an  
error less than or equal to the value indicated (mean ±2σ).  
Typical curves  
Unless otherwise specified, all typical curves are given only as design guidelines and are  
not tested.  
6.1.4  
6.1.5  
Loading capacitor  
The loading conditions used for pin parameter measurement are shown in Figure 7.  
Pin input voltage  
The input voltage measurement on a pin of the device is described in Figure 8.  
Figure 7. Pin loading conditions  
Figure 8. Pin input voltage  
0&8ꢄSLQ  
0&8ꢄSLQ  
&ꢄ ꢄꢍꢎꢄS)  
9,1  
06ꢌꢂꢆꢌꢎ9ꢌ  
06ꢌꢂꢆꢌꢌ9ꢌ  
DocID026007 Rev 6  
37/98  
83  
 
 
 
 
 
 
 
 
 
 
Electrical characteristics  
STM32F048C6 STM32F048G6 STM32F048T6  
6.1.6  
Power supply scheme  
Figure 9. Power supply scheme  
9%$7  
%DFNXSꢄFLUFXLWU\  
ꢉ/6(ꢈꢄ57&ꢈ  
%DFNXSꢄUHJLVWHUVꢋ  
ꢌꢇꢒꢍꢄ±ꢄꢀꢇꢒꢄ9  
1325  
3RZHUꢄVZLWFK  
9''  
9&25(  
ꢆꢄ[ꢄ9''  
9'',2ꢌ  
287  
.HUQHOꢄORJLF  
,2  
ORJLF  
ꢆꢄ[ꢄꢌꢎꢎꢄQ)  
ꢉ&38ꢈꢄ'LJLWDO  
*3,2V  
ꢆꢄ[ꢄ966  
ꢔꢄ0HPRULHVꢋ  
,1  
ꢊꢄꢌꢄ[ꢄꢁꢇꢏꢄ—)  
9'',2ꢆ  
9'',2ꢆ  
9'',2ꢆ  
287  
ꢌꢎꢎꢄQ)  
ꢊꢄꢁꢇꢏꢄ—)ꢄ  
,2  
ORJLF  
*3,2V  
966  
,1  
9''$  
9''$  
$QDORJꢅ  
ꢉ5&Vꢈꢄ3//ꢈꢄ«ꢋ  
ꢌꢎꢄQ)  
95()ꢊ  
95()ꢓ  
$'&  
ꢊꢄꢌꢄ—)  
966$  
06Yꢀꢁꢂꢂꢒ9ꢌ  
Caution:  
Each power supply pair (V /V , V  
/V  
etc.) must be decoupled with filtering ceramic  
DD SS DDA SSA  
capacitors as shown above. These capacitors must be placed as close as possible to, or  
below, the appropriate pins on the underside of the PCB to ensure the good functionality of  
the device.  
38/98  
DocID026007 Rev 6  
 
 
 
STM32F048C6 STM32F048G6 STM32F048T6  
Electrical characteristics  
6.1.7  
Current consumption measurement  
Figure 10. Current consumption measurement scheme  
,
''B9%$7  
9
%$7  
,
,
''  
9
''  
9
'',2ꢆ  
''$  
9
''$  
06ꢀꢌꢂꢂꢂ9ꢆ  
DocID026007 Rev 6  
39/98  
83  
 
 
Electrical characteristics  
STM32F048C6 STM32F048G6 STM32F048T6  
6.2  
Absolute maximum ratings  
Stresses above the absolute maximum ratings listed in Table 17: Voltage characteristics,  
Table 18: Current characteristics and Table 19: Thermal characteristics may cause  
permanent damage to the device. These are stress ratings only and functional operation of  
the device at these conditions is not implied. Exposure to maximum rating conditions for  
extended periods may affect device reliability.  
(1)  
Table 17. Voltage characteristics  
Symbol  
Ratings  
Min  
Max  
Unit  
V
DD–VSS External main supply voltage  
0.3  
- 0.3  
1.95  
V
V
VDDIO2–VSS External I/O supply voltage  
VDDA–VSS External analog supply voltage  
4.0  
- 0.3  
4.0  
V
VDD–VDDA Allowed voltage difference for VDD > VDDA  
-
0.4  
V
VBAT–VSS External backup supply voltage  
Input voltage on FT and FTf pins  
Input voltage on POR pins  
- 0.3  
4.0  
V
VSS 0.3  
VSS 0.3  
VSS 0.3  
VSS 0.3  
-
VDDIOx + 4.0(3)  
V
4.0  
4.0  
4.0  
50  
V
(2)  
VIN  
Input voltage on TTa pins  
V
Input voltage on any other pin  
V
|VDDx  
|VSSx - VSS  
VESD(HBM)  
|
Variations between different VDD power pins  
mV  
Variations between all the different ground  
pins  
|
-
50  
mV  
-
Electrostatic discharge voltage  
(human body model)  
see Section 6.3.11: Electrical  
sensitivity characteristics  
1. All main power (VDD, VDDA) and ground (VSS, VSSA) pins must always be connected to the external power  
supply, in the permitted range.  
2. VIN maximum must always be respected. Refer to Table 18: Current characteristics for the maximum  
allowed injected current values.  
3. Valid only if the internal pull-up/pull-down resistors are disabled. If internal pull-up or pull-down resistor is  
enabled, the maximum limit is 4 V.  
40/98  
DocID026007 Rev 6  
 
 
STM32F048C6 STM32F048G6 STM32F048T6  
Electrical characteristics  
Table 18. Current characteristics  
Symbol  
Ratings  
Max.  
Unit  
ΣIVDD  
ΣIVSS  
Total current into sum of all VDD power lines (source)(1)  
Total current out of sum of all VSS ground lines (sink)(1)  
Maximum current into each VDD power pin (source)(1)  
Maximum current out of each VSS ground pin (sink)(1)  
Output current sunk by any I/O and control pin  
120  
-120  
100  
-100  
25  
IVDD(PIN)  
IVSS(PIN)  
IIO(PIN)  
Output current source by any I/O and control pin  
Total output current sunk by sum of all I/Os and control pins(2)  
Total output current sourced by sum of all I/Os and control pins(2)  
Total output current sourced by sum of all I/Os supplied by VDDIO2  
Injected current on POR, FT and FTf pins  
-25  
80  
ΣIIO(PIN)  
-80  
mA  
-40  
-5/+0(4)  
(3)  
IINJ(PIN)  
Injected current on TC and RST pin  
± 5  
Injected current on TTa pins(5)  
± 5  
ΣIINJ(PIN)  
Total injected current (sum of all I/O and control pins)(6)  
± 25  
1. All main power (VDD, VDDA) and ground (VSS, VSSA) pins must always be connected to the external power supply, in the  
permitted range.  
2. This current consumption must be correctly distributed over all I/Os and control pins. The total output current must not be  
sunk/sourced between two consecutive power supply pins referring to high pin count QFP packages.  
3. A positive injection is induced by VIN > VDDIOx while a negative injection is induced by VIN < VSS. IINJ(PIN) must never be  
exceeded. Refer to Table 17: Voltage characteristics for the maximum allowed input voltage values.  
4. Positive injection is not possible on these I/Os and does not occur for input voltages lower than the specified maximum  
value.  
5. On these I/Os, a positive injection is induced by VIN > VDDA. Negative injection disturbs the analog performance of the  
device. See note (2) below Table 54: ADC accuracy.  
6. When several inputs are submitted to a current injection, the maximum ΣIINJ(PIN) is the absolute sum of the positive and  
negative injected currents (instantaneous values).  
Table 19. Thermal characteristics  
Symbol  
Ratings  
Storage temperature range  
Maximum junction temperature  
Value  
Unit  
TSTG  
TJ  
–65 to +150  
150  
°C  
°C  
DocID026007 Rev 6  
41/98  
83  
 
 
Electrical characteristics  
STM32F048C6 STM32F048G6 STM32F048T6  
6.3  
Operating conditions  
6.3.1  
General operating conditions  
Table 20. General operating conditions  
Symbol  
Parameter  
Conditions  
Min  
Max  
Unit  
fHCLK  
fPCLK  
VDD  
Internal AHB clock frequency  
Internal APB clock frequency  
Standard operating voltage  
-
-
-
0
0
48  
48  
MHz  
1.65  
1.95  
V
V
Must not be supplied if VDD  
is not present  
VDDIO2  
I/O supply voltage  
1.65  
VDD  
2.4  
3.6  
3.6  
3.6  
Analog operating voltage  
(ADC not used)  
Must have a potential equal  
to or higher than VDD  
VDDA  
V
Analog operating voltage  
(ADC used)  
VBAT  
Backup operating voltage  
-
1.65  
–0.3  
–0.3  
–0.3  
-
3.6  
V
V
TC and RST I/O  
VDDIOx+0.3  
VIN  
I/O input voltage  
TTa and POR I/O  
FT and FTf I/O  
V
DDA+0.3(1)  
5.2(1)  
606  
UFQFPN48  
Power dissipation at TA = 85 °C  
for suffix 6 or TA = 105 °C for  
suffix 7(2)  
PD  
WLCSP36  
-
313  
mW  
UFQFPN28  
-
170  
Maximum power dissipation  
Low power dissipation(3)  
Maximum power dissipation  
Low power dissipation(3)  
Suffix 6 version  
–40  
–40  
–40  
–40  
–40  
–40  
85  
Ambient temperature for the  
suffix 6 version  
°C  
°C  
°C  
105  
TA  
TJ  
105  
Ambient temperature for the  
suffix 7 version  
125  
105  
Junction temperature range  
Suffix 7 version  
125  
1. For operation with a voltage higher than VDDIOx + 0.3 V, the internal pull-up resistor must be disabled.  
2. If TA is lower, higher PD values are allowed as long as TJ does not exceed TJmax. See Section 7.4: Thermal characteristics.  
3. In low power dissipation state, TA can be extended to this range as long as TJ does not exceed TJmax (see Section 7.4:  
Thermal characteristics).  
6.3.2  
Operating conditions at power-up / power-down  
The parameters given in Table 21 are derived from tests performed under the ambient  
temperature condition summarized in Table 20.  
42/98  
DocID026007 Rev 6  
 
 
 
 
 
 
STM32F048C6 STM32F048G6 STM32F048T6  
Electrical characteristics  
Table 21. Operating conditions at power-up / power-down  
Symbol  
Parameter  
VDD rise time rate  
VDD fall time rate  
VDDA rise time rate  
VDDA fall time rate  
Conditions  
Min  
0
Max  
Unit  
tVDD  
-
20  
0
µs/V  
tVDDA  
-
20  
6.3.3  
Embedded reference voltage  
The parameters given in Table 22 are derived from tests performed under the ambient  
temperature and supply voltage conditions summarized in Table 20: General operating  
conditions.  
Table 22. Embedded internal reference voltage  
Symbol  
Parameter  
Conditions  
Min  
Typ Max  
Unit  
Internal reference voltage –40 °C < TA < +105 °C  
1.2  
1.23 1.25  
V
V
REFINT  
ADC_IN17 buffer startup  
time  
tSTART  
-
-
-
-
10(1)  
µs  
µs  
ADC sampling time when  
reading the internal  
reference voltage  
4(1)  
tS_vrefint  
-
-
Internal reference voltage  
spread over the  
10(1)  
VREFINT  
VDDA = 3 V  
-
-
mV  
temperature range  
- 100(1)  
1.5  
100(1)  
4.5  
TCoeff  
Temperature coefficient  
-
-
-
ppm/°C  
ms  
TVREFINT_RDY Internal reference voltage  
2.5  
(2)  
temporization  
1. Guaranteed by design, not tested in production.  
2. Guaranteed by design, not tested in production. This parameter is the latency between the time when pin  
NPOR is set to 1 by the application and the time when the VREFINTRDYF status bit is set to 1 by the  
hardware.  
6.3.4  
Supply current characteristics  
The current consumption is a function of several parameters and factors such as the  
operating voltage, ambient temperature, I/O pin loading, device software configuration,  
operating frequencies, I/O pin switching rate, program location in memory and executed  
binary code.  
The current consumption is measured as described in Figure 10: Current consumption  
measurement scheme.  
All Run-mode current consumption measurements given in this section are performed with a  
reduced code that gives a consumption equivalent to CoreMark code.  
DocID026007 Rev 6  
43/98  
83  
 
 
 
 
 
Electrical characteristics  
STM32F048C6 STM32F048G6 STM32F048T6  
Typical and maximum current consumption  
The MCU is placed under the following conditions:  
All I/O pins are in analog input mode  
All peripherals are disabled except when explicitly mentioned  
The Flash memory access time is adjusted to the f  
frequency:  
HCLK  
0 wait state and Prefetch OFF from 0 to 24 MHz  
1 wait state and Prefetch ON above 24 MHz  
= f  
When the peripherals are enabled f  
PCLK  
HCLK  
The parameters given in Table 23 to Table 27 are derived from tests performed under  
ambient temperature and supply voltage conditions summarized in Table 20: General  
operating conditions.  
44/98  
DocID026007 Rev 6  
STM32F048C6 STM32F048G6 STM32F048T6  
Electrical characteristics  
Table 23. Typical and maximum current consumption from V supply at V = 1.8 V  
DD  
DD  
All peripherals enabled(1)  
All peripherals disabled  
(2)  
(2)  
Max @ TA  
Max @ TA  
Conditions  
fHCLK  
Unit  
Typ  
Typ  
25 °C  
85 °C 105 °C  
25 °C 85 °C 105 °C  
HSI48  
48 MHz 19.0  
48 MHz 18.5  
32 MHz 12.5  
20.4  
20.0  
13.2  
10.4  
4.0  
20.9  
20.5  
13.6  
10.7  
4.1  
21.3  
20.9  
14.0  
11.0  
4.2  
11.7  
11.5  
7.8  
6.2  
2.3  
0.5  
11.6  
8.0  
6.3  
2.3  
10.9  
10.7  
7.2  
5.6  
1.6  
0.2  
10.8  
7.4  
5.7  
1.7  
2.7  
2.6  
1.7  
1.4  
0.5  
0.1  
2.6  
1.9  
1.4  
0.5  
12.2  
12.1  
8.4  
6.6  
2.5  
0.7  
12.1  
8.6  
6.8  
2.5  
11.4  
11.4  
7.6  
5.9  
2.0  
0.3  
11.4  
7.8  
5.9  
2.1  
2.8  
2.7  
1.9  
1.4  
0.5  
0.2  
2.7  
2.0  
1.4  
0.6  
12.8  
12.6  
8.7  
6.9  
2.6  
0.7  
12.7  
8.8  
7.0  
2.6  
12.0  
11.9  
8.0  
6.3  
2.0  
0.3  
12.0  
8.2  
6.3  
2.1  
2.9  
2.8  
2.0  
1.6  
0.6  
0.2  
2.8  
2.1  
1.6  
0.6  
12.9  
12.8  
8.9  
7.1  
2.6  
0.8  
12.8  
9.1  
7.1  
2.7  
12.2  
12.1  
8.3  
6.5  
2.0  
0.4  
12.1  
8.4  
6.5  
2.2  
3.1  
3.0  
2.3  
1.6  
0.6  
0.2  
3.0  
2.3  
1.7  
0.8  
External  
clock (HSE 24 MHz 10.1  
bypass)  
8 MHz  
1 MHz  
3.5  
0.7  
mA  
0.8  
0.9  
1.0  
48 MHz 18.7  
32 MHz 12.7  
24 MHz 10.2  
20.2  
13.4  
10.6  
4.2  
20.6  
13.8  
11.0  
4.3  
21.0  
14.2  
11.1  
4.5  
Internal  
clock (HSI)  
8 MHz  
3.7  
HSI48  
48 MHz 18.2  
48 MHz 17.8  
32 MHz 12.1  
19.6  
19.2  
12.6  
9.9  
20.0  
19.7  
13.0  
10.1  
3.6  
20.4  
20.0  
13.4  
10.4  
3.7  
External  
clock (HSE 24 MHz 9.6  
bypass)  
8 MHz  
1 MHz  
3.0  
0.4  
3.4  
IDD  
0.5  
0.6  
0.7  
48 MHz 18.0  
32 MHz 12.3  
24 MHz 9.8  
19.4  
12.9  
10.1  
3.6  
19.9  
13.2  
10.4  
3.7  
20.2  
13.6  
10.6  
3.9  
Internal  
clock (HSI)  
8 MHz  
3.2  
mA  
HSI48  
48 MHz 10.9  
48 MHz 10.7  
32 MHz 7.8  
12.2  
12.1  
8.3  
13.0  
12.8  
8.6  
13.3  
13.1  
9.0  
External  
clock (HSE 24 MHz 6.2  
bypass)  
6.8  
7.2  
7.4  
8 MHz  
1 MHz  
2.0  
0.3  
2.5  
2.6  
2.7  
0.3  
0.4  
0.5  
48 MHz 10.8  
32 MHz 7.9  
24 MHz 6.3  
12.1  
8.4  
12.9  
8.7  
13.2  
9.2  
Internal  
clock (HSI)  
6.9  
7.3  
7.5  
8 MHz  
2.0  
2.6  
2.7  
2.8  
1. USB is kept disabled as this IP functions only with a 48 MHz clock.  
2. Data based on characterization results, not tested in production unless otherwise specified.  
DocID026007 Rev 6  
45/98  
83  
 
Electrical characteristics  
STM32F048C6 STM32F048G6 STM32F048T6  
Table 24. Typical and maximum current consumption from the V  
supply  
= 3.6 V  
DDA  
DDA  
V
= 2.4 V  
V
DDA  
Para-  
meter  
Conditions  
(2)  
(2)  
Symbol  
fHCLK  
Unit  
Max @ TA  
25 °C 85 °C 105 °C  
Max @ TA  
25 °C 85 °C 105 °C  
(1)  
Typ  
Typ  
HSI48  
48 MHz 308  
48 MHz 147  
32 MHz 101  
24 MHz 79  
325  
166  
118  
94  
330  
176  
123  
98  
340  
180  
125  
100  
3
316  
160  
109  
86  
332  
179  
126  
100  
3
338  
191  
132  
104  
3
347  
195  
135  
106  
4
HSE  
bypass,  
PLL on  
Supply  
current in  
Run or  
Sleep  
HSE  
bypass,  
PLL off  
8 MHz  
1 MHz  
1
1
3
3
2
mode,  
IDDA  
code  
µA  
2
2
2
2
2
3
3
executing  
from  
Flash  
memory  
or RAM  
48 MHz 219  
32 MHz 172  
24 MHz 150  
239  
191  
167  
250  
198  
172  
254  
201  
174  
240  
190  
165  
260  
207  
181  
272  
215  
187  
276  
218  
189  
HSI clock,  
PLL on  
HSI clock,  
PLL off  
8 MHz  
71  
79  
81  
82  
81  
89  
91  
92  
1. Current consumption from the VDDA supply is independent of whether the digital peripherals are enabled or disabled, being  
in Run or Sleep mode or executing from Flash memory or RAM. Furthermore, when the PLL is off, IDDA is independent from  
the frequency.  
2. Data based on characterization results, not tested in production unless otherwise specified.  
Table 25. Typical and maximum consumption in Stop mode  
Typ. @ VDD = 1.8 V  
Max  
Symbol Parameter  
Conditions  
Unit  
IDD  
Supply  
current in  
Stop mode  
0.4  
2.3  
1.5  
14.9  
2.6  
35.6  
3.4  
All oscillators OFF  
µA  
IDDA  
1.0 1.0 1.0 1.0 1.1 1.1 1.2  
46/98  
DocID026007 Rev 6  
 
 
STM32F048C6 STM32F048G6 STM32F048T6  
Electrical characteristics  
Table 26. Typical and maximum current consumption from the V  
Typ @ VBAT  
supply  
Max(1)  
BAT  
Symbol Parameter  
Conditions  
Unit  
TA =  
TA =  
TA =  
25 °C 85 °C 105 °C  
LSE & RTC ON; “Xtal  
mode”: lower driving  
capability;  
0.5 0.5 0.6 0.7 0.9 1.1  
1.2  
1.6  
1.5  
2.0  
2.0  
2.6  
RTC  
LSEDRV[1:0] = '00'  
domain  
supply  
current  
IDD VBAT  
_
µA  
LSE & RTC ON; “Xtal  
mode” higher driving  
capability;  
0.8 0.9 1.1 1.2 1.4 1.5  
LSEDRV[1:0] = '11'  
1. Data based on characterization results, not tested in production.  
Typical current consumption  
The MCU is placed under the following conditions:  
V
= V  
= 1.8 V  
DDA  
DD  
All I/O pins are in analog input configuration  
The Flash memory access time is adjusted to f  
frequency:  
HCLK  
0 wait state and Prefetch OFF from 0 to 24 MHz  
1 wait state and Prefetch ON above 24 MHz  
= f  
When the peripherals are enabled, f  
PCLK  
HCLK  
PLL is used for frequencies greater than 8 MHz  
AHB prescaler of 2, 4, 8 and 16 is used for the frequencies 4 MHz, 2 MHz, 1 MHz and  
500 kHz respectively  
DocID026007 Rev 6  
47/98  
83  
 
Electrical characteristics  
STM32F048C6 STM32F048G6 STM32F048T6  
Table 27. Typical current consumption, code executing from Flash memory,  
running from HSE 8 MHz crystal  
Typical consumption in  
Run mode  
Typical consumption in  
Sleep mode  
Symbol Parameter  
fHCLK  
Unit  
Peripherals Peripherals Peripherals Peripherals  
enabled  
disabled  
enabled  
disabled  
48 MHz  
36 MHz  
32 MHz  
24 MHz  
16 MHz  
8 MHz  
19.8  
15.0  
13.5  
10.2  
7.1  
12.0  
9.3  
8.4  
6.5  
4.6  
2.6  
1.5  
1.0  
0.8  
0.6  
11.5  
8.7  
7.8  
6.0  
4.2  
2.3  
1.3  
0.9  
0.6  
0.5  
3.1  
2.6  
2.4  
1.8  
1.4  
0.8  
0.5  
0.5  
0.4  
0.4  
Current  
consumption  
from VDD  
supply  
IDD  
mA  
3.9  
4 MHz  
2.3  
2 MHz  
1.4  
1 MHz  
1.0  
500 kHz  
48 MHz  
36 MHz  
32 MHz  
24 MHz  
16 MHz  
8 MHz  
0.8  
146  
115  
105  
83  
61  
1
Current  
consumption  
from VDDA  
supply  
IDDA  
μA  
4 MHz  
1
2 MHz  
1
1 MHz  
1
500 kHz  
1
I/O system current consumption  
The current consumption of the I/O system has two components: static and dynamic.  
I/O static current consumption  
All the I/Os used as inputs with pull-up generate current consumption when the pin is  
externally held low. The value of this current consumption can be simply computed by using  
the pull-up/pull-down resistors values given in Table 47: I/O static characteristics.  
For the output pins, any external pull-down or external load must also be considered to  
estimate the current consumption.  
Additional I/O current consumption is due to I/Os configured as inputs if an intermediate  
voltage level is externally applied. This current consumption is caused by the input Schmitt  
48/98  
DocID026007 Rev 6  
 
STM32F048C6 STM32F048G6 STM32F048T6  
Electrical characteristics  
trigger circuits used to discriminate the input value. Unless this specific configuration is  
required by the application, this supply current consumption can be avoided by configuring  
these I/Os in analog mode. This is notably the case of ADC input pins which should be  
configured as analog inputs.  
Caution:  
Any floating input pin can also settle to an intermediate voltage level or switch inadvertently,  
as a result of external electromagnetic noise. To avoid current consumption related to  
floating pins, they must either be configured in analog mode, or forced internally to a definite  
digital value. This can be done either by using pull-up/down resistors or by configuring the  
pins in output mode.  
I/O dynamic current consumption  
In addition to the internal peripheral current consumption measured previously (see  
Table 29: Peripheral current consumption), the I/Os used by an application also contribute  
to the current consumption. When an I/O pin switches, it uses the current from the I/O  
supply voltage to supply the I/O pin circuitry and to charge/discharge the capacitive load  
(internal or external) connected to the pin:  
ISW = VDDIOx × fSW × C  
where  
I
is the current sunk by a switching I/O to charge/discharge the capacitive load  
SW  
V
is the I/O supply voltage  
DDIOx  
f
is the I/O switching frequency  
SW  
C is the total capacitance seen by the I/O pin: C = C  
+ C  
+ C  
EXT S  
INT  
C is the PCB board capacitance including the pad pin.  
S
The test pin is configured in push-pull output mode and is toggled by software at a fixed  
frequency.  
DocID026007 Rev 6  
49/98  
83  
Electrical characteristics  
Symbol  
STM32F048C6 STM32F048G6 STM32F048T6  
Table 28. Switching output I/O current consumption  
I/O toggling  
frequency (fSW  
Parameter  
Conditions(1)  
Typ  
Unit  
)
2 MHz  
4 MHz  
8 MHz  
18 MHz  
36 MHz  
48 MHz  
2 MHz  
4 MHz  
8 MHz  
18 MHz  
36 MHz  
48 MHz  
2 MHz  
4 MHz  
8 MHz  
18 MHz  
36 MHz  
2 MHz  
4 MHz  
8 MHz  
18 MHz  
36 MHz  
2 MHz  
4 MHz  
8 MHz  
18 MHz  
0.09  
0.17  
0.34  
0.79  
1.50  
2.06  
0.13  
0.26  
0.50  
1.18  
2.27  
3.03  
0.18  
0.36  
0.69  
1.60  
3.27  
0.23  
0.45  
0.87  
2.0  
VDDIOx = 1.8 V  
CEXT = 0 pF  
C = CINT + CEXT + CS  
VDDIOx = 1.8 V  
CEXT = 10 pF  
C = CINT + CEXT + CS  
I/O current  
consumption  
ISW  
mA  
VDDIOx = 1.8 V  
CEXT = 22 pF  
C = CINT + CEXT + CS  
VDDIOx = 1.8 V  
CEXT = 33 pF  
C = CINT + CEXT + CS  
3.7  
0.29  
0.55  
1.09  
2.43  
VDDIOx = 1.8 V  
CEXT = 47 pF  
C = CINT + CEXT + CS  
1. CS = 5 pF (estimated value).  
50/98  
DocID026007 Rev 6  
 
STM32F048C6 STM32F048G6 STM32F048T6  
Electrical characteristics  
On-chip peripheral current consumption  
The current consumption of the on-chip peripherals is given in Table 29. The MCU is placed  
under the following conditions:  
All I/O pins are in analog mode  
All peripherals are disabled unless otherwise mentioned  
The given value is calculated by measuring the current consumption  
with all peripherals clocked off  
with only one peripheral clocked on  
Ambient operating temperature and supply voltage conditions summarized in Table 17:  
Voltage characteristics  
Table 29. Peripheral current consumption  
Peripheral  
BusMatrix(1)  
Typical consumption at 25 °C  
Unit  
2.2  
1.9  
5.1  
15.0  
8.2  
7.7  
2.1  
1.8  
1.1  
4.9  
49.8  
CRC  
DMA  
Flash memory interface  
GPIOA  
AHB  
GPIOB  
µA/MHz  
GPIOC  
GPIOF  
SRAM  
TSC  
All AHB peripherals  
DocID026007 Rev 6  
51/98  
83  
 
Electrical characteristics  
STM32F048C6 STM32F048G6 STM32F048T6  
Table 29. Peripheral current consumption (continued)  
Peripheral  
Typical consumption at 25 °C  
Unit  
APB-Bridge(2)  
2.9  
3.9  
ADC(3)  
CEC  
1.5  
CRS  
1.0  
DBG (MCU Debug Support)  
0.2  
I2C1  
3.6  
PWR  
1.4  
SPI1  
8.5  
SPI2  
6.1  
SYSCFG  
TIM1  
1.8  
15.1  
16.8  
11.7  
5.5  
APB  
µA/MHz  
TIM2  
TIM3  
TIM14  
TIM16  
7.0  
TIM17  
6.9  
USART1  
USART2  
USB  
17.8  
5.6  
4.9  
WWDG  
All APB peripherals  
1.4  
123.8  
1. The BusMatrix is automatically active when at least one master is ON (CPU, DMA).  
2. The APB Bridge is automatically active when at least one peripheral is ON on the Bus.  
3. The power consumption of the analog part (IDDA) of peripherals such as ADC is not included. Refer to the  
tables of characteristics in the subsequent sections.  
52/98  
DocID026007 Rev 6  
STM32F048C6 STM32F048G6 STM32F048T6  
Electrical characteristics  
6.3.5  
Wakeup time from low-power mode  
The wakeup times given in Table 30 are the latency between the event and the execution of  
the first user instruction. The device goes in low-power mode after the WFE (Wait For  
Event) instruction, in the case of a WFI (Wait For Interruption) instruction, 16 CPU cycles  
must be added to the following timings due to the interrupt latency in the Cortex M0  
architecture.  
The SYSCLK clock source setting is kept unchanged after wakeup from Sleep mode.  
During wakeup from Stop mode, SYSCLK takes the default setting: HSI 8 MHz.  
The wakeup source from Sleep and Stop mode is an EXTI line configured in event mode.  
All timings are derived from tests performed under the ambient temperature and supply  
voltage conditions summarized in Table 20: General operating conditions.  
Table 30. Low-power mode wakeup timings  
Typ @ VDDA  
Symbol  
Parameter  
Max  
Unit  
= 1.8 V = 3.3 V  
3.5 2.8  
4 SYSCLK cycles  
tWUSTOP  
Wakeup from Stop mode  
Wakeup from Sleep mode  
5.3  
-
µs  
µs  
tWUSLEEP  
6.3.6  
External clock source characteristics  
High-speed external user clock generated from an external source  
In bypass mode the HSE oscillator is switched off and the input pin is a standard GPIO.  
The external clock signal has to respect the I/O characteristics in Section 6.3.13. However,  
the recommended clock input waveform is shown in Figure 11: High-speed external clock  
source AC timing diagram.  
Table 31. High-speed external user clock characteristics  
Symbol  
Parameter(1)  
Min  
Typ  
Max  
Unit  
fHSE_ext User external clock source frequency  
VHSEH OSC_IN input pin high level voltage  
-
8
-
32  
MHz  
0.7 VDDIOx  
VSS  
VDDIOx  
V
VHSEL  
OSC_IN input pin low level voltage  
OSC_IN high or low time  
-
0.3 VDDIOx  
tw(HSEH)  
tw(HSEL)  
15  
-
-
-
-
ns  
tr(HSE)  
tf(HSE)  
OSC_IN rise or fall time  
20  
1. Guaranteed by design, not tested in production.  
DocID026007 Rev 6  
53/98  
83  
 
 
 
 
Electrical characteristics  
STM32F048C6 STM32F048G6 STM32F048T6  
Figure 11. High-speed external clock source AC timing diagram  
W
Zꢉ+6(+ꢋ  
9
+6(+  
 
 
9
+6(/  
W
W
W
W
Uꢉ+6(ꢋ  
Iꢉ+6(ꢋ  
Zꢉ+6(/ꢋ  
7
+6(  
06ꢌꢂꢆꢌꢁ9ꢆ  
Low-speed external user clock generated from an external source  
In bypass mode the LSE oscillator is switched off and the input pin is a standard GPIO.  
The external clock signal has to respect the I/O characteristics in Section 6.3.13. However,  
the recommended clock input waveform is shown in Figure 12.  
Table 32. Low-speed external user clock characteristics  
Symbol  
Parameter(1)  
Min  
Typ  
Max  
Unit  
fLSE_ext User external clock source frequency  
VLSEH OSC32_IN input pin high level voltage  
VLSEL OSC32_IN input pin low level voltage  
-
32.768  
1000  
VDDIOx  
kHz  
0.7 VDDIOx  
VSS  
-
-
V
0.3 VDDIOx  
tw(LSEH)  
OSC32_IN high or low time  
tw(LSEL)  
450  
-
-
-
-
ns  
tr(LSE)  
OSC32_IN rise or fall time  
tf(LSE)  
50  
1. Guaranteed by design, not tested in production.  
Figure 12. Low-speed external clock source AC timing diagram  
W
Zꢉ/6(+ꢋ  
9
/6(+  
 
 
9
/6(/  
W
W
W
Uꢉ/6(ꢋ  
Iꢉ/6(ꢋ  
W
Zꢉ/6(/ꢋ  
7
/6(  
06ꢌꢂꢆꢌꢍ9ꢆ  
54/98  
DocID026007 Rev 6  
 
 
 
STM32F048C6 STM32F048G6 STM32F048T6  
Electrical characteristics  
High-speed external clock generated from a crystal/ceramic resonator  
The high-speed external (HSE) clock can be supplied with a 4 to 32 MHz crystal/ceramic  
resonator oscillator. All the information given in this paragraph are based on design  
simulation results obtained with typical external components specified in Table 33. In the  
application, the resonator and the load capacitors have to be placed as close as possible to  
the oscillator pins in order to minimize output distortion and startup stabilization time. Refer  
to the crystal resonator manufacturer for more details on the resonator characteristics  
(frequency, package, accuracy).  
Table 33. HSE oscillator characteristics  
Symbol  
Parameter  
Conditions(1)  
Min(2) Typ Max(2) Unit  
fOSC_IN Oscillator frequency  
-
4
-
8
200  
-
32  
-
MHz  
RF  
Feedback resistor  
-
kΩ  
During startup(3)  
-
8.5  
VDD = 1.8 V,  
Rm = 30 ,  
CL = 10 pF@8 MHz  
-
-
-
-
-
0.4  
0.5  
0.8  
1
-
-
-
-
-
VDD = 1.8 V,  
Rm = 45 ,  
CL = 10 pF@8 MHz  
VDD = 1.8 V,  
IDD  
HSE current consumption  
mA  
Rm = 30 ,  
CL = 5 pF@32 MHz  
VDD = 1.8 V,  
Rm = 30 ,  
CL = 10 pF@32 MHz  
VDD = 1.8 V,  
Rm = 30 ,  
1.5  
CL = 20 pF@32 MHz  
gm  
Oscillator transconductance  
Startup time  
Startup  
10  
-
-
-
-
mA/V  
ms  
(4)  
tSU(HSE)  
VDD is stabilized  
2
1. Resonator characteristics given by the crystal/ceramic resonator manufacturer.  
2. Guaranteed by design, not tested in production.  
3. This consumption level occurs during the first 2/3 of the tSU(HSE) startup time  
4. tSU(HSE) is the startup time measured from the moment it is enabled (by software) to a stabilized 8 MHz  
oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly  
with the crystal manufacturer  
For C and C , it is recommended to use high-quality external ceramic capacitors in the  
L1  
L2  
5 pF to 20 pF range (Typ.), designed for high-frequency applications, and selected to match  
the requirements of the crystal or resonator (see Figure 13). C and C are usually the  
L1  
L2  
same size. The crystal manufacturer typically specifies a load capacitance which is the  
series combination of C and C . PCB and MCU pin capacitance must be included (10 pF  
L1  
L2  
can be used as a rough estimate of the combined pin and board capacitance) when sizing  
and C .  
C
L1  
L2  
Note:  
For information on selecting the crystal, refer to the application note AN2867 “Oscillator  
design guide for ST microcontrollers” available from the ST website www.st.com.  
DocID026007 Rev 6  
55/98  
83  
 
Electrical characteristics  
STM32F048C6 STM32F048G6 STM32F048T6  
Figure 13. Typical application with an 8 MHz crystal  
5HVRQDWRUꢄZLWKꢄLQWHJUDWHGꢄ  
FDSDFLWRUV  
&
/ꢌ  
26&B,1  
I+6(  
%LDVꢄ  
FRQWUROOHGꢄ  
JDLQ  
ꢃꢄ0+]ꢄ  
UHVRQDWRU  
5)  
ꢉꢌꢋ  
26&B287  
5(;7  
&
/ꢆ  
06ꢌꢂꢃꢏꢒ9ꢌ  
1. REXT value depends on the crystal characteristics.  
Low-speed external clock generated from a crystal resonator  
The low-speed external (LSE) clock can be supplied with a 32.768 kHz crystal resonator  
oscillator. All the information given in this paragraph are based on design simulation results  
obtained with typical external components specified in Table 34. In the application, the  
resonator and the load capacitors have to be placed as close as possible to the oscillator  
pins in order to minimize output distortion and startup stabilization time. Refer to the crystal  
resonator manufacturer for more details on the resonator characteristics (frequency,  
package, accuracy).  
Table 34. LSE oscillator characteristics (fLSE = 32.768 kHz)  
Symbol  
Parameter  
Conditions(1)  
Min(2) Typ Max(2) Unit  
low drive capability  
medium-low drive capability  
medium-high drive capability  
high drive capability  
-
-
0.5  
0.9  
-
-
1
IDD  
LSE current consumption  
µA  
-
1.3  
-
-
1.6  
low drive capability  
5
8
15  
25  
-
-
-
-
-
-
-
medium-low drive capability  
medium-high drive capability  
high drive capability  
-
Oscillator  
transconductance  
gm  
µA/V  
s
-
-
(3)  
tSU(LSE)  
Startup time  
VDDIOx is stabilized  
2
1. Refer to the note and caution paragraphs below the table, and to the application note AN2867 “Oscillator design guide for  
ST microcontrollers”.  
2. Guaranteed by design, not tested in production.  
3. tSU(LSE) is the startup time measured from the moment it is enabled (by software) to a stabilized 32.768 kHz oscillation is  
reached. This value is measured for a standard crystal and it can vary significantly with the crystal manufacturer  
56/98  
DocID026007 Rev 6  
 
 
 
STM32F048C6 STM32F048G6 STM32F048T6  
Electrical characteristics  
Note:  
For information on selecting the crystal, refer to the application note AN2867 “Oscillator  
design guide for ST microcontrollers” available from the ST website www.st.com.  
Figure 14. Typical application with a 32.768 kHz crystal  
5HVRQDWRUꢄZLWKꢄLQWHJUDWHGꢄ  
FDSDFLWRUV  
&
/ꢌ  
26&ꢀꢆB,1  
I/6(  
'ULYHꢄ  
ꢀꢆꢇꢏꢒꢃꢄN+]ꢄ  
UHVRQDWRU  
SURJUDPPDEOHꢄ  
DPSOLILHU  
26&ꢀꢆB287  
&
/ꢆ  
06ꢀꢎꢆꢍꢀ9ꢆ  
Note:  
An external resistor is not required between OSC32_IN and OSC32_OUT and it is forbidden  
to add one.  
6.3.7  
Internal clock source characteristics  
The parameters given in Table 35 are derived from tests performed under ambient  
temperature and supply voltage conditions summarized in Table 20: General operating  
conditions. The provided curves are characterization results, not tested in production.  
DocID026007 Rev 6  
57/98  
83  
 
 
Electrical characteristics  
STM32F048C6 STM32F048G6 STM32F048T6  
High-speed internal (HSI) RC oscillator  
(1)  
Table 35. HSI oscillator characteristics  
Parameter Conditions Min  
Frequency  
HSI user trimming step  
Symbol  
Typ  
Max  
Unit  
fHSI  
-
-
8
-
-
-
-
-
-
-
-
-
-
MHz  
%
TRIM  
-
-
-
1(2)  
55(2)  
3.8(3)  
2.3(3)  
2(3)  
2(3)  
2(3)  
1
DuCy(HSI) Duty cycle  
45(2)  
-2.8(3)  
-1.9(3)  
-1.9(3)  
-1.3(3)  
-1(3)  
%
TA = -40 to 105°C  
TA = -10 to 85°C  
TA = 0 to 85°C  
TA = 0 to 70°C  
TA = 0 to 55°C  
TA = 25°C(4)  
-
Accuracy of the HSI  
oscillator  
ACCHSI  
%
-1  
tsu(HSI)  
HSI oscillator startup time  
1(2)  
2(2)  
µs  
HSI oscillator power  
consumption  
IDDA(HSI)  
-
-
80  
100(2)  
µA  
1. VDDA = 3.3 V, TA = -40 to 105°C unless otherwise specified.  
2. Guaranteed by design, not tested in production.  
3. Data based on characterization results, not tested in production.  
4. Factory calibrated, parts not soldered.  
Figure 15. HSI oscillator accuracy characterization results for soldered parts  
ꢂꢈ  
."9  
.*/  
ꢉꢈ  
ꢄꢈ  
ꢇꢈ  
ꢃꢈ  
5ꢀꢀ<$>  
"ꢀꢀ  
ꢁꢂꢃ  
ꢁꢄꢃ  
ꢄꢃ  
ꢂꢃ  
ꢅꢃ  
ꢆꢃ  
ꢇꢃꢃ  
ꢇꢄꢃ  
ꢁꢇꢈ  
ꢁꢄꢈ  
ꢁꢉꢈ  
ꢁꢂꢈ  
06ꢀꢎꢂꢃꢍ9ꢁ  
58/98  
DocID026007 Rev 6  
 
 
STM32F048C6 STM32F048G6 STM32F048T6  
Electrical characteristics  
High-speed internal 14 MHz (HSI14) RC oscillator (dedicated to ADC)  
(1)  
Table 36. HSI14 oscillator characteristics  
Symbol  
Parameter  
Frequency  
HSI14 user-trimming step  
Conditions  
Min  
Typ  
Max  
Unit  
fHSI14  
TRIM  
-
-
-
-
-
14  
-
-
MHz  
%
1(2)  
DuCy(HSI14) Duty cycle  
45(2)  
-
55(2)  
5.1(3)  
3.1(3)  
2.3(3)  
1
%
TA = –40 to 105 °C –4.2(3)  
TA = –10 to 85 °C –3.2(3)  
-
%
-
%
Accuracy of the HSI14  
oscillator (factory calibrated)  
ACCHSI14  
TA = 0 to 70 °C  
–2.5(3)  
-
%
TA = 25 °C  
-
–1  
-
%
tsu(HSI14) HSI14 oscillator startup time  
1(2)  
-
2(2)  
µs  
HSI14 oscillator power  
IDDA(HSI14)  
-
-
100 150(2)  
µA  
consumption  
1.  
2. Guaranteed by design, not tested in production.  
3. Data based on characterization results, not tested in production.  
VDDA = 3.3 V, TA = –40 to 105 °C unless otherwise specified.  
Figure 16. HSI14 oscillator accuracy characterization results  
ꢍꢑ  
0$;  
0,1  
ꢁꢑ  
ꢀꢑ  
ꢆꢑ  
ꢌꢑ  
ꢎꢑ  
7ꢄꢄ>ƒ&@  
$
ꢓꢁꢎ  
ꢓꢆꢎ  
ꢆꢎ  
ꢁꢎ  
ꢒꢎ  
ꢃꢎ  
ꢌꢎꢎ  
ꢌꢆꢎ  
ꢌꢑ  
ꢆꢑ  
ꢀꢑ  
ꢓꢁꢑ  
ꢓꢍꢑ  
06ꢀꢎꢂꢃꢒ9ꢆ  
DocID026007 Rev 6  
59/98  
83  
 
 
Electrical characteristics  
STM32F048C6 STM32F048G6 STM32F048T6  
High-speed internal 48 MHz (HSI48) RC oscillator  
(1)  
Table 37. HSI48 oscillator characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
fHSI48  
TRIM  
Frequency  
-
-
-
-
48  
-
MHz  
%
HSI48 user-trimming step  
0.09(2)  
45(2)  
0.14  
0.2(2)  
55(2)  
4.7(3)  
3.7(3)  
3.4(3)  
2.9  
DuCy(HSI48) Duty cycle  
-
-
-
-
-
-
%
TA = –40 to 105 °C -4.9(3)  
%
TA = –10 to 85 °C  
TA = 0 to 70 °C  
TA = 25 °C  
-
-4.1(3)  
-3.8(3)  
-2.8  
-
%
Accuracy of the HSI48  
oscillator (factory calibrated)  
ACCHSI48  
%
%
tsu(HSI48) HSI48 oscillator startup time  
6(2)  
µs  
HSI48 oscillator power  
IDDA(HSI48)  
-
-
312  
350(2)  
µA  
consumption  
1.  
VDDA = 3.3 V, TA = –40 to 105 °C unless otherwise specified.  
2. Guaranteed by design, not tested in production.  
3. Data based on characterization results, not tested in production.  
Figure 17. HSI48 oscillator accuracy characterization results  
ꢍꢑ  
0$;  
0,1  
ꢁꢑ  
ꢀꢑ  
ꢆꢑ  
ꢌꢑ  
ꢎꢑ  
7ꢄꢄ>ƒ&@  
$
ꢓꢁꢎ  
ꢓꢆꢎ  
ꢆꢎ  
ꢁꢎ  
ꢒꢎ  
ꢃꢎ  
ꢌꢎꢎ  
ꢌꢆꢎ  
ꢌꢑ  
ꢆꢑ  
ꢀꢑ  
ꢓꢁꢑ  
ꢓꢍꢑ  
06ꢀꢁꢆꢎꢒ9ꢌ  
60/98  
DocID026007 Rev 6  
 
 
STM32F048C6 STM32F048G6 STM32F048T6  
Low-speed internal (LSI) RC oscillator  
Electrical characteristics  
(1)  
Table 38. LSI oscillator characteristics  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
fLSI  
Frequency  
30  
-
40  
-
50  
85  
kHz  
µs  
(2)  
tsu(LSI)  
LSI oscillator startup time  
(2)  
IDDA(LSI)  
LSI oscillator power consumption  
-
0.75  
1.2  
µA  
1.  
VDDA = 3.3 V, TA = –40 to 105 °C unless otherwise specified.  
2. Guaranteed by design, not tested in production.  
6.3.8  
PLL characteristics  
The parameters given in Table 39 are derived from tests performed under ambient  
temperature and supply voltage conditions summarized in Table 20: General operating  
conditions.  
Table 39. PLL characteristics  
Value  
Symbol  
Parameter  
Unit  
Min  
Typ  
Max  
PLL input clock(1)  
1(2)  
40(2)  
16(2)  
-
8.0  
24(2)  
60(2)  
48  
MHz  
%
fPLL_IN  
PLL input clock duty cycle  
PLL multiplier output clock  
PLL lock time  
-
-
-
-
fPLL_OUT  
tLOCK  
MHz  
µs  
200(2)  
300(2)  
JitterPLL  
Cycle-to-cycle jitter  
-
ps  
1. Take care to use the appropriate multiplier factors to obtain PLL input clock values compatible with the  
range defined by fPLL_OUT  
.
2. Guaranteed by design, not tested in production.  
6.3.9  
Memory characteristics  
Flash memory  
The characteristics are given at T = –40 to 105 °C unless otherwise specified.  
A
Table 40. Flash memory characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max(1) Unit  
tprog  
16-bit programming time TA = - 40 to +105 °C  
40  
20  
20  
-
53.5  
60  
40  
40  
10  
12  
µs  
ms  
ms  
mA  
mA  
tERASE Page (1 KB) erase time TA = - 40 to +105 °C  
-
-
-
-
tME  
Mass erase time  
TA = - 40 to +105 °C  
Write mode  
IDD  
Supply current  
Erase mode  
-
1. Guaranteed by design, not tested in production.  
DocID026007 Rev 6  
61/98  
83  
 
 
 
 
 
Electrical characteristics  
Symbol  
STM32F048C6 STM32F048G6 STM32F048T6  
Table 41. Flash memory endurance and data retention  
Parameter  
Conditions  
Min(1)  
Unit  
NEND  
Endurance  
TA = –40 to +105 °C  
kcycle  
10  
30  
10  
20  
1 kcycle(2) at TA = 85 °C  
1 kcycle(2) at TA = 105 °C  
10 kcycle(2) at TA = 55 °C  
tRET  
Data retention  
Year  
1. Data based on characterization results, not tested in production.  
2. Cycling performed over the whole temperature range.  
6.3.10  
EMC characteristics  
Susceptibility tests are performed on a sample basis during device characterization.  
Functional EMS (electromagnetic susceptibility)  
While a simple application is executed on the device (toggling 2 LEDs through I/O ports).  
the device is stressed by two electromagnetic events until a failure occurs. The failure is  
indicated by the LEDs:  
Electrostatic discharge (ESD) (positive and negative) is applied to all device pins until  
a functional disturbance occurs. This test is compliant with the IEC 61000-4-2 standard.  
FTB: A Burst of Fast Transient voltage (positive and negative) is applied to V and  
DD  
V
through a 100 pF capacitor, until a functional disturbance occurs. This test is  
SS  
compliant with the IEC 61000-4-4 standard.  
A device reset allows normal operations to be resumed.  
The test results are given in Table 42. They are based on the EMS levels and classes  
defined in application note AN1709.  
Table 42. EMS characteristics  
Level/  
Class  
Symbol  
Parameter  
Conditions  
VDD = 1.8 V, LQFP48, TA = +25 °C,  
fHCLK = 48 MHz,  
conforming to IEC 61000-4-2  
Voltage limits to be applied on any I/O pin  
to induce a functional disturbance  
VFESD  
3B  
4B  
Fast transient voltage burst limits to be  
VDD = 1.8 V, LQFP48, TA = +25°C,  
VEFTB applied through 100 pF on VDD and VSS fHCLK = 48 MHz,  
pins to induce a functional disturbance  
conforming to IEC 61000-4-4  
Designing hardened software to avoid noise problems  
EMC characterization and optimization are performed at component level with a typical  
application environment and simplified MCU software. It should be noted that good EMC  
performance is highly dependent on the user application and the software in particular.  
Therefore it is recommended that the user applies EMC software optimization and  
prequalification tests in relation with the EMC level requested for his application.  
62/98  
DocID026007 Rev 6  
 
 
 
STM32F048C6 STM32F048G6 STM32F048T6  
Software recommendations  
Electrical characteristics  
The software flowchart must include the management of runaway conditions such as:  
Corrupted program counter  
Unexpected reset  
Critical Data corruption (for example control registers)  
Prequalification trials  
Most of the common failures (unexpected reset and program counter corruption) can be  
reproduced by manually forcing a low state on the NRST pin or the Oscillator pins for 1  
second.  
To complete these trials, ESD stress can be applied directly on the device, over the range of  
specification values. When unexpected behavior is detected, the software can be hardened  
to prevent unrecoverable errors occurring (see application note AN1015).  
Electromagnetic Interference (EMI)  
The electromagnetic field emitted by the device are monitored while a simple application is  
executed (toggling 2 LEDs through the I/O ports). This emission test is compliant with  
IEC 61967-2 standard which specifies the test board and the pin loading.  
Table 43. EMI characteristics  
Max vs. [fHSE/fHCLK  
8/48 MHz  
]
Monitored  
frequency band  
Symbol Parameter  
Conditions  
Unit  
0.1 to 30 MHz  
30 to 130 MHz  
130 MHz to 1 GHz  
EMI Level  
-9  
12  
17  
3
VDD = 1.8 V, TA = 25 °C,  
LQFP48 package  
compliant with  
dBµV  
-
SEMI  
Peak level  
IEC 61967-2  
6.3.11  
Electrical sensitivity characteristics  
Based on three different tests (ESD, LU) using specific measurement methods, the device is  
stressed in order to determine its performance in terms of electrical sensitivity.  
Electrostatic discharge (ESD)  
Electrostatic discharges (a positive then a negative pulse separated by 1 second) are  
applied to the pins of each sample according to each pin combination. The sample size  
depends on the number of supply pins in the device (3 parts × (n+1) supply pins). This test  
conforms to the JESD22-A114/C101 standard.  
DocID026007 Rev 6  
63/98  
83  
 
 
Electrical characteristics  
STM32F048C6 STM32F048G6 STM32F048T6  
Table 44. ESD absolute maximum ratings  
Maximum  
value(1)  
Symbol  
Ratings  
Conditions  
Packages Class  
Unit  
Electrostatic discharge voltage TA = +25 °C, conforming  
VESD(HBM)  
All  
All  
2
2000  
500  
V
V
(human body model)  
to JESD22-A114  
Electrostatic discharge voltage TA = +25 °C, conforming  
VESD(CDM)  
C4  
(charge device model)  
to ANSI/ESD STM5.3.1  
1. Data based on characterization results, not tested in production.  
Static latch-up  
Two complementary static tests are required on six parts to assess the latch-up  
performance:  
A supply overvoltage is applied to each power supply pin.  
A current injection is applied to each input, output and configurable I/O pin.  
These tests are compliant with EIA/JESD 78A IC latch-up standard.  
Table 45. Electrical sensitivities  
Symbol  
Parameter  
Conditions  
Class  
II level A  
LU  
Static latch-up class  
TA = +105 °C conforming to JESD78A  
6.3.12  
I/O current injection characteristics  
As a general rule, current injection to the I/O pins, due to external voltage below V or  
SS  
above V  
(for standard, 3.3 V-capable I/O pins) should be avoided during normal  
DDIOx  
product operation. However, in order to give an indication of the robustness of the  
microcontroller in cases when abnormal injection accidentally happens, susceptibility tests  
are performed on a sample basis during device characterization.  
Functional susceptibility to I/O current injection  
While a simple application is executed on the device, the device is stressed by injecting  
current into the I/O pins programmed in floating input mode. While current is injected into  
the I/O pin, one at a time, the device is checked for functional failures.  
The failure is indicated by an out of range parameter: ADC error above a certain limit (higher  
than 5 LSB TUE), out of conventional limits of induced leakage current on adjacent pins (out  
of the -5 µA/+0 µA range) or other functional failure (for example reset occurrence or  
oscillator frequency deviation).  
The characterization results are given in Table 46.  
Negative induced leakage current is caused by negative injection and positive induced  
leakage current is caused by positive injection.  
64/98  
DocID026007 Rev 6  
 
 
 
STM32F048C6 STM32F048G6 STM32F048T6  
Electrical characteristics  
Table 46. I/O current injection susceptibility  
Functional  
susceptibility  
Symbol  
Description  
Unit  
Negative Positive  
injection injection  
Injected current on PA12 pin  
-0  
-5  
+5  
Injected current on PA9, PB3, PB13, PF11 pins with induced  
leakage current on adjacent pins less than 50 µA  
NA  
IINJ  
mA  
Injected current on PB0, PB1 and all other FT and FTf pins,  
and on NPOR pin  
-5  
-5  
NA  
+5  
Injected current on all other TC, TTa and RST pins  
6.3.13  
I/O port characteristics  
General input/output characteristics  
Unless otherwise specified, the parameters given in Table 47 are derived from tests  
performed under the conditions summarized in Table 20: General operating conditions. All  
I/Os are designed as CMOS- and TTL-compliant.  
Table 47. I/O static characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
TC and TTa I/O  
FT and FTf I/O  
All I/Os  
-
-
0.3 VDDIOx+0.07(1)  
Low level input  
voltage  
VIL  
-
-
0.475 VDDIOx–0.2(1)  
V
-
-
0.3 VDDIOx  
TC and TTa I/O  
FT and FTf I/O  
All I/Os  
0.445 VDDIOx+0.398(1)  
-
-
-
-
-
-
High level input  
voltage  
VIH  
0.5 VDDIOx+0.2(1)  
-
V
0.7 VDDIOx  
-
TC and TTa I/O  
FT and FTf I/O  
-
-
200(1)  
100(1)  
Schmitt trigger  
hysteresis  
Vhys  
mV  
TC, FT and FTf I/O  
TTa in digital mode  
VSS VIN VDDIOx  
-
-
± 0.1  
TTa in digital mode  
VDDIOx VIN VDDA  
-
-
-
-
-
-
1
Input leakage  
current(2)  
Ilkg  
µA  
TTa in analog mode  
VSS VIN VDDA  
± 0.2  
10  
FT and FTf I/O  
VDDIOx VIN 5 V  
Weak pull-up  
RPU  
equivalent resistor VIN = VSS  
25  
40  
55  
kΩ  
(3)  
DocID026007 Rev 6  
65/98  
83  
 
 
 
 
Electrical characteristics  
STM32F048C6 STM32F048G6 STM32F048T6  
Table 47. I/O static characteristics (continued)  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Weak pull-down  
equivalent  
RPD  
CIO  
VIN = - VDDIOx  
-
25  
-
40  
5
55  
-
kΩ  
resistor(3)  
I/O pin capacitance  
pF  
1. Data based on design simulation only. Not tested in production.  
2. The leakage could be higher than the maximum value, if negative current is injected on adjacent pins. Refer to Table 46:  
I/O current injection susceptibility.  
3. Pull-up and pull-down resistors are designed with a true resistance in series with a switchable PMOS/NMOS. This  
PMOS/NMOS contribution to the series resistance is minimal (~10% order).  
All I/Os are CMOS- and TTL-compliant (no software configuration required). Their  
characteristics cover more than the strict CMOS-technology or TTL parameters. The  
coverage of these requirements is shown in Figure 18 for standard I/Os, and in Figure 19 for  
5 V-tolerant I/Os. The following curves are design simulation results, not tested in  
production.  
66/98  
DocID026007 Rev 6  
STM32F048C6 STM32F048G6 STM32F048T6  
Electrical characteristics  
Figure 18. TC and TTa I/O input characteristics  
ꢆꢇꢍ  
7(67('ꢀ5$1*(  
77/ꢄVWDQGDUGꢄUHTXLUHPHQW  
9,1ꢀꢄ9ꢅ  
ꢌꢇꢍ  
81'(),1('ꢀ,1387ꢀ5$1*(  
77/ꢄVWDQGDUGꢄUHTXLUHPHQW  
ꢎꢇꢍ  
7(67('ꢀ5$1*(  
ꢌꢇꢒ  
ꢌꢇꢃ  
ꢆꢇꢎ  
ꢆꢇꢆ  
ꢆꢇꢁ  
ꢆꢇꢒ  
ꢆꢇꢃ  
ꢀꢇꢎ  
ꢀꢇꢆ  
ꢀꢇꢁ  
ꢀꢇꢒ  
9'',2[ꢀꢄ9ꢅ  
06Yꢀꢆꢌꢀꢎ9ꢁ  
Figure 19. Five volt tolerant (FT and FTf) I/O input characteristics  
ꢆꢇꢍ  
7(67('ꢀ5$1*(  
77/ꢄVWDQGDUGꢄUHTXLUHPHQW  
9,1ꢀꢄ9ꢅ  
ꢌꢇꢍ  
81'(),1('ꢀ,1387ꢀ5$1*(  
77/ꢄVWDQGDUGꢄUHTXLUHPHQW  
ꢎꢇꢍ  
7(67('ꢀ5$1*(  
ꢌꢇꢒ  
ꢌꢇꢃ  
ꢆꢇꢎ  
ꢆꢇꢆ  
ꢆꢇꢁ  
ꢆꢇꢒ  
ꢆꢇꢃ  
ꢀꢇꢎ  
ꢀꢇꢆ  
ꢀꢇꢁ  
ꢀꢇꢒ  
9'',2[ꢀꢄ9ꢅ  
06Yꢀꢆꢌꢀꢌ9ꢁ  
DocID026007 Rev 6  
67/98  
83  
 
 
Electrical characteristics  
STM32F048C6 STM32F048G6 STM32F048T6  
Output driving current  
The GPIOs (general purpose input/outputs) can sink or source up to +/-8 mA, and sink or  
source up to +/- 20 mA (with a relaxed V /V ).  
OL OH  
In the user application, the number of I/O pins which can drive current must be limited to  
respect the absolute maximum rating specified in Section 6.2:  
The sum of the currents sourced by all the I/Os on V  
, plus the maximum  
DDIOx  
consumption of the MCU sourced on V , cannot exceed the absolute maximum rating  
DD  
ΣI  
(see Table 17: Voltage characteristics).  
VDD  
The sum of the currents sunk by all the I/Os on V , plus the maximum consumption of  
SS  
the MCU sunk on V , cannot exceed the absolute maximum rating ΣI  
(see  
SS  
VSS  
Table 17: Voltage characteristics).  
Output voltage levels  
Unless otherwise specified, the parameters given in the table below are derived from tests  
performed under the ambient temperature and supply voltage conditions summarized in  
Table 20: General operating conditions. All I/Os are CMOS- and TTL-compliant (FT, TTa or  
TC unless otherwise specified).  
(1)  
Table 48. Output voltage characteristics  
Symbol  
VOL  
Parameter  
Conditions  
Min  
Max Unit  
Output low level voltage for an I/O pin  
Output high level voltage for an I/O pin  
Output low level voltage for an I/O pin  
Output high level voltage for an I/O pin  
CMOS port(2)  
|IIO| = 8 mA  
VDDIOx 2.7 V  
-
0.4  
V
VOH  
VDDIOx–0.4  
-
VOL  
TTL port(2)  
|IIO| = 8 mA  
VDDIOx 2.7 V  
-
0.4  
V
VOH  
2.4  
-
(3)  
VOL  
Output low level voltage for an I/O pin  
Output high level voltage for an I/O pin  
Output low level voltage for an I/O pin  
Output high level voltage for an I/O pin  
Output low level voltage for an I/O pin  
Output high level voltage for an I/O pin  
-
1.3  
V
|IIO| = 20 mA  
VDDIOx 2.7 V  
(3)  
VOH  
VDDIOx–1.3  
-
(3)  
VOL  
-
0.4  
V
-
|IIO| = 6 mA  
(3)  
VDDIOx 2 V  
VOH  
VDDIOx–0.4  
-
(4)  
VOL  
0.4  
-
V
V
|IIO| = 4 mA  
(4)  
VOH  
VDDIOx–0.4  
|IIO| = 20 mA  
VDDIOx 2.7 V  
-
-
0.4  
0.4  
V
V
Output low level voltage for an FTf I/O pin in  
Fm+ mode  
(3)  
VOLFm+  
|IIO| = 10 mA  
1. The IIO current sourced or sunk by the device must always respect the absolute maximum rating specified in Table 17:  
Voltage characteristics, and the sum of the currents sourced or sunk by all the I/Os (I/O ports and control pins) must always  
respect the absolute maximum ratings ΣI  
.
IO  
2. TTL and CMOS outputs are compatible with JEDEC standards JESD36 and JESD52.  
3. Data based on characterization results. Not tested in production.  
4. Data based on characterization results. Not tested in production.  
68/98  
DocID026007 Rev 6  
 
STM32F048C6 STM32F048G6 STM32F048T6  
Input/output AC characteristics  
Electrical characteristics  
The definition and values of input/output AC characteristics are given in Figure 20 and  
Table 49, respectively. Unless otherwise specified, the parameters given are derived from  
tests performed under the ambient temperature and supply voltage conditions summarized  
in Table 20: General operating conditions.  
(1)(2)  
Table 49. I/O AC characteristics  
OSPEEDRy  
[1:0] value(1)  
Symbol  
Parameter  
Conditions  
Min  
Max  
Unit  
MHz  
ns  
fmax(IO)out Maximum frequency(3)  
tf(IO)out Output fall time  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
2
125  
125  
1
CL = 50 pF, VDDIOx 2 V  
tr(IO)out Output rise time  
fmax(IO)out Maximum frequency(3)  
tf(IO)out Output fall time  
x0  
MHz  
ns  
CL = 50 pF, VDDIOx < 2 V  
CL = 50 pF, VDDIOx 2 V  
CL = 50 pF, VDDIOx < 2 V  
125  
125  
10  
25  
25  
4
tr(IO)out Output rise time  
fmax(IO)out Maximum frequency(3)  
tf(IO)out Output fall time  
MHz  
ns  
tr(IO)out Output rise time  
fmax(IO)out Maximum frequency(3)  
tf(IO)out Output fall time  
01  
MHz  
ns  
62.5  
62.5  
50  
30  
20  
10  
5
tr(IO)out Output rise time  
CL = 30 pF, VDDIOx 2.7 V  
CL = 50 pF, VDDIOx 2.7 V  
CL = 50 pF, 2 V VDDIOx < 2.7 V  
CL = 50 pF, VDDIOx < 2 V  
fmax(IO)out Maximum frequency(3)  
MHz  
CL = 30 pF, VDDIOx 2.7 V  
CL = 50 pF, VDDIOx 2.7 V  
CL = 50 pF, 2 V VDDIOx < 2.7 V  
CL = 50 pF, VDDIOx < 2 V  
8
11  
tf(IO)out Output fall time  
12  
25  
5
ns  
CL = 30 pF, VDDIOx 2.7 V  
CL = 50 pF, VDDIOx 2.7 V  
CL = 50 pF, 2 V VDDIOx < 2.7 V  
CL = 50 pF, VDDIOx < 2 V  
8
tr(IO)out Output rise time  
12  
25  
DocID026007 Rev 6  
69/98  
83  
 
Electrical characteristics  
STM32F048C6 STM32F048G6 STM32F048T6  
(1)(2)  
Table 49. I/O AC characteristics  
Parameter  
(continued)  
OSPEEDRy  
Symbol  
Conditions  
Min  
Max  
Unit  
MHz  
ns  
[1:0] value(1)  
fmax(IO)out Maximum frequency(3)  
tf(IO)out Output fall time  
-
-
-
-
-
-
2
CL = 50 pF, VDDIOx 2 V  
12  
34  
0.5  
16  
44  
Fm+  
tr(IO)out Output rise time  
fmax(IO)out Maximum frequency(3)  
tf(IO)out Output fall time  
configuration  
(4)  
MHz  
ns  
CL = 50 pF, VDDIOx < 2 V  
tr(IO)out Output rise time  
Pulse width of external  
tEXTIpw signals detected by the  
EXTI controller  
-
-
10  
-
ns  
1. The I/O speed is configured using the OSPEEDRx[1:0] bits. Refer to the STM32F0xxxx RM0091 reference manual for a  
description of GPIO Port configuration register.  
2. Guaranteed by design, not tested in production.  
3. The maximum frequency is defined in Figure 20.  
4. When Fm+ configuration is set, the I/O speed control is bypassed. Refer to the STM32F0xxxx reference manual RM0091  
for a detailed description of Fm+ I/O configuration.  
Figure 20. I/O AC characteristics definition  
ꢌꢎꢑ  
ꢂꢎꢑ  
ꢍꢎꢑ  
ꢍꢎꢑ  
ꢌꢎꢑ  
ꢂꢎꢑ  
W
W
Uꢉ,2ꢋRXW  
Iꢉ,2ꢋRXW  
7
0D[LPXPꢄIUHTXHQF\ꢄLVꢄDFKLHYHGꢄLIꢄꢉWꢄꢄꢊꢄWꢄꢄꢋꢄ”ꢄ 7ꢄDQGꢄLIꢄWKHꢄGXW\ꢄF\FOHꢄLVꢄꢉꢁꢍꢓꢍꢍꢑꢋ  
U
I
ZKHQꢄORDGHGꢄE\ꢄ&ꢄꢄꢉVHHꢄWKHꢄWDEOHꢄ,ꢀ2ꢁ$&ꢁFKDUDFWHULVWLFVꢁGHILQLWLRQ  
-
06ꢀꢆꢌꢀꢆ9ꢀ  
6.3.14  
NRST and NPOR pin characteristics  
NRST pin characteristics  
The NRST pin input driver uses the CMOS technology. It is connected to a permanent pull-  
up resistor, R  
.
PU  
Unless otherwise specified, the parameters given in the table below are derived from tests  
performed under the ambient temperature and supply voltage conditions summarized in  
Table 20: General operating conditions.  
70/98  
DocID026007 Rev 6  
 
 
STM32F048C6 STM32F048G6 STM32F048T6  
Electrical characteristics  
Table 50. NRST pin characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
VIL(NRST) NRST input low level voltage  
VIH(NRST) NRST input high level voltage  
-
-
-
-
-
0.3 VDD+0.07(1)  
-
V
0.445 VDD+0.398(1)  
NRST Schmitt trigger voltage  
Vhys(NRST)  
hysteresis  
-
-
200  
40  
-
mV  
Weak pull-up equivalent  
RPU  
VIN = VSS  
25  
55  
kΩ  
resistor(2)  
VF(NRST) NRST input filtered pulse  
-
-
-
-
-
100(1)  
-
ns  
ns  
VNF(NRST) NRST input not filtered pulse  
700(1)  
1. Data based on design simulation only. Not tested in production.  
2. The pull-up is designed with a true resistance in series with a switchable PMOS. This PMOS contribution to the series  
resistance is minimal (~10% order).  
Figure 21. Recommended NRST pin protection  
([WHUQDO  
UHVHWꢄFLUFXLWꢉꢌꢋ  
9''  
538  
1567ꢉꢆꢋ  
,QWHUQDOꢄUHVHW  
)LOWHU  
ꢎꢇꢌꢄ—)  
06ꢌꢂꢃꢏꢃ9ꢀ  
1. The external capacitor protects the device against parasitic resets.  
2. The user must ensure that the level on the NRST pin can go below the VIL(NRST) max level specified in  
Table 50: NRST pin characteristics. Otherwise the reset will not be taken into account by the device.  
NPOR pin characteristics  
The NPOR pin input driver uses the CMOS technology. It is connected to a permanent pull-  
up resistor to the V  
, R  
.
DDA  
PU  
Unless otherwise specified, the parameters given in Table 51 below are derived from tests  
performed under ambient temperature and supply voltage conditions summarized in  
Table 20: General operating conditions.  
DocID026007 Rev 6  
71/98  
83  
 
 
Electrical characteristics  
STM32F048C6 STM32F048G6 STM32F048T6  
Table 51. NPOR pin characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
VIL(NPOR) NPOR Input low level voltage  
-
-
-
0.475 VDDA - 0.2(1)  
V
NPOR Input high level  
VIH(NPOR)  
voltage  
-
0.5 VDDA + 0.2(1)  
-
-
-
NPOR Schmitt trigger voltage  
Vhys(NPOR)  
hysteresis  
-
-
100(1)  
40  
mV  
Weak pull-up equivalent  
RPU  
VIN = VSS  
25  
55  
kΩ  
resistor(2)  
1. Guaranteed by design, not tested in production.  
2. The pull-up is designed with a true resistance in series with a switchable PMOS. This PMOS contribution to the series  
resistance is minimal (~10% order).  
6.3.15  
12-bit ADC characteristics  
Unless otherwise specified, the parameters given in Table 52 are derived from tests  
performed under the conditions summarized in Table 20: General operating conditions.  
Note:  
It is recommended to perform a calibration after each power-up.  
Table 52. ADC characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Analog supply voltage for  
ADC ON  
VDDA  
-
2.4  
-
3.6  
V
Current consumption of  
the ADC(1)  
IDDA (ADC)  
fADC  
VDDA = 3.3 V  
-
0.9  
-
mA  
ADC clock frequency  
Sampling rate  
-
0.6  
-
-
14  
1
MHz  
MHz  
(2)  
fS  
12-bit resolution  
0.043  
fADC = 14 MHz,  
12-bit resolution  
-
-
823  
kHz  
(2)  
External trigger frequency  
fTRIG  
12-bit resolution  
-
-
-
-
17  
1/fADC  
V
VAIN  
Conversion voltage range  
External input impedance  
0
VDDA  
See Equation 1 and  
Table 53 for details  
(2)  
RAIN  
-
-
-
-
-
-
50  
1
kΩ  
kΩ  
pF  
Sampling switch  
resistance  
(2)  
-
-
RADC  
Internal sample and hold  
capacitor  
(2)  
8
CADC  
f
ADC = 14 MHz  
5.9  
83  
µs  
(2)(3)  
Calibration time  
tCAL  
-
1/fADC  
72/98  
DocID026007 Rev 6  
 
 
 
 
STM32F048C6 STM32F048G6 STM32F048T6  
Electrical characteristics  
Table 52. ADC characteristics (continued)  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
1.5 ADC  
cycles + 3  
fPCLK cycles  
1.5 ADC  
cycles + 2  
fPCLK cycles  
ADC clock = HSI14  
-
-
ADC_DR register ready  
latency  
(2)(4)  
WLATENCY  
fPCLK  
cycle  
ADC clock = PCLK/2  
-
-
4.5  
8.5  
-
-
fPCLK  
cycle  
ADC clock = PCLK/4  
f
ADC = fPCLK/2 = 14 MHz  
0.196  
5.5  
µs  
1/fPCLK  
µs  
f
ADC = fPCLK/2  
(2)  
Trigger conversion latency fADC = fPCLK/4 = 12 MHz  
fADC = fPCLK/4  
0.219  
10.5  
-
tlatr  
1/fPCLK  
µs  
fADC = fHSI14 = 14 MHz  
0.179  
-
0.250  
-
ADC jitter on trigger  
conversion  
JitterADC  
f
ADC = fHSI14  
1
1/fHSI14  
fADC = 14 MHz  
0.107  
1.5  
-
-
17.1  
µs  
(2)  
Sampling time  
Stabilization time  
tS  
-
-
239.5  
1/fADC  
1/fADC  
(2)  
tSTAB  
14  
fADC = 14 MHz,  
12-bit resolution  
1
-
18  
µs  
Total conversion time  
(including sampling time)  
(2)  
tCONV  
14 to 252 (tS for sampling +12.5 for  
successive approximation)  
12-bit resolution  
1/fADC  
1. During conversion of the sampled value (12.5 x ADC clock period), an additional consumption of 100 µA on IDDA and 60 µA  
on IDD should be taken into account.  
2. Guaranteed by design, not tested in production.  
3. Specified value includes only ADC timing. It does not include the latency of the register access.  
4. This parameter specify latency for transfer of the conversion result to the ADC_DR register. EOC flag is set at this time.  
Equation 1: R  
max formula  
AIN  
TS  
RAIN < --------------------------------------------------------------- – RADC  
fADC × CADC × ln(2N + 2  
)
The formula above (Equation 1) is used to determine the maximum external impedance  
allowed for an error below 1/4 of LSB. Here N = 12 (from 12-bit resolution).  
Table 53. R  
max for f  
tS (µs)  
= 14 MHz  
ADC  
AIN  
Ts (cycles)  
RAIN max (k)(1)  
1.5  
7.5  
0.11  
0.54  
0.96  
0.4  
5.9  
13.5  
11.4  
DocID026007 Rev 6  
73/98  
83  
 
Electrical characteristics  
STM32F048C6 STM32F048G6 STM32F048T6  
Table 53. R  
max for f  
= 14 MHz (continued)  
AIN  
ADC  
Ts (cycles)  
tS (µs)  
RAIN max (k)(1)  
28.5  
41.5  
55.5  
71.5  
239.5  
2.04  
2.96  
3.96  
5.11  
17.1  
25.2  
37.2  
50  
NA  
NA  
1. Guaranteed by design, not tested in production.  
(1)(2)(3)  
Table 54. ADC accuracy  
Symbol  
Parameter  
Test conditions  
Typ  
Max(4)  
Unit  
ET  
EO  
EG  
ED  
EL  
Total unadjusted error  
Offset error  
±1.3  
±1  
±2  
±1.5  
±1.5  
±1  
f
PCLK = 48 MHz,  
fADC = 14 MHz, RAIN < 10 kΩ  
VDDA = 3 V to 3.6 V  
TA = 25 °C  
Gain error  
±0.5  
±0.7  
±0.8  
±3.3  
±1.9  
±2.8  
±0.7  
±1.2  
±3.3  
±1.9  
±2.8  
±0.7  
±1.2  
LSB  
Differential linearity error  
Integral linearity error  
Total unadjusted error  
Offset error  
±1.5  
±4  
ET  
EO  
EG  
ED  
EL  
fPCLK = 48 MHz,  
fADC = 14 MHz, RAIN < 10 kΩ  
±2.8  
±3  
Gain error  
LSB  
LSB  
VDDA = 2.7 V to 3.6 V  
TA = - 40 to 105 °C  
Differential linearity error  
Integral linearity error  
Total unadjusted error  
Offset error  
±1.3  
±1.7  
±4  
ET  
EO  
EG  
ED  
EL  
fPCLK = 48 MHz,  
fADC = 14 MHz, RAIN < 10 kΩ  
±2.8  
±3  
Gain error  
V
DDA = 2.4 V to 3.6 V  
Differential linearity error  
Integral linearity error  
±1.3  
±1.7  
TA = 25 °C  
1. ADC DC accuracy values are measured after internal calibration.  
2. ADC Accuracy vs. Negative Injection Current: Injecting negative current on any of the standard (non-robust) analog input  
pins should be avoided as this significantly reduces the accuracy of the conversion being performed on another analog  
input. It is recommended to add a Schottky diode (pin to ground) to standard analog pins which may potentially inject  
negative current.  
Any positive injection current within the limits specified for IINJ(PIN) and ΣIINJ(PIN) in Section 6.3.13 does not affect the ADC  
accuracy.  
3. Better performance may be achieved in restricted VDDA, frequency and temperature ranges.  
4. Data based on characterization results, not tested in production.  
74/98  
DocID026007 Rev 6  
 
STM32F048C6 STM32F048G6 STM32F048T6  
Electrical characteristics  
Figure 22. ADC accuracy characteristics  
966$  
ꢁꢎꢂꢍ  
(*  
ꢉꢌꢋꢄ([DPSOHꢄRIꢄDQꢄDFWXDOꢄWUDQVIHUꢄFXUYH  
ꢉꢆꢋꢄ7KHꢄLGHDOꢄWUDQVIHUꢄFXUYH  
ꢉꢀꢋꢄ(QGꢄSRLQWꢄFRUUHODWLRQꢄOLQH  
ꢁꢎꢂꢁ  
ꢁꢎꢂꢀ  
(
7
ꢄ ꢄ7RWDOꢄ8QDMXVWHGꢄ(UURUꢅꢄPD[LPXPꢄGHYLDWLRQꢄ  
ꢉꢆꢋ  
EHWZHHQꢄWKHꢄDFWXDOꢄDQGꢄLGHDOꢄWUDQVIHUꢄFXUYHVꢇ  
(7  
(2ꢄ ꢄ2IIVHWꢄ(UURUꢅꢄPD[LPXPꢄGHYLDWLRQꢄ  
EHWZHHQꢄWKHꢄILUVWꢄDFWXDOꢄWUDQVLWLRQꢄDQGꢄWKHꢄILUVW  
LGHDOꢄRQHꢇ  
ꢉꢀꢋ  
ꢉꢌꢋ  
(
*
ꢄ ꢄ*DLQꢄ(UURUꢅꢄGHYLDWLRQꢄEHWZHHQꢄWKHꢄODVWꢄ  
LGHDOꢄWUDQVLWLRQꢄDQGꢄWKHꢄODVWꢄDFWXDOꢄRQHꢇ  
ꢄ ꢄ'LIIHUHQWLDOꢄ/LQHDULW\ꢄ(UURUꢅꢄPD[LPXPꢄ  
GHYLDWLRQꢄEHWZHHQꢄDFWXDOꢄVWHSVꢄDQGꢄWKHꢄLGHDOꢄRQHVꢇ  
(2  
(/  
(
'
('  
(/ꢄ ꢄ,QWHJUDOꢄ/LQHDULW\ꢄ(UURUꢅꢄPD[LPXPꢄGHYLDWLRQꢄ  
EHWZHHQꢄDQ\ꢄDFWXDOꢄWUDQVLWLRQꢄDQGꢄWKHꢄHQGꢄSRLQWꢄ  
FRUUHODWLRQꢄOLQHꢇ  
ꢌꢄ/6%ꢄ,'($/  
9''$  
ꢁꢎꢂꢒ  
ꢁꢎꢂꢁ ꢁꢎꢂꢍ  
ꢁꢎꢂꢀ  
06ꢌꢂꢃꢃꢎ9ꢆ  
Figure 23. Typical connection diagram using the ADC  
9
''$  
6DPSOHꢄDQGꢄKROGꢄ$'&  
FRQYHUWHU  
9
7
ꢉꢌꢋ  
5
$,1  
5
$'&  
$,1[  
ꢌꢆꢓELW  
FRQYHUWHU  
,/  
“ꢌ —$  
ꢉꢆꢋ  
SDUDVLWLF  
9
7
&
9$,1  
&
$'&  
06ꢀꢀꢂꢎꢎ9ꢆ  
1. Refer to Table 52: ADC characteristics for the values of RAIN, RADC and CADC  
.
2. Cparasitic represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the  
pad capacitance (roughly 7 pF). A high Cparasitic value will downgrade conversion accuracy. To remedy  
this, fADC should be reduced.  
General PCB design guidelines  
Power supply decoupling should be performed as shown in Figure 9: Power supply scheme.  
The 10 nF capacitor should be ceramic (good quality) and it should be placed as close as  
possible to the chip.  
DocID026007 Rev 6  
75/98  
83  
 
 
Electrical characteristics  
STM32F048C6 STM32F048G6 STM32F048T6  
6.3.16  
Temperature sensor characteristics  
Table 55. TS characteristics  
Symbol  
Parameter  
VSENSE linearity with temperature  
Avg_Slope(1) Average slope  
Min  
Typ  
Max  
Unit  
(1)  
TL  
-
4.0  
1.34  
-
± 1  
4.3  
1.43  
-
± 2  
4.6  
°C  
mV/°C  
V
V30  
Voltage at 30 °C (± 5 °C)(2)  
1.52  
10  
(1)  
(1)  
tSTART  
ADC_IN16 buffer startup time  
µs  
ADC sampling time when reading the  
temperature  
tS_temp  
4
-
-
µs  
1. Guaranteed by design, not tested in production.  
2. Measured at VDDA = 3.3 V ± 10 mV. The V30 ADC conversion result is stored in the TS_CAL1 byte. Refer to Table 2:  
Temperature sensor calibration values.  
6.3.17  
V
monitoring characteristics  
BAT  
Table 56. V  
monitoring characteristics  
BAT  
Symbol  
Parameter  
Resistor bridge for VBAT  
Min  
Typ  
Max  
Unit  
R
Q
-
-
2 x 50  
-
-
kΩ  
-
Ratio on VBAT measurement  
Error on Q  
2
-
Er(1)  
–1  
4
+1  
-
%
µs  
(1)  
tS_vbat  
ADC sampling time when reading the VBAT  
-
1. Guaranteed by design, not tested in production.  
6.3.18  
Timer characteristics  
The parameters given in the following tables are guaranteed by design.  
Refer to Section 6.3.13: I/O port characteristics for details on the input/output alternate  
function characteristics (output compare, input capture, external clock, PWM output).  
Table 57. TIMx characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
tTIMxCLK  
ns  
-
-
-
-
1
-
-
-
tres(TIM)  
Timer resolution time  
fTIMxCLK = 48 MHz  
-
20.8  
Timer external clock  
frequency on CH1 to  
CH4  
fTIMxCLK/2  
MHz  
fEXT  
fTIMxCLK = 48 MHz  
-
24  
-
MHz  
216  
tTIMxCLK  
-
-
-
-
-
-
-
-
-
16-bit timer maximum  
period  
fTIMxCLK = 48 MHz  
-
1365  
µs  
tMAX_COUNT  
232  
tTIMxCLK  
32-bit counter  
maximum period  
fTIMxCLK = 48 MHz  
89.48  
s
76/98  
DocID026007 Rev 6  
 
 
 
 
 
 
STM32F048C6 STM32F048G6 STM32F048T6  
Prescaler divider PR[2:0] bits  
Electrical characteristics  
(1)  
Table 58. IWDG min/max timeout period at 40 kHz (LSI)  
Min timeout RL[11:0]=  
0x000  
Max timeout RL[11:0]=  
0xFFF  
Unit  
/4  
/8  
0
0.1  
0.2  
0.4  
0.8  
1.6  
3.2  
6.4  
409.6  
819.2  
1
/16  
/32  
/64  
/128  
/256  
2
1638.4  
3276.8  
6553.6  
13107.2  
26214.4  
3
4
ms  
5
6 or 7  
1. These timings are given for a 40 kHz clock but the microcontroller internal RC frequency can vary from 30  
to 60 kHz. Moreover, given an exact RC oscillator frequency, the exact timings still depend on the phasing  
of the APB interface clock versus the LSI clock so that there is always a full RC period of uncertainty.  
Table 59. WWDG min/max timeout value at 48 MHz (PCLK)  
Prescaler  
WDGTB  
Min timeout value  
Max timeout value  
Unit  
1
2
4
8
0
1
2
3
0.0853  
0.1706  
0.3413  
0.6826  
5.4613  
10.9226  
21.8453  
43.6906  
ms  
6.3.19  
Communication interfaces  
I2C interface characteristics  
2
2
The I C interface meets the timings requirements of the I C-bus specification and user  
manual rev. 03 for:  
Standard-mode (Sm): with a bit rate up to 100 kbit/s  
Fast-mode (Fm): with a bit rate up to 400 kbit/s  
Fast-mode Plus (Fm+): with a bit rate up to 1 Mbit/s.  
2
The I C timings requirements are guaranteed by design when the I2Cx peripheral is  
properly configured (refer to Reference manual).  
The SDA and SCL I/O requirements are met with the following restrictions: the SDA and  
SCL I/O pins are not “true” open-drain. When configured as open-drain, the PMOS  
connected between the I/O pin and V  
is disabled, but is still present. Only FTf I/O pins  
DDIOx  
support Fm+ low level output current maximum requirement. Refer to Section 6.3.13: I/O  
2
port characteristics for the I C I/Os characteristics.  
2
All I C SDA and SCL I/Os embed an analog filter. Refer to the table below for the analog  
filter characteristics:  
DocID026007 Rev 6  
77/98  
83  
 
 
 
Electrical characteristics  
STM32F048C6 STM32F048G6 STM32F048T6  
2
(1)  
Table 60. I C analog filter characteristics  
Symbol  
Parameter  
Min  
Max  
Unit  
Maximum width of spikes that are  
suppressed by the analog filter  
tAF  
50(2)  
260(3)  
ns  
1. Guaranteed by design, not tested in production.  
2. Spikes with widths below tAF(min) are filtered.  
3. Spikes with widths above tAF(max) are not filtered  
SPI/I2S characteristics  
2
Unless otherwise specified, the parameters given in Table 61 for SPI or in Table 62 for I S  
are derived from tests performed under the ambient temperature, f frequency and  
PCLKx  
supply voltage conditions summarized in Table 20: General operating conditions.  
Refer to Section 6.3.13: I/O port characteristics for more details on the input/output alternate  
2
function characteristics (NSS, SCK, MOSI, MISO for SPI and WS, CK, SD for I S).  
(1)  
Table 61. SPI characteristics  
Symbol  
Parameter  
Conditions  
Master mode  
Min  
Max  
Unit  
-
-
18  
18  
fSCK  
1/tc(SCK)  
SPI clock frequency  
MHz  
Slave mode  
tr(SCK)  
tf(SCK)  
SPI clock rise and fall  
time  
Capacitive load: C = 15 pF  
-
6
ns  
ns  
%
tsu(NSS)  
th(NSS)  
tw(SCKH)  
NSS setup time  
NSS hold time  
Slave mode  
Slave mode  
4Tpclk  
-
-
2Tpclk + 10  
Master mode, fPCLK = 36 MHz,  
presc = 4  
SCK high and low time  
Data input setup time  
Tpclk/2 -2  
Tpclk/2 + 1  
tw(SCKL)  
Master mode  
Slave mode  
Master mode  
Slave mode  
4
5
-
tsu(MI)  
tsu(SI)  
-
th(MI)  
th(SI)  
4
-
Data input hold time  
5
-
(2)  
ta(SO)  
Data output access time Slave mode, fPCLK = 20 MHz  
Data output disable time Slave mode  
0
3Tpclk  
(3)  
tdis(SO)  
0
18  
tv(SO)  
tv(MO)  
th(SO)  
th(MO)  
Data output valid time  
Data output valid time  
Slave mode (after enable edge)  
Master mode (after enable edge)  
Slave mode (after enable edge)  
Master mode (after enable edge)  
-
22.5  
-
6
-
11.5  
2
Data output hold time  
-
SPI slave input clock  
duty cycle  
DuCy(SCK)  
Slave mode  
25  
75  
1. Data based on characterization results, not tested in production.  
2. Min time is for the minimum time to drive the output and the max time is for the maximum time to validate the data.  
3. Min time is for the minimum time to invalidate the output and the max time is for the maximum time to put the data in Hi-Z  
78/98  
DocID026007 Rev 6  
 
 
STM32F048C6 STM32F048G6 STM32F048T6  
Electrical characteristics  
Figure 24. SPI timing diagram - slave mode and CPHA = 0  
166ꢄLQSXW  
WFꢉ6&.ꢋ  
WKꢉ166ꢋ  
WVXꢉ166ꢋ  
WZꢉ6&.+ꢋ  
WUꢉ6&.ꢋ  
&3+$ ꢎ  
&32/ ꢎ  
&3+$ ꢎ  
&32/ ꢌ  
WDꢉ62ꢋ  
WZꢉ6&./ꢋ  
WYꢉ62ꢋ  
WKꢉ62ꢋ  
WIꢉ6&.ꢋ  
/DVWꢄELWꢄ287  
WGLVꢉ62ꢋ  
0,62ꢄRXWSXW  
026,ꢄLQSXW  
)LUVWꢄELWꢄ287  
WKꢉ6,ꢋ  
1H[WꢄELWVꢄ287  
WVXꢉ6,ꢋ  
)LUVWꢄELWꢄ,1  
1H[WꢄELWVꢄ,1  
/DVWꢄELWꢄ,1  
06Yꢁꢌꢒꢍꢃ9ꢌ  
Figure 25. SPI timing diagram - slave mode and CPHA = 1  
166ꢄLQSXW  
WFꢉ6&.ꢋ  
WVXꢉ166ꢋ  
WZꢉ6&.+ꢋ  
WIꢉ6&.ꢋ  
WKꢉ166ꢋ  
&3+$ ꢌ  
&32/ ꢎ  
&3+$ ꢌ  
&32/ ꢌ  
WDꢉ62ꢋ  
WZꢉ6&./ꢋ  
WYꢉ62ꢋ  
)LUVWꢄELWꢄ287  
WVXꢉ6,ꢋ WKꢉ6,ꢋ  
)LUVWꢄELWꢄ,1  
WKꢉ62ꢋ  
1H[WꢄELWVꢄ287  
WUꢉ6&.ꢋ  
WGLVꢉ62ꢋ  
0,62ꢄRXWSXW  
026,ꢄLQSXW  
/DVWꢄELWꢄ287  
1H[WꢄELWVꢄ,1  
/DVWꢄELWꢄ,1  
06Yꢁꢌꢒꢍꢂ9ꢌ  
1. Measurement points are done at CMOS levels: 0.3 VDD and 0.7 VDD  
.
DocID026007 Rev 6  
79/98  
83  
 
 
 
 
Electrical characteristics  
STM32F048C6 STM32F048G6 STM32F048T6  
Figure 26. SPI timing diagram - master mode  
+LJK  
166ꢄLQSXW  
W
Fꢉ6&.ꢋ  
&3+$   
&32/ ꢎ  
&3+$   
&32/ ꢌ  
&3+$   
&32/ ꢎ  
&3+$   
&32/ ꢌ  
W
W
W
W
Zꢉ6&.+ꢋ  
Zꢉ6&./ꢋ  
Uꢉ6&.ꢋ  
Iꢉ6&.ꢋ  
W
VXꢉ0,ꢋ  
0,62  
,1387  
%,7ꢒꢄ,1  
/6%ꢄ,1  
06%ꢄ,1  
W
Kꢉ0,ꢋ  
026,  
287387  
%,7ꢌꢄ287  
/6%ꢄ287  
06%ꢄ287  
W
W
Kꢉ02ꢋ  
Yꢉ02ꢋ  
DLꢌꢁꢌꢀꢒF  
1. Measurement points are done at CMOS levels: 0.3 VDD and 0.7 VDD  
.
2
(1)  
Table 62. I S characteristics  
Conditions  
Symbol  
Parameter  
Min  
Max  
Unit  
Master mode (data: 16 bits, Audio  
frequency = 48 kHz)  
1.597  
1.601  
fCK  
1/tc(CK)  
I2S clock frequency  
MHz  
Slave mode  
0
-
6.5  
tr(CK)  
tf(CK)  
I2S clock rise time  
I2S clock fall time  
I2S clock high time  
I2S clock low time  
WS valid time  
10  
12  
-
Capacitive load CL = 15 pF  
-
tw(CKH)  
tw(CKL)  
tv(WS)  
th(WS)  
tsu(WS)  
th(WS)  
306  
312  
2
Master fPCLK= 16 MHz, audio  
frequency = 48 kHz  
-
ns  
%
Master mode  
Master mode  
Slave mode  
Slave mode  
-
WS hold time  
2
-
WS setup time  
7
-
WS hold time  
0
-
I2S slave input clock duty  
cycle  
DuCy(SCK)  
Slave mode  
25  
75  
80/98  
DocID026007 Rev 6  
 
 
STM32F048C6 STM32F048G6 STM32F048T6  
Electrical characteristics  
2
(1)  
Table 62. I S characteristics (continued)  
Symbol  
Parameter  
Conditions  
Master receiver  
Min  
Max  
Unit  
tsu(SD_MR)  
tsu(SD_SR)  
6
2
-
-
Data input setup time  
Data input hold time  
Data output valid time  
Data output hold time  
Slave receiver  
(2)  
th(SD_MR)  
Master receiver  
Slave receiver  
4
-
(2)  
th(SD_SR)  
0.5  
-
-
ns  
(2)  
tv(SD_MT)  
Master transmitter  
Slave transmitter  
Master transmitter  
Slave transmitter  
4
31  
-
(2)  
tv(SD_ST)  
th(SD_MT)  
th(SD_ST)  
-
0
13  
-
1. Data based on design simulation and/or characterization results, not tested in production.  
2. Depends on fPCLK. For example, if fPCLK = 8 MHz, then TPCLK = 1/fPLCLK = 125 ns.  
2
Figure 27. I S slave timing diagram (Philips protocol)  
WFꢉ&.ꢋ  
&32/ꢄ ꢄꢎ  
&32/ꢄ ꢄꢌ  
:6ꢄLQSXW  
WKꢉ:6ꢋ  
WZꢉ&.+ꢋ  
WZꢉ&./ꢋ  
WYꢉ6'B67ꢋ  
WKꢉ6'B67ꢋ  
WVXꢉ:6ꢋ  
/6%ꢄWUDQVPLWꢉꢆꢋ  
WVXꢉ6'B65ꢋ  
06%ꢄWUDQVPLW  
06%ꢄUHFHLYH  
%LWQꢄWUDQVPLW  
WKꢉ6'B65ꢋ  
6'WUDQVPLW  
6'UHFHLYH  
/6%ꢄUHFHLYHꢉꢆꢋ  
%LWQꢄUHFHLYH  
/6%ꢄUHFHLYH  
06Yꢀꢂꢏꢆꢌ9ꢌ  
1. Measurement points are done at CMOS levels: 0.3 × VDDIOx and 0.7 × VDDIOx  
.
2. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first  
byte.  
DocID026007 Rev 6  
81/98  
83  
 
Electrical characteristics  
STM32F048C6 STM32F048G6 STM32F048T6  
2
Figure 28. I S master timing diagram (Philips protocol)  
ꢂꢎꢑ  
ꢌꢎꢑ  
WIꢉ&.ꢋ  
WUꢉ&.ꢋ  
WFꢉ&.ꢋ  
&32/ꢄ ꢄꢎ  
&32/ꢄ ꢄꢌ  
WZꢉ&.+ꢋ  
WYꢉ:6ꢋ  
WKꢉ:6ꢋ  
WZꢉ&./ꢋ  
:6ꢄRXWSXW  
6'WUDQVPLW  
WYꢉ6'B07ꢋ  
WKꢉ6'B07ꢋ  
/6%ꢄWUDQVPLWꢉꢆꢋ  
WVXꢉ6'B05ꢋ  
06%ꢄWUDQVPLW  
06%ꢄUHFHLYH  
%LWQꢄWUDQVPLW  
WKꢉ6'B05ꢋ  
/6%ꢄWUDQVPLW  
6'UHFHLYH  
/6%ꢄUHFHLYHꢉꢆꢋ  
%LWQꢄUHFHLYH  
/6%ꢄUHFHLYH  
06Yꢀꢂꢏꢆꢎ9ꢌ  
1. Data based on characterization results, not tested in production.  
2. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first  
byte.  
82/98  
DocID026007 Rev 6  
 
STM32F048C6 STM32F048G6 STM32F048T6  
USB characteristics  
Electrical characteristics  
The STM32F048x6 USB interface is fully compliant with the USB specification version 2.0  
and is USB-IF certified (for Full-speed device operation).  
Table 63. USB electrical characteristics  
Symbol  
Parameter  
Conditions  
Min.  
Typ  
Max.  
Unit  
USB transceiver operating  
voltage  
VDDIO2  
-
-
-
3.0(1)  
-
-
-
3.6  
1.0  
1.5  
V
(2)  
tSTARTUP  
USB transceiver startup time  
µs  
Embedded USB_DP pull-up  
value during idle  
RPUI  
1.1  
1.26  
kΩ  
Embedded USB_DP pull-up  
value during reception  
RPUR  
-
2.0  
28  
2.26  
40  
2.6  
44  
Driving high  
and low  
(2)  
ZDRV  
Output driver impedance(3)  
1. The STM32F048x6 USB functionality is ensured down to 2.7 V but not the full USB electrical  
characteristics which are degraded in the 2.7-to-3.0 V voltage range.  
2. Guaranteed by design, not tested in production.  
3. No external termination series resistors are required on USB_DP (D+) and USB_DM (D-); the matching  
impedance is already included in the embedded driver.  
DocID026007 Rev 6  
83/98  
83  
 
Package information  
STM32F048C6 STM32F048G6 STM32F048T6  
7
Package information  
In order to meet environmental requirements, ST offers these devices in different grades of  
®
®
ECOPACK packages, depending on their level of environmental compliance. ECOPACK  
specifications, grade definitions and product status are available at: www.st.com.  
®
ECOPACK is an ST trademark.  
7.1  
UFQFPN48 package information  
UFQFPN48 is a 48-lead, 7x7 mm, 0.5 mm pitch, ultra-thin fine-pitch quad flat package.  
Figure 29. UFQFPN48 package outline  
3LQꢄꢌꢄLGHQWLILHU  
ODVHUꢄPDUNLQJꢄDUHD  
'
$
(
<
(
6HDWLQJꢄ  
SODQH  
7
GGG  
$ꢌ  
E
H
'HWDLOꢄ<  
'
([SRVHGꢄSDGꢄ  
DUHD  
'ꢆ  
/
ꢁꢃ  
&ꢄꢎꢇꢍꢎꢎ[ꢁꢍƒ  
SLQꢌꢄFRUQHU  
5ꢄꢎꢇꢌꢆꢍꢄW\Sꢇ  
'HWDLOꢄ=  
(ꢆ  
ꢁꢃ  
=
$ꢎ%ꢂB0(B9ꢀ  
1. Drawing is not to scale.  
2. All leads/pads should also be soldered to the PCB to improve the lead/pad solder joint life.  
3. There is an exposed die pad on the underside of the UFQFPN package. It is recommended to connect and  
solder this back-side pad to PCB ground.  
84/98  
DocID026007 Rev 6  
 
 
 
STM32F048C6 STM32F048G6 STM32F048T6  
Package information  
Table 64. UFQFPN48 package mechanical data  
millimeters  
inches(1)  
Symbol  
Min  
Typ  
Max  
Min  
Typ  
Max  
A
A1  
D
0.500  
0.000  
6.900  
6.900  
5.500  
5.500  
0.300  
-
0.550  
0.020  
7.000  
7.000  
5.600  
5.600  
0.400  
0.152  
0.250  
0.500  
-
0.600  
0.050  
7.100  
7.100  
5.700  
5.700  
0.500  
-
0.0197  
0.0000  
0.2717  
0.2717  
0.2165  
0.2165  
0.0118  
-
0.0217  
0.0008  
0.2756  
0.2756  
0.2205  
0.2205  
0.0157  
0.0060  
0.0098  
0.0197  
-
0.0236  
0.0020  
0.2795  
0.2795  
0.2244  
0.2244  
0.0197  
-
E
D2  
E2  
L
T
b
0.200  
-
0.300  
-
0.0079  
-
0.0118  
-
e
ddd  
-
0.080  
-
0.0031  
1. Values in inches are converted from mm and rounded to 4 decimal digits.  
Figure 30. Recommended footprint for UFQFPN48 package  
ꢏꢇꢀꢎ  
ꢒꢇꢆꢎ  
ꢁꢃ  
ꢀꢏ  
ꢀꢒ  
ꢍꢇꢒꢎ  
ꢎꢇꢆꢎ  
ꢏꢇꢀꢎ  
ꢍꢇꢃꢎ  
ꢒꢇꢆꢎ  
ꢍꢇꢒꢎ  
ꢎꢇꢀꢎ  
ꢌꢆ  
ꢆꢍ  
ꢌꢀ  
ꢆꢁ  
ꢎꢇꢏꢍ  
ꢎꢇꢍꢎ  
ꢎꢇꢍꢍ  
ꢍꢇꢃꢎ  
$ꢎ%ꢂB)3B9ꢆ  
1. Dimensions are expressed in millimeters.  
DocID026007 Rev 6  
85/98  
94  
 
 
Package information  
STM32F048C6 STM32F048G6 STM32F048T6  
Device marking  
The following figure gives an example of topside marking orientation versus pin 1 identifier  
location.  
Other optional marking or inset/upset marks, which identify the parts throughout supply  
chain operations, are not indicated below.  
Figure 31. UFQFPN48 package marking example  
WƌŽĚƵĐƚꢀ  
ŝĚĞŶƚŝĨŝĐĂƚŝŽŶ  
;ϭͿ  
(6ꢀꢁ)  
ꢂꢃꢄ&ꢅ8ꢅ  
ꢁĂƚĞꢀĐŽĚĞ  
< ::  
^ƚĂŶĚĂƌĚꢀ^dꢀůŽŐŽ  
ZĞǀŝƐŝŽŶꢀĐŽĚĞ  
WŝŶꢀϭꢀŝĚĞŶƚŝĨŝĞƌ  
5
D^ϯϳϳϯϱsϭ  
1. Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet  
qualified and therefore not yet ready to be used in production and any consequences deriving from such  
usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering  
samples in production. ST Quality has to be contacted prior to any decision to use these Engineering  
Samples to run qualification activity.  
86/98  
DocID026007 Rev 6  
 
STM32F048C6 STM32F048G6 STM32F048T6  
Package information  
7.2  
WLCSP36 package information  
WLCSP36 is a 36-ball, 2.605 x 2.703 mm, 0.4 mm pitch wafer-level chip-scale package.  
Figure 32. WLCSP36 package outline  
Hꢌ  
EEE =  
$ꢌꢄEDOOꢄORFDWLRQ  
)
H
*
H
$
)
'HWDLOꢄ$  
Hꢆ  
$ꢀ  
$ꢆ  
$
%XPSꢄVLGH  
6LGHꢄYLHZ  
;
<
$ꢀ  
%XPS  
HHH  
$ꢌꢄ  
=
$ꢌ  
RULHQWDWLRQꢄ  
UHIHUHQFH  
=
DDD  
=
E
‘EꢄꢉꢀꢒꢄEDOOVꢋ  
6HDWLQJꢄSODQH  
FFF  
= ; <  
=
GGG  
:DIHUꢄEDFNꢄVLGH  
'HWDLOꢄ$  
URWDWHGꢄꢂꢎƒ  
ꢂϬ>ͺDꢃͺsϮ  
1. Drawing is not to scale.  
Table 65. WLCSP36 package mechanical data  
millimeters  
Typ  
inches(1)  
Symbol  
Min  
Max  
Min  
Typ  
Max  
A
A1  
A2  
A3(2)  
b(3)  
D
0.525  
0.555  
0.175  
0.380  
0.025  
0.250  
2.605  
2.703  
0.400  
2.000  
2.000  
0.585  
0.0207  
0.0219  
0.0069  
0.0150  
0.0010  
0.0098  
0.1026  
0.1064  
0.0157  
0.0787  
0.0787  
0.0230  
-
-
-
-
-
-
-
-
-
-
-
-
0.220  
0.280  
0.0087  
0.0110  
2.570  
2.640  
0.1012  
0.1039  
E
2.668  
2.738  
0.1050  
0.1078  
e
-
-
-
-
-
-
-
-
-
-
-
-
e1  
e2  
DocID026007 Rev 6  
87/98  
94  
 
 
 
Package information  
STM32F048C6 STM32F048G6 STM32F048T6  
Table 65. WLCSP36 package mechanical data (continued)  
millimeters  
Typ  
inches(1)  
Symbol  
Min  
Max  
Min  
Typ  
Max  
F
-
-
-
-
-
-
-
0.3025  
-
-
-
-
-
-
-
-
0.0119  
-
G
0.3515  
-
0.0138  
-
aaa  
bbb  
ccc  
ddd  
eee  
-
-
-
-
-
0.100  
0.100  
0.100  
0.050  
0.050  
-
-
-
-
-
0.0039  
0.0039  
0.0039  
0.0020  
0.0020  
1. Values in inches are converted from mm and rounded to 4 decimal digits.  
2. Back side coating.  
3. Dimension is measured at the maximum bump diameter parallel to primary datum Z.  
Figure 33. Recommended pad footprint for WLCSP36 package  
'SDG  
'VP  
06ꢌꢃꢂꢒꢍ9ꢆ  
Table 66. WLCSP36 recommended PCB design rules  
Dimension  
Recommended values  
Pitch  
Dpad  
Dsm  
0.4 mm  
260 µm max. (circular)  
220 µm recommended  
300 µm min. (for 260 µm diameter pad)  
PCB pad design  
Non-solder mask defined via underbump allowed  
88/98  
DocID026007 Rev 6  
 
 
STM32F048C6 STM32F048G6 STM32F048T6  
Device marking  
Package information  
The following figure gives an example of topside marking orientation versus ball A1 identifier  
location.  
Other optional marking or inset/upset marks, which identify the parts throughout supply  
chain operations, are not indicated below.  
Figure 34. WLCSP36 package marking example  
ꢁŽƚ  
WƌŽĚƵĐƚꢀ  
;ϭͿ  
ŝĚĞŶƚŝĨŝĐĂƚŝŽŶ  
)ꢂꢃꢄ7ꢅ  
ZĞǀŝƐŝŽŶꢀĐŽĚĞ  
5
ꢁĂƚĞꢀĐŽĚĞ  
<
::  
D^ϯϳϳϯϰsϭ  
1. Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet  
qualified and therefore not yet ready to be used in production and any consequences deriving from such  
usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering  
samples in production. ST Quality has to be contacted prior to any decision to use these Engineering  
Samples to run qualification activity.  
DocID026007 Rev 6  
89/98  
94  
 
Package information  
STM32F048C6 STM32F048G6 STM32F048T6  
7.3  
UFQFPN28 package information  
UFQFPN28 is a 28-lead, 4x4 mm, 0.5 mm pitch, ultra-thin fine-pitch quad flat package.  
Figure 35. UFQFPN28 package outline  
'HWDLOꢄ<  
'
(
'
'ꢌ  
(ꢌ  
'HWDLOꢄ=  
$ꢎ%ꢎB0(B9ꢍ  
1. Drawing is not to scale.  
(1)  
Table 67. UFQFPN28 package mechanical data  
millimeters  
Typ  
inches  
Symbol  
Min  
Max  
Min  
Typ  
Max  
A
A1  
D
0.500  
-
0.550  
0.000  
4.000  
3.000  
4.000  
3.000  
0.400  
0.350  
0.152  
0.250  
0.500  
0.600  
0.050  
4.100  
3.100  
4.100  
3.100  
0.500  
0.450  
-
0.0197  
-
0.0217  
0.0000  
0.1575  
0.1181  
0.1575  
0.1181  
0.0157  
0.0138  
0.0060  
0.0098  
0.0197  
0.0236  
0.0020  
0.1614  
0.1220  
0.1614  
0.1220  
0.0197  
0.0177  
-
3.900  
2.900  
3.900  
2.900  
0.300  
0.250  
-
0.1535  
0.1142  
0.1535  
0.1142  
0.0118  
0.0098  
-
D1  
E
E1  
L
L1  
T
b
0.200  
-
0.300  
-
0.0079  
-
0.0118  
-
e
90/98  
DocID026007 Rev 6  
 
 
 
STM32F048C6 STM32F048G6 STM32F048T6  
Package information  
1. Values in inches are converted from mm and rounded to 4 decimal digits.  
Figure 36. Recommended footprint for UFQFPN28 package  
ꢀꢇꢀꢎ  
ꢎꢇꢍꢎ  
ꢎꢇꢆꢌ  
ꢀꢇꢆꢎ  
ꢎꢇꢆꢎ  
ꢁꢇꢀꢎ  
ꢀꢇꢀꢎ  
ꢀꢇꢆꢎ  
ꢎꢇꢆꢌ  
ꢎꢇꢀꢎ  
ꢎꢇꢍꢎ  
ꢎꢇꢍꢍ  
ꢎꢇꢍꢎ  
ꢀꢇꢀꢎ  
$ꢎ%ꢎB)3B9ꢀ  
1. Dimensions are expressed in millimeters.  
DocID026007 Rev 6  
91/98  
94  
 
Package information  
STM32F048C6 STM32F048G6 STM32F048T6  
Device marking  
The following figure gives an example of topside marking orientation versus pin 1 identifier  
location.  
Other optional marking or inset/upset marks, which identify the parts throughout supply  
chain operations, are not indicated below.  
Figure 37. UFQFPN28 package marking example  
WƌŽĚƵĐƚꢀ  
ŝĚĞŶƚŝĨŝĐĂƚŝŽŶ  
;ϭͿ  
)ꢂꢃꢄ*ꢅ  
ZĞǀŝƐŝŽŶꢀĐŽĚĞ  
ꢁĂƚĞꢀĐŽĚĞ  
5
<
::  
ꢁŽƚ  
D^ϯϳϳϯϯsϭ  
1. Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet  
qualified and therefore not yet ready to be used in production and any consequences deriving from such  
usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering  
samples in production. ST Quality has to be contacted prior to any decision to use these Engineering  
Samples to run qualification activity.  
92/98  
DocID026007 Rev 6  
 
STM32F048C6 STM32F048G6 STM32F048T6  
Package information  
7.4  
Thermal characteristics  
The maximum chip junction temperature (T max) must never exceed the values given in  
J
Table 20: General operating conditions.  
The maximum chip-junction temperature, T max, in degrees Celsius, may be calculated  
J
using the following equation:  
T max = T max + (P max x Θ )  
J
A
D
JA  
Where:  
T max is the maximum ambient temperature in °C,  
A
Θ
is the package junction-to-ambient thermal resistance, in °C/W,  
JA  
P max is the sum of P  
max and P max (P max = P  
max + P max),  
INT I/O  
D
INT  
I/O  
D
P
max is the product of I and V , expressed in Watts. This is the maximum chip  
DD DD  
INT  
internal power.  
P
max represents the maximum power dissipation on output pins where:  
I/O  
P
max = Σ (V × I ) + Σ ((V  
– V ) × I ),  
DDIOx OH OH  
I/O  
OL  
OL  
taking into account the actual V / I and V / I of the I/Os at low and high level in the  
OL OL  
OH OH  
application.  
Table 68. Package thermal characteristics  
Parameter  
Symbol  
Value  
Unit  
Thermal resistance junction-ambient  
UFQFPN48 - 7 mm x 7 mm  
33  
Thermal resistance junction-ambient  
WLCSP36 - 2.6 × 2.7 mm  
Θ
64  
°C/W  
JA  
Thermal resistance junction-ambient  
UFQFPN28 - 4 mm x 4 mm  
118  
7.4.1  
7.4.2  
Reference document  
JESD51-2 Integrated Circuits Thermal Test Method Environment Conditions - Natural  
Convection (Still Air). Available from www.jedec.org  
Selecting the product temperature range  
When ordering the microcontroller, the temperature range is specified in the ordering  
information scheme shown in Section 8: Ordering information.  
Each temperature range suffix corresponds to a specific guaranteed ambient temperature at  
maximum dissipation and, to a specific maximum junction temperature.  
As applications do not commonly use the STM32F048x6 at maximum dissipation, it is useful  
to calculate the exact power consumption and junction temperature to determine which  
temperature range will be best suited to the application.  
The following examples show how to calculate the temperature range needed for a given  
application.  
DocID026007 Rev 6  
93/98  
94  
 
 
 
 
 
Ordering information  
STM32F048C6 STM32F048G6 STM32F048T6  
8
Ordering information  
For a list of available options (memory, package, and so on) or for further information on any  
aspect of this device, please contact your nearest ST sales office.  
Table 69. Ordering information scheme  
Example:  
STM32  
F
048  
C
6
T
6
xxx  
Device family  
STM32 = ARM-based 32-bit microcontroller  
Product type  
F = General-purpose  
Sub-family  
048 = STM32F048xx  
Pin count  
G = 28 pins  
T = 36 pins  
C = 48 pins  
User code memory size  
6 = 32 Kbyte  
Package  
U = UFQFPN  
Y = WLCSP  
Temperature range  
6 = –40 to 85 °C  
7 = –40 to 105 °C  
Options  
xxx = code ID of programmed parts (includes packing type)  
TR = tape and reel packing  
blank = tray packing  
94/98  
DocID026007 Rev 6  
 
 
 
STM32F048C6 STM32F048G6 STM32F048T6  
Revision history  
9
Revision history  
Table 70. Document revision history  
Changes  
Date  
Revision  
27-May-2014  
1
Initial release.  
Updated the document status to Preliminary data.  
No other change in the content.  
28-May-2014  
2
Removed LQFP48 package.  
Updated:  
Table: Typical and maximum current consumption from VDD supply  
at VDD = 1.8 V,  
– Table: Typical and maximum current consumption from the VDDA  
supply,  
Table: Typical and maximum consumption in Stop mode,  
– Table: HSI oscillator characteristics,  
09-Apr-2015  
3
– Figure: HSI oscillator accuracy characterization results for soldered  
parts,  
– Table: ESD absolute maximum ratings,  
– the document status to Datasheet - production data.  
Added:  
– Figure: UFQFPN48 marking example (package top view),  
Figure: WLCSP36 marking example (package top view),  
– Figure: UFQFPN28 marking example (package top view).  
Cover page  
– 9 timers instead of 8 in the title  
– number of I/Os and capacitive sensing channels corrected  
– Fast Mode Plus current sink corrected from 20 mA to “extra”  
Updates in Section 2: Description:  
– updated Figure 1: Block diagram and Figure 2: Clock tree  
Table 1: STM32F048x device features and peripheral counts - I/O  
and capacitive channel numbers corrected  
Updates in Section 3: Functional overview:  
– addition of PB2 to Table 4: Capacitive sensing GPIOs available on  
STM32F048x6 devices  
06-Nov-2015  
4
– addition of the number of complementary outputs for the advanced  
control timer and for TIM16, TIM17 general purpose in Table 6:  
Timer feature comparison  
– removal of USART2 from Figure 3.5.3: Low-power modes  
Table 8: STM32F048x6 I2C implementation - adding “extra”  
Updates in Section 4: Pinouts and pin descriptions  
Figure 4: WLCSP36 package updated  
Table 12: STM32F048x6 pin definitions - removal of CIMP1_OUT  
and USART4_CTS; swap of F2 and D2 for WLCSP36  
Table 14: Alternate functions selected through GPIOB_AFR  
registers for port B - change of I2C2_SDA and I2C2_SCL to  
I2C1_SDA and I2C1_SCL  
DocID026007 Rev 6  
95/98  
97  
 
 
Revision history  
STM32F048C6 STM32F048G6 STM32F048T6  
Table 70. Document revision history (continued)  
Date  
Revision  
Changes  
Updates in Section 5: Memory mapping  
Table 16: STM32F048x6 peripheral register boundary addresses -  
change of “SYSCFG + COMP” to “SYSCFG”  
Updates in Section 6: Electrical characteristics:  
– VDDIOx replacibg VDD in Figure 18: TC and TTa I/O input  
characteristics and Figure 19: Five volt tolerant (FT and FTf) I/O  
input characteristics  
– footnote for VIN max value in Table 17: Voltage characteristics,  
– footnote for max VIN in Table 20: General operating conditions,  
– addition of tSTART parameter in Table 22: Embedded internal  
reference voltage, removal of -40°C to 85°C condition and the  
associated footnote  
Table 26: Typical and maximum current consumption from the VBAT  
supply: removing “code executing from Flash or RAM”  
– removal of the min value for tSTART parameter in Table 55: TS  
characteristics  
– the typical value for R parameter in Table 56: VBAT monitoring  
characteristics  
4
– removal of ResTM parameter line from Table 57: TIMx characteristics  
and putting all values in new Typ column, substitution of tCOUNTER  
with tMAX_COUNT, values defined as powers of two  
06-Nov-2015  
(continued)  
– VESD(CDM) class in Table 44: ESD absolute maximum ratings  
– reorganization of Table 62: I2S characteristics and filling max value  
of tv(SD_ST)  
– adding definition of levels in Figure 28: I2S master timing diagram  
(Philips protocol)  
Updates in Section 7: Package information:  
– heading and display of columns in Table 65: WLCSP36 package  
mechanical data.,  
– Figure 31: UFQFPN48 package marking example (top view)  
– Figure 34: WLCSP36 package marking example (top view)  
Figure 36: Recommended footprint for UFQFPN28 package  
distance between corner pads added  
– Figure 37: UFQFPN28 package marking example (top view)  
– removing “die 445” from Table 68: Package thermal characteristics  
Updates in Section 8: Part numbering:  
– adding tray packing to options  
Section 4: Pinouts and pin descriptions:  
– Package pinout figures updated (look and feel)  
Figure 4: WLCSP36 package- now presented in top view  
Table 12: STM32F048x6 pin definitions - note 3 added;  
Section 6: Electrical characteristics:  
05-Dec-2015  
5
Table 47: I/O static characteristics - removed note  
Section 6.3.15: 12-bit ADC characteristics - changed introductory  
sentence  
96/98  
DocID026007 Rev 6  
STM32F048C6 STM32F048G6 STM32F048T6  
Revision history  
Table 70. Document revision history (continued)  
Date  
Revision  
Changes  
Section 6: Electrical characteristics:  
Table 34: LSE oscillator characteristics (fLSE = 32.768 kHz) -  
information on configuring different drive capabilities removed. See  
the corresponding reference manual.  
Table 22: Embedded internal reference voltage - VREFINT values  
10-Jan-2017  
6
Figure 24: SPI timing diagram - slave mode and CPHA = 0 and  
Figure 25: SPI timing diagram - slave mode and CPHA = 1  
enhanced and corrected  
Section 8: Ordering information:  
– The name of the section changed from the previous “Part  
numbering”  
DocID026007 Rev 6  
97/98  
97  
STM32F048C6 STM32F048G6 STM32F048T6  
IMPORTANT NOTICE – PLEASE READ CAREFULLY  
STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and  
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on  
ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order  
acknowledgement.  
Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or  
the design of Purchasers’ products.  
No license, express or implied, to any intellectual property right is granted by ST herein.  
Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.  
ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.  
Information in this document supersedes and replaces information previously supplied in any prior versions of this document.  
© 2017 STMicroelectronics – All rights reserved  
98/98  
DocID026007 Rev 6  

相关型号:

STM32F048T6

CRC calculation unit
STMICROELECTR

STM32F050C4

Low- and medium-density advanced ARM-based 32-bit MCU with up to 32 Kbytes Flash, timers, ADC and comm. interfaces
STMICROELECTR

STM32F050C4T6A

Low- and medium-density advanced ARM™-based 32-bit MCU with up to 32 Kbytes Flash, timers, ADC and comm. interfaces
STMICROELECTR

STM32F050C6

Low- and medium-density advanced ARM-based 32-bit MCU with up to 32 Kbytes Flash, timers, ADC and comm. interfaces
STMICROELECTR

STM32F050C6T6A

Low- and medium-density advanced ARM-based 32-bit MCU with up to 32 Kbytes Flash, timers, ADC and comm. interfaces
STMICROELECTR

STM32F050F4

Low- and medium-density advanced ARM-based 32-bit MCU with up to 32 Kbytes Flash, timers, ADC and comm. interfaces
STMICROELECTR

STM32F050F4P7ATR

RISC MICROCONTROLLER
STMICROELECTR

STM32F050F4P7AXXX

RISC MICROCONTROLLER
STMICROELECTR

STM32F050F6

Low- and medium-density advanced ARM-based 32-bit MCU with up to 32 Kbytes Flash, timers, ADC and comm. interfaces
STMICROELECTR

STM32F050G4

Low- and medium-density advanced ARM-based 32-bit MCU with up to 32 Kbytes Flash, timers, ADC and comm. interfaces
STMICROELECTR

STM32F050G6

Low- and medium-density advanced ARM-based 32-bit MCU with up to 32 Kbytes Flash, timers, ADC and comm. interfaces
STMICROELECTR

STM32F050K4

Low- and medium-density advanced ARM-based 32-bit MCU with up to 32 Kbytes Flash, timers, ADC and comm. interfaces
STMICROELECTR