STM32F038K6 [STMICROELECTRONICS]

Clock management;
STM32F038K6
型号: STM32F038K6
厂家: ST    ST
描述:

Clock management

文件: 总102页 (文件大小:1704K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
STM32F038x6  
ARM®-based 32-bit MCU with 32 Kbyte Flash, 9 timers,  
ADC and communication interfaces, 1.8 V  
Datasheet - production data  
Features  
®
®
Core: ARM 32-bit Cortex -M0 CPU,  
frequency up to 48 MHz  
LQFP48 7x7 mm UFQFPN32 5x5 mm WLCSP25  
TSSOP20  
Memories  
2.1x2.1 mm 6.5x4.4 mm  
UFQFPN28 4x4 mm  
– 32 Kbytes of Flash memory  
– 1 x 16-bit timer with 1 IC/OC  
– 4 Kbytes of SRAM with HW parity  
– Independent and system watchdog timers  
– SysTick timer: 24-bit downcounter  
CRC calculation unit  
Power management  
Calendar RTC with alarm and periodic wakeup  
– Digital and I/Os supply: V = 1.8 V ±8%  
from Stop  
DD  
– Analog supply: V  
= from V to 3.6 V  
DDA  
DD  
Communication interfaces  
2
– Low power modes: Sleep, Stop  
– V supply for RTC and backup registers  
– 1 x I C interface, supporting Fast Mode  
Plus (1 Mbit/s) with extra current sink,  
SMBus/PMBus, and wakeup from Stop  
mode  
BAT  
Clock management  
– 4 to 32 MHz crystal oscillator  
– 32 kHz oscillator for RTC with calibration  
– Internal 8 MHz RC with x6 PLL option  
– Internal 40 kHz RC oscillator  
– 1 x USART supporting master synchronous  
SPI and modem control, ISO7816  
interface, LIN, IrDA capability, auto baud  
rate detection and wakeup feature  
Up to 38 fast I/Os  
– 1 x SPI (18 Mbit/s) with 4 to 16  
2
programmable bit frames, with I S interface  
– All mappable on external interrupt vectors  
multiplexed  
– Up to 25 I/Os with 5 V tolerant capability  
Serial wire debug (SWD)  
96-bit unique ID  
5-channel DMA controller  
1 × 12-bit, 1.0 µs ADC (up to 10 channels)  
Extended temperature range: -40 to +105°C  
– Conversion range: 0 to 3.6V  
®
– Separate analog supply from 2.4 up to  
3.6 V  
All packages ECOPACK 2  
Table 1. Device summary  
Up to 9 timers  
– 1 x 16-bit 7-channel advanced-control timer  
for 6 channels PWM output, with deadtime  
generation and emergency stop  
Reference  
Part number  
STM32F038C6, STM32F038E6,  
STM32F038x6 STM32F038F6, STM32F038G6,  
STM32F038K6  
– 1 x 32-bit and 1 x 16-bit timer, with up to 4  
IC/OC, usable for IR control decoding  
– 1 x 16-bit timer, with 2 IC/OC, 1 OCN,  
deadtime generation and emergency stop  
– 1 x 16-bit timer, with IC/OC and OCN,  
deadtime generation, emergency stop and  
modulator gate for IR control  
May 2017  
DocID026079 Rev 5  
1/102  
This is information on a product in full production.  
www.st.com  
 
Contents  
STM32F038x6  
Contents  
1
2
3
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Functional overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
3.1  
3.2  
3.3  
3.4  
3.5  
ARM®-Cortex®-M0 core . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11  
Memories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11  
Boot modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11  
Cyclic redundancy check calculation unit (CRC) . . . . . . . . . . . . . . . . . . . 12  
Power management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
3.5.1  
3.5.2  
3.5.3  
Power supply schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Power-on reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
3.6  
3.7  
3.8  
3.9  
Clocks and startup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
General-purpose inputs/outputs (GPIOs) . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Direct memory access controller (DMA) . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Interrupts and events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
3.9.1  
3.9.2  
Nested vectored interrupt controller (NVIC) . . . . . . . . . . . . . . . . . . . . . . 15  
Extended interrupt/event controller (EXTI) . . . . . . . . . . . . . . . . . . . . . . 15  
3.10 Analog-to-digital converter (ADC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
3.10.1 Temperature sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
3.10.2 Internal voltage reference (V  
) . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
REFINT  
3.10.3  
V
battery voltage monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
BAT  
3.11 Timers and watchdogs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
3.11.1  
3.11.2  
3.11.3  
3.11.4  
3.11.5  
Advanced-control timer (TIM1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
General-purpose timers (TIM2, 3, 14, 16, 17) . . . . . . . . . . . . . . . . . . . . 17  
Independent watchdog (IWDG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
System window watchdog (WWDG) . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
SysTick timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
3.12 Real-time clock (RTC) and backup registers . . . . . . . . . . . . . . . . . . . . . . 19  
3.13 Inter-integrated circuit interface (I2C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
3.14 Universal synchronous/asynchronous receiver/transmitter (USART) . . . 20  
3.15 Serial peripheral interface (SPI) / Inter-integrated sound interface (I2S) . 21  
2/102  
DocID026079 Rev 5  
STM32F038x6  
Contents  
3.16 Serial wire debug port (SW-DP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Pinouts and pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Memory mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
4
5
6
6.1  
Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
6.1.1  
6.1.2  
6.1.3  
6.1.4  
6.1.5  
6.1.6  
6.1.7  
Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Current consumption measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
6.2  
6.3  
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
6.3.1  
6.3.2  
6.3.3  
6.3.4  
6.3.5  
6.3.6  
6.3.7  
6.3.8  
6.3.9  
General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Operating conditions at power-up / power-down . . . . . . . . . . . . . . . . . . 41  
Embedded reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Wakeup time from low-power mode . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
External clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
Internal clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
Memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
6.3.10 EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
6.3.11 Electrical sensitivity characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
6.3.12 I/O current injection characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
6.3.13 I/O port characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
6.3.14 NRST and NPOR pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 68  
6.3.15 12-bit ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
6.3.16 Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
6.3.17  
V
monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
BAT  
6.3.18 Timer characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
6.3.19 Communication interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74  
DocID026079 Rev 5  
3/102  
4
Contents  
STM32F038x6  
7
Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80  
7.1  
7.2  
7.3  
7.4  
7.5  
7.6  
LQFP48 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80  
UFQFPN32 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82  
UFQFPN28 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86  
WLCSP25 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89  
TSSOP20 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92  
Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95  
7.6.1  
7.6.2  
Reference document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95  
Selecting the product temperature range . . . . . . . . . . . . . . . . . . . . . . . 96  
8
9
Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98  
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99  
4/102  
DocID026079 Rev 5  
STM32F038x6  
List of tables  
List of tables  
Table 1.  
Table 2.  
Table 3.  
Table 4.  
Table 5.  
Table 6.  
Table 7.  
Table 8.  
Table 9.  
Table 10.  
Table 11.  
Table 12.  
Table 13.  
Table 14.  
Table 15.  
Table 16.  
Table 17.  
Table 18.  
Table 19.  
Table 20.  
Table 21.  
Table 22.  
Table 23.  
Table 24.  
Table 25.  
Device summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
STM32F038x6 family device features and peripheral counts. . . . . . . . . . . . . . . . . . . . . . . . 9  
Temperature sensor calibration values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Internal voltage reference calibration values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Timer feature comparison. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
2
Comparison of I C analog and digital filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
2
STM32F038x6 I C implementation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
STM32F038x6 USART implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
STM32F038x6 SPI/I2S implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Legend/abbreviations used in the pinout table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Pin definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Alternate functions selected through GPIOA_AFR registers for port A . . . . . . . . . . . . . . . 31  
Alternate functions selected through GPIOB_AFR registers for port B . . . . . . . . . . . . . . . 32  
Peripheral register boundary addresses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Operating conditions at power-up / power-down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Embedded internal reference voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Typical and maximum current consumption from V supply at VDD = 1.8 V . . . . . . . . . 44  
DD  
Typical and maximum current consumption from the V  
supply . . . . . . . . . . . . . . . . . 45  
DDA  
Typical and maximum consumption in Stop mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
Typical and maximum current consumption from the V supply. . . . . . . . . . . . . . . . . . . 46  
BAT  
Typical current consumption, code executing from Flash memory,  
running from HSE 8 MHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Switching output I/O current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
Peripheral current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
Low-power mode wakeup timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
High-speed external user clock characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
Low-speed external user clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
HSE oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
Table 26.  
Table 27.  
Table 28.  
Table 29.  
Table 30.  
Table 31.  
Table 32.  
Table 33.  
Table 34.  
Table 35.  
Table 36.  
Table 37.  
Table 38.  
Table 39.  
Table 40.  
Table 41.  
Table 42.  
Table 43.  
Table 44.  
Table 45.  
Table 46.  
Table 47.  
LSE oscillator characteristics (f  
= 32.768 kHz) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
LSE  
HSI oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
HSI14 oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
LSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
Flash memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
Flash memory endurance and data retention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
EMS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
EMI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
ESD absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
Electrical sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
I/O current injection susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
I/O static characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
Output voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66  
I/O AC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68  
DocID026079 Rev 5  
5/102  
6
List of tables  
STM32F038x6  
Table 48.  
Table 49.  
Table 50.  
Table 51.  
Table 52.  
Table 53.  
Table 54.  
Table 55.  
Table 56.  
Table 57.  
Table 58.  
Table 59.  
Table 60.  
Table 61.  
Table 62.  
Table 63.  
Table 64.  
Table 65.  
Table 66.  
Table 67.  
Table 68.  
NPOR pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
R
max for f  
= 14 MHz. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70  
AIN  
ADC  
ADC accuracy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71  
TS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
V
monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
BAT  
TIMx characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
IWDG min/max timeout period at 40 kHz (LSI). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74  
WWDG min/max timeout value at 48 MHz (PCLK). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74  
2
I C analog filter characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
SPI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
2
I S characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77  
LQFP48 package mechanical data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81  
UFQFPN32 package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84  
UFQFPN28 package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86  
WLCSP25 package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89  
WLCSP25 recommended PCB design rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90  
TSSOP20 package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92  
Package thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95  
Ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98  
Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99  
6/102  
DocID026079 Rev 5  
STM32F038x6  
List of figures  
List of figures  
Figure 1.  
Figure 2.  
Figure 3.  
Figure 4.  
Figure 5.  
Figure 6.  
Figure 7.  
Figure 8.  
Figure 9.  
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Clock tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
LQFP48 package pinout. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
UFQFPN32 package pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
UFQFPN28 package pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
WLCSP25 package pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
TSSOP20 package pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
STM32F038x6 memory map  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Pin loading conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Figure 10. Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Figure 11. Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Figure 12. Current consumption measurement scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Figure 13. High-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
Figure 14. Low-speed external clock source AC timing diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
Figure 15. Typical application with an 8 MHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
Figure 16. Typical application with a 32.768 kHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
Figure 17. HSI oscillator accuracy characterization results for soldered parts . . . . . . . . . . . . . . . . . . 57  
Figure 18. HSI14 oscillator accuracy characterization results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
Figure 19. TC and TTa I/O input characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
Figure 20. Five volt tolerant (FT and FTf) I/O input characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
Figure 21. I/O AC characteristics definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
Figure 22. Recommended NRST pin protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68  
Figure 23. ADC accuracy characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72  
Figure 24. Typical connection diagram using the ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72  
Figure 25. SPI timing diagram - slave mode and CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76  
Figure 26. SPI timing diagram - slave mode and CPHA = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76  
Figure 27. SPI timing diagram - master mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77  
2
Figure 28. I S slave timing diagram (Philips protocol) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78  
2
Figure 29. I S master timing diagram (Philips protocol). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79  
Figure 30. LQFP48 package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80  
Figure 31. Recommended footprint for LQFP48 package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81  
Figure 32. LQFP48 package marking example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82  
Figure 33. UFQFPN32 package outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83  
Figure 34. Recommended footprint for UFQFPN32 package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84  
Figure 35. UFQFPN32 package marking example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85  
Figure 36. UFQFPN28 package outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86  
Figure 37. Recommended footprint for UFQFPN28 package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87  
Figure 38. UFQFPN28 package marking example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88  
Figure 39. WLCSP25 package outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89  
Figure 40. Recommended footprint for WLCSP25 package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90  
Figure 41. WLCSP25 package marking example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91  
Figure 42. TSSOP20 package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92  
Figure 43. Recommended footprint for TSSOP20 package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93  
Figure 44. TSSOP20 package marking example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94  
DocID026079 Rev 5  
7/102  
7
Introduction  
STM32F038x6  
1
Introduction  
This datasheet provides the ordering information and mechanical device characteristics of  
the STM32F038x6 microcontrollers.  
This document should be read in conjunction with the STM32F0xxxx reference manual  
(RM0091). The reference manual is available from the STMicroelectronics website  
www.st.com.  
®
®
®
For information on the ARM Cortex -M0 core, please refer to the Cortex -M0 Technical  
Reference Manual, available from the www.arm.com website.  
8/102  
DocID026079 Rev 5  
 
STM32F038x6  
Description  
2
Description  
®
®
The STM32F038x6 microcontrollers incorporate the high-performance ARM Cortex -M0  
32-bit RISC core operating at up to 48 MHz frequency, high-speed embedded memories  
(32 Kbytes of Flash memory and 4 Kbytes of SRAM), and an extensive range of enhanced  
2
peripherals and I/Os. All devices offer standard communication interfaces (one I C, one  
2
SPI/ I S and one USART), one 12-bit ADC, five 16-bit timers, one 32-bit timer and an  
advanced-control PWM timer.  
The STM32F038x6 microcontrollers operate in the -40 to +85 °C and -40 to +105 °C  
temperature ranges at a 1.8 V ± 8% power supply. A comprehensive set of power-saving  
modes allows the design of low-power applications.  
The STM32F038x6 microcontrollers include devices in five different packages ranging from  
20 pins to 48 pins with a die form also available upon request. Depending on the device  
chosen, different sets of peripherals are included.  
These features make the STM32F038x6 microcontrollers suitable for a wide range of  
applications such as application control and user interfaces, hand-held equipment, A/V  
receivers and digital TV, PC peripherals, gaming and GPS platforms, industrial applications,  
PLCs, inverters, printers, scanners, alarm systems, video intercoms and HVACs.  
Table 2. STM32F038x6 family device features and peripheral counts  
Peripheral  
STM32F038Fx STM32F038Ex STM32F038Gx  
STM32F038Kx  
STM32F038Cx  
Flash memory (Kbyte)  
SRAM (Kbyte)  
Advanced  
32  
4
1 (16-bit)  
control  
Timers  
4 (16-bit)  
1 (32-bit)  
General  
purpose  
SPI [I2S](1)  
Comm.  
I2C  
1 [1]  
1
interfaces  
USART  
1
12-bit ADC  
1
1
1
(number of channels)  
GPIOs  
(8 ext. + 3 int.)  
(9 ext. + 3 int.)  
(10 ext. + 3 int.)  
14  
19  
22  
48 MHz  
VDD = 1.8 V ± 8%, VDDA = from VDD to 3.6 V  
26  
38  
Max. CPU frequency  
Operating voltage  
Ambient operating temperature: -40°C to 85°C / -40°C to 105°C  
Junction temperature: -40°C to 105°C / -40°C to 125°C  
Operating temperature  
Packages  
TSSOP20  
WLCSP25  
UFQFPN28  
UFQFPN32  
LQFP48  
1. The SPI interface can be used either in SPI mode or in I2S audio mode.  
DocID026079 Rev 5  
9/102  
22  
 
 
Description  
STM32F038x6  
Figure 1. Block diagram  
6:&/.ꢄ  
6:',2  
DVꢄ$)  
6HULDOꢄ:LUHꢄ  
'HEXJ  
9''ꢄ ꢄꢍꢆꢋꢄ9ꢄ“ꢋꢔ  
966ꢄ  
32:(5  
9''ꢍꢋ  
)ODVKꢄ*3/ꢄ  
ꢀꢐꢄ.%ꢄ  
#ꢄ9''  
&257(;ꢑ0ꢁꢄ&38ꢄ  
I0$;ꢄ ꢄꢃꢋꢄ0+]  
ꢀꢐꢑELW  
6833/<ꢄ  
683(59,6,21  
325  
5HVHW  
,QW  
1325  
1567  
9''$ꢄ  
65$0ꢄ  
ꢃꢄ.%  
1325  
19,&  
#ꢄ9''$  
966$  
+6,ꢍꢃ  
5&ꢄꢍꢃꢄ0+]  
+6,  
3//&/.  
/6,  
5&ꢄꢋꢄ0+]  
3//  
#ꢄ9''$  
#ꢄ9''  
*3ꢄ'0$ꢄ  
ꢏꢄFKDQQHOV  
;7$/ꢄ26&ꢄ  
ꢃꢑꢀꢐꢄ0+]  
5&ꢄꢃꢁꢄN+]  
26&B,1  
26&B287  
,QGꢆꢄ:LQGRZꢄ:'*  
325  
5(6(7ꢄꢒꢄ&/2&.ꢄ  
&21752/  
9''  
3$>ꢍꢏꢅꢁ@  
3%>ꢍꢏꢅꢁ@  
*3,2ꢄSRUWꢄ$  
*3,2ꢄSRUWꢄ%  
*3,2ꢄSRUWꢄ&  
*3,2ꢄSRUWꢄ)  
9%$7ꢄ ꢄꢍꢆꢎꢏꢄWRꢄꢀꢆꢎꢄ9  
#ꢄ9%$7  
26&ꢀꢐB,1ꢄ  
26&ꢀꢐB287  
;7$/ꢀꢐꢄN+]  
%DFNXSꢄ  
6\VWHPꢄDQGꢄSHULSKHUDOꢄ  
FORFNV  
ꢍꢄ7$03(5ꢑ57&  
ꢈ$/$50ꢄ287ꢊ  
3&>ꢍꢏꢅꢍꢀ@  
57&  
UHJ  
3)>ꢓꢅꢎꢇꢍꢅꢁ@  
&5&  
57&ꢄLQWHUIDFH  
ꢃꢄFKDQQHOV  
3:0ꢄ7,0(5ꢄꢍ  
7,0(5ꢄꢐꢄꢀꢐꢑELW  
7,0(5ꢄꢀ  
ꢀꢄFRPSOꢆꢄFKDQQHOV  
%5.ꢇꢄ(75ꢄLQSXWꢄDVꢄ$)  
$+%  
$3%  
ꢃꢄFKꢆꢇꢄ(75ꢄDVꢄ$)  
ꢃꢄFKꢆꢇꢄ(75ꢄDVꢄ$)  
ꢍꢄFKDQQHOꢄDVꢄ$)  
(;7ꢄ,7ꢄꢄ:.83  
63,ꢍꢌ,ꢐ6ꢍ  
ꢀꢋꢄ$)  
7,0(5ꢄꢍꢃ  
ꢍꢄFKDQQHO  
026,ꢌ6'ꢄ  
0,62ꢌ0&.ꢄ  
6&.ꢌ&.ꢄ  
7,0(5ꢄꢍꢎ  
7,0(5ꢄꢍꢓ  
ꢍꢄFRPSOꢇꢄ%5.ꢄDVꢄ$)  
:LQGRZꢄ:'*  
'%*0&8  
ꢍꢄFKDQQHO  
ꢍꢄFRPSOꢇꢄ%5.ꢄDVꢄ$)  
166ꢌ:6ꢄDVꢄ$)  
,5B287ꢄDVꢄ$)  
7HPSꢆꢄ  
VHQVRU  
ꢍꢁ[ꢄꢄ  
ꢍꢐꢑELWꢄ$'& ,)  
6<6&)*ꢄ,)  
$'ꢄLQSXW  
5;ꢇꢄ7;ꢇ&76ꢇꢄ576ꢇꢄ  
&.ꢄDVꢄ$)  
86$57ꢍ  
,ꢐ&ꢍ  
9''$  
966$  
6&/ꢇꢄ6'$ꢇꢄ60%$ꢄ  
ꢈH[WUDꢄP$ꢄ)0ꢉꢊꢄDVꢄ$)  
#ꢄ9''$  
3RZHUꢄGRPDLQꢄRIꢄDQDORJꢄEORFNVꢄꢅ  
9%$7  
9''  
9''$  
06Yꢀꢁꢂꢂꢃ9ꢃ  
10/102  
DocID026079 Rev 5  
 
STM32F038x6  
Functional overview  
3
Functional overview  
Figure 1 shows the general block diagram of the STM32F038x6 devices.  
3.1  
ARM®-Cortex®-M0 core  
®
®
The ARM Cortex -M0 is a generation of ARM 32-bit RISC processors for embedded  
systems. It has been developed to provide a low-cost platform that meets the needs of MCU  
implementation, with a reduced pin count and low-power consumption, while delivering  
outstanding computational performance and an advanced system response to interrupts.  
®
®
The ARM Cortex -M0 processors feature exceptional code-efficiency, delivering the high  
performance expected from an ARM core, with memory sizes usually associated with 8- and  
16-bit devices.  
The STM32F038x6 devices embed ARM core and are compatible with all ARM tools and  
software.  
3.2  
Memories  
The device has the following features:  
4 Kbytes of embedded SRAM accessed (read/write) at CPU clock speed with 0 wait  
states and featuring embedded parity checking with exception generation for fail-critical  
applications.  
The non-volatile memory is divided into two arrays:  
32 Kbytes of embedded Flash memory for programs and data  
Option bytes  
The option bytes are used to write-protect the memory (with 4 KB granularity) and/or  
readout-protect the whole memory with the following options:  
Level 0: no readout protection  
Level 1: memory readout protection, the Flash memory cannot be read from or  
written to if either debug features are connected or boot in RAM is selected  
®
Level 2: chip readout protection, debug features (Cortex -M0 serial wire) and  
boot in RAM selection disabled  
3.3  
Boot modes  
At startup, the boot pin and boot selector option bit are used to select one of the three boot  
options:  
boot from User Flash memory  
boot from System Memory  
boot from embedded SRAM  
The boot loader is located in System Memory. It is used to reprogram the Flash memory by  
using USART on pins PA14/PA15 or PA9/PA10.  
DocID026079 Rev 5  
11/102  
22  
 
 
 
 
Functional overview  
STM32F038x6  
3.4  
Cyclic redundancy check calculation unit (CRC)  
The CRC (cyclic redundancy check) calculation unit is used to get a CRC code from a 32-bit  
data word and a CRC-32 (Ethernet) polynomial.  
Among other applications, CRC-based techniques are used to verify data transmission or  
storage integrity. In the scope of the EN/IEC 60335-1 standard, they offer a means of  
verifying the Flash memory integrity. The CRC calculation unit helps compute a signature of  
the software during runtime, to be compared with a reference signature generated at link-  
time and stored at a given memory location.  
3.5  
Power management  
3.5.1  
Power supply schemes  
V
= V  
= 1.8 V ± 8%: external power supply for I/Os (V  
) and digital logic. It  
DD  
DDIO1  
DDIO1  
is provided externally through VDD pins.  
V
= from V to 3.6 V: external analog power supply for ADC, RCs and PLL  
DDA  
DD  
(minimum voltage to be applied to V  
externally through VDDA pin. The V  
is 2.4 V when the ADC is used). It is provided  
voltage level must be always greater or equal  
DDA  
DDA  
to the V voltage level and must be established first.  
DD  
V
= 1.65 to 3.6 V: power supply for RTC, external clock 32 kHz oscillator and  
BAT  
backup registers (through power switch) when V is not present.  
DD  
For more details on how to connect power pins, refer to Figure 11: Power supply scheme.  
3.5.2  
3.5.3  
Power-on reset  
To guarantee a proper power-on reset, the NPOR pin must be held low until V is stable.  
DD  
When V is stable, the reset state can be exited either by:  
DD  
putting the NPOR pin in high impedance (NPOR pin has an internal pull-up), or by  
forcing the pin to high level by connecting it to V  
DDA  
Low-power modes  
The STM32F038x6 microcontrollers support two low-power modes to achieve the best  
compromise between low power consumption, short startup time and available wakeup  
sources:  
Sleep mode  
In Sleep mode, only the CPU is stopped. All peripherals continue to operate and can  
wake up the CPU when an interrupt/event occurs.  
Stop mode  
Stop mode achieves very low power consumption while retaining the content of SRAM  
and registers. All clocks in the 1.8 V domain are stopped, the PLL, the HSI RC and the  
HSE crystal oscillators are disabled.  
The device can be woken up from Stop mode by any of the EXTI lines. The EXTI line  
source can be one of the 16 external lines, RTC, I2C1 or USART1.  
USART1 and I2C1 peripherals can be configured to enable the HSI RC oscillator so as  
to get clock for processing incoming data.  
12/102  
DocID026079 Rev 5  
 
 
 
 
 
STM32F038x6  
Functional overview  
Note:  
The RTC, the IWDG, and the corresponding clock sources are not stopped by entering Stop  
mode.  
3.6  
Clocks and startup  
System clock selection is performed on startup, however the internal RC 8 MHz oscillator is  
selected as default CPU clock on reset. An external 4-32 MHz clock can be selected, in  
which case it is monitored for failure. If failure is detected, the system automatically switches  
back to the internal RC oscillator. A software interrupt is generated if enabled. Similarly, full  
interrupt management of the PLL clock entry is available when necessary (for example on  
failure of an indirectly used external crystal, resonator or oscillator).  
Several prescalers allow the application to configure the frequency of the AHB and the APB  
domains. The maximum frequency of the AHB and the APB domains is 48 MHz.  
DocID026079 Rev 5  
13/102  
22  
 
Functional overview  
STM32F038x6  
Figure 2. Clock tree  
)ODVKꢄPHPRU\ꢄ  
SURJUDPPLQJꢄ  
LQWHUIDFH  
)/,7)&/.  
,ꢐ&ꢍ6:  
+6,  
+6,  
+6,  
ꢋꢄ0+]  
+6,ꢄ5&  
,ꢐ&ꢍ  
,ꢐ6ꢍ  
6<6&/.  
ꢌꢐ  
$+%ꢇꢄFRUHꢇꢄPHPRU\ꢇꢄ'0$ꢇꢄ  
&RUWH[ꢄ)&/.ꢄIUHHꢑUXQꢄFORFN  
+&/.  
ꢌꢋ  
6: 6<6&/.  
+6,  
&RUWH[ꢄ  
V\VWHPꢄWLPHUꢄ  
3//65&  
3//08/  
3//  
[ꢐꢇ[ꢀꢇꢆꢆ  
ꢆꢆꢆ[ꢍꢎ  
3&/.  
$3%ꢄ  
ꢌꢍꢇꢌꢐꢇ«  
«ꢌꢏꢍꢐ  
ꢌꢍꢇꢌꢐꢇꢌꢃꢇ  
ꢌꢋꢇꢌꢍꢎ  
3//&/.  
+6(  
SHULSKHUDOV  
35(',9  
+35(  
335(  
335(  
[ꢍꢇꢄ[ꢐ  
ꢌꢍꢇꢌꢐꢇꢆꢆꢄ  
ꢆꢆꢌꢍꢎ  
&66  
7,0ꢍꢇꢐꢇꢀꢇ  
ꢍꢃꢇꢍꢎꢇꢍꢓ  
26&B287  
+6(  
ꢃꢑꢀꢐꢄ0+]  
+6(ꢄ26&  
86$57ꢍ6:  
26&B,1  
3&/.  
/6(  
6<6&/.  
+6,  
86$57ꢍ  
57&  
ꢌꢀꢐ  
/6(  
/6(  
57&&/.  
26&ꢀꢐB,1  
ꢀꢐꢆꢓꢎꢋꢄN+]  
/6(ꢄ26&  
26&ꢀꢐB287  
57&6(/  
/6,  
ꢃꢁꢄN+]  
/6,ꢄ5&  
,:'*  
3//12',9  
$'&ꢄ  
ꢍꢃꢄ0+]ꢄ5&  
+6,ꢍꢃ  
+6,ꢍꢃ  
DV\QFKURQRXVꢄ  
FORFNꢄLQSXW  
0&235(  
3//&/.  
ꢌꢍꢇꢌꢐ  
0DLQꢄFORFN  
RXWSXW  
+6,  
+6(  
/6,  
+6,ꢍꢃ  
6<6&/.  
/6(  
ꢌꢍꢇꢌꢐꢇꢌꢃꢇꢆꢆ  
ꢆꢆꢌꢍꢐꢋ  
0&2  
/HJHQG  
EODFN  
ZKLWH  
FORFNꢄWUHHꢄHOHPHQW  
FORFNꢄWUHHꢄFRQWUROꢄHOHPHQW  
FORFNꢄOLQH  
WRꢄ7,0ꢍꢃ  
0&2  
FRQWUROꢄOLQH  
06Yꢀꢁꢂꢎꢂ9ꢃ  
3.7  
General-purpose inputs/outputs (GPIOs)  
Each of the GPIO pins can be configured by software as output (push-pull or open-drain), as  
input (with or without pull-up or pull-down) or as peripheral alternate function. Most of the  
GPIO pins are shared with digital or analog alternate functions.  
The I/O configuration can be locked if needed following a specific sequence in order to  
avoid spurious writing to the I/Os registers.  
14/102  
DocID026079 Rev 5  
 
 
STM32F038x6  
Functional overview  
3.8  
Direct memory access controller (DMA)  
The 5-channel general-purpose DMAs manage memory-to-memory, peripheral-to-memory  
and memory-to-peripheral transfers.  
The DMA supports circular buffer management, removing the need for user code  
intervention when the controller reaches the end of the buffer.  
Each channel is connected to dedicated hardware DMA requests, with support for software  
trigger on each channel. Configuration is made by software and transfer sizes between  
source and destination are independent.  
DMA can be used with the main peripherals: SPIx, I2Sx, I2Cx, USARTx, all TIMx timers  
(except TIM14) and ADC.  
3.9  
Interrupts and events  
3.9.1  
Nested vectored interrupt controller (NVIC)  
The STM32F0xx family embeds a nested vectored interrupt controller able to handle up to  
®
32 maskable interrupt channels (not including the 16 interrupt lines of Cortex -M0) and 4  
priority levels.  
Closely coupled NVIC gives low latency interrupt processing  
Interrupt entry vector table address passed directly to the core  
Closely coupled NVIC core interface  
Allows early processing of interrupts  
Processing of late arriving higher priority interrupts  
Support for tail-chaining  
Processor state automatically saved  
Interrupt entry restored on interrupt exit with no instruction overhead  
This hardware block provides flexible interrupt management features with minimal interrupt  
latency.  
3.9.2  
Extended interrupt/event controller (EXTI)  
The extended interrupt/event controller consists of 24 edge detector lines used to generate  
interrupt/event requests and wake-up the system. Each line can be independently  
configured to select the trigger event (rising edge, falling edge, both) and can be masked  
independently. A pending register maintains the status of the interrupt requests. The EXTI  
can detect an external line with a pulse width shorter than the internal clock period. Up to 38  
GPIOs can be connected to the 16 external interrupt lines.  
3.10  
Analog-to-digital converter (ADC)  
The 12-bit analog-to-digital converter has up to 10 external and 3 internal (temperature  
sensor, voltage reference, VBAT voltage measurement) channels and performs conversions  
in single-shot or scan modes. In scan mode, automatic conversion is performed on a  
selected group of analog inputs.  
The ADC can be served by the DMA controller.  
DocID026079 Rev 5  
15/102  
22  
 
 
 
 
 
Functional overview  
STM32F038x6  
An analog watchdog feature allows very precise monitoring of the converted voltage of one,  
some or all selected channels. An interrupt is generated when the converted voltage is  
outside the programmed thresholds.  
3.10.1  
Temperature sensor  
The temperature sensor (TS) generates a voltage V  
temperature.  
that varies linearly with  
SENSE  
The temperature sensor is internally connected to the ADC_IN16 input channel which is  
used to convert the sensor output voltage into a digital value.  
The sensor provides good linearity but it has to be calibrated to obtain good overall  
accuracy of the temperature measurement. As the offset of the temperature sensor varies  
from chip to chip due to process variation, the uncalibrated internal temperature sensor is  
suitable for applications that detect temperature changes only.  
To improve the accuracy of the temperature sensor measurement, each device is  
individually factory-calibrated by ST. The temperature sensor factory calibration data are  
stored by ST in the system memory area, accessible in read-only mode.  
Table 3. Temperature sensor calibration values  
Calibration value name  
Description  
Memory address  
TS ADC raw data acquired at a  
temperature of 30 °C (± 5 °C),  
VDDA= 3.3 V (± 10 mV)  
TS_CAL1  
0x1FFF F7B8 - 0x1FFF F7B9  
TS ADC raw data acquired at a  
temperature of 110 °C (± 5 °C),  
TS_CAL2  
0x1FFF F7C2 - 0x1FFF F7C3  
VDDA= 3.3 V (± 10 mV)  
3.10.2  
Internal voltage reference (V  
)
REFINT  
The internal voltage reference (V  
) provides a stable (bandgap) voltage output for the  
REFINT  
ADC. V  
is internally connected to the ADC_IN17 input channel. The precise voltage  
REFINT  
of V  
is individually measured for each part by ST during production test and stored in  
REFINT  
the system memory area. It is accessible in read-only mode.  
Table 4. Internal voltage reference calibration values  
Calibration value name  
Description  
Memory address  
Raw data acquired at a  
VREFINT_CAL  
temperature of 30 °C (± 5 °C),  
0x1FFF F7BA - 0x1FFF F7BB  
VDDA= 3.3 V (± 10 mV)  
3.10.3  
V
battery voltage monitoring  
BAT  
This embedded hardware feature allows the application to measure the V  
battery voltage  
BAT  
using the internal ADC channel ADC_IN18. As the V  
voltage may be higher than V  
,
BAT  
DDA  
and thus outside the ADC input range, the V  
pin is internally connected to a bridge  
BAT  
divider by 2. As a consequence, the converted digital value is half the V  
voltage.  
BAT  
16/102  
DocID026079 Rev 5  
 
 
 
 
 
 
STM32F038x6  
Functional overview  
3.11  
Timers and watchdogs  
The STM32F038x6 devices include up to five general-purpose timers and an advanced  
control timer.  
Table 5 compares the features of the different timers.  
Table 5. Timer feature comparison  
DMA  
Timer  
type  
Counter  
resolution  
Counter  
type  
Prescaler  
factor  
Capture/compare Complementary  
Timer  
request  
generation  
channels  
outputs  
Advanced  
control  
Up, down, integer from  
up/down 1 to 65536  
TIM1  
TIM2  
TIM3  
TIM14  
16-bit  
32-bit  
16-bit  
16-bit  
16-bit  
Yes  
Yes  
Yes  
No  
4
4
4
1
1
3
-
Up, down, integer from  
up/down 1 to 65536  
Up, down, integer from  
-
up/down  
1 to 65536  
General  
purpose  
integer from  
1 to 65536  
Up  
-
TIM16  
TIM17  
integer from  
1 to 65536  
Up  
Yes  
1
3.11.1  
Advanced-control timer (TIM1)  
The advanced-control timer (TIM1) can be seen as a three-phase PWM multiplexed on six  
channels. It has complementary PWM outputs with programmable inserted dead times. It  
can also be seen as a complete general-purpose timer. The four independent channels can  
be used for:  
input capture  
output compare  
PWM generation (edge or center-aligned modes)  
one-pulse mode output  
If configured as a standard 16-bit timer, it has the same features as the TIMx timer. If  
configured as the 16-bit PWM generator, it has full modulation capability (0-100%).  
The counter can be frozen in debug mode.  
Many features are shared with those of the standard timers which have the same  
architecture. The advanced control timer can therefore work together with the other timers  
via the Timer Link feature for synchronization or event chaining.  
3.11.2  
General-purpose timers (TIM2, 3, 14, 16, 17)  
There are five synchronizable general-purpose timers embedded in the STM32F038x6  
devices (see Table 5 for differences). Each general-purpose timer can be used to generate  
PWM outputs, or as simple time base.  
DocID026079 Rev 5  
17/102  
22  
 
 
 
 
Functional overview  
STM32F038x6  
TIM2, TIM3  
STM32F038x6 devices feature two synchronizable 4-channel general-purpose timers. TIM2  
is based on a 32-bit auto-reload up/downcounter and a 16-bit prescaler. TIM3 is based on a  
16-bit auto-reload up/downcounter and a 16-bit prescaler. They feature 4 independent  
channels each for input capture/output compare, PWM or one-pulse mode output. This  
gives up to 12 input captures/output compares/PWMs on the largest packages.  
The TIM2 and TIM3 general-purpose timers can work together or with the TIM1 advanced-  
control timer via the Timer Link feature for synchronization or event chaining.  
TIM2 and TIM3 both have independent DMA request generation.  
These timers are capable of handling quadrature (incremental) encoder signals and the  
digital outputs from 1 to 3 hall-effect sensors.  
Their counters can be frozen in debug mode.  
TIM14  
This timer is based on a 16-bit auto-reload upcounter and a 16-bit prescaler.  
TIM14 features one single channel for input capture/output compare, PWM or one-pulse  
mode output.  
Its counter can be frozen in debug mode.  
TIM16 and TIM17  
Both timers are based on a 16-bit auto-reload upcounter and a 16-bit prescaler.  
They each have a single channel for input capture/output compare, PWM or one-pulse  
mode output.  
TIM16 and TIM17 have a complementary output with dead-time generation and  
independent DMA request generation.  
Their counters can be frozen in debug mode.  
3.11.3  
3.11.4  
Independent watchdog (IWDG)  
The independent watchdog is based on an 8-bit prescaler and 12-bit downcounter with  
user-defined refresh window. It is clocked from an independent 40 kHz internal RC and as it  
operates independently from the main clock, it can operate in Stop mode. It can be used  
either as a watchdog to reset the device when a problem occurs, or as a free running timer  
for application timeout management. It is hardware or software configurable through the  
option bytes. The counter can be frozen in debug mode.  
System window watchdog (WWDG)  
The system window watchdog is based on a 7-bit downcounter that can be set as free  
running. It can be used as a watchdog to reset the device when a problem occurs. It is  
clocked from the APB clock (PCLK). It has an early warning interrupt capability and the  
counter can be frozen in debug mode.  
18/102  
DocID026079 Rev 5  
 
 
STM32F038x6  
Functional overview  
3.11.5  
SysTick timer  
This timer is dedicated to real-time operating systems, but could also be used as a standard  
down counter. It features:  
a 24-bit down counter  
autoreload capability  
maskable system interrupt generation when the counter reaches 0  
programmable clock source (HCLK or HCLK/8)  
3.12  
Real-time clock (RTC) and backup registers  
The RTC and the five backup registers are supplied through a switch that takes power either  
on V supply when present or through the V  
pin. The backup registers are five 32-bit  
DD  
BAT  
registers used to store 20 bytes of user application data when V power is not present.  
DD  
They are not reset by a system or power reset.  
The RTC is an independent BCD timer/counter. Its main features are the following:  
calendar with subseconds, seconds, minutes, hours (12 or 24 format), week day, date,  
month, year, in BCD (binary-coded decimal) format  
automatic correction for 28, 29 (leap year), 30, and 31 day of the month  
programmable alarm with wake up from Stop mode capability  
on-the-fly correction from 1 to 32767 RTC clock pulses. This can be used to  
synchronize the RTC with a master clock  
digital calibration circuit with 1 ppm resolution, to compensate for quartz crystal  
inaccuracy  
two anti-tamper detection pins with programmable filter. The MCU can be woken up  
from Stop mode on tamper event detection  
timestamp feature which can be used to save the calendar content. This function can  
be triggered by an event on the timestamp pin, or by a tamper event. The MCU can be  
woken up from Stop mode on timestamp event detection  
reference clock detection: a more precise second source clock (50 or 60 Hz) can be  
used to enhance the calendar precision  
The RTC clock sources can be:  
a 32.768 kHz external crystal  
a resonator or oscillator  
the internal low-power RC oscillator (typical frequency of 40 kHz)  
the high-speed external clock divided by 32  
3.13  
Inter-integrated circuit interface (I2C)  
2
The I C interface (I2C1) can operate in multimaster or slave modes. It can support Standard  
mode (up to 100 kbit/s), Fast mode (up to 400 kbit/s) and Fast Mode Plus (up to 1 Mbit/s)  
with extra output drive.  
It supports 7-bit and 10-bit addressing modes, multiple 7-bit slave addresses (two  
addresses, one with configurable mask). It also includes programmable analog and digital  
noise filters.  
DocID026079 Rev 5  
19/102  
22  
 
 
 
Functional overview  
STM32F038x6  
2
Table 6. Comparison of I C analog and digital filters  
Aspect  
Analog filter  
Digital filter  
Pulse width of  
suppressed spikes  
Programmable length from 1 to 15  
I2Cx peripheral clocks  
50 ns  
–Extra filtering capability vs.  
standard requirements  
Benefits  
Available in Stop mode  
–Stable length  
Wakeup from Stop on address  
match is not available when digital  
filter is enabled.  
Variations depending on  
temperature, voltage, process  
Drawbacks  
In addition, I2C1 provides hardware support for SMBUS 2.0 and PMBUS 1.1: ARP  
capability, Host notify protocol, hardware CRC (PEC) generation/verification, timeouts  
verifications and ALERT protocol management. I2C1 also has a clock domain independent  
from the CPU clock, allowing the I2C1 to wake up the MCU from Stop mode on address  
match.  
The I2C peripheral can be served by the DMA controller.  
2
Table 7. STM32F038x6 I C implementation  
I2C features(1)  
I2C1  
7-bit addressing mode  
X
X
X
X
X
X
X
X
10-bit addressing mode  
Standard mode (up to 100 kbit/s)  
Fast mode (up to 400 kbit/s)  
Fast Mode Plus with extra output drive I/Os (up to 1 Mbit/s)  
Independent clock  
SMBus  
Wakeup from STOP  
1. X = supported.  
3.14  
Universal synchronous/asynchronous receiver/transmitter  
(USART)  
The device embeds one universal synchronous/asynchronous receiver/transmitter  
(USART1) which communicates at speeds of up to 6 Mbit/s.  
It provides hardware management of the CTS, RTS and RS485 DE signals, multiprocessor  
communication mode, master synchronous communication and single-wire half-duplex  
communication mode. USART1 supports also SmartCard communication (ISO 7816), IrDA  
SIR ENDEC, LIN Master/Slave capability and auto baud rate feature, and has a clock  
domain independent of the CPU clock, allowing to wake up the MCU from Stop mode.  
The USART interface can be served by the DMA controller.  
20/102  
DocID026079 Rev 5  
 
 
 
STM32F038x6  
Functional overview  
USART1  
Table 8. STM32F038x6 USART implementation  
USART modes/features(1)  
Hardware flow control for modem  
X
X
X
X
X
X
X
X
X
X
X
X
X
Continuous communication using DMA  
Multiprocessor communication  
Synchronous mode  
Smartcard mode  
Single-wire half-duplex communication  
IrDA SIR ENDEC block  
LIN mode  
Dual clock domain and wakeup from Stop mode  
Receiver timeout interrupt  
Modbus communication  
Auto baud rate detection  
Driver Enable  
1. X = supported.  
3.15  
Serial peripheral interface (SPI) / Inter-integrated sound  
interface (I2S)  
The SPI is able to communicate up to 18 Mbit/s in slave and master modes in full-duplex  
and half-duplex communication modes. The 3-bit prescaler gives 8 master mode  
frequencies and the frame size is configurable from 4 bits to 16 bits.  
2
One standard I S interface (multiplexed with SPI1) supporting four different audio standards  
can operate as master or slave at half-duplex communication mode. It can be configured to  
transfer 16 and 24 or 32 bits with 16-bit or 32-bit data resolution and synchronized by a  
specific signal. Audio sampling frequency from 8 kHz up to 192 kHz can be set by an 8-bit  
programmable linear prescaler. When operating in master mode, it can output a clock for an  
external audio component at 256 times the sampling frequency.  
2
Table 9. STM32F038x6 SPI/I S implementation  
SPI features(1)  
SPI  
Hardware CRC calculation  
Rx/Tx FIFO  
X
X
X
X
X
NSS pulse mode  
I2S mode  
TI mode  
1. X = supported.  
DocID026079 Rev 5  
21/102  
22  
 
 
 
Functional overview  
STM32F038x6  
3.16  
Serial wire debug port (SW-DP)  
An ARM SW-DP interface is provided to allow a serial wire debugging tool to be connected  
to the MCU.  
22/102  
DocID026079 Rev 5  
 
STM32F038x6  
Pinouts and pin description  
4
Pinouts and pin description  
Figure 3. LQFP48 package pinout  
dŽƉꢀǀŝĞǁ  
ꢀꢎ  
ꢀꢏ  
ꢀꢃ  
ꢀꢀ  
ꢀꢐ  
ꢀꢍ  
ꢀꢁ  
ꢐꢂ  
ꢐꢋ  
ꢐꢓ  
ꢐꢎ  
ꢐꢏ  
9%$7  
3)ꢓ  
3)ꢎ  
3&ꢍꢀ  
3&ꢍꢃꢑ26&ꢀꢐB,1  
3&ꢍꢏꢑ26&ꢀꢐB287  
3)ꢁꢑ26&B,1  
3)ꢍꢑ26&B287  
1567  
3$ꢍꢀ  
3$ꢍꢐ  
3$ꢍꢍ  
3$ꢍꢁ  
3$ꢂ  
/4)3ꢃꢋ  
966$  
9''$  
3$ꢁ  
3$ꢍ  
3$ꢋ  
3%ꢍꢏ  
3%ꢍꢃ  
3%ꢍꢀ  
3%ꢍꢐ  
ꢍꢁ  
ꢍꢍ  
ꢍꢐ  
3$ꢐ  
06Yꢀꢃꢂꢎꢎ9ꢐ  
Figure 4. UFQFPN32 package pinout  
7RSꢄYLHZ  
ꢐꢃ  
ꢐꢀ  
ꢐꢐ  
ꢐꢍ  
ꢐꢁ  
ꢍꢂ  
ꢍꢋ  
ꢍꢓ  
9''  
3)ꢁꢑ26&B,1  
3)ꢍꢑ26&B287  
1567  
3$ꢍꢃ  
3$ꢍꢀ  
3$ꢍꢐ  
3$ꢍꢍ  
3$ꢍꢁ  
3$ꢂ  
8)4)31ꢀꢐ  
9''$  
3$ꢁ  
3$ꢍ  
3$ꢐ  
3$ꢋ  
9''  
([SRVHGꢄSDG  
966  
06Yꢀꢃꢂꢎꢓ9ꢐ  
DocID026079 Rev 5  
23/102  
32  
 
 
 
Pinouts and pin description  
STM32F038x6  
Figure 5. UFQFPN28 package pinout  
7RSꢄYLHZ  
ꢐꢍ  
ꢐꢁ  
ꢍꢂ  
ꢍꢋ  
ꢍꢓ  
ꢍꢎ  
ꢍꢏ  
%227ꢁ  
3)ꢁꢑ26&B,1  
3)ꢍꢑ26&B287  
1567  
3$ꢍꢀ  
3$ꢍꢁ  
3$ꢂ  
3$ꢋ  
8)4)31ꢐꢋ  
9''$  
3$ꢁ  
3$ꢍ  
9''  
966  
1325  
06Yꢀꢃꢂꢎꢋ9ꢐ  
Figure 6. WLCSP25 package pinout  
7RSꢄYLHZ  
$
3$ꢍꢀ  
3$ꢍꢃ  
3%ꢓ %227ꢁ 3)ꢁ  
%
&
'
(
3$ꢍꢁ  
3%ꢎ  
3$ꢃ  
3$ꢁ  
3)ꢍ  
3$ꢂ  
3%ꢏ  
3$ꢋ  
3$ꢏ  
3$ꢎ  
3$ꢍ  
3$ꢐ  
1567  
9''$  
9''  
966  
1325  
3%ꢁ  
3$ꢓ  
3$ꢀ  
:/&63ꢐꢏ  
06Yꢀꢂꢁꢀꢁ9ꢀ  
1. The above figure shows the package in top view, changing from bottom view in the previous document  
versions.  
24/102  
DocID026079 Rev 5  
 
 
STM32F038x6  
Pinouts and pin description  
Figure 7. TSSOP20 package pinout  
7RSꢄYLHZ  
76623ꢐꢁ  
ꢐꢁ  
ꢍꢂ  
ꢍꢋ  
ꢍꢓ  
ꢍꢎ  
ꢍꢏ  
ꢍꢃ  
ꢍꢀ  
ꢍꢐ  
ꢍꢍ  
%227ꢁ  
3)ꢁꢑ26&B,1  
3)ꢍꢑ26&B287  
1567  
3$ꢍꢃ  
3$ꢍꢀ  
3$ꢍꢁ  
3$ꢂ  
9''  
966  
1325  
3$ꢓ  
ꢍꢁ  
9''$  
3$ꢁ  
3$ꢍ  
3$ꢐ  
3$ꢀ  
3$ꢃ  
3$ꢎ  
3$ꢏ  
06Yꢀꢃꢂꢎꢂ9ꢐ  
DocID026079 Rev 5  
25/102  
32  
 
Pinouts and pin description  
STM32F038x6  
Table 10. Legend/abbreviations used in the pinout table  
Abbreviation Definition  
Name  
Unless otherwise specified in brackets below the pin name, the pin function  
during and after reset is the same as the actual pin name  
Pin name  
S
I
Supply pin  
Input-only pin  
Pin type  
I/O  
FT  
FTf  
TTa  
Input / output pin  
5 V-tolerant I/O  
5 V-tolerant I/O, FM+ capable  
3.3 V-tolerant I/O directly connected to ADC  
External power on reset pin with embedded weak pull-up  
resistor, powered from VDDA  
I/O structure  
POR  
TC  
B
Standard 3.3V I/O  
Dedicated BOOT0 pin  
RST  
Bidirectional reset pin with embedded weak pull-up resistor  
Unless otherwise specified by a note, all I/Os are set as floating inputs during  
and after reset  
Notes  
Alternate  
Functions selected through GPIOx_AFR registers  
functions  
Pin  
functions  
Additional  
functions  
Functions directly selected/enabled through peripheral registers  
Table 11. Pin definitions  
Pin functions  
Pin number  
Pin name  
Notes  
Additional  
functions  
(function upon reset)  
Alternate functions  
1
2
-
-
-
-
-
-
-
-
VBAT  
PC13  
S
-
-
Backup power supply  
RTC_TAMP1,  
RTC_TS,  
(1)(2)  
I/O TC  
-
RTC_OUT,  
WKUP2  
PC14-OSC32_IN  
(PC14)  
(1)(2)  
(1)(2)  
3
4
-
-
-
-
-
-
-
-
I/O TC  
I/O TC  
-
-
OSC32_IN  
PC15-OSC32_OUT  
(PC15)  
OSC32_OUT  
26/102  
DocID026079 Rev 5  
 
 
STM32F038x6  
Pinouts and pin description  
Table 11. Pin definitions (continued)  
Pin number  
Pin functions  
Additional  
Pin name  
Notes  
(function upon reset)  
Alternate functions  
functions  
PF0-OSC_IN  
(PF0)  
5
6
7
2
2
A5  
2
3
4
I/O  
I/O  
FT  
FT  
-
-
-
-
-
OSC_IN  
PF1-OSC_OUT  
(PF1)  
3
3
B5  
C5  
OSC_OUT  
Device reset input / internal reset output  
(active low)  
4
4
NRST  
I/O RST  
0
16 E1 15  
8
9
VSSA  
VDDA  
S
S
-
-
Analog ground  
(3)  
(3)  
(3)  
(3)  
5
6
5
D5  
5
Analog power supply  
ADC_IN0,  
TIM2_CH1_ETR,  
RTC_TAMP2,  
10  
11  
6
7
B4  
C4  
6
7
PA0  
PA1  
I/O TTa  
I/O TTa  
-
-
USART1_CTS  
WKUP1  
TIM2_CH2,  
7
EVENTOUT,  
ADC_IN1  
USART1_RTS  
TIM2_CH3,  
12  
13  
8
9
8
9
D4  
E5  
8
9
PA2  
PA3  
I/O TTa  
I/O TTa  
-
-
ADC_IN2  
ADC_IN3  
USART1_TX  
TIM2_CH4,  
USART1_RX  
SPI1_NSS,  
I2S1_WS,  
14 10 10 B3 10  
PA4  
PA5  
I/O TTa  
I/O TTa  
-
-
ADC_IN4  
ADC_IN5  
TIM14_CH1,  
USART1_CK  
SPI1_SCK,  
I2S1_CK,  
15 11 11 C3 11  
TIM2_CH1_ETR  
SPI1_MISO,  
I2S1_MCK,  
TIM3_CH1,  
TIM1_BKIN,  
TIM16_CH1,  
EVENTOUT  
16 12 12 D3 12  
PA6  
I/O TTa  
-
ADC_IN6  
DocID026079 Rev 5  
27/102  
32  
Pinouts and pin description  
Pin number  
STM32F038x6  
Table 11. Pin definitions (continued)  
Pin functions  
Pin name  
Notes  
Additional  
functions  
(function upon reset)  
Alternate functions  
SPI1_MOSI,  
I2S1_SD,  
TIM3_CH2,  
TIM14_CH1,  
TIM1_CH1N,  
TIM17_CH1,  
EVENTOUT  
17 13 13 E4 13  
PA7  
I/O TTa  
-
-
ADC_IN7  
TIM3_CH3,  
TIM1_CH2N,  
EVENTOUT  
18 14 14 E3  
-
-
PB0  
PB1  
I/O TTa  
I/O TTa  
ADC_IN8  
ADC_IN9  
TIM3_CH4,  
TIM14_CH1,  
TIM1_CH3N  
19 15  
-
-
-
(4)  
-
20 16 15 E2 14  
NPOR  
PB10  
I
POR  
Device power-on reset input  
TIM2_CH3,  
-
21  
-
-
-
-
-
-
-
I/O FTf  
I/O FTf  
I2C1_SCL  
TIM2_CH4,  
22  
23  
-
PB11  
-
EVENTOUT,  
I2C1_SDA  
-
-
0
16 E1 15  
VSS  
VDD  
S
S
-
-
-
-
Ground  
Digital power supply  
TIM1_BKIN,  
24 17 17 D1 16  
25  
-
-
-
-
PB12  
I/O  
FT  
-
EVENTOUT,  
SPI1_NSS  
TIM1_CH1N,  
SPI1_SCK  
26  
27  
28  
-
-
-
-
-
-
-
-
-
-
-
-
PB13  
PB14  
PB15  
I/O  
I/O  
I/O  
FT  
FT  
FT  
-
-
-
-
TIM1_CH2N,  
SPI1_MISO  
-
TIM1_CH3N,  
SPI1_MOSI  
RTC_REFIN  
USART1_CK,  
TIM1_CH1,  
EVENTOUT,  
MCO  
29 18 18 D2  
-
PA8  
I/O  
FT  
-
-
28/102  
DocID026079 Rev 5  
STM32F038x6  
Pinouts and pin description  
Table 11. Pin definitions (continued)  
Pin number  
Pin functions  
Additional  
Pin name  
Notes  
(function upon reset)  
Alternate functions  
functions  
USART1_TX,  
30 19 19 C1 17  
PA9  
I/O FTf  
I/O FTf  
-
-
-
TIM1_CH2,  
I2C1_SCL  
-
-
-
USART1_RX,  
TIM1_CH3,  
TIM17_BKIN,  
I2C1_SDA  
31 20 20 B1 18  
PA10  
USART1_CTS,  
TIM1_CH4,  
32 21  
33 22  
-
-
-
-
-
-
PA11  
PA12  
I/O  
FT  
EVENTOUT  
USART1_RTS,  
TIM1_ETR,  
I/O  
I/O  
FT  
FT  
-
-
-
EVENTOUT  
PA13  
IR_OUT,  
SWDIO  
(5)  
34 23 21 A1 19  
(SWDIO)  
35  
36  
-
-
-
-
-
-
-
-
PF6  
PF7  
I/O FTf  
I/O FTf  
-
-
I2C1_SCL  
I2C1_SDA  
-
-
PA14  
USART1_TX,  
SWCLK  
(5)  
37 24 22 A2 20  
I/O  
FT  
-
(SWCLK)  
SPI1_NSS,  
I2S1_WS,  
(6)  
38 25 23  
-
-
PA15  
I/O  
FT  
TIM2_CH_ETR,  
EVENTOUT,  
USART1_RX  
-
SPI1_SCK,  
I2S1_CK,  
(6)  
(6)  
39 26 24  
-
-
-
-
PB3  
PB4  
I/O  
I/O  
FT  
FT  
-
-
TIM2_CH2,  
EVENTOUT  
SPI1_MISO,  
I2S1_MCK,  
TIM3_CH1,  
EVENTOUT  
40 27 25  
DocID026079 Rev 5  
29/102  
32  
Pinouts and pin description  
Pin number  
STM32F038x6  
Table 11. Pin definitions (continued)  
Pin functions  
Pin name  
Notes  
Additional  
functions  
(function upon reset)  
Alternate functions  
SPI1_MOSI,  
I2S1_SD,  
41 28 26 C2  
-
PB5  
I/O  
FT  
-
I2C1_SMBA,  
TIM16_BKIN,  
TIM3_CH2  
-
I2C1_SCL,  
USART1_TX,  
TIM16_CH1N  
42 29 27 B2  
43 30 28 A3  
-
-
PB6  
PB7  
I/O FTf  
I/O FTf  
-
-
-
-
I2C1_SDA,  
USART1_RX,  
TIM17_CH1N  
44 31  
45 32  
1
-
A4  
-
1
-
BOOT0  
PB8  
I
B
-
-
Boot memory selection  
I2C1_SCL,  
I/O FTf  
-
TIM16_CH1  
I2C1_SDA,  
IR_OUT,  
46  
-
-
-
-
PB9  
I/O FTf  
-
-
TIM17_CH1,  
EVENTOUT  
47  
48  
0
1
-
-
E1  
-
-
-
VSS  
VDD  
S
S
-
-
-
-
Ground  
Digital power supply  
1. PC13, PC14 and PC15 are supplied through the power switch. Since the switch only sinks a limited amount of current  
(3 mA), the use of GPIOs PC13 to PC15 in output mode is limited:  
- The speed should not exceed 2 MHz with a maximum load of 30 pF  
- These GPIOs must not be used as current sources (e.g. to drive an LED).  
2. After the first RTC domain power-up, PC13, PC14 and PC15 operate as GPIOs. Their function then depends on the  
content of the RTC registers which are not reset by the system reset. For details on how to manage these GPIOs, refer to  
the RTC domain and RTC register descriptions in the reference manual.  
3. VSSA pin is not in package pinout. VSSA pad of the die is connected to VSS pin.  
4. These pins are powered by VDDA  
.
5. After reset, these pins are configured as SWDIO and SWCLK alternate functions, and the internal pull-up on the SWDIO  
pin and the internal pull-down on the SWCLK pin are activated.  
6. On the WLCSP25 package, PB3, PB4 and PA15 must be set to defined levels by software, as their corresponding pads on  
the silicon die are left unconnected. Apply same recommendations as for unconnected pins.  
30/102  
DocID026079 Rev 5  
Table 12. Alternate functions selected through GPIOA_AFR registers for port A  
Pin name  
AF0  
AF1  
AF2  
AF3  
AF4  
AF5  
AF6  
AF7  
TIM2_CH1_  
ETR  
PA0  
-
USART1_CTS  
-
-
-
-
-
PA1  
PA2  
PA3  
EVENTOUT  
USART1_RTS  
USART1_TX  
USART1_RX  
TIM2_CH2  
TIM2_CH3  
TIM2_CH4  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
SPI1_NSS,  
I2S1_WS  
PA4  
PA5  
PA6  
PA7  
USART1_CK  
-
-
-
-
-
-
TIM14_CH1  
-
-
-
-
-
-
SPI1_SCK,  
I2S1_CK  
TIM2_CH1_  
ETR  
-
-
-
SPI1_MISO,  
I2S1_MCK  
TIM3_CH1  
TIM3_CH2  
TIM1_BKIN  
TIM1_CH1N  
-
TIM16_CH1  
TIM17_CH1  
EVENTOUT  
EVENTOUT  
SPI1_MOSI,  
I2S1_SD  
TIM14_CH1  
PA8  
PA9  
MCO  
-
USART1_CK  
USART1_TX  
USART1_RX  
USART1_CTS  
USART1_RTS  
IR_OUT  
TIM1_CH1  
TIM1_CH2  
TIM1_CH3  
TIM1_CH4  
TIM1_ETR  
-
EVENTOUT  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
I2C1_SCL  
PA10  
PA11  
PA12  
PA13  
PA14  
TIM17_BKIN  
EVENTOUT  
EVENTOUT  
SWDIO  
I2C1_SDA  
-
-
-
-
SWCLK  
USART1_TX  
-
SPI1_NSS,  
I2S1_WS  
TIM2_CH1_  
ETR  
PA15  
USART1_RX  
EVENTOUT  
-
-
-
-
 
Table 13. Alternate functions selected through GPIOB_AFR registers for port B  
Pin name  
AF0  
AF1  
AF2  
AF3  
PB0  
PB1  
EVENTOUT  
TIM14_CH1  
-
TIM3_CH3  
TIM3_CH4  
-
TIM1_CH2N  
TIM1_CH3N  
-
-
-
PB2  
-
PB3  
SPI1_SCK, I2S1_CK  
SPI1_MISO, I2S1_MCK  
SPI1_MOSI, I2S1_SD  
USART1_TX  
USART1_RX  
-
EVENTOUT  
TIM3_CH1  
TIM3_CH2  
I2C1_SCL  
I2C1_SDA  
I2C1_SCL  
I2C1_SDA  
I2C1_SCL  
I2C1_SDA  
EVENTOUT  
-
TIM2_CH2  
EVENTOUT  
TIM16_BKIN  
TIM16_CH1N  
TIM17_CH1N  
TIM16_CH1  
TIM17_CH1  
TIM2_CH3  
TIM2_CH4  
TIM1_BKIN  
TIM1_CH1N  
TIM1_CH2N  
TIM1_CH3N  
-
PB4  
-
PB5  
I2C1_SMBA  
PB6  
-
PB7  
-
PB8  
-
PB9  
IR_OUT  
EVENTOUT  
PB10  
PB11  
PB12  
PB13  
PB14  
PB15  
-
-
-
-
-
-
-
EVENTOUT  
SPI1_NSS  
SPI1_SCK  
SPI1_MISO  
SPI1_MOSI  
-
-
 
STM32F038x6  
Memory mapping  
5
Memory mapping  
Figure 8. STM32F038x6 memory map  
ꢁ[))))ꢄ))))  
ꢁ[ꢃꢋꢁꢁꢄꢍꢓ))  
ꢁ[ꢃꢋꢁꢁꢄꢁꢁꢁꢁ  
2ESERVED  
!("ꢀ  
ꢁ[(ꢁꢍꢁꢄꢁꢁꢁꢁ  
&RUWH[ꢑ0ꢁꢄLQWHUQDOꢄ  
SHULSKHUDOV  
ꢁ[(ꢁꢁꢁꢄꢁꢁꢁꢁ  
2ESERVED  
2ESERVED  
ꢁ[&ꢁꢁꢁꢄꢁꢁꢁꢁ  
ꢁ[ꢃꢁꢁꢐꢄꢃꢀ))  
ꢁ[ꢃꢁꢁꢐꢄꢁꢁꢁꢁ  
!("ꢂ  
2ESERVED  
2ESERVED  
ꢁ[$ꢁꢁꢁꢄꢁꢁꢁꢁ  
ꢁ[ꢃꢁꢁꢍꢄꢋꢁꢁꢁ  
ꢁ[ꢃꢁꢁꢍꢄꢁꢁꢁꢁ  
!0"  
2ESERVED  
ꢁ[ꢍ)))ꢄ))))  
2ESERVED  
ꢁ[ꢍ)))ꢄ)&ꢁꢁ  
2SWLRQꢄ%\WHV  
ꢁ[ꢍ)))ꢄ)ꢋꢁꢁ  
ꢁ[ꢋꢁꢁꢁꢄꢁꢁꢁꢁ  
2ESERVED  
!0"  
6\VWHPꢄPHPRU\  
ꢁ[ꢍ)))ꢄ(&ꢁꢁ  
ꢁ[ꢃꢁꢁꢁꢄꢋꢁꢁꢁ  
ꢁ[ꢃꢁꢁꢁꢄꢁꢁꢁꢁ  
2ESERVED  
2ESERVED  
ꢁ[ꢎꢁꢁꢁꢄꢁꢁꢁꢁ  
2ESERVED  
3HULSKHUDOV  
ꢁ[ꢃꢁꢁꢁꢄꢁꢁꢁꢁ  
ꢁ[ꢁꢋꢁꢁꢄꢋꢁꢁꢁ  
2ESERVED  
)ODVKꢄPHPRU\  
ꢁ[ꢁꢋꢁꢁꢄꢁꢁꢁꢁ  
65$0  
&2'(  
ꢁ[ꢐꢁꢁꢁꢄꢁꢁꢁꢁ  
2ESERVED  
ꢁ[ꢁꢁꢁꢁꢄꢋꢁꢁꢁ  
&LASHꢁ SYSTEM  
MEMORY OR 32!-ꢁ  
DEPENDING ON "//4  
CONFIGURATION  
ꢁ[ꢁꢁꢁꢁꢄꢁꢁꢁꢁ  
ꢁ[ꢁꢁꢁꢁꢄꢁꢁꢁꢁ  
06ꢍꢂꢋꢃꢁ9ꢀ  
DocID026079 Rev 5  
33/102  
35  
 
 
Memory mapping  
Bus  
STM32F038x6  
Table 14. Peripheral register boundary addresses  
Boundary address  
Size  
Peripheral  
0x4800 1800 - 0x5FFF FFFF  
0x4800 1400 - 0x4800 17FF  
0x4800 0C00 - 0x4800 13FF  
0x4800 0800 - 0x4800 0BFF  
0x4800 0400 - 0x4800 07FF  
0x4800 0000 - 0x4800 03FF  
0x4002 4400 - 0x47FF FFFF  
0x4002 3400 - 0x4002 3FFF  
0x4002 3000 - 0x4002 33FF  
0x4002 2400 - 0x4002 2FFF  
0x4002 2000 - 0x4002 23FF  
0x4002 1400 - 0x4002 1FFF  
0x4002 1000 - 0x4002 13FF  
0x4002 0400 - 0x4002 0FFF  
0x4002 0000 - 0x4002 03FF  
0x4001 8000 - 0x4001 FFFF  
0x4001 5C00 - 0x4001 7FFF  
0x4001 5800 - 0x4001 5BFF  
0x4001 4C00 - 0x4001 57FF  
0x4001 4800 - 0x4001 4BFF  
0x4001 4400 - 0x4001 47FF  
0x4001 3C00 - 0x4001 43FF  
0x4001 3800 - 0x4001 3BFF  
0x4001 3400 - 0x4001 37FF  
0x4001 3000 - 0x4001 33FF  
0x4001 2C00 - 0x4001 2FFF  
0x4001 2800 - 0x4001 2BFF  
0x4001 2400 - 0x4001 27FF  
0x4001 0800 - 0x4001 23FF  
0x4001 0400 - 0x4001 07FF  
0x4001 0000 - 0x4001 03FF  
0x4000 8000 - 0x4000 FFFF  
~384 MB  
1KB  
Reserved  
GPIOF  
2KB  
Reserved  
GPIOC  
AHB2  
1KB  
1KB  
GPIOB  
1KB  
GPIOA  
~128 MB  
3 KB  
1 KB  
3 KB  
1 KB  
3 KB  
1 KB  
3 KB  
1 KB  
32 KB  
9KB  
Reserved  
Reserved  
CRC  
Reserved  
Flash memory interface  
Reserved  
RCC  
AHB1  
Reserved  
DMA  
Reserved  
Reserved  
DBGMCU  
Reserved  
TIM17  
1KB  
3KB  
1KB  
1KB  
TIM16  
2KB  
Reserved  
USART1  
Reserved  
SPI1/I2S1  
TIM1  
1KB  
APB  
1KB  
1KB  
1KB  
1KB  
Reserved  
ADC  
1KB  
7KB  
Reserved  
EXTI  
1KB  
1KB  
SYSCFG  
Reserved  
32 KB  
34/102  
DocID026079 Rev 5  
 
STM32F038x6  
Bus  
Memory mapping  
Peripheral  
Table 14. Peripheral register boundary addresses (continued)  
Boundary address  
Size  
0x4000 7400 - 0x4000 7FFF  
0x4000 7000 - 0x4000 73FF  
0x4000 5800 - 0x4000 6FFF  
0x4000 5400 - 0x4000 57FF  
0x4000 3400 - 0x4000 53FF  
0x4000 3000 - 0x4000 33FF  
0x4000 2C00 - 0x4000 2FFF  
0x4000 2800 - 0x4000 2BFF  
0x4000 2400 - 0x4000 27FF  
0x4000 2000 - 0x4000 23FF  
0x4000 0800 - 0x4000 1FFF  
0x4000 0400 - 0x4000 07FF  
0x4000 0000 - 0x4000 03FF  
3KB  
1KB  
6KB  
1KB  
8KB  
1KB  
1KB  
1KB  
1KB  
1KB  
6KB  
1KB  
1KB  
Reserved  
PWR  
Reserved  
I2C1  
Reserved  
IWDG  
APB  
WWDG  
RTC  
Reserved  
TIM14  
Reserved  
TIM3  
TIM2  
DocID026079 Rev 5  
35/102  
35  
Electrical characteristics  
STM32F038x6  
6
Electrical characteristics  
6.1  
Parameter conditions  
Unless otherwise specified, all voltages are referenced to V  
.
SS  
6.1.1  
Minimum and maximum values  
Unless otherwise specified, the minimum and maximum values are guaranteed in the worst  
conditions of ambient temperature, supply voltage and frequencies by tests in production on  
100% of the devices with an ambient temperature at T = 25 °C and T = T max (given by  
A
A
A
the selected temperature range).  
Data based on characterization results, design simulation and/or technology characteristics  
are indicated in the table footnotes and are not tested in production. Based on  
characterization, the minimum and maximum values refer to sample tests and represent the  
mean value plus or minus three times the standard deviation (mean ±3σ).  
6.1.2  
6.1.3  
Typical values  
Unless otherwise specified, typical data are based on T = 25 °C, V = 1.8 V and V  
3.3 V. They are given only as design guidelines and are not tested.  
=
A
DD  
DDA  
Typical ADC accuracy values are determined by characterization of a batch of samples from  
a standard diffusion lot over the full temperature range, where 95% of the devices have an  
error less than or equal to the value indicated (mean ±2σ).  
Typical curves  
Unless otherwise specified, all typical curves are given only as design guidelines and are  
not tested.  
6.1.4  
6.1.5  
Loading capacitor  
The loading conditions used for pin parameter measurement are shown in Figure 9.  
Pin input voltage  
The input voltage measurement on a pin of the device is described in Figure 10.  
Figure 9. Pin loading conditions  
Figure 10. Pin input voltage  
0&8ꢄSLQ  
0&8ꢄSLQ  
&ꢄ ꢄꢏꢁꢄS)  
9,1  
06ꢍꢂꢐꢍꢁ9ꢍ  
06ꢍꢂꢐꢍꢍ9ꢍ  
36/102  
DocID026079 Rev 5  
 
 
 
 
 
 
 
 
 
 
STM32F038x6  
Electrical characteristics  
6.1.6  
Power supply scheme  
Figure 11. Power supply scheme  
9%$7  
%DFNXSꢄFLUFXLWU\  
ꢈ/6(ꢇꢄ57&ꢇ  
%DFNXSꢄUHJLVWHUVꢊ  
ꢍꢆꢎꢏꢄ±ꢄꢀꢆꢎꢄ9  
3RZHUꢄVZLWFK  
1325  
9''  
9&25(  
ꢐꢄ[ꢄ9''  
9'',2ꢍ  
287  
.HUQHOꢄORJLF  
,2  
ORJLF  
ꢐꢄ[ꢄꢍꢁꢁꢄQ)  
ꢉꢍꢄ[ꢄꢃꢆꢓꢄ—)  
ꢈ&38ꢇꢄ'LJLWDO  
*3,2V  
ꢐꢄ[ꢄ966  
9''$  
ꢒꢄ0HPRULHVꢊ  
,1  
9''$  
$QDORJꢅ  
ꢈ5&Vꢇꢄ3//ꢇꢄ«ꢊ  
ꢍꢁꢄQ)  
ꢉꢍꢄ—)  
95()ꢉ  
95()ꢑ  
$'&  
966$  
06Yꢀꢃꢂꢓꢀ9ꢍ  
Caution:  
Each power supply pair (V /V , V  
/V  
etc.) must be decoupled with filtering ceramic  
DD SS DDA SSA  
capacitors as shown above. These capacitors must be placed as close as possible to, or  
below, the appropriate pins on the underside of the PCB to ensure the good functionality of  
the device.  
DocID026079 Rev 5  
37/102  
79  
 
 
 
Electrical characteristics  
STM32F038x6  
6.1.7  
Current consumption measurement  
Figure 12. Current consumption measurement scheme  
,
''B9%$7  
9
%$7  
,
''  
9
''  
,
''$  
9
''$  
06ꢍꢂꢐꢍꢀ9ꢍ  
38/102  
DocID026079 Rev 5  
 
 
STM32F038x6  
Electrical characteristics  
6.2  
Absolute maximum ratings  
Stresses above the absolute maximum ratings listed in Table 15: Voltage characteristics,  
Table 16: Current characteristics and Table 17: Thermal characteristics may cause  
permanent damage to the device. These are stress ratings only and functional operation of  
the device at these conditions is not implied. Exposure to maximum rating conditions for  
extended periods may affect device reliability.  
(1)  
Table 15. Voltage characteristics  
Symbol  
Ratings  
Min  
Max  
Unit  
V
DD–VSS External main supply voltage  
0.3  
- 0.3  
1.95  
V
V
VDDA–VSS External analog supply voltage  
4.0  
VDD–VDDA Allowed voltage difference for VDD > VDDA  
-
0.4  
V
VBAT–VSS External backup supply voltage  
- 0.3  
4.0  
V
Input voltage on FT and FTf pins  
VSS 0.3  
VSS 0.3  
VSS 0.3  
0
VDDIOx + 4.0 (3)  
V
Input voltage on POR pins  
4.0  
4.0  
9.0  
4.0  
50  
V
(2)  
VIN  
Input voltage on TTa pins  
BOOT0  
V
V
Input voltage on any other pin  
Variations between different VDD power pins  
VSS 0.3  
-
V
|VDDx  
|VSSx - VSS  
VESD(HBM)  
|
mV  
Variations between all the different ground  
pins  
|
-
50  
mV  
-
Electrostatic discharge voltage  
(human body model)  
see Section 6.3.11: Electrical  
sensitivity characteristics  
1. All main power (VDD, VDDA) and ground (VSS, VSSA) pins must always be connected to the external power  
supply, in the permitted range.  
2. VIN maximum must always be respected. Refer to Table 16: Current characteristicsfor the maximum  
allowed injected current values.  
3. Valid only if the internal pull-up/pull-down resistors are disabled. If internal pull-up or pull-down resistor is  
enabled, the maximum limit is 4 V.  
DocID026079 Rev 5  
39/102  
79  
 
 
Electrical characteristics  
Symbol  
STM32F038x6  
Table 16. Current characteristics  
Ratings  
Max.  
Unit  
ΣIVDD  
ΣIVSS  
Total current into sum of all VDD power lines (source)(1)  
Total current out of sum of all VSS ground lines (sink)(1)  
Maximum current into each VDD power pin (source)(1)  
Maximum current out of each VSS ground pin (sink)(1)  
Output current sunk by any I/O and control pin  
Output current source by any I/O and control pin  
Total output current sunk by sum of all I/Os and control pins(2)  
Total output current sourced by sum of all I/Os and control pins(2)  
Injected current on POR, B, FT and FTf pins  
120  
-120  
100  
-100  
25  
IVDD(PIN)  
IVSS(PIN)  
IIO(PIN)  
-25  
80  
ΣIIO(PIN)  
-80  
mA  
-5/+0(4)  
(3)  
IINJ(PIN)  
Injected current on TC and RST pin  
± 5  
Injected current on TTa pins(5)  
± 5  
ΣIINJ(PIN)  
Total injected current (sum of all I/O and control pins)(6)  
± 25  
1. All main power (VDD, VDDA) and ground (VSS, VSSA) pins must always be connected to the external power supply, in the  
permitted range.  
2. This current consumption must be correctly distributed over all I/Os and control pins. The total output current must not be  
sunk/sourced between two consecutive power supply pins referring to high pin count QFP packages.  
3. A positive injection is induced by VIN > VDDIOx while a negative injection is induced by VIN < VSS. IINJ(PIN) must never be  
exceeded. Refer to Table 15: Voltage characteristics for the maximum allowed input voltage values.  
4. Positive injection is not possible on these I/Os and does not occur for input voltages lower than the specified maximum  
value.  
5. On these I/Os, a positive injection is induced by VIN > VDDA. Negative injection disturbs the analog performance of the  
device. See note (2) below Table 51: ADC accuracy.  
6. When several inputs are submitted to a current injection, the maximum ΣIINJ(PIN) is the absolute sum of the positive and  
negative injected currents (instantaneous values).  
Table 17. Thermal characteristics  
Symbol  
Ratings  
Storage temperature range  
Maximum junction temperature  
Value  
Unit  
TSTG  
TJ  
–65 to +150  
150  
°C  
°C  
40/102  
DocID026079 Rev 5  
 
 
STM32F038x6  
Electrical characteristics  
6.3  
Operating conditions  
6.3.1  
General operating conditions  
Table 18. General operating conditions  
Symbol  
Parameter  
Conditions  
Min  
Max  
Unit  
fHCLK  
fPCLK  
VDD  
Internal AHB clock frequency  
Internal APB clock frequency  
Standard operating voltage  
-
-
-
0
0
48  
48  
MHz  
V
1.65  
1.95  
Analog operating voltage  
(ADC not used)  
VDD  
2.4  
3.6  
3.6  
Must have a potential equal  
to or higher than VDD  
VDDA  
V
V
Analog operating voltage  
(ADC used)  
VBAT  
Backup operating voltage  
-
1.65  
–0.3  
–0.3  
–0.3  
0
3.6  
TC and RST I/O  
TTa and POR I/O  
FT and FTf I/O  
BOOT0  
VDDIOx+0.3  
V
DDA+0.3(1)  
5.2(1)  
5.2  
VIN  
I/O input voltage  
V
LQFP48  
-
364  
UFQFPN32  
-
526  
Power dissipation at TA = 85 °C  
for suffix 6 or TA = 105 °C for  
suffix 7(2)  
PD  
UFQFPN28  
-
169  
mW  
WLCSP25  
-
267  
TSSOP20  
-
182  
Maximum power dissipation  
Low power dissipation(3)  
Maximum power dissipation  
Low power dissipation(3)  
Suffix 6 version  
Suffix 7 version  
–40  
–40  
–40  
–40  
–40  
–40  
85  
Ambient temperature for the  
suffix 6 version  
°C  
°C  
°C  
105  
TA  
TJ  
105  
Ambient temperature for the  
suffix 7 version  
125  
105  
Junction temperature range  
125  
1. For operation with a voltage higher than VDDIOx + 0.3 V, the internal pull-up resistor must be disabled.  
2. If TA is lower, higher PD values are allowed as long as TJ does not exceed TJmax. See Section 7.6: Thermal characteristics.  
3. In low power dissipation state, TA can be extended to this range as long as TJ does not exceed TJmax (see Section 7.6:  
Thermal characteristics).  
6.3.2  
Operating conditions at power-up / power-down  
The parameters given in Table 19 are derived from tests performed under the ambient  
temperature condition summarized in Table 18.  
DocID026079 Rev 5  
41/102  
79  
 
 
 
 
 
 
Electrical characteristics  
Symbol  
STM32F038x6  
Table 19. Operating conditions at power-up / power-down  
Parameter  
Conditions  
Min  
0
Max  
Unit  
VDD rise time rate  
VDD fall time rate  
VDDA rise time rate  
VDDA fall time rate  
tVDD  
-
20  
0
µs/V  
tVDDA  
-
20  
6.3.3  
Embedded reference voltage  
The parameters given in Table 20 are derived from tests performed under the ambient  
temperature and supply voltage conditions summarized in Table 18: General operating  
conditions.  
Table 20. Embedded internal reference voltage  
Symbol  
Parameter  
Conditions  
Min  
Typ Max  
Unit  
Internal reference voltage –40 °C < TA < +105 °C  
1.2  
1.23 1.25  
V
V
REFINT  
ADC_IN17 buffer startup  
time  
tSTART  
-
-
-
-
10(1)  
µs  
µs  
ADC sampling time when  
reading the internal  
reference voltage  
4(1)  
tS_vrefint  
-
-
Internal reference voltage  
spread over the  
10(1)  
VREFINT  
VDDA = 3 V  
-
-
mV  
temperature range  
- 100(1)  
1.5  
100(1)  
4.5  
TCoeff  
Temperature coefficient  
-
-
-
ppm/°C  
ms  
TVREFINT_RDY Internal reference voltage  
2.5  
(2)  
temporization  
1. Guaranteed by design, not tested in production.  
2. Guaranteed by design, not tested in production. This parameter is the latency between the time when pin  
NPOR is set to 1 by the application and the time when the VREFINTRDYF status bit is set to 1 by the  
hardware.  
6.3.4  
Supply current characteristics  
The current consumption is a function of several parameters and factors such as the  
operating voltage, ambient temperature, I/O pin loading, device software configuration,  
operating frequencies, I/O pin switching rate, program location in memory and executed  
binary code.  
The current consumption is measured as described in Figure 12: Current consumption  
measurement scheme.  
All Run-mode current consumption measurements given in this section are performed with a  
reduced code that gives a consumption equivalent to CoreMark code.  
42/102  
DocID026079 Rev 5  
 
 
 
 
 
STM32F038x6  
Electrical characteristics  
Typical and maximum current consumption  
The MCU is placed under the following conditions:  
All I/O pins are in analog input mode  
All peripherals are disabled except when explicitly mentioned  
The Flash memory access time is adjusted to the f  
frequency:  
HCLK  
0 wait state and Prefetch OFF from 0 to 24 MHz  
1 wait state and Prefetch ON above 24 MHz  
= f  
When the peripherals are enabled f  
PCLK  
HCLK  
The parameters given in Table 21 to Table 25 are derived from tests performed under  
ambient temperature and supply voltage conditions summarized in Table 18: General  
operating conditions.  
DocID026079 Rev 5  
43/102  
79  
Electrical characteristics  
STM32F038x6  
Table 21. Typical and maximum current consumption from V supply at V = 1.8 V  
DD  
DD  
All peripherals enabled  
All peripherals disabled  
(1)  
(1)  
Symbol Parameter Conditions fHCLK  
Max @ TA  
Max @ TA  
Unit  
Typ  
Typ  
25 °C 85 °C 105 °C  
25 °C 85 °C 105 °C  
48 MHz 18.2 19.7  
32 MHz 12.4 13.1  
20.1  
13.4  
10.6  
3.8  
20.3  
13.6  
10.7  
3.8  
11.2 11.7  
12.1  
8.3  
6.7  
2.5  
0.7  
12.4  
8.7  
6.8  
2.6  
11.1  
7.4  
5.7  
2.0  
0.3  
11.2  
7.6  
5.7  
2.1  
2.7  
1.8  
1.4  
0.5  
0.2  
2.7  
1.9  
1.5  
0.5  
12.4  
8.6  
6.8  
2.6  
0.7  
12.8  
9.0  
6.9  
2.6  
11.4  
7.6  
5.7  
2.1  
0.3  
11.6  
7.8  
5.8  
2.1  
2.8  
1.9  
1.5  
0.5  
0.2  
2.8  
2.0  
1.5  
0.6  
7.6  
6.1  
2.2  
0.5  
8.2  
6.6  
2.4  
0.6  
External  
clock (HSE 24 MHz 9.8 10.4  
bypass)  
Supply  
current in  
Run mode,  
code  
executing  
from Flash  
memory  
8 MHz 3.3  
1 MHz 0.7  
3.7  
0.8  
0.9  
1.0  
48 MHz 18.5 20.0  
32 MHz 12.7 13.4  
24 MHz 10.0 10.6  
20.4  
13.6  
10.8  
3.9  
20.6  
14.0  
10.9  
4.0  
11.6 12.1  
7.9  
6.2  
2.3  
8.5  
6.7  
2.5  
Internal  
clock (HSI)  
8 MHz 3.4  
3.8  
48 MHz 17.2 18.7  
32 MHz 11.4 12.2  
19.1  
12.4  
9.6  
19.3  
12.7  
9.7  
10.2 10.6  
6.7  
5.1  
1.7  
0.2  
7.2  
5.5  
2.0  
0.3  
External  
clock (HSE 24 MHz 8.9  
9.4  
3.2  
0.5  
Supply  
current in  
Run mode,  
code  
bypass)  
8 MHz 2.8  
3.3  
3.3  
IDD  
1 MHz 0.3  
0.5  
0.5  
mA  
executing  
from RAM  
48 MHz 17.5 19.0  
32 MHz 11.7 12.4  
19.4  
12.7  
9.8  
19.6  
12.9  
9.9  
10.4 10.8  
6.9  
5.2  
1.7  
2.4  
1.5  
1.2  
0.4  
0.1  
2.4  
1.6  
1.3  
0.5  
7.4  
5.6  
2.0  
2.6  
1.7  
1.3  
0.4  
0.1  
2.7  
1.8  
1.4  
0.5  
Internal  
clock (HSI)  
24 MHz 9.1  
8 MHz 3.0  
9.6  
3.3  
3.4  
3.5  
48 MHz 10.4 11.7  
12.0  
7.8  
12.3  
8.1  
32 MHz 6.9  
7.6  
5.9  
2.2  
0.3  
External  
clock (HSE 24 MHz 5.4  
6.1  
6.2  
bypass)  
8 MHz 1.7  
2.3  
2.4  
Supply  
current in  
Sleep  
1 MHz 0.3  
0.4  
0.4  
mode  
48 MHz 10.6 11.8  
12.1  
8.1  
12.4  
8.3  
32 MHz 7.2  
24 MHz 5.5  
8 MHz 1.9  
7.9  
6.1  
2.4  
Internal  
clock (HSI)  
6.3  
6.4  
2.5  
2.6  
1. Data based on characterization results, not tested in production unless otherwise specified.  
44/102  
DocID026079 Rev 5  
 
STM32F038x6  
Electrical characteristics  
Table 22. Typical and maximum current consumption from the V  
supply  
DDA  
V
= 2.4 V  
V
= 3.6 V  
DDA  
DDA  
Conditions  
(2)  
(2)  
Symbol Parameter  
fHCLK  
Unit  
Max @ TA  
25 °C 85 °C 105 °C  
Max @ TA  
25 °C 85 °C 105 °C  
(1)  
Typ  
Typ  
48 MHz 147  
32 MHz 101  
24 MHz 79  
170  
121  
97  
180  
127  
101  
3
184  
129  
103  
3
160  
109  
86  
183  
129  
104  
3
195  
137  
110  
3
199  
140  
112  
4
HSE  
bypass,  
PLL on  
Supply  
current in  
Run or  
Sleep  
mode,  
HSE  
bypass,  
PLL off  
8 MHz  
1 MHz  
1
1
3
2
2
2
2
2
2
3
3
IDDA  
µA  
code  
48 MHz 219  
32 MHz 172  
24 MHz 150  
243  
195  
170  
256  
203  
177  
260  
206  
180  
240  
190  
165  
267  
210  
186  
279  
222  
193  
284  
226  
196  
executing  
from Flash  
memory or  
RAM  
HSI clock,  
PLL on  
HSI clock,  
PLL off  
8 MHz  
71  
83  
87  
88  
81  
95  
97  
98  
1. Current consumption from the VDDA supply is independent of whether the digital peripherals are enabled or disabled, being  
in Run or Sleep mode or executing from Flash memory or RAM. Furthermore, when the PLL is off, IDDA is independent from  
the frequency.  
2. Data based on characterization results, not tested in production unless otherwise specified.  
Table 23. Typical and maximum consumption in Stop mode  
Typ. @ VDD = 1.8 V  
Max  
Symbol Parameter  
Conditions  
Unit  
IDD  
Supply  
current in  
Stop mode  
0.4  
2.3  
1.5  
14.9  
2.6  
35.6  
3.4  
All oscillators OFF  
µA  
IDDA  
0.8 0.8 0.8 0.9 0.9 1.0 1.1  
DocID026079 Rev 5  
45/102  
79  
 
 
Electrical characteristics  
STM32F038x6  
Table 24. Typical and maximum current consumption from the V  
supply  
BAT  
Typ @ VBAT  
Max(1)  
Symbol Parameter  
Conditions  
Unit  
TA =  
TA =  
TA =  
25 °C 85 °C 105 °C  
LSE & RTC ON; “Xtal  
mode”: lower driving  
capability;  
0.5 0.5 0.6 0.7 0.8 0.9  
1.0  
1.3  
1.3  
1.6  
1.7  
2.1  
RTC  
domain  
supply  
current  
LSEDRV[1:0] = '00'  
IDD VBAT  
_
µA  
LSE & RTC ON; “Xtal  
mode” higher driving  
capability;  
0.8 0.8 0.9 1.0 1.1 1.2  
LSEDRV[1:0] = '11'  
1. Data based on characterization results, not tested in production.  
Typical current consumption  
The MCU is placed under the following conditions:  
V
= V  
= 1.8 V  
DDA  
DD  
All I/O pins are in analog input configuration  
The Flash memory access time is adjusted to f  
frequency:  
HCLK  
0 wait state and Prefetch OFF from 0 to 24 MHz  
1 wait state and Prefetch ON above 24 MHz  
= f  
When the peripherals are enabled, f  
PCLK  
HCLK  
PLL is used for frequencies greater than 8 MHz  
AHB prescaler of 2, 4, 8 and 16 is used for the frequencies 4 MHz, 2 MHz, 1 MHz and  
500 kHz respectively  
46/102  
DocID026079 Rev 5  
 
STM32F038x6  
Electrical characteristics  
Table 25. Typical current consumption, code executing from Flash memory,  
running from HSE 8 MHz crystal  
Typical consumption in  
Run mode  
Typical consumption in  
Sleep mode  
Symbol Parameter  
fHCLK  
Unit  
Peripherals Peripherals Peripherals Peripherals  
enabled  
disabled  
enabled  
disabled  
48 MHz  
36 MHz  
32 MHz  
24 MHz  
16 MHz  
8 MHz  
18.5  
14.1  
12.7  
9.7  
11.6  
8.9  
8.1  
6.2  
4.3  
2.3  
1.4  
0.9  
0.7  
0.6  
10.8  
8.2  
7.3  
5.6  
3.9  
1.9  
1.3  
0.9  
0.7  
0.6  
2.6  
2.0  
1.8  
1.4  
1.1  
0.6  
0.5  
0.5  
0.4  
0.4  
Current  
consumption  
from VDD  
supply  
6.7  
IDD  
mA  
3.4  
4 MHz  
2.1  
2 MHz  
1.3  
1 MHz  
0.9  
500 kHz  
48 MHz  
36 MHz  
32 MHz  
24 MHz  
16 MHz  
8 MHz  
0.7  
136  
105  
96  
76  
56  
1
Current  
consumption  
from VDDA  
supply  
IDDA  
μA  
4 MHz  
1
2 MHz  
1
1 MHz  
1
500 kHz  
1
I/O system current consumption  
The current consumption of the I/O system has two components: static and dynamic.  
I/O static current consumption  
All the I/Os used as inputs with pull-up generate current consumption when the pin is  
externally held low. The value of this current consumption can be simply computed by using  
the pull-up/pull-down resistors values given in Table 44: I/O static characteristics.  
For the output pins, any external pull-down or external load must also be considered to  
estimate the current consumption.  
Additional I/O current consumption is due to I/Os configured as inputs if an intermediate  
voltage level is externally applied. This current consumption is caused by the input Schmitt  
DocID026079 Rev 5  
47/102  
79  
 
Electrical characteristics  
STM32F038x6  
trigger circuits used to discriminate the input value. Unless this specific configuration is  
required by the application, this supply current consumption can be avoided by configuring  
these I/Os in analog mode. This is notably the case of ADC input pins which should be  
configured as analog inputs.  
Caution:  
Any floating input pin can also settle to an intermediate voltage level or switch inadvertently,  
as a result of external electromagnetic noise. To avoid current consumption related to  
floating pins, they must either be configured in analog mode, or forced internally to a definite  
digital value. This can be done either by using pull-up/down resistors or by configuring the  
pins in output mode.  
I/O dynamic current consumption  
In addition to the internal peripheral current consumption measured previously (see  
Table 27: Peripheral current consumption), the I/Os used by an application also contribute  
to the current consumption. When an I/O pin switches, it uses the current from the I/O  
supply voltage to supply the I/O pin circuitry and to charge/discharge the capacitive load  
(internal or external) connected to the pin:  
ISW = VDDIOx × fSW × C  
where  
I
is the current sunk by a switching I/O to charge/discharge the capacitive load  
SW  
V
is the I/O supply voltage  
DDIOx  
f
is the I/O switching frequency  
SW  
C is the total capacitance seen by the I/O pin: C = C  
+ C  
+ C  
EXT S  
INT  
C is the PCB board capacitance including the pad pin.  
S
The test pin is configured in push-pull output mode and is toggled by software at a fixed  
frequency.  
48/102  
DocID026079 Rev 5  
STM32F038x6  
Electrical characteristics  
Table 26. Switching output I/O current consumption  
I/O toggling  
frequency (fSW  
Symbol  
Parameter  
Conditions(1)  
Typ  
Unit  
)
2 MHz  
4 MHz  
8 MHz  
18 MHz  
36 MHz  
48 MHz  
2 MHz  
4 MHz  
8 MHz  
18 MHz  
36 MHz  
48 MHz  
2 MHz  
4 MHz  
8 MHz  
18 MHz  
36 MHz  
2 MHz  
4 MHz  
8 MHz  
18 MHz  
36 MHz  
2 MHz  
4 MHz  
8 MHz  
18 MHz  
0.09  
0.17  
0.34  
0.79  
1.50  
2.06  
0.13  
0.26  
0.50  
1.18  
2.27  
3.03  
0.18  
0.36  
0.69  
1.60  
3.27  
0.23  
0.45  
0.87  
2.0  
VDDIOx = 1.8 V  
CEXT = 0 pF  
C = CINT + CEXT + CS  
VDDIOx = 1.8 V  
CEXT = 10 pF  
C = CINT + CEXT + CS  
I/O current  
consumption  
ISW  
mA  
VDDIOx = 1.8 V  
CEXT = 22 pF  
C = CINT + CEXT + CS  
VDDIOx = 1.8 V  
CEXT = 33 pF  
C = CINT + CEXT + CS  
3.7  
0.29  
0.55  
1.09  
2.43  
VDDIOx = 1.8 V  
CEXT = 47 pF  
C = CINT + CEXT + CS  
1. CS = 5 pF (estimated value).  
DocID026079 Rev 5  
49/102  
79  
 
Electrical characteristics  
STM32F038x6  
On-chip peripheral current consumption  
The current consumption of the on-chip peripherals is given in Table 27. The MCU is placed  
under the following conditions:  
All I/O pins are in analog mode  
All peripherals are disabled unless otherwise mentioned  
The given value is calculated by measuring the current consumption  
with all peripherals clocked off  
with only one peripheral clocked on  
Ambient operating temperature and supply voltage conditions summarized in Table 15:  
Voltage characteristics  
The power consumption of the digital part of the on-chip peripherals is given in  
Table 27. The power consumption of the analog part of the peripherals (where  
applicable) is indicated in each related section of the datasheet.  
Table 27. Peripheral current consumption  
Peripheral  
BusMatrix(1)  
Typical consumption at 25 °C  
Unit  
3.8  
6.3  
DMA1  
SRAM  
0.7  
Flash memory interface  
CRC  
15.2  
1.61  
9.4  
AHB  
µA/MHz  
GPIOA  
GPIOB  
11.6  
1.9  
GPIOC  
GPIOF  
0.8  
All AHB peripherals  
47.5  
50/102  
DocID026079 Rev 5  
 
STM32F038x6  
Electrical characteristics  
Table 27. Peripheral current consumption (continued)  
Peripheral  
Typical consumption at 25 °C  
Unit  
APB-Bridge (2)  
2.6  
1.7  
SYSCFG  
ADC (3)  
4.2  
TIM1  
17.1  
9.6  
SPI1  
USART1  
17.4  
8.2  
TIM16  
TIM17  
8.0  
APB  
µA/MHz  
DBG (MCU Debug Support)  
0.5  
TIM2  
17.4  
12.8  
6.0  
TIM3  
TIM14  
WWDG  
1.5  
I2C1  
5.1  
PWR  
1.2  
All APB peripherals  
110.9  
1. The BusMatrix automatically is active when at least one master is ON (CPU or DMA1).  
2. The APBx Bridge is automatically active when at least one peripheral is ON on the same Bus.  
3. The power consumption of the analog part (IDDA) of peripherals such as ADC is not included. Refer to the  
tables of characteristics in the subsequent sections.  
DocID026079 Rev 5  
51/102  
79  
Electrical characteristics  
STM32F038x6  
6.3.5  
Wakeup time from low-power mode  
The wakeup times given in Table 28 are the latency between the event and the execution of  
the first user instruction. The device goes in low-power mode after the WFE (Wait For  
Event) instruction, in the case of a WFI (Wait For Interruption) instruction, 16 CPU cycles  
must be added to the following timings due to the interrupt latency in the Cortex M0  
architecture.  
The SYSCLK clock source setting is kept unchanged after wakeup from Sleep mode.  
During wakeup from Stop mode, SYSCLK takes the default setting: HSI 8 MHz.  
The wakeup source from Sleep and Stop mode is an EXTI line configured in event mode.  
All timings are derived from tests performed under the ambient temperature and supply  
voltage conditions summarized in Table 18: General operating conditions..  
Table 28. Low-power mode wakeup timings  
Typ @ VDDA  
Symbol  
Parameter  
Max  
Unit  
= 1.8 V = 3.3 V  
3.5 2.8  
4 SYSCLK cycles  
tWUSTOP  
Wakeup from Stop mode  
Wakeup from Sleep mode  
5.3  
-
µs  
µs  
tWUSLEEP  
6.3.6  
External clock source characteristics  
High-speed external user clock generated from an external source  
In bypass mode the HSE oscillator is switched off and the input pin is a standard GPIO.  
The external clock signal has to respect the I/O characteristics in Section 6.3.13. However,  
the recommended clock input waveform is shown in Figure 13: High-speed external clock  
source AC timing diagram.  
Table 29. High-speed external user clock characteristics  
Symbol  
Parameter(1)  
Min  
Typ  
Max  
Unit  
fHSE_ext User external clock source frequency  
VHSEH OSC_IN input pin high level voltage  
-
8
-
32  
MHz  
0.7 VDDIOx  
VSS  
VDDIOx  
V
VHSEL  
OSC_IN input pin low level voltage  
OSC_IN high or low time  
-
0.3 VDDIOx  
tw(HSEH)  
tw(HSEL)  
15  
-
-
-
-
ns  
tr(HSE)  
tf(HSE)  
OSC_IN rise or fall time  
20  
1. Guaranteed by design, not tested in production.  
52/102  
DocID026079 Rev 5  
 
 
 
 
STM32F038x6  
Electrical characteristics  
Figure 13. High-speed external clock source AC timing diagram  
W
Zꢈ+6(+ꢊ  
9
+6(+  
 
 
9
+6(/  
W
W
W
W
Uꢈ+6(ꢊ  
Iꢈ+6(ꢊ  
Zꢈ+6(/ꢊ  
7
+6(  
06ꢍꢂꢐꢍꢃ9ꢐ  
Low-speed external user clock generated from an external source  
In bypass mode the LSE oscillator is switched off and the input pin is a standard GPIO.  
The external clock signal has to respect the I/O characteristics in Section 6.3.13. However,  
the recommended clock input waveform is shown in Figure 14.  
Table 30. Low-speed external user clock characteristics  
Symbol  
Parameter(1)  
Min  
Typ  
Max  
Unit  
fLSE_ext User external clock source frequency  
VLSEH OSC32_IN input pin high level voltage  
VLSEL OSC32_IN input pin low level voltage  
-
32.768  
1000  
VDDIOx  
kHz  
0.7 VDDIOx  
VSS  
-
-
V
0.3 VDDIOx  
tw(LSEH)  
OSC32_IN high or low time  
tw(LSEL)  
450  
-
-
-
-
ns  
tr(LSE)  
OSC32_IN rise or fall time  
tf(LSE)  
50  
1. Guaranteed by design, not tested in production.  
Figure 14. Low-speed external clock source AC timing diagram  
W
Zꢈ/6(+ꢊ  
9
/6(+  
 
 
9
/6(/  
W
W
W
Uꢈ/6(ꢊ  
Iꢈ/6(ꢊ  
W
Zꢈ/6(/ꢊ  
7
/6(  
06ꢍꢂꢐꢍꢏ9ꢐ  
DocID026079 Rev 5  
53/102  
79  
 
 
 
Electrical characteristics  
STM32F038x6  
High-speed external clock generated from a crystal/ceramic resonator  
The high-speed external (HSE) clock can be supplied with a 4 to 32 MHz crystal/ceramic  
resonator oscillator. All the information given in this paragraph are based on design  
simulation results obtained with typical external components specified in Table 31. In the  
application, the resonator and the load capacitors have to be placed as close as possible to  
the oscillator pins in order to minimize output distortion and startup stabilization time. Refer  
to the crystal resonator manufacturer for more details on the resonator characteristics  
(frequency, package, accuracy).  
Table 31. HSE oscillator characteristics  
Symbol  
Parameter  
Conditions(1)  
Min(2) Typ Max(2) Unit  
fOSC_IN Oscillator frequency  
-
4
-
8
200  
-
32  
-
MHz  
RF  
Feedback resistor  
-
kΩ  
During startup(3)  
-
8.5  
VDD = 1.8 V,  
Rm = 30 ,  
CL = 10 pF@8 MHz  
-
-
-
-
-
0.4  
0.5  
0.8  
1
-
-
-
-
-
VDD = 1.8 V,  
Rm = 45 ,  
CL = 10 pF@8 MHz  
VDD = 1.8 V,  
IDD  
HSE current consumption  
mA  
Rm = 30 ,  
CL = 5 pF@32 MHz  
VDD = 1.8 V,  
Rm = 30 ,  
CL = 10 pF@32 MHz  
VDD = 1.8 V,  
Rm = 30 ,  
1.5  
CL = 20 pF@32 MHz  
gm  
Oscillator transconductance  
Startup time  
Startup  
10  
-
-
-
-
mA/V  
ms  
(4)  
tSU(HSE)  
VDD is stabilized  
2
1. Resonator characteristics given by the crystal/ceramic resonator manufacturer.  
2. Guaranteed by design, not tested in production.  
3. This consumption level occurs during the first 2/3 of the tSU(HSE) startup time  
4. tSU(HSE) is the startup time measured from the moment it is enabled (by software) to a stabilized 8 MHz  
oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly  
with the crystal manufacturer  
For C and C , it is recommended to use high-quality external ceramic capacitors in the  
L1  
L2  
5 pF to 20 pF range (Typ.), designed for high-frequency applications, and selected to match  
the requirements of the crystal or resonator (see Figure 15). C and C are usually the  
L1  
L2  
same size. The crystal manufacturer typically specifies a load capacitance which is the  
series combination of C and C . PCB and MCU pin capacitance must be included (10 pF  
L1  
L2  
can be used as a rough estimate of the combined pin and board capacitance) when sizing  
and C .  
C
L1  
L2  
Note:  
For information on selecting the crystal, refer to the application note AN2867 “Oscillator  
design guide for ST microcontrollers” available from the ST website www.st.com.  
54/102  
DocID026079 Rev 5  
 
STM32F038x6  
Electrical characteristics  
Figure 15. Typical application with an 8 MHz crystal  
5HVRQDWRUꢄZLWKꢄLQWHJUDWHGꢄ  
FDSDFLWRUV  
&
/ꢍ  
26&B,1  
I+6(  
%LDVꢄ  
FRQWUROOHGꢄ  
JDLQ  
ꢋꢄ0+]ꢄ  
UHVRQDWRU  
5)  
ꢈꢍꢊ  
26&B287  
5(;7  
&
/ꢐ  
06ꢍꢂꢋꢓꢎ9ꢍ  
1. REXT value depends on the crystal characteristics.  
Low-speed external clock generated from a crystal resonator  
The low-speed external (LSE) clock can be supplied with a 32.768 kHz crystal resonator  
oscillator. All the information given in this paragraph are based on design simulation results  
obtained with typical external components specified in Table 32. In the application, the  
resonator and the load capacitors have to be placed as close as possible to the oscillator  
pins in order to minimize output distortion and startup stabilization time. Refer to the crystal  
resonator manufacturer for more details on the resonator characteristics (frequency,  
package, accuracy).  
Table 32. LSE oscillator characteristics (fLSE = 32.768 kHz)  
Symbol  
Parameter  
Conditions(1)  
Min(2) Typ Max(2) Unit  
low drive capability  
medium-low drive capability  
medium-high drive capability  
high drive capability  
-
-
0.5  
0.9  
-
-
1
IDD  
LSE current consumption  
µA  
-
1.3  
-
-
1.6  
low drive capability  
5
8
15  
25  
-
-
-
-
-
-
-
medium-low drive capability  
medium-high drive capability  
high drive capability  
-
Oscillator  
transconductance  
gm  
µA/V  
s
-
-
(3)  
tSU(LSE)  
Startup time  
VDDIOx is stabilized  
2
1. Refer to the note and caution paragraphs below the table, and to the application note AN2867 “Oscillator design guide for  
ST microcontrollers”.  
2. Guaranteed by design, not tested in production.  
3. tSU(LSE) is the startup time measured from the moment it is enabled (by software) to a stabilized 32.768 kHz oscillation is  
reached. This value is measured for a standard crystal and it can vary significantly with the crystal manufacturer  
DocID026079 Rev 5  
55/102  
79  
 
 
 
Electrical characteristics  
STM32F038x6  
Note:  
For information on selecting the crystal, refer to the application note AN2867 “Oscillator  
design guide for ST microcontrollers” available from the ST website www.st.com.  
Figure 16. Typical application with a 32.768 kHz crystal  
5HVRQDWRUꢄZLWKꢄLQWHJUDWHGꢄ  
FDSDFLWRUV  
&
/ꢍ  
26&ꢀꢐB,1  
I/6(  
'ULYHꢄ  
SURJUDPPDEOHꢄ  
DPSOLILHU  
ꢀꢐꢆꢓꢎꢋꢄN+]ꢄ  
UHVRQDWRU  
26&ꢀꢐB287  
&
/ꢐ  
06ꢀꢁꢐꢏꢀ9ꢐ  
Note:  
An external resistor is not required between OSC32_IN and OSC32_OUT and it is forbidden  
to add one.  
6.3.7  
Internal clock source characteristics  
The parameters given in Table 33 are derived from tests performed under ambient  
temperature and supply voltage conditions summarized in Table 18: General operating  
conditions. The provided curves are characterization results, not tested in production.  
56/102  
DocID026079 Rev 5  
 
 
STM32F038x6  
Electrical characteristics  
High-speed internal (HSI) RC oscillator  
(1)  
Table 33. HSI oscillator characteristics  
Symbol  
Parameter  
Frequency  
HSI user trimming step  
Conditions  
Min  
Typ  
Max  
Unit  
fHSI  
-
-
-
8
-
-
-
-
-
-
-
-
-
-
MHz  
%
TRIM  
-
1(2)  
55(2)  
3.8(3)  
2.3(3)  
2(3)  
2(3)  
2(3)  
1
DuCy(HSI) Duty cycle  
-
45(2)  
-2.8(3)  
-1.9(3)  
-1.9(3)  
-1.3(3)  
-1(3)  
-1  
%
TA = -40 to 105°C  
TA = -10 to 85°C  
TA = 0 to 85°C  
TA = 0 to 70°C  
TA = 0 to 55°C  
TA = 25°C(4)  
-
Accuracy of the HSI  
oscillator  
ACCHSI  
%
tsu(HSI)  
HSI oscillator startup time  
1(2)  
2(2)  
µs  
HSI oscillator power  
consumption  
IDDA(HSI)  
-
-
80  
100(2)  
µA  
1. VDDA = 3.3 V, TA = -40 to 105°C unless otherwise specified.  
2. Guaranteed by design, not tested in production.  
3. Data based on characterization results, not tested in production.  
4. Factory calibrated, parts not soldered.  
Figure 17. HSI oscillator accuracy characterization results for soldered parts  
ꢂꢈ  
."9  
.*/  
ꢉꢈ  
ꢄꢈ  
ꢇꢈ  
ꢃꢈ  
5ꢀꢀ<$>  
"ꢀꢀ  
ꢁꢂꢃ  
ꢁꢄꢃ  
ꢄꢃ  
ꢂꢃ  
ꢅꢃ  
ꢆꢃ  
ꢇꢃꢃ  
ꢇꢄꢃ  
ꢁꢇꢈ  
ꢁꢄꢈ  
ꢁꢉꢈ  
ꢁꢂꢈ  
06ꢀꢁꢂꢋꢏ9ꢃ  
DocID026079 Rev 5  
57/102  
79  
 
 
Electrical characteristics  
STM32F038x6  
High-speed internal 14 MHz (HSI14) RC oscillator (dedicated to ADC)  
(1)  
Table 34. HSI14 oscillator characteristics  
Symbol  
Parameter  
Frequency  
HSI14 user-trimming step  
Conditions  
Min  
Typ  
Max  
Unit  
fHSI14  
TRIM  
-
-
-
-
-
14  
-
-
MHz  
%
1(2)  
DuCy(HSI14) Duty cycle  
45(2)  
-
55(2)  
5.1(3)  
3.1(3)  
2.3(3)  
1
%
TA = –40 to 105 °C –4.2(3)  
TA = –10 to 85 °C –3.2(3)  
-
%
-
%
Accuracy of the HSI14  
oscillator (factory calibrated)  
ACCHSI14  
TA = 0 to 70 °C  
–2.5(3)  
-
%
TA = 25 °C  
-
–1  
-
%
tsu(HSI14) HSI14 oscillator startup time  
1(2)  
-
2(2)  
µs  
HSI14 oscillator power  
IDDA(HSI14)  
-
-
100 150(2)  
µA  
consumption  
1.  
2. Guaranteed by design, not tested in production.  
3. Data based on characterization results, not tested in production.  
VDDA = 3.3 V, TA = –40 to 105 °C unless otherwise specified.  
Figure 18. HSI14 oscillator accuracy characterization results  
ꢇꢈ  
-!8  
-).  
ꢉꢈ  
ꢀꢈ  
ꢅꢈ  
ꢊꢈ  
ꢁꢈ  
4 ; #=  
!
ꢆꢉꢁ  
ꢆꢅꢁ  
ꢅꢁ  
ꢉꢁ  
ꢄꢁ  
ꢃꢁ  
ꢊꢁꢁ  
ꢊꢅꢁ  
ꢊꢈ  
ꢅꢈ  
ꢀꢈ  
ꢆꢉꢈ  
ꢆꢇꢈ  
-3ꢀꢁꢂꢃꢄ6ꢅ  
58/102  
DocID026079 Rev 5  
 
 
STM32F038x6  
Electrical characteristics  
Low-speed internal (LSI) RC oscillator  
(1)  
Table 35. LSI oscillator characteristics  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
fLSI  
Frequency  
30  
-
40  
-
50  
85  
kHz  
µs  
(2)  
tsu(LSI)  
LSI oscillator startup time  
(2)  
IDDA(LSI)  
LSI oscillator power consumption  
-
0.75  
1.2  
µA  
1.  
VDDA = 3.3 V, TA = –40 to 105 °C unless otherwise specified.  
2. Guaranteed by design, not tested in production.  
6.3.8  
PLL characteristics  
The parameters given in Table 36 are derived from tests performed under ambient  
temperature and supply voltage conditions summarized in Table 18: General operating  
conditions.  
Table 36. PLL characteristics  
Value  
Symbol  
Parameter  
Unit  
Min  
Typ  
Max  
PLL input clock(1)  
1(2)  
40(2)  
16(2)  
-
8.0  
24(2)  
60(2)  
48  
MHz  
%
fPLL_IN  
PLL input clock duty cycle  
PLL multiplier output clock  
PLL lock time  
-
-
-
-
fPLL_OUT  
tLOCK  
MHz  
µs  
200(2)  
300(2)  
JitterPLL  
Cycle-to-cycle jitter  
-
ps  
1. Take care to use the appropriate multiplier factors to obtain PLL input clock values compatible with the  
range defined by fPLL_OUT  
.
2. Guaranteed by design, not tested in production.  
6.3.9  
Memory characteristics  
Flash memory  
The characteristics are given at T = –40 to 105 °C unless otherwise specified.  
A
Table 37. Flash memory characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max(1) Unit  
tprog  
16-bit programming time TA = - 40 to +105 °C  
40  
20  
20  
-
53.5  
60  
40  
40  
10  
12  
µs  
ms  
ms  
mA  
mA  
tERASE Page (1 KB) erase time TA = - 40 to +105 °C  
-
-
-
-
tME  
Mass erase time  
TA = - 40 to +105 °C  
Write mode  
IDD  
Supply current  
Erase mode  
-
1. Guaranteed by design, not tested in production.  
DocID026079 Rev 5  
59/102  
79  
 
 
 
 
 
Electrical characteristics  
Symbol  
STM32F038x6  
Table 38. Flash memory endurance and data retention  
Parameter  
Conditions  
Min(1)  
Unit  
NEND  
Endurance  
TA = –40 to +105 °C  
kcycle  
10  
30  
10  
20  
1 kcycle(2) at TA = 85 °C  
1 kcycle(2) at TA = 105 °C  
10 kcycle(2) at TA = 55 °C  
tRET  
Data retention  
Year  
1. Data based on characterization results, not tested in production.  
2. Cycling performed over the whole temperature range.  
6.3.10  
EMC characteristics  
Susceptibility tests are performed on a sample basis during device characterization.  
Functional EMS (electromagnetic susceptibility)  
While a simple application is executed on the device (toggling 2 LEDs through I/O ports).  
the device is stressed by two electromagnetic events until a failure occurs. The failure is  
indicated by the LEDs:  
Electrostatic discharge (ESD) (positive and negative) is applied to all device pins until  
a functional disturbance occurs. This test is compliant with the IEC 61000-4-2 standard.  
FTB: A Burst of Fast Transient voltage (positive and negative) is applied to V and  
DD  
V
through a 100 pF capacitor, until a functional disturbance occurs. This test is  
SS  
compliant with the IEC 61000-4-4 standard.  
A device reset allows normal operations to be resumed.  
The test results are given in Table 39. They are based on the EMS levels and classes  
defined in application note AN1709.  
Table 39. EMS characteristics  
Level/  
Class  
Symbol  
Parameter  
Conditions  
VDD = 1.8 V, LQFP48, TA = +25 °C,  
fHCLK = 48 MHz,  
conforming to IEC 61000-4-2  
Voltage limits to be applied on any I/O pin  
to induce a functional disturbance  
VFESD  
2B  
4B  
Fast transient voltage burst limits to be  
VDD = 1.8 V, LQFP48, TA = +25°C,  
VEFTB applied through 100 pF on VDD and VSS fHCLK = 48 MHz,  
pins to induce a functional disturbance  
conforming to IEC 61000-4-4  
Designing hardened software to avoid noise problems  
EMC characterization and optimization are performed at component level with a typical  
application environment and simplified MCU software. It should be noted that good EMC  
performance is highly dependent on the user application and the software in particular.  
Therefore it is recommended that the user applies EMC software optimization and  
prequalification tests in relation with the EMC level requested for his application.  
60/102  
DocID026079 Rev 5  
 
 
 
STM32F038x6  
Electrical characteristics  
Software recommendations  
The software flowchart must include the management of runaway conditions such as:  
Corrupted program counter  
Unexpected reset  
Critical Data corruption (for example control registers)  
Prequalification trials  
Most of the common failures (unexpected reset and program counter corruption) can be  
reproduced by manually forcing a low state on the NRST pin or the Oscillator pins for 1  
second.  
To complete these trials, ESD stress can be applied directly on the device, over the range of  
specification values. When unexpected behavior is detected, the software can be hardened  
to prevent unrecoverable errors occurring (see application note AN1015).  
Electromagnetic Interference (EMI)  
The electromagnetic field emitted by the device are monitored while a simple application is  
executed (toggling 2 LEDs through the I/O ports). This emission test is compliant with  
IEC 61967-2 standard which specifies the test board and the pin loading.  
Table 40. EMI characteristics  
Max vs. [fHSE/fHCLK  
8/48 MHz  
]
Monitored  
frequency band  
Symbol Parameter  
Conditions  
Unit  
0.1 to 30 MHz  
30 to 130 MHz  
130 MHz to 1 GHz  
EMI Level  
-1  
21  
27  
4
VDD = 1.8 V, TA = 25 °C,  
LQFP48 package  
compliant with  
dBµV  
-
SEMI  
Peak level  
IEC 61967-2  
6.3.11  
Electrical sensitivity characteristics  
Based on three different tests (ESD, LU) using specific measurement methods, the device is  
stressed in order to determine its performance in terms of electrical sensitivity.  
Electrostatic discharge (ESD)  
Electrostatic discharges (a positive then a negative pulse separated by 1 second) are  
applied to the pins of each sample according to each pin combination. The sample size  
depends on the number of supply pins in the device (3 parts × (n+1) supply pins). This test  
conforms to the JESD22-A114/C101 standard.  
DocID026079 Rev 5  
61/102  
79  
 
 
Electrical characteristics  
STM32F038x6  
Table 41. ESD absolute maximum ratings  
Maximum  
Unit  
Symbol  
Ratings  
Conditions  
Packages Class  
value(1)  
Electrostatic discharge voltage TA = +25 °C, conforming  
VESD(HBM)  
All  
All  
2
2000  
250  
V
V
(human body model)  
to JESD22-A114  
Electrostatic discharge voltage TA = +25 °C, conforming  
VESD(CDM)  
C3  
(charge device model)  
to ANSI/ESD STM5.3.1  
1. Data based on characterization results, not tested in production.  
Static latch-up  
Two complementary static tests are required on six parts to assess the latch-up  
performance:  
A supply overvoltage is applied to each power supply pin.  
A current injection is applied to each input, output and configurable I/O pin.  
These tests are compliant with EIA/JESD 78A IC latch-up standard.  
Table 42. Electrical sensitivities  
Symbol  
Parameter  
Conditions  
Class  
II level A  
LU  
Static latch-up class  
TA = +105 °C conforming to JESD78A  
6.3.12  
I/O current injection characteristics  
As a general rule, current injection to the I/O pins, due to external voltage below V or  
SS  
above V  
(for standard, 3.3 V-capable I/O pins) should be avoided during normal  
DDIOx  
product operation. However, in order to give an indication of the robustness of the  
microcontroller in cases when abnormal injection accidentally happens, susceptibility tests  
are performed on a sample basis during device characterization.  
Functional susceptibility to I/O current injection  
While a simple application is executed on the device, the device is stressed by injecting  
current into the I/O pins programmed in floating input mode. While current is injected into  
the I/O pin, one at a time, the device is checked for functional failures.  
The failure is indicated by an out of range parameter: ADC error above a certain limit (higher  
than 5 LSB TUE), out of conventional limits of induced leakage current on adjacent pins (out  
of the -5 µA/+0 µA range) or other functional failure (for example reset occurrence or  
oscillator frequency deviation).  
The characterization results are given in Table 43.  
Negative induced leakage current is caused by negative injection and positive induced  
leakage current is caused by positive injection.  
62/102  
DocID026079 Rev 5  
 
 
 
STM32F038x6  
Electrical characteristics  
Table 43. I/O current injection susceptibility  
Functional  
susceptibility  
Symbol  
Description  
Unit  
Negative Positive  
injection injection  
Injected current on BOOT0  
–0  
–5  
–5  
NA  
NA  
+5  
IINJ  
Injected current on all FT, FTf and POR pins  
Injected current on all TTa, TC and RESET pins  
mA  
6.3.13  
I/O port characteristics  
General input/output characteristics  
Unless otherwise specified, the parameters given in Table 44 are derived from tests  
performed under the conditions summarized in Table 18: General operating conditions. All  
I/Os are designed as CMOS- and TTL-compliant (except BOOT0).  
Table 44. I/O static characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
TC and TTa I/O  
FT and FTf I/O  
BOOT0  
-
-
-
-
-
-
0.3 VDDIOx+0.07(1)  
0.475 VDDIOx–0.2(1)  
0.3 VDDIOx–0.3(1)  
Low level input  
voltage  
VIL  
V
All I/Os except  
BOOT0 pin  
-
-
0.3 VDDIOx  
TC and TTa I/O  
FT and FTf I/O  
BOOT0  
0.445 VDDIOx+0.398(1)  
0.5 VDDIOx+0.2(1)  
-
-
-
-
-
-
High level input  
voltage  
0.2 VDDIOx+0.95(1)  
VIH  
V
All I/Os except  
BOOT0 pin  
0.7 VDDIOx  
-
-
TC and TTa I/O  
FT and FTf I/O  
BOOT0  
-
-
-
200(1)  
100(1)  
300(1)  
-
-
-
Schmitt trigger  
hysteresis  
Vhys  
mV  
TC, FT and FTf I/O  
TTa in digital mode  
VSS VIN VDDIOx  
-
-
± 0.1  
TTa in digital mode  
VDDIOx VIN VDDA  
-
-
-
-
-
-
1
Input leakage  
current(2)  
Ilkg  
µA  
TTa in analog mode  
VSS VIN VDDA  
± 0.2  
10  
FT and FTf I/O  
VDDIOx VIN 5 V  
DocID026079 Rev 5  
63/102  
79  
 
 
 
Electrical characteristics  
STM32F038x6  
Table 44. I/O static characteristics (continued)  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Weak pull-up  
RPU  
equivalent resistor VIN = VSS  
25  
40  
55  
kΩ  
(3)  
Weak pull-down  
RPD  
CIO  
equivalent  
VIN = - VDDIOx  
25  
-
40  
5
55  
-
kΩ  
resistor(3)  
I/O pin capacitance  
-
pF  
1. Data based on design simulation only. Not tested in production.  
2. The leakage could be higher than the maximum value, if negative current is injected on adjacent pins. Refer to Table 43:  
I/O current injection susceptibility.  
3. Pull-up and pull-down resistors are designed with a true resistance in series with a switchable PMOS/NMOS. This  
PMOS/NMOS contribution to the series resistance is minimal (~10% order).  
All I/Os are CMOS- and TTL-compliant (no software configuration required). Their  
characteristics cover more than the strict CMOS-technology or TTL parameters. The  
coverage of these requirements is shown in Figure 19 for standard I/Os, and in Figure 20 for  
5 V-tolerant I/Os. The following curves are design simulation results, not tested in  
production.  
64/102  
DocID026079 Rev 5  
STM32F038x6  
Electrical characteristics  
Figure 19. TC and TTa I/O input characteristics  
ꢐꢆꢏ  
7(67('ꢀ5$1*(  
77/ꢄVWDQGDUGꢄUHTXLUHPHQW  
9,1ꢀꢄ9ꢅ  
ꢍꢆꢏ  
81'(),1('ꢀ,1387ꢀ5$1*(  
77/ꢄVWDQGDUGꢄUHTXLUHPHQW  
ꢁꢆꢏ  
7(67('ꢀ5$1*(  
ꢍꢆꢎ  
ꢍꢆꢋ  
ꢐꢆꢁ  
ꢐꢆꢐ  
ꢐꢆꢃ  
ꢐꢆꢎ  
ꢐꢆꢋ  
ꢀꢆꢁ  
ꢀꢆꢐ  
ꢀꢆꢃ  
ꢀꢆꢎ  
9'',2[ꢀꢄ9ꢅ  
06Yꢀꢐꢍꢀꢁ9ꢃ  
Figure 20. Five volt tolerant (FT and FTf) I/O input characteristics  
ꢐꢆꢏ  
7(67('ꢀ5$1*(  
77/ꢄVWDQGDUGꢄUHTXLUHPHQW  
9,1ꢀꢄ9ꢅ  
ꢍꢆꢏ  
81'(),1('ꢀ,1387ꢀ5$1*(  
77/ꢄVWDQGDUGꢄUHTXLUHPHQW  
ꢁꢆꢏ  
7(67('ꢀ5$1*(  
ꢍꢆꢎ  
ꢍꢆꢋ  
ꢐꢆꢁ  
ꢐꢆꢐ  
ꢐꢆꢃ  
ꢐꢆꢎ  
ꢐꢆꢋ  
ꢀꢆꢁ  
ꢀꢆꢐ  
ꢀꢆꢃ  
ꢀꢆꢎ  
9'',2[ꢀꢄ9ꢅ  
06Yꢀꢐꢍꢀꢍ9ꢃ  
DocID026079 Rev 5  
65/102  
79  
 
 
Electrical characteristics  
STM32F038x6  
Output driving current  
The GPIOs (general purpose input/outputs) can sink or source up to +/-8 mA, and sink or  
source up to +/- 20 mA (with a relaxed V /V ).  
OL OH  
In the user application, the number of I/O pins which can drive current must be limited to  
respect the absolute maximum rating specified in Section 6.2:  
The sum of the currents sourced by all the I/Os on V  
, plus the maximum  
DDIOx  
consumption of the MCU sourced on V , cannot exceed the absolute maximum rating  
DD  
ΣI  
(see Table 15: Voltage characteristics).  
VDD  
The sum of the currents sunk by all the I/Os on V , plus the maximum consumption of  
SS  
the MCU sunk on V , cannot exceed the absolute maximum rating ΣI  
(see  
SS  
VSS  
Table 15: Voltage characteristics).  
Output voltage levels  
Unless otherwise specified, the parameters given in the table below are derived from tests  
performed under the ambient temperature and supply voltage conditions summarized in  
Table 18: General operating conditions. All I/Os are CMOS- and TTL-compliant (FT, TTa or  
TC unless otherwise specified).  
(1)  
Table 45. Output voltage characteristics  
Symbol  
Parameter  
Conditions  
Min  
Max Unit  
(2)  
VOL  
Output low level voltage for an I/O pin  
Output high level voltage for an I/O pin  
-
0.4  
-
V
V
|IIO| = 4 mA  
(2)  
VOH  
VDDIOx–0.4  
Output low level voltage for an FTf I/O pin in  
Fm+ mode  
(3)  
VOLFm+  
|IIO| = 10 mA  
-
0.4  
V
1. The IIO current sourced or sunk by the device must always respect the absolute maximum rating specified in Table 15:  
Voltage characteristics, and the sum of the currents sourced or sunk by all the I/Os (I/O ports and control pins) must always  
respect the absolute maximum ratings ΣI  
.
IO  
2. Data based on characterization results. Not tested in production.  
3. Data based on design simulation only. Not tested in production.  
66/102  
DocID026079 Rev 5  
 
STM32F038x6  
Electrical characteristics  
Input/output AC characteristics  
The definition and values of input/output AC characteristics are given in Figure 21 and  
Table 46, respectively. Unless otherwise specified, the parameters given are derived from  
tests performed under the ambient temperature and supply voltage conditions summarized  
in Table 18: General operating conditions.  
(1)(2)  
Table 46. I/O AC characteristics  
OSPEEDRy  
Symbol  
Parameter  
Conditions  
Min  
Max  
Unit  
MHz  
ns  
[1:0] value(1)  
fmax(IO)out Maximum frequency(3)  
tf(IO)out Output fall time  
-
-
-
-
-
-
-
-
-
-
-
-
1
125  
125  
4
x0  
CL = 50 pF  
tr(IO)out Output rise time  
fmax(IO)out Maximum frequency(3)  
tf(IO)out Output fall time  
MHz  
ns  
01  
CL = 50 pF  
CL = 50 pF  
62.5  
62.5  
10  
tr(IO)out Output rise time  
fmax(IO)out Maximum frequency(3)  
tf(IO)out Output fall time  
MHz  
ns  
11  
25  
tr(IO)out Output rise time  
fmax(IO)out Maximum frequency(3)  
tf(IO)out Output fall time  
25  
0.5  
16  
MHz  
ns  
Fm+  
configuration  
CL = 50 pF  
(4)  
tr(IO)out Output rise time  
44  
Pulse width of external  
tEXTIpw signals detected by the  
EXTI controller  
-
-
10  
-
ns  
1. The I/O speed is configured using the OSPEEDRx[1:0] bits. Refer to the STM32F0xxxx RM0091 reference  
manual for a description of GPIO Port configuration register.  
2. Guaranteed by design, not tested in production.  
3. The maximum frequency is defined in Figure 21.  
4. When Fm+ configuration is set, the I/O speed control is bypassed. Refer to the STM32F0xxxx reference  
manual RM0091 for a detailed description of Fm+ I/O configuration.  
Figure 21. I/O AC characteristics definition  
ꢍꢁꢔ  
ꢂꢁꢔ  
ꢏꢁꢔ  
ꢏꢁꢔ  
ꢍꢁꢔ  
ꢂꢁꢔ  
W
W
Uꢈ,2ꢊRXW  
Iꢈ,2ꢊRXW  
7
0D[LPXPꢄIUHTXHQF\ꢄLVꢄDFKLHYHGꢄLIꢄꢈWꢄꢄꢉꢄWꢄꢄꢊꢄ”ꢄ 7ꢄDQGꢄLIꢄWKHꢄGXW\ꢄF\FOHꢄLVꢄꢈꢃꢏꢑꢏꢏꢔꢊ  
U
I
ZKHQꢄORDGHGꢄE\ꢄ&ꢄꢄꢈVHHꢄWKHꢄWDEOHꢄ,ꢀ2ꢁ$&ꢁFKDUDFWHULVWLFVꢁGHILQLWLRQ  
-
06ꢀꢐꢍꢀꢐ9ꢀ  
DocID026079 Rev 5  
67/102  
79  
 
 
Electrical characteristics  
STM32F038x6  
6.3.14  
NRST and NPOR pin characteristics  
NRST pin characteristics  
The NRST pin input driver uses the CMOS technology. It is connected to a permanent pull-  
up resistor, R  
.
PU  
Unless otherwise specified, the parameters given in the table below are derived from tests  
performed under the ambient temperature and supply voltage conditions summarized in  
Table 18: General operating conditions.  
Table 47. NRST pin characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
VIL(NRST) NRST input low level voltage  
VIH(NRST) NRST input high level voltage  
-
-
-
-
-
0.3 VDD+0.07(1)  
-
V
0.445 VDD+0.398(1)  
NRST Schmitt trigger voltage  
Vhys(NRST)  
hysteresis  
-
-
200  
40  
-
mV  
Weak pull-up equivalent  
RPU  
VIN = VSS  
25  
55  
kΩ  
resistor(2)  
VF(NRST) NRST input filtered pulse  
-
-
-
-
-
100(1)  
-
ns  
ns  
VNF(NRST) NRST input not filtered pulse  
700(1)  
1. Data based on design simulation only. Not tested in production.  
2. The pull-up is designed with a true resistance in series with a switchable PMOS. This PMOS contribution to the series  
resistance is minimal (~10% order).  
Figure 22. Recommended NRST pin protection  
([WHUQDO  
UHVHWꢄFLUFXLWꢈꢍꢊ  
9''  
538  
1567ꢈꢐꢊ  
,QWHUQDOꢄUHVHW  
)LOWHU  
ꢁꢆꢍꢄ—)  
06ꢍꢂꢋꢓꢋ9ꢀ  
1. The external capacitor protects the device against parasitic resets.  
2. The user must ensure that the level on the NRST pin can go below the VIL(NRST) max level specified in  
Table 47: NRST pin characteristics. Otherwise the reset will not be taken into account by the device.  
NPOR pin characteristics  
The NPOR pin input driver uses the CMOS technology. It is connected to a permanent pull-  
up resistor to the V  
, R  
.
DDA  
PU  
Unless otherwise specified, the parameters given in Table 48 below are derived from tests  
performed under ambient temperature and supply voltage conditions summarized in  
Table 18: General operating conditions.  
68/102  
DocID026079 Rev 5  
 
 
 
STM32F038x6  
Symbol  
Electrical characteristics  
Table 48. NPOR pin characteristics  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
VIL(NPOR) NPOR Input low level voltage  
-
-
-
0.475 VDDA - 0.2(1)  
V
NPOR Input high level  
VIH(NPOR)  
voltage  
-
0.5 VDDA + 0.2(1)  
-
-
-
NPOR Schmitt trigger voltage  
Vhys(NPOR)  
hysteresis  
-
-
100(1)  
40  
mV  
Weak pull-up equivalent  
RPU  
VIN = VSS  
25  
55  
kΩ  
resistor(2)  
1. Guaranteed by design, not tested in production.  
2. The pull-up is designed with a true resistance in series with a switchable PMOS. This PMOS contribution to the series  
resistance is minimal (~10% order).  
6.3.15  
12-bit ADC characteristics  
Unless otherwise specified, the parameters given in Table 49 are derived from tests  
performed under the conditions summarized in Table 18: General operating conditions.  
Note:  
It is recommended to perform a calibration after each power-up.  
Table 49. ADC characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Analog supply voltage for  
ADC ON  
VDDA  
-
2.4  
-
3.6  
V
Current consumption of  
the ADC(1)  
IDDA (ADC)  
fADC  
VDDA = 3.3 V  
-
0.9  
-
mA  
ADC clock frequency  
Sampling rate  
-
0.6  
-
-
14  
1
MHz  
MHz  
(2)  
fS  
12-bit resolution  
0.043  
f
ADC = 14 MHz,  
-
-
823  
kHz  
(2)  
12-bit resolution  
External trigger frequency  
fTRIG  
12-bit resolution  
-
-
-
-
17  
1/fADC  
V
VAIN  
Conversion voltage range  
External input impedance  
0
VDDA  
See Equation 1 and  
Table 50 for details  
(2)  
RAIN  
-
-
-
-
-
-
50  
1
kΩ  
kΩ  
pF  
Sampling switch  
resistance  
(2)  
-
-
RADC  
Internal sample and hold  
capacitor  
(2)  
8
CADC  
f
ADC = 14 MHz  
5.9  
83  
µs  
(2)(3)  
Calibration time  
tCAL  
-
1/fADC  
DocID026079 Rev 5  
69/102  
79  
 
 
 
Electrical characteristics  
STM32F038x6  
Table 49. ADC characteristics (continued)  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
1.5 ADC  
cycles + 3  
fPCLK cycles  
1.5 ADC  
cycles + 2  
fPCLK cycles  
ADC clock = HSI14  
-
-
ADC_DR register ready  
latency  
(2)(4)  
WLATENCY  
fPCLK  
cycle  
ADC clock = PCLK/2  
-
-
4.5  
8.5  
-
-
fPCLK  
cycle  
ADC clock = PCLK/4  
f
ADC = fPCLK/2 = 14 MHz  
0.196  
5.5  
µs  
1/fPCLK  
µs  
f
ADC = fPCLK/2  
(2)  
Trigger conversion latency fADC = fPCLK/4 = 12 MHz  
fADC = fPCLK/4  
0.219  
10.5  
-
tlatr  
1/fPCLK  
µs  
fADC = fHSI14 = 14 MHz  
0.179  
-
0.250  
-
ADC jitter on trigger  
conversion  
JitterADC  
f
ADC = fHSI14  
1
1/fHSI14  
fADC = 14 MHz  
0.107  
1.5  
-
-
17.1  
µs  
(2)  
Sampling time  
Stabilization time  
tS  
-
-
239.5  
1/fADC  
1/fADC  
(2)  
tSTAB  
14  
fADC = 14 MHz,  
12-bit resolution  
1
-
18  
µs  
Total conversion time  
(including sampling time)  
(2)  
tCONV  
14 to 252 (tS for sampling +12.5 for  
successive approximation)  
12-bit resolution  
1/fADC  
1. During conversion of the sampled value (12.5 x ADC clock period), an additional consumption of 100 µA on IDDA and 60 µA  
on IDD should be taken into account.  
2. Guaranteed by design, not tested in production.  
3. Specified value includes only ADC timing. It does not include the latency of the register access.  
4. This parameter specify latency for transfer of the conversion result to the ADC_DR register. EOC flag is set at this time.  
Equation 1: R  
max formula  
AIN  
TS  
RAIN < --------------------------------------------------------------- – RADC  
fADC × CADC × ln(2N + 2  
)
The formula above (Equation 1) is used to determine the maximum external impedance  
allowed for an error below 1/4 of LSB. Here N = 12 (from 12-bit resolution).  
Table 50. R  
max for f  
tS (µs)  
= 14 MHz  
ADC  
AIN  
Ts (cycles)  
RAIN max (k)(1)  
1.5  
7.5  
0.11  
0.54  
0.96  
0.4  
5.9  
13.5  
11.4  
70/102  
DocID026079 Rev 5  
 
 
 
STM32F038x6  
Electrical characteristics  
Table 50. R  
max for f  
= 14 MHz (continued)  
AIN  
ADC  
Ts (cycles)  
tS (µs)  
RAIN max (k)(1)  
28.5  
41.5  
55.5  
71.5  
239.5  
2.04  
2.96  
3.96  
5.11  
17.1  
25.2  
37.2  
50  
NA  
NA  
1. Guaranteed by design, not tested in production.  
(1)(2)(3)  
Table 51. ADC accuracy  
Symbol  
Parameter  
Test conditions  
Typ  
Max(4)  
Unit  
ET  
EO  
EG  
ED  
EL  
Total unadjusted error  
Offset error  
±1.3  
±1  
±2  
±1.5  
±1.5  
±1  
f
PCLK = 48 MHz,  
fADC = 14 MHz, RAIN < 10 kΩ  
VDDA = 3 V to 3.6 V  
TA = 25 °C  
Gain error  
±0.5  
±0.7  
±0.8  
±3.3  
±1.9  
±2.8  
±0.7  
±1.2  
±3.3  
±1.9  
±2.8  
±0.7  
±1.2  
LSB  
Differential linearity error  
Integral linearity error  
Total unadjusted error  
Offset error  
±1.5  
±4  
ET  
EO  
EG  
ED  
EL  
fPCLK = 48 MHz,  
fADC = 14 MHz, RAIN < 10 kΩ  
±2.8  
±3  
Gain error  
LSB  
LSB  
VDDA = 2.7 V to 3.6 V  
TA = - 40 to 105 °C  
Differential linearity error  
Integral linearity error  
Total unadjusted error  
Offset error  
±1.3  
±1.7  
±4  
ET  
EO  
EG  
ED  
EL  
fPCLK = 48 MHz,  
fADC = 14 MHz, RAIN < 10 kΩ  
±2.8  
±3  
Gain error  
V
DDA = 2.4 V to 3.6 V  
Differential linearity error  
Integral linearity error  
±1.3  
±1.7  
TA = 25 °C  
1. ADC DC accuracy values are measured after internal calibration.  
2. ADC Accuracy vs. Negative Injection Current: Injecting negative current on any of the standard (non-robust) analog input  
pins should be avoided as this significantly reduces the accuracy of the conversion being performed on another analog  
input. It is recommended to add a Schottky diode (pin to ground) to standard analog pins which may potentially inject  
negative current.  
Any positive injection current within the limits specified for IINJ(PIN) and ΣIINJ(PIN) in Section 6.3.13 does not affect the ADC  
accuracy.  
3. Better performance may be achieved in restricted VDDA, frequency and temperature ranges.  
4. Data based on characterization results, not tested in production.  
DocID026079 Rev 5  
71/102  
79  
 
Electrical characteristics  
STM32F038x6  
Figure 23. ADC accuracy characteristics  
966$  
ꢃꢁꢂꢏ  
(*  
ꢈꢍꢊꢄ([DPSOHꢄRIꢄDQꢄDFWXDOꢄWUDQVIHUꢄFXUYH  
ꢈꢐꢊꢄ7KHꢄLGHDOꢄWUDQVIHUꢄFXUYH  
ꢈꢀꢊꢄ(QGꢄSRLQWꢄFRUUHODWLRQꢄOLQH  
ꢃꢁꢂꢃ  
ꢃꢁꢂꢀ  
(
7
ꢄ ꢄ7RWDOꢄ8QDMXVWHGꢄ(UURUꢅꢄPD[LPXPꢄGHYLDWLRQꢄ  
ꢈꢐꢊ  
EHWZHHQꢄWKHꢄDFWXDOꢄDQGꢄLGHDOꢄWUDQVIHUꢄFXUYHVꢆ  
(7  
(2ꢄ ꢄ2IIVHWꢄ(UURUꢅꢄPD[LPXPꢄGHYLDWLRQꢄ  
EHWZHHQꢄWKHꢄILUVWꢄDFWXDOꢄWUDQVLWLRQꢄDQGꢄWKHꢄILUVW  
LGHDOꢄRQHꢆ  
ꢈꢀꢊ  
ꢈꢍꢊ  
(
*
ꢄ ꢄ*DLQꢄ(UURUꢅꢄGHYLDWLRQꢄEHWZHHQꢄWKHꢄODVWꢄ  
LGHDOꢄWUDQVLWLRQꢄDQGꢄWKHꢄODVWꢄDFWXDOꢄRQHꢆ  
ꢄ ꢄ'LIIHUHQWLDOꢄ/LQHDULW\ꢄ(UURUꢅꢄPD[LPXPꢄ  
GHYLDWLRQꢄEHWZHHQꢄDFWXDOꢄVWHSVꢄDQGꢄWKHꢄLGHDOꢄRQHVꢆ  
(2  
(/  
(
'
('  
(/ꢄ ꢄ,QWHJUDOꢄ/LQHDULW\ꢄ(UURUꢅꢄPD[LPXPꢄGHYLDWLRQꢄ  
EHWZHHQꢄDQ\ꢄDFWXDOꢄWUDQVLWLRQꢄDQGꢄWKHꢄHQGꢄSRLQWꢄ  
FRUUHODWLRQꢄOLQHꢆ  
ꢍꢄ/6%ꢄ,'($/  
9''$  
ꢃꢁꢂꢎ  
ꢃꢁꢂꢃ ꢃꢁꢂꢏ  
ꢃꢁꢂꢀ  
06ꢍꢂꢋꢋꢁ9ꢐ  
Figure 24. Typical connection diagram using the ADC  
9
''$  
6DPSOHꢄDQGꢄKROGꢄ$'&  
FRQYHUWHU  
9
7
ꢈꢍꢊ  
5
$,1  
5
$'&  
$,1[  
ꢍꢐꢑELW  
FRQYHUWHU  
,/  
“ꢍ —$  
ꢈꢐꢊ  
SDUDVLWLF  
9
7
&
9$,1  
&
$'&  
06ꢀꢀꢂꢁꢁ9ꢐ  
1. Refer to Table 49: ADC characteristics for the values of RAIN, RADC and CADC  
.
2. Cparasitic represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the  
pad capacitance (roughly 7 pF). A high Cparasitic value will downgrade conversion accuracy. To remedy  
this, fADC should be reduced.  
General PCB design guidelines  
Power supply decoupling should be performed as shown in Figure 11: Power supply  
scheme. The 10 nF capacitor should be ceramic (good quality) and it should be placed as  
close as possible to the chip.  
72/102  
DocID026079 Rev 5  
 
 
STM32F038x6  
Electrical characteristics  
6.3.16  
Temperature sensor characteristics  
Table 52. TS characteristics  
Symbol  
Parameter  
VSENSE linearity with temperature  
Avg_Slope(1) Average slope  
Min  
Typ  
Max  
Unit  
(1)  
TL  
-
4.0  
1.34  
-
± 1  
4.3  
1.43  
-
± 2  
4.6  
°C  
mV/°C  
V
V30  
Voltage at 30 °C (± 5 °C)(2)  
1.52  
10  
(1)  
(1)  
tSTART  
ADC_IN16 buffer startup time  
µs  
ADC sampling time when reading the  
temperature  
tS_temp  
4
-
-
µs  
1. Guaranteed by design, not tested in production.  
2. Measured at VDDA = 3.3 V ± 10 mV. The V30 ADC conversion result is stored in the TS_CAL1 byte. Refer to Table 3:  
Temperature sensor calibration values.  
6.3.17  
V
monitoring characteristics  
BAT  
Table 53. V  
monitoring characteristics  
BAT  
Symbol  
Parameter  
Resistor bridge for VBAT  
Min  
Typ  
Max  
Unit  
R
Q
-
-
2 x 50  
-
-
kΩ  
-
Ratio on VBAT measurement  
Error on Q  
2
-
Er(1)  
–1  
4
+1  
-
%
µs  
(1)  
tS_vbat  
ADC sampling time when reading the VBAT  
-
1. Guaranteed by design, not tested in production.  
6.3.18  
Timer characteristics  
The parameters given in the following tables are guaranteed by design.  
Refer to Section 6.3.13: I/O port characteristics for details on the input/output alternate  
function characteristics (output compare, input capture, external clock, PWM output).  
Table 54. TIMx characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
tTIMxCLK  
ns  
-
-
-
-
1
-
-
-
tres(TIM)  
Timer resolution time  
fTIMxCLK = 48 MHz  
-
20.8  
Timer external clock  
frequency on CH1 to  
CH4  
fTIMxCLK/2  
MHz  
fEXT  
fTIMxCLK = 48 MHz  
-
24  
-
MHz  
216  
tTIMxCLK  
-
-
-
-
-
-
-
-
-
16-bit timer maximum  
period  
fTIMxCLK = 48 MHz  
-
1365  
µs  
tMAX_COUNT  
232  
tTIMxCLK  
32-bit counter  
maximum period  
fTIMxCLK = 48 MHz  
89.48  
s
DocID026079 Rev 5  
73/102  
79  
 
 
 
 
 
 
Electrical characteristics  
STM32F038x6  
(1)  
Table 55. IWDG min/max timeout period at 40 kHz (LSI)  
Min timeout RL[11:0]=  
0x000  
Max timeout RL[11:0]=  
0xFFF  
Prescaler divider PR[2:0] bits  
Unit  
/4  
/8  
0
0.1  
0.2  
0.4  
0.8  
1.6  
3.2  
6.4  
409.6  
819.2  
1
/16  
/32  
/64  
/128  
/256  
2
1638.4  
3276.8  
6553.6  
13107.2  
26214.4  
3
4
ms  
5
6 or 7  
1. These timings are given for a 40 kHz clock but the microcontroller internal RC frequency can vary from 30  
to 60 kHz. Moreover, given an exact RC oscillator frequency, the exact timings still depend on the phasing  
of the APB interface clock versus the LSI clock so that there is always a full RC period of uncertainty.  
Table 56. WWDG min/max timeout value at 48 MHz (PCLK)  
Prescaler  
WDGTB  
Min timeout value  
Max timeout value  
Unit  
1
2
4
8
0
1
2
3
0.0853  
0.1706  
0.3413  
0.6826  
5.4613  
10.9226  
21.8453  
43.6906  
ms  
6.3.19  
Communication interfaces  
I2C interface characteristics  
2
2
The I C interface meets the timings requirements of the I C-bus specification and user  
manual rev. 03 for:  
Standard-mode (Sm): with a bit rate up to 100 kbit/s  
Fast-mode (Fm): with a bit rate up to 400 kbit/s  
Fast-mode Plus (Fm+): with a bit rate up to 1 Mbit/s.  
2
The I C timings requirements are guaranteed by design when the I2Cx peripheral is  
properly configured (refer to Reference manual).  
The SDA and SCL I/O requirements are met with the following restrictions: the SDA and  
SCL I/O pins are not “true” open-drain. When configured as open-drain, the PMOS  
connected between the I/O pin and V  
is disabled, but is still present. Only FTf I/O pins  
DDIOx  
support Fm+ low level output current maximum requirement. Refer to Section 6.3.13: I/O  
2
port characteristics for the I C I/Os characteristics.  
2
All I C SDA and SCL I/Os embed an analog filter. Refer to the table below for the analog  
filter characteristics:  
74/102  
DocID026079 Rev 5  
 
 
 
STM32F038x6  
Electrical characteristics  
2
(1)  
Table 57. I C analog filter characteristics  
Symbol  
Parameter  
Min  
Max  
Unit  
Maximum width of spikes that are  
suppressed by the analog filter  
tAF  
50(2)  
260(3)  
ns  
1. Guaranteed by design, not tested in production.  
2. Spikes with widths below tAF(min) are filtered.  
3. Spikes with widths above tAF(max) are not filtered  
SPI/I2S characteristics  
2
Unless otherwise specified, the parameters given in Table 58 for SPI or in Table 59 for I S  
are derived from tests performed under the ambient temperature, f frequency and  
PCLKx  
supply voltage conditions summarized in Table 18: General operating conditions.  
Refer to Section 6.3.13: I/O port characteristics for more details on the input/output alternate  
2
function characteristics (NSS, SCK, MOSI, MISO for SPI and WS, CK, SD for I S).  
(1)  
Table 58. SPI characteristics  
Symbol  
Parameter  
Conditions  
Master mode  
Min  
Max  
Unit  
-
-
18  
18  
fSCK  
1/tc(SCK)  
SPI clock frequency  
MHz  
Slave mode  
tr(SCK)  
tf(SCK)  
SPI clock rise and fall  
time  
Capacitive load: C = 15 pF  
-
6
ns  
ns  
%
tsu(NSS)  
th(NSS)  
tw(SCKH)  
NSS setup time  
NSS hold time  
Slave mode  
Slave mode  
4Tpclk  
-
-
2Tpclk + 10  
Master mode, fPCLK = 36 MHz,  
presc = 4  
SCK high and low time  
Data input setup time  
Tpclk/2 -2  
Tpclk/2 + 1  
tw(SCKL)  
Master mode  
Slave mode  
Master mode  
Slave mode  
4
5
-
tsu(MI)  
tsu(SI)  
-
th(MI)  
th(SI)  
4
-
Data input hold time  
5
-
(2)  
ta(SO)  
Data output access time Slave mode, fPCLK = 20 MHz  
Data output disable time Slave mode  
0
3Tpclk  
(3)  
tdis(SO)  
0
18  
tv(SO)  
tv(MO)  
th(SO)  
th(MO)  
Data output valid time  
Data output valid time  
Slave mode (after enable edge)  
Master mode (after enable edge)  
Slave mode (after enable edge)  
Master mode (after enable edge)  
-
22.5  
-
6
-
11.5  
2
Data output hold time  
-
SPI slave input clock  
duty cycle  
DuCy(SCK)  
Slave mode  
25  
75  
1. Data based on characterization results, not tested in production.  
2. Min time is for the minimum time to drive the output and the max time is for the maximum time to validate the data.  
3. Min time is for the minimum time to invalidate the output and the max time is for the maximum time to put the data in Hi-Z  
DocID026079 Rev 5  
75/102  
79  
 
 
Electrical characteristics  
STM32F038x6  
Figure 25. SPI timing diagram - slave mode and CPHA = 0  
166ꢄLQSXW  
WFꢈ6&.ꢊ  
WKꢈ166ꢊ  
WVXꢈ166ꢊ  
WZꢈ6&.+ꢊ  
WUꢈ6&.ꢊ  
&3+$ ꢁ  
&32/ ꢁ  
&3+$ ꢁ  
&32/ ꢍ  
WDꢈ62ꢊ  
WZꢈ6&./ꢊ  
WYꢈ62ꢊ  
WKꢈ62ꢊ  
WIꢈ6&.ꢊ  
/DVWꢄELWꢄ287  
WGLVꢈ62ꢊ  
0,62ꢄRXWSXW  
026,ꢄLQSXW  
)LUVWꢄELWꢄ287  
WKꢈ6,ꢊ  
1H[WꢄELWVꢄ287  
WVXꢈ6,ꢊ  
)LUVWꢄELWꢄ,1  
1H[WꢄELWVꢄ,1  
/DVWꢄELWꢄ,1  
06Yꢃꢍꢎꢏꢋ9ꢍ  
Figure 26. SPI timing diagram - slave mode and CPHA = 1  
166ꢄLQSXW  
WFꢈ6&.ꢊ  
WVXꢈ166ꢊ  
WZꢈ6&.+ꢊ  
WIꢈ6&.ꢊ  
WKꢈ166ꢊ  
&3+$ ꢍ  
&32/ ꢁ  
&3+$ ꢍ  
&32/ ꢍ  
WDꢈ62ꢊ  
WZꢈ6&./ꢊ  
WYꢈ62ꢊ  
)LUVWꢄELWꢄ287  
WVXꢈ6,ꢊ WKꢈ6,ꢊ  
)LUVWꢄELWꢄ,1  
WKꢈ62ꢊ  
1H[WꢄELWVꢄ287  
WUꢈ6&.ꢊ  
WGLVꢈ62ꢊ  
0,62ꢄRXWSXW  
026,ꢄLQSXW  
/DVWꢄELWꢄ287  
1H[WꢄELWVꢄ,1  
/DVWꢄELWꢄ,1  
06Yꢃꢍꢎꢏꢂ9ꢍ  
1. Measurement points are done at CMOS levels: 0.3 VDD and 0.7 VDD  
.
76/102  
DocID026079 Rev 5  
 
 
 
 
STM32F038x6  
Electrical characteristics  
Figure 27. SPI timing diagram - master mode  
+LJK  
166ꢄLQSXW  
W
Fꢈ6&.ꢊ  
&3+$   
&32/ ꢁ  
&3+$   
&32/ ꢍ  
&3+$   
&32/ ꢁ  
&3+$   
&32/ ꢍ  
W
W
W
W
Zꢈ6&.+ꢊ  
Zꢈ6&./ꢊ  
Uꢈ6&.ꢊ  
W
VXꢈ0,ꢊ  
Iꢈ6&.ꢊ  
0,62  
,1387  
%,7ꢎꢄ,1  
/6%ꢄ,1  
06%ꢄ,1  
W
Kꢈ0,ꢊ  
026,  
287387  
%,7ꢍꢄ287  
/6%ꢄ287  
06%ꢄ287  
W
W
Kꢈ02ꢊ  
Yꢈ02ꢊ  
DLꢍꢃꢍꢀꢎF  
1. Measurement points are done at CMOS levels: 0.3 VDD and 0.7 VDD  
.
2
(1)  
Table 59. I S characteristics  
Conditions  
Symbol  
Parameter  
Min  
Max  
Unit  
Master mode (data: 16 bits, Audio  
frequency = 48 kHz)  
1.597  
1.601  
fCK  
1/tc(CK)  
I2S clock frequency  
MHz  
Slave mode  
0
-
6.5  
tr(CK)  
tf(CK)  
I2S clock rise time  
I2S clock fall time  
I2S clock high time  
I2S clock low time  
WS valid time  
10  
12  
-
Capacitive load CL = 15 pF  
-
tw(CKH)  
tw(CKL)  
tv(WS)  
th(WS)  
tsu(WS)  
th(WS)  
306  
312  
2
Master fPCLK= 16 MHz, audio  
frequency = 48 kHz  
-
ns  
%
Master mode  
Master mode  
Slave mode  
Slave mode  
-
WS hold time  
2
-
WS setup time  
7
-
WS hold time  
0
-
I2S slave input clock duty  
cycle  
DuCy(SCK)  
Slave mode  
25  
75  
DocID026079 Rev 5  
77/102  
79  
 
 
Electrical characteristics  
STM32F038x6  
2
(1)  
Table 59. I S characteristics (continued)  
Conditions  
Symbol  
Parameter  
Data input setup time  
Min  
Max  
Unit  
tsu(SD_MR)  
tsu(SD_SR)  
Master receiver  
6
2
-
-
Slave receiver  
(2)  
th(SD_MR)  
Master receiver  
Slave receiver  
4
-
Data input hold time  
Data output valid time  
Data output hold time  
(2)  
th(SD_SR)  
0.5  
-
-
ns  
(2)  
tv(SD_MT)  
Master transmitter  
Slave transmitter  
Master transmitter  
Slave transmitter  
4
31  
-
(2)  
tv(SD_ST)  
th(SD_MT)  
th(SD_ST)  
-
0
13  
-
1. Data based on design simulation and/or characterization results, not tested in production.  
2. Depends on fPCLK. For example, if fPCLK = 8 MHz, then TPCLK = 1/fPLCLK = 125 ns.  
2
Figure 28. I S slave timing diagram (Philips protocol)  
WFꢈ&.ꢊ  
&32/ꢄ ꢄꢁ  
&32/ꢄ ꢄꢍ  
:6ꢄLQSXW  
WKꢈ:6ꢊ  
WZꢈ&.+ꢊ  
WZꢈ&./ꢊ  
WYꢈ6'B67ꢊ  
WKꢈ6'B67ꢊ  
WVXꢈ:6ꢊ  
/6%ꢄWUDQVPLWꢈꢐꢊ  
WVXꢈ6'B65ꢊ  
06%ꢄWUDQVPLW  
06%ꢄUHFHLYH  
%LWQꢄWUDQVPLW  
WKꢈ6'B65ꢊ  
6'WUDQVPLW  
6'UHFHLYH  
/6%ꢄUHFHLYHꢈꢐꢊ  
%LWQꢄUHFHLYH  
/6%ꢄUHFHLYH  
06Yꢀꢂꢓꢐꢍ9ꢍ  
1. Measurement points are done at CMOS levels: 0.3 × VDDIOx and 0.7 × VDDIOx  
.
2. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first  
byte.  
78/102  
DocID026079 Rev 5  
 
STM32F038x6  
Electrical characteristics  
2
Figure 29. I S master timing diagram (Philips protocol)  
ꢂꢁꢔ  
ꢍꢁꢔ  
WIꢈ&.ꢊ  
WUꢈ&.ꢊ  
WFꢈ&.ꢊ  
&32/ꢄ ꢄꢁ  
WZꢈ&.+ꢊ  
&32/ꢄ ꢄꢍ  
:6ꢄRXWSXW  
6'WUDQVPLW  
WYꢈ:6ꢊ  
WKꢈ:6ꢊ  
WZꢈ&./ꢊ  
WYꢈ6'B07ꢊ  
WKꢈ6'B07ꢊ  
/6%ꢄWUDQVPLWꢈꢐꢊ  
WVXꢈ6'B05ꢊ  
06%ꢄWUDQVPLW  
06%ꢄUHFHLYH  
%LWQꢄWUDQVPLW  
WKꢈ6'B05ꢊ  
/6%ꢄWUDQVPLW  
6'UHFHLYH  
/6%ꢄUHFHLYHꢈꢐꢊ  
%LWQꢄUHFHLYH  
/6%ꢄUHFHLYH  
06Yꢀꢂꢓꢐꢁ9ꢍ  
1. Data based on characterization results, not tested in production.  
2. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first  
byte.  
DocID026079 Rev 5  
79/102  
79  
 
Package information  
STM32F038x6  
7
Package information  
In order to meet environmental requirements, ST offers these devices in different grades of  
®
®
ECOPACK packages, depending on their level of environmental compliance. ECOPACK  
specifications, grade definitions and product status are available at: www.st.com.  
®
ECOPACK is an ST trademark.  
7.1  
LQFP48 package information  
LQFP48 is a 48-pin, 7 x 7 mm low-profile quad flat package.  
Figure 30. LQFP48 package outline  
3%!4).'  
0,!.%  
#
ꢁꢋꢅꢇ MM  
'!5'% 0,!.%  
CCC  
#
$
,
$ꢊ  
$ꢀ  
,ꢊ  
ꢀꢄ  
ꢅꢇ  
ꢀꢌ  
ꢅꢉ  
B
ꢉꢃ  
ꢊꢀ  
0). ꢊ  
)$%.4)&)#!4)/.  
ꢊꢅ  
E
ꢇ"?-%?6ꢅ  
1. Drawing is not to scale.  
80/102  
DocID026079 Rev 5  
 
 
 
 
STM32F038x6  
Package information  
inches(1)  
Table 60. LQFP48 package mechanical data  
millimeters  
Symbol  
Min  
Typ  
Max  
Min  
Typ  
Max  
A
A1  
A2  
b
-
0.050  
1.350  
0.170  
0.090  
8.800  
6.800  
-
-
1.600  
0.150  
1.450  
0.270  
0.200  
9.200  
7.200  
-
-
0.0020  
0.0531  
0.0067  
0.0035  
0.3465  
0.2677  
-
-
0.0630  
0.0059  
0.0571  
0.0106  
0.0079  
0.3622  
0.2835  
-
-
-
1.400  
0.220  
-
0.0551  
0.0087  
-
c
D
9.000  
7.000  
5.500  
9.000  
7.000  
5.500  
0.500  
0.600  
1.000  
3.5°  
0.3543  
0.2756  
0.2165  
0.3543  
0.2756  
0.2165  
0.0197  
0.0236  
0.0394  
3.5°  
D1  
D3  
E
8.800  
6.800  
-
9.200  
7.200  
-
0.3465  
0.2677  
-
0.3622  
0.2835  
-
E1  
E3  
e
-
-
-
-
L
0.450  
-
0.750  
-
0.0177  
-
0.0295  
-
L1  
k
0°  
7°  
0°  
7°  
ccc  
-
-
0.080  
-
-
0.0031  
1. Values in inches are converted from mm and rounded to 4 decimal digits.  
Figure 31. Recommended footprint for LQFP48 package  
ꢁꢋꢇꢁ  
ꢊꢋꢅꢁ  
ꢁꢋꢀꢁ  
ꢀꢄ  
ꢅꢇ  
ꢀꢌ  
ꢅꢉ  
ꢁꢋꢅꢁ  
ꢌꢋꢀꢁ  
ꢂꢋꢌꢁ ꢇꢋꢃꢁ  
ꢌꢋꢀꢁ  
ꢉꢃ  
ꢊꢀ  
ꢊꢅ  
ꢊꢋꢅꢁ  
ꢇꢋꢃꢁ  
ꢂꢋꢌꢁ  
AIꢊꢉꢂꢊꢊD  
1. Dimensions are expressed in millimeters.  
DocID026079 Rev 5  
81/102  
98  
 
 
Package information  
STM32F038x6  
Device marking  
The following figure gives an example of topside marking orientation versus pin 1 identifier  
location.  
Other optional marking or inset/upset marks, which identify the parts throughout supply  
chain operations, are not indicated below.  
Figure 32. LQFP48 package marking example  
WƌŽĚƵĐƚꢀ  
ŝĚĞŶƚŝĨŝĐĂƚŝŽŶ ;ϭͿ  
670ꢀꢁ)  
ꢂꢀꢃ&ꢄ7ꢅ  
ꢁĂƚĞꢀĐŽĚĞ  
^ƚĂŶĚĂƌĚꢀ^dꢀůŽŐŽ  
< ::  
ZĞǀŝƐŝŽŶꢀĐŽĚĞ  
WŝŶꢀϭꢀŝĚĞŶƚŝĨŝĞƌ  
D^ϯϴϯϵϴsϭ  
1. Parts marked as ES or E or accompanied by an Engineering Sample notification letter are not yet qualified  
and therefore not approved for use in production. ST is not responsible for any consequences resulting  
from such use. In no event will ST be liable for the customer using any of these engineering samples in  
production. ST's Quality department must be contacted prior to any decision to use these engineering  
samples to run a qualification activity.  
7.2  
UFQFPN32 package information  
UFQFPN32 is a 32-pin, 5x5 mm, 0.5 mm pitch ultra-thin fine-pitch quad flat package.  
82/102  
DocID026079 Rev 5  
 
 
STM32F038x6  
Package information  
Figure 33. UFQFPN32 package outline  
'
$
GGG  
&
$ꢍ  
$ꢐ  
H
&
6($7,1*  
3/$1(  
'ꢍ  
E
H
E
(ꢐ  
(ꢍ  
(
/
ꢀꢐ  
'ꢐ  
/
3,1ꢄꢍꢄ,GHQWLILHU  
!ꢁ"ꢃ?-%?6ꢅ  
1. Drawing is not to scale.  
2. All leads/pads should also be soldered to the PCB to improve the lead/pad solder joint life.  
3. There is an exposed die pad on the underside of the UFQFPN package. This pad is used for the device  
ground and must be connected. It is referred to as pin 0 in Table: Pin definitions.  
DocID026079 Rev 5  
83/102  
98  
 
Package information  
STM32F038x6  
Table 61. UFQFPN32 package mechanical data  
millimeters  
Typ  
inches(1)  
Symbol  
Min  
Max  
Min  
Typ  
Max  
A
A1  
A3  
b
0.500  
0.000  
-
0.550  
0.020  
0.152  
0.230  
5.000  
3.500  
3.500  
5.000  
3.500  
3.500  
0.500  
0.400  
-
0.600  
0.050  
-
0.0197  
0.0000  
-
0.0217  
0.0008  
0.0060  
0.0091  
0.1969  
0.1378  
0.1378  
0.1969  
0.1378  
0.1378  
0.0197  
0.0157  
-
0.0236  
0.0020  
-
0.180  
4.900  
3.400  
3.400  
4.900  
3.400  
3.400  
-
0.280  
5.100  
3.600  
3.600  
5.100  
3.600  
3.600  
-
0.0071  
0.1929  
0.1339  
0.1339  
0.1929  
0.1339  
0.1339  
-
0.0110  
0.2008  
0.1417  
0.1417  
0.2008  
0.1417  
0.1417  
-
D
D1  
D2  
E
E1  
E2  
e
L
0.300  
-
0.500  
0.080  
0.0118  
-
0.0197  
0.0031  
ddd  
1. Values in inches are converted from mm and rounded to 4 decimal digits.  
Figure 34. Recommended footprint for UFQFPN32 package  
ꢏꢆꢀꢁ  
ꢀꢆꢋꢁ  
ꢁꢆꢎꢁ  
ꢄꢌ  
ꢉꢄ  
ꢄꢂ  
ꢀꢆꢃꢏ  
ꢀꢆꢋꢁ  
ꢏꢆꢀꢁ  
ꢀꢆꢃꢏ  
ꢁꢆꢏꢁ  
ꢇꢊ  
ꢁꢆꢀꢁ  
ꢇꢅ  
ꢁꢆꢓꢏ  
ꢀꢆꢋꢁ  
$ꢁ%ꢋB)3B9ꢐ  
1. Dimensions are expressed in millimeters.  
84/102  
DocID026079 Rev 5  
 
 
STM32F038x6  
Package information  
Device marking  
The following figure gives an example of topside marking orientation versus pin 1 identifier  
location.  
Other optional marking or inset/upset marks, which identify the parts throughout supply  
chain operations, are not indicated below.  
Figure 35. UFQFPN32 package marking example  
WƌŽĚƵĐƚꢀ  
ŝĚĞŶƚŝĨŝĐĂƚŝŽŶ ;ϭͿ  
)ꢂꢀꢃ.ꢅ  
ꢁĂƚĞꢀĐŽĚĞ  
<
::  
ZĞǀŝƐŝŽŶꢀĐŽĚĞ  
^ƚĂŶĚĂƌĚꢀ^dꢀůŽŐŽ  
WŝŶꢀϭꢀŝĚĞŶƚŝĨŝĞƌ  
D^ϯϵϬϬϬsϭ  
1. Parts marked as ES or E or accompanied by an Engineering Sample notification letter are not yet qualified  
and therefore not approved for use in production. ST is not responsible for any consequences resulting  
from such use. In no event will ST be liable for the customer using any of these engineering samples in  
production. ST's Quality department must be contacted prior to any decision to use these engineering  
samples to run a qualification activity.  
DocID026079 Rev 5  
85/102  
98  
 
Package information  
STM32F038x6  
7.3  
UFQFPN28 package information  
UFQFPN28 is a 28-lead, 4x4 mm, 0.5 mm pitch, ultra-thin fine-pitch quad flat package.  
Figure 36. UFQFPN28 package outline  
'HWDLOꢄ<  
'
(
'
'ꢍ  
(ꢍ  
'HWDLOꢄ=  
!ꢁ"ꢁ?-%?6ꢇ  
1. Drawing is not to scale.  
(1)  
Table 62. UFQFPN28 package mechanical data  
millimeters  
Typ  
inches  
Symbol  
Min  
Max  
Min  
Typ  
Max  
A
A1  
D
0.500  
-
0.550  
0.000  
4.000  
3.000  
4.000  
3.000  
0.400  
0.350  
0.152  
0.250  
0.500  
0.600  
0.050  
4.100  
3.100  
4.100  
3.100  
0.500  
0.450  
-
0.0197  
-
0.0217  
0.0000  
0.1575  
0.1181  
0.1575  
0.1181  
0.0157  
0.0138  
0.0060  
0.0098  
0.0197  
0.0236  
0.0020  
0.1614  
0.1220  
0.1614  
0.1220  
0.0197  
0.0177  
-
3.900  
2.900  
3.900  
2.900  
0.300  
0.250  
-
0.1535  
0.1142  
0.1535  
0.1142  
0.0118  
0.0098  
-
D1  
E
E1  
L
L1  
T
b
0.200  
-
0.300  
-
0.0079  
-
0.0118  
-
e
86/102  
DocID026079 Rev 5  
 
 
 
STM32F038x6  
Package information  
1. Values in inches are converted from mm and rounded to 4 decimal digits.  
Figure 37. Recommended footprint for UFQFPN28 package  
ꢀꢆꢀꢁ  
ꢁꢆꢏꢁ  
ꢁꢆꢐꢍ  
ꢀꢆꢐꢁ  
ꢁꢆꢐꢁ  
ꢃꢆꢀꢁ  
ꢀꢆꢀꢁ  
ꢀꢆꢐꢁ  
ꢁꢆꢐꢍ  
ꢁꢆꢀꢁ  
ꢁꢆꢏꢁ  
ꢁꢆꢏꢏ  
ꢁꢆꢏꢁ  
ꢀꢆꢀꢁ  
$ꢁ%ꢁB)3B9ꢀ  
1. Dimensions are expressed in millimeters.  
DocID026079 Rev 5  
87/102  
98  
 
Package information  
STM32F038x6  
Device marking  
The following figure gives an example of topside marking orientation versus pin 1 identifier  
location.  
Other optional marking or inset/upset marks, which identify the parts throughout supply  
chain operations, are not indicated below.  
Figure 38. UFQFPN28 package marking example  
WƌŽĚƵĐƚꢀ  
ŝĚĞŶƚŝĨŝĐĂƚŝŽŶ ;ϭͿ  
ꢂꢀꢃ*ꢄ  
ꢁĂƚĞꢀĐŽĚĞ  
ZĞǀŝƐŝŽŶꢀĐŽĚĞ  
< ::  
ꢁŽƚ  
;ƉŝŶꢀϭꢀŝĚĞŶƚŝĨŝĞƌͿ  
D^ϯϵϬϬϭsϭ  
1. Parts marked as ES or E or accompanied by an Engineering Sample notification letter are not yet qualified  
and therefore not approved for use in production. ST is not responsible for any consequences resulting  
from such use. In no event will ST be liable for the customer using any of these engineering samples in  
production. ST's Quality department must be contacted prior to any decision to use these engineering  
samples to run a qualification activity.  
88/102  
DocID026079 Rev 5  
 
STM32F038x6  
Package information  
7.4  
WLCSP25 package information  
WLCSP25 is a 25-ball, 2.423 x 2.325 mm, 0.4 mm pitch wafer level chip scale package.  
Figure 39. WLCSP25 package outline  
Hꢍ  
=
EEE  
$ꢍꢄEDOOꢄORFDWLRQ  
)
H
*
H
$
(
'HWDLOꢄ$  
Hꢐ  
$ꢀ  
$ꢐ  
$
%XPSꢄVLGH  
6LGHꢄYLHZ  
%XPS  
HHH  
$ꢍꢄ  
RULHQWDWLRQꢄ  
UHIHUHQFH  
=
$ꢍ  
=
DDD  
E
‘EꢄꢈꢐꢏꢄEDOOVꢊ  
6HDWLQJꢄSODQH  
ꢃ[  
FFF  
= ; <  
=
GGG  
:DIHUꢄEDFNꢄVLGH  
'HWDLOꢄ$  
ꢈURWDWHGꢄꢂꢁƒꢊ  
:/&63ꢐꢏB$ꢁꢍ1B0(B9ꢍ  
1. Drawing is not to scale.  
Table 63. WLCSP25 package mechanical data  
millimeters  
Typ  
inches(1)  
Symbol  
Min  
Max  
Min  
Typ  
Max  
A
A1  
A2  
A3(2)  
b(3) (4)  
D
0.525  
0.555  
0.175  
0.380  
0.025  
0.250  
2.423  
2.325  
0.400  
1.600  
1.600  
0.4115  
0.3625  
0.585  
0.0207  
0.0219  
0.0069  
0.0150  
0.0010  
0.0098  
0.0954  
0.0915  
0.0157  
0.0630  
0.0630  
0.0162  
0.0143  
0.0230  
-
-
-
-
-
-
-
-
-
-
-
-
0.220  
0.280  
0.0087  
0.0110  
2.388  
2.458  
0.0940  
0.0968  
E
2.29  
2.36  
0.0902  
0.0929  
e
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
e1  
e2  
F
G
DocID026079 Rev 5  
89/102  
98  
 
 
 
Package information  
STM32F038x6  
Table 63. WLCSP25 package mechanical data (continued)  
millimeters  
Typ  
inches(1)  
Symbol  
Min  
Max  
Min  
Typ  
Max  
aaa  
bbb  
ccc  
ddd  
eee  
-
-
-
-
-
0.100  
0.100  
0.100  
0.050  
0.050  
-
-
-
-
-
-
-
-
-
-
0.0039  
0.0039  
0.0039  
0.0020  
0.0020  
-
-
-
-
-
1. Values in inches are converted from mm and rounded to 4 decimal digits.  
2. Back side coating.  
3. Dimension is measured at the maximum bump diameter parallel to primary datum Z.  
4. Primary datum Z and seating plane are defined by the spherical crowns of the bump.  
Figure 40. Recommended footprint for WLCSP25 package  
'SDG  
'VP  
:/&63ꢐꢏB$ꢁꢍ1B)3B9ꢍ  
Table 64. WLCSP25 recommended PCB design rules  
Dimension Recommended values  
Pitch  
Dpad  
0.4 mm  
0.225 mm  
0.290 mm typ. (depends on the soldermask  
registration tolerance)  
Dsm  
Stencil opening  
Stencil thickness  
0.250 mm  
0.100 mm  
90/102  
DocID026079 Rev 5  
 
 
STM32F038x6  
Package information  
Device marking  
The following figure gives an example of topside marking orientation versus ball A1 identifier  
location.  
Other optional marking or inset/upset marks, which identify the parts throughout supply  
chain operations, are not indicated below.  
Figure 41. WLCSP25 package marking example  
'RW  
3URGXFWꢄ  
LGHQWLILFDWLRQꢈꢍꢊ  
)ꢂꢀꢃꢅ  
'DWHꢄFRGH  
5HYLVLRQꢄFRGH  
<:: 5  
D^ϯϵϬϯϴsϮ  
1. Parts marked as ES or E or accompanied by an Engineering Sample notification letter are not yet qualified  
and therefore not approved for use in production. ST is not responsible for any consequences resulting  
from such use. In no event will ST be liable for the customer using any of these engineering samples in  
production. ST's Quality department must be contacted prior to any decision to use these engineering  
samples to run a qualification activity.  
DocID026079 Rev 5  
91/102  
98  
 
 
Package information  
STM32F038x6  
7.5  
TSSOP20 package information  
TSSOP20 is a 20-lead thin shrink small-outline, 6.5 x 4.4 mm, 0.65 mm pitch, package.  
Figure 42.TSSOP20 package outline  
ϮϬ  
ϭϭ  
ϭϬ  
Đ
ꢂϭ  
^ꢂꢃd/E'  
W>ꢃEꢂ  
Ϭ͘Ϯϱꢀŵŵ  
'ꢃh'ꢂꢀW>ꢃEꢂ  
ϭ
W/Eꢀϭ  
/ꢁꢂEd/&/ꢄꢃd/KE  
Ŭ
ĂĂĂ  
ꢃϭ  
>
ꢃϮ  
>ϭ  
ď
Ğ
zꢃͺDꢂͺsϯ  
1. Drawing is not to scale.  
Table 65. TSSOP20 package mechanical data  
millimeters  
Typ.  
inches(1)  
Symbol  
Min.  
Max.  
Min.  
Typ.  
Max.  
A
A1  
A2  
b
-
-
1.200  
0.150  
1.050  
0.300  
0.200  
6.600  
6.600  
4.500  
-
-
-
0.0472  
0.0059  
0.0413  
0.0118  
0.0079  
0.2598  
0.2598  
0.1772  
-
0.050  
0.800  
0.190  
0.090  
6.400  
6.200  
4.300  
-
-
0.0020  
0.0315  
0.0075  
0.0035  
0.2520  
0.2441  
0.1693  
-
-
1.000  
-
0.0394  
-
c
-
-
D(2)  
6.500  
6.400  
4.400  
0.650  
0.600  
1.000  
0.2559  
0.2520  
0.1732  
0.0256  
0.0236  
0.0394  
E
E1(3)  
e
L
0.450  
-
0.750  
-
0.0177  
-
0.0295  
-
L1  
92/102  
DocID026079 Rev 5  
 
 
 
STM32F038x6  
Package information  
Table 65. TSSOP20 package mechanical data (continued)  
millimeters  
Typ.  
inches(1)  
Symbol  
Min.  
Max.  
Min.  
Typ.  
Max.  
k
0°  
-
-
-
8°  
0°  
-
-
-
8°  
aaa  
0.100  
0.0039  
1. Values in inches are converted from mm and rounded to four decimal digits.  
2. Dimension “D” does not include mold flash, protrusions or gate burrs. Mold flash, protrusions or gate burrs  
shall not exceed 0.15mm per side.  
3. Dimension “E1” does not include interlead flash or protrusions. Interlead flash or protrusions shall not  
exceed 0.25mm per side.  
Figure 43. Recommended footprint for TSSOP20 package  
ꢁꢆꢐꢏ  
ꢎꢆꢐꢏ  
ꢐꢁ  
ꢍꢍ  
ꢍꢆꢀꢏ  
ꢁꢆꢐꢏ  
ꢓꢆꢍꢁ ꢃꢆꢃꢁ  
ꢍꢆꢀꢏ  
ꢍꢁ  
ꢁꢆꢃꢁ  
ꢁꢆꢎꢏ  
9!?&0?6ꢊ  
1. Dimensions are expressed in millimeters.  
DocID026079 Rev 5  
93/102  
98  
 
Package information  
STM32F038x6  
Device marking  
The following figure gives an example of topside marking orientation versus pin 1 identifier  
location.  
Other optional marking or inset/upset marks, which identify the parts throughout supply  
chain operations, are not indicated below.  
Figure 44. TSSOP20 package marking example  
^ƚĂŶĚĂƌĚꢀ^dꢀůŽŐŽ  
WƌŽĚƵĐƚꢀ  
ŝĚĞŶƚŝĨŝĐĂƚŝŽŶ ;ϭͿ  
ꢀꢁ)ꢂꢀꢃ)ꢄ3ꢅ  
ZĞǀŝƐŝŽŶꢀĐŽĚĞ  
ꢁĂƚĞꢀĐŽĚĞ  
WŝŶꢀϭꢀŝĚĞŶƚŝĨŝĞƌ  
<
::  
D^ϯϴϯϵϵsϭ  
1. Parts marked as ES or E or accompanied by an Engineering Sample notification letter are not yet qualified  
and therefore not approved for use in production. ST is not responsible for any consequences resulting  
from such use. In no event will ST be liable for the customer using any of these engineering samples in  
production. ST's Quality department must be contacted prior to any decision to use these engineering  
samples to run a qualification activity.  
94/102  
DocID026079 Rev 5  
 
STM32F038x6  
Package information  
7.6  
Thermal characteristics  
The maximum chip junction temperature (T max) must never exceed the values given in  
J
Table 18: General operating conditions.  
The maximum chip-junction temperature, T max, in degrees Celsius, may be calculated  
J
using the following equation:  
T max = T max + (P max x Θ )  
J
A
D
JA  
Where:  
T max is the maximum ambient temperature in °C,  
A
Θ
is the package junction-to-ambient thermal resistance, in °C/W,  
JA  
P max is the sum of P  
max and P max (P max = P  
max + P max),  
INT I/O  
D
INT  
I/O  
D
P
max is the product of I and V , expressed in Watts. This is the maximum chip  
DD DD  
INT  
internal power.  
P
max represents the maximum power dissipation on output pins where:  
I/O  
P
max = Σ (V × I ) + Σ ((V  
– V ) × I ),  
DDIOx OH OH  
I/O  
OL  
OL  
taking into account the actual V / I and V / I of the I/Os at low and high level in the  
OL OL  
OH OH  
application.  
Table 66. Package thermal characteristics  
Parameter  
Symbol  
Value  
Unit  
Thermal resistance junction-ambient  
LQFP48 - 7 × 7 mm  
55  
Thermal resistance junction-ambient  
UFQFPN32 - 5 × 5 mm  
38  
118  
74  
Thermal resistance junction-ambient  
UFQFPN28 - 4 × 4 mm  
Θ
°C/W  
JA  
Thermal resistance junction-ambient  
WLCSP25 - 2.13 x 2.07 mm  
Thermal resistance junction-ambient  
TSSOP20 - 6.5 x 4.4 mm  
110  
7.6.1  
Reference document  
JESD51-2 Integrated Circuits Thermal Test Method Environment Conditions - Natural  
Convection (Still Air). Available from www.jedec.org  
DocID026079 Rev 5  
95/102  
98  
 
 
 
 
Package information  
STM32F038x6  
7.6.2  
Selecting the product temperature range  
When ordering the microcontroller, the temperature range is specified in the ordering  
information scheme shown in Section 8: Ordering information.  
Each temperature range suffix corresponds to a specific guaranteed ambient temperature at  
maximum dissipation and, to a specific maximum junction temperature.  
As applications do not commonly use the STM32F038x6 at maximum dissipation, it is useful  
to calculate the exact power consumption and junction temperature to determine which  
temperature range will be best suited to the application.  
The following examples show how to calculate the temperature range needed for a given  
application.  
Example 1: High-performance application  
Assuming the following application conditions:  
Maximum ambient temperature T  
= 80 °C (measured according to JESD51-2),  
Amax  
I
= 50 mA, V = 3.5 V, maximum 20 I/Os used at the same time in output at low  
DDmax  
DD  
level with I = 8 mA, V = 0.4 V and maximum 8 I/Os used at the same time in output  
OL  
OL  
at low level with I = 20 mA, V = 1.3 V  
OL  
OL  
P
P
50 mA × 3.5 V= 175 mW  
INTmax =  
× 8 mA × 0.4 V + 8 × 20 mA × 1.3 V = 272 mW  
IOmax = 20  
This gives: P  
= 175 mW and P  
= 272 mW:  
IOmax  
INTmax  
P
175 272 = 447 mW  
+
Dmax =  
Using the values obtained in Table 66 T  
is calculated as follows:  
Jmax  
T
For LQFP48, 55 °C/W  
= 80 °C + (55°C/W × 447 mW) = 80 °C + 24.585 °C = 104.585 °C  
Jmax  
This is within the range of the suffix 6 version parts (–40 < T < 105 °C) see Table 18:  
J
General operating conditions.  
In this case, parts must be ordered at least with the temperature range suffix 6 (see  
Section 8: Ordering information).  
Note:  
With this given P  
Dmax we can find the TAmax allowed for a given device temperature range (order code suffix  
6 or 7).  
Suffix 6: T  
Suffix 7: T  
= T  
= T  
- (55°C/W × 447 mW) = 105-24.585 = 80.415 °C  
- (55°C/W × 447 mW) = 125-24.585 = 100.415 °C  
Amax  
Jmax  
Jmax  
Amax  
Example 2: High-temperature application  
Using the same rules, it is possible to address applications that run at high ambient  
temperatures with a low dissipation, as long as junction temperature T remains within the  
J
specified range.  
96/102  
DocID026079 Rev 5  
 
STM32F038x6  
Package information  
Assuming the following application conditions:  
Maximum ambient temperature T = 100 °C (measured according to JESD51-2),  
Amax  
I
= 20 mA, V = 3.5 V, maximum 20 I/Os used at the same time in output at low  
DDmax  
DD  
level with I = 8 mA, V = 0.4 V  
OL  
OL  
P
P
20 mA × 3.5 V= 70 mW  
INTmax =  
× 8 mA × 0.4 V = 64 mW  
IOmax = 20  
This gives: P  
= 70 mW and P  
= 64 mW:  
IOmax  
INTmax  
P
70 64 = 134 mW  
Dmax =  
+
Thus: P  
= 134 mW  
Dmax  
Using the values obtained in Table 66 T  
is calculated as follows:  
Jmax  
T
For LQFP48, 55 °C/W  
= 100 °C + (55 °C/W × 134 mW) = 100 °C + 7.37 °C = 107.37 °C  
Jmax  
This is above the range of the suffix 6 version parts (–40 < T < 105 °C).  
J
In this case, parts must be ordered at least with the temperature range suffix 7 (see  
Section 8: Ordering information) unless we reduce the power dissipation in order to be able  
to use suffix 6 parts.  
DocID026079 Rev 5  
97/102  
98  
Ordering information  
STM32F038x6  
8
Ordering information  
For a list of available options (memory, package, and so on) or for further information on any  
aspect of this device, please contact your nearest ST sales office.  
Table 67. Ordering information scheme  
Example:  
STM32  
F
038 G  
6
T
6
x
Device family  
STM32 = ARM-based 32-bit microcontroller  
Product type  
F = General-purpose  
Sub-family  
038 = STM32F038xx  
Pin count  
F = 20 pins  
E = 25 pins  
G = 28 pins  
K = 32 pins  
C = 48 pins  
User code memory size  
6 = 32 Kbyte  
Package  
P = TSSOP  
U = UFQFPN  
T = LQFP  
Y = WLCSP  
Temperature range  
6 = –40 °C to +85 °C  
7 = –40 °C to +105 °C  
Options  
xxx = code ID of programmed parts (includes packing type)  
TR = tape and reel packing  
blank = tray packing  
98/102  
DocID026079 Rev 5  
 
 
 
STM32F038x6  
Revision history  
9
Revision history  
Table 68. Document revision history  
Date  
Revision  
Changes  
28-May-2014  
1
Initial release.  
Updated:  
– Table 2: STM32F038x6 family device features and  
peripheral counts  
Figure 8: STM32F038x6 memory map  
– AF1 alternate functions for PA0, PA1, PA2, PA3 and  
PA4 in Table 11: Alternate functions selected through  
GPIOA_AFR registers for port A  
– the footnote for VIN max value in Table 14: Voltage  
characteristics  
– the footnote for max VIN in Table 17: General  
operating conditions  
– Table 20: Typical and maximum current consumption  
from VDD supply at VDD = 1.8 V  
Table 21: Typical and maximum current consumption  
from the VDDA supply  
Table 23: Typical and maximum current consumption  
from the VBAT supply  
Table 19: Embedded internal reference voltage with  
the addition of tSTART parameter  
24-Sep-2015  
2
Table 48: ADC characteristics  
Table 51: TS characteristics: removed the min. value  
for tSTART parameter  
– the typical value for R parameter in Table 52: VBAT  
monitoring characteristics  
– VESD(CDM) class and value in Table 40: ESD absolute  
maximum ratings  
– the structure of Section 7: Package information  
Added:  
Figure 32: LQFP48 marking example (package top  
view)  
Figure 35: UFQFPN32 marking example (package top  
view)  
Figure 38: UFQFPN28 marking example (package top  
view)  
Figure 44: TSSOP20 marking example (package top  
view).  
DocID026079 Rev 5  
99/102  
101  
 
 
Revision history  
STM32F038x6  
Table 68. Document revision history (continued)  
Date  
Revision  
Changes  
Added WLCSP25 package, updates in the following:  
Table 1: Device summary  
Section 2: Description  
Table 2: STM32F038x6 family device features and  
peripheral counts  
2
Section 4: Pinouts and pin description: addition of  
Figure 6: WLCSP25 25-ball package ballout (bump  
side) and update of Table 10: Pin definitions,  
24-Sep-2015  
(continued)  
Table 17: General operating conditions  
Section 7: Package information with the addition of  
Section 7.4: WLCSP25 package information  
Table 65: Package thermal characteristics  
Cover page:  
– number of timers added in the title  
– “20 mA” I2C output drive replaced with “extra”  
– number of GPIOs and 5V-tolerant GPIOs corrected  
Section 2: Description:  
Figure 1: Block diagram updated  
Section 3: Functional overview:  
Figure 2: Clock tree updated  
Section 3.5.3: Low-power modes - added inf. on  
peripherals configurable to operate with HSI  
Section 3.10.2: Internal voltage reference (VREFINT) -  
removed information on comparators  
Section 3.11.2: General-purpose timers (TIM2, 3, 14,  
16, 17) - number of gen-purpose timers corrected  
Table 7: STM32F038x6 I2C implementation - added  
“extra” output drive current  
16-Dec-2015  
3
Table 8: STM32F038x6 USART implementation  
added  
Section 4: Pinouts and pin description:  
– Package pinout figures updated (look and feel)  
Figure 6: WLCSP25 package pinout - now presented  
in top view  
Table 11: Pin definitions - notes 3 and 6 added  
Section 6: Electrical characteristics:  
Table 20: Embedded internal reference voltage:  
removed -40°-to-85° condition and associated note for  
VREFINT  
Table 25 and Table 24 values rounded to 1 decimal  
Table 41: ESD absolute maximum ratings updated  
Table 44: I/O static characteristics - removed note  
100/102  
DocID026079 Rev 5  
STM32F038x6  
Revision history  
Table 68. Document revision history (continued)  
Date  
Revision  
Changes  
Table 49: ADC characteristics - updated some  
parameter values, test conditions and added  
footnotes (3) and (4)  
Section 6.3.15: 12-bit ADC characteristics - changed  
introductory sentence  
Table 59: I2S characteristics: table reorganized,  
tv(SD_ST) max value updated  
16-Dec-2015  
3
Section 7: Package information:  
Figure 37: Recommended footprint for UFQFPN28  
package updated  
Section 8: Part numbering:  
– added tray packing to options  
Section 6: Electrical characteristics:  
Table 32: LSE oscillator characteristics (fLSE = 32.768  
kHz) - information on configuring different drive  
capabilities removed. See the corresponding  
reference manual.  
Table 20: Embedded internal reference voltage -  
VREFINT values  
10-Jan-2017  
4
Figure 25: SPI timing diagram - slave mode and  
CPHA = 0 and Figure 26: SPI timing diagram - slave  
mode and CPHA = 1 enhanced and corrected  
Section 8: Ordering information:  
– The name of the section changed from the previous  
“Part numbering”  
Section 7: Package information:  
Figure 41: WLCSP25 package marking example - the  
composition of the package marking fields and  
character sizes corrected. Check the product errata  
sheet for additional information.  
15-May-2017  
5
– Notes under package marking figures modified.  
DocID026079 Rev 5  
101/102  
101  
STM32F038x6  
IMPORTANT NOTICE – PLEASE READ CAREFULLY  
STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and  
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on  
ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order  
acknowledgement.  
Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or  
the design of Purchasers’ products.  
No license, express or implied, to any intellectual property right is granted by ST herein.  
Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.  
ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.  
Information in this document supersedes and replaces information previously supplied in any prior versions of this document.  
© 2017 STMicroelectronics – All rights reserved  
102/102  
DocID026079 Rev 5  

相关型号:

STM32F038X6

Clock management
STMICROELECTR

STM32F042C4

Reset and power management
STMICROELECTR

STM32F042C6

Reset and power management
STMICROELECTR

STM32F042F4

Reset and power management
STMICROELECTR

STM32F042F6

Reset and power management
STMICROELECTR

STM32F042G4

Reset and power management
STMICROELECTR

STM32F042G6

Reset and power management
STMICROELECTR

STM32F042K4

Reset and power management
STMICROELECTR

STM32F042K6

Reset and power management
STMICROELECTR

STM32F042T4

Reset and power management
STMICROELECTR

STM32F042T6

Reset and power management
STMICROELECTR

STM32F042X4

Reset and power management
STMICROELECTR