M58LW064D110N6T [STMICROELECTRONICS]

64 Mbit (8Mb x8, 4Mb x16, Uniform Block) 3V Supply Flash Memory; 64兆位(8MB X8 , X16 4Mb的,统一块) 3V供应闪存
M58LW064D110N6T
型号: M58LW064D110N6T
厂家: ST    ST
描述:

64 Mbit (8Mb x8, 4Mb x16, Uniform Block) 3V Supply Flash Memory
64兆位(8MB X8 , X16 4Mb的,统一块) 3V供应闪存

闪存 存储 内存集成电路 光电二极管
文件: 总51页 (文件大小:349K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
M58LW064D  
64 Mbit (8Mb x8, 4Mb x16, Uniform Block)  
3V Supply Flash Memory  
PRELIMINARY DATA  
FEATURES SUMMARY  
WIDE x8 or x16 DATA BUS for HIGH  
Figure 1. Packages  
BANDWIDTH  
SUPPLY VOLTAGE  
– V = V  
= 2.7 to 3.6V for Program, Erase  
DDQ  
DD  
and Read operations  
ACCESS TIME  
– Random Read 110ns  
TSOP56 (N)  
14 x 20 mm  
– Page Mode Read 110/25ns  
PROGRAMMING TIME  
– 16 Word Write Buffer  
– 12µs Word effective programming time  
64 UNIFORM 64 KWord/128KByte MEMORY  
TBGA  
BLOCKS  
BLOCK PROTECTION/ UNPROTECTION  
PROGRAM and ERASE SUSPEND  
128 bit PROTECTION REGISTER  
COMMON FLASH INTERFACE  
TBGA64 (ZA)  
10 x 13 mm  
100, 000 PROGRAM/ERASE CYCLES per  
BLOCK  
ELECTRONIC SIGNATURE  
– Manufacturer Code: 0020h  
– Device Code M58LW064D: 0017h  
December 2002  
1/51  
This is preliminary information on a new product now in development or undergoing evaluation. Details are subject to change without notice.  
M58LW064D  
TABLE OF CONTENTS  
SUMMARY DESCRIPTION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Figure 2. Logic Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Table 1. Signal Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Figure 3. TSOP56 Connections. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Figure 4. TBGA64 Connections (Top view through package) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Figure 5. Block Addresses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
SIGNAL DESCRIPTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Address Input (A0). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Address Inputs (A1-A22). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Data Inputs/Outputs (DQ0-DQ15). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Chip Enables (E0, E1, E2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Output Enable (G). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Write Enable (W). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Reset/Power-Down (RP). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Byte/Word Organization Select (BYTE). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Status/(Ready/Busy) (STS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Program/Erase Enable (V  
). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
PEN  
V
V
V
V
Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
DD  
Supply Voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
DDQ  
Ground . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
SS  
Ground . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
SSQ  
Table 2. Device Enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
BUS OPERATIONS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Bus Read. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Bus Read. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Page Read. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Bus Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Output Disable. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Standby . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Automatic Low Power.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Power-Down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Table 3. Bus Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
COMMAND INTERFACE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Read Memory Array Command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Read Electronic Signature Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Read Query Command.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Read Status Register Command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Clear Status Register Command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Block Erase Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Word/Byte Program Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Write to Buffer and Program Command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
2/51  
M58LW064D  
Program/Erase Suspend Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Program/Erase Resume Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Block Protect Command.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Blocks Unprotect Command.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Protection Register Program Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Configure STS Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Table 4. Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Table 5. Configuration Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Table 6. Read Electronic Signature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Figure 6. Protection Register Memory Map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Table 7. Word-Wide Read Protection Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Table 8. Byte-Wide Read Protection Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Table 9. Program, Erase Times and Program Erase Endurance Cycles . . . . . . . . . . . . . . . . . . . 20  
STATUS REGISTER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Program/Erase Controller Status (Bit 7) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Erase Suspend Status (Bit 6) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Erase Status (Bit 5) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Program Status (Bit 4). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
VPEN Status (Bit 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Program Suspend Status (Bit 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Block Protection Status (Bit 1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Reserved (Bit 0). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Table 10. Status Register Bits. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
MAXIMUM RATING. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Table 11. Absolute Maximum Ratings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
DC and AC PARAMETERS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Table 12. Operating and AC Measurement Conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Figure 7. AC Measurement Input Output Waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Figure 8. AC Measurement Load Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Table 13. Capacitance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Table 14. DC Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Figure 9. Bus Read AC Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Table 15. Bus Read AC Characteristics.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Figure 10. Page Read AC Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Table 16. Page Read AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Figure 11. Write AC Waveform, Write Enable Controlled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Table 17. Write AC Characteristics, Write Enable Controlled . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Figure 12. Write AC Waveforms, Chip Enable Controlled. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Table 18. Write AC Characteristics, Chip Enable Controlled. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Figure 13. Reset, Power-Down and Power-Up AC Waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Table 19. Reset, Power-Down and Power-Up AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . 31  
PACKAGE MECHANICAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
3/51  
M58LW064D  
Figure 14. TSOP56 - 56 lead Plastic Thin Small Outline, 14 x 20 mm, Package Outline . . . . . . . 32  
Table 20. TSOP56 - 56 lead Plastic Thin Small Outline, 14 x 20 mm, Package Mechanical Data 32  
Figure 15. TBGA64 - 10x13mm, 8 x 8 ball array 1mm pitch, Package Outline . . . . . . . . . . . . . . . 33  
Table 21. TBGA64 - 10x13mm, 8 x 8 ball array, 1 mm pitch, Package Mechanical Data. . . . . . . 33  
PART NUMBERING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Table 22. Ordering Information Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
APPENDIX A. BLOCK ADDRESS TABLE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Table 23. Block Addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
APPENDIX B. COMMON FLASH INTERFACE - CFI. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Table 24. Query Structure Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Table 25. CFI - Query Address and Data Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Table 26. CFI - Device Voltage and Timing Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Table 27. Device Geometry Definition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Table 28. Block Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Table 29. Extended Query information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
APPENDIX C. FLOW CHARTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Figure 16. Write to Buffer and Program Flowchart and Pseudo Code . . . . . . . . . . . . . . . . . . . . . 40  
Figure 17. Program Suspend & Resume Flowchart and Pseudo Code . . . . . . . . . . . . . . . . . . . . 41  
Figure 18. Erase Flowchart and Pseudo Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Figure 19. Erase Suspend & Resume Flowchart and Pseudo Code. . . . . . . . . . . . . . . . . . . . . . . 43  
Figure 20. Block Protect Flowchart and Pseudo Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Figure 21. Block Unprotect Flowchart and Pseudo Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
Figure 22. Protection Register Program Flowchart and Pseudo Code . . . . . . . . . . . . . . . . . . . . . 46  
Figure 23. Command Interface and Program Erase Controller Flowchart (a) . . . . . . . . . . . . . . . . 47  
Figure 24. Command Interface and Program Erase Controller Flowchart (b) . . . . . . . . . . . . . . . . 48  
Figure 25. Command Interface and Program Erase Controller Flowchart (c). . . . . . . . . . . . . . . . 49  
REVISION HISTORY. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
Table 30. Document Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
4/51  
M58LW064D  
SUMMARY DESCRIPTION  
The M58LW064D is a 64 Mbit (8Mb x 8 or 4Mb  
x16) non-volatile memory that can be read, erased  
and reprogrammed. These operations can be per-  
formed using a single low voltage (2.7V to 3.6V)  
core supply.  
mands are provided to allow protection of some or  
all of the blocks and to cancel all block protection  
bits simultaneously. All Program or Erase opera-  
tions are blocked when the Program Erase Enable  
input V  
is low.  
PEN  
The memory is divided into 64 blocks of 1Mbit that  
can be erased independently so it is possible to  
preserve valid data while old data is erased. Pro-  
gram and Erase commands are written to the  
Command Interface of the memory. An on-chip  
Program/Erase Controller simplifies the process of  
programming or erasing the memory by taking  
care of all of the special operations that are re-  
quired to update the memory contents. The end of  
a Program or Erase operation can be detected and  
any error conditions identified in the Status Regis-  
ter. The command set required to control the  
memory is consistent with JEDEC standards.  
The Write Buffer allows the microprocessor to pro-  
gram from 1 to 16 Words in parallel, both speeding  
up the programming and freeing up the micropro-  
cessor to perform other work. A Word Program  
command is available to program a single word.  
Erase can be suspended in order to perform either  
Read or Program in any other block and then re-  
sumed. Program can be suspended to Read data  
in any other block and then resumed. Each block  
can be programmed and erased over 100,000 cy-  
cles.  
The Reset/Power-Down pin is used to apply a  
Hardware Reset to the enabled memory and to set  
the device in power-down mode.  
The STS signal is an open drain output that can be  
used to identify the Program/Erase Controller sta-  
tus. It can be configured in two modes: Ready/  
Busy mode where a static signal indicates the sta-  
tus of the P/E.C, and Status mode where a pulsing  
signal indicates the end of a Program or Block  
Erase operation. In Status mode it can be used as  
a system interrupt signal, useful for saving CPU  
time.  
The Bus operations of the device are controlled by  
Output Enable, Write Enable and three different  
Chip Enables. Refer to Table 2, Device Enable, for  
all possible combinations to enable and disable  
the device. Together they allow simple, yet power-  
ful, connection to most microprocessor, often with-  
out additional logic.  
The device includes a 128 bit Protection Register.  
The Protection Register is divided into two 64 bit  
segments, the first one is written by the manufac-  
turer (contact STMicroelectronics to define the  
code to be written here), while the second one is  
programmable by the user. The user programma-  
ble segment can be locked.  
Individual block protection against Program or  
Erase is provided for data security. All blocks are  
protected during power-up. The protection of the  
blocks is non-volatile; after power-up the protec-  
tion status of each block is restored to the state  
when power was last removed. Software com-  
The memory is available in TSOP56 (14 x 20 mm)  
and TBGA64 (10x13mm, 1mm pitch) packages.  
5/51  
M58LW064D  
Figure 2. Logic Diagram  
Table 1. Signal Names  
A0  
Address input (used in X8 mode only)  
V
V
DD DDQ  
A1-A22  
BYTE  
DQ0-DQ15  
E0  
Address inputs  
Byte/Word Organization Select  
Data Inputs/Outputs  
Chip Enable  
23  
A0-A22  
E1  
Chip Enable  
V
PEN  
E2  
Chip Enable  
16  
BYTE  
W
G
Output Enable  
DQ0-DQ15  
RP  
Reset/Power-Down  
Status/(Ready/Busy)  
Program/Erase Enable  
Write Enable  
M58LW064D  
STS  
STS  
E0  
E1  
E2  
G
V
PEN  
W
V
Supply Voltage  
DD  
V
Input/Output Supply Voltage  
Ground  
DDQ  
RP  
V
SS  
V
Input/Output Ground  
Not Connected Internally  
Do Not Use  
SSQ  
NC  
DU  
V
V
SS SSQ  
AI05584b  
6/51  
M58LW064D  
Figure 3. TSOP56 Connections  
A22  
E1  
1
56  
NC  
W
A21  
A20  
A19  
A18  
A17  
A16  
G
STS  
DQ15  
DQ7  
DQ14  
DQ6  
V
V
DD  
A15  
A14  
A13  
A12  
E0  
SS  
DQ13  
DQ5  
DQ12  
DQ4  
14  
15  
43  
42  
V
V
DDQ  
SSQ  
M58LW064D  
V
PEN  
RP  
DQ11  
A11  
A10  
A9  
DQ3  
DQ10  
DQ2  
A8  
V
DD  
V
DQ9  
DQ1  
DQ8  
DQ0  
A0  
SS  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
BYTE  
NC  
E2  
28  
29  
AI05585  
7/51  
M58LW064D  
Figure 4. TBGA64 Connections (Top view through package)  
1
2
3
4
5
6
7
8
A
B
C
D
E
F
A1  
A2  
A6  
A8  
A9  
V
A13  
A14  
V
A18  
A19  
A22  
E1  
PEN  
E0  
DD  
V
DU  
DU  
SS  
A3  
A7  
A10  
A11  
DQ9  
DQ10  
DQ2  
A12  
RP  
A15  
A20  
A21  
A17  
STS  
G
A4  
A5  
DQ1  
DQ0  
A0  
DU  
DU  
A16  
DQ8  
DQ3  
DQ11  
DQ4  
DQ12  
DQ5  
DQ13  
DU  
DQ15  
DU  
BYTE  
NC  
DU  
G
H
V
DQ6  
DQ14  
DQ7  
W
DDQ  
E2  
DU  
V
V
V
NC  
DD  
SSQ  
SS  
AI05586b  
8/51  
M58LW064D  
Figure 5. Block Addresses  
Byte (x8) Bus Width  
Word (x16) Bus Width  
7FFFFFh  
3FFFFFh  
1 Mbit or  
1 Mbit or  
128 KBytes  
64 KWords  
7E0000h  
7DFFFFh  
3F0000h  
3EFFFFh  
1 Mbit or  
1 Mbit or  
128 KBytes  
64 KWords  
7C0000h  
3E0000h  
Total of 64  
1 Mbit Blocks  
03FFFFh  
01FFFFh  
1 Mbit or  
1 Mbit or  
128 KBytes  
64 KWords  
020000h  
01FFFFh  
010000h  
00FFFFh  
1 Mbit or  
1 Mbit or  
128 KBytes  
64 KWords  
000000h  
000000h  
AI06212  
Note: Also see Appendix A, Table 23 for a full listing of the Block Addresses  
9/51  
M58LW064D  
SIGNAL DESCRIPTIONS  
See Figure 2, Logic Diagram and Table 1, Signal  
Names, for a brief overview of the signals connect-  
ed to this device.  
Address Input (A0). The A0 address input is  
used to select the higher or lower Byte in X8 mode.  
It is not used in X16 mode (where A1 is the Lowest  
Significant bit).  
Write Enable (W). The Write Enable input, W,  
controls writing to the Command Interface, Input  
Address and Data latches. Both addresses and  
data can be latched on the rising edge of Write En-  
able.  
Reset/Power-Down (RP). The  
Reset/Power-  
Down pin can be used to apply a Hardware Reset  
to the memory.  
A Hardware Reset is achieved by holding Reset/  
Power-Down Low, V , for at least t  
Reset/Power-Down is Low, V , the Status Regis-  
ter information is cleared and the power consump-  
tion is reduced to power-down level. The device is  
deselected and outputs are high impedance. If Re-  
Address Inputs (A1-A22). The A1-A22 Address  
Inputs are used to select the cells to access in the  
memory array during Bus Read operations either  
to read or to program data. During Bus Write oper-  
ations they control the commands sent to the  
Command Interface of the internal state machine.  
The device must be enabled (refer to Table 2, De-  
vice Enable) when selecting the addresses. The  
address inputs are latched on the rising edge of  
Write Enable or on the first edge of Chip Enables  
E0, E1 or E2 that disable the device, whichever  
occurs first.  
. When  
IL  
PLPH  
IL  
set/Power-Down goes low, V ,during a Block  
IL  
Erase, a Write to Buffer and Program or a Block  
Protect/Unprotect the operation is aborted and the  
data may be corrupted. In this case the STS pin  
stays low, V , for a maximum timing of t  
+ t  
IL  
PLPH  
PH-  
until the completion of the Reset/Power-Down  
BH,  
Data Inputs/Outputs (DQ0-DQ15). The Data In-  
puts/Outputs output the data stored at the selected  
address during a Bus Read operation, or are used  
to input the data during a program operation. Dur-  
ing Bus Write operations they represent the com-  
mands sent to the Command Interface of the  
internal state machine. When used to input data or  
Write commands they are latched on the rising  
edge of Write Enable or the first edge of Chip En-  
ables E0, E1 or E2 that disable the device, which-  
ever occurs first.  
pulse.  
After Reset/Power-Down goes High, V , the  
memory will be ready for Bus Read and Bus Write  
operations after t  
during a reset, see Ready/Busy Output section.  
IH  
. Note that STS does not fall  
PHQV  
In an application, it is recommended to associate  
Reset/Power-Down pin, RP, with the reset signal  
of the microprocessor. Otherwise, if a reset opera-  
tion occurs while the memory is performing an  
Erase or Program operation, the memory may out-  
put the Status Register information instead of be-  
ing initialized to the default Asynchronous  
Random Read.  
Byte/Word Organization Select (BYTE). The  
Byte/Word Organization Select pin is used to  
switch between the x8 and x16 bus widths of the  
memory. When Byte/Word Organization Select is  
When the device is enabled and Output Enable is  
low, V (refer to Table 2, Device Enable), the data  
IL  
bus outputs data from the memory array, the Elec-  
tronic Signature, the Block Protection status, the  
CFI Information or the contents of the Status Reg-  
ister. The data bus is high impedance when the  
device is deselected, Output Enable is high, V or  
IH,  
the Reset/Power-Down signal is low, V . When  
the Program/Erase Controller is active the Ready/  
Busy status is given on DQ7.  
Low, V , the memory is in x8 mode, when it is  
IL  
IL  
High, V , the memory is in x16 mode.  
IH  
Status/(Ready/Busy) (STS). The STS signal is  
an open drain output that can be used to identify  
the Program/Erase Controller status. It can be  
configured in two modes:  
Chip Enables (E0, E1, E2). The Chip Enable in-  
puts E0, E1 and E2 activate the memory control  
logic, input buffers, decoders and sense amplifi-  
ers. The device is selected at the first edge of Chip  
Enables E0, E1 or E2 that enable the device and  
deselected at the first edge of Chip Enables E0,  
E1 or E2 that disable the device. Refer to Table 2,  
Device Enable for more details.  
Ready/Busy - the pin is Low, V , during  
OL  
Program and Erase operations and high  
impedance when the memory is ready for any  
Read, Program or Erase operation.  
Status - the pin gives a pulsing signal to indicate  
When the Chip Enable inputs deselect the memo-  
ry, power consumption is reduced to the Standby  
the end of a Program or Block Erase operation.  
After power-up or reset the STS pin is configured  
in Ready/Busy mode. The pin can be configured  
for Status mode using the Configure STS com-  
mand.  
When the Program/Erase Controller is idle, or sus-  
pended, STS can float High through a pull-up re-  
level, I  
.
DD1  
Output Enable (G). The Output Enable, G, gates  
the outputs through the data output buffers during  
a read operation. When Output Enable, G, is at V  
the outputs are high impedance.  
IH  
10/51  
M58LW064D  
sistor. The use of an open-drain output allows the  
STS pins from several memories to be connected  
to a single pull-up resistor (a Low will indicate that  
one, or more, of the memories is busy).  
V
Supply Voltage. V  
provides the power  
DDQ  
DDQ  
supply to the I/O pins and enables all Outputs to  
be powered independently from V . V can be  
tied to V or can use a separate supply.  
DD DDQ  
DD  
STS is not Low during a reset unless the reset was  
applied when the Program/Erase controller was  
active  
It is recommended to power-up and power-down  
and V together to avoid any condition that  
V
DD  
DDQ  
would result in data corruption.  
V Ground. Ground, V is the reference for  
SS  
Program/Erase Enable (V ). The Program/  
PEN  
SS,  
Erase Enable input, V  
blocks, preventing Program and Erase operations  
from affecting their data.  
is used to protect all  
the core power supply. It must be connected to the  
system ground.  
PEN,  
V
Ground. V  
ground is the reference for  
SSQ  
SSQ  
Program/Erase Enable must be kept High during  
all Program/Erase Controller operations, other-  
wise the operations is not guaranteed to succeed  
and data may become corrupt.  
the input/output circuitry driven by V  
. V  
DDQ SSQ  
must be connected to V  
.
SS  
Note: Each device in a system should have  
and V decoupled with a 0.1µF ceramic  
V
DD  
DDQ  
V
Supply Voltage. V  
provides the power  
DD  
capacitor close to the pin (high frequency, in-  
herently low inductance capacitors should be  
as close as possible to the package). See Fig-  
ure 8, AC Measurement Load Circuit.  
DD  
supply to the internal core of the memory device.  
It is the main power supply for all operations  
(Read, Program and Erase).  
Table 2. Device Enable  
E2  
E1  
E0  
Device  
Enabled  
Disabled  
Disabled  
Disabled  
Enabled  
Enabled  
Enabled  
Disabled  
V
V
V
V
V
V
V
IL  
IL  
IL  
IL  
IL  
IL  
IL  
V
V
IH  
V
V
V
IL  
IH  
V
IH  
IH  
V
V
V
V
V
IH  
IH  
IH  
IH  
IL  
IL  
V
V
V
IL  
IH  
V
IL  
IH  
IH  
V
V
IH  
Note: For single device operations, E2 and E1 can be connected to V  
.
SS  
11/51  
M58LW064D  
BUS OPERATIONS  
There are 6 bus operations that control the mem-  
ory. Each of these is described in this section, see  
Tables 3, Bus Operations, for a summary.  
On Power-up or after a Hardware Reset the mem-  
ory defaults to Read Array mode (Page Read).  
Typically glitches of less than 5ns on Chip Enable  
or Write Enable are ignored by the memory and do  
not affect bus operations.  
Bus Read. Bus Read operations read from the  
memory cells, or specific registers (Electronic Sig-  
nature, Status Register, CFI and Block Protection  
Status) in the Command Interface.  
puts and enabling the device (refer to Chip Enable  
section).  
The Address Inputs are latched by the Command  
Interface on the rising edge of Write Enable or the  
first edge of E0, E1 or E2 that disables the device  
(refer to Table 2, Device Enable). The Data Input/  
Outputs are latched by the Command Interface on  
the rising edge of Write Enable or the first edge of  
E0, E1 or E2 that disable the device whichever oc-  
curs first .  
Output Enable must remain High, V , during the  
IH  
whole Bus Write operation. See Figures 11, and  
12, Write AC Waveforms, and Tables 17 and 18,  
Write and Chip Enable Controlled Write AC Char-  
acteristics, for details of the timing requirements.  
Output Disable. The Data Inputs/Outputs are in  
the high impedance state when the Output Enable  
is High.  
A valid bus operation involves setting the desired  
address on the Address inputs, enabling the de-  
vice (refer to Table 2, Device Enable), applying a  
Low signal, V , to Output Enable and keeping  
IL  
Write Enable High, V .  
IH  
The Data Inputs/Outputs will output the value, see  
Figure 9, Bus Read AC Waveforms, and Table 15,  
Bus Read AC Characteristics, for details of when  
the output becomes valid.  
Page Read. Page Read operations are used to  
read from several addresses within the same  
memory page.  
Standby. When Chip Enable is High, V , the  
IH  
memory enters Standby mode and the Data In-  
puts/Outputs pins are placed in the high imped-  
ance state regardless of Output Enable or Write  
Enable. The Supply Current is reduced to the  
Standby Supply Current, I  
.
DD1  
During Program or Erase operations the memory  
will continue to use the Program/Erase Supply  
Each memory page is a 4 Words or 8 Bytes and  
has the same A3-A22. In x8 mode only A0, A1 and  
A2 may change, in x16 mode only A1 and A2 may  
change.  
Valid bus operations are the same as Bus Read  
operations but with different timings. The first read  
operation within the page has identical timings,  
subsequent reads within the same page have  
much shorter access times. If the page changes  
then the normal, longer timings apply again. See  
Figure 10, Page Read AC Waveforms and Table  
16, Page Read AC Characteristics for details on  
when the outputs become valid.  
Bus Write. Bus Write operations write to the  
Command Interface in order to send commands to  
the memory or to latch addresses and input data  
to program.  
A valid Asynchronous Bus Write operation begins  
by setting the desired address on the Address In-  
Current, I  
, for Program or Erase operations un-  
DD3  
til the operation completes.  
Automatic Low Power. If there is no change in  
the state of the bus for a short period of time during  
Asynchronous Bus Read operations the memory  
enters Auto Low Power mode where the internal  
Supply Current is reduced to the Auto-Standby  
Supply Current, I  
. The Data Inputs/Outputs will  
DD5  
still output data if a Bus Read operation is in  
progress.  
Automatic Low Power is only available in Asyn-  
chronous Read modes.  
Power-Down. The memory is in Power-Down  
mode when Reset/Power-Down, RP, is Low. The  
power consumption is reduced to the Power-Down  
level, I  
, and the outputs are high impedance,  
DD2  
independent of Chip Enable, Output Enable or  
Write Enable.  
12/51  
M58LW064D  
Table 3. Bus Operations  
Bus Operation  
DQ0-DQ15 (x16)  
A1-A22 (x16)  
A0-A22 (x8)  
E
G
W
RP  
(1)  
DQ0-DQ7 (x8)  
V
V
V
Bus Read  
Page Read  
Bus Write  
High  
High  
High  
High  
High  
Address  
Data Output  
Data Output  
Data Input  
High Z  
IL  
IL  
IL  
IL  
IL  
IH  
V
V
V
V
V
V
V
IH  
Address  
IL  
V
V
Address  
IH  
IH  
IL  
V
Output Disable  
Standby  
X
X
X
IH  
X
X
High Z  
IH  
V
IL  
Power-Down  
X
X
X
High Z  
Note: 1. DQ8-DQ15 are High Z in x8 mode.  
2. X = Don’t Care V or V . High = V or V .  
HH  
IL  
IH  
IH  
13/51  
M58LW064D  
COMMAND INTERFACE  
All Bus Write operations to the memory are inter-  
preted by the Command Interface. Commands  
consist of one or more sequential Bus Write oper-  
ations. The Commands are summarized in Table  
4, Commands. Refer to Table 4 in conjunction with  
the text descriptions below.  
The Status Register information is present on the  
output data bus (DQ1-DQ7) when the device is en-  
abled and Output Enable is Low, V .  
IL  
See the section on the Status Register and Table  
10 for details on the definitions of the Status Reg-  
ister bits  
After power-up or a Reset operation the memory  
enters Read mode.  
Clear Status Register Command. The Clear Sta-  
tus Register command can be used to reset bits 1,  
3, 4 and 5 in the Status Register to ‘0’. One Bus  
Write is required to issue the Clear Status Register  
command.  
The bits in the Status Register are sticky and do  
not automatically return to ‘0’ when a new Write to  
Buffer and Program, Erase, Block Protect, Block  
Unprotect or Protection Register Program com-  
mand is issued. If any error occurs then it is essen-  
tial to clear any error bits in the Status Register by  
issuing the Clear Status Register command before  
attempting a new Program, Erase or Resume  
command.  
Block Erase Command. The Block Erase com-  
mand can be used to erase a block. It sets all of  
the bits in the block to ‘1’. All previous data in the  
block is lost. If the block is protected then the  
Erase operation will abort, the data in the block will  
not be changed and the Status Register will output  
the error.  
Two Bus Write operations are required to issue the  
command; the second Bus Write cycle latches the  
block address in the internal state machine and  
starts the Program/Erase Controller. Once the  
command is issued subsequent Bus Read opera-  
tions read the Status Register. See the section on  
the Status Register for details on the definitions of  
the Status Register bits.  
Read Memory Array Command. The Read Mem-  
ory Array command is used to return the memory  
to Read mode. One Bus Write cycle is required to  
issue the Read Memory Array command and re-  
turn the memory to Read mode. Once the com-  
mand is issued the memory remains in Read  
mode until another command is issued. From  
Read mode Bus Read operations will access the  
memory array. After power-up or a reset the mem-  
ory defaults to Read Array mode (Page Read).  
While the Program/Erase Controller is executing a  
Program, Erase, Block Protect, Blocks Unprotect  
or Protection Register Program operation the  
memory will not accept the Read Memory Array  
command until the operation completes.  
Read Electronic Signature Command. The Read  
Electronic Signature command is used to read the  
Manufacturer Code, the Device Code, the Block  
Protection Status and the Protection Register.  
One Bus Write cycle is required to issue the Read  
Electronic Signature command. Once the com-  
mand is issued subsequent Bus Read operations  
read the Manufacturer Code, the Device Code, the  
Block Protection Status or the Protection Register  
until another command is issued. Refer to Table 6,  
Read Electronic Signature, Tables 7 and 8, Word  
and Byte-wide Read Protection Register and Fig-  
ure 6, Protection Register Memory Map for infor-  
mation on the addresses.  
Read Query Command. The Read Query Com-  
mand is used to read data from the Common Flash  
Interface (CFI) Memory Area. One Bus Write cycle  
is required to issue the Read Query Command.  
Once the command is issued subsequent Bus  
Read operations read from the Common Flash In-  
terface Memory Area. See Appendix B, Tables 24,  
25, 26, 27, 28 and 29 for details on the information  
contained in the Common Flash Interface (CFI)  
memory area.  
During the Erase operation the memory will only  
accept the Read Status Register command and  
the Program/Erase Suspend command. All other  
commands will be ignored. Typical Erase times  
are given in Table 9.  
See Appendix C, Figure 18, Block Erase Flow-  
chart and Pseudo Code, for a suggested flowchart  
on using the Block Erase command.  
Word/Byte Program Command. The  
Word/  
Byte Program command is used to program a sin-  
gle Word or Byte in the memory array. Two Bus  
Write operations are required to issue the com-  
mand; the first write cycle sets up the Word Pro-  
gram command, the second write cycle latches the  
address and data to be programmed in the internal  
state machine and starts the Program/Erase Con-  
troller.  
If the block being programmed is protected an er-  
ror will be set in the Status Register and the oper-  
ation will abort without affecting the data in the  
memory array. The block must be unprotected us-  
Read Status Register Command. The Read Sta-  
tus Register command is used to read the Status  
Register. One Bus Write cycle is required to issue  
the Read Status Register command. Once the  
command is issued subsequent Bus Read opera-  
tions read the Status Register until another com-  
mand is issued.  
14/51  
M58LW064D  
ing the Blocks Unprotect command or by using the  
Blocks Temporary Unprotect feature of the Reset/  
Power-Down pin, RP.  
Write to Buffer and Program Command. The  
Write to Buffer and Program command is used to  
program the memory array.  
Up to 16 Words/32 Bytes can be loaded into the  
Write Buffer and programmed into the memory.  
Each Write Buffer has the same A5-A22 address-  
es. In Byte-wide mode only A0-A4 may change in  
Word-wide mode only A1-A4 may change, in .  
Four successive steps are required to issue the  
command.  
gram or Write to Buffer and Program command if  
the Program/Erase Controller is running.  
One Bus Write cycle is required to issue the Pro-  
gram/Erase Suspend command and pause the  
Program/Erase Controller. Once the command is  
issued it is necessary to poll the Program/Erase  
Controller Status bit (bit 7) to find out when the  
Program/Erase Controller has paused; no other  
commands will be accepted until the Program/  
Erase Controller has paused. After the Program/  
Erase Controller has paused, the memory will con-  
tinue to output the Status Register until another  
command is issued.  
During the polling period between issuing the Pro-  
gram/Erase Suspend command and the Program/  
Erase Controller pausing it is possible for the op-  
eration to complete. Once the Program/Erase  
Controller Status bit (bit 7) indicates that the Pro-  
gram/Erase Controller is no longer active, the Pro-  
gram Suspend Status bit (bit 2) or the Erase  
Suspend Status bit (bit 6) can be used to deter-  
mine if the operation has completed or is suspend-  
ed. For timing on the delay between issuing the  
Program/Erase Suspend command and the Pro-  
gram/Erase Controller pausing see Table 9.  
1. One Bus Write operation is required to set up  
the Write to Buffer and Program Command. Is-  
sue the set up command with the selected  
memory Block Address where the program op-  
eration should occur (any address in the block  
where the values will be programmed can be  
used). Any Bus Read operations will start to out-  
put the Status Register after the 1st cycle.  
2. Use one Bus Write operation to write the same  
block address along with the value N on the  
Data Inputs/Output, where N+1 is the number of  
Words/Bytes to be programmed.  
During Program/Erase Suspend the Read Memo-  
ry Array, Read Status Register, Read Electronic  
Signature, Read Query and Program/Erase Re-  
sume commands will be accepted by the Com-  
mand Interface. Additionally, if the suspended  
operation was Erase then the Write to Buffer and  
Program, and the Program Suspend commands  
will also be accepted. When a program operation  
is completed inside a Block Erase Suspend the  
Read Memory Array command must be issued to  
reset the device in Read mode, then the Erase Re-  
sume command can be issued to complete the  
whole sequence. Only the blocks not being erased  
may be read or programmed correctly.  
3. Use N+1 Bus Write operations to load the ad-  
dress and data for each Word into the Write  
Buffer. See the constraints on the address com-  
binations listed below. The addresses must  
have the same A5-A22.  
4. Finally, use one Bus Write operation to issue the  
final cycle to confirm the command and start the  
Program operation.  
Invalid address combinations or failing to follow  
the correct sequence of Bus Write cycles will set  
an error in the Status Register and abort the oper-  
ation without affecting the data in the memory ar-  
ray. The Status Register should be cleared before  
re-issuing the command.  
If the block being programmed is protected an er-  
ror will be set in the Status Register and the oper-  
ation will abort without affecting the data in the  
memory array. The block must be unprotected us-  
ing the Blocks Unprotect command.  
See Appendix C, Figure 17, Program Suspend &  
Resume Flowchart and Pseudo Code, and Figure  
19, Erase Suspend & Resume Flowchart and  
Pseudo Code, for suggested flowcharts on using  
the Program/Erase Suspend command.  
Program/Erase Resume Command. The  
gram/Erase Resume command can be used to re-  
start the Program/Erase Controller after  
Pro-  
See Appendix C, Figure 16, Write to Buffer and  
Program Flowchart and Pseudo Code, for a sug-  
gested flowchart on using the Write to Buffer and  
Program command.  
a
Program/Erase Suspend operation has paused it.  
One Bus Write cycle is required to issue the Pro-  
gram/Erase Resume command. Once the com-  
mand is issued subsequent Bus Read operations  
read the Status Register.  
Program/Erase Suspend Command. The  
Pro-  
gram/Erase Suspend command is used to pause a  
Word/Byte Program, Write to Buffer and Program  
or Erase operation. The command will only be ac-  
cepted during a Program or an Erase operation. It  
can be issued at any time during an Erase opera-  
tion but will only be accepted during a Word Pro-  
Block Protect Command. The Block Protect  
command is used to protect a block and prevent  
Program or Erase operations from changing the  
data in it. Two Bus Write cycles are required to is-  
sue the Block Protect command; the second Bus  
Write cycle latches the block address in the inter-  
15/51  
M58LW064D  
nal state machine and starts the Program/Erase  
Controller. Once the command is issued subse-  
quent Bus Read operations read the Status Reg-  
ister. See the section on the Status Register for  
details on the definitions of the Status Register  
bits.  
During the Block Protect operation the memory will  
only accept the Read Status Register command.  
All other commands will be ignored. Typical Block  
Protection times are given in Table 9.  
The user-programmable segment can be locked  
by programming bit 1 of the Protection Register  
Lock location to ‘0’ (see Table 7 and x for Word-  
wide and Byte-wide protection addressing). Bit 0  
of the Protection Register Lock location locks the  
factory programmed segment and is programmed  
to ‘0’ in the factory. The locking of the Protection  
Register is not reversible, once the lock bits are  
programmed no further changes can be made to  
the values stored in the Protection Register, see  
Figure 6, Protection Register Memory Map. At-  
tempting to program a previously protected Pro-  
tection Register will result in a Status Register  
error.  
The Block Protection bits are non-volatile, once  
set they remain set through reset and power-  
down/power-up. They are cleared by a Blocks Un-  
protect command.  
See Appendix C, Figure 20, Block Protect Flow-  
chart and Pseudo Code, for a suggested flowchart  
on using the Block Protect command.  
Blocks Unprotect Command. The Blocks Un-  
protect command is used to unprotect all of the  
blocks. Two Bus Write cycles are required to issue  
the Blocks Unprotect command; the second Bus  
Write cycle starts the Program/Erase Controller.  
Once the command is issued subsequent Bus  
Read operations read the Status Register. See the  
section on the Status Register for details on the  
definitions of the Status Register bits.  
The Protection Register Program cannot be sus-  
pended. See Appendix C, Figure 22, Protection  
Register Program Flowchart and Pseudo Code,  
for the flowchart for using the Protection Register  
Program command.  
Configure STS Command.  
The Configure STS command is used to configure  
the Status/(Ready/Busy) pin. After power-up or re-  
set the STS pin is configured in Ready/Busy  
mode. The pin can be configured in Status mode  
using the Configure STS command (refer to Sta-  
tus/(Ready/Busy) section for more details.  
Two write cycles are required to issue the Config-  
ure STS command.  
The first bus cycle sets up the Configure STS  
During the Block Unprotect operation the memory  
will only accept the Read Status Register com-  
mand. All other commands will be ignored. Typical  
Block Protection times are given in Table 9.  
command.  
See Appendix C, Figure 21, Block Unprotect Flow-  
chart and Pseudo Code, for a suggested flowchart  
on using the Block Unprotect command.  
The second specifies one of the four possible  
configurations (refer to Table 5, Configuration  
Codes):  
Protection Register Program Command. The  
Protection Register Program command is used to  
Program the 64 bit user segment of the Protection  
Register. Two write cycles are required to issue  
the Protection Register Program command.  
– Ready/Busy mode  
– Pulse on Erase complete mode  
– Pulse on Program complete mode  
– Pulse on Erase or Program complete mode  
The first bus cycle sets up the Protection  
The device will not accept the Configure STS com-  
mand while the Program/Erase controller is busy  
or during Program/Erase Suspend. When STS pin  
is pulsing it remains Low for a typical time of  
250ns. Any invalid Configuration Code will set an  
error in the Status Register.  
Register Program command.  
The second latches the Address and the Data to  
be written to the Protection Register and starts  
the Program/Erase Controller.  
Read operations output the Status Register con-  
tent after the programming has started.  
16/51  
M58LW064D  
Table 4. Commands  
Command  
Bus Operations  
1st Cycle  
2nd Cycle  
Addr.  
Subsequent  
Final  
Op. Addr. Data Op.  
Data Op. Addr. Data Op. Addr. Data  
Read Memory Array  
2 Write  
X
FFh Read  
RA  
RD  
(2)  
(2)  
Read Electronic Signature 2 Write  
X
X
X
X
X
90h Read  
70h Read  
98h Read  
50h  
IDA  
IDD  
Read Status Register  
Read Query  
2
Write  
X
SRD  
(3)  
(3)  
2 Write  
QA  
QD  
Clear Status Register  
Block Erase  
1
2
Write  
Write  
20h Write  
BA  
PA  
D0  
PD  
40h  
Word/Byte Program  
2
Write  
X
Write  
10h  
Write to Buffer and  
Program  
4 + N Write BA E8h Write  
BA  
N
Write PA PD Write  
X
D0h  
Program/Erase Suspend  
Program/Erase Resume  
Block Protect  
1
1
2
2
Write  
Write  
Write  
Write  
X
X
X
X
B0h  
D0h  
60h Write  
60h Write  
BA  
X
01h  
D0h  
Blocks Unprotect  
Protection Register  
Program  
2
2
Write  
Write  
X
X
C0h Write  
B8h Write  
PRA  
X
PRD  
CC  
Configure STS command  
Note: 1. X Don’t Care; RA Read Address, RD Read Data, IDA Identifier Address, IDD Identifier Data, SRD Status Register Data, PA Program  
Address; PD Program Data, QA Query Address, QD Query Data, BA Any address in the Block, PRA Protection register address,  
PRD Protection Register Data, CC Configuration Code.  
2. For Identifier addresses and data refer to Table 6, Read Electronic Signature.  
3. For Query Address and Data refer to Appendix B, CFI.  
Table 5. Configuration Codes  
Configuration  
DQ1 DQ2  
Mode  
STS Pin  
Description  
Code  
V
during P/E  
The STS pin is Low during Program and  
Erase operations and high impedance when  
the memory is ready for any Read, Program  
or Erase operation.  
OL  
operations  
Hi-Z when the  
memory is ready  
00h  
0
0
Ready/Busy  
Pulse on Erase  
complete  
Supplies a system interrupt pulse at the end  
of a Block Erase operation.  
01h  
02h  
0
1
1
0
Pulse Low then  
High when  
Pulse on  
Program  
complete  
Supplies a system interrupt pulse at the end  
of a Program operation.  
operation  
(2)  
completed  
Pulse on Erase  
or Program  
complete  
Supplies a system interrupt pulse at the end  
of a Block Erase or Program operation.  
03h  
1
1
Note: 1. DQ2-DQ7 are reserved  
2. When STS pin is pulsing it remains Low for a typical time of 250ns.  
17/51  
M58LW064D  
Table 6. Read Electronic Signature  
(3)  
Code  
Bus Width  
Data (DQ15-DQ0)  
Address (A22-A1)  
x8  
x16  
x8  
20h  
0020h  
17h  
Manufacturer Code  
000000h  
Device Code  
000001h  
x16  
0017h  
00h (Block Unprotected)  
01h (Block Protected)  
x8  
(1)  
Block Protection Status  
Protection Register  
SBA +02h  
0000h (Block Unprotected)  
0001h (Block Protected)  
x16  
(2)  
(1)  
x8, x16  
000080h  
PRD  
Note: 1. SBA is the Start Base Address of each block, PRD is Protection Register Data.  
2. Base Address, refer to Figure 6 and Tables 7 and 8 for more information.  
3. A0 is not used in Read Electronic Signature in either x8 or x16 mode. The data is always presented on the lower byte in x16 mode.  
Figure 6. Protection Register Memory Map  
WORD  
ADDRESS  
88h  
User Programmable  
85h  
84h  
Unique device number  
81h  
Protection Register Lock  
1
0
80h  
AI05501  
Table 7. Word-Wide Read Protection Register  
Word  
Use  
Factory, User  
Factory (Unique ID)  
Factory (Unique ID)  
Factory (Unique ID)  
Factory (Unique ID)  
User  
A8  
1
A7  
0
A6  
0
A5  
0
A4  
0
A3  
0
A2  
0
A1  
0
Lock  
0
1
2
3
4
5
6
7
1
0
0
0
0
0
0
1
1
0
0
0
0
0
1
0
1
0
0
0
0
0
1
1
1
0
0
0
0
1
0
0
1
0
0
0
0
1
0
1
User  
1
0
0
0
0
1
1
0
User  
1
0
0
0
0
1
1
1
User  
1
0
0
0
1
0
0
0
18/51  
M58LW064D  
Table 8. Byte-Wide Read Protection Register  
Word  
Use  
Factory, User  
Factory, User  
Factory (Unique ID)  
Factory (Unique ID)  
Factory (Unique ID)  
Factory (Unique ID)  
Factory (Unique ID)  
Factory (Unique ID)  
Factory (Unique ID)  
Factory (Unique ID)  
User  
A8  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
A7  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
A6  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
A5  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
A4  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
A3  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
A2  
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
A1  
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
Lock  
Lock  
0
1
2
3
4
5
6
7
8
9
User  
A
User  
B
User  
C
D
E
User  
User  
User  
F
User  
19/51  
M58LW064D  
Table 9. Program, Erase Times and Program Erase Endurance Cycles  
M58LW064D  
Parameters  
Unit  
(1,2)  
(2)  
Min  
Typ  
Max  
(4)  
Block (1Mb) Erase  
1.2  
s
s
4.8  
145  
220  
576  
(4)  
(4)  
(4)  
Chip Program (Write to Buffer)  
Chip Erase Time  
49  
74  
s
(3)  
Program Write Buffer  
µs  
192  
Word/Byte Program Time  
(Word/Byte Program command)  
(4)  
16  
µs  
48  
(5)  
(5)  
(5)  
(5)  
Program Suspend Latency Time  
Erase Suspend Latency Time  
Block Protect Time  
1
1
µs  
µs  
µs  
20  
25  
30  
1.2  
18  
0.75  
Blocks Unprotect Time  
Program/Erase Cycles (per block)  
Data Retention  
s
100,000  
20  
cycles  
years  
Note: 1. Typical values measured at room temperature and nominal voltages.  
2. Sampled, but not 100% tested.  
3. Effective byte programming time 6µs, effective word programming time 12µs.  
4. Maximum value measured at worst case conditions for both temperature and V after 100,000 program/erase cycles.  
DD  
5. Maximum value measured at worst case conditions for both temperature and V  
.
DD  
20/51  
M58LW064D  
STATUS REGISTER  
The Status Register provides information on the  
current or previous Program, Erase, Block Protect  
or Blocks Unprotect operation. The various bits in  
the Status Register convey information and errors  
on the operation. They are output on DQ7-DQ0.  
To read the Status Register the Read Status Reg-  
ister command can be issued. The Status Register  
is automatically read after Program, Erase, Block  
Protect, Blocks Unprotect and Program/Erase Re-  
sume commands. The Status Register can be  
read from any address.  
The contents of the Status Register can be updat-  
ed during an Erase or Program operation by tog-  
gling the Output Enable pin or by dis-activating  
and then reactivating the device (refer to Table 2,  
Device Enable).  
Status Register bits 5, 4, 3 and 1 are associated  
with various error conditions and can only be reset  
with the Clear Status Register command. The Sta-  
tus Register bits are summarized in Table 10, Sta-  
tus Register Bits. Refer to Table 10 in conjunction  
with the following text descriptions.  
pleted its operation; when the bit is High, V , a  
OH  
Program/Erase Suspend command has been is-  
sued and the memory is waiting for a Program/  
Erase Resume command.  
When a Program/Erase Resume command is is-  
sued the Erase Suspend Status bit returns Low.  
Erase Status (Bit 5). The Erase Status bit can be  
used to identify if the memory has failed to verify  
that the block has erased correctly or that all  
blocks have been unprotected successfully. The  
Erase Status bit should be read once the Program/  
Erase Controller Status bit is High (Program/Erase  
Controller inactive).  
When the Erase Status bit is Low, V , the mem-  
OL  
ory has successfully verified that the block has  
erased correctly or all blocks have been unprotect-  
ed successfully. When the Erase Status bit is  
High, V , the erase operation has failed. De-  
OH  
pending on the cause of the failure other Status  
Register bits may also be set to High, V  
.
OH  
If only the Erase Status bit (bit 5) is set High,  
, then the Program/Erase Controller has  
V
OH  
Program/Erase Controller Status (Bit 7). The Pro-  
gram/Erase Controller Status bit indicates whether  
the Program/Erase Controller is active or inactive.  
When the Program/Erase Controller Status bit is  
applied the maximum number of pulses to the  
block and still failed to verify that the block has  
erased correctly or that all the blocks have been  
unprotected successfully.  
Low, V , the Program/Erase Controller is active  
and all other Status Register bits are High Imped-  
OL  
If the failure is due to an erase or blocks  
unprotect with V  
bit (bit 3) is also set High, V  
low, V , then V  
Status  
PEN  
OL  
PEN  
ance; when the bit is High, V , the Program/  
OH  
.
OH  
Erase Controller is inactive.  
If the failure is due to an erase on a protected  
The Program/Erase Controller Status is Low im-  
mediately after a Program/Erase Suspend com-  
mand is issued until the Program/Erase Controller  
pauses. After the Program/Erase Controller paus-  
es the bit is High.  
block then Block Protection Status bit (bit 1) is  
also set High, V  
.
OH  
If the failure is due to a program or erase  
incorrect command sequence then Program  
Status bit (bit 4) is also set High, V  
.
OH  
During Program, Erase, Block Protect and Blocks  
Unprotect operations the Program/Erase Control-  
ler Status bit can be polled to find the end of the  
operation. The other bits in the Status Register  
should not be tested until the Program/Erase Con-  
troller completes the operation and the bit is High.  
After the Program/Erase Controller completes its  
operation the Erase Status, Program Status and  
Block Protection Status bits should be tested for  
errors.  
Once set High, the Erase Status bit can only be re-  
set Low by a Clear Status Register command or a  
hardware reset. If set High it should be reset be-  
fore a new Program or Erase command is issued,  
otherwise the new command will appear to fail.  
Program Status (Bit 4). The Program Status bit  
is used to identify a Program or Block Protect fail-  
ure. The Program Status bit should be read once  
the Program/Erase Controller Status bit is High  
(Program/Erase Controller inactive).  
Erase Suspend Status (Bit 6). The Erase Sus-  
pend Status bit indicates that an Erase operation  
has been suspended and is waiting to be re-  
sumed. The Erase Suspend Status should only be  
considered valid when the Program/Erase Con-  
troller Status bit is High (Program/Erase Controller  
inactive); after a Program/Erase Suspend com-  
mand is issued the memory may still complete the  
operation rather than entering the Suspend mode.  
When the Program Status bit is Low, V , the  
OL  
memory has successfully verified that the Write  
Buffer has programmed correctly or the block is  
protected. When the Program Status bit is High,  
V
, the program or block protect operation has  
OH  
failed. Depending on the cause of the failure other  
Status Register bits may also be set to High, V  
.
OH  
If only the Program Status bit (bit 4) is set High,  
, then the Program/Erase Controller has  
V
OH  
When the Erase Suspend Status bit is Low, V  
,
OL  
applied the maximum number of pulses to the  
the Program/Erase Controller is active or has com-  
21/51  
M58LW064D  
byte and still failed to verify that the Write Buffer  
has programmed correctly or that the Block is  
protected.  
ation has been suspended and is waiting to be re-  
sumed. The Program Suspend Status should only  
be considered valid when the Program/Erase  
Controller Status bit is High (Program/Erase Con-  
troller inactive); after a Program/Erase Suspend  
command is issued the memory may still complete  
the operation rather than entering the Suspend  
mode.  
If the failure is due to a program or block protect  
with V  
is also set High, V  
low, V , then V  
Status bit (bit 3)  
PEN  
OL  
PEN  
.
OH  
If the failure is due to a program on a protected  
block then Block Protection Status bit (bit 1) is  
When the Program Suspend Status bit is Low,  
also set High, V  
.
OH  
V
, the Program/Erase Controller is active or has  
OL  
If the failure is due to a program or erase  
completed its operation; when the bit is High, V  
,
OH  
incorrect command sequence then Erase  
a Program/Erase Suspend command has been is-  
sued and the memory is waiting for a Program/  
Erase Resume command.  
When a Program/Erase Resume command is is-  
sued the Program Suspend Status bit returns Low.  
Block Protection Status (Bit 1). The Block Pro-  
tection Status bit can be used to identify if a Pro-  
gram or Erase operation has tried to modify the  
contents of a protected block.  
Status bit (bit 5) is also set High, V  
.
OH  
Once set High, the Program Status bit can only be  
reset Low by a Clear Status Register command or  
a hardware reset. If set High it should be reset be-  
fore a new Program or Erase command is issued,  
otherwise the new command will appear to fail.  
V
Status (Bit 3). The V  
Status bit can be  
PEN  
PEN  
used to identify if a Program, Erase, Block Protec-  
tion or Block Unprotection operation has been at-  
When the Block Protection Status bit is Low, V  
,
OL  
tempted when V  
is Low, V .  
IL  
PEN  
no Program or Erase operations have been at-  
tempted to protected blocks since the last Clear  
Status Register command or hardware reset;  
When the V  
Status bit is Low, V , no Pro-  
OL  
PEN  
gram, Erase, Block Protection or Block Unprotec-  
tion operations have been attempted with V  
PEN  
when the Block Protection Status bit is High, V  
,
OH  
Low, V , since the last Clear Status Register com-  
IL  
a Program (Program Status bit 4 set High) or  
Erase (Erase Status bit 5 set High) operation has  
been attempted on a protected block.  
mand, or hardware reset. When the V  
Status  
PEN  
bit is High, V , a Program, Erase, Block Protec-  
OH  
tion or Block Unprotection operation has been at-  
Once set High, the Block Protection Status bit can  
only be reset Low by a Clear Status Register com-  
mand or a hardware reset. If set High it should be  
reset before a new Program or Erase command is  
issued, otherwise the new command will appear to  
fail.  
tempted with V  
Once set High, the V  
set by a Clear Status Register command or a hard-  
ware reset. If set High it should be reset before a  
new Program, Erase, Block Protection or Block  
Unprotection command is issued, otherwise the  
new command will appear to fail.  
Low, V .  
PEN  
IL  
Status bit can only be re-  
PEN  
Reserved (Bit 0). Bit 0 of the Status Register is  
reserved. Its value should be masked.  
Program Suspend Status (Bit 2). The Program  
Suspend Status bit indicates that a Program oper-  
22/51  
M58LW064D  
Table 10. Status Register Bits  
OPERATION  
Result  
Bit 1  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
(Hex)  
Program/Erase Controller active  
Write Buffer not ready  
0
0
1
1
1
1
Hi-Z  
Hi-Z  
N/A  
N/A  
Write Buffer ready  
0
1
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
0
0
0
0
80h  
C0h  
84h  
C4h  
Write Buffer ready in Erase Suspend  
Program suspended  
Program suspended in Erase Suspend  
Program/Block Protect completed  
successfully  
1
1
1
1
1
0
1
0
1
0
0
0
1
1
0
0
0
1
1
1
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
80h  
C0h  
B0h  
F0h  
98h  
Program completed successfully in Erase  
Suspend  
Program/Block protect failure due to incorrect  
command sequence  
Program failure due to incorrect command  
sequence in Erase Suspend  
Program/Block Protect failure due to V  
error  
PEN  
Program failure due to V  
Suspend  
error in Erase  
PEN  
1
1
1
1
0
1
0
0
0
1
1
1
1
0
0
0
0
0
0
1
1
D8h  
92h  
D2h  
Program failure due to Block Protection  
Program failure due to Block Protection in  
Erase Suspend  
Program/Block Protect failure due to cell  
failure  
1
0
0
1
0
0
0
90h  
Program failure due to cell failure in Erase  
Suspend  
1
1
1
1
1
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
D0h  
C0h  
80h  
Erase Suspended  
Erase/Blocks Unprotect completed  
successfully  
Erase/Blocks Unprotect failure due to  
incorrect command sequence  
1
0
1
1
0
0
0
B0h  
Erase/Blocks Unprotect failure due to V  
error  
PEN  
1
1
1
0
0
0
1
1
1
0
0
0
1
0
0
0
0
0
0
1
0
A8h  
A2h  
A0h  
Erase failure due to Block Protection  
Erase/Blocks Unprotect failure due to failed  
cells in Block  
Configure STS error due to invalid  
configuration code  
1
0
1
1
0
0
0
B0h  
23/51  
M58LW064D  
MAXIMUM RATING  
Stressing the device above the ratings listed in Ta-  
ble 11, Absolute Maximum Ratings, may cause  
permanent damage to the device. These are  
stress ratings only and operation of the device at  
these or any other conditions above those indicat-  
ed in the Operating sections of this specification is  
not implied. Exposure to Absolute Maximum Rat-  
ing conditions for extended periods may affect de-  
vice  
reliability.  
Refer  
also  
to  
the  
STMicroelectronics SURE Program and other rel-  
evant quality documents.  
Table 11. Absolute Maximum Ratings  
Value  
Symbol  
Parameter  
Unit  
Min  
–40  
–55  
–0.6  
–0.6  
Max  
125  
150  
T
Temperature Under Bias  
°C  
°C  
V
BIAS  
T
Storage Temperature  
Input or Output Voltage  
Supply Voltage  
STG  
V
V
+0.6  
IO  
DDQ  
V
, V  
5.0  
V
DD DDQ  
(1)  
I
mA  
OSC  
Output Short-circuit Current  
100  
Note: 1. Maximum one output short-circuited at a time and for no longer than 1 second.  
24/51  
M58LW064D  
DC AND AC PARAMETERS  
This section summarizes the operating and mea-  
surement conditions, and the DC and AC charac-  
teristics of the device. The parameters in the DC  
and AC characteristics Tables that follow, are de-  
rived from tests performed under the Measure-  
ment Conditions summarized in Table 12,  
Operating and AC Measurement Conditions. De-  
signers should check that the operating conditions  
in their circuit match the measurement conditions  
when relying on the quoted parameters.  
Table 12. Operating and AC Measurement Conditions  
Parameter  
M58LW064D  
Min  
Units  
Max  
3.6  
3.6  
70  
Supply Voltage (V  
)
2.7  
2.7  
0
V
V
DD  
Input/Output Supply Voltage (V  
)
DDQ  
Grade 1  
Grade 6  
°C  
°C  
pF  
V
Ambient Temperature (T )  
A
–40  
85  
Load Capacitance (C )  
30  
L
0 to V  
Input Pulses Voltages  
DDQ  
0.5 V  
Input and Output Timing Ref. Voltages  
V
DDQ  
Figure 7. AC Measurement Input Output  
Waveform  
Figure 8. AC Measurement Load Circuit  
1.3V  
1N914  
V
DDQ  
V
DD  
3.3kΩ  
V
DDQ  
0.5 V  
DDQ  
DEVICE  
UNDER  
TEST  
DQ  
S
0V  
C
L
AI00610  
0.1µF  
0.1µF  
C
includes JIG capacitance  
L
AI03459  
Table 13. Capacitance  
Symbol  
Parameter  
Test Condition  
Typ  
6
Max  
8
Unit  
pF  
pF  
C
IN  
V
= 0V  
= 0V  
Input Capacitance  
Output Capacitance  
IN  
C
OUT  
V
OUT  
8
12  
Note: 1. T = 25°C, f = 1 MHz  
A
2. Sampled only, not 100% tested.  
25/51  
M58LW064D  
Table 14. DC Characteristics  
Symbol  
Parameter  
Test Condition  
Min  
Max  
±1  
±5  
20  
Unit  
µA  
I
0V V V  
Input Leakage Current  
LI  
IN  
DDQ  
I
LO  
0V V  
V  
Output Leakage Current  
µA  
OUT DDQ  
I
E = V , f=5MHz  
Supply Current (Random Read)  
Supply Current (Page Read)  
Supply Current (Standby)  
mA  
mA  
µA  
DD  
IL  
I
E = V , f=33MHz  
29  
DDO  
IL  
I
E = V , RP = V  
40  
DD1  
IH  
IH  
I
E = V , RP = V  
Supply Current (Auto Low-Power)  
Supply Current (Reset/Power-Down)  
40  
µA  
DD5  
IL  
IH  
I
RP = V  
40  
µA  
DD2  
IL  
Supply Current (Program or Erase,  
Block Protect, Block Unprotect)  
Program or Erase operation in  
progress  
I
30  
mA  
µA  
DD3  
Supply Current  
(Erase/Program Suspend)  
I
E = V  
40  
DD4  
IH  
V
Input Low Voltage  
Input High Voltage  
Output Low Voltage  
Output High Voltage  
–0.5  
2
0.8  
V
V
V
V
IL  
V
IH  
V
+ 0.5  
DDQ  
V
I
= 100µA  
OL  
0.2  
3.6  
OL  
V
OH  
I
= –100µA  
V
–0.2  
OH  
DDQ  
V
DD  
Supply Voltage (Erase and  
V
LKO  
2
V
V
Program lockout)  
V
PEN  
Supply Voltage (block erase,  
V
2.7  
PENH  
program and block protect)  
26/51  
M58LW064D  
Figure 9. Bus Read AC Waveforms  
tAVAV  
VALID  
A0-A22  
tELQV  
tELQX  
tAXQX  
(1)  
E2, E1, E0  
tGLQV  
tGLQX  
tEHQZ  
tEHQX  
G
tELBL  
(2)  
BYTE  
tGHQZ  
tGHQX  
tBLQV  
tBLQZ  
tAVQV  
DQ0-DQ15  
OUTPUT  
AI06213b  
Note: 1. V = Device Disabled (first edge of E0, E1 or E2), V = Device Enabled (first edge of E0, E1 or E2). Refer to Table 2 for more  
IH  
IL  
details.  
2. BYTE can be Low or High.  
Table 15. Bus Read AC Characteristics.  
M58LW064D  
Symbol  
Parameter  
Test Condition  
Unit  
110  
110  
110  
0
t
E = V , G = V  
IL  
Address Valid to Address Valid  
Min  
Max  
Min  
ns  
ns  
ns  
µs  
µs  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
AVAV  
IL  
IL  
IL  
IL  
IL  
t
E = V , G = V  
Address Valid to Output Valid  
AVQV  
IL  
t
E = V , G = V  
Address Transition to Output Transition  
Byte Low (or High) to Output Valid  
Byte Low (or High) to Output Hi-Z  
Chip Enable High to Output Transition  
Chip Enable High to Output Hi-Z  
Chip Enable Low to Byte Low (or High)  
Chip Enable Low to Output Transition  
Chip Enable Low to Output Valid  
Output Enable High to Output Transition  
Output Enable High to Output Hi-Z  
Output Enable Low to Output Transition  
Output Enable Low to Output Valid  
AXQX  
IL  
t
E = V , G = V  
Max  
Max  
Min  
1
BLQV  
IL  
t
E = V , G = V  
1
BLQZ  
IL  
t
G = V  
0
EHQX  
IL  
t
G = V  
Max  
Max  
Min  
25  
10  
0
EHQZ  
IL  
t
G = V  
ELBL  
IL  
t
G = V  
ELQX  
IL  
t
G = V  
Max  
Min  
110  
0
ELQV  
IL  
t
E = V  
GHQX  
IL  
t
E = V  
Max  
Min  
15  
0
GHQZ  
IL  
t
E = V  
GLQX  
IL  
t
E = V  
Max  
25  
GLQV  
IL  
27/51  
M58LW064D  
Figure 10. Page Read AC Waveforms  
A1-A2  
VALID  
VALID  
A3-A22  
VALID  
tAVQV  
tELQV  
tELQX  
tAXQX  
(1)  
E2, E1, E0  
tAVQV1  
tAXQX1  
tEHQZ  
tEHQX  
tGLQV  
tGLQX  
G
tGHQZ  
tGHQX  
DQ0-DQ15  
OUTPUT  
OUTPUT  
AI06214  
Note: 1. V = Device Disabled (first edge of E0, E1 or E2), V = Device Enabled (first edge of E0, E1 or E2). Refer to Table 2 for more  
IH  
IL  
details.  
Table 16. Page Read AC Characteristics  
M58LW064D  
Symbol  
Parameter  
Test Condition  
Unit  
110  
6
t
E = V , G = V  
Address Transition to Output Transition  
Address Valid to Output Valid  
Min  
ns  
ns  
AXQX1  
IL  
IL  
IL  
t
E = V , G = V  
Max  
25  
AVQV1  
IL  
Note: For other timings see Table 15, Bus Read AC Characteristics.  
28/51  
M58LW064D  
Figure 11. Write AC Waveform, Write Enable Controlled  
A0-A22  
VALID  
tAVWH  
tWHAX  
(1)  
E2, E1, E0  
tELWL  
tGHWL  
tWHEH  
G
tWHGL  
tWLWH  
tWHWL  
W
tDVWH  
INPUT  
DQ0-DQ15  
tWHDX  
STS  
(Ready/Busy mode)  
tVPHWH  
tWHBL  
V
PEN  
AI06215  
Note: 1. V = Device Disabled (first edge of E0, E1 or E2), V = Device Enabled (first edge of E0, E1 or E2). Refer to Table 2 for more  
IH  
IL  
details.  
Table 17. Write AC Characteristics, Write Enable Controlled  
M58LW064D  
Symbol  
Parameter  
Test Condition  
Unit  
110  
50  
50  
0
t
E = V  
E = V  
Address Valid to Write Enable High  
Min  
Min  
Min  
Min  
Min  
Max  
Min  
Min  
Min  
Min  
Min  
Min  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
AVWH  
IL  
IL  
t
Data Input Valid to Write Enable High  
Chip Enable Low to Write Enable Low  
Program/Erase Enable High to Write Enable High  
Write Enable High to Address Transition  
Write Enable High to Status/(Ready/Busy) low  
Write Enable High to Input Transition  
Write Enable High to Chip Enable High  
Output Enable High to Write Enable Low  
Write Enable High to Output Enable Low  
Write Enable High to Write Enable Low  
Write Enable Low to Write Enable High  
DVWH  
t
ELWL  
t
0
VPHWH  
t
E = V  
E = V  
0
WHAX  
IL  
IL  
t
500  
0
WHBL  
t
WHDX  
t
0
WHEH  
t
20  
35  
30  
70  
GHWL  
t
WHGL  
t
WHWL  
t
E = V  
WLWH  
IL  
29/51  
M58LW064D  
Figure 12. Write AC Waveforms, Chip Enable Controlled  
A0-A22  
W
VALID  
tAVEH  
tEHAX  
tWLEL  
tEHWH  
G
E2, E1, E0  
DQ0-DQ15  
tGHEL  
tELEH  
tEHEL  
tEHGL  
(1)  
tDVEH  
INPUT  
tEHDX  
tEHBL  
STS  
(Ready/Busy mode)  
tVPHEH  
V
PEN  
AI06216  
Note: 1. V = Device Disabled (first edge of E0, E1 or E2), V = Device Enabled (first edge of E0, E1 or E2). Refer to Table 2 for more  
IH  
IL  
details.  
Table 18. Write AC Characteristics, Chip Enable Controlled.  
M58LW064D  
Symbol  
Parameter  
Test Condition  
Unit  
110  
50  
50  
0
t
W = V  
W = V  
Address Valid to Chip Enable High  
Min  
Min  
Min  
Min  
Min  
Max  
Min  
Min  
Min  
Min  
Min  
Min  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
AVEH  
IL  
t
Data Input Valid to Chip Enable High  
Write Enable Low to Chip Enable Low  
Program/Erase Enable High to Chip Enable High  
Chip Enable High to Address Transition  
Chip Enable High to Status/(Ready/Busy) low  
Chip Enable High to Input Transition  
Chip Enable High to Write Enable High  
Output Enable High to Chip Enable Low  
Chip Enable High to Output Enable Low  
Chip Enable High to Chip Enable Low  
Chip Enable Low to Chip Enable High  
DVEH  
IL  
t
WLEL  
t
0
VPHEH  
t
W = V  
W = V  
5
EHAX  
IL  
t
500  
5
EHBL  
t
EHDX  
IL  
t
0
EHWH  
t
20  
35  
30  
70  
GHEL  
t
EHGL  
t
EHEL  
t
W = V  
ELEH  
IL  
30/51  
M58LW064D  
Figure 13. Reset, Power-Down and Power-Up AC Waveform  
W
tPHWL  
(1)  
E2, E1, E0 , G  
DQ0-DQ15  
tPHQV  
STS  
(Ready/Busy mode)  
tPLBH  
RP  
tVDHPH  
tPLPH  
V
, V  
DD DDQ  
Power-Up  
and Reset  
Reset during  
Program or Erase  
AI06217b  
Note: 1. V = Device Disabled (first edge of E0, E1 or E2), V = Device Enabled (first edge of E0, E1 or E2). Refer to Table 2 for more  
IH  
IL  
details.  
Table 19. Reset, Power-Down and Power-Up AC Characteristics  
M58LW064D  
Symbol  
Parameter  
Reset/Power-Down High to Data Valid  
Unit  
110  
150  
1
t
Max  
Max  
Min  
ns  
µs  
ns  
µs  
µs  
PHQV  
t
Reset/Power-Down High to Write Enable Low  
Reset/Power-Down Low to Reset/Power-Down High  
Reset/Power-Down Low to Status/(Ready/Busy) High  
Supply Voltages High to Reset/Power-Down High  
PHWL  
t
100  
30  
0
PLPH  
t
Max  
Min  
PLBH  
t
VDHPH  
31/51  
M58LW064D  
PACKAGE MECHANICAL  
Figure 14. TSOP56 - 56 lead Plastic Thin Small Outline, 14 x 20 mm, Package Outline  
A2  
1
N
e
E
B
N/2  
D1  
D
A
CP  
DIE  
C
TSOP-a  
A1  
α
L
Note: Drawing is not to scale.  
Table 20. TSOP56 - 56 lead Plastic Thin Small Outline, 14 x 20 mm, Package Mechanical Data  
mm  
Min  
inches  
Min  
Symbol  
Typ  
Max  
1.20  
0.15  
1.05  
0.27  
0.21  
20.20  
18.50  
14.10  
Typ  
Max  
0.0472  
0.0059  
0.0413  
0.0106  
0.0083  
0.7953  
0.7283  
0.5551  
A
A1  
A2  
B
0.05  
0.95  
0.17  
0.10  
19.80  
18.30  
13.90  
0.0020  
0.0374  
0.0067  
0.0039  
0.7795  
0.7205  
0.5472  
C
D
D1  
E
e
0.50  
0.0197  
L
0.50  
0°  
0.70  
5°  
0.0197  
0°  
0.0276  
5°  
α
N
56  
56  
CP  
0.10  
0.0039  
32/51  
M58LW064D  
Figure 15. TBGA64 - 10x13mm, 8 x 8 ball array 1mm pitch, Package Outline  
D
D1  
FD  
FE  
SD  
SE  
E
E1  
ddd  
BALL "A1"  
A
e
b
A2  
A1  
BGA-Z23  
Note: Drawing is not to scale.  
Table 21. TBGA64 - 10x13mm, 8 x 8 ball array, 1 mm pitch, Package Mechanical Data  
millimeters  
Min  
inches  
Min  
Symbol  
Typ  
Max  
1.200  
0.350  
0.850  
0.500  
10.100  
Typ  
Max  
A
A1  
A2  
b
0.0472  
0.300  
0.200  
0.0118  
0.0079  
0.0138  
0.0335  
0.400  
9.900  
0.0157  
0.3898  
0.0197  
D
10.000  
7.000  
0.3937  
0.2756  
0.3976  
D1  
ddd  
e
0.100  
0.0039  
1.000  
13.000  
7.000  
1.500  
3.000  
0.500  
0.500  
0.0394  
0.5118  
0.2756  
0.0591  
0.1181  
0.0197  
0.0197  
E
12.900  
13.100  
0.5079  
0.5157  
E1  
FD  
FE  
SD  
SE  
33/51  
M58LW064D  
PART NUMBERING  
Table 22. Ordering Information Scheme  
Example:  
M58LW064D  
110 N  
1
T
Device Type  
M58  
Architecture  
L = Page Mode  
Operating Voltage  
W = V = V  
= 2.7V to 3.6V  
DDQ  
DD  
Device Function  
064D = 64 Mbit (x8, x16), Uniform Block  
Speed  
110 = 110 ns  
Package  
N = TSOP56: 14 x 20 mm  
ZA = TBGA64: 10 x 13 mm, 1mm pitch  
Temperature Range  
1 = 0 to 70 °C  
6 = –40 to 85 °C  
Option  
T = Tape & Reel Packing  
Note: Devices are shipped from the factory with the memory content bits erased to ’1’.  
For a list of available options (Speed, Package, etc...) or for further information on any aspect of this de-  
vice, please contact the ST Sales Office nearest to you.  
34/51  
M58LW064D  
APPENDIX A. BLOCK ADDRESS TABLE  
Table 23. Block Addresses  
Block  
Number  
Address Range  
(x8 Bus Width)  
Address Range  
(x16 Bus Width)  
Block  
Address Range  
(x8 Bus Width)  
Address Range  
(x16 Bus Width)  
Number  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
3E0000h-3FFFFFh  
3C0000h-3DFFFFh  
3A0000h-3BFFFFh  
380000h-39FFFFh  
360000h-37FFFFh  
340000h-35FFFFh  
320000h-33FFFFh  
300000h-31FFFFh  
2E0000h-2FFFFFh  
2C0000h-2DFFFFh  
2A0000h-2BFFFFh  
280000h-29FFFFh  
260000h-27FFFFh  
240000h-25FFFFh  
220000h-23FFFFh  
200000h-21FFFFh  
1E0000h-1FFFFFh  
1C0000h-1DFFFFh  
1A0000h-1BFFFFh  
180000h-19FFFFh  
160000h-17FFFFh  
140000h-15FFFFh  
120000h-13FFFFh  
100000h-11FFFFh  
0E0000h-0FFFFFh  
0C0000h-0DFFFFh  
0A0000h-0BFFFFh  
080000h-09FFFFh  
060000h-07FFFFh  
040000h-05FFFFh  
020000h-03FFFFh  
000000h-01FFFFh  
1F0000h-1FFFFFh  
1E0000h-1EFFFFh  
1D0000h-1DFFFFh  
1C0000h-1CFFFFh  
1B0000h-1BFFFFh  
1A0000h-1AFFFFh  
190000h-19FFFFh  
180000h-18FFFFh  
170000h-17FFFFh  
160000h-16FFFFh  
150000h-15FFFFh  
140000h-14FFFFh  
130000h-13FFFFh  
120000h-12FFFFh  
110000h-11FFFFh  
100000h-10FFFFh  
0F0000h-0FFFFFh  
0E0000h-0EFFFFh  
0D0000h-0DFFFFh  
0C0000h-0CFFFFh  
0B0000h-0BFFFFh  
0A0000h-0AFFFFh  
090000h-09FFFFh  
080000h-08FFFFh  
070000h-07FFFFh  
060000h-06FFFFh  
050000h-05FFFFh  
040000h-04FFFFh  
030000h-03FFFFh  
020000h-02FFFFh  
010000h-01FFFFh  
000000h-00FFFFh  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
7E0000h-7FFFFFh  
7C0000h-7DFFFFh  
7A0000h-7BFFFFh  
780000h-79FFFFh  
760000h-77FFFFh  
740000h-75FFFFh  
720000h-73FFFFh  
700000h-71FFFFh  
6E0000h-6FFFFFh  
6C0000h-6DFFFFh  
6A0000h-6BFFFFh  
680000h-69FFFFh  
660000h-67FFFFh  
640000h-65FFFFh  
620000h-63FFFFh  
600000h-61FFFFh  
5E0000h-5FFFFFh  
5C0000h-5DFFFFh  
5A0000h-5BFFFFh  
580000h-59FFFFh  
560000h-57FFFFh  
540000h-55FFFFh  
520000h-53FFFFh  
500000h-51FFFFh  
4E0000h-4FFFFFh  
4C0000h-4DFFFFh  
4A0000h-4BFFFFh  
480000h-49FFFFh  
460000h-47FFFFh  
440000h-45FFFFh  
420000h-43FFFFh  
400000h-41FFFFh  
3F0000h-3FFFFFh  
3E0000h-3EFFFFh  
3D0000h-3DFFFFh  
3C0000h-3CFFFFh  
3B0000h-3BFFFFh  
3A0000h-3AFFFFh  
390000h-39FFFFh  
380000h-38FFFFh  
370000h-37FFFFh  
360000h-36FFFFh  
350000h-35FFFFh  
340000h-34FFFFh  
330000h-33FFFFh  
320000h-32FFFFh  
310000h-31FFFFh  
300000h-30FFFFh  
2F0000h-2FFFFFh  
2E0000h-2EFFFFh  
2D0000h-2DFFFFh  
2C0000h-2CFFFFh  
2B0000h-2BFFFFh  
2A0000h-2AFFFFh  
290000h-29FFFFh  
280000h-28FFFFh  
270000h-27FFFFh  
260000h-26FFFFh  
250000h-25FFFFh  
240000h-24FFFFh  
230000h-23FFFFh  
220000h-22FFFFh  
210000h-21FFFFh  
200000h-20FFFFh  
8
7
6
5
4
3
2
1
35/51  
M58LW064D  
APPENDIX B. COMMON FLASH INTERFACE - CFI  
The Common Flash Interface is a JEDEC ap-  
proved, standardized data structure that can be  
read from the Flash memory device. It allows a  
system software to query the device to determine  
various electrical and timing parameters, density  
information and functions supported by the mem-  
ory. The system can interface easily with the de-  
vice, enabling the software to upgrade itself when  
necessary.  
When the CFI Query Command (RCFI) is issued  
the device enters CFI Query mode and the data  
structure is read from the memory. Tables 24, 25,  
26, 27, 28 and 29 show the addresses used to re-  
trieve the data.  
Table 24. Query Structure Overview  
Address  
Sub-section Name  
Description  
(4)  
x16  
x8  
0000h  
0001h  
0010h  
001Bh  
0027h  
00h  
02h  
20h  
36h  
4Eh  
Manufacturer Code  
Device Code  
CFI Query Identification String  
System Interface Information  
Device Geometry Definition  
Command set ID and algorithm data offset  
Device timing and voltage information  
Flash memory layout  
Primary Algorithm-specific Extended  
Query Table  
Additional information specific to the Primary  
Algorithm (optional)  
(1)  
(2)  
P(h)  
A(h)  
Alternate Algorithm-specific Extended Additional information specific to the Alternate  
Query Table  
Algorithm (optional)  
(SBA+02)h  
Block Status Register  
Block-related Information  
Note: 1. Offset 15h defines P which points to the Primary Algorithm Extended Query Address Table.  
2. Offset 19h defines A which points to the Alternate Algorithm Extended Query Address Table.  
3. SBA is the Start Base Address for each block.  
4. In x8 mode, A0 must be set to V , otherwise 00h will be output.  
IL  
Table 25. CFI - Query Address and Data Output  
Address  
Data  
(3)  
Description  
x16  
x8  
0010h  
0011h  
0012h  
0013h  
0014h  
0015h  
0016h  
0017h  
0018h  
0019h  
20h  
22h  
24h  
26h  
28h  
2Ah  
2Ch  
2Eh  
30h  
32h  
51h  
52h  
59h  
"Q"  
"R"  
"Y"  
51h; "Q"  
52h; "R"  
59h; "Y"  
Query ASCII String  
Primary Vendor:  
01h  
00h  
31h  
00h  
00h  
00h  
00h  
Command Set and Control Interface ID Code  
Primary algorithm extended Query Address Table: P(h)  
Alternate Vendor:  
Command Set and Control Interface ID Code  
Alternate Algorithm Extended Query address Table  
(2)  
34h  
00h  
001Ah  
Note: 1. Query Data are always presented on DQ7-DQ0. DQ15-DQ8 are set to '0'.  
2. Offset 19h defines A which points to the Alternate Algorithm Extended Query Address Table.  
3. In x8 mode, A0 must be set to V , otherwise 00h will be output.  
IL  
36/51  
M58LW064D  
Table 26. CFI - Device Voltage and Timing Specification  
Address  
Data  
(4)  
Description  
x16  
x8  
(1)  
(1)  
(2)  
(2)  
V
V
V
V
Min, 2.7V  
001Bh  
001Ch  
001Dh  
001Eh  
001Fh  
0020h  
0021h  
0022h  
0023h  
0024h  
0025h  
0026h  
36h  
38h  
3Ah  
DD  
DD  
PP  
PP  
27h  
36h  
00h  
00h  
max, 3.6V  
min – Not Available  
max – Not Available  
3Ch  
3Eh  
40h  
42h  
44h  
46h  
48h  
4Ah  
4Ch  
n
04h  
2 µs typical time-out for Word, DWord prog – Not Available  
n
08h  
0Ah  
2 µs, typical time-out for max buffer write  
n
2 ms, typical time-out for Erase Block  
(3)  
n
00h  
2 ms, typical time-out for chip erase – Not Available  
n
04h  
04h  
04h  
2 x typical for Word Dword time-out max – Not Available  
n
2 x typical for buffer write time-out max  
n
2 x typical for individual block erase time-out maximum  
(3)  
n
00h  
2 x typical for chip erase max time-out – Not Available  
Note: 1. Bits are coded in Binary Code Decimal, bit7 to bit4 are scaled in Volts and bit3 to bit0 in mV.  
2. Bit7 to bit4 are coded in Hexadecimal and scaled in Volts while bit3 to bit0 are in Binary Code Decimal and scaled in 100mV.  
3. Not supported.  
4. In x8 mode, A0 must be set to V , otherwise 00h will be output.  
IL  
Table 27. Device Geometry Definition  
Address  
Data  
(1)  
Description  
x16  
x8  
n
0027h  
4Eh  
17h  
n where 2 is number of bytes memory Size  
Device Interface  
0028h  
0029h  
002Ah  
002Bh  
002Ch  
002Dh  
002Eh  
002Fh  
0030h  
50h  
52h  
54h  
56h  
58h  
5Ah  
5Ch  
5Eh  
60h  
02h  
00h  
05h  
00h  
01h  
3Fh  
00h  
00h  
02h  
Organization Sync./Async.  
n
Maximum number of bytes in Write Buffer, 2  
Bit7-0 = number of Erase Block Regions in device  
Number (n-1) of Erase Blocks of identical size; n=64  
Erase Block Region Information  
x 256 bytes per Erase block (128K bytes)  
Note: 1. In x8 mode, A0 must be set to V , otherwise 00h will be output.  
IL  
37/51  
M58LW064D  
Table 28. Block Status Register  
Address  
Data  
Selected Block Information  
Block Unprotected  
0
1
0
bit0  
Block Protected  
(3)  
(1,2)  
Last erase operation ended successfully  
(BA+2)h  
bit1  
(3)  
1
0
Last erase operation not ended successfully  
Reserved for future features  
bit7-2  
Note: 1. BA specifies the block address location, A22-A17.  
2. In x8 mode, A0 must be set to V , otherwise 00h will be output.  
IL  
3. Not Supported.  
38/51  
M58LW064D  
Table 29. Extended Query information  
Address  
Data (Hex)  
Description  
(2)  
offset  
(P)h  
x16  
x8  
0031h  
0032h  
0033h  
0034h  
0035h  
0036h  
0037h  
0038h  
62h  
64h  
66h  
68h  
6Ah  
6Ch  
6Eh  
70h  
50h  
52h  
49h  
"P"  
"R"  
"Y"  
(P+1)h  
(P+2)h  
(P+3)h  
(P+4)h  
(P+5)h  
(P+6)h  
(P+7)h  
Query ASCII string - Extended Table  
31h  
31h  
CEh  
00h  
00h  
Major version number  
Minor version number  
Optional Feature: (1=yes, 0=no)  
bit0, Chip Erase Supported (0=no)  
bit1, Suspend Erase Supported (1=yes)  
bit2, Suspend Program Supported (1=yes)  
bit3, Protect/Unprotect Supported (1=yes)  
bit4, Queue Erase Supported (0=no)  
bit5, Instant Individual Block locking (0=no)  
bit6, Protection bits supported (1=yes)  
bit7, Page Read supported (1=yes)  
bit 8, Synchronous Read supported (0=no)  
bits 9 to 31 reserved for future use  
(P+8)h  
0039h  
72h  
00h  
Function allowed after Suspend:  
(P+9)h  
003Ah  
74h  
01h  
Program allowed after Erase Suspend (1=yes)  
Bit 7-1 reserved for future use  
(P+A)h  
(P+B)h  
003Bh  
003Ch  
76h  
78h  
01h  
00h  
Block Status Register  
bit0, Block Protect-Bit status active (1=yes)  
bit1, Block Lock-Down Bit status (not available)  
bits 2 to 15 reserved for future use  
V
V
OPTIMUM Program/Erase voltage conditions  
OPTIMUM Program/Erase voltage conditions  
(P+C)h  
(P+D)h  
(P+E)h  
(P+F)h  
(P+10)h  
(P+11)h  
003Dh  
003Eh  
003Fh  
0040h  
0041h  
0042h  
7Ah  
7Ch  
7Eh  
80h  
82h  
84h  
33h  
00h  
01h  
80h  
00h  
03h  
DD  
PP  
OTP protection: No. of protection register fields  
Protection Register’s start address, least significant bits  
Protection Register’s start address, most significant bits  
n
n where 2 is number of factory reprogrammed bytes  
n
(P+12)h  
0043h  
86h  
03h  
03h  
00h  
n where 2 is number of user programmable bytes  
n
(P+13)h  
(P+14)h  
(P+15)h  
0044h  
0045h  
0046h  
88h  
8Ah  
8Ch  
Page Read: 2 Bytes (n = bits 0-7)  
Synchronous mode configuration fields  
Reserved for future use  
Note: 1. Bit7 to bit4 are coded in Hexadecimal and scaled in Volt while bit3 to bit0 are in Binary Code Decimal and scaled in mV.  
2. In x8 mode, A0 must be set to V , otherwise 00h will be output.  
IL  
39/51  
M58LW064D  
APPENDIX C. FLOW CHARTS  
Figure 16. Write to Buffer and Program Flowchart and Pseudo Code  
Start  
Write to Buffer E8h  
Command, Block Address  
Read Status  
Register  
NO  
NO  
YES  
Write to Buffer  
Timeout  
b7 = 1  
YES  
(1)  
Note 1: N+1 is number of Words  
to be programmed  
Write N  
,
Block Address  
Try Again Later  
Write Buffer Data,  
Start Address  
X = 0  
YES  
X = N  
NO  
Write Next Buffer Data,  
Next Program Address  
Note 2: Next Program Address must  
have same A5-A21.  
(2)  
X = X + 1  
Program Buffer to Flash  
Confirm D0h  
Read Status  
Register  
NO  
b7 = 1  
YES  
Note 3: A full Status Register Check must be  
done to check the program operation's  
success.  
Full Status  
Register Check  
(3)  
End  
AI05511  
40/51  
M58LW064D  
Figure 17. Program Suspend & Resume Flowchart and Pseudo Code  
Start  
Program/Erase Suspend Command:  
– write B0h  
Write B0h  
do:  
Read Status  
Register  
– read status register  
NO  
NO  
b7 = 1  
YES  
while b7 = 1  
If b2 = 0, Program completed  
b2 = 1  
YES  
Program Complete  
Read Memory Array instruction:  
– write FFh  
Write FFh  
– one or more data reads  
from other blocks  
Read data from  
another block  
Program Erase Resume Command:  
– write D0h  
to resume erasure  
– if the program operation completed  
then this is not necessary. The device  
returns to Read Array as normal  
(as if the Program/Erase Suspend  
command was not issued).  
Write D0h  
Write FFh  
Read Data  
Program Continues  
AI00612b  
41/51  
M58LW064D  
Figure 18. Erase Flowchart and Pseudo Code  
Start  
Erase command:  
– write 20h  
Write 20h  
– write D0h to Block Address  
(A12-A17)  
(memory enters read Status  
Register after the Erase command)  
Write D0h to  
Block Address  
NO  
do:  
Read Status  
– read status register  
– if Program/Erase Suspend command  
given execute suspend erase loop  
Register  
Suspend  
YES  
NO  
Suspend  
Loop  
b7 = 1  
while b7 = 1  
YES  
NO  
NO  
NO  
NO  
V
Invalid  
If b3 = 1, V  
invalid error:  
PP  
Error (1)  
PP  
– error handler  
b3 = 0  
YES  
Command  
Sequence Error  
If b4, b5 = 1, Command Sequence error:  
– error handler  
b4, b5 = 0  
YES  
Erase  
Error (1)  
If b5 = 1, Erase error:  
– error handler  
b5 = 0  
YES  
Erase to Protected  
Block Error  
If b1 = 1, Erase to Protected Block Error:  
– error handler  
b1 = 0  
YES  
End  
AI00613B  
Note: 1. If an error is found, the Status Register must be cleared (Clear Status Register Command) before further Program or Erase oper-  
ations.  
42/51  
M58LW064D  
Figure 19. Erase Suspend & Resume Flowchart and Pseudo Code  
Start  
Program/Erase Suspend Command:  
– write B0h  
Write B0h  
do:  
Read Status  
Register  
– read status register  
NO  
NO  
b7 = 1  
YES  
while b7 = 1  
If b6 = 0, Erase completed  
b6 = 1  
YES  
Erase Complete  
Read Memory Array command:  
– write FFh  
Write FFh  
– one or more data reads  
from other blocks  
Read data from  
another block  
or Program  
Program/Erase Resume command:  
– write D0h to resume the Erase  
operation  
– if the Program operation completed  
then this is not necessary. The device  
returns to Read mode as normal  
(as if the Program/Erase suspend  
was not issued).  
Write D0h  
Write FFh  
Read Data  
Erase Continues  
AI00615b  
43/51  
M58LW064D  
Figure 20. Block Protect Flowchart and Pseudo Code  
Start  
Write 60h  
Block Address  
Block Protect Command  
– write 60h, Block Adress  
– write 01h, Block Adress  
Write 01h  
Block Address  
do:  
Read Status Register  
– read status register  
NO  
b7 = 1  
while b7 = 1  
YES  
YES  
Invalid Voltage  
b3 = 1  
If b3 = 1, Invalid Voltage Error  
Error  
NO  
YES  
Invalid Command  
b4, b5 = 1,1  
If b4 = 1, b5 = 1 Invalid Command Sequence  
Error  
Sequence Error  
NO  
YES  
Block Protect  
b4 = 1  
If b4 = 1, Block Protect Error  
Error  
NO  
Write FFh  
Read Memory Array Command:  
– write FFh  
Block Protect  
Sucessful  
AI06157  
44/51  
M58LW064D  
Figure 21. Block Unprotect Flowchart and Pseudo Code  
Start  
Write 60h  
Block Unprotect Command  
– write 60h, Block Adress  
– write D0h, Block Adress  
Write D0h  
do:  
Read Status Register  
– read status register  
NO  
b7 = 1  
while b7 = 1  
YES  
YES  
Invalid Voltage  
b3 = 1  
If b3 = 1, Invalid Voltage Error  
Error  
NO  
YES  
Invalid Command  
b4, b5 = 1,1  
If b4 = 1, b5 = 1 Invalid Command  
Sequence Error  
Sequence Error  
NO  
YES  
Block Unprotect  
b5 = 1  
If b5 = 1, Block Unprotect Error  
Error  
NO  
Write FFh  
Read Memory Array Command:  
– write FFh  
Block Unprotect  
Sucessful  
AI06158  
45/51  
M58LW064D  
Figure 22. Protection Register Program Flowchart and Pseudo Code  
Start  
Write C0h  
Protection Register Program Command  
– write C0h  
– write Protection Register Address,  
Protection Register Data  
Write  
PR Address, PR Data  
do:  
Read Status Register  
– read status register  
NO  
b7 = 1  
YES  
while b7 = 1  
YES  
YES  
If b3 = 1, b4 = 1 Invalid Voltage Error  
Invalid Voltage  
Error  
b3, b4 = 1,1  
NO  
Protection Register  
Program Error  
If b1 = 0, b4 = 1 Protection Register  
Program Error  
b1, b4 = 0,1  
NO  
YES  
Block Unprotect  
Error  
If b1 = 1, b4 = 1 Program Error due to  
Protection Register Protection  
b1, b4 = 1,1  
NO  
Write FFh  
Read Memory Array Command:  
– write FFh  
PR Program  
Sucessful  
AI06159  
Note: PR = Protection Register  
46/51  
M58LW064D  
Figure 23. Command Interface and Program Erase Controller Flowchart (a)  
WAIT FOR  
COMMAND  
WRITE  
NO  
90h  
YES  
READ  
SIGNATURE  
NO  
98h  
YES  
CFI  
QUERY  
NO  
70h  
YES  
READ  
ARRAY  
READ  
STATUS  
NO  
50h  
YES  
CLEAR  
STATUS  
NO  
E8h  
YES  
PROGRAM  
BUFFER  
LOAD  
NO  
(1)  
20h  
YES  
ERASE  
NO  
FFh  
YES  
SET-UP  
NO  
D0h  
NO  
YES  
C
PROGRAM  
COMMAND  
ERROR  
D0h  
YES  
ERASE  
COMMAND  
ERROR  
A
B
AI03618  
Note 1. The Erase command (20h) can only be issued if the flash is not already in Erase Suspend.  
47/51  
M58LW064D  
Figure 24. Command Interface and Program Erase Controller Flowchart (b)  
A
B
ERASE  
(READ STATUS)  
Program/Erase Controller  
Status bit in the Status  
Register  
YES  
READ  
STATUS  
READY  
?
NO  
READ  
NO  
ARRAY  
B0h  
YES  
YES  
READ  
STATUS  
NO  
FFh  
ERASE  
SUSPEND  
NO  
YES  
ERASE  
SUSPENDED  
READY  
?
NO  
READ  
STATUS  
YES  
WAIT FOR  
COMMAND  
WRITE  
YES  
YES  
YES  
YES  
READ  
STATUS  
70h  
NO  
READ  
SIGNATURE  
90h  
NO  
CFI  
QUERY  
98h  
NO  
PROGRAM  
BUFFER  
LOAD  
E8h  
NO  
NO  
PROGRAM  
COMMAND  
ERROR  
YES  
READ  
STATUS  
D0h  
D0h  
NO  
(ERASE RESUME)  
YES  
READ  
ARRAY  
c
AI03619  
48/51  
M58LW064D  
Figure 25. Command Interface and Program Erase Controller Flowchart (c).  
B
C
PROGRAM  
(READ STATUS)  
YES  
Program/Erase Controller  
Status bit in the Status  
Register  
READ  
STATUS  
READY  
?
NO  
READ  
ARRAY  
NO  
B0h  
YES  
YES  
NO  
READ  
STATUS  
FFh  
PROGRAM  
SUSPEND  
NO  
YES  
PROGRAM  
SUSPENDED  
READY  
?
NO  
YES  
WAIT FOR  
COMMAND  
WRITE  
READ  
STATUS  
YES  
YES  
YES  
NO  
READ  
STATUS  
70h  
NO  
READ  
SIGNATURE  
90h  
NO  
CFI  
QUERY  
98h  
NO  
YES  
READ  
ARRAY  
READ  
STATUS  
D0h  
(PROGRAM RESUME)  
AI00618  
49/51  
M58LW064D  
REVISION HISTORY  
Table 30. Document Revision History  
Date  
Version  
-01  
Revision Details  
08-Nov-2001  
01-Feb-2002  
09-Apr-2002  
First Issue (Data Brief)  
-02  
x8 Bus Width added, Speed Class modified, Signal Names and Connections modified  
Document expanded to full Product Preview  
-03  
Revision numbering modified: a minor revision will be indicated by incrementing the  
digit after the dot, and a major revision, by incrementing the digit before the dot  
(revision version 03 becomes 3.0).  
16-Jul-2002  
3.1  
4.0  
t
and t  
changed in Table 17, “Write AC Characteristics”.  
WHDX  
WHAX  
Device Code changed and Effective Programming Time modified. V  
range  
DDQ  
modified (in particular in Tables 12 and 22, and V  
Table 9).  
removed from note 1 below  
DDQ  
06-Aug-2002  
In Table 9, Block Erase Time and Program Write Buffer Time parameters modified.  
Figure 2, Logic Diagram modified. V , V , V and V pin descriptions  
DD DDQ  
SS  
SSQ  
modified. Document status changed from Product Preview to Preliminary Data.  
A0 Address Line described separately from others (A1-A22) in Table 1 and in  
“SIGNAL DESCRIPTIONS” paragraph. Address Lines modified in Table 3, Bus  
Operations. Byte signal added to Figure 9, Bus Read AC Waveforms, timings t  
,
ELBL  
t
t
and t  
added to Table 15, Bus Read AC Characteristics, timings t  
and  
14-Oct-2002  
4.1  
BLQV  
BLQZ  
AVLH  
removed from Table 18, Write AC Characteristics, Chip Enable Controlled. “Write  
ELLH  
70h” removed from flowchart Figures 17 and 19. Table 3, Bus Operations, clarified.  
REVISION HISTORY moved to after appendices.  
Table 9, Program, Erase Times and Program Erase Endurance Cycles table modified.  
Table 6, Read Electronic Signature table clarified. Certain DU connections changed to  
NC in Table 4, TBGA64 Connections (Top view through package). x8 Address  
modified in Table 24, Query Structure Overview. Note regarding A0 value in x8 mode  
added to all CFI Tables. Block Protect setup command address modified in Table 4,  
Commands. Data and Descriptions clarified in CFI Table 29, Extended Query  
16-Dec-2002  
4.2  
information. I  
clarified and I  
parameter added to Absolute Maximum Ratings table. I and V  
and V  
OSC  
DD  
LKO  
parameters added to DC Characteristics table. t  
PENH PHWL  
DDO  
parameter added to Reset, Power-Down and Power-Up AC Waveforms figure and  
Characteristics table.  
50/51  
M58LW064D  
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences  
of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted  
by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject  
to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not  
authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.  
The ST logo is registered trademark of STMicroelectronics  
All other names are the property of their respective owners  
© 2002 STMicroelectronics - All Rights Reserved  
STMicroelectronics GROUP OF COMPANIES  
Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta -  
Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States  
www.st.com  
51/51  

相关型号:

M58LW064D110ZA

64 Mbit (8Mb x8, 4Mb x16, Uniform Block) 3V Supply Flash Memory
STMICROELECTR

M58LW064D110ZA1

64 Mbit (8Mb x8, 4Mb x16, Uniform Block) 3V Supply Flash Memory
STMICROELECTR

M58LW064D110ZA1E

64 Mbit (8Mb x8, 4Mb x16, Uniform Block) 3V Supply Flash Memory
STMICROELECTR

M58LW064D110ZA1F

64 Mbit (8Mb x8, 4Mb x16, Uniform Block) 3V Supply Flash Memory
STMICROELECTR

M58LW064D110ZA1T

64 Mbit (8Mb x8, 4Mb x16, Uniform Block) 3V Supply Flash Memory
STMICROELECTR

M58LW064D110ZA6

64 Mbit (8Mb x8, 4Mb x16, Uniform Block) 3V Supply Flash Memory
STMICROELECTR

M58LW064D110ZA6E

64 Mbit (8Mb x8, 4Mb x16, Uniform Block) 3V Supply Flash Memory
STMICROELECTR

M58LW064D110ZA6F

64 Mbit (8Mb x8, 4Mb x16, Uniform Block) 3V Supply Flash Memory
STMICROELECTR

M58LW064D110ZA6T

64 Mbit (8Mb x8, 4Mb x16, Uniform Block) 3V Supply Flash Memory
STMICROELECTR

M58LW128A

128 Mbit 8Mb x16 or 4Mb x32, Uniform Block, Burst 3V Supply Flash Memories
STMICROELECTR

M58LW128A150N1

8MX16 FLASH 3V PROM, 150ns, PDSO56, 14 X 20 MM, PLASTIC, TSOP-56
STMICROELECTR

M58LW128A150N1E

128 Mbit 8Mb x16 or 4Mb x32, Uniform Block, Burst 3V Supply Flash Memories
STMICROELECTR