M58LW128A [STMICROELECTRONICS]

128 Mbit 8Mb x16 or 4Mb x32, Uniform Block, Burst 3V Supply Flash Memories; 128兆位8Mb的X16或X32 4Mb的,统一座,突发3V供应闪存产品
M58LW128A
型号: M58LW128A
厂家: ST    ST
描述:

128 Mbit 8Mb x16 or 4Mb x32, Uniform Block, Burst 3V Supply Flash Memories
128兆位8Mb的X16或X32 4Mb的,统一座,突发3V供应闪存产品

闪存
文件: 总65页 (文件大小:878K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
M58LW128A  
M58LW128B  
128 Mbit (8Mb x16 or 4Mb x32, Uniform Block, Burst)  
3V Supply Flash Memories  
PRELIMINARY DATA  
FEATURES SUMMARY  
WIDE DATA BUS for HIGH BANDWIDTH  
– M58LW128A: x16  
Figure 1. Packages  
– M58LW128B: x16/x32  
SUPPLY VOLTAGE  
– V = 2.7 to 3.6V core supply voltage for Pro-  
DD  
gram, Erase and Read operations  
TSOP56 (N)  
14 x 20mm  
– V  
= 1.8 to V for I/O Buffers  
DD  
DDQ  
SYNCHRONOUS/ASYNCHRONOUS READ  
– Synchronous Burst read  
– Pipelined Synchronous Burst Read  
– Asynchronous Random Read  
TBGA  
– Asynchronous Address Latch Controlled  
Read  
TBGA64 (ZA)  
10 x 13mm  
– Page Read  
ACCESS TIME  
– Synchronous Burst Read up to 66MHz  
– Asynchronous Page Mode Read 150/25ns  
– Random Read 150ns  
TBGA  
PROGRAMMING TIME  
TBGA80 (ZA)  
10 x 13mm  
– 16 Word or 8 Double-Word Write Buffer  
– 12µs Word effective programming time  
128 UNIFORM 64 KWord MEMORY BLOCKS  
BLOCK PROTECTION/ UNPROTECTION  
PROGRAM and ERASE SUSPEND  
OTP SECURITY AREA  
COMMON FLASH INTERFACE  
100,000 PROGRAM/ERASE CYCLES per  
BLOCK  
ELECTRONIC SIGNATURE  
– Manufacturer Code: 0020h  
– Device Code M58LW128A: 8818h  
– Device Code M58LW128B: 8819h  
February 2003  
1/65  
This is preliminary information on a new product now in development or undergoing evaluation. Details are subject to change without notice.  
M58LW128A, M58LW128B  
TABLE OF CONTENTS  
SUMMARY DESCRIPTION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Figure 2. Logic Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Table 1. Signal Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Figure 3. TSOP56 Connections. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Figure 4. TBGA64 Connections for M58LW128A (Top view through package) . . . . . . . . . . . . . . . 9  
Figure 5. TBGA80 Connections for M58LW128B (Top view through package) . . . . . . . . . . . . . . 10  
Figure 6. Block Addresses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
SIGNAL DESCRIPTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Address Inputs (A1-A23). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Data Inputs/Outputs (DQ0-DQ31). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Chip Enable (E). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Output Enable (G). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Write Enable (W). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Reset/Power-Down (RP). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Latch Enable (L). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Clock (K).. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Burst Address Advance (B). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Valid Data Ready (R). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Word Organization (WORD).. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Ready/Busy (RB). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Program/Erase Enable (V ). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
PP  
V
Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
DD  
Input/Output Supply Voltage (V  
). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
DDQ  
Ground (V ). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
SS  
Ground (V  
). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
SSQ  
BUS OPERATIONS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Asynchronous Bus Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Asynchronous Bus Read. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Asynchronous Latch Controlled Bus Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Asynchronous Page Read. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Asynchronous Bus Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Asynchronous Latch Controlled Bus Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Output Disable. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Standby . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Power-Down.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Table 2. Asynchronous Bus Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Synchronous Bus Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Synchronous Burst Read. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Synchronous Pipelined Burst Read. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Synchronous Burst Read Suspend . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Table 3. Synchronous Burst Read Bus Operations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
2/65  
M58LW128A, M58LW128B  
Table 4. Address Latch Cycle for Optimum Pipelined Synchronous Burst Read . . . . . . . . . . . . . 17  
Figure 7. Synchronous Burst Read Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Figure 8. Example Synchronous Pipelined Burst Read Operation . . . . . . . . . . . . . . . . . . . . . . . . 18  
Figure 9. Example Burst Address Advance and Burst Abort operations . . . . . . . . . . . . . . . . . . . . 19  
Burst Configuration Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Read Select Bit (M15) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
X-Latency Bits (M14-M11). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Y-Latency Bit (M9). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Valid Data Ready Bit (M8). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Burst Type Bit (M7).. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Valid Clock Edge Bit (M6).. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Latch Enable Bit (M3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Burst Length Bit (M2-M0). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Table 5. Burst Configuration Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Table 6. Burst Type Definition (x16 Bus Width). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Table 7. Burst Type Definition (x32 Bus Width). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Table 8. Burst Performance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
COMMAND INTERFACE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Read Memory Array Command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Read Electronic Signature Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Read Query Command.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Read Status Register Command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Clear Status Register Command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Block Erase Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Write to Buffer and Program Command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Program/Erase Suspend Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Program/Erase Resume Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Set Burst Configuration Register Command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Block Protect Command.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Blocks Unprotect Command.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Table 9. Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Table 10. Read Electronic Signature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Table 11. Program, Erase Times and Program Erase Endurance Cycles . . . . . . . . . . . . . . . . . . 28  
STATUS REGISTER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Program/Erase Controller Status (Bit 7) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Erase Suspend Status (Bit 6) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Erase Status (Bit 5) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Program Status (Bit 4). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
VPP Status (Bit 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Program Suspend Status (Bit 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Block Protection Status (Bit 1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Reserved (Bit 0). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Table 12. Status Register Bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
3/65  
M58LW128A, M58LW128B  
MAXIMUM RATING. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Table 13. Absolute Maximum Ratings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
DC and AC PARAMETERS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Table 14. Operating and AC Measurement Conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Figure 10. AC Measurement Input Output Waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Figure 11. AC Measurement Load Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Table 15. Capacitance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Table 16. DC Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Figure 12. Asynchronous Bus Read AC Waveforms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Table 17. Asynchronous Bus Read AC Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Figure 13. Asynchronous Latch Controlled Bus Read AC Waveforms . . . . . . . . . . . . . . . . . . . . . 36  
Table 18. Asynchronous Latch Controlled Bus Read AC Characteristics . . . . . . . . . . . . . . . . . . . 36  
Figure 14. Asynchronous Page Read AC Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Table 19. Asynchronous Page Read AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Figure 15. Asynchronous Write AC Waveform, Write Enable Controlled . . . . . . . . . . . . . . . . . . . 38  
Figure 16. Asynchronous Latch Controlled Write AC Waveform, Write Enable Controlled. . . . . . 38  
Table 20. Asynchronous Write and Latch Controlled Write AC Characteristics, Write Enable  
Controlled. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Figure 17. Asynchronous Write AC Waveforms, Chip Enable Controlled . . . . . . . . . . . . . . . . . . . 40  
Figure 18. Asynchronous Latch Controlled Write AC Waveforms, Chip Enable Controlled . . . . . 40  
Table 21. Asynchronous Write and Latch Controlled Write AC Characteristics, Chip Enable  
Controlled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Figure 19. Synchronous Burst Read AC Waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Figure 20. Synchronous Burst Read - Continuous - Valid Data Ready Output . . . . . . . . . . . . . . . 43  
Table 22. Synchronous Burst Read AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Figure 21. Reset, Power-Down and Power-Up AC Waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
Table 23. Reset, Power-Down and Power-Up AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . 45  
PACKAGE MECHANICAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
Figure 22. TSOP56 - 56 lead Plastic Thin Small Outline, 14 x 20 mm, Package Outline . . . . . . . 46  
Table 24. TSOP56 - 56 lead Plastic Thin Small Outline, 14 x 20 mm, Package Mechanical Data 46  
Figure 23. TBGA64 - 10x13mm - 8 x 8 ball array, 1mm pitch, Package Outline. . . . . . . . . . . . . . 47  
Table 25. TBGA64 - 10x13mm - 8 x 8 ball array, 1 mm pitch, Package Mechanical Data . . . . . . 47  
Figure 24. TBGA80 - 10x13mm - 8 x 10 ball array, 1mm pitch, Package Outline. . . . . . . . . . . . . 48  
Table 26. TBGA80 - 10x13mm - 8 x 10 ball array, 1mm pitch, Package Mechanical Data. . . . . . 48  
PART NUMBERING. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
Table 27. Ordering Information Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
APPENDIX A. BLOCK ADDRESS TABLE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
Table 28. Block Addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
APPENDIX B. COMMON FLASH INTERFACE - CFI. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
Table 29. Query Structure Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
4/65  
M58LW128A, M58LW128B  
Table 30. CFI - Query Address and Data Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
Table 31. CFI - Device Voltage and Timing Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
Table 32. Device Geometry Definition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
Table 33. Block Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
Table 34. Extended Query information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
APPENDIX C. FLOW CHARTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
Figure 25. Write to Buffer and Program Flowchart and Pseudo Code . . . . . . . . . . . . . . . . . . . . . 57  
Figure 26. Program Suspend & Resume Flowchart and Pseudo Code . . . . . . . . . . . . . . . . . . . . 58  
Figure 27. Erase Flowchart and Pseudo Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
Figure 28. Erase Suspend & Resume Flowchart and Pseudo Code. . . . . . . . . . . . . . . . . . . . . . . 60  
Figure 29. Command Interface and Program Erase Controller Flowchart (a) . . . . . . . . . . . . . . . . 61  
Figure 30. Command Interface and Program Erase Controller Flowchart (b) . . . . . . . . . . . . . . . . 62  
Figure 31. Command Interface and Program Erase Controller Flowchart (c) . . . . . . . . . . . . . . . . 63  
REVISION HISTORY. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64  
Table 35. Document Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64  
5/65  
M58LW128A, M58LW128B  
SUMMARY DESCRIPTION  
M58LW128 is a 128 Mbit (8Mb x16 or 4Mb x32)  
non-volatile memory that can be read, erased and  
reprogrammed. These operations can be per-  
formed using a single low voltage (2.7V to 3.6V)  
core supply. On power-up the memory defaults to  
Read mode with an asynchronous bus where it  
can be read in the same way as a non-burst Flash  
memory.  
The memory is divided into 128 blocks of 1Mbit  
that can be erased independently so it is possible  
to preserve valid data while old data is erased.  
Program and Erase commands are written to the  
Command Interface of the memory. An on-chip  
Program/Erase Controller simplifies the process of  
programming or erasing the memory by taking  
care of all of the special operations that are re-  
quired to update the memory contents. The end of  
a Program or Erase operation can be detected and  
any error conditions identified in the Status Regis-  
ter. The command set required to control the  
memory is consistent with JEDEC standards.  
The Write Buffer allows the microprocessor to pro-  
gram up to 16 Words (or 8 Double Words) in par-  
allel, both speeding up the programming and  
freeing up the microprocessor to perform other  
work. The minimum buffer size for a program op-  
eration is an 8 Word (or 4 Double Word) page. A  
page can only be programmed once between  
Erase operations.  
Erase can be suspended in order to perform either  
read or program in any other block and then re-  
sumed. Program can be suspended to read data in  
any other block and then resumed. Each block can  
be programmed and erased over 100,000 cycles.  
tion status of each block is restored to the state  
when power was last removed. Software com-  
mands are provided to allow protection of some or  
all of the blocks and to cancel all block protection  
bits simultaneously. All program or erase opera-  
tions are blocked when the Program Erase Enable  
input Vpp is low.  
The Reset/Power-Down pin is used to apply a  
Hardware Reset to the memory and to set the de-  
vice in Power-Down mode. It can also be used to  
temporarily disable the protection mechanism.  
In asynchronous mode Chip Enable, Output En-  
able and Write Enable signals control the bus op-  
eration of the memory. An Address Latch input can  
be used to latch addresses in Latch Controlled  
mode. Together they allow simple, yet powerful,  
connection to most microprocessors, often without  
additional logic.  
In synchronous mode all Bus Read operations are  
synchronous with the Clock. Chip Enable and Out-  
put Enable select the Bus Read operation; the ad-  
dress is Latched using the Latch Enable inputs  
and the address is advanced using Burst Address  
Advance. The signals are compatible with most  
microprocessor burst interfaces.  
A One Time Programmable (OTP) area is included  
for security purposes. Either 512 Words (x16 Bus  
Width) or 512 Double-Words (x32 Bus Width) is  
available in the OTP area. The process of reading  
from and writing to the OTP area is not published  
for security purposes; contact STMicroelectronics  
for details on how to use the OTP area.  
The memory is offered in various packages. The  
M58LW128A is available in TSOP56 (14 x 20 mm)  
and TBGA64 (1mm pitch). The M58LW128B is  
available in TBGA80 (1mm pitch).  
Individual block protection against program or  
erase is provided for data security. All blocks are  
protected during power-up. The protection of the  
blocks is non-volatile; after power-up the protec-  
6/65  
M58LW128A, M58LW128B  
Figure 2. Logic Diagram  
Table 1. Signal Names  
A1  
Address Input (x16 Bus Width only)  
Address inputs  
A2-A23  
DQ0-DQ15  
V
V
DD DDQ  
Data Inputs/Outputs  
23  
16  
16  
Data Inputs/Outputs (x32 Bus Width of  
M58LW128B only)  
DQ16-DQ31  
A1-A23  
DQ0-DQ15  
B
Burst Address Advance  
Chip Enable  
V
PP  
E
DQ16-DQ31(1)  
W
E
G
Output Enable  
RB  
R
K
Clock  
M58LW128A  
M58LW128B  
L
Latch Enable  
G
R
Valid Data Ready  
Ready/Busy  
RP  
RB  
RP  
L
Reset/Power-Down  
Program/Erase Enable  
Write Enable  
B
K
V
PP  
W
WORD(1)  
WORD  
Word Organization (M58LW128B only)  
Supply Voltage  
V
DD  
V
Input/Output Supply Voltage  
Ground  
DDQ  
V
V
SS SSQ  
AI04314  
V
SS  
Note: 1. M58LW128B only.  
V
Input/Output Ground  
Not Connected Internally  
SSQ  
NC  
7/65  
M58LW128A, M58LW128B  
Figure 3. TSOP56 Connections  
A22  
R
1
56  
NC  
W
A21  
A20  
A19  
A18  
A17  
A16  
G
RB  
DQ15  
DQ7  
DQ14  
DQ6  
V
V
DD  
A15  
A14  
A13  
A12  
E
SSQ  
DQ13  
DQ5  
DQ12  
DQ4  
14  
15  
43  
42  
V
V
DDQ  
SS  
M58LW128A  
V
PP  
RP  
DQ11  
DQ3  
A11  
A10  
A9  
DQ10  
DQ2  
A8  
V
DD  
V
DQ9  
DQ1  
DQ8  
DQ0  
B
SS  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
K
A23  
L
28  
29  
AI04315  
8/65  
M58LW128A, M58LW128B  
Figure 4. TBGA64 Connections for M58LW128A (Top view through package)  
1
2
3
4
5
6
7
8
A
B
C
D
E
F
A1  
A2  
A3  
A4  
DQ8  
K
A6  
A8  
A9  
V
A13  
A14  
V
A18  
A19  
A22  
R
PP  
E
DD  
V
NC  
NC  
SS  
A7  
A10  
A11  
DQ9  
DQ10  
DQ2  
A12  
RP  
A15  
A20  
A21  
A17  
RB  
G
A5  
DQ1  
DQ0  
B
NC  
NC  
A16  
DQ3  
DQ11  
DQ4  
DQ12  
DQ5  
DQ13  
NC  
DQ15  
NC  
NC  
G
H
A23  
L
V
DQ6  
DQ14  
DQ7  
W
DDQ  
NC  
V
V
V
SSQ  
NC  
DD  
SS  
AI04316  
9/65  
M58LW128A, M58LW128B  
Figure 5. TBGA80 Connections for M58LW128B (Top view through package)  
1
2
3
4
5
6
7
8
A
B
C
D
E
F
A1  
A2  
A8  
A7  
V
E
A13  
A14  
V
A18  
A19  
A22  
R
SS  
DD  
A9  
A12  
A16  
A17  
A3  
A6  
A10  
V
A15  
A20  
A21  
NC  
PP  
A4  
A5  
A11  
RP  
A23  
NC  
NC  
DQ16  
DQ24  
DQ25  
DQ18  
DQ19  
DQ27  
WORD  
DQ10  
DQ6  
DQ13  
DQ28  
DQ20  
W
DQ22  
DQ29  
DQ21  
RB  
DQ31  
DQ23  
G
H
J
DQ17  
K
DQ26  
B
L
DQ3  
DQ5  
DQ12  
DQ4  
DQ30  
G
DQ2  
DQ11  
DQ15  
DQ0  
DQ1  
DQ9  
V
V
V
V
DQ7  
DQ14  
DD  
SS  
SSQ  
SSQ  
K
V
V
V
V
V
DQ8  
DD  
SS  
DDQ  
DDQ  
DDQ  
AI04318  
10/65  
M58LW128A, M58LW128B  
Figure 6. Block Addresses  
M58LW128B  
Double-Word (x32) Bus Width  
M58LW128A, M58LW128B  
Word (x16) Bus Width  
Address lines A1-A23  
Address lines A2-A23  
(A1 is Don't Care)  
7FFFFFh  
3FFFFFh  
1 Mbit or  
1 Mbit or  
64 KWords  
32 KDouble-Words  
7F0000h  
7EFFFFh  
3F8000h  
3F7FFFh  
1 Mbit or  
1 Mbit or  
64 KWords  
32 KDouble-Words  
7E0000h  
3F0000h  
Total of 128  
1 Mbit Blocks  
01FFFFh  
00FFFFh  
1 Mbit or  
1 Mbit or  
64 KWords  
32 KDouble-Words  
010000h  
00FFFFh  
008000h  
007FFFh  
1 Mbit or  
1 Mbit or  
64 KWords  
32 KDouble-Words  
000000h  
000000h  
AI06130  
Note: Also see Appendix A, Table 28 for a full listing of the Block Addresses  
SIGNAL DESCRIPTIONS  
See Figure 2, Logic Diagram and Table 1, Signal  
Names, for a brief overview of the signals connect-  
ed to this device.  
to input the data during a Program operation. Dur-  
ing Bus Write operations they represent the com-  
mands sent to the Command Interface of the  
internal state machine. When used to input data or  
write commands they are latched on the rising  
edge of Write Enable or Chip Enable, whichever  
occurs first.  
Address Inputs (A1-A23). The Address Inputs  
are used to select the cells to access in the mem-  
ory array during Bus Read operations either to  
read or to program data to. During Bus Write oper-  
ations they control the commands sent to the  
Command Interface of the internal state machine.  
Chip Enable must be low when selecting the ad-  
dresses.  
The address inputs are latched on the rising edge  
of Chip Enable, Write Enable or Latch Enable,  
whichever occurs first in a write operation. The ad-  
dress latch is transparent when Latch Enable is  
When Chip Enable and Output Enable are both  
low, V , the data bus outputs data from the mem-  
IL  
ory array, the Electronic Signature, the Block Pro-  
tection status, the CFI Information or the contents  
of the Status Register. The data bus is high imped-  
ance when the chip is deselected, Output Enable  
is High, V  
or the Reset/Power-Down signal is  
IH,  
Low, V . When the Program/Erase Controller is  
IL  
active the Ready/Busy status is given on DQ7  
while DQ0-DQ6 and DQ8-DQ31 are high imped-  
ance.  
low, V . The address is internally latched in a pro-  
IL  
gram or erase operation.  
With a x32 Bus Width, WORD = V , Address Input  
IH  
With a x16 Bus Width, WORD = V , DQ16-DQ31  
IL  
A1 is ignored; the Least Significant Word is output  
on DQ0-DQ15 and the Most Significant Word is  
output on DQ16-DQ31. With a x16 Bus Width,  
are not used and are high impedance.  
Chip Enable (E). The Chip Enable, E, input acti-  
vates the memory control logic, input buffers, de-  
coders and sense amplifiers. Chip Enable, E, at  
WORD = V , the Least Significant Word is output  
IL  
on DQ0-DQ15 when A1 is low, V and the Most  
IL,  
Significant Word is output on DQ0-DQ15 when A1  
V
deselects the memory and reduces the power  
IH  
is high, V .  
consumption to the Standby level, I  
.
DD1  
IH  
Data Inputs/Outputs (DQ0-DQ31). The Data In-  
puts/Outputs output the data stored at the selected  
address during a Bus Read operation, or are used  
Output Enable (G). The Output Enable, G, gates  
the outputs through the data output buffers during  
a read operation. When Output Enable, G, is at V  
IH  
11/65  
M58LW128A, M58LW128B  
the outputs are high impedance. Output Enable,  
G, can be used to inhibit the data output during a  
burst read operation.  
Write Enable (W). The Write Enable input, W,  
controls writing to the Command Interface, Input  
Address and Data latches. Both addresses and  
data can be latched on the rising edge of Write En-  
able (also see Latch Enable, L).  
nous Bus Read operations. The Clock can be con-  
figured to have an active rising or falling edge. Bus  
signals are latched on the active edge of the Clock  
during synchronous bus operations. In Synchro-  
nous Burst Read mode the address is latched on  
the first active clock edge when Latch Enable is  
low, V , or on the rising edge of Latch Enable,  
IL  
whichever occurs first.  
During Asynchronous Bus operations the Clock is  
not used.  
Burst Address Advance (B). The Burst Address  
Advance, B, controls the advancing of the address  
by the internal address counter during synchro-  
nous bus operations.  
Reset/Power-Down (RP). The  
Reset/Power-  
Down pin can be used to apply a Hardware Reset  
to the memory or to temporarily unprotect all  
blocks that have been protected.  
A Hardware Reset is achieved by holding Reset/  
Power-Down Low, V , for at least t  
. When  
IL  
PLPH  
Reset/Power-Down is Low, V , the Status Regis-  
ter information is cleared and the current is re-  
Burst Address Advance, B, is only sampled on the  
active clock edge of the Clock when the X- or Y-  
latency time has expired. If Burst Address Ad-  
IL  
duced to  
I
(refer to Table 16, DC  
DD2  
Characteristics). The device is deselected and  
outputs are high impedance. If Reset/Power-  
vance is Low, V , the internal address counter ad-  
IL  
vances. If Burst Address Advance is High, V , the  
IH  
Down goes low, V ,during a Block Erase, a Write  
internal address counter does not change; the  
same data remains on the Data Inputs/Outputs  
and Burst Address Advance is not sampled until  
the Y-latency expires.  
IL  
to Buffer and Program or a Block Protect/Unpro-  
tect the operation is aborted and the data may be  
corrupted. In this case the Ready/Busy pin stays  
low, V , for a maximum timing of t  
+ t  
.
IL  
PLPH  
PHRH  
The Burst Address Advance, B, may be tied to V .  
IL  
After Reset/Power-Down goes High, V , the  
memory will be ready for Bus Read and Bus Write  
IH  
Valid Data Ready (R). The Valid Data Ready  
output, R, is an open drain output that can be used  
to identify if the memory is ready to output data or  
not. The Valid Data Ready output is only active  
during Synchronous Burst Read operations when  
the Burst Length is set to Continuous. The Valid  
Data Ready output can be configured to be active  
on the clock edge of the invalid data read cycle or  
operations after t  
. Note that Ready/Busy does  
RHEL  
not fall during a reset, see Ready/Busy Output  
section.  
During power-up Reset/Power-Down must be held  
Low, V Furthermore it must stay low for t  
IL.  
VDHPH  
after the Supply Voltage inputs become stable.  
The device will then be configured in Asynchro-  
nous Random Read mode.  
See Table 23 and Figure 21, Reset, Power-Down  
and Power-up Characteristics, for more details.  
one cycle before. Valid Data Ready Low, V , in-  
OL  
dicates that the data is not, or will not be valid. Val-  
id Data Ready in a high-impedance state indicates  
that valid data is or will be available.  
Unless the Burst Length is set to Continuous and  
Synchronous Burst Read has been selected, Valid  
Data Ready is high-impedance. It may be tied to  
other components with the same Valid Data  
Ready signal to create a unique System Ready  
signal.  
When the system clock frequency is between  
33MHz and 50MHz and the Y latency is set to 2,  
values of B sampled on odd clock cycles, starting  
from the first read are not considered.  
Designers should use an external pull-up resistor  
of the correct value to meet the external timing re-  
quirements for Valid Data Ready rising. Refer to  
Figure 20.  
Word Organization (WORD). The Word Organi-  
zation input, WORD, selects the x16 or x32 Bus  
Width on the M58LW128B. The Word Organiza-  
tion input is not available on the M58LW128A.  
Holding RP at V  
protected blocks in the memory. Program and  
Erase operations on all blocks will be possible.  
will temporarily unprotect the  
HH  
In an application, it is recommended to associate  
Reset/Power-Down pin, RP, with the reset signal  
of the microprocessor. Otherwise, if a reset opera-  
tion occurs while the memory is performing a pro-  
gram or erase operation, the memory may output  
the Status Register information instead of being  
initialized to the default Asynchronous Random  
Read.  
Latch Enable (L). The Bus Interface can be con-  
figured to latch the Address Inputs on the rising  
edge of Latch Enable, L. In synchronous bus oper-  
ations the address is latched on the active edge of  
the Clock when Latch Enable is Low, V . Once  
latched, the addresses may change without affect-  
ing the address used by the memory. When Latch  
IL  
Enable is Low, V , the latch is transparent.  
IL  
When WORD is Low, V , Word-wide x16 Bus  
IL  
Clock (K). The Clock, K, is used to synchronize  
the memory with the external bus during Synchro-  
Width is selected; data is read and written to DQ0-  
DQ15; DQ16-DQ31 are at high impedance and A1  
12/65  
M58LW128A, M58LW128B  
is the LSB of the address bus. When WORD is  
tect operations, otherwise the operation is not  
guaranteed to succeed and data may become cor-  
rupt.  
High, V , the Double-Word wide x32 Bus Width is  
IH  
selected and the data is read and written to on  
DQ0-DQ31; A2 is the LSB of the address bus and  
A1 is don’t care.  
V
Supply Voltage. The Supply Voltage, V  
,
DD  
DD  
is the core power supply. All internal circuits draw  
Ready/Busy (RB). The Ready/Busy output, RB,  
is an open-drain output that can be used to identify  
if the Program/Erase Controller is currently active.  
When Ready/Busy is high impedance, the memo-  
ry is ready for any read, program or erase opera-  
their current from the V  
gram/Erase Controller.  
pin, including the Pro-  
DD  
A 0.1µF capacitor should be connected between  
the Supply Voltage, V , and the Ground, V , to  
DD  
SS  
decouple the current surges from the power sup-  
ply. The PCB track widths must be sufficient to  
carry the currents required during all operations of  
the parts, see Table 16, DC Characteristics, for  
maximum current supply requirements.  
Input/Output Supply Voltage (V  
put/Output Supply Voltage, V  
put buffer power supply. All input and output pins  
and voltage references are powered and mea-  
sured relative to the Input/Output Supply Voltage  
tion. Ready/Busy is Low, V , during program and  
OL  
erase operations. When the device is busy it will  
not accept any additional Program or Erase com-  
mands except Program/Erase Suspend. When the  
Program/Erase Controller is idle, or suspended,  
Ready Busy can float High through a pull-up resis-  
tor.  
The use of an open-drain output allows the Ready/  
Busy pins from several memories to be connected  
to a single pull-up resistor. A Low will then indicate  
that one, or more, of the memories is busy.  
). The In-  
DDQ  
, is the input/out-  
DDQ  
pin, V  
.
DDQ  
The Input/Output Supply Voltage, V  
ways be equal or less than the V  
age, including during Power-Up.  
A 0.1µF capacitor should be connected between  
the Input/Output Supply Voltage, V , and the  
, must al-  
DDQ  
Ready/Busy is not Low during a reset unless the  
reset was applied when the Program/Erase Con-  
troller was active; Ready/Busy can rise before Re-  
set/Power-Down rises.  
Supply Volt-  
DD  
DDQ  
Program/Erase Enable (V ). The  
Program/  
PP  
Ground, V  
, to decouple the current surges  
SSQ  
Erase Enable input, V  
is used to protect all  
PP,  
from the power supply. If V  
nected together then only one decoupling capaci-  
tor is required.  
and V are con-  
DDQ  
DD  
blocks, preventing Program and Erase operations  
from affecting their data.  
When Program/Erase Enable is Low, V , any pro-  
gram or erase operation sent to the Command In-  
IL  
Ground (V ). Ground, V  
all core power supply voltages.  
is the reference for  
SS  
SS,  
terface will cause the V  
Status bit (bit3) in the  
PP  
Ground (V ). Ground, V  
is the reference  
SSQ,  
SSQ  
Status Register to be set. When Program/Erase  
for input/output voltage measurements. It is es-  
Enable is High, V , program and erase operations  
IH  
sential to connect V  
and V  
to the same  
SS  
SSQ  
can be performed on unprotected blocks. Pro-  
gram/Erase Enable must be kept High during all  
Program, Erase, Block Protect and Block Unpro-  
ground  
.
13/65  
M58LW128A, M58LW128B  
BUS OPERATIONS  
The bus operations that control the memory are  
described in this section, see Tables 2 and 3, Bus  
Operations, for a summary. The bus operation is  
selected through the Burst Configuration Register;  
the bits in this register are described at the end of  
this section.  
Note that, since the Latch Enable input is transpar-  
ent when set Low, V , Asynchronous Bus Read  
IL  
operations can be performed when the memory is  
configured for Asynchronous Latch Enable bus  
operations by holding Latch Enable Low, V  
throughout the bus operation.  
IL  
On Power-up or after a Hardware Reset the mem-  
ory defaults to Asynchronous Bus Read and Asyn-  
chronous Bus Write, no other bus operation can  
be performed until the Burst Control Register has  
been configured.  
Synchronous Read operations and Latch Con-  
trolled Bus Read operations can only be used to  
read the memory array. The Electronic Signature,  
CFI or Status Register will be read in asynchro-  
nous mode regardless of the Burst Control Regis-  
ter settings.  
Asynchronous Page Read. Asynchronous Page  
Read operations are used to read from several ad-  
dresses within the same memory page. Each  
memory page is 8 Words or 4 Double-Words and  
has the same A4-A23, only A1, A2 and A3 may  
change.  
Valid bus operations are the same as Asynchro-  
nous Bus Read operations but with different tim-  
ings. The first read operation within the page has  
identical timings, subsequent reads within the  
same page have much shorter access times. If the  
page changes then the normal, longer timings ap-  
ply again. See Figure 14, Asynchronous Page  
Read AC Waveforms and Table 19, Asynchro-  
nous Page Read AC Characteristics for details on  
when the outputs become valid.  
Typically glitches of less than 5ns on Chip Enable  
or Write Enable are ignored by the memory and do  
not affect bus operations.  
Asynchronous Bus Operations  
For asynchronous bus operations refer to Table 3  
together with the text below.  
Asynchronous Bus Write. Asynchronous Bus  
Write operations write to the Command Interface  
in order to send commands to the memory or to  
latch addresses and input data to program. Bus  
Write operations are asynchronous, the clock, K,  
is don’t care during Bus Write operations.  
Asynchronous Bus Read. Asynchronous Bus  
Read operations read from the memory cells, or  
specific registers (Electronic Signature, Status  
Register, CFI and Block Protection Status) in the  
Command Interface. A valid bus operation in-  
volves setting the desired address on the Address  
A valid Asynchronous Bus Write operation begins  
by setting the desired address on the Address In-  
Inputs, applying a Low signal, V , to Chip Enable  
IL  
puts and setting Latch Enable Low, V . The Ad-  
IL  
and Output Enable and keeping Write Enable  
dress Inputs are latched by the Command  
Interface on the rising edge of Chip Enable or  
Write Enable, whichever occurs first. The Data In-  
puts/Outputs are latched by the Command Inter-  
face on the rising edge of Chip Enable or Write  
Enable, whichever occurs first. Output Enable  
High, V . The Data Inputs/Outputs will output the  
IH  
value, see Figure 12, Asynchronous Bus Read AC  
Waveforms, and Table 17, Asynchronous Bus  
Read AC Characteristics, for details of when the  
output becomes valid.  
Asynchronous Latch Controlled Bus Read.  
must remain High, V , during the whole Asyn-  
IH  
chronous Bus Write operation. See Figures 15,  
and 17, Asynchronous Write AC Waveforms, and  
Tables 20 and 21, Asynchronous Write and Latch  
Controlled Write AC Characteristics, for details of  
the timing requirements.  
Asynchronous Latch Controlled Bus Read opera-  
tions read from the memory cells. The address is  
latched in the memory before the value is output  
on the data bus, allowing the address to change  
during the cycle without affecting the address that  
the memory uses.  
Asynchronous Latch Controlled Bus Write.  
A valid bus operation involves setting the desired  
address on the Address Inputs, setting Chip En-  
Asynchronous Latch Controlled Bus Write opera-  
tions write to the Command Interface in order to  
send commands to the memory or to latch ad-  
dresses and input data to program. Bus Write op-  
erations are asynchronous, the clock, K, is don’t  
care during Bus Write operations.  
A valid Asynchronous Latch Controlled Bus Write  
operation begins by setting the desired address on  
the Address Inputs and pulsing Latch Enable Low,  
able and Address Latch Low, V and keeping  
IL  
Write Enable High, V ; the address is latched on  
IH  
the rising edge of Address Latch. Once latched,  
the Address Inputs can change. Set Output En-  
able Low, V , to read the data on the Data Inputs/  
IL  
Outputs; see Figure 13, Asynchronous Latch Con-  
trolled Bus Read AC Waveforms and Table 18,  
Asynchronous Latch Controlled Bus Read AC  
Characteristics for details on when the output be-  
comes valid.  
V . The Address Inputs are latched by the Com-  
IL  
mand Interface on the rising edge of Latch Enable,  
Chip Enable or Write Enable, whichever occurs  
14/65  
M58LW128A, M58LW128B  
first. The Data Inputs/Outputs are latched by the  
Command Interface on the rising edge of Chip En-  
able or Write Enable, whichever occurs first. Out-  
puts/Outputs pins are placed in the high imped-  
ance state regardless of Output Enable or Write  
Enable. The Supply Current is reduced to the  
put Enable must remain High, V , during the  
Standby Supply Current, I  
.
IH  
DD1  
whole Asynchronous Bus Write operation. See  
Figures 16 and 18 Asynchronous Latch Controlled  
Write AC Waveforms, and Tables 20 and 21,  
Asynchronous Write and Latch Controlled Write  
AC Characteristics, for details of the timing re-  
quirements.  
Output Disable. The Data Inputs/Outputs are in  
the high impedance state when the Output Enable  
is High.  
During Program or Erase operations the memory  
will continue to use the Program/Erase Supply  
Current, I  
, for Program or Erase operations un-  
DD3  
til the operation completes.  
Power-Down. The memory is in Power-Down  
mode when Reset/Power-Down, RP, is Low. The  
current is reduced to I  
, and the outputs are  
DD2  
high impedance, independent of Chip Enable,  
Output Enable or Write Enable.  
Standby. When Chip Enable is High, V , the  
IH  
memory enters Standby mode and the Data In-  
Table 2. Asynchronous Bus Operations  
(2)  
Bus Operation  
Step  
E
G
W
RP  
L
A1-A23  
Address  
Address  
X
DQ0-DQ31  
Data Output  
High Z  
M3  
0
V
V
V
Asynchronous Bus Read  
High  
High  
High  
High  
High  
X
IL  
IL  
IL  
IL  
IL  
IL  
IL  
IL  
IL  
IH  
IH  
IH  
IH  
V
V
V
V
V
V
V
V
V
V
V
V
IL  
Address Latch  
Read  
1
Asynchronous Latch  
Controlled Bus Read  
V
1
Data Output  
Data Output  
Data Input  
IH  
Asynchronous Page Read  
Asynchronous Bus Write  
0
X
Address  
Address  
V
V
V
V
X
IH  
IH  
IH  
IL  
IL  
IL  
IL  
Asynchronous Latch  
Controlled Bus Write  
V
V
V
V
Address Latch  
High  
X
Address  
Data Input  
IL  
IL  
V
V
Output Disable  
Standby  
High  
High  
X
X
X
X
X
X
X
High Z  
High Z  
High Z  
IH  
X
X
X
X
IH  
V
IL  
Power-Down  
X
X
X
Note: 1. X = Don’t Care V or V . High = V or V .  
HH  
IL  
IH  
IH  
2. M15 = 1, Bits M15 and M3 are in the Burst Configuration Register.  
15/65  
M58LW128A, M58LW128B  
Synchronous Bus Operations  
For synchronous bus operations refer to Table 3  
together with the text below.  
Synchronous Burst Read. Synchronous Burst  
Read operations are used to read from the memo-  
ry at specific times synchronized to an external ref-  
erence clock. The burst type, length and latency  
can be configured. The different configurations for  
Synchronous Burst Read operations are de-  
scribed in the Burst Configuration Register sec-  
tion.  
The Synchronous Burst Read timing diagrams  
and AC Characteristics are described in the AC  
and DC Parameters section. See Figures 19, 20  
and Table 22.  
Synchronous Pipelined Burst Read. Synchro-  
nous Burst Read operations can be overlapped to  
avoid or reduce the X-latency. Pipelined opera-  
tions should only be used with Burst Configuration  
Register bit M9 = 0 (Y-latency setting).  
A valid Synchronous Pipelined Burst Read opera-  
tion occurs during a Synchronous Burst Read op-  
eration when the new address is set on the  
Address Inputs and a Low pulse is applied to Latch  
Enable. The data for the new address becomes  
valid after the X-latency specified in the Burst Con-  
figuration Register has expired.  
A valid Synchronous Burst Read operation begins  
when the address is set on the Address Inputs,  
Write Enable is High, V , and Chip Enable and  
IH  
Latch Enable are Low, V , during the active edge  
IL  
of the Clock. The address is latched on the first ac-  
tive clock edge when Latch Enable is low, or on  
the rising edge of Latch Enable, whichever occurs  
first. The data becomes available for output after  
the X-latency specified in the Burst Control Regis-  
ter has expired. The output buffers are activated  
by setting Output Enable Low, V . See Figure 7  
for an example of a Synchronous Burst Read op-  
eration.  
For optimum operation the address should be  
latched on the correct clock cycle. Table 4 gives  
the clock cycle for each valid X- and Y-latency set-  
ting. Only these settings are valid, other settings  
must not be used. There is always one Y-Latency  
period where the data is not valid. If the address is  
latched later than the clock cycle specified in Ta-  
bles 4 then additional cycles where the data is not  
valid are inserted. See Figure 8 for an example of  
a Synchronous Pipelined Burst Read operation.  
Here the X-latency is 8, the Y-latency is 1 and the  
burst length is 4; the first address is latched on cy-  
cle 1 while the next address is latched on cycle 6,  
as shown in Table 4.  
Synchronous Pipelined Burst Read operations  
should only be performed on Burst Lengths of 4 or  
8 with a x16 Bus Width or a Burst Length of 4 with  
a x32 Bus Width.  
Suspending a Pipelined Synchronous Burst Read  
operation is not recommended.  
IL  
The Burst Address Advance input and the Y-laten-  
cy specified in the Burst Control Register deter-  
mine whether the internal address counter is  
advanced on the active edge of the Clock. When  
the internal address counter is advanced the Data  
Inputs/Outputs change to output the value for the  
next address.  
In Continuous Burst mode (Burst Length Bit M2-  
M0 is set to ‘111’), one Burst Read operation can  
access the entire memory sequentially and wrap  
at the last address. The Burst Address Advance,  
B, must be kept low, V , for the appropriate num-  
IL  
ber of clock cycles. If Burst Address Advance, B,  
Synchronous Burst Read Suspend. During  
a
is pulled High, V , the Burst Read will be sus-  
IH  
Synchronous Burst Read operation it is possible to  
suspend the operation, freeing the data bus for  
other higher priority devices.  
A valid Synchronous Burst Read operation is sus-  
pended when both Output Enable and Burst Ad-  
pended.  
In Continuous Burst Mode, if the starting address  
is not associated with a page (4 Word or 2 Double  
Word) boundary the Valid Data Ready, R, output  
goes Low, V , to indicate that the data will not be  
IL  
dress Advance are High, V . The Burst Address  
IH  
ready in time and additional wait-states are re-  
quired. The Valid Data Ready output timing (bit  
M8) can be changed in the Burst Configuration  
Register.  
When using the x32 Bus Width certain X-latencies  
are not valid and must not be used; see Table 5,  
Burst Configuration Register.  
Advance going High, V , stops the burst counter  
IH  
and the Output Enable going High, V , inhibits the  
IH  
data outputs. The Synchronous Burst Read oper-  
ation can be resumed by setting Output Enable  
Low. See Figure 7 for an example of a Synchro-  
nous Burst Read Suspend operation.  
16/65  
M58LW128A, M58LW128B  
Table 3. Synchronous Burst Read Bus Operations  
A1-A23  
(3)  
Bus Operation  
Step  
Address Latch  
E
G
RP  
L
B
K
DQ0-DQ31  
Address Input  
Data Output  
Data Output  
High Z  
V
V
IH  
V
IL  
X
T
X
IL  
IL  
IL  
IL  
V
V
V
V
IL  
V
IH  
V
IH  
Read (no address advance)  
Read (with address advance)  
Read Suspend  
T
T
X
X
X
X
V
V
V
IH  
V
V
IL  
IL  
Synchronous Burst Read  
V
IH  
IH  
IH  
IH  
Pipelined Synchronous  
Burst Read  
Read Resume (no address  
advance)  
V
V
IL  
V
IH  
V
T
X
Data Output  
IL  
IL  
Read Resume (with address  
advance)  
V
V
V
IL  
V
IH  
V
IL  
T
X
X
X
Data Output  
High Z  
V
IH  
X
Read Abort  
X
IH  
Note: 1. X = Don’t Care, V or V  
.
IH  
IL  
2. M15 = 0, Bit M15 is in the Burst Configuration Register.  
3. T = transition, see M6 in the Burst Configuration Register for details on the active edge of K.  
Table 4. Address Latch Cycle for Optimum Pipelined Synchronous Burst Read  
Address Latch Clock Cycle  
X-Latency  
Y-Latency  
Burst Length = 4  
Burst Length = 8  
8
1
1
1
1
2
6
10  
11  
14  
15  
19  
9
7
12  
13  
15  
10  
11  
11  
17/65  
M58LW128A, M58LW128B  
Figure 7. Synchronous Burst Read Operation  
1
0
X-1  
X
X+1  
K
Address  
Inputs  
Q1  
L
tBHKH  
tBLKH  
Q1  
tBHKH  
B
tBHKH  
Data Inputs/  
Outputs  
Q2  
Q3 Q4 Q5 Q5 Q5 Q6 Q7 Q7 Q8 Q8  
AI03454b  
Note: In this example the Burst Configuration Register is set with M2-M0 = 001 (Burst Length = 4 Words or Double Words), M6 = 1 (Valid  
Clock Edge = Rising Clock Edge), M7 = 0 or 1 (Burst Type = Interleaved or Sequential), M9 = 0 (Y-Latency = 1), M14-M11 = 0011 (X-  
Latency = 8) and M15 = 0 (Read Select = Synchronous Burst Read), other bits are don’t care.  
Figure 8. Example Synchronous Pipelined Burst Read Operation  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15  
K
Address  
Inputs  
Q1  
R1  
S1  
L
E
G
B
Data  
Q1 Q2 Q3 Q4 NV R1 R2 R3 R4 NV S1 S2 S3  
Inputs/ Outputs  
NV= Not Valid  
AI03455  
Note: In this example the Burst Configuration Register is set with M2-M0 = 001 (Burst Length = 4 Words or Double Words), M6 = 1 (Valid  
Clock Edge = Rising Clock Edge), M7 = 0 or 1 (Burst Type = Interleaved or Sequential), M9 = 0 (Y-Latency = 1), M14-M11 = 0011 (X-  
Latency = 8) and M15 = 0 (Read Select = Synchronous Burst Read), other bits are don’t care.  
18/65  
M58LW128A, M58LW128B  
Figure 9. Example Burst Address Advance and Burst Abort operations  
1
0
X-2  
X
X+2  
X+4  
X+6  
X+8  
X+10  
X+12  
K
Address  
Inputs  
Q1  
L
tBHKH  
tBLKH  
tBHKH  
B
tBHKH  
Q2  
Data Inputs/  
Outputs  
Q1  
Q3  
Q3  
Q4  
Q4  
Q4  
AI03457b  
Note: 1. In this example the Burst Configuration Register is set with M2-M0 = 010 (Burst Length = 8 Words), M6 = 1 (Valid Clock Edge =  
Rising Clock Edge), M7 = 0 or 1 (Burst Type = Interleaved or Sequential), M9 = 1 (Y-Latency = 2), M14-M11 = 0011 (X-Latency =  
8) and M15 = 0 (Read Select = Synchronous Burst Read), other bits are don’t care.  
2. When the system clock frequency is between 33MHz and 50MHz and the Y latency is set to 2, values of B sampled on odd clock  
cycles, starting from the first read are not considered.  
19/65  
M58LW128A, M58LW128B  
Burst Configuration Register  
The Burst Configuration Register is used to config-  
ure the type of bus access that the memory will  
perform.  
The Burst Configuration Register is set through  
the Command Interface and will retain its informa-  
tion until it is re-configured, the device is reset, or  
the device goes into Reset/Power-Down mode.  
The Burst Configuration Register bits are de-  
scribed in Table 5. They specify the selection of  
the burst length, burst type, burst X and Y laten-  
cies and the Read operation.  
Read Select Bit (M15). The Read Select bit,  
M15, is used to switch between asynchronous and  
synchronous Bus Read operations. When the  
Read Select bit is set to ’1’, Bus Read operations  
are asynchronous; when the Read Select but is  
set to ’0’, Bus Read operations are synchronous.  
Ready output pin, R. When the Valid Data Ready  
bit is ’0’ the Valid Data Ready output pin is driven  
Low for the active clock edge when invalid data is  
output on the bus. When the Valid Data Ready bit  
is ’1’ the Valid Data Ready output pin is driven Low  
one clock cycle prior to invalid data being output  
on the bus.  
Burst Type Bit (M7). The Burst Type bit is used  
to configure the sequence of addresses read as  
sequential or interleaved. When the Burst Type bit  
is ’0’ the memory outputs from interleaved ad-  
dresses; when the Burst Type bit is ’1’ the memory  
outputs from sequential addresses. See Tables 6  
and 7, Burst Type Definition, for the sequence of  
addresses output from a given starting address in  
each mode.  
Valid Clock Edge Bit (M6). The Valid Clock Edge  
bit, M6, is used to configure the active edge of the  
Clock, K, during Synchronous Burst Read opera-  
tions. When the Valid Clock Edge bit is ’0’ the fall-  
ing edge of the Clock is the active edge; when the  
Valid Clock Edge bit is ’1’ the rising edge of the  
Clock is active.  
Latch Enable Bit (M3). The Latch Enable bit is  
used to select between Asynchronous Random  
Read and Asynchronous Latch Enable Controlled  
Read. When the Latch Enable bit is set to ‘0’ Ran-  
dom read is selected; when it is set to ‘1’ Latch En-  
able Controlled Read is selected. To enable these  
Asynchronous Read configurations M15 must be  
set to ‘1’.  
On reset or power-up the Read Select bit is set  
to’1’ for asynchronous accesses.  
X-Latency Bits (M14-M11). The X-Latency bits  
are used during Synchronous Bus Read opera-  
tions to set the number of clock cycles between  
the address being latched and the first data be-  
coming available. For correct operation the X-La-  
tency bits can only assume the values in Table 5,  
Burst Configuration Register. The X-Latency bits  
should also be selected in conjunction with Table  
8, Burst Performance to ensure valid settings.  
Y-Latency Bit (M9). The Y-Latency bit is used  
during Synchronous Bus Read operations to set  
the number of clock cycles between consecutive  
reads. The Y-Latency value depends on both the  
X-Latency value and the setting in M9.  
Burst Length Bit (M2-M0). The Burst Length bits  
set the maximum number of Words or Double-  
Words that can be output during a Synchronous  
Burst Read operation before the address wraps.  
When the Y-Latency is 1 the data changes each  
clock cycle; when the Y-Latency is 2 the data  
changes every second clock cycle. See Table 5,  
Burst Configuration Register and Table 8, Burst  
Performance, for valid combinations of the Y-La-  
tency, the X-Latency and the Clock frequency.  
Table 5, Burst Configuration Register gives the  
valid combinations of the Burst Length bits that the  
memory accepts; Tables 6 and 7, Burst Type Def-  
inition, give the sequence of addresses output  
from a given starting address for each length.  
M10, M5 and M4 are reserved for future use.  
Valid Data Ready Bit (M8). The  
Valid  
Data  
Ready bit controls the timing of the Valid Data  
20/65  
M58LW128A, M58LW128B  
Table 5. Burst Configuration Register  
Address  
Bit  
Reset  
Value  
Valid Bus  
Width  
Mnemonic Bit Name  
Value  
Description  
0
1
Synchronous Burst Read  
Asynchronous Bus Read  
x16 or x32  
x16 or x32  
Read  
M15  
17  
1
Select  
X-Latency = 7, use only with Continuous Burst  
Length  
0010  
x16 or x32  
0011 X-Latency = 8  
0100 X-Latency = 9  
x16 or x32  
x16 or x32  
X-Latency = 10, use only with Continuous Burst  
Length  
0101  
0110  
x16 only  
x16 only  
16  
to  
X-Latency = 11, use only with Continuous Burst  
Length  
M14-M11 X-Latency XXXX  
13  
1001 X-Latency = 12  
1010 X-Latency = 13  
x16 only  
x16 only  
X-Latency = 13, use only with Continuous Burst  
Length  
1011  
x16 or x32  
x16 or x32  
1101 X-Latency = 15  
Others Reserved, Do Not Use.  
When X-Latency < 13, Y-Latency = 1  
When M14-M11 = 1011 or 1101, Y-Latency = 2  
0
1
x16 or x32  
x16 or x32  
11  
M9  
X
Y-Latency  
When X-Latency 15 but M14-M111011 or  
1101, Y-Latency = 2,  
When M14-M11=1011 or 1101 DO NOT USE.  
0
1
R valid Low during valid Clock edge  
R valid Low one cycle before valid Clock edge  
Interleaved  
x16 or x32  
x16 or x32  
x16 or x32  
x16 or x32  
x16 or x32  
x16 or x32  
x16 or x32  
x16 or x32  
x16 or x32  
x16 or x32  
x16 or x32  
x16 only  
Valid Data  
Ready  
10  
9
M8  
M7  
M6  
M3  
X
X
X
0
0
Burst Type  
1
Sequential  
0
Falling Clock edge  
Valid Clock  
Edge  
8
1
Rising Clock edge  
0
Random Read  
Latch  
Enable  
5
1
Latch Enable Controlled Read  
1 Word or Double-Word  
2 Words or Double-Words  
4 Words or Double-Words  
8 Words  
100  
101  
001  
010  
111  
4
to  
2
Burst  
M2-M0  
XXX  
Length  
Continuous  
x16 or x32  
Others Reserved, Do Not Use.  
21/65  
M58LW128A, M58LW128B  
Table 6. Burst Type Definition (x16 Bus Width)  
Starting Address  
Sequential  
(decimal)  
Interleaved  
(decimal)  
(binary)  
Burst Length  
A3 A2 A1  
XX0  
0, 1  
0, 1  
2
XX1  
1, 0  
1, 0  
X00  
0, 1, 2, 3  
0, 1, 2, 3  
X01  
1, 2, 3, 0  
1, 0, 3, 2  
4
X10  
2, 3, 0, 1  
2, 3, 0, 1  
X11  
000  
001  
010  
3, 0, 1, 2  
3, 2, 1, 0  
0, 1, 2, 3, 4, 5, 6, 7  
1, 2, 3, 4, 5, 6, 7, 0  
2, 3, 4, 5, 6, 7, 0, 1  
3, 4, 5, 6, 7, 0, 1, 2  
4, 5, 6, 7, 0, 1, 2, 3  
5, 6, 7, 0, 1, 2, 3, 4  
6, 7, 0, 1, 2, 3, 4, 5  
7, 0, 1, 2, 3, 4, 5, 6  
A, A+1, A+2...  
0, 1, 2, 3, 4, 5, 6, 7  
1, 0, 3, 2, 5, 4, 7, 6  
2, 3, 0, 1, 6, 7, 4, 5  
3, 2, 1, 0, 7, 6, 5, 4  
4, 5, 6, 7, 0, 1, 2, 3  
5, 4, 7, 6, 1, 0, 3, 2  
6, 7, 4, 5, 2, 3, 0, 1  
7, 6, 5, 4, 3, 2, 1, 0  
Not Valid  
011  
8
100  
101  
110  
111  
Continuous  
A
Note: X = 0 or 1.  
Table 7. Burst Type Definition (x32 Bus Width)  
Starting Address  
Sequential  
(decimal)  
Interleaved  
(decimal)  
(binary)  
Burst Length  
A3 A2  
X0  
0, 1  
1, 0  
0, 1  
2
X1  
1, 0  
00  
0, 1, 2, 3  
1, 2, 3, 0  
2, 3, 0, 1  
3, 0, 1, 2  
Not Valid  
A, A+1, A+2...  
0, 1, 2, 3  
1, 0, 3, 2  
2, 3, 0, 1  
3, 2, 1, 0  
01  
4
10  
11  
8
Continuous  
A
Not Valid  
Note: X = 0 or 1.  
22/65  
M58LW128A, M58LW128B  
Table 8. Burst Performance  
X-Latency  
Y-Latency  
Bus Width  
Clock Frequency  
Mode  
7
continuous only  
8
1
2
continuous, length  
continuous only  
9
x16, x32  
33 MHz  
7
8
continuous, length  
9
10  
11  
12  
13  
10  
11  
12  
13  
13  
15  
continuous only  
continuous, length  
continuous only  
1
x16 only  
50 MHz  
2
continuous, length  
continuous only  
2(M9=0)  
x16, x32  
66 MHz  
continuous, length  
23/65  
M58LW128A, M58LW128B  
COMMAND INTERFACE  
All Bus Write operations to the memory are inter-  
preted by the Command Interface. Commands  
consist of one or more sequential Bus Write oper-  
ations. The Commands are summarized in Table  
9, Commands. Refer to Table 9 in conjunction with  
the text descriptions below.  
Register. One Bus Write cycle is required to issue  
the Read Status Register command. Once the  
command is issued subsequent Bus Read opera-  
tions read the Status Register until another com-  
mand is issued.  
The Status Register information is present on the  
output data bus (DQ1-DQ7) when both Chip En-  
After Power-Up or a Reset operation the memory  
enters Read mode.  
able and Output Enable are low, V .  
IL  
Synchronous Read operations and Latch Con-  
trolled Bus Read operations can only be used to  
read the memory array. The Electronic Signature,  
CFI or Status Register will be read in Asynchro-  
nous mode regardless of the Burst Control Regis-  
ter settings. Once the memory returns to Read  
Memory Array mode the bus will resume the set-  
ting in the Burst Configuration Register automati-  
cally.  
Read Memory Array Command. The Read Mem-  
ory Array command returns the memory to Read  
mode. One Bus Write cycle is required to issue the  
Read Memory Array command and return the  
memory to Read mode. Once the command is is-  
sued the memory remains in Read mode until an-  
other command is issued. From Read mode Bus  
Read operations will access the memory array.  
While the Program/Erase Controller is executing a  
Program, Erase, Block Protect or Blocks Unpro-  
tect operation the memory will not accept the Read  
Memory Array command until the operation com-  
pletes.  
Read Electronic Signature Command. The Read  
Electronic Signature command is used to read the  
Manufacturer Code, the Device Code and the  
Block Protection Status. One Bus Write cycle is re-  
quired to issue the Read Electronic Signature  
command. Once the command is issued subse-  
quent Bus Read operations read the Manufacturer  
Code, the Device Code or the Block Protection  
Status until another command is issued; see Table  
10, Read Electronic Signature.  
See the section on the Status Register and Table  
12 for details on the definitions of the Status Reg-  
ister bits  
Clear Status Register Command. The Clear Sta-  
tus Register command can be used to reset bits 1,  
3, 4 and 5 in the Status Register to ‘0’. One Bus  
Write is required to issue the Clear Status Register  
command.  
The bits in the Status Register are sticky and do  
not automatically return to ‘0’ when a new Write to  
Buffer and Program, Erase, Block Protect or Block  
Unprotect command is issued. If any error occurs  
then it is essential to clear any error bits in the Sta-  
tus Register by issuing the Clear Status Register  
command before attempting a new Program,  
Erase or Resume command.  
Block Erase Command. The Block Erase com-  
mand can be used to erase a block. It sets all of  
the bits in the block to ‘1’. All previous data in the  
block is lost. If the block is protected then the  
Erase operation will abort, the data in the block will  
not be changed and the Status Register will output  
the error.  
Two Bus Write operations are required to issue the  
command; the second Bus Write cycle latches the  
block address in the internal state machine and  
starts the Program/Erase Controller. Once the  
command is issued subsequent Bus Read opera-  
tions read the Status Register. See the section on  
the Status Register for details on the definitions of  
the Status Register bits.  
During the Erase operation the memory will only  
accept the Read Status Register command and  
the Program/Erase Suspend command. All other  
commands will be ignored. Typical Erase times  
are given in Table 11.  
See Appendix C, Figure 27, Block Erase Flow-  
chart and Pseudo Code, for a suggested flowchart  
on using the Block Erase command.  
Write to Buffer and Program Command. The  
Write to Buffer and Program command is used to  
program the memory array.  
Read Query Command. The Read Query Com-  
mand is used to read data from the Common Flash  
Interface (CFI) Memory Area. One Bus Write cycle  
is required to issue the Read Query Command.  
Once the command is issued subsequent Bus  
Read operations read from the Common Flash In-  
terface Memory Area. See Appendix B, Tables 29,  
30, 31, 32, 33 and 34 for details on the information  
contained in the Common Flash Interface (CFI)  
memory area.  
Note that the addresses for the Common Flash In-  
terface Memory Area are A1-A23 for the  
M58LW128A and A2-A23 for the M58LW128B, re-  
gardless of the Bus Width selected.  
Up to 2 pages of 8 Words (or 4 Double Words) can  
be loaded into the Write Buffer and programmed  
into the memory. The 2 pages are selected by ad-  
dress A4. Each Write Buffer has the same A5 -A23  
addresses.  
Read Status Register Command. The Read Sta-  
tus Register command is used to read the Status  
24/65  
M58LW128A, M58LW128B  
Four successive steps are required to issue the  
command.  
command if the Program/Erase Controller is run-  
ning.  
1. One Bus Write operation is required to set up  
the Write to Buffer and Program Command. Is-  
sue the set up command with the selected  
memory Block Address where the program op-  
eration should occur (any address in the block  
where the values will be programmed can be  
used). Any Bus Read operations will start to out-  
put the Status Register after the 1st cycle.  
2. Use one Bus Write operation to write the same  
block address along with the value N on the  
Data Inputs/Output, where N+1 is the number of  
Words (x16 Bus Width) or Double Words (x32  
Bus Width) to be programmed.  
3. Use N+1 Bus Write operations to load the ad-  
dress and data for each Word or Double Word  
into the Write Buffer. See the constraints on the  
address combinations listed below. The ad-  
dresses must have the same A5-A23.  
4. Finally, use one Bus Write operation to issue the  
final cycle to confirm the command and start the  
Program operation.  
Invalid address combinations or failing to follow  
the correct sequence of Bus Write cycles will set  
an error in the Status Register and abort the oper-  
ation without affecting the data in the memory ar-  
ray. The Status Register should be cleared before  
re-issuing the command.  
The minimum buffer size for a program operation  
is an 8 Word (or 4 Double Word) page. Inside the  
page the 8 Words are selected by addresses A3,  
A2 and A1.  
For any page, only one Write to Buffer and Pro-  
gram Command can be issued inside a previously  
erased block. Any further Program operations on  
that page must be preceded by an Erase operation  
on the respective block.  
One Bus Write cycle is required to issue the Pro-  
gram/Erase Suspend command and pause the  
Program/Erase Controller. Once the command is  
issued it is necessary to poll the Program/Erase  
Controller Status bit (bit 7) to find out when the  
Program/Erase Controller has paused; no other  
commands will be accepted until the Program/  
Erase Controller has paused. After the Program/  
Erase Controller has paused, the memory will con-  
tinue to output the Status Register until another  
command is issued.  
During the polling period between issuing the Pro-  
gram/Erase Suspend command and the Program/  
Erase Controller pausing it is possible for the op-  
eration to complete. Once the Program/Erase  
Controller Status bit (bit 7) indicates that the Pro-  
gram/Erase Controller is no longer active, the Pro-  
gram Suspend Status bit (bit 2) or the Erase  
Suspend Status bit (bit 6) can be used to deter-  
mine if the operation has completed or is suspend-  
ed. For timing on the delay between issuing the  
Program/Erase Suspend command and the Pro-  
gram/Erase Controller pausing see Table 11.  
During Program/Erase Suspend the Read Memo-  
ry Array, Read Status Register, Read Electronic  
Signature, Read Query and Program/Erase Re-  
sume commands will be accepted by the Com-  
mand Interface. Additionally, if the suspended  
operation was Erase then the Write to Buffer and  
Program, and the Program Suspend commands  
will also be accepted. When a program operation  
is completed inside a Block Erase Suspend the  
Read Memory Array command must be issued to  
reset the device in Read mode, then the Erase Re-  
sume command can be issued to complete the  
whole sequence. Only the blocks not being erased  
may be read or programmed correctly.  
See Appendix C, Figure 26, Program Suspend &  
Resume Flowchart and Pseudo Code, and Figure  
28, Erase Suspend & Resume Flowchart and  
Pseudo Code, for suggested flowcharts on using  
the Program/Erase Suspend command.  
If the block being programmed is protected an er-  
ror will be set in the Status Register and the oper-  
ation will abort without affecting the data in the  
memory array. The block must be unprotected us-  
ing the Blocks Unprotect command or by using the  
Blocks Temporary Unprotect feature of the Reset/  
Power-Down pin, RP.  
See Appendix C, Figure 25, Write to Buffer and  
Program Flowchart and Pseudo Code, for a sug-  
gested flowchart on using the Write to Buffer and  
Program command.  
Program/Erase Resume Command. The  
gram/Erase Resume command can be used to re-  
start the Program/Erase Controller after  
Pro-  
a
Program/Erase Suspend operation has paused it.  
One Bus Write cycle is required to issue the Pro-  
gram/Erase Resume command. Once the com-  
mand is issued subsequent Bus Read operations  
read the Status Register.  
Program/Erase Suspend Command. The  
Pro-  
gram/Erase Suspend command is used to pause a  
Write to Buffer and Program or Erase operation.  
The command will only be accepted during a Pro-  
gram or an Erase operation. It can be issued at  
any time during an Erase operation but will only be  
accepted during a Write to Buffer and Program  
Set Burst Configuration Register Command.  
The Set Burst Configuration Register command is  
used to write a new value to the Burst Configura-  
tion Control Register which defines the burst  
length, type, X and Y latencies, Synchronous/  
25/65  
M58LW128A, M58LW128B  
Asynchronous Read mode and the valid Clock  
edge configuration.  
Two Bus Write cycles are required to issue the Set  
Burst Configuration Register command. Once the  
command is issued the memory returns to Read  
mode as if a Read Memory Array command had  
been issued.  
The value for the Burst Configuration Register is  
always presented on A2-A17, regardless of the  
bus width that is selected. M0 is on A2, M1 on A3,  
etc.; the other address bits are ignored.  
During the Block Protect operation the memory will  
only accept the Read Status Register command.  
All other commands will be ignored. Typical Block  
Protection times are given in Table 11.  
The Block Protection bits are non-volatile, once  
set they remain set through Reset and Power-  
Down/Power-Up. They are cleared by a Blocks  
Unprotect command or temporary disabled by  
raising the Reset/Power-Down pin to V  
and  
HH  
holding it at that level throughout a Block Erase or  
Write to Buffer and Program command.  
Blocks Unprotect Command. The Blocks Un-  
protect command is used to unprotect all of the  
blocks. Two Bus Write cycles are required to issue  
the Blocks Unprotect command; the second Bus  
Write cycle starts the Program/Erase Controller.  
Once the command is issued subsequent Bus  
Read operations read the Status Register. See the  
section on the Status Register for details on the  
definitions of the Status Register bits.  
During the Block Unprotect operation the memory  
will only accept the Read Status Register com-  
mand. All other commands will be ignored. Typical  
Block Protection times are given in Table 11.  
Block Protect Command. The Block Protect  
command is used to protect a block and prevent  
Program or Erase operations from changing the  
data in it. Two Bus Write cycles are required to is-  
sue the Block Protect command; the second Bus  
Write cycle latches the block address in the inter-  
nal state machine and starts the Program/Erase  
Controller. Once the command is issued subse-  
quent Bus Read operations read the Status Reg-  
ister. See the section on the Status Register for  
details on the definitions of the Status Register  
bits.  
26/65  
M58LW128A, M58LW128B  
Table 9. Commands  
Command  
Bus Write Operations  
2nd Subsequent  
1st  
Final  
Addr  
Addr  
X
Data  
FFh  
90h  
98h  
70h  
50h  
20h  
E8h  
B0h  
D0h  
60h  
60h  
60h  
Addr  
Data  
Addr  
Data  
Data  
Read Memory Array  
Read Electronic Signature  
Read Query  
1
1
X
1
X
Read Status Register  
Clear Status Register  
Block Erase  
1
X
1
X
2
X
BA  
BA  
D0h  
N
Write to Buffer and Program  
Program/Erase Suspend  
Program/Erase Resume  
Set Burst Configuration Register  
Block Protect  
4 + N  
BA  
X
PA  
PD  
X
D0h  
1
1
2
2
2
X
BCR  
BA  
X
BCR  
BA  
X
03h  
01h  
D0h  
Blocks Unprotect  
Note: X Don’t Care; PA Program Address; PD Program Data; BA Any address in the Block; N+1 Number of Addresses to Program;  
BCR Burst Configuration Register value.  
Table 10. Read Electronic Signature  
(3)  
(4)  
(2)  
Code  
Bus Width  
x16  
Address  
Data (DQ31-DQ0)  
0020h  
Manufacturer Code  
000000h  
000001h  
x32  
00000020h  
8818h (M58LW128A)  
8819h (M58LW128B)  
x16  
x32  
x16  
Device Code  
00008819h (M58LW128B)  
0000h (Block Unprotected)  
0001h (Block Protected)  
(1)  
Block Protection Status  
SBA +02h  
00000000h (Block Unprotected)  
00000001h (Block Protected)  
x32  
Note: 1. SBA is the Start Base Address of each block.  
2. DQ31-DQ16 are available in the M58LW128B only.  
3. x32 Bus Width is available in the M58LW128B only.  
4. The address is presented on A22-A2 in x32 mode, and on A22-A1 in x16 mode.  
27/65  
M58LW128A, M58LW128B  
Table 11. Program, Erase Times and Program Erase Endurance Cycles  
M58LW128A/B  
Parameters  
Typical after  
Unit  
Min  
Typ  
Max  
100k W/E Cycles  
Block (1Mb) Erase  
0.75  
0.8  
192  
3
0.75  
0.8  
5
s
s
Block Program  
Program Write Buffer  
Program Suspend Latency Time  
Erase Suspend Latency Time  
Block Protect Time  
192  
µs  
10  
30  
µs  
10  
µs  
192  
0.75  
µs  
Blocks Unprotect Time  
Program/Erase Cycles (per Block)  
Data Retention  
s
100,000  
20  
cycles  
years  
Note: (T = 0 to 70°C; V = 2.7V to 3.6V; V =1.8V)  
DDQ  
A
DD  
28/65  
M58LW128A, M58LW128B  
STATUS REGISTER  
The Status Register provides information on the  
current or previous Program, Erase, Block Protect  
or Blocks Unprotect operation. The various bits in  
the Status Register convey information and errors  
on the operation. They are output on DQ7-DQ0.  
To read the Status Register the Read Status Reg-  
ister command can be issued. The Status Register  
is automatically read after Program, Erase, Block  
Protect, Blocks Unprotect and Program/Erase Re-  
sume commands. The Status Register can be  
read from any address.  
Erase Suspend Status (Bit 6). The Erase Sus-  
pend Status bit indicates that an Erase operation  
has been suspended and is waiting to be re-  
sumed. The Erase Suspend Status should only be  
considered valid when the Program/Erase Con-  
troller Status bit is High (Program/Erase Controller  
inactive); after a Program/Erase Suspend com-  
mand is issued the memory may still complete the  
operation rather than entering the Suspend mode.  
When the Erase Suspend Status bit is Low, V  
,
OL  
the Program/Erase Controller is active or has com-  
pleted its operation; when the bit is High, V , a  
OH  
The Status Register can only be read using Asyn-  
chronous Bus Read operations. Once the memory  
returns to Read Memory Array mode the bus will  
resume the setting in the Burst Configuration Reg-  
ister automatically.  
The contents of the Status Register can be updat-  
ed during an Erase or Program operation by tog-  
gling the Output Enable pin or by dis-activating  
Program/Erase Suspend command has been is-  
sued and the memory is waiting for a Program/  
Erase Resume command.  
When a Program/Erase Resume command is is-  
sued the Erase Suspend Status bit returns Low.  
Erase Status (Bit 5). The Erase Status bit can be  
used to identify if the memory has failed to verify  
that the block has erased correctly or that all  
blocks have been unprotected successfully. The  
Erase Status bit should be read once the Program/  
Erase Controller Status bit is High (Program/Erase  
Controller inactive).  
(Chip Enable, V ) and then reactivating (Chip En-  
IH  
able and Output Enable, V ) the device.  
IL  
During a Program, Block Erase, Block Protect or  
Block Unprotect operation only bit 7 is valid, all  
other bits are high impedance. Once the operation  
is complete bit 7 is High and all other Status regis-  
ter bits are valid.  
Status Register bits 5, 4, 3 and 1 are associated  
with various error conditions and can only be reset  
with the Clear Status Register command. The Sta-  
tus Register bits are summarized in Table 12, Sta-  
tus Register Bits. Refer to Table 12 in conjunction  
with the following text descriptions.  
When the Erase Status bit is Low, V , the mem-  
OL  
ory has successfully verified that the block has  
erased correctly or all blocks have been unprotect-  
ed successfully. When the Erase Status bit is  
High, V , the erase operation has failed. De-  
OH  
pending on the cause of the failure other Status  
Register bits may also be set to High, V  
.
OH  
If only the Erase Status bit (bit 5) is set High,  
, then the Program/Erase Controller has  
V
OH  
Program/Erase Controller Status (Bit 7). The Pro-  
gram/Erase Controller Status bit indicates whether  
the Program/Erase Controller is active or inactive.  
When the Program/Erase Controller Status bit is  
applied the maximum number of pulses to the  
block and still failed to verify that the block has  
erased correctly or that all the blocks have been  
unprotected successfully.  
Low, V , the Program/Erase Controller is active  
OL  
and all other Status Register bits are High Imped-  
If the failure is due to an erase or blocks  
ance; when the bit is High, V , the Program/  
unprotect with V low, V , then V Status bit  
OH  
PP OL PP  
Erase Controller is inactive.  
(bit 3) is also set High, V  
.
OH  
The Program/Erase Controller Status is Low im-  
mediately after a Program/Erase Suspend com-  
mand is issued until the Program/Erase Controller  
pauses. After the Program/Erase Controller paus-  
es the bit is High.  
If the failure is due to an erase on a protected  
block then Block Protection Status bit (bit 1) is  
also set High, V  
.
OH  
If the failure is due to a program or erase  
incorrect command sequence then Program  
During Program, Erase, Block Protect and Blocks  
Unprotect operations the Program/Erase Control-  
ler Status bit can be polled to find the end of the  
operation. The other bits in the Status Register  
should not be tested until the Program/Erase Con-  
troller completes the operation and the bit is High.  
Status bit (bit 4) is also set High, V  
.
OH  
Once set High, the Erase Status bit can only be re-  
set Low by a Clear Status Register command or a  
hardware reset. If set High it should be reset be-  
fore a new Program or Erase command is issued,  
otherwise the new command will appear to fail.  
After the Program/Erase Controller completes its  
operation the Erase Status, Program Status and  
Block Protection Status bits should be tested for  
errors.  
Program Status (Bit 4). The Program Status bit  
is used to identify a Program or Block Protect fail-  
ure. The Program Status bit should be read once  
29/65  
M58LW128A, M58LW128B  
the Program/Erase Controller Status bit is High  
(Program/Erase Controller inactive).  
Once set High, the V Status bit can only be reset  
PP  
by a Clear Status Register command or a hard-  
ware reset. If set High it should be reset before a  
new Program, Erase, Block Protection or Block  
Unprotection command is issued, otherwise the  
new command will appear to fail.  
When the Program Status bit is Low, V , the  
OL  
memory has successfully verified that the Write  
Buffer has programmed correctly or the block is  
protected. When the Program Status bit is High,  
V
, the program or block protect operation has  
Program Suspend Status (Bit 2). The Program  
Suspend Status bit indicates that a Program oper-  
ation has been suspended and is waiting to be re-  
sumed. The Program Suspend Status should only  
be considered valid when the Program/Erase  
Controller Status bit is High (Program/Erase Con-  
troller inactive); after a Program/Erase Suspend  
command is issued the memory may still complete  
the operation rather than entering the Suspend  
mode.  
OH  
failed. Depending on the cause of the failure other  
Status Register bits may also be set to High, V  
If only the Program Status bit (bit 4) is set High,  
, then the Program/Erase Controller has  
.
OH  
V
OH  
applied the maximum number of pulses to the  
byte and still failed to verify that the Write Buffer  
has programmed correctly or that the Block is  
protected.  
If the failure is due to a program or block protect  
When the Program Suspend Status bit is Low,  
with V low, V , then V Status bit (bit 3) is  
PP  
OL  
PP  
V
, the Program/Erase Controller is active or has  
OL  
also set High, V  
.
OH  
completed its operation; when the bit is High, V  
,
OH  
If the failure is due to a program on a protected  
a Program/Erase Suspend command has been is-  
sued and the memory is waiting for a Program/  
Erase Resume command.  
When a Program/Erase Resume command is is-  
sued the Program Suspend Status bit returns Low.  
block then Block Protection Status bit (bit 1) is  
also set High, V  
.
OH  
If the failure is due to a program or erase  
incorrect command sequence then Erase  
Status bit (bit 5) is also set High, V  
.
OH  
Block Protection Status (Bit 1). The Block Pro-  
tection Status bit can be used to identify if a Pro-  
gram or Erase operation has tried to modify the  
contents of a protected block.  
Once set High, the Program Status bit can only be  
reset Low by a Clear Status Register command or  
a hardware reset. If set High it should be reset be-  
fore a new Program or Erase command is issued,  
otherwise the new command will appear to fail.  
When the Block Protection Status bit is Low, V  
,
OL  
no Program or Erase operations have been at-  
tempted to protected blocks since the last Clear  
Status Register command or hardware reset;  
V
Status (Bit 3). The V  
Status bit can be  
PP  
PP  
used to identify if a Program, Erase, Block Protec-  
tion or Block Unprotection operation has been at-  
tempted when V is Low, V . The V pin is only  
sampled at the beginning of a Program or Erase  
operation.  
When the V Status bit is Low, V , no Program,  
Erase, Block Protection or Block Unprotection op-  
erations have been attempted with V Low, V ,  
since the last Clear Status Register command, or  
hardware reset. When the V Status bit is High,  
when the Block Protection Status bit is High, V  
,
OH  
PP  
IL  
PP  
a Program (Program Status bit 4 set High) or  
Erase (Erase Status bit 5 set High) operation has  
been attempted on a protected block.  
Once set High, the Block Protection Status bit can  
only be reset Low by a Clear Status Register com-  
mand or a hardware reset. If set High it should be  
reset before a new Program or Erase command is  
issued, otherwise the new command will appear to  
fail.  
PP  
OL  
PP  
IL  
PP  
V
, a Program, Erase, Block Protection or Block  
OH  
Unprotection operation has been attempted with  
Low, V .  
Reserved (Bit 0). Bit 0 of the Status Register is  
reserved. Its value should be masked.  
V
PP  
IL  
30/65  
M58LW128A, M58LW128B  
Table 12. Status Register Bits  
Operation  
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 RB  
V
Program/Erase Controller Active  
Write Buffer not ready  
Write Buffer ready  
‘0’  
‘0’  
‘1’  
Hi-Z  
Hi-Z  
OL  
OL  
V
(1)  
(1)  
(1)  
‘0’  
‘0’  
‘0’  
‘0’  
‘0’  
‘0’  
‘0’  
‘0’  
‘0’  
‘0’  
‘1’  
‘0’  
‘0’  
‘0’  
‘0’  
Hi-Z  
Hi-Z  
Hi-Z  
X
X
X
Program suspended  
‘1’  
‘1’  
Program/Block Protect completed successfully  
Program/Block Protect failure due to incorrect command  
sequence  
(1)  
’1’  
‘1’  
‘1’  
‘0’  
‘0’  
‘0’  
Hi-Z  
X
(1)  
(1)  
(1)  
Program/Block Protect failure due to V Error  
’1’  
‘1’  
‘0’  
‘0’  
‘1’  
‘1’  
‘1’  
‘0’  
‘0’  
‘0’  
‘0’  
‘1’  
Hi-Z  
Hi-Z  
PP  
X
X
X
Program failure due to Block Protection  
Program/Block Protect failure due cell failure or unerased cell  
Erase suspended  
‘1’  
‘1’  
‘1’  
‘0’  
‘0’  
‘0’  
‘1’  
‘0’  
‘0’  
‘0’  
‘0’  
‘0’  
‘0’  
‘0’  
‘0’  
‘0’  
‘0’  
‘0’  
Hi-Z  
Hi-Z  
Hi-Z  
‘1’  
Erase/Blocks Unprotect completed successfully  
‘0’  
X
Erase/Blocks Unprotect failure due to incorrect command  
sequence  
‘1’  
‘1’  
‘1’  
‘0’  
‘0’  
‘0’  
Hi-Z  
Erase/Block Unprotect failure due to V Error  
’1’  
‘1’  
‘1’  
‘0’  
‘0’  
‘0’  
‘1’  
‘1’  
‘1’  
‘0’  
‘0’  
‘0’  
‘1’  
‘0’  
‘0’  
‘0’  
‘0’  
‘0’  
‘0’  
‘1’  
‘0’  
Hi-Z  
Hi-Z  
Hi-Z  
PP  
Erase failure due to Block Protection  
Erase/Blocks Unprotect failure due to failed cell(s) in block  
Note: 1. For Program operations during Erase Suspend Bit 6 is ‘1’, otherwise Bit 6 is ‘0’.  
31/65  
M58LW128A, M58LW128B  
MAXIMUM RATING  
Stressing the device above the ratings listed in Ta-  
ble 13, Absolute Maximum Ratings, may cause  
permanent damage to the device. These are  
stress ratings only and operation of the device at  
these or any other conditions above those indicat-  
ed in the Operating sections of this specification is  
not implied. Exposure to Absolute Maximum Rat-  
ing conditions for extended periods may affect de-  
vice  
reliability.  
Refer  
also  
to  
the  
STMicroelectronics SURE Program and other rel-  
evant quality documents.  
Table 13. Absolute Maximum Ratings  
Value  
Symbol  
Parameter  
Temperature Under Bias  
Unit  
Min  
–40  
–55  
Max  
125  
T
BIAS  
°C  
°C  
°C  
V
T
Storage Temperature  
150  
STG  
T
Maximum TLEAD Temperature during soldering  
Input or Output Voltage  
t.b.a.  
LEAD  
V
V
+0.6  
DDQ  
–0.6  
–0.6  
–0.6  
IO  
V
, V  
DD DDQ  
Supply Voltage  
5.0  
V
(1)  
V
HH  
RP Hardware Block Unprotect Voltage  
V
10  
Note: 1. Cumulative time at a high voltage level of 10V should not exceed 80 hours on RP pin.  
32/65  
M58LW128A, M58LW128B  
DC AND AC PARAMETERS  
This section summarizes the operating and mea-  
surement conditions, and the DC and AC charac-  
teristics of the device. The parameters in the DC  
and AC characteristics Tables that follow, are de-  
rived from tests performed under the Measure-  
ment Conditions summarized in Table 14,  
Operating and AC Measurement Conditions. De-  
signers should check that the operating conditions  
in their circuit match the measurement conditions  
when relying on the quoted parameters.  
Table 14. Operating and AC Measurement Conditions  
Parameter  
M58LW128  
Units  
Min  
2.7  
1.8  
0
Max  
Supply Voltage (V ) M58LW128  
3.6  
V
V
DD  
Input/Output Supply Voltage (V  
)
V
DD  
DDQ  
Grade 1  
70  
°C  
°C  
pF  
ns  
ns  
V
Ambient Temperature (T )  
A
Grade 6  
–40  
85  
Load Capacitance (C )  
30  
L
Clock Rise and Fall Times  
Input Rise and Fall Times  
Input Pulses Voltages  
3
4
0 to V  
DDQ  
0.5 V  
Input and Output Timing Ref. Voltages  
V
DDQ  
Figure 10. AC Measurement Input Output  
Waveform  
Figure 11. AC Measurement Load Circuit  
1.3V  
1N914  
V
DDQ  
V
DD  
3.3kΩ  
V
DDQ  
0.5 V  
DDQ  
DEVICE  
UNDER  
TEST  
DQ  
S
0V  
C
L
AI00610  
0.1µF  
0.1µF  
C
includes JIG capacitance  
L
AI03459  
Table 15. Capacitance  
Symbol  
Parameter  
Test Condition  
Typ  
6
Max  
8
Unit  
pF  
pF  
C
V
IN  
= 0V  
= 0V  
Input Capacitance  
Output Capacitance  
IN  
C
OUT  
V
OUT  
8
12  
Note: 1. T = 25°C, f = 1 MHz  
A
2. Sampled only, not 100% tested.  
33/65  
M58LW128A, M58LW128B  
Table 16. DC Characteristics  
Symbol  
Parameter  
Test Condition  
Min  
Max  
±1  
Unit  
µA  
I
0VV V  
Input Leakage Current  
LI  
IN  
DDQ  
I
0VV  
V  
Output Leakage Current  
±5  
µA  
LO  
OUT DDQ  
I
E = V , G = V , f  
= 6MHz  
Supply Current (Random Read)  
Supply Current (Burst Read)  
Supply Current (Standby)  
Supply Current (Reset/Power-Down)  
30  
mA  
mA  
µA  
DD  
IL  
IH add  
I
E = V , G = V , f = 50MHz  
IH clock  
50  
DDB  
IL  
I
E = V , RP = V  
120  
120  
DD1  
IH  
IH  
I
RP = V  
µA  
DD2  
IL  
Supply Current (Program or Erase,  
Set Protect Bit, Erase Protect Bit)  
Program or Erase operation in  
progress  
I
50  
mA  
mA  
DD3  
Supply Current  
(Erase/Program Suspend)  
I
E = V  
50  
DD4  
IH  
V
Input Low Voltage  
Input High Voltage  
Output Low Voltage  
Output High Voltage  
–0.5  
0.8  
V
V
V
V
IL  
V
IH  
V
V
–0.8  
V
+ 0.5  
DDQ  
DDQ  
V
OL  
I
= 100µA  
OL  
0.1  
V
OH  
I
= –100µA  
OH  
–0.1  
DDQ  
RP Hardware Block Unprotect  
Voltage  
Block Erase in progress,  
Write to Buffer and Program  
(1)  
8.5  
9.5  
1
V
µA  
V
V
HH  
RP Hardware Block Unprotect  
Current  
I
RP = V  
HH  
HH  
V
DD  
Supply Voltage (Erase and  
V
2.2  
LKO  
Program lockout)  
Note: 1. Biasing RP pin to V is allowed for a maximum cumulative period of 80 hours.  
HH  
34/65  
M58LW128A, M58LW128B  
Figure 12. Asynchronous Bus Read AC Waveforms  
tAVAV  
A1-A23  
VALID  
tELQV  
tELQX  
tAXQX  
E
tGLQV  
tGLQX  
tEHQZ  
tEHQX  
G
tAVQV  
tGHQZ  
tGHQX  
DQ0-DQx  
OUTPUT  
AI06131  
Note: Asynchronous Read (M15 = 1), Random Read (M3 = 0)  
Table 17. Asynchronous Bus Read AC Characteristics.  
M58LW128  
Symbol  
Parameter  
Test Condition  
Unit  
150  
150  
150  
0
t
E = V , G = V  
IL  
Address Valid to Address Valid  
Min  
Max  
Min  
Max  
Min  
Max  
Min  
Min  
Min  
Max  
Max  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
AVAV  
IL  
IL  
t
E = V , G = V  
Address Valid to Output Valid  
AVQV  
IL  
t
G = V  
Chip Enable Low to Output Transition  
Chip Enable Low to Output Valid  
Output Enable Low to Output Transition  
Output Enable Low to Output Valid  
Chip Enable High to Output Transition  
Output Enable High to Output Transition  
Address Transition to Output Transition  
Chip Enable High to Output Hi-Z  
Output Enable High to Output Hi-Z  
ELQX  
IL  
t
G = V  
150  
0
ELQV  
IL  
t
E = V  
GLQX  
IL  
t
E = V  
30  
0
GLQV  
IL  
t
G = V  
EHQX  
IL  
t
E = V  
0
GHQX  
IL  
t
E = V , G = V  
0
AXQX  
IL  
IL  
t
G = V  
10  
10  
EHQZ  
IL  
t
E = V  
GHQZ  
IL  
35/65  
M58LW128A, M58LW128B  
Figure 13. Asynchronous Latch Controlled Bus Read AC Waveforms  
A1-A23  
VALID  
tAVLH  
tLHAX  
tAVLL  
L
tLHLL  
tLLLH  
tEHLX  
tELLH  
tELLL  
E
tGLQV  
tGLQX  
tEHQZ  
tEHQX  
G
tLLQX  
tLLQV  
tGHQZ  
tGHQX  
DQ0-DQx  
OUTPUT  
AI06132b  
Note: Asynchronous Read (M15 = 1), Latch Enable Controlled (M3 = 1)  
Table 18. Asynchronous Latch Controlled Bus Read AC Characteristics  
M58LW128  
Symbol  
Parameter  
Test Condition  
Unit  
150  
0
t
E = V  
Address Valid to Latch Enable Low  
Address Valid to Latch Enable High  
Latch Enable High to Latch Enable Low  
Latch Enable Low to Latch Enable High  
Chip Enable Low to Latch Enable Low  
Chip Enable Low to Latch Enable High  
Latch Enable Low to Output Transition  
Latch Enable Low to Output Valid  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Max  
Min  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
AVLL  
IL  
t
E = V  
10  
10  
10  
0
AVLH  
IL  
t
LHLL  
t
E = V  
LLLH  
IL  
t
ELLL  
t
10  
0
ELLH  
t
E = V , G = V  
IL  
LLQX  
IL  
t
E = V , G = V  
150  
10  
0
LLQV  
IL  
IL  
t
E = V  
Latch Enable High to Address Transition  
Output Enable Low to Output Transition  
Output Enable Low to Output Valid  
Chip Enable High to Latch Enable Transition  
LHAX  
IL  
t
E = V  
GLQX  
IL  
t
E = V  
20  
0
GLQV  
IL  
t
EHLX  
Note: For other timings see Table 17, Asynchronous Bus Read Characteristics.  
36/65  
M58LW128A, M58LW128B  
Figure 14. Asynchronous Page Read AC Waveforms  
A1-A2  
VALID  
VALID  
A3-A23  
VALID  
tAVQV  
tELQV  
tELQX  
tAXQX  
E
tAVQV1  
tAXQX1  
tEHQZ  
tEHQX  
tGLQV  
tGLQX  
G
tGHQZ  
tGHQX  
DQ0-DQx  
OUTPUT  
OUTPUT  
AI06133  
Note: Asynchronous Read (M15 = 1), Random (M3 = 0)  
Table 19. Asynchronous Page Read AC Characteristics  
M58LW128  
Symbol  
Parameter  
Test Condition  
Unit  
150  
6
t
E = V , G = V  
IL  
Address Transition to Output Transition  
Address Valid to Output Valid  
Min  
ns  
ns  
AXQX1  
IL  
t
E = V , G = V  
IL  
Max  
25  
AVQV1  
IL  
Note: For other timings see Table 17, Asynchronous Bus Read Characteristics.  
37/65  
M58LW128A, M58LW128B  
Figure 15. Asynchronous Write AC Waveform, Write Enable Controlled  
A1-A23  
VALID  
tAVWH  
tWHAX  
E
L
tELWL  
tGHWL  
tWHEH  
G
tWHGL  
tWLWH  
tWHWL  
W
tDVWH  
INPUT  
DQ0-DQ15  
tWHDX  
RB  
tVPHWH  
tWHBL  
V
PP  
AI06134  
Figure 16. Asynchronous Latch Controlled Write AC Waveform, Write Enable Controlled  
A1-A23  
VALID  
tAVWH  
tAVLH  
tLHAX  
tWHAX  
L
tELLL  
tLLLH  
tWLLH  
tLHWH  
tLHGL  
E
tELWL  
tGHWL  
tWHEH  
G
tWHGL  
tWLWH  
tWHWL  
W
tDVWH  
INPUT  
DQ0-DQ15  
tWHDX  
tWHBL  
RB  
tVPHWH  
V
PP  
AI06135  
38/65  
M58LW128A, M58LW128B  
Table 20. Asynchronous Write and Latch Controlled Write AC Characteristics, Write Enable  
Controlled.  
M58LW128  
Symbol  
Parameter  
Test Condition  
Min  
Unit  
150  
10  
50  
50  
0
t
Address Valid to Latch Enable High  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
AVLH  
t
E = V  
Address Valid to Write Enable High  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Max  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
AVWH  
IL  
IL  
t
E = V  
Data Input Valid to Write Enable High  
Chip Enable Low to Write Enable Low  
Chip Enable Low to Latch Enable Low  
Latch Enable High to Address Transition  
Latch Enable High to Output Enable Low  
Latch Enable High to Write Enable High  
Latch Enable low to Latch Enable High  
Latch Enable Low to Write Enable High  
Program/Erase Enable High to Write Enable High  
Write Enable High to Address Transition  
Write Enable High to Ready/Busy low  
Write Enable High to Input Transition  
Write Enable High to Chip Enable High  
Output Enable High to Write Enable Low  
Write Enable High to Output Enable Low  
Write Enable High to Write Enable Low  
Write Enable Low to Write Enable High  
Write Enable Low to Latch Enable High  
DVWH  
t
ELWL  
t
0
ELLL  
t
3
LHAX  
t
35  
0
LHGL  
t
LHWH  
t
10  
50  
0
LLLH  
t
LLWH  
t
VPHWH  
t
E = V  
E = V  
10  
90  
0
WHAX  
IL  
t
WHBL  
t
WHDX  
IL  
t
0
WHEH  
t
20  
35  
30  
70  
10  
GHWL  
t
WHGL  
t
WHWL  
t
E = V  
E = V  
WLWH  
IL  
t
WLLH  
IL  
39/65  
M58LW128A, M58LW128B  
Figure 17. Asynchronous Write AC Waveforms, Chip Enable Controlled  
A1-A23  
VALID  
tAVEH  
tEHAX  
W
G
tWLEL  
tEHWH  
tGHEL  
tELEH  
tEHEL  
tEHGL  
E
L
tDVEH  
INPUT  
DQ0-DQ15  
RB  
tEHDX  
tEHBL  
tVPHEH  
V
PP  
AI06136  
Figure 18. Asynchronous Latch Controlled Write AC Waveforms, Chip Enable Controlled  
A1-A23  
VALID  
tAVLH  
tAVEH  
tLHAX  
tEHAX  
L
tLLLH  
tELLH  
tWLLL  
tLHEH  
tLHGL  
W
G
tWLEL  
tGHEL  
tEHWH  
tELEH  
tEHEL  
tEHGL  
E
tDVEH  
INPUT  
DQ0-DQ15  
tEHDX  
RB  
tVPHEH  
tEHBL  
V
PP  
AI06137  
40/65  
M58LW128A, M58LW128B  
Table 21. Asynchronous Write and Latch Controlled Write AC Characteristics, Chip Enable  
Controlled  
M58LW128  
Symbol  
Parameter  
Test Condition  
Min  
Unit  
150  
10  
50  
50  
0
t
Address Valid to Latch Enable High  
Address Valid to Chip Enable High  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
AVLH  
t
W = V  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Max  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
AVEH  
IL  
IL  
t
W = V  
Data Input Valid to Chip Enable High  
Write Enable Low to Chip Enable Low  
Write Enable Low to Latch Enable Low  
Latch Enable High to Address Transition  
Latch Enable High to Output Enable Low  
Latch Enable High to Chip Enable High  
Latch Enable low to Latch Enable High  
Latch Enable Low to Chip Enable High  
Program/Erase Enable High to Chip Enable High  
Chip Enable High to Address Transition  
Chip Enable High to Ready/Busy low  
Chip Enable High to Input Transition  
Chip Enable High to Write Enable High  
Output Enable High to Chip Enable Low  
Chip Enable High to Output Enable Low  
Chip Enable High to Chip Enable Low  
Chip Enable Low to Chip Enable High  
Chip Enable Low to Latch Enable High  
DVEH  
t
WLEL  
t
0
WLLL  
t
3
LHAX  
t
35  
0
LHGL  
t
LHEH  
t
10  
50  
0
LLLH  
t
LLEH  
t
VPHEH  
t
W = V  
W = V  
10  
90  
10  
0
EHAX  
IL  
t
EHBL  
t
EHDX  
IL  
t
EHWH  
t
20  
35  
30  
70  
10  
GHEL  
t
EHGL  
t
EHEL  
t
W = V  
W = V  
ELEH  
IL  
t
ELLH  
IL  
41/65  
M58LW128A, M58LW128B  
Figure 19. Synchronous Burst Read AC Waveform  
Note: Valid Clock Edge = Rising (M6 = 1)  
42/65  
M58LW128A, M58LW128B  
Figure 20. Synchronous Burst Read - Continuous - Valid Data Ready Output  
K
(2)  
Output  
V
V
V
NV  
NV  
V
V
tRLKH  
R
(3)  
AI06139  
Note: 1. Valid Data Ready = Valid Low during valid clock edge (M8 = 0)  
2. V= Valid output, NV= Not Valid output.  
3. R is an open drain output. Depending on the Valid Data Ready pin capacitance load an external pull up resistor must be chosen  
according to the system clock period.  
4. When the system clock frequency is between 33MHz and 50MHz and the Y latency is set to 2, values of B sampled on odd clock  
cycles, starting from the first read are not considered.  
43/65  
M58LW128A, M58LW128B  
Table 22. Synchronous Burst Read AC Characteristics  
M58LW128  
Unit  
Symb  
Parameter  
ol  
Test Condition  
150  
10  
10  
10  
10  
10  
10  
20  
10  
0
t
E = V  
Address Valid to Active Clock Edge  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Max  
Min  
Min  
Min  
Min  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
AVKH  
IL  
t
E = V  
Address Valid to Latch Enable High  
AVLH  
IL  
t
E = V , G = V , L = V  
Burst Address Advance High to Active Clock Edge  
Burst Address Advance Low to Active Clock Edge  
Chip Enable Low to Active Clock Edge  
Chip Enable Low to Latch Enable High  
Output Enable Low to Valid Clock Edge  
Valid Clock Edge to Address Transition  
Valid Clock Edge to Latch Enable Low  
Valid Clock Edge to Latch Enable High  
Valid Clock Edge to Output Transition  
Latch Enable Low to Valid Clock Edge  
Latch Enable Low to Latch Enable High  
Valid Clock Edge to Output Valid  
BHKH  
IL  
IL  
IH  
IH  
t
E = V , G = V , L = V  
BLKH  
ELKH  
IL  
IL  
IL  
IL  
t
E = V  
E = V  
t
ELLH  
t
t
E = V , L = V  
GLKH  
KHAX  
IL  
IH  
E = V  
IL  
t
E = V  
KHLL  
KHLH  
IL  
t
t
E = V  
0
IL  
E = V , G = V , L = V  
3
KHQX  
IL  
IL  
IL  
IL  
IH  
t
E = V  
E = V  
10  
10  
20  
5
LLKH  
t
LLLH  
KHQV  
QVKH  
t
t
E = V , G = V , L = V  
IL IL  
IH  
IH  
IH  
IH  
IH  
E = V , G = V , L = V  
Output Valid to Active Clock Edge  
IL  
IL  
t
E = V , G = V , L = V  
IL IL  
Valid Data Ready Low to Valid Clock Edge  
Active Clock Edge to Burst Address Advance Low  
Active Clock Edge to Burst Address Advance High  
5
RLKH  
t
E = V , G = V , L = V  
IL IL  
0
KHBL  
t
E = V , G = V , L = V  
IL IL  
0
KHBH  
Note: For other timings see Table 17, Asynchronous Bus Read Characteristics.  
44/65  
M58LW128A, M58LW128B  
Figure 21. Reset, Power-Down and Power-Up AC Waveform  
W
E, G  
DQ0-DQ15  
tRHWL  
tRHEL  
tRHGL  
tPHQV  
RB  
RP  
tPLRH  
tVDHPH  
tPLPH  
VDD, VDDQ  
Power-Up  
and Reset  
Reset during  
Program or Erase  
AI06140  
Note: Write Enable (W) and Output Enable (G) cannot be low together.  
Table 23. Reset, Power-Down and Power-Up AC Characteristics  
M58LW128  
Symbol  
Parameter  
Reset/Power-Down High to Data Valid  
Unit  
150  
t
Min  
Min  
150  
ns  
PHQV  
t
Ready/Busy High to Write Enable Low, Chip Enable Low, Output  
Enable Low  
RHWL  
t
10  
µs  
RHEL  
(Program/Erase Controller Active)  
t
RHGL  
t
t
Reset/Power-Down Low to Reset/Power-Down High  
Reset/Power-Down Low to Ready High  
Min  
Max  
Min  
100  
30  
0
ns  
µs  
µs  
PLPH  
PLRH  
t
Supply Voltages High to Reset/Power-Down High  
VDHPH  
45/65  
M58LW128A, M58LW128B  
PACKAGE MECHANICAL  
Figure 22. TSOP56 - 56 lead Plastic Thin Small Outline, 14 x 20 mm, Package Outline  
A2  
1
N
e
E
B
N/2  
D1  
D
A
CP  
DIE  
C
TSOP-a  
A1  
α
L
Note: Drawing is not to scale.  
Table 24. TSOP56 - 56 lead Plastic Thin Small Outline, 14 x 20 mm, Package Mechanical Data  
mm  
Min  
inches  
Min  
Symbol  
Typ  
Max  
1.20  
0.15  
1.05  
0.27  
0.21  
20.20  
18.50  
14.10  
Typ  
Max  
0.0472  
0.0059  
0.0413  
0.0106  
0.0083  
0.7953  
0.7283  
0.5551  
A
A1  
A2  
B
0.05  
0.95  
0.17  
0.10  
19.80  
18.30  
13.90  
0.0020  
0.0374  
0.0067  
0.0039  
0.7795  
0.7205  
0.5472  
C
D
D1  
E
e
0.50  
0.0197  
L
0.50  
0°  
0.70  
5°  
0.0197  
0°  
0.0276  
5°  
α
N
56  
56  
CP  
0.10  
0.0039  
46/65  
M58LW128A, M58LW128B  
Figure 23. TBGA64 - 10x13mm - 8 x 8 ball array, 1mm pitch, Package Outline  
D
D1  
FD  
FE  
SD  
SE  
E
E1  
ddd  
BALL "A1"  
A
e
b
A2  
A1  
BGA-Z23  
Note: Drawing is not to scale.  
Table 25. TBGA64 - 10x13mm - 8 x 8 ball array, 1 mm pitch, Package Mechanical Data  
millimeters  
Min  
inches  
Min  
Symbol  
Typ  
Max  
1.200  
0.350  
0.850  
0.500  
10.100  
Typ  
Max  
A
A1  
A2  
b
0.0472  
0.300  
0.200  
0.0118  
0.0079  
0.0138  
0.0335  
0.400  
9.900  
0.0157  
0.3898  
0.0197  
D
10.000  
7.000  
0.3937  
0.3976  
D1  
ddd  
e
0.2756  
0.100  
0.0039  
1.000  
13.000  
7.000  
1.500  
3.000  
0.500  
0.500  
0.0394  
0.5118  
0.2756  
0.0591  
0.1181  
0.0197  
0.0197  
E
12.900  
13.100  
0.5079  
0.5157  
E1  
FD  
FE  
SD  
SE  
47/65  
M58LW128A, M58LW128B  
Figure 24. TBGA80 - 10x13mm - 8 x 10 ball array, 1mm pitch, Package Outline  
D
D1  
FD  
FE  
SD  
SE  
E
E1  
BALL "A1"  
ddd  
e
e
b
A
A2  
A1  
BGA-Z27  
Note: Drawing is not to scale.  
Table 26. TBGA80 - 10x13mm - 8 x 10 ball array, 1mm pitch, Package Mechanical Data  
millimeters  
Min  
inches  
Min  
Symbol  
Typ  
Max  
1.200  
0.350  
0.850  
0.500  
10.100  
Typ  
Max  
A
A1  
A2  
b
0.0472  
0.300  
0.200  
0.0118  
0.0079  
0.0138  
0.0335  
0.400  
9.900  
0.0157  
0.3898  
0.0197  
D
10.000  
7.000  
0.3937  
0.3976  
D1  
ddd  
E
0.2756  
0.100  
13.100  
0.0039  
13.000  
9.000  
1.000  
1.500  
2.000  
0.500  
0.500  
12.900  
0.5118  
0.3543  
0.0394  
0.0591  
0.0787  
0.0197  
0.0197  
0.5079  
0.5157  
E1  
e
FD  
FE  
SD  
SE  
48/65  
M58LW128A, M58LW128B  
PART NUMBERING  
Table 27. Ordering Information Scheme  
Example:  
M58LW128A  
150 N  
1
T
Device Type  
M58  
Architecture  
L = Multi-Bit Cell, Burst Mode, Page Mode  
Operating Voltage  
W = V = 2.7V to 3.6V; V  
= 1.8 to V  
DD  
DD  
DDQ  
Device Function  
128A = 128 Mbit (x16), Uniform Block  
128B = 128 Mbit (x16/x32), Uniform Block  
Speed  
150 = 150 ns  
Package  
N = TSOP56: 14 x 20 mm (M58LW128A)  
ZA = TBGA64: 10x13mm, 1mm pitch (M58LW128A)  
ZA = TBGA80: 10x13mm, 1mm pitch (M58LW128B)  
Temperature Range  
1 = 0 to 70 °C  
6 = –40 to 85 °C  
Option  
T = Tape & Reel Packing  
E = Lead-free Package, Standard Packing  
F = Lead-free Package, Tape & Reel Packing  
Note: Devices are shipped from the factory with the memory content bits erased to ’1’.  
For a list of available options (Speed, Package, etc...) or for further information on any aspect of this de-  
vice, please contact the ST Sales Office nearest to you.  
49/65  
M58LW128A, M58LW128B  
APPENDIX A. BLOCK ADDRESS TABLE  
Table 28. Block Addresses  
Block  
Number  
Address Range  
(x16 Bus Width)  
Address Range  
(x32 Bus Width)  
Block  
Address Range  
(x16 Bus Width)  
Address Range  
(x32 Bus Width)  
Number  
95  
94  
93  
92  
91  
90  
89  
88  
87  
86  
85  
84  
83  
82  
81  
80  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
5E0000h-5EFFFFh  
5D0000h-5DFFFFh  
5C0000h-5CFFFFh  
5B0000h-5BFFFFh  
5A0000h-5AFFFFh  
590000h-59FFFFh  
580000h-58FFFFh  
570000h-57FFFFh  
560000h-56FFFFh  
550000h-55FFFFh  
540000h-54FFFFh  
530000h-53FFFFh  
520000h-52FFFFh  
510000h-51FFFFh  
500000h-50FFFFh  
4F0000h-4FFFFFh  
4E0000h-4EFFFFh  
4D0000h-4DFFFFh  
4C0000h-4CFFFFh  
4B0000h-4BFFFFh  
4A0000h-4AFFFFh  
490000h-49FFFFh  
480000h-48FFFFh  
470000h-47FFFFh  
460000h-46FFFFh  
450000h-45FFFFh  
440000h-44FFFFh  
430000h-43FFFFh  
420000h-42FFFFh  
410000h-41FFFFh  
400000h-40FFFFh  
3F0000h-3FFFFFh  
3E0000h-3EFFFFh  
3D0000h-3DFFFFh  
2F0000h-2F7FFFh  
2E8000h-2EFFFFh  
2E0000h-2E7FFFh  
2D8000h-2DFFFFh  
2D0000h-2D7FFFh  
2C8000h-2CFFFFh  
2C0000h-2C7FFFh  
2B8000h-2BFFFFh  
2B0000h-2B7FFFh  
2A8000h-2AFFFFh  
2A0000h-2A7FFFh  
298000h-29FFFFh  
290000h-297FFFh  
288000h-28FFFFh  
280000h-287FFFh  
278000h-27FFFFh  
270000h-277FFFh  
268000h-26FFFFh  
260000h-267FFFh  
258000h-25FFFFh  
250000h-257FFFh  
248000h-24FFFFh  
240000h-247FFFh  
238000h-23FFFFh  
230000h-237FFFh  
228000h-22FFFFh  
220000h-227FFFh  
218000h-21FFFFh  
210000h-217FFFh  
208000h-20FFFFh  
200000h-207FFFh  
1F8000h-1FFFFFh  
1F0000h-1F7FFFh  
1E8000h-1EFFFFh  
128  
127  
126  
125  
124  
123  
122  
121  
120  
119  
118  
117  
116  
115  
114  
113  
112  
111  
110  
109  
108  
107  
106  
105  
104  
103  
102  
101  
100  
99  
7F0000h-7FFFFFh  
7E0000h-7EFFFFh  
7D0000h-7DFFFFh  
7C0000h-7CFFFFh  
7B0000h-7BFFFFh  
7A0000h-7AFFFFh  
790000h-79FFFFh  
780000h-78FFFFh  
770000h-77FFFFh  
760000h-76FFFFh  
750000h-75FFFFh  
740000h-74FFFFh  
730000h-73FFFFh  
720000h-72FFFFh  
710000h-71FFFFh  
700000h-70FFFFh  
6F0000h-6FFFFFh  
6E0000h-6EFFFFh  
6D0000h-6DFFFFh  
6C0000h-6CFFFFh  
6B0000h-6BFFFFh  
6A0000h-6AFFFFh  
690000h-69FFFFh  
680000h-68FFFFh  
670000h-67FFFFh  
660000h-66FFFFh  
650000h-65FFFFh  
640000h-64FFFFh  
630000h-63FFFFh  
620000h-62FFFFh  
610000h-61FFFFh  
600000h-60FFFFh  
5F0000h-5FFFFFh  
3F8000h-3FFFFFh  
3F0000h-3F7FFFh  
3E8000h-3EFFFFh  
3E0000h-3E7FFFh  
3D8000h-3DFFFFh  
3D0000h-3D7FFFh  
3C8000h-3CFFFFh  
3C0000h-3C7FFFh  
3B8000h-3BFFFFh  
3B0000h-3B7FFFh  
3A8000h-3AFFFFh  
3A0000h-3A7FFFh  
398000h-39FFFFh  
390000h-397FFFh  
388000h-38FFFFh  
380000h-387FFFh  
378000h-37FFFFh  
370000h-377FFFh  
368000h-36FFFFh  
360000h-367FFFh  
358000h-35FFFFh  
350000h-357FFFh  
348000h-34FFFFh  
340000h-347FFFh  
338000h-33FFFFh  
330000h-337FFFh  
328000h-32FFFFh  
320000h-327FFFh  
318000h-31FFFFh  
310000h-317FFFh  
308000h-30FFFFh  
300000h-307FFFh  
2F8000h-2FFFFFh  
98  
97  
96  
50/65  
M58LW128A, M58LW128B  
Block  
Number  
Address Range  
(x16 Bus Width)  
Address Range  
(x32 Bus Width)  
Block  
Number  
Address Range  
Address Range  
(x32 Bus Width)  
(x16 Bus Width)  
190000h-19FFFFh  
180000h-18FFFFh  
170000h-17FFFFh  
160000h-16FFFFh  
150000h-15FFFFh  
140000h-14FFFFh  
130000h-13FFFFh  
120000h-12FFFFh  
110000h-11FFFFh  
100000h-10FFFFh  
0F0000h-0FFFFFh  
0E0000h-0EFFFFh  
0D0000h-0DFFFFh  
0C0000h-0CFFFFh  
0B0000h-0BFFFFh  
0A0000h-0AFFFFh  
090000h-09FFFFh  
080000h-08FFFFh  
070000h-07FFFFh  
060000h-06FFFFh  
050000h-05FFFFh  
040000h-04FFFFh  
030000h-03FFFFh  
020000h-02FFFFh  
010000h-01FFFFh  
000000h-00FFFFh  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
3C0000h-3CFFFFh  
3B0000h-3BFFFFh  
3A0000h-3AFFFFh  
390000h-39FFFFh  
380000h-38FFFFh  
370000h-37FFFFh  
360000h-36FFFFh  
350000h-35FFFFh  
340000h-34FFFFh  
330000h-33FFFFh  
320000h-32FFFFh  
310000h-31FFFFh  
300000h-30FFFFh  
2F0000h-2FFFFFh  
2E0000h-2EFFFFh  
2D0000h-2DFFFFh  
2C0000h-2CFFFFh  
2B0000h-2BFFFFh  
2A0000h-2AFFFFh  
290000h-29FFFFh  
280000h-28FFFFh  
270000h-27FFFFh  
260000h-26FFFFh  
250000h-25FFFFh  
240000h-24FFFFh  
230000h-23FFFFh  
220000h-22FFFFh  
210000h-21FFFFh  
200000h-20FFFFh  
1F0000h-1FFFFFh  
1E0000h-1EFFFFh  
1D0000h-1DFFFFh  
1C0000h-1CFFFFh  
1B0000h-1BFFFFh  
1A0000h-1AFFFFh  
1E0000h-1E7FFFh  
1D8000h-1DFFFFh  
1D0000h-1D7FFFh  
1C8000h-1CFFFFh  
1C0000h-1C7FFFh  
1B8000h-1BFFFFh  
1B0000h-1B7FFFh  
1A8000h-1AFFFFh  
1A0000h-1A7FFFh  
198000h-19FFFFh  
190000h-197FFFh  
188000h-18FFFFh  
180000h-187FFFh  
178000h-17FFFFh  
170000h-177FFFh  
168000h-16FFFFh  
160000h-167FFFh  
158000h-15FFFFh  
150000h-157FFFh  
148000h-14FFFFh  
140000h-147FFFh  
138000h-13FFFFh  
130000h-137FFFh  
128000h-12FFFFh  
120000h-127FFFh  
118000h-11FFFFh  
110000h-117FFFh  
108000h-10FFFFh  
100000h-107FFFh  
0F8000h-0FFFFFh  
0F0000h-0F7FFFh  
0E8000h-0EFFFFh  
0E0000h-0E7FFFh  
0D8000h-0DFFFFh  
0D0000h-0D7FFFh  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
0C8000h-0CFFFFh  
0C0000h-0C7FFFh  
0B8000h-0BFFFFh  
0B0000h-0B7FFFh  
0A8000h-0AFFFFh  
0A0000h-0A7FFFh  
098000h-09FFFFh  
090000h-097FFFh  
088000h-08FFFFh  
080000h-087FFFh  
078000h-07FFFFh  
070000h-077FFFh  
068000h-06FFFFh  
060000h-067FFFh  
058000h-05FFFFh  
050000h-057FFFh  
048000h-04FFFFh  
040000h-047FFFh  
038000h-03FFFFh  
030000h-037FFFh  
028000h-02FFFFh  
020000h-027FFFh  
018000h-01FFFFh  
010000h-017FFFh  
008000h-00FFFFh  
000000h-007FFFh  
8
7
6
5
4
3
2
1
51/65  
M58LW128A, M58LW128B  
APPENDIX B. COMMON FLASH INTERFACE - CFI  
The Common Flash Interface is a JEDEC ap-  
proved, standardized data structure that can be  
read from the Flash memory device. It allows a  
system software to query the device to determine  
various electrical and timing parameters, density  
information and functions supported by the mem-  
ory. The system can interface easily with the de-  
vice, enabling the software to upgrade itself when  
necessary.  
31, 32, 33 and 34 show the addresses used to re-  
trieve the data.  
When the M58LW128B is used in x16 mode, A1  
is the Least Significant Address. Toggling A1 will  
not change the CFI information available on the  
DQ15-DQ0 outputs.  
To read the CFI, in the M58LW128A and  
M58LW128B devices, in x16 mode, addresses  
A23-A1 are used; for the x32 mode of the  
M58LW128B device only addresses A23-A2 are  
used. To read the CFI, in the M58LW128B device,  
in x16 mode, the address offsets shown must be  
multiplied by two in hexadecimal.  
When the CFI Query Command (RCFI) is issued  
the device enters CFI Query mode and the data  
structure is read from the memory. Tables 29, 30,  
Table 29. Query Structure Overview  
Offset  
00h  
Sub-section Name  
Description  
Manufacturer Code  
01h  
Device Code  
10h  
CFI Query Identification String  
Command set ID and algorithm data offset  
Device timing and voltage information  
Flash memory layout  
1Bh  
27h  
System Interface Information  
Device Geometry Definition  
Additional information specific to the Primary  
Algorithm (optional)  
(1)  
Primary Algorithm-specific Extended Query Table  
P(h)  
Additional information specific to the Alternate  
Algorithm (optional)  
(2)  
Alternate Algorithm-specific Extended Query Table  
A(h)  
(SBA+02)h Block Status Register  
Block-related Information  
Note: 1. Offset 0015h (x16) or 00000015h (x32) defines P which points to the Primary Algorithm Extended Query Address Table.  
2. Offset 0019h (x16) or 00000019h (x32) defines A which points to the Alternate Algorithm Extended Query Address Table.  
3. SBA is the Start Base Address for each block.  
52/65  
M58LW128A, M58LW128B  
Table 30. CFI - Query Address and Data Output  
(4)  
Data  
Address  
Instruction  
A23-A1 (M58LW128A)  
A23-A2 (M58LW128B)  
(6)  
DQ15-DQ0  
DQ31-DQ16  
10h  
11h  
12h  
13h  
14h  
15h  
16h  
17h  
18h  
19h  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0051h  
0052h  
0059h  
0001h  
0000h  
0031h  
0000h  
0000h  
0000h  
0000h  
0000h  
0051h; "Q"  
0052h; "R"  
0059h; "Y"  
Query ASCII String  
Primary Vendor:  
Command Set and Control Interface ID Code  
Primary algorithm extended Query Address Table:  
P(h)  
Alternate Vendor:  
Command Set and Control Interface ID Code  
Alternate Algorithm Extended Query address Table  
(5)  
1Ah  
Note: 1. The x8 or Byte Address mode is not available.  
2. With the x16 Bus Width, the value of the address location of the CFI Query is independent of A1 pad (M58LW128B).  
3. Query Data are always presented on DQ7-DQ0. DQ31-DQ8 are set to ’0’.  
4. For M58LW128B, A1 = Don’t Care.  
5. Offset 19h defines A which points to the Alternate Algorithm Extended Query Address Table.  
6. DQ31-DQ16 are available in the M58LW128B only. They are in the high-impedance state when the device operates In x16 mode.  
53/65  
M58LW128A, M58LW128B  
Table 31. CFI - Device Voltage and Timing Specification  
(4)  
Address  
(5)  
DQ15-DQ0  
Description  
A23-A1 (M58LW128A) DQ31-DQ16  
A23-A2 (M58LW128B)  
(1)  
V
V
V
V
Min, 2.7V  
1Bh  
1Ch  
1Dh  
1Eh  
0000  
0000  
0000  
0000  
DD  
DD  
PP  
PP  
0027h  
(1)  
max, 3.6V  
0036h  
(2)  
min – Not Available  
max – Not Available  
0000h  
(2)  
0000h  
n
2 µs typical time-out for Word Program – Not Available,  
DWord Program – Not Available  
(3)  
1Fh  
0000  
0000h  
n
20h  
21h  
22h  
0000  
0000  
0000  
0008h  
000Ah  
2 µs typical time-out for max Buffer Write  
n
2 ms, typical time-out for Erase Block  
(3)  
n
0000h  
2 ms, typical time-out for Chip Erase – Not Available  
n
2 x typical for Word Program time-out max – (Word and  
(3)  
23h  
0000  
0000h  
Dword Not Available)  
n
24h  
25h  
26h  
0000  
0000  
0000  
0004h  
0004h  
2 x typical for Buffer Write time-out max  
n
2 x typical for individual Block Erase time-out maximum  
(3)  
n
0000h  
2 x typical for Chip Erase max time-out – Not Available  
Note: 1. Bits are coded in Binary Code Decimal, bit7 to bit4 are scaled in Volts and bit3 to bit0 in mV.  
2. Bit7 to bit4 are coded in Hexadecimal and scaled in Volts while bit3 to bit0 are in Binary Code Decimal and scaled in 100mV.  
3. Not supported.  
4. For M58LW128B, A1 = Don’t Care.  
5. DQ31-DQ16 are available in the M58LW128B only. They are in the high-impedance state when the device operates In x16 mode.  
54/65  
M58LW128A, M58LW128B  
Table 32. Device Geometry Definition  
(1)  
Address  
(2)  
DQ15-DQ0  
Description  
A23-A1 (M58LW128A) DQ31-DQ16  
A23-A2 (M58LW128B)  
n
27h  
28h  
0000  
N/A  
0018h  
0001h  
0004h  
0000h  
0005h  
0000h  
0001h  
007Fh  
0000h  
0000h  
0002h  
2 number of bytes memory Size  
Device Interface M58LW128A  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
Device Interface M58LW128B  
29h  
2Ah  
2Bh  
2Ch  
2Dh  
2Eh  
2Fh  
30h  
n
Maximum number of bytes in Write Buffer, 2  
Bit7-0 = number of Erase Block Regions in device  
Number (n-1) of Erase Blocks of identical size; n=128  
Erase Block Region Information  
x 256 bytes per Erase block (128K bytes)  
Note: 1. For M58LW128B, A1 = Don’t Care. N/A = Not Applicable.  
2. DQ31-DQ16 are available in the M58LW128B only. They are in the high-impedance state when the device operates In x16 mode.  
Table 33. Block Status Register  
Address  
A23-A1 (M58LW128A)  
A23-A2 (M58LW128B)  
Data  
Selected Block Information  
Block Unprotected  
0
1
0
bit0  
(1)  
Block Protected  
(BA+2)h  
bit7-1  
Reserved for future features  
Note: 1. BA specifies the block address location, A23-A17.  
55/65  
M58LW128A, M58LW128B  
Table 34. Extended Query information  
Address  
Address  
offset  
(1)  
A23-A1 (M58LW128A)  
A23-A2 (M58LW128B)  
DQ15-DQ0  
Description  
DQ31-DQ16  
(P)h  
31h  
32h  
33h  
34h  
35h  
0000h  
0000h  
0000h  
0000h  
0000h  
0050h  
0052h  
0049h  
0031h  
0031h  
0050h; “P”  
0052h; “R”  
0049h; “I”  
(P+1)h  
(P+2)h  
(P+3)h  
(P+4)h  
(P+5)h  
Query ASCII string - Extended Table  
Major version number  
Minor version number  
Optional Feature: (1=yes, 0=no)  
bit0, Chip Erase Supported (0=no)  
bit1, Suspend Erase Supported (1=yes)  
36h  
0000h  
008Eh  
(P+6)h  
(P+7)h  
37h  
38h  
0000h  
0000h  
0001h  
0000h  
bit2, Suspend Program Supported (1=yes)  
bit3, Protect/Unprotect Supported (1=yes)  
bit4, Queue Erase Supported (0=no)  
bit5, Instant individual block locking Supported  
(0=no)  
bit6, Protection Bits Supported (0=no)  
bit7, Page Read Supported (1=yes)  
bit8, Synchronous Read Supported (1=yes)  
Bit 31-9 reserved for future use  
(P+8)h  
39h  
0000h  
0000h  
Supported functions after Suspend:  
Program allowed after Erase Suspend (1=yes)  
(refer to Commands for other allowed functions)  
Bit 7-1 reserved for future use  
(P+9)h  
3Ah  
0000h  
0001h  
(P+A)h  
(P+B)h  
3Bh  
3Ch  
0000h  
0000h  
0001h  
0000h  
Block Status Register  
bit 0 Block Protect Bit Status active (1=yes)  
bits 1-15 are reserved  
V
OPTIMUM Program/Erase voltage conditions  
OPTIMUM Program/Erase voltage conditions  
(P+C)h  
(P+D)h  
(P+E)h  
(P+F)h  
(P+10)h  
3Dh  
3Eh  
3Fh  
40h  
41h  
0000h  
0000h  
0000h  
0000h  
0000h  
0033h  
0033h  
0002h  
0004h  
0004h  
DD  
PP  
V
OTP protection: 00 NA, 01 128-bit, 02 OTP area  
n
Page Read: 2 Bytes (n = bits 0-7)  
Synchronous mode configuration fields  
n+1  
n where 2  
is the number of Words/Double-Words  
(P+11)h  
(P+12)h  
42h  
43h  
0000h  
0000h  
0000h  
0001h  
for the burst Length (= 2)  
n+1  
n where 2  
is the number of Words/Double-Words  
for the burst Length (= 4)  
n+1  
n where 2  
is the number of Words/Double-Words  
(P+13)h  
(P+14)h  
44h  
45h  
0000h  
0000h  
0002h  
0007h  
for the burst Length (= 8) (x16 mode only)  
burst continuous  
Note: 1. DQ31-DQ16 are available in the M58LW128B only. They are in the high-impedance state when the device operates In x16 mode.  
56/65  
M58LW128A, M58LW128B  
APPENDIX C. FLOW CHARTS  
Figure 25. Write to Buffer and Program Flowchart and Pseudo Code  
Start  
Write to Buffer E8h  
Command, Block Address  
(1)  
Note 1: N+1 is number of Words or Double  
Words to be programmed  
Write N  
,
Block Address  
Write Buffer Data,  
Start Address  
X = 0  
YES  
X = N  
NO  
Write Next Buffer Data,  
Next Program Address  
Note 2: Next Program Address must  
have same A5-A22.  
(2)  
X = X + 1  
Program Buffer to Flash  
Confirm D0h  
Read Status  
Register  
NO  
b7 = 1  
YES  
Note 3: A full Status Register Check must be  
done to check the program operation's  
success.  
Full Status  
Register Check  
(3)  
End  
AI03635  
57/65  
M58LW128A, M58LW128B  
Figure 26. Program Suspend & Resume Flowchart and Pseudo Code  
Start  
Write B0h  
Program/Erase Suspend Command:  
– write B0h  
– write 70h  
Write 70h  
do:  
Read Status  
Register  
– read status register  
NO  
NO  
b7 = 1  
YES  
while b7 = 1  
If b2 = 0, Program completed  
b2 = 1  
YES  
Program Complete  
Read Memory Array instruction:  
– write FFh  
Write FFh  
– one or more data reads  
from other blocks  
Read data from  
another block  
Program Erase Resume Command:  
– write D0h  
to resume erasure  
– if the program operation completed  
then this is not necessary. The device  
returns to Read Array as normal  
(as if the Program/Erase Suspend  
command was not issued).  
Write D0h  
Write FFh  
Read Data  
Program Continues  
AI00612  
58/65  
M58LW128A, M58LW128B  
Figure 27. Erase Flowchart and Pseudo Code  
Start  
Erase command:  
– write 20h  
Write 20h  
– write D0h to Block Address  
(A12-A17)  
(memory enters read Status  
Register after the Erase command)  
Write D0h to  
Block Address  
NO  
do:  
Read Status  
– read status register  
– if Program/Erase Suspend command  
given execute suspend erase loop  
Register  
Suspend  
YES  
NO  
Suspend  
Loop  
b7 = 1  
while b7 = 1  
YES  
NO  
YES  
NO  
NO  
V
Invalid  
If b3 = 1, V  
invalid error:  
PP  
Error (1)  
PP  
– error handler  
b3 = 0  
YES  
Command  
Sequence Error  
If b4, b5 = 1,1 Command Sequence error:  
– error handler  
b4, b5 = 1,1  
NO  
If b1 = 1, Erase to Protected Block Error:  
– error handler  
Erase to Protected  
Block Error  
b1 = 0  
YES  
Erase  
Error (1)  
If b5 = 1, Erase error:  
– error handler  
b5 = 0  
YES  
End  
AI00613C  
Note: 1. If an error is found, the Status Register must be cleared (Clear Status Register Command) before further Program or Erase oper-  
ations.  
59/65  
M58LW128A, M58LW128B  
Figure 28. Erase Suspend & Resume Flowchart and Pseudo Code  
Start  
Write B0h  
Program/Erase Suspend Command:  
– write B0h  
– write 70h  
Write 70h  
do:  
Read Status  
Register  
– read status register  
NO  
NO  
b7 = 1  
YES  
while b7 = 1  
If b6 = 0, Erase completed  
b6 = 1  
YES  
Erase Complete  
Read Memory Array command:  
– write FFh  
Write FFh  
– one o more data reads  
from other blocks  
Read data from  
another block  
or Program  
Program/Erase Resume command:  
– write D0h to resume the Erase  
operation  
– if the Program operation completed  
then this is not necessary. The device  
returns to Read mode as normal  
(as if the Program/Erase suspend  
was not issued).  
Write D0h  
Write FFh  
Read Data  
Erase Continues  
AI00615  
60/65  
M58LW128A, M58LW128B  
Figure 29. Command Interface and Program Erase Controller Flowchart (a)  
WAIT FOR  
COMMAND  
WRITE  
NO  
90h  
YES  
READ  
SIGNATURE  
NO  
98h  
YES  
CFI  
QUERY  
NO  
70h  
YES  
READ  
ARRAY  
READ  
STATUS  
NO  
50h  
YES  
CLEAR  
STATUS  
NO  
E8h  
YES  
PROGRAM  
BUFFER  
LOAD  
NO  
(1)  
20h  
YES  
ERASE  
NO  
FFh  
YES  
SET-UP  
NO  
D0h  
NO  
YES  
C
PROGRAM  
COMMAND  
ERROR  
D0h  
YES  
ERASE  
COMMAND  
ERROR  
A
B
AI03618  
Note 1. The Erase command (20h) can only be issued if the flash is not already in Erase Suspend.  
61/65  
M58LW128A, M58LW128B  
Figure 30. Command Interface and Program Erase Controller Flowchart (b)  
A
B
ERASE  
(READ STATUS)  
Program/Erase Controller  
Status bit in the Status  
Register  
YES  
READ  
STATUS  
READY  
?
NO  
READ  
NO  
ARRAY  
B0h  
YES  
YES  
READ  
STATUS  
NO  
FFh  
ERASE  
SUSPEND  
NO  
YES  
ERASE  
SUSPENDED  
READY  
?
NO  
READ  
STATUS  
YES  
WAIT FOR  
COMMAND  
WRITE  
YES  
YES  
YES  
YES  
READ  
STATUS  
70h  
NO  
READ  
SIGNATURE  
90h  
NO  
CFI  
QUERY  
98h  
NO  
PROGRAM  
BUFFER  
LOAD  
E8h  
NO  
NO  
PROGRAM  
COMMAND  
ERROR  
YES  
READ  
STATUS  
D0h  
D0h  
NO  
(ERASE RESUME)  
YES  
READ  
ARRAY  
c
AI03619  
62/65  
M58LW128A, M58LW128B  
Figure 31. Command Interface and Program Erase Controller Flowchart (c)  
B
C
PROGRAM  
(READ STATUS)  
YES  
Program/Erase Controller  
Status bit in the Status  
Register  
READ  
STATUS  
READY  
?
NO  
READ  
ARRAY  
NO  
B0h  
YES  
YES  
NO  
READ  
STATUS  
FFh  
PROGRAM  
SUSPEND  
NO  
YES  
PROGRAM  
SUSPENDED  
READY  
?
NO  
YES  
WAIT FOR  
COMMAND  
WRITE  
READ  
STATUS  
YES  
YES  
YES  
NO  
READ  
STATUS  
70h  
NO  
READ  
SIGNATURE  
90h  
NO  
CFI  
QUERY  
98h  
NO  
YES  
READ  
ARRAY  
READ  
STATUS  
D0h  
(PROGRAM RESUME)  
AI00618  
63/65  
M58LW128A, M58LW128B  
REVISION HISTORY  
Table 35. Document Revision History  
Date  
Version  
Revision Details  
07-Dec-2001  
-01  
First Issue.  
Version number format modified (major.minor),  
Revision History moved to end of document.  
M58LW128A and M58LW128B device codes changed; Manufacturer code clarified.  
Table 10, Read Electronic Signature, clarified.  
Data Retention information added to Table 11, Program, Erase Times and Program  
Erase Endurance Cycles. CFI information (Table 30, Table 31, Table 32 and Table  
34) clarified. Document Status changed to Preliminary Data.  
16-Dec-2002  
25-Feb-2003  
1.1  
1.2  
OTP size corrected. Word program not supported clarified in Table 31, CFI - Device  
Voltage and Timing Specification and DQ15-DQ0 values changed to 0000h for  
addresses 1Fh and 23h. Number (n-1) of Erase Blocks of identical size corrected in  
Table 32, Device Geometry Definition. ASCII for 0049h corrected in Table 34,  
Extended Query information.  
E and F lead-free packing options added to Table 27, Ordering Information Scheme.  
64/65  
M58LW128A, M58LW128B  
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences  
of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted  
by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject  
to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not  
authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.  
The ST logo is registered trademark of STMicroelectronics  
All other names are the property of their respective owners  
© 2003 STMicroelectronics - All Rights Reserved  
STMicroelectronics group of companies  
Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong -  
India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States.  
www.st.com  
65/65  

相关型号:

M58LW128A150N1

8MX16 FLASH 3V PROM, 150ns, PDSO56, 14 X 20 MM, PLASTIC, TSOP-56
STMICROELECTR

M58LW128A150N1E

128 Mbit 8Mb x16 or 4Mb x32, Uniform Block, Burst 3V Supply Flash Memories
STMICROELECTR

M58LW128A150N1F

128 Mbit 8Mb x16 or 4Mb x32, Uniform Block, Burst 3V Supply Flash Memories
STMICROELECTR

M58LW128A150N1T

128 Mbit 8Mb x16 or 4Mb x32, Uniform Block, Burst 3V Supply Flash Memories
STMICROELECTR

M58LW128A150N6

8MX16 FLASH 3V PROM, 150ns, PDSO56, 14 X 20 MM, PLASTIC, TSOP-56
STMICROELECTR

M58LW128A150N6E

128 Mbit 8Mb x16 or 4Mb x32, Uniform Block, Burst 3V Supply Flash Memories
STMICROELECTR

M58LW128A150N6F

128 Mbit 8Mb x16 or 4Mb x32, Uniform Block, Burst 3V Supply Flash Memories
STMICROELECTR

M58LW128A150N6T

128 Mbit 8Mb x16 or 4Mb x32, Uniform Block, Burst 3V Supply Flash Memories
STMICROELECTR

M58LW128A150ZA1E

128 Mbit 8Mb x16 or 4Mb x32, Uniform Block, Burst 3V Supply Flash Memories
STMICROELECTR

M58LW128A150ZA1F

128 Mbit 8Mb x16 or 4Mb x32, Uniform Block, Burst 3V Supply Flash Memories
STMICROELECTR

M58LW128A150ZA1T

128 Mbit 8Mb x16 or 4Mb x32, Uniform Block, Burst 3V Supply Flash Memories
STMICROELECTR

M58LW128A150ZA6

8MX16 FLASH 3V PROM, 150ns, PBGA64, 10 X 13 MM, 1 MM PITCH, TBGA-64
STMICROELECTR