M48Z08-100PC1 [STMICROELECTRONICS]

64 Kbit 8Kb x 8 ZEROPOWER SRAM; 64 Kbit的是8K ×8 ZEROPOWER SRAM
M48Z08-100PC1
型号: M48Z08-100PC1
厂家: ST    ST
描述:

64 Kbit 8Kb x 8 ZEROPOWER SRAM
64 Kbit的是8K ×8 ZEROPOWER SRAM

存储 内存集成电路 静态存储器 光电二极管 CD PC
文件: 总18页 (文件大小:143K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
M48Z08  
M48Z18  
®
64 Kbit (8Kb x 8) ZEROPOWER SRAM  
INTEGRATED ULTRA LOW POWER SRAM,  
POWER-FAIL CONTROL CIRCUIT and  
BATTERY  
SNAPHAT (SH)  
Battery  
UNLIMITED WRITE CYCLES  
READ CYCLE TIME EQUALS WRITE CYCLE  
TIME  
AUTOMATIC POWER-FAIL CHIP DESELECT and  
WRITE PROTECTION  
WRITE PROTECT VOLTAGES  
(VPFD = Power-fail Deselect Voltage):  
28  
– M48Z08: 4.50V VPFD 4.75V  
– M48Z18: 4.20V VPFD 4.50V  
SELF-CONTAINED BATTERY in the CAPHAT  
DIP PACKAGE  
1
28  
1
PCDIP28 (PC)  
Battery CAPHAT  
SOH28 (MH)  
PACKAGING INCLUDES a 28 LEAD SOIC  
and SNAPHAT® TOP (to be Ordered  
Separately)  
SOIC PACKAGE PROVIDES DIRECT  
CONNECTION for a SNAPHAT TOP which  
CONTAINS the BATTERY  
PIN and FUNCTION COMPATIBLE with the  
DS1225 and JEDEC STANDARD 8K x 8  
SRAMs  
Figure 1. Logic Diagram  
DESCRIPTION  
V
CC  
The M48Z08/18 ZEROPOWER® RAM is an 8K x  
8 non-volatile static RAM which is pin and func-  
tional compatible with the DS1225. The monolithic  
chip is available in two special packages to provide  
a highly integrated battery backed-up memory so-  
lution.  
13  
8
A0-A12  
W
DQ0-DQ7  
M48Z08  
M48Z18  
Table 1. Signal Names  
E
A0-A12  
Address Inputs  
Data Inputs / Outputs  
Chip Enable  
G
DQ0-DQ7  
E
G
Output Enable  
Write Enable  
Supply Voltage  
Ground  
V
SS  
AI01022  
W
VCC  
VSS  
March 1999  
1/18  
M48Z08, M48Z18  
Figure 2A. DIP Pin Connections  
Figure 2B. SOIC Pin Connections  
NC  
A12  
A7  
1
2
3
4
5
6
7
8
9
28  
27  
V
CC  
W
NC  
A12  
A7  
1
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
V
CC  
W
2
26 NC  
25 A8  
24 A9  
23 A11  
3
NC  
A8  
A6  
A6  
4
A5  
A5  
5
A9  
A4  
A4  
6
A11  
G
A3  
22  
G
A3  
7
M48Z08  
M48Z18  
M48Z18  
A2  
21 A10  
20  
A2  
8
A10  
E
A1  
E
A1  
9
A0 10  
DQ0 11  
DQ1 12  
DQ2 13  
19 DQ7  
18 DQ6  
17 DQ5  
16 DQ4  
15 DQ3  
A0  
10  
11  
12  
13  
14  
DQ7  
DQ6  
DQ5  
DQ4  
DQ3  
DQ0  
DQ1  
DQ2  
V
14  
V
SS  
SS  
AI01183  
AI01023B  
Warning:  
Warning:  
NC = Not Connected.  
NC = Not Connected.  
Table 2. Absolute Maximum Ratings (1)  
Symbol  
TA  
Parameter  
Value  
–40 to 85  
–40 to 85  
260  
Unit  
Ambient Operating Temperature  
Storage Temperature (VCC Off)  
Lead Solder Temperature for 10 seconds  
Input or Output Voltages  
Supply Voltage  
°C  
°C  
°C  
V
TSTG  
(2)  
TSLD  
VIO  
VCC  
IO  
–0.3 to 7  
–0.3 to 7  
20  
V
Output Current  
mA  
W
PD  
Power Dissipation  
1
Notes:  
1. Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a  
stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to the absolute maximum rating conditions for extended periods of time may  
affect reliability.  
2. Soldering temperature not to exceed 260°C for 10 seconds (total thermal budget not to exceed 150°C for longer than 30 seconds).  
CAUTION: Negative undershoots below –0.3 volts are not allowed on any pin while in the Battery Back-up mode.  
CAUTION: Do NOT wave solder SOIC to avoid damaging SNAPHAT sockets.  
Table 3. Operating Modes (1)  
Mode  
Deselect  
Write  
VCC  
E
VIH  
VIL  
VIL  
VIL  
X
G
X
W
X
DQ0-DQ7  
High Z  
DIN  
Power  
Standby  
4.75V to 5.5V  
or  
4.5V to 5.5V  
X
VIL  
VIH  
VIH  
X
Active  
Read  
VIL  
VIH  
X
DOUT  
Active  
Read  
High Z  
High Z  
High Z  
Active  
Deselect  
Deselect  
V
SO to VPFD (min)  
CMOS Standby  
Battery Back-up Mode  
VSO  
X
X
X
Note:  
1. X = VIH or VIL; VSO = Battery Back-up Switchover Voltage.  
2/18  
M48Z08, M48Z18  
Figure 3. Block Diagram  
A0-A12  
LITHIUM  
CELL  
DQ0-DQ7  
E
POWER  
8K x 8  
SRAM ARRAY  
VOLTAGE SENSE  
AND  
SWITCHING  
CIRCUITRY  
V
PFD  
W
G
V
V
CC  
SS  
AI01394  
DESCRIPTION  
Table 4. AC Measurement Conditions  
(cont’d)  
The M48Z08/18 is a non-volatile pin and function  
equivalent to any JEDEC standard 8K x 8 SRAM.  
It also easily fits into many ROM, EPROM, and  
EEPROM sockets, providing the non-volatility of  
PROMs without any requirement for special write  
timing or limitations on the number of writes that  
can be performed.  
Input Rise and Fall Times  
5ns  
Input Pulse Voltages  
0 to 3V  
1.5V  
Input and Output Timing Ref. Voltages  
Note that Output Hi-Z is defined as the point where data is no  
longer driven.  
The 28 pin 600mil DIP CAPHAT houses the  
M48Z08/18 silicon with a long life lithium button cell  
in a single package.  
Figure 4. AC Testing Load Circuit  
5V  
The 28 pin 330mil SOIC provides sockets with gold  
plated contacts at both ends for direct connection  
to a separate SNAPHAT housing containing the  
battery. The unique design allows the SNAPHAT  
battery package to be mounted on top of the SOIC  
package after the completion of the surface mount  
process. Insertion of the SNAPHAT housing after  
reflow prevents potential batterydamage due to the  
high temperatures required for device surface-  
mounting. The SNAPHAT housing is keyed to pre-  
vent reverse insertion.  
1.8kΩ  
DEVICE  
UNDER  
TEST  
OUT  
1kΩ  
C
= 100pF or 30pF  
L
The SOIC and battery packages are shipped sepa-  
rately in plastic anti-static tubes or in Tape & Reel  
form.  
C
includes JIG capacitance  
L
AI01398  
3/18  
M48Z08, M48Z18  
Table 5. Capacitance (1, 2)  
°
(TA = 25 C)  
Symbol  
Parameter  
Input Capacitance  
Test Condition  
VIN = 0V  
Min  
Max  
10  
Unit  
pF  
CIN  
(3)  
CIO  
Input / Output Capacitance  
VOUT = 0V  
10  
pF  
Notes:  
1. Effective capacitance measured with power supply at 5V.  
2. Sampled only, not 100% tested.  
3. Outputs deselected  
Table 6. DC Characteristics  
°
(TA = 0 to 70 C; VCC = 4.75V to 5.5V or 4.5V to 5.5V)  
Symbol  
Parameter  
Input Leakage Current  
Output Leakage Current  
Supply Current  
Test Condition  
0V VIN VCC  
0V VOUT VCC  
Outputs open  
E = VIH  
Min  
Max  
Unit  
µA  
µA  
mA  
mA  
mA  
V
(1)  
ILI  
±1  
(1)  
ILO  
±5  
ICC  
ICC1  
ICC2  
80  
Supply Current (Standby) TTL  
Supply Current (Standby) CMOS  
Input Low Voltage  
3
3
E = VCC – 0.2V  
(2)  
VIL  
–0.3  
2.2  
0.8  
VIH  
VOL  
VOH  
Input High Voltage  
VCC + 0.3  
0.4  
V
Output Low Voltage  
IOL = 2.1mA  
IOH = –1mA  
V
Output High Voltage  
2.4  
V
Notes:  
1. Outputs deselects.  
2. Negative spikes of –1V allowed for up to 10ns once per cycle.  
Table 7. Power Down/Up Trip Points DC Characteristics (1)  
°
(TA = 0 to 70 C)  
Symbol  
Parameter  
Min  
4.5  
4.2  
Typ  
4.6  
4.3  
3.0  
Max  
4.75  
4.5  
Unit  
VPFD  
VPFD  
VSO  
tDR  
Power-fail Deselect Voltage (M48Z08)  
Power-fail Deselect Voltage (M48Z18)  
Battery Back-up Switchover Voltage  
Expected Data Retention Time  
V
V
V
11  
YEARS  
Note:  
1. All voltages referenced to VSS  
.
DESCRIPTION  
(cont’d)  
When VCC is out of tolerance, the circuit write  
protects the SRAM, providing a high degree of data  
security in the midst of unpredictable system op-  
eration brought on by low VCC. As VCC falls below  
approximately 3V, the control circuitry connects the  
battery which maintains data until valid power re-  
turns.  
For the 28 lead SOIC, the battery package (i.e.  
SNAPHAT) part number is "M4Z28-BR00SH1".  
The M48Z08/18 also has its own Power-fail Detect  
circuit. The control circuitry constantly monitors the  
single 5V supply for an out of tolerance condition.  
4/18  
M48Z08, M48Z18  
Table 8. Power Down/Up Mode AC Characteristics  
°
(TA = 0 to 70 C)  
Symbol  
Parameter  
Min  
0
Max  
Unit  
µs  
tPD  
E or W at VIH before Power Down  
(1)  
tF  
VPFD (max) to VPFD (min) VCC Fall Time  
VPFD (min) to VSO VCC Fall Time  
VPFD(min) to VPFD (max) VCC Rise Time  
VSO to VPFD (min) VCC Rise Time  
E or W at VIH after Power Up  
300  
10  
0
µs  
(2)  
tFB  
µs  
tR  
µs  
tRB  
1
µs  
tREC  
1
ms  
Notes  
µ
: 1. VPFD (max) to VPFD (min) fall time of less than tF may result in deselection/write protection not occurring until 200 s after  
VCC passes VPFD (min).  
2. VPFD (min) to VSO fall time of less than tFB may cause corruption of RAM data.  
Figure 5. Power Down/Up Mode AC Waveforms  
V
CC  
V
V
V
(max)  
(min)  
PFD  
PFD  
SO  
tF  
tDR  
tR  
tPD  
tFB  
tRB  
DON'T CARE  
tREC  
RECOGNIZED  
NOTE  
RECOGNIZED  
INPUTS  
HIGH-Z  
OUTPUTS  
VALID  
VALID  
(PER CONTROL INPUT)  
(PER CONTROL INPUT)  
AI00606  
Note:  
Inputs may or may not be recognized at this time. Caution should be taken to keep E high as VCC rises past VPFD(min). Some systems  
may perform inadvertent write cycles after VCC rises above VPFD(min) but before normal system operations begin. Even though a power on  
reset is being applied to the processor, a reset condition may not occur until after the system clock is running.  
5/18  
M48Z08, M48Z18  
Table 9. Read Mode AC Characteristics  
°
(TA = 0 to 70 C; VCC = 4.75V to 5.5V or 4.5V to 5.5V)  
M48Z08 / M48Z18  
-100  
Symbol  
Parameter  
Unit  
Min  
Max  
tAVAV  
Read Cycle Time  
100  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
(1)  
tAVQV  
Address Valid to Output Valid  
100  
100  
50  
(1)  
tELQV  
Chip Enable Low to Output Valid  
Output Enable Low to Output Valid  
Chip Enable Low to Output Transition  
Output Enable Low to Output Transition  
Chip Enable High to Output Hi-Z  
Output Enable High to Output Hi-Z  
Address Transition to Output Transition  
(1)  
tGLQV  
(2)  
tELQX  
10  
5
(2)  
tGLQX  
(2)  
tEHQZ  
50  
40  
(2)  
tGHQZ  
(1)  
tAXQX  
5
Notes:  
1. CL = 100pF (see Figure 4).  
2. CL = 30pF (see Figure 4).  
Figure 6. Read Mode AC Waveforms  
tAVAV  
VALID  
A0-A12  
tAVQV  
tELQV  
tAXQX  
tEHQZ  
E
tELQX  
tGLQV  
tGHQZ  
G
tGLQX  
DQ0-DQ7  
VALID  
AI01385  
Note:  
Write Enable (W) = High.  
6/18  
M48Z08, M48Z18  
Table 10. Write Mode AC Characteristics  
°
(TA = 0 to 70 C; VCC = 4.75V to 5.5V or 4.5V to 5.5V)  
M48Z08 / M48Z18  
-100  
Symbol  
Parameter  
Unit  
Min  
100  
0
Max  
tAVAV  
tAVWL  
tAVEL  
Write Cycle Time  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Address Valid to Write Enable Low  
Address Valid to Chip Enable Low  
Write Enable Pulse Width  
0
tWLWH  
tELEH  
tWHAX  
tEHAX  
tDVWH  
tDVEH  
tWHDX  
tE1HDX  
80  
80  
10  
10  
50  
30  
5
Chip Enable Low to Chip Enable High  
Write Enable High to Address Transition  
Chip Enable High to Address Transition  
Input Valid to Write Enable High  
Input Valid to Chip Enable High  
Write Enable High to Input Transition  
Chip Enable High to Input Transition  
Write Enable Low to Output Hi-Z  
Address Valid to Write Enable High  
Address Valid to Chip Enable High  
Write Enable High to Output Transition  
5
(1, 2)  
tWLQZ  
50  
tAVWH  
tAVEH  
80  
80  
10  
(1, 2)  
tWHQX  
Notes:  
1. CL = 30pF (see Figure 4).  
2. If E goes low simultaneously with W going low, the outputs remain in the high impedance state.  
READ MODE  
output data will remain valid for Output Data Hold  
time (tAXQX) but will go indeterminate until the next  
Address Access.  
The M48Z08/18 is in the Read Mode whenever W  
(Write Enable) is high and E (Chip Enable) is low.  
The device architecture allows ripple-through ac-  
cess of data from eight of 65,536 locations in the  
static storage array. Thus, the unique address  
specified by the 13 Address Inputs defines which  
one of the 8,192 bytes of data is to be accessed.  
Valid data will be available at the Data I/O pins  
within Address Access time (tAVQV) after the last  
address input signal is stable, providing that the E  
and G access times are also satisfied. If the E and  
G access times are not met, valid data will be  
available after the latter of the Chip Enable Access  
time (tELQV) or Output Enable Access time (tGLQV).  
WRITE MODE  
The M48Z08/18 is in the Write Mode whenever W  
and E are active. The start of a write is referenced  
from the latter occurring falling edge of W or E.  
Awrite is terminated by the earlier rising edge of W  
or E. The addresses must be held valid throughout  
the cycle. E or W must return high for a minimum  
of tEHAX from Chip Enable or tWHAX from Write  
Enable prior to the initiation of another read or write  
cycle. Data-in must be valid tDVWH prior to the end  
of write and remain valid for tWHDX afterward. G  
should be kept high during write cycles to avoid bus  
contention; although, if the output bus has been  
activated by a low on E and G, a low on W will  
disable the outputs tWLQZ after W falls.  
The state of the eight three-state Data I/O signals  
is controlled by E and G. If the outputs are activated  
before tAVQV, the data lines will be driven to an  
indeterminate state until tAVQV. If the Address In-  
puts are changed while E and G remain active,  
7/18  
M48Z08, M48Z18  
Figure 7. Write Enable Controlled, Write AC Waveforms  
tAVAV  
A0-A12  
VALID  
tAVWH  
tAVEL  
tAVWL  
tWHAX  
E
tWLWH  
W
tWLQZ  
tWHQX  
tWHDX  
DQ0-DQ7  
DATA INPUT  
tDVWH  
AI01386  
Figure 8. Chip Enable Controlled, Write AC Waveforms  
tAVAV  
A0-A12  
VALID  
tAVEH  
tELEH  
tAVEL  
tEHAX  
E
tAVWL  
W
tEHDX  
DQ0-DQ7  
DATA INPUT  
tDVEH  
AI01387B  
8/18  
M48Z08, M48Z18  
DATA RETENTION MODE  
and the power supply is switched to external VCC  
.
Write protection continues until VCC reaches VPFD  
(min) plus tREC (min). E should be kept high as VCC  
rises past VPFD(min) to prevent inadvertent write  
cycles prior to system stabilization. Normal RAM  
operation can resume tREC after VCC exceeds  
VPFD(max).  
With valid VCC applied, the M48Z08/18 operates as  
a conventional BYTEWIDE static RAM. Should  
the supply voltage decay, the RAM will automat-  
ically power-fail deselect, write protecting itself  
when VCC falls within the VPFD(max), VPFD(min)  
window. All outputs become high impedance, and  
all inputs are treated as "don’t care."  
For more information on Battery Storage Life refer  
to the Application Note AN1012.  
Note:  
A power failure during a write cycle may  
corrupt data at the currently addressed location,  
but does not jeopardize the rest of the RAM’s  
content. At voltages below VPFD(min), the user can  
be assured the memory will be in a write protected  
state, provided the VCC fall time is not less than tF.  
The M48Z08/18 may respond to transient noise  
spikes on VCC that reach into the deselect window  
during the time the device is sampling VCC. There-  
fore, decoupling of the power supply lines is rec-  
ommended.  
SYSTEM BATTERY LIFE  
The useful life of the battery in the M48Z08/18 is  
expected to ultimately come to an end for one of  
two reasons: either because it has been dis-  
charged while providing current to the RAM in the  
battery back-up mode, or because the effects of  
aging render the cell useless before it can actually  
be completely discharged. The two effects are  
virtually unrelated, allowing discharge or Capacity  
Consumption, and the effects of aging or Storage  
Life, to be treated as two independent but simulta-  
neous mechanisms. The earlier occurring failure  
mechanism defines the battery system life of the  
M48Z08/18.  
When VCC drops below VSO, the control circuit  
switches power to the internal battery which pre-  
serves data and powers the clock. The internal  
button cell will maintain data in the M48Z08/18 for  
an accumulated period of at least 11 years when  
VCC is less than VSO. As system power returns and  
VCC rises above VSO, the battery is disconnected,  
Figure 9. Predicted Battery Storage Life versus Temperature  
AI01399  
50  
40  
30  
t50% (AVERAGE)  
t1%  
20  
10  
8
6
5
4
3
2
1
20  
30  
40  
50  
60  
70  
80  
90  
TEMPERATURE (Degrees Celsius)  
9/18  
M48Z08, M48Z18  
Cell Storage Life  
Reference for System Life  
Storage life is primarily a function of temperature.  
Figure 9 illustrates the approximate storage life of  
the M48Z08/18 battery over temperature. The re-  
sults in Figure 9 are derived from temperature  
accelerated life test studies performed at SGS-  
THOMSON. For the purpose of the testing, a cell  
failure is defined as the inability of a cell stabilized  
Each M48Z08/18 is marked with a nine digit manu-  
facturing date code in the form of H99XXYYZZ. For  
example, H995B9431 is:  
H = fabricated in Carrollton, TX  
9 = assembled in Muar, Malaysia,  
9 = tested in Muar, Malaysia,  
°
at 25 C to produce a 2.4V closed circuit voltage  
5B = lot designator,  
across a 250 k load resistor. The two lines, t1%  
and t50%, represent different failure rate distribu-  
9431 = assembled in the year 1994, work week 31.  
°
tions for the cell’s storage life. At70 C, for example,  
the t1% line indicates that an M48Z08/18 has a 1%  
chance of having a battery failure 28 years into its  
life while the t50% shows the part has a 50% chance  
of failure at the 50 year mark. The t1% line repre-  
sents the practical onset of wear out and can be  
considered the worst case Storage Life for the cell.  
The t50% can be considered the normal or average  
life.  
POWER SUPPLY DECOUPLING and UNDER-  
SHOOT PROTECTION  
ICC transients, including those produced by output  
switching, can produce voltage fluctuations, result-  
ing in spikes on the VCC bus. These transients can  
be reduced if capacitors are used to store energy,  
which stabilizes the VCC bus. The energy stored in  
the bypass capacitors will be released as low going  
spikes are generated or energy will be absorbed  
when overshoots occur. A ceramic bypass capaci-  
Calculating Storage Life  
The following formula can be used to predict stor-  
age life:  
µ
tor value of 0.1 F (as shown in Figure 10) is  
1
recommended in order to provide the needed filter-  
ing.  
{[(TA1/TT)/SL1]+[(TA2/TT)/SL2]+...+[(TAN/TT)/SLN]}  
where,  
In addition to transients that are caused by normal  
SRAM operation, power cycling can generate  
negative voltage spikes on VCC that drive it to  
values below VSS by as much as one Volt. These  
negative spikes can cause data corruption in the  
SRAM while in battery backup mode. To protect  
from these voltage spikes, it is recommeded to  
connect a schottky diode from VCC to VSS (cathode  
connected to VCC, anode to VSS). Schottky diode  
1N5817 is recommended for through hole and  
MBRS120T3 is recommended for surface mount.  
– TA1, TA2, TAN = time at ambient temperature  
1, 2, etc.  
– TT = total time = TA1+TA2+...+TAN  
– SL1, SL2, SLN = storage life at temperature 1,  
2, etc.  
For example, an M48Z08/18 is exposed to tem-  
°
peratures of 55 C or less for 8322 hrs/yr, and  
°
°
temperatures greater than 60 C but less than 70 C  
for the remaining 438 hrs/yr. Reading predicted t1%  
values from Figure 9,  
– SL1 200 yrs, SL2 = 28 yrs  
– TT = 8760 hrs/yr  
Figure 10. Supply Voltage Protection  
– TA1 = 8322 hrs/yr, TA2 = 438 hrs/yr  
Predicted storage life  
V
CC  
1
{[(8322/8760)/200]+[(431/8760)/28]}  
V
CC  
or 154 years.  
As can been seen from these calculations and the  
results, the expected lifetime of the M48Z08/18  
should exceed most system requirements.  
0.1µF  
DEVICE  
Estimated System Life  
V
SS  
Since either storage life or capacity consumption  
can end the battery’s life, the system life is marked  
by which ever occurs first.  
AI02169  
10/18  
M48Z08, M48Z18  
ORDERING INFORMATION SCHEME  
Example:  
M48Z18 -100 MH  
1
TR  
Supply Voltage and Write  
Protect Voltage  
Speed  
Package  
Temp. Range  
Shipping Method  
for SOIC  
08 (1) VCC = 4.75V to 5.5V  
-100 100ns  
PC  
PCDIP28  
1
0 to 70 °C  
blank Tubes  
V
PFD = 4.5V to 4.75V  
MH (2,3)SOH28  
6 (4) –40 to 85 °C  
TR Tape &Reel  
18  
VCC = 4.5V to 5.5V  
VPFD = 4.2V to 4.5V  
Notes:  
1. The M48Z08 part is offered with the PCDIP28 (i.e. CAPHAT) package only.  
2. The SOIC package (SOH28) requires the battery package (SNAPHAT) which is ordered separately under the part number  
"M4Z28-BR00SH1" in plastic tube or "M4Z28-BR00SH1TR" in Tape & Reel form.  
3. Delivery may include either the 2-pin version of the SOIC/SNAPHAT or the 4-pin version of the SOIC/SNAPHAT. Both are  
functionally equivalent (see package drawing section for details).  
4. Temperature range available for M48Z18 product only.  
Caution:  
Do not place the SNAPHAT battery package "M4Z28-BR00SH1" in conductive foam since this will drain the lithium button-cell  
battery.  
For a list of available options (Speed, Package, etc...) or for further information on any aspect of this device,  
please contact the STMicroelectronics Sales Office nearest to you.  
11/18  
M48Z08, M48Z18  
PCDIP28 - 28 pin Plastic DIP, battery CAPHAT  
mm  
Min  
inches  
Symb  
Typ  
Max  
9.65  
0.76  
8.89  
0.53  
1.78  
0.31  
39.88  
18.34  
2.79  
36.32  
16.00  
3.81  
Typ  
Min  
Max  
A
A1  
A2  
B
8.89  
0.38  
8.38  
0.38  
1.14  
0.20  
39.37  
17.83  
2.29  
29.72  
15.24  
3.05  
28  
0.350  
0.015  
0.330  
0.015  
0.045  
0.008  
1.550  
0.702  
0.090  
1.170  
0.600  
0.120  
28  
0.380  
0.030  
0.350  
0.021  
0.070  
0.012  
1.570  
0.722  
0.110  
1.430  
0.630  
0.150  
B1  
C
D
E
e1  
e3  
eA  
L
N
A2  
A
L
A1  
e1  
C
B1  
B
eA  
e3  
D
N
1
E
PCDIP  
Drawing is not to scale.  
12/18  
M48Z08, M48Z18  
SOH28 - 28 lead Plastic Small Outline, 4-socket battery SNAPHAT  
mm  
Min  
inches  
Symb  
Typ  
Max  
3.05  
0.36  
2.69  
0.51  
0.32  
18.49  
8.89  
Typ  
Min  
Max  
0.120  
0.014  
0.106  
0.020  
0.012  
0.728  
0.350  
A
A1  
A2  
B
0.05  
2.34  
0.36  
0.15  
17.71  
8.23  
0.002  
0.092  
0.014  
0.006  
0.697  
0.324  
C
D
E
e
1.27  
0.050  
eB  
H
3.20  
11.51  
0.41  
0°  
3.61  
12.70  
1.27  
8°  
0.126  
0.453  
0.016  
0°  
0.142  
0.500  
0.050  
8°  
L
α
N
28  
28  
CP  
0.10  
0.004  
A2  
A
C
eB  
B
e
CP  
D
N
E
H
A1  
α
L
1
SOH-A  
Drawing not to scale.  
13/18  
M48Z08, M48Z18  
SOH28 - 28 lead Plastic Small Outline, 2-socket battery SNAPHAT  
mm  
Min  
inches  
Min  
Symb  
Typ  
Max  
3.05  
0.36  
2.69  
0.51  
0.32  
18.49  
8.89  
Typ  
Max  
0.120  
0.014  
0.106  
0.020  
0.012  
0.728  
0.350  
A
A1  
A2  
B
0.05  
2.34  
0.36  
0.15  
17.71  
8.23  
0.002  
0.092  
0.014  
0.006  
0.697  
0.324  
C
D
E
e
1.27  
0.050  
eB  
H
3.20  
11.51  
0.41  
0°  
3.61  
12.70  
1.27  
8°  
0.126  
0.453  
0.016  
0°  
0.142  
0.500  
0.050  
8°  
L
α
N
28  
28  
CP  
0.10  
0.004  
A2  
A
C
eB  
B
e
CP  
D
N
E
H
A1  
α
L
1
SOH-B  
Drawing not to scale.  
14/18  
M48Z08, M48Z18  
SH - 4-pin SNAPHAT Housing for 49 mAh Battery  
mm  
Min  
inches  
Symb  
Typ  
Max  
9.78  
7.24  
6.99  
0.38  
0.56  
21.84  
14.99  
15.95  
3.61  
2.29  
Typ  
Min  
Max  
A
A1  
A2  
A3  
B
0.385  
0.285  
0.275  
0.015  
0.022  
0.860  
0.590  
0.628  
0.142  
0.090  
6.73  
6.48  
0.265  
0.255  
0.46  
21.21  
14.22  
15.55  
3.20  
0.018  
0.835  
0.560  
0.612  
0.126  
0.080  
D
E
eA  
eB  
L
2.03  
A2  
A1  
A
A3  
L
eA  
D
B
eB  
E
SH  
Drawing not to scale.  
15/18  
M48Z08, M48Z18  
SH - 2-pin SNAPHAT Housing for 49 mAh Battery  
mm  
Min  
inches  
Min  
Symb  
Typ  
Max  
9.78  
7.24  
6.99  
0.38  
0.56  
21.84  
14.99  
3.61  
2.29  
Typ  
Max  
A
A1  
A2  
A3  
B
0.385  
0.285  
0.275  
0.015  
0.022  
0.860  
0.590  
0.142  
0.090  
6.73  
6.48  
0.265  
0.255  
0.46  
21.21  
14.22  
3.20  
0.018  
0.835  
0.560  
0.126  
0.080  
D
E
eB  
L
2.03  
A2  
A1  
A
A3  
L
B
eB  
D
E
SHZP-A  
Drawing not to scale.  
16/18  
M48Z08, M48Z18  
SH - 2-pin SNAPHAT Housing for 130 mAh Battery  
mm  
Min  
inches  
Symb  
Typ  
Max  
10.54  
8.51  
Typ  
Min  
Max  
A
A1  
A2  
A3  
B
0.415  
0.335  
0.315  
0.015  
0.022  
0.860  
0.710  
0.142  
0.090  
8.00  
7.24  
0.315  
0.285  
8.00  
0.38  
0.46  
21.21  
17.27  
3.20  
0.56  
0.018  
0.835  
0.680  
0.126  
0.080  
D
21.84  
18.03  
3.61  
E
eB  
L
2.03  
2.29  
A2  
A1  
A
A3  
L
B
eB  
D
E
SHZP-B  
Drawing not to scale.  
17/18  
M48Z08, M48Z18  
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences  
of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted  
by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to  
change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not  
authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.  
The ST logo is a registered trademark of STMicroelectronics  
© 1999 STMicroelectronics - All Rights Reserved  
® TIMEKEEPER and SNAPHAT are registered trademarks of STMicroelectronics  
CAPHAT and BYTEWIDE are trademarks of STMicroelectronics  
All other names are the property of their respective owners  
STMicroelectronics GROUP OF COMPANIES  
Australia - Brazil - Canada - China - France - Germany - Italy - Japan - Korea - Malaysia - Malta - Mexico - Morocco - The Netherlands -  
Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A.  
http://www.st.com  
18/18  

相关型号:

M48Z08-100PC1TR

64 Kbit 8Kb x 8 ZEROPOWER SRAM
STMICROELECTR

M48Z08-100PC6

64 Kbit 8Kb x 8 ZEROPOWER SRAM
STMICROELECTR

M48Z08-100PC6TR

64 Kbit 8Kb x 8 ZEROPOWER SRAM
STMICROELECTR

M48Z08-150PC1

16 Kbit 2Kb x 8 ZEROPOWER SRAM
STMICROELECTR

M48Z08-150PC6

16 Kbit 2Kb x 8 ZEROPOWER SRAM
STMICROELECTR

M48Z08-200PC1

16 Kbit 2Kb x 8 ZEROPOWER SRAM
STMICROELECTR

M48Z08-200PC6

16 Kbit 2Kb x 8 ZEROPOWER SRAM
STMICROELECTR

M48Z08-70PC1

16 Kbit 2Kb x 8 ZEROPOWER SRAM
STMICROELECTR

M48Z08-70PC6

16 Kbit 2Kb x 8 ZEROPOWER SRAM
STMICROELECTR

M48Z08MH

64 Kbit 8Kb x 8 ZEROPOWER SRAM
STMICROELECTR

M48Z08PC

64 Kbit 8Kb x 8 ZEROPOWER SRAM
STMICROELECTR

M48Z08SH

64 Kbit 8Kb x 8 ZEROPOWER SRAM
STMICROELECTR