M48Z08-150PC6 [STMICROELECTRONICS]

16 Kbit 2Kb x 8 ZEROPOWER SRAM; 16 Kbit的2K位×8 ZEROPOWER SRAM
M48Z08-150PC6
型号: M48Z08-150PC6
厂家: ST    ST
描述:

16 Kbit 2Kb x 8 ZEROPOWER SRAM
16 Kbit的2K位×8 ZEROPOWER SRAM

静态存储器
文件: 总12页 (文件大小:88K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
M48Z02  
M48Z12  
®
16 Kbit (2Kb x 8) ZEROPOWER SRAM  
INTEGRATED ULTRA LOW POWER SRAM,  
POWER-FAIL CONTROL CIRCUIT and  
BATTERY  
UNLIMITED WRITE CYCLES  
READ CYCLE TIME EQUALS WRITE CYCLE  
TIME  
AUTOMATIC POWER-FAIL CHIP DESELECT and  
WRITE PROTECTION  
WRITE PROTECT VOLTAGES  
(VPFD = Power-fail Deselect Voltage):  
24  
1
– M48Z02: 4.50V VPFD 4.75V  
– M48Z12: 4.20V VPFD 4.50V  
PCDIP24 (PC)  
Battery CAPHAT  
SELF-CONTAINED BATTERY in the CAPHAT  
DIP PACKAGE  
PIN and FUNCTION COMPATIBLE with  
JEDEC STANDARD 2K x 8 SRAMs  
Figure 1. Logic Diagram  
DESCRIPTION  
The M48Z02/12 ZEROPOWER® RAM is a 2K x 8  
non-volatile static RAM which is pin and functional  
compatible with the DS1220.  
A special 24 pin 600mil DIP CAPHAT package  
houses the M48Z02/12 silicon with a long life lith-  
ium button cell to form a highly integrated battery  
backed-up memory solution.  
V
CC  
11  
8
The M48Z02/12 button cell has sufficient capacity  
and storage life to maintain data and clockfunction-  
ality for an accumulated time period of at least 10  
years in the absence of power over the operating  
temperature range.  
A0-A10  
DQ0-DQ7  
W
E
M48Z02  
M48Z12  
Table 1. Signal Names  
A0-A10  
Address Inputs  
Data Inputs / Outputs  
Chip Enable  
G
DQ0-DQ7  
E
V
SS  
G
Output Enable  
Write Enable  
Supply Voltage  
Ground  
AI01186  
W
VCC  
VSS  
May 1999  
1/12  
M48Z02, M48Z12  
Table 2. Absolute Maximum Ratings (1)  
Symbol  
TA  
Parameter  
Value  
–40 to 85  
–40 to 85  
260  
Unit  
°C  
°C  
°C  
V
Ambient Operating Temperature  
Storage Temperature (VCC Off)  
Lead Solder Temperature for 10 seconds  
Input or Output Voltages  
Supply Voltage  
TSTG  
(2)  
TSLD  
VIO  
VCC  
IO  
–0.3 to 7  
–0.3 to 7  
20  
V
Output Current  
mA  
W
PD  
Power Dissipation  
1
Notes:  
1. Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a  
stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to the absolute maximum rating conditions for extended periods of time may  
affect reliability.  
2. Soldering temperature not to exceed 260°C for 10 seconds (total thermal budget not to exceed 150°C for longer than 30 seconds).  
CAUTION: Negative undershoots below –0.3 volts are not allowed on any pin while in the Battery Back-up mode.  
Table 3. Operating Modes  
Mode  
Deselect  
Write  
VCC  
E
VIH  
VIL  
VIL  
VIL  
X
G
X
W
X
DQ0-DQ7  
High Z  
DIN  
Power  
Standby  
4.75V to 5.5V  
or  
4.5V to 5.5V  
X
VIL  
VIH  
VIH  
X
Active  
Read  
VIL  
VIH  
X
DOUT  
Active  
Read  
High Z  
High Z  
High Z  
Active  
Deselect  
Deselect  
V
SO to VPFD (min)  
CMOS Standby  
Battery Back-up Mode  
VSO  
X
X
X
Notes  
: X = VIH or VIL; VSO = Battery Back-up Switchover Voltage.  
Figure 2. DIP Pin Connections  
DESCRIPTION  
(cont’d)  
The M48Z02/12 is a non-volatile pin and function  
equivalent to any JEDEC standard 2K x 8 SRAM.  
It also easily fits into many ROM, EPROM, and  
EEPROM sockets, providing the non-volatility of  
PROMs without any requirement for special write  
timing or limitations on the number of writes that  
can be performed.  
The M48Z02/12 also has its own Power-fail Detect  
circuit. The control circuitry constantly monitors the  
single 5V supply for an out of tolerance condition.  
When VCC is out of tolerance, the circuit write  
protects the SRAM, providing a high degree of data  
security in the midst of unpredictable system op-  
eration brought on by low VCC. As VCC falls below  
approximately 3V, the control circuitry connects the  
battery which maintains data and clock operation  
until valid power returns.  
A7  
A6  
1
2
3
4
5
6
7
8
9
24  
V
CC  
23 A8  
A5  
22 A9  
A4  
21  
20  
W
G
A3  
A2  
M48Z02 19 A10  
M48Z12  
A1  
18  
E
A0  
17 DQ7  
16 DQ6  
15 DQ5  
14 DQ4  
13 DQ3  
DQ0  
DQ1 10  
DQ2 11  
V
12  
SS  
AI01187  
2/12  
M48Z02, M48Z12  
Figure 3. Block Diagram  
A0-A10  
LITHIUM  
CELL  
DQ0-DQ7  
E
POWER  
2K x 8  
SRAM ARRAY  
VOLTAGE SENSE  
AND  
SWITCHING  
CIRCUITRY  
V
PFD  
W
G
V
V
CC  
SS  
AI01255  
Table 4. AC Measurement Conditions  
READ MODE  
The M48Z02/12 is in the Read Mode whenever W  
(Write Enable) is high and E (Chip Enable) is low.  
The device architecture allows ripple-through ac-  
cess of data from eight of 16,384 locations in the  
static storage array. Thus, the unique address  
specified by the 11 Address Inputs defines which  
one of the 2,048 bytes of data is to be accessed.  
Valid data will be available at the Data I/O pins  
within Address Access time (tAVQV) after the last  
address input signal is stable, providing that the E  
and G access times are also satisfied. If the E and  
G access times are not met, valid data will be  
available after the latter of the Chip Enable Access  
time (tELQV) or Output Enable Access time (tGLQV).  
Input Rise and Fall Times  
5ns  
Input Pulse Voltages  
0V to 3V  
1.5V  
Input and Output Timing Ref. Voltages  
Note that Output Hi-Z is defined as the point where data is no  
longer driven.  
Figure 4. AC Testing Load Circuit  
5V  
1.8kΩ  
The state of the eight three-state Data I/O signals  
is controlled by E and G. If the outputs are activated  
before tAVQV, the data lines will be driven to an  
indeterminate state until tAVQV. If the Address In-  
puts are changed while E and G remain active,  
output data will remain valid for Output Data Hold  
time (tAXQX) but will go indeterminate until the next  
Address Access.  
DEVICE  
UNDER  
TEST  
OUT  
1kΩ  
C
= 100pF  
L
C
includes JIG capacitance  
L
AI01019  
3/12  
M48Z02, M48Z12  
Table 5. Capacitance (1)  
°
(TA = 25 C)  
Symbol  
Parameter  
Input Capacitance  
Test Condition  
VIN = 0V  
Min  
Max  
10  
Unit  
pF  
CIN  
(2)  
CIO  
Input / Output Capacitance  
VOUT = 0V  
10  
pF  
Notes:  
1. Effective capacitance measured with power supply at 5V.  
2. Outputs deselected  
Table 6. DC Characteristics  
°
°
(TA = 0 to 70 C or –40 to 85 C; VCC = 4.75V to 5.5V or 4.5V to 5.5V)  
Symbol  
Parameter  
Input Leakage Current  
Output Leakage Current  
Supply Current  
Test Condition  
0V VIN VCC  
0V VOUT VCC  
Outputs open  
E = VIH  
Min  
Max  
Unit  
µA  
µA  
mA  
mA  
mA  
V
(1)  
ILI  
±1  
(1)  
ILO  
±5  
ICC  
ICC1  
ICC2  
80  
Supply Current (Standby) TTL  
Supply Current (Standby) CMOS  
Input Low Voltage  
3
3
E = VCC – 0.2V  
(2)  
VIL  
–0.3  
2.2  
0.8  
VIH  
VOL  
VOH  
Input High Voltage  
VCC + 0.3  
0.4  
V
Output Low Voltage  
IOL = 2.1mA  
IOH = –1mA  
V
Output High Voltage  
2.4  
V
Notes:  
1. Outputs Deselected.  
2. Negative spikes of –1V allowed for up to 10ns once per cycle.  
Table 7. Power Down/Up Trip Points DC Characteristics (1)  
°
°
(TA = 0 to 70 C or –40 to 85 C)  
Symbol  
VPFD  
VPFD  
VSO  
Parameter  
Min  
4.5  
4.2  
Typ  
4.6  
4.3  
3.0  
Max  
4.75  
4.5  
Unit  
Power-fail Deselect Voltage (M48Z02)  
Power-fail Deselect Voltage (M48Z12)  
Battery Back-up Switchover Voltage  
Expected Data Retention Time  
V
V
V
tDR  
10  
YEARS  
Note:  
1. All voltages referenced to VSS  
.
4/12  
M48Z02, M48Z12  
Table 8. Power Down/Up Mode AC Characteristics  
°
°
(TA = 0 to 70 C or –40 to 85 C)  
Symbol  
Parameter  
Min  
0
Max  
Unit  
µs  
tPD  
E or W at VIH before Power Down  
(1)  
tF  
VPFD (max) to VPFD (min) VCC Fall Time  
VPFD (min) to VSO VCC Fall Time  
VPFD(min) to VPFD (max) VCC Rise Time  
VSO to VPFD (min) VCC Rise Time  
E or W at VIH after Power Up  
300  
10  
0
µs  
(2)  
tFB  
tR  
µs  
µs  
tRB  
1
µs  
tREC  
2
ms  
Notes  
µ
: 1. VPFD (max) to VPFD (min) fall time of less than tF may result in deselection/write protection not occurring until 50 s after  
VCC passes VPFD (min).  
2. VPFD (min) to VSO fall time of less than tFB may cause corruption of RAM data.  
Figure 5. Power Down/Up Mode AC Waveforms  
V
CC  
V
V
V
(max)  
(min)  
PFD  
PFD  
SO  
tF  
tDR  
tR  
tPD  
tFB  
tRB  
DON'T CARE  
tREC  
RECOGNIZED  
NOTE  
RECOGNIZED  
INPUTS  
HIGH-Z  
OUTPUTS  
VALID  
VALID  
(PER CONTROL INPUT)  
(PER CONTROL INPUT)  
AI00606  
Note:  
Inputs may or may not be recognized at this time. Caution should be taken to keep E high as VCC rises past VPFD(min). Some systems  
may perform inadvertent write cycles after VCC rises above VPFD(min) but before normal system operations begin. Even though a power on  
reset is being applied to the processor, a reset condition may not occur until after the system clock is running.  
5/12  
M48Z02, M48Z12  
Table 9. Read Mode AC Characteristics  
°
°
(TA = 0 to 70 C or –40 to 85 C; VCC = 4.75V to 5.5V or 4.5V to 5.5V)  
M48Z02 / M48Z12  
-150  
Symbol  
Parameter  
Unit  
-70  
-200  
Min  
Max  
Min  
Max  
Min  
Max  
tAVAV  
tAVQV  
tELQV  
tGLQV  
tELQX  
tGLQX  
tEHQZ  
tGHQZ  
tAXQX  
Read Cycle Time  
70  
150  
200  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Address Valid to Output Valid  
70  
70  
35  
150  
150  
75  
200  
200  
80  
Chip Enable Low to Output Valid  
Output Enable Low to Output Valid  
Chip Enable Low to Output Transition  
Output Enable Low to Output Transition  
Chip Enable High to Output Hi-Z  
Output Enable High to Output Hi-Z  
Address Transition to Output Transition  
5
5
10  
5
10  
5
25  
25  
35  
35  
40  
40  
10  
5
5
Figure 6. Read Mode AC Waveforms  
tAVAV  
VALID  
A0-A10  
tAVQV  
tELQV  
tAXQX  
tEHQZ  
E
tELQX  
tGLQV  
tGHQZ  
G
tGLQX  
DQ0-DQ7  
VALID  
AI01330  
Note:  
Write Enable (W) = High.  
6/12  
M48Z02, M48Z12  
Table 10. Write Mode AC Characteristics  
°
°
(TA = 0 to 70 C or –40 to 85 C; VCC = 4.75V to 5.5V or 4.5V to 5.5V)  
M48Z02 / M48Z12  
-150  
Symbol  
Parameter  
Unit  
-200  
-70  
Min  
70  
0
Max  
Min  
150  
0
Max  
Min  
200  
0
Max  
tAVAV  
tAVWL  
tAVEL  
Write Cycle Time  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Address Valid to Write Enable Low  
Address Valid to Chip Enable Low  
Write Enable Pulse Width  
0
0
0
tWLWH  
tELEH  
tWHAX  
tEHAX  
tDVWH  
tDVEH  
tWHDX  
tEHDX  
tWLQZ  
tAVWH  
tAVEH  
tWHQX  
50  
55  
0
90  
90  
10  
10  
40  
40  
5
120  
120  
10  
10  
60  
60  
5
Chip Enable Low to Chip Enable High  
Write Enable High to Address Transition  
Chip Enable High to Address Transition  
Input Valid to Write Enable High  
Input Valid to Chip Enable High  
0
30  
30  
5
Write Enable High to Input Transition  
Chip Enable High to Input Transition  
Write Enable Low to Output Hi-Z  
Address Valid to Write Enable High  
Address Valid to Chip Enable High  
Write Enable High to Output Transition  
5
5
5
25  
50  
60  
60  
60  
5
120  
120  
10  
140  
140  
10  
WRITE MODE  
of tEHAX from Chip Enable or tWHAX from Write  
Enable prior to the initiation of another read or write  
cycle. Data-in must be valid tDVWH prior to the end  
of write and remain valid for tWHDX afterward. G  
should be kept high during write cycles to avoid bus  
contention; although, if the output bus has been  
activated by a low on E and G, a low on W will  
disable the outputs tWLQZ after W falls.  
The M48Z02/12 is in the Write Mode whenever W  
and E are active. The start of a write is referenced  
from the latter occurring falling edge of W or E. A  
write is terminated by the earlier rising edge of W  
or E. The addresses must be held valid throughout  
the cycle. E or W must return high for a minimum  
7/12  
M48Z02, M48Z12  
Figure 7. Write Enable Controlled, Write AC Waveforms  
tAVAV  
A0-A10  
VALID  
tAVWH  
tAVEL  
tAVWL  
tWHAX  
E
tWLWH  
W
tWLQZ  
tWHQX  
tWHDX  
DQ0-DQ7  
DATA INPUT  
tDVWH  
AI01331  
Figure 8. Chip Enable Controlled, Write AC Waveforms  
tAVAV  
A0-A10  
VALID  
tAVEH  
tELEH  
tAVEL  
tEHAX  
E
tAVWL  
W
tEHDX  
DQ0-DQ7  
DATA INPUT  
tDVEH  
AI01332B  
8/12  
M48Z02, M48Z12  
Figure 9. Checking the BOK Flag Status  
DATA RETENTION MODE  
With valid VCC applied, the M48Z02/12 operates as  
a conventional BYTEWIDE static RAM. Should  
the supply voltage decay, the RAM will automat-  
ically power-fail deselect, write protecting itself  
when VCC falls within the VPFD(max), VPFD(min)  
window. All outputs become high impedance, and  
all inputs are treated as "don’t care."  
POWER-UP  
READ DATA  
AT ANY ADDRESS  
Note:  
A power failure during a write cycle may  
WRITE DATA  
COMPLEMENT BACK  
TO SAME ADDRESS  
corrupt data at the currently addressed location,  
but does not jeopardize the rest of the RAM’s  
content. At voltages below VPFD(min), the user can  
be assured the memory will be in a write protected  
state, provided the VCC fall time is not less than tF.  
The M48Z02/12 may respond to transient noise  
spikes on VCC that reach into the deselect window  
during the time the device is sampling VCC. There-  
fore, decoupling of the power supply lines is rec-  
ommended.  
READ DATA  
AT SAME  
ADDRESS AGAIN  
The power switching circuit connects external VCC  
to the RAM and disconnects the battery when VCC  
rises above VSO. As VCC rises, the battery voltage  
is checked. If the voltage is too low, an internal  
Battery Not OK (BOK) flag will be set. The BOKflag  
can be checked after power up. If the BOK flag is  
set, the first write attempted will be blocked. The  
flag is automatically cleared after the first write, and  
normal RAM operation resumes. Figure 9 illus-  
trates how a BOK check routine could be struc-  
tured.  
IS DATA  
COMPLEMENT  
OF FIRST  
NO (BATTERY LOW)  
READ?  
NOTIFY SYSTEM  
OF LOW BATTERY  
(DATA MAY BE  
CORRUPTED)  
(BATTERY OK) YES  
WRITE ORIGINAL  
DATA BACK TO  
SAME ADDRESS  
CONTINUE  
POWER SUPPLY DECOUPLING and UNDER-  
SHOOT PROTECTION  
ICC transients, including those produced by output  
switching, can produce voltage fluctuations, result-  
ing in spikes on the VCC bus. These transients can  
be reduced if capacitors are used to store energy,  
which stabilizes the VCC bus. The energy stored in  
the bypass capacitors will be released as low going  
spikes are generated or energy will be absorbed  
when overshoots occur. A ceramic bypass capaci-  
AI00607  
Figure 10. Supply Voltage Protection  
µ
tor value of 0.1 F (as shown in Figure 10) is  
V
CC  
recommended in order to provide the needed filter-  
ing.  
V
CC  
In addition to transients that are caused by normal  
SRAM operation, power cycling can generate  
negative voltage spikes on VCC that drive it to  
values below VSS by as much as one Volt. These  
negative spikes can cause data corruption in the  
SRAM while in battery backup mode. To protect  
from these voltage spikes, it is recommeded to  
connect a schottky diode from VCC to VSS (cathode  
connected to VCC, anode to VSS). Schottky diode  
1N5817 is recommended for through hole and  
MBRS120T3 is recommended for surface mount.  
0.1µF  
DEVICE  
V
SS  
AI02169  
9/12  
M48Z02, M48Z12  
ORDERING INFORMATION SCHEME  
Example:  
M48Z02  
-70 PC  
1
Supply Voltage and Write  
Protect Voltage  
Speed  
Package  
PCDIP24  
Temp. Range  
02  
V
V
CC = 4.75V to 5.5V  
PFD = 4.5V to 4.75V  
-70  
70ns  
PC  
1
6
0 to 70 °C  
–40 to 85 °C  
-150  
-200  
150ns  
200ns  
12  
VCC = 4.5V to 5.5V  
PFD = 4.2V to 4.5V  
V
For a list of available options (Speed, Package, etc...) or for further information on any aspect of this device,  
please contact the STMicroelectronics Sales Office nearest to you.  
10/12  
M48Z02, M48Z12  
PCDIP24 - 24 pin Plastic DIP, battery CAPHAT  
mm  
Min  
inches  
Symb  
Typ  
Max  
9.65  
0.76  
8.89  
0.53  
1.78  
0.31  
34.80  
18.34  
2.79  
30.73  
16.00  
3.81  
Typ  
Min  
Max  
A
A1  
A2  
B
8.89  
0.38  
8.38  
0.38  
1.14  
0.20  
34.29  
17.83  
2.29  
25.15  
15.24  
3.05  
24  
0.350  
0.015  
0.330  
0.015  
0.045  
0.008  
1.350  
0.702  
0.090  
0.990  
0.600  
0.120  
24  
0.380  
0.030  
0.350  
0.021  
0.070  
0.012  
1.370  
0.722  
0.110  
1.210  
0.630  
0.150  
B1  
C
D
E
e1  
e3  
eA  
L
N
A2  
A
L
A1  
e1  
C
B1  
B
eA  
e3  
D
N
1
E
PCDIP  
Drawing is not to scale.  
11/12  
M48Z02, M48Z12  
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences  
of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted  
by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to  
change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not  
authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.  
The ST logo is a registered trademark of STMicroelectronics  
© 1999 STMicroelectronics - All Rights Reserved  
All other names are the property of their respective owners  
STMicroelectronics GROUP OF COMPANIES  
Australia - Brazil - Canada - China - France - Germany - Italy - Japan - Korea - Malaysia - Malta - Mexico - Morocco - The Netherlands -  
Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A.  
http://www.st.com  
12/12  

相关型号:

M48Z08-200PC1

16 Kbit 2Kb x 8 ZEROPOWER SRAM
STMICROELECTR

M48Z08-200PC6

16 Kbit 2Kb x 8 ZEROPOWER SRAM
STMICROELECTR

M48Z08-70PC1

16 Kbit 2Kb x 8 ZEROPOWER SRAM
STMICROELECTR

M48Z08-70PC6

16 Kbit 2Kb x 8 ZEROPOWER SRAM
STMICROELECTR

M48Z08MH

64 Kbit 8Kb x 8 ZEROPOWER SRAM
STMICROELECTR

M48Z08PC

64 Kbit 8Kb x 8 ZEROPOWER SRAM
STMICROELECTR

M48Z08SH

64 Kbit 8Kb x 8 ZEROPOWER SRAM
STMICROELECTR

M48Z08Y-10MH1

8KX8 NON-VOLATILE SRAM, 100ns, PDSO28, SNAPHAT, PLASTIC, SOIC-28
STMICROELECTR

M48Z08Y-10PC1

8KX8 NON-VOLATILE SRAM MODULE, 100ns, PDIP28, CAPHAT, PLASTIC, DIP-28
STMICROELECTR

M48Z08_05

5V, 64 Kbit (8Kb x 8) ZEROPOWER㈢ SRAM
STMICROELECTR

M48Z08_10

5 V, 64 Kbit (8 Kb x 8) ZEROPOWER? SRAM
STMICROELECTR

M48Z09

CMOS 8K x 8 ZEROPOWER SRAM
STMICROELECTR