M48Z02-70PC6 [STMICROELECTRONICS]

5V, 16 Kbit (2Kb x 8) ZEROPOWER SRAM; 5V , 16千位( 2K位×8 ) ZEROPOWER SRAM
M48Z02-70PC6
型号: M48Z02-70PC6
厂家: ST    ST
描述:

5V, 16 Kbit (2Kb x 8) ZEROPOWER SRAM
5V , 16千位( 2K位×8 ) ZEROPOWER SRAM

内存集成电路 静态存储器 光电二极管
文件: 总16页 (文件大小:219K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
M48Z02  
M48Z12  
®
5V, 16 Kbit (2Kb x 8) ZEROPOWER SRAM  
FEATURES SUMMARY  
INTEGRATED, ULTRA LOW POWER SRAM  
Figure 1. 24-pin CAPHAT, DIP Package  
and POWER-FAIL CONTROL CIRCUIT  
UNLIMITED WRITE CYCLES  
READ CYCLE TIME EQUALS WRITE CYCLE  
TIME  
AUTOMATIC POWER-FAIL CHIP DESELECT  
and WRITE PROTECTION  
24  
WRITE PROTECT VOLTAGES  
(V  
= Power-fail Deselect Voltage):  
1
PFD  
– M48Z02: V = 4.75 to 5.5V;  
CC  
PCDIP24 (PC)  
Battery/Crystal  
CAPHAT  
4.5V V  
4.75V  
PFD  
– M48Z12: V = 4.5 to 5.5V;  
CC  
4.2V V  
4.5V  
PFD  
SELF-CONTAINED BATTERY IN THE  
CAPHAT™ DIP PACKAGE  
PIN and FUNCTION COMPATIBLE WITH  
JEDEC STANDARD 2K x 8 SRAMs  
April 2003  
1/16  
Rev. 3.1  
M48Z02, M48Z12  
TABLE OF CONTENTS  
SUMMARY DESCRIPTION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Figure 2. Logic Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Table 1. Signal Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Figure 3. DIP Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Figure 4. Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
MAXIMUM RATING. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Table 2. Absolute Maximum Ratings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
DC AND AC PARAMETERS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 5  
Table 3. Operating and AC Measurement Conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Figure 5. AC Testing Load Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Table 4. Capacitance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Table 5. DC Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
OPERATION MODES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Table 6. Operating Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
READ Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Figure 6. READ Mode AC Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Table 7. READ Mode AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
WRITE Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Figure 7. WRITE Enable Controlled, WRITE AC Waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Figure 8. Chip Enable Controlled, WRITE AC Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Table 8. WRITE Mode AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Data Retention Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Figure 9. Checking the BOK Flag Status. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Figure 10. Power Down/Up Mode AC Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Table 9. Power Down/Up AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Table 10. Power Down/Up Trip Points DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Figure 11. Crystal Accuracy Across Temperature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
V
CC  
Noise And Negative Going Transients. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Figure 12. Supply Voltage Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
PACKAGE MECHANICAL INFORMATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
PART NUMBERING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
REVISION HISTORY. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
2/16  
M48Z02, M48Z12  
SUMMARY DESCRIPTION  
®
The M48Z02/12 ZEROPOWER RAM is a 2K x 8  
non-volatile static RAM which is pin and functional  
compatible with the DS1220.  
the absence of power over commercial operating  
temperature range.  
The M48Z02/12 is a non-volatile pin and function  
equivalent to any JEDEC standard 2K x 8 SRAM.  
It also easily fits into many ROM, EPROM, and  
EEPROM sockets, providing the non-volatility of  
PROMs without any requirement for special  
WRITE timing or limitations on the number of  
WRITEs that can be performed.  
A special 24-pin, 600mil DIP CAPHAT™ package  
houses the M48Z02/12 silicon with a long life lithi-  
um button cell to form a highly integrated battery  
backed-up memory solution.  
The M48Z02/12 button cell has sufficient capacity  
and storage life to maintain data functionality for  
an accumulated time period of at least 10 years in  
Figure 2. Logic Diagram  
Table 1. Signal Names  
A0-A10  
Address Inputs  
Data Inputs / Outputs  
Chip Enable  
V
CC  
DQ0-DQ7  
11  
8
E
A0-A10  
DQ0-DQ7  
G
W
Output Enable  
WRITE Enable  
Supply Voltage  
Ground  
W
E
M48Z02  
M48Z12  
V
CC  
V
SS  
G
V
SS  
AI01186  
Figure 3. DIP Connections  
A7  
A6  
1
2
3
4
5
6
7
8
9
24  
V
CC  
23 A8  
A5  
22 A9  
A4  
21  
20  
W
G
A3  
A2  
M48Z02 19 A10  
M48Z12  
A1  
18  
E
A0  
17 DQ7  
16 DQ6  
15 DQ5  
14 DQ4  
13 DQ3  
DQ0  
DQ1 10  
DQ2 11  
V
12  
SS  
AI01187  
3/16  
M48Z02, M48Z12  
Figure 4. Block Diagram  
A0-A10  
LITHIUM  
CELL  
DQ0-DQ7  
E
POWER  
2K x 8  
SRAM ARRAY  
VOLTAGE SENSE  
AND  
V
SWITCHING  
CIRCUITRY  
PFD  
W
G
V
V
CC  
SS  
AI01255  
MAXIMUM RATING  
Stressing the device above the rating listed in the  
“Absolute Maximum Ratings” table may cause  
permanent damage to the device. These are  
stress ratings only and operation of the device at  
these or any other conditions above those indicat-  
ed in the Operating sections of this specification is  
not implied. Exposure to Absolute Maximum Rat-  
ing conditions for extended periods may affect de-  
vice  
reliability.  
Refer  
also  
to  
the  
STMicroelectronics SURE Program and other rel-  
evant quality documents.  
Table 2. Absolute Maximum Ratings  
Symbol  
Parameter  
Value  
0 to 70  
Unit  
Grade 1  
Grade 6  
°C  
T
A
Ambient Operating Temperature  
–40 to 85  
–40 to 85  
T
Storage Temperature (V Off, Oscillator Off)  
°C  
°C  
STG  
CC  
(1)  
Lead Solder Temperature for 10 seconds  
260  
T
SLD  
V
Input or Output Voltages  
Supply Voltage  
–0.3 to 7  
V
V
IO  
V
CC  
–0.3 to 7  
I
Output Current  
20  
1
mA  
W
O
P
Power Dissipation  
D
Note: 1. Soldering temperature not to exceed 260°C for 10 seconds (total thermal budget not to exceed 150°C for longer than 30 seconds).  
CAUTION: Negative undershoots below –0.3V are not allowed on any pin while in the Battery Back-up mode.  
4/16  
M48Z02, M48Z12  
DC AND AC PARAMETERS  
This section summarizes the operating and mea-  
surement conditions, as well as the DC and AC  
characteristics of the device. The parameters in  
the following DC and AC Characteristic tables are  
derived from tests performed under the Measure-  
ment Conditions listed in the relevant tables. De-  
signers should check that the operating conditions  
in their projects match the measurement condi-  
tions when using the quoted parameters.  
Table 3. Operating and AC Measurement Conditions  
Parameter  
M48Z02  
4.75 to 5.5  
0 to 70  
M48Z12  
4.5 to 5.5  
0 to 70  
–40 to 85  
100  
Unit  
V
Supply Voltage (V  
)
CC  
Grade 1  
Grade 6  
°C  
°C  
pF  
ns  
V
Ambient Operating Temperature (T )  
A
Load Capacitance (C )  
100  
L
Input Rise and Fall Times  
5  
5  
Input Pulse Voltages  
0 to 3  
1.5  
0 to 3  
Input and Output Timing Ref. Voltages  
1.5  
V
Note: Output Hi-Z is defined as the point where data is no longer driven.  
Figure 5. AC Testing Load Circuit  
5V  
1.8kΩ  
DEVICE  
UNDER  
TEST  
OUT  
1kΩ  
C
= 100pF  
L
C
includes JIG capacitance  
L
AI01019  
Table 4. Capacitance  
Symbol  
(1,2)  
Min  
Max  
10  
Unit  
Parameter  
C
Input Capacitance  
Input / Output Capacitance  
pF  
pF  
IN  
(3)  
10  
C
IO  
Note: 1. Effective capacitance measured with power supply at 5V. Sampled only, not 100% tested.  
2. At 25°C, f = 1MHz.  
3. Outputs deselected.  
5/16  
M48Z02, M48Z12  
Table 5. DC Characteristics  
(1)  
Symbol  
Parameter  
Min  
Max  
±1  
±1  
80  
3
Unit  
µA  
Test Condition  
0V V V  
Input Leakage Current  
I
IN  
CC  
LI  
(2)  
0V V  
V  
CC  
Output Leakage Current  
Supply Current  
µA  
I
OUT  
LO  
I
Outputs open  
mA  
mA  
mA  
CC  
E = V  
Supply Current (Standby) TTL  
Supply Current (Standby) CMOS  
I
I
IH  
CC1  
E = V – 0.2V  
3
CC  
CC2  
(3)  
Input Low Voltage  
Input High Voltage  
Output Low Voltage  
Output High Voltage  
–0.3  
2.2  
0.8  
V
V
V
V
V
IL  
V
V
+ 0.3  
IH  
CC  
V
V
I
= 2.1mA  
= –1mA  
OH  
0.4  
OL  
OL  
I
2.4  
OH  
Note: 1. Valid for Ambient Operating Temperature: T = 0 to 70°C or –40 to 85°C; V = 4.75 to 5.5V or 4.5 to 5.5V (except where noted).  
A
CC  
2. Outputs deselected.  
3. Negative spikes of –1V allowed for up to 10ns once per Cycle.  
OPERATION MODES  
The M48Z02/12 also has its own Power-fail Detect  
circuit. The control circuitry constantly monitors  
the single 5V supply for an out of tolerance condi-  
data security in the midst of unpredictable system  
operation brought on by low V . As V falls be-  
CC  
CC  
low approximately 3V, the control circuitry con-  
nects the battery which maintains data operation  
until valid power returns.  
tion. When V is out of tolerance, the circuit write  
CC  
protects the SRAM, providing a high degree of  
Table 6. Operating Modes  
V
Mode  
Deselect  
WRITE  
READ  
E
G
X
X
W
DQ0-DQ7  
Power  
Standby  
Active  
CC  
V
X
High Z  
IH  
4.75 to 5.5V  
or  
4.5 to 5.5V  
V
V
V
V
D
IL  
IL  
IL  
IL  
IH  
IH  
IN  
V
V
V
D
Active  
IL  
OUT  
V
IH  
READ  
High Z  
High Z  
High Z  
Active  
(1)  
Deselect  
X
X
X
CMOS Standby  
V
SO  
to V  
(min)  
PFD  
(1)  
Deselect  
X
X
X
Battery Back-up Mode  
V  
SO  
Note: X = V or V ; V = Battery Back-up Switchover Voltage.  
IH  
IL  
SO  
1. See Table 10, page 11 for details.  
6/16  
M48Z02, M48Z12  
READ Mode  
The M48Z02/12 is in the READ Mode whenever W  
(WRITE Enable) is high and E (Chip Enable) is  
low. The device architecture allows ripple-through  
access of data from eight of 16,384 locations in the  
static storage array. Thus, the unique address  
specified by the 11 Address Inputs defines which  
one of the 2,048 bytes of data is to be accessed.  
Valid data will be available at the Data I/O pins  
available after the latter of the Chip Enable Access  
time (t  
) or Output Enable Access time  
ELQV  
(t  
GLQV  
).  
The state of the eight three-state Data I/O signals  
is controlled by E and G. If the outputs are activat-  
ed before t  
indeterminate state until t  
, the data lines will be driven to an  
AVQV  
. If the Address In-  
AVQV  
puts are changed while E and G remain active,  
output data will remain valid for Output Data Hold  
within Address Access time (t  
) after the last  
AVQV  
address input signal is stable, providing that the E  
and G access times are also satisfied. If the E and  
G access times are not met, valid data will be  
time (t  
) but will go indeterminate until the next  
AXQX  
Address Access.  
Figure 6. READ Mode AC Waveforms  
tAVAV  
VALID  
A0-A10  
tAVQV  
tELQV  
tAXQX  
tEHQZ  
E
tELQX  
tGLQV  
tGHQZ  
G
tGLQX  
DQ0-DQ7  
VALID  
AI01330  
Note: WRITE Enable (W) = High.  
Table 7. READ Mode AC Characteristics  
M48Z02/M48Z12  
–150  
(1)  
Symbol  
–70  
Max  
–200  
Unit  
Parameter  
Min  
Min  
Max  
Min  
Max  
t
READ Cycle Time  
70  
150  
200  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
AVAV  
t
Address Valid to Output Valid  
70  
70  
35  
150  
150  
75  
200  
200  
80  
AVQV  
t
Chip Enable Low to Output Valid  
Output Enable Low to Output Valid  
Chip Enable Low to Output Transition  
Output Enable Low to Output Transition  
Chip Enable High to Output Hi-Z  
Output Enable High to Output Hi-Z  
Address Transition to Output Transition  
ELQV  
t
GLQV  
t
5
5
10  
5
10  
5
ELQX  
t
GLQX  
t
25  
25  
35  
35  
40  
40  
EHQZ  
t
GHQZ  
t
10  
5
5
AXQX  
Note: 1. Valid for Ambient Operating Temperature: T = 0 to 70°C or –40 to 85°C; V = 4.75 to 5.5V or 4.5 to 5.5V (except where noted).  
A
CC  
7/16  
M48Z02, M48Z12  
WRITE Mode  
The M48Z02/12 is in the WRITE Mode whenever  
W and E are active. The start of a WRITE is refer-  
enced from the latter occurring falling edge of W or  
E. A WRITE is terminated by the earlier rising  
edge of W or E. The addresses must be held valid  
throughout the cycle. E or W must return high for  
er READ or WRITE cycle. Data-in must be valid t  
D-  
prior to the end of WRITE and remain valid for  
VWH  
t
afterward. G should be kept high during  
WHDX  
WRITE cycles to avoid bus contention; although, if  
the output bus has been activated by a low on E  
and G, a low on W will disable the outputs t  
after W falls.  
WLQZ  
a minimum of t  
from Chip Enable or t  
EHAX  
WHAX  
from WRITE Enable prior to the initiation of anoth-  
Figure 7. WRITE Enable Controlled, WRITE AC Waveform  
tAVAV  
A0-A10  
VALID  
tAVWH  
tAVEL  
tAVWL  
tWHAX  
E
tWLWH  
W
tWLQZ  
tWHQX  
tWHDX  
DQ0-DQ7  
DATA INPUT  
tDVWH  
AI01331  
Figure 8. Chip Enable Controlled, WRITE AC Waveforms  
tAVAV  
A0-A10  
VALID  
tAVEH  
tELEH  
tAVEL  
tEHAX  
E
tAVWL  
W
tEHDX  
DQ0-DQ7  
DATA INPUT  
tDVEH  
AI01332B  
8/16  
M48Z02, M48Z12  
Table 8. WRITE Mode AC Characteristics  
M48Z02/M48Z12  
–150  
(1)  
Symbol  
–70  
–200  
Unit  
Parameter  
Min Max Min Max Min Max  
t
WRITE Cycle Time  
70  
0
150  
0
200  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
AVAV  
t
Address Valid to WRITE Enable Low  
Address Valid to Chip Enable 1 Low  
WRITE Enable Pulse Width  
AVWL  
t
0
0
0
AVEL  
t
50  
55  
0
90  
90  
10  
10  
40  
40  
5
120  
120  
10  
10  
60  
60  
5
WLWH  
t
Chip Enable Low to Chip Enable 1 High  
WRITE Enable High to Address Transition  
Chip Enable High to Address Transition  
Input Valid to WRITE Enable High  
Input Valid to Chip Enable High  
ELEH  
t
WHAX  
t
0
EHAX  
t
30  
30  
5
DVWH  
t
DVEH  
t
WRITE Enable High to Input Transition  
Chip Enable High to Input Transition  
WRITE Enable Low to Output Hi-Z  
Address Valid to WRITE Enable High  
Address Valid to Chip Enable High  
WRITE Enable High to Output Transition  
WHDX  
t
5
5
5
EHDX  
t
25  
50  
60  
WLQZ  
t
60  
60  
5
120  
120  
10  
140  
140  
10  
AVWH  
t
AVEH  
t
WHQX  
Note: 1. Valid for Ambient Operating Temperature: T = 0 to 70°C or –40 to 85°C; V = 4.75 to 5.5V or 4.5 to 5.5V (except where noted).  
A
CC  
9/16  
M48Z02, M48Z12  
Data Retention Mode  
Figure 9. Checking the BOK Flag Status  
With valid V  
applied, the M48Z02/12 operates  
CC  
as a conventional BYTEWIDE™ static RAM.  
Should the supply voltage decay, the RAM will au-  
tomatically power-fail deselect, write protecting it-  
POWER-UP  
READ DATA  
AT ANY ADDRESS  
self when V  
falls within the V  
(max), V  
PFD PFD  
CC  
(min) window. All outputs become high imped-  
ance, and all inputs are treated as “don't care.”  
Note: A power failure during a WRITE cycle may  
corrupt data at the currently addressed location,  
but does not jeopardize the rest of the RAM's con-  
WRITE DATA  
COMPLEMENT BACK  
TO SAME ADDRESS  
tent. At voltages below V  
(min), the user can be  
PFD  
assured the memory will be in a write protected  
READ DATA  
AT SAME  
ADDRESS AGAIN  
state, provided the V fall time is not less than t .  
CC  
F
The M48Z02/12 may respond to transient noise  
spikes on V that reach into the deselect window  
CC  
during the time the device is sampling V . There-  
CC  
fore, decoupling of the power supply lines is rec-  
ommended.  
IS DATA  
NO (BATTERY LOW)  
The power switching circuit connects external V  
to the RAM and disconnects the battery when V  
COMPLEMENT  
OF FIRST  
READ?  
CC  
CC  
rises above V . As V rises, the battery voltage  
SO  
CC  
NOTIFY SYSTEM  
OF LOW BATTERY  
(DATA MAY BE  
CORRUPTED)  
is checked. If the voltage is too low, an internal  
Battery Not OK (BOK) flag will be set. The BOK  
flag can be checked after power up. If the BOK flag  
is set, the first WRITE attempted will be blocked.  
The flag is automatically cleared after the first  
WRITE, and normal RAM operation resumes. Fig-  
ure 9 illustrates how a BOK check routine could be  
structured.  
(BATTERY OK) YES  
WRITE ORIGINAL  
DATA BACK TO  
SAME ADDRESS  
CONTINUE  
For more information on a Battery Storage Life re-  
fer to the Application Note AN1012.  
AI00607  
Figure 10. Power Down/Up Mode AC Waveforms  
V
CC  
V
V
V
(max)  
(min)  
PFD  
PFD  
SO  
tF  
tDR  
tR  
tPD  
tFB  
tRB  
tREC  
RECOGNIZED  
NOTE  
RECOGNIZED  
INPUTS  
DON'T CARE  
HIGH-Z  
OUTPUTS  
VALID  
VALID  
(PER CONTROL INPUT)  
(PER CONTROL INPUT)  
AI00606  
Note: Inputs may or may not be recognized at this time. Caution should be taken to keep E high as V rises past V  
(min). Some systems  
PFD  
CC  
may perform inadvertent WRITE cycles after V rises above V  
(min) but before normal system operations begin. Even though a  
CC  
PFD  
power on reset is being applied to the processor, a reset condition may not occur until after the system is running.  
10/16  
M48Z02, M48Z12  
Table 9. Power Down/Up AC Characteristics  
(1)  
Symbol  
Min  
0
Max  
Unit  
µs  
Parameter  
t
PD  
E or W at V before Power Down  
IH  
(2)  
V
(max) to V  
(min) to V  
(min) V Fall Time  
300  
µs  
t
PFD  
PFD  
CC  
F
(3)  
V
V
V
V
Fall Time  
10  
0
µs  
µs  
µs  
ms  
t
PFD  
PFD  
SS CC  
FB  
t
(min) to V  
(max) V Rise Time  
R
PFD CC  
t
to V  
(min) V Rise Time  
PFD CC  
1
RB  
SS  
t
E or W at V after Power Up  
IH  
2
REC  
Note: 1. Valid for Ambient Operating Temperature: T = 0 to 70°C or –40 to 85°C; V = 4.75 to 5.5V or 4.5 to 5.5V (except where noted).  
A
CC  
2. V  
(max) to V  
(min) fall time of less than tF may result in deselection/write protection not occurring until 200µs after V pass-  
PFD CC  
PFD  
es V  
(min).  
PFD  
3. V  
(min) to V fall time of less than t may cause corruption of RAM data.  
SS FB  
PFD  
Table 10. Power Down/Up Trip Points DC Characteristics  
(1,2)  
Symbol  
Min  
4.5  
4.2  
Typ  
4.6  
4.3  
3.0  
Max  
4.75  
4.5  
Unit  
V
Parameter  
M48Z02  
M48Z12  
V
PFD  
Power-fail Deselect Voltage  
V
V
Battery Back-up Switchover Voltage  
Expected Data Retention Time  
V
SO  
(3)  
10  
YEARS  
t
DR  
Note: 1. All voltages referenced to V  
.
SS  
2. Valid for Ambient Operating Temperature: T = 0 to 70°C or –40 to 85°C; V = 4.75 to 5.5V or 4.5 to 5.5V (except where noted).  
A
CC  
3. At 25°C, V = 0V.  
CC  
Figure 11. Crystal Accuracy Across Temperature  
ppm  
20  
0
-20  
-40  
2
F  
F
ppm  
C2  
= -0.038  
(T - T0) ± 10%  
-60  
-80  
T0 = 25 °C  
-100  
0
5
10 15 20 25 30 35 40 45 50 55 60 65 70  
°C  
AI02124  
11/16  
M48Z02, M48Z12  
V
Noise And Negative Going Transients  
Figure 12. Supply Voltage Protection  
CC  
I
transients, including those produced by output  
CC  
switching, can produce voltage fluctuations, re-  
sulting in spikes on the V bus. These transients  
CC  
can be reduced if capacitors are used to store en-  
ergy which stabilizes the V  
bus. The energy  
CC  
stored in the bypass capacitors will be released as  
low going spikes are generated or energy will be  
absorbed when overshoots occur. A ceramic by-  
pass capacitor value of 0.1µF (as shown in Figure  
12) is recommended in order to provide the need-  
ed filtering.  
V
CC  
V
CC  
0.1µF  
DEVICE  
In addition to transients that are caused by normal  
SRAM operation, power cycling can generate neg-  
ative voltage spikes on V  
that drive it to values  
CC  
V
SS  
below V by as much as one volt. These negative  
SS  
spikes can cause data corruption in the SRAM  
while in battery backup mode. To protect from  
these voltage spikes, STMicroelectronics recom-  
AI02169  
mends connecting a schottky diode from V  
to  
CC  
V
(cathode connected to V , anode to V ).  
SS  
CC SS  
Schottky diode 1N5817 is recommended for  
through hole and MBRS120T3 is recommended  
for surface mount.  
12/16  
M48Z02, M48Z12  
PACKAGE MECHANICAL INFORMATION  
Figure 13. PCDIP24 – 24-pin Plastic DIP, Battery CAPHAT™, Package Outline  
A2  
A
L
A1  
e1  
C
B1  
B
eA  
e3  
D
N
1
E
PCDIP  
Note: Drawing is not to scale.  
Table 11. PCDIP24 – 24-pin Plastic DIP, Battery CAPHAT™, Package Mechanical Data  
mm  
Min  
inches  
Min  
Symb  
Typ  
Max  
9.65  
0.76  
8.89  
0.53  
1.78  
0.31  
34.80  
18.34  
2.79  
30.73  
16.00  
3.81  
Typ  
Max  
A
A1  
A2  
B
8.89  
0.38  
8.38  
0.38  
1.14  
0.20  
34.29  
17.83  
2.29  
25.15  
15.24  
3.05  
24  
0.350  
0.015  
0.330  
0.015  
0.045  
0.008  
1.350  
0.702  
0.090  
0.990  
0.600  
0.120  
24  
0.380  
0.030  
0.350  
0.021  
0.070  
0.012  
1.370  
0.722  
0.110  
1.210  
0.630  
0.150  
B1  
C
D
E
e1  
e3  
eA  
L
N
13/16  
M48Z02, M48Z12  
PART NUMBERING  
Table 12. Ordering Information Scheme  
Example:  
M48Z  
02  
–70  
PC  
1
TR  
Device Type  
M48Z  
Supply Voltage and Write Protect Voltage  
02 = V = 4.75 to 5.5V; V  
= 4.5 to 4.75V  
CC  
PFD  
12 = V = 4.5 to 5.5V; V  
= 4.2 to 4.5V  
PFD  
CC  
Speed  
–70 = 70ns (M48Z02/12)  
–150 = 150ns (M48Z02/12)  
–200 = 200ns (M48Z02/12)  
Package  
PC = PCDIP24  
Temperature Range  
1 = 0 to 70°C  
6 = –40 to 85°C  
Shipping Method  
blank = Tubes  
TR = Tape & Reel  
For a list of available options (e.g., Speed, Package) or for further information on any aspect of this device,  
please contact the ST Sales Office nearest you.  
14/16  
M48Z02, M48Z12  
REVISION HISTORY  
Table 13. Document Revision History  
Date  
Rev. #  
Revision Details  
May 1999  
1.0  
First issue  
Reformatted; Temperature information added to tables (Table 2, 3, 4, 5, 7, 8, 9, 10); Figure  
updated (Figure 10)  
09-Jul-01  
2.0  
17-Dec-01  
20-May-02  
01-Apr-03  
22-Apr-03  
2.1  
2.2  
3.0  
3.1  
Remove references to “clock” in document  
Updated V Noise and Negative Going Transients text  
CC  
v2.2 template applied; test condition updated (Table 10)  
Fix error in Ordering Information (Table 12)  
15/16  
M48Z02, M48Z12  
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences  
of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted  
by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject  
to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not  
authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.  
The ST logo is registered trademark of STMicroelectronics  
All other names are the property of their respective owners.  
© 2003 STMicroelectronics - All Rights Reserved  
STMicroelectronics GROUP OF COMPANIES  
Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia -  
Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - U.S.A.  
www.st.com  
16/16  

相关型号:

M48Z02-70PC6TR

5V, 16 Kbit (2Kb x 8) ZEROPOWER SRAM
STMICROELECTR

M48Z02_07

5V, 16Kbit (2Kb x 8) ZEROPOWER SRAM
STMICROELECTR

M48Z02_10

5 V, 16 Kbit (2 Kb x 8) ZEROPOWER? SRAM
STMICROELECTR

M48Z02_11

5 V, 16 Kbit (2 Kb x 8) ZEROPOWER® SRAM
STMICROELECTR

M48Z08

64 Kbit 8Kb x 8 ZEROPOWER SRAM
STMICROELECTR

M48Z08-100MH1

64 Kbit 8Kb x 8 ZEROPOWER SRAM
STMICROELECTR

M48Z08-100MH1TR

64 Kbit 8Kb x 8 ZEROPOWER SRAM
STMICROELECTR

M48Z08-100MH6

64 Kbit 8Kb x 8 ZEROPOWER SRAM
STMICROELECTR

M48Z08-100MH6TR

64 Kbit 8Kb x 8 ZEROPOWER SRAM
STMICROELECTR

M48Z08-100PC1

64 Kbit 8Kb x 8 ZEROPOWER SRAM
STMICROELECTR

M48Z08-100PC1TR

64 Kbit 8Kb x 8 ZEROPOWER SRAM
STMICROELECTR

M48Z08-100PC6

64 Kbit 8Kb x 8 ZEROPOWER SRAM
STMICROELECTR