M48T212Y-85MH1E [STMICROELECTRONICS]

5V/3.3V TIMEKEEPER CONTROLLER Supervisor; 5V / 3.3V TIMEKEEPER控制器监事
M48T212Y-85MH1E
型号: M48T212Y-85MH1E
厂家: ST    ST
描述:

5V/3.3V TIMEKEEPER CONTROLLER Supervisor
5V / 3.3V TIMEKEEPER控制器监事

控制器
文件: 总32页 (文件大小:619K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
M48T212Y  
M48T212V  
®
5.0V or 3.3V TIMEKEEPER Supervisor  
FEATURES SUMMARY  
INTEGRATED REAL TIME CLOCK, POWER-  
Figure 1. 44-pin SOIC Package  
FAIL CONTROL CIRCUIT, BATTERY AND  
CRYSTAL  
CONVERTS LOW POWER SRAM INTO  
NVRAMs  
SNAPHAT (SH)  
Crystal/Battery  
YEAR 2000 COMPLIANT (4-Digit Year)  
BATTERY LOW FLAG  
MICROPROCESSOR POWER-ON RESET  
PROGRAMMABLE ALARM OUTPUT  
ACTIVE IN THE BATTERY BACKED-UP  
MODE  
WATCHDOG TIMER  
AUTOMATIC POWER-FAIL CHIP  
DESELECT AND WRITE PROTECTION  
CHOICE OF WRITE PROTECT VOLTAGES  
44  
(V  
= Power-fail Deselect Voltage):  
PFD  
1
M48T212Y: V = 4.5 to 5.5V  
CC  
4.2V V  
4.5V  
PFD  
SOH44 (MH)  
M48T212V: V = 3.0 to 3.6V  
CC  
2.7V V  
3.0V  
PFD  
PACKAGING INCLUDES A 44-LEAD SOIC  
AND SNAPHAT TOP (to be ordered  
®
separately)  
April 2004  
1/32  
M48T212Y, M48T212V  
TABLE OF CONTENTS  
FEATURES SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Figure 1. 44-pin SOIC Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Figure 2. Logic Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Table 1. Signal Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Figure 3. SOIC Connections. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Figure 4. Hardware Hookup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
OPERATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Address Decoding. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Table 2. Operating Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Table 3. Truth Table for SRAM Bank Select . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Figure 5. Chip Enable Control and Bank Select Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Table 4. Chip Enable Control and Bank Select Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
READ Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Figure 6. READ Cycle Timing: RTC Control Signal Waveforms. . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Table 5. READ Mode AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
WRITE Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Figure 7. WRITE Cycle Timing: RTC Control Signal Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Table 6. WRITE Mode AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Data Retention Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
CLOCK OPERATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
TIMEKEEPER® Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Reading the Clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Setting the Clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Stopping and Starting the Oscillator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Table 7. TIMEKEEPER® Register Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Setting the Alarm Clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Figure 8. Alarm Interrupt Reset Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Table 8. Alarm Repeat Modes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Figure 9. Back-up Mode Alarm Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Watchdog Timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
V
CC  
Switch Output. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Power-on Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Figure 10.(RSTIN1 & RSTIN2) Timing Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Table 9. Reset AC Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Calibrating the Clock. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Battery Low Warning. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Initial Power-on Defaults. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Table 10. Default Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Figure 11.Crystal Accuracy Across Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
2/32  
M48T212Y, M48T212V  
Figure 12.Calibration Waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
V
CC  
Noise And Negative Going Transients. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Figure 13.Supply Voltage Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
MAXIMUM RATING. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Table 11. Absolute Maximum Ratings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
DC AND AC PARAMETERS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Table 12. DC and AC Measurement Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Figure 14.AC Testing Load Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Table 13. Capacitance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Table 14. DC Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Figure 15.Power Down/Up Mode AC Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Table 15. Power Down/Up Mode AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
PACKAGE MECHANICAL INFORMATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Figure 16.SOH44 – 44-lead Plastic Small Outline, SNAPHAT, Package Outline . . . . . . . . . . . . . . 27  
Table 16. SOH44 – 44-lead Plastic Small Outline, SNAPHAT, Package Mechanical Data . . . . . . 27  
Figure 17.SH – 4-pin SNAPHAT Housing for 48 mAh Battery & Crystal, Package Outline . . . . . . 28  
Table 17. SH – 4-pin SNAPHAT Housing for 48 mAh Battery & Crystal, Package Mech. Data . . . 28  
Figure 18.SH – 4-pin SNAPHAT Housing for 120mAh Battery & Crystal, Package Outline . . . . . . 29  
Table 18. SH – 4-pin SNAPHAT Housing for 120mAh Battery & Crystal, Package Mech. Data. . . 29  
PART NUMBERING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Table 19. Ordering Information Example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Table 20. SNAPHAT® Battery Table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
REVISION HISTORY. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Table 21. Document Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
3/32  
M48T212Y, M48T212V  
DESCRIPTION  
The M48T212Y/V are self-contained devices that  
include a real time clock (RTC), programmable  
alarms, a watchdog timer, and two external chip  
enable outputs which provide control of up to four  
(two in parallel) external low-power static RAMs.  
mounted on top of the SOIC package after the  
completion of the surface mount process.  
Insertion of the SNAPHAT housing after reflow  
prevents potential battery and crystal damage due  
to the high temperatures required for device sur-  
face-mounting. The SNAPHAT housing is keyed  
to prevent reverse insertion.  
The SOIC and battery/crystal packages are  
shipped separately in plastic anti-static tubes or in  
Tape & Reel form. For the-44 lead SOIC, the bat-  
tery/crystal package (e.g., SNAPHAT) part num-  
®
Access to all TIMEKEEPER functions and the  
external RAM is the same as conventional byte-  
wide SRAM. The 16 TIMEKEEPER Registers offer  
Century, Year, Month, Date, Day, Hour, Minute,  
Second, Calibration, Alarm, Watchdog, and Flags.  
Externally attached static RAMs are controlled by  
the M48T212Y/V via the E1  
nals (see Table 3., page 8).  
and E2  
sig-  
CON  
CON  
ber  
is  
“M4TXX-BR12SH”  
(see  
Table  
20., page 30).  
The 44-pin, 330mil SOIC provides sockets with  
gold plated contacts at both ends for direct con-  
nection to a separate SNAPHAT housing con-  
taining the battery and crystal. The unique design  
allows the SNAPHAT battery package to be  
Caution: Do not place the SNAPHAT battery/crys-  
tal top in conductive foam, as this will drain the lith-  
ium button-cell battery.  
®
4/32  
M48T212Y, M48T212V  
Figure 2. Logic Diagram  
Table 1. Signal Names  
A0-A3  
DQ0-DQ7  
RSTIN1  
RSTIN2  
RST  
WDI  
A
Address Inputs  
Data Inputs/Outputs  
Reset 1 Input  
V
V
CCSW  
CC  
Reset 2 Input  
Reset Output (Open Drain)  
Watchdog Input  
4
8
A0-A3  
DQ0-DQ7  
Bank Select Input  
A
E
E
Chip Enable Input  
IRQ/FT  
RST  
EX  
External Chip Enable Input  
Output Enable Input  
WRITE Enable Input  
RAM Chip Enable 1 Output  
RAM Chip Enable 2 Output  
Int/Freq Test Output (Open Drain)  
EX  
M48T212Y  
M48T212V  
G
W
E1  
CON  
CON  
W
G
E2  
E1  
CON  
WDI  
RSTIN1  
RSTIN2  
E2  
V
CON  
OUT  
IRQ/FT  
Vccsw  
V
CC  
Switch Output  
V
Supply Voltage Output  
Supply Voltage  
OUT  
V
SS  
AI03019  
V
CC  
V
SS  
Ground  
NC  
Not Connected internally  
5/32  
M48T212Y, M48T212V  
Figure 3. SOIC Connections  
RSTIN1  
RSTIN2  
RST  
NC  
1
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
V
V
V
CC  
2
OUT  
3
CCSW  
4
IRQ/FT  
EX  
NC  
NC  
NC  
NC  
NC  
G
NC  
5
NC  
6
NC  
7
NC  
8
A
9
NC  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
M48T212Y  
M48T212V  
NC  
NC  
W
A3  
NC  
NC  
E
A2  
A1  
A0  
E1  
CON  
WDI  
DQ7  
DQ6  
DQ5  
DQ4  
DQ3  
NC  
E2  
CON  
DQ0  
DQ1  
DQ2  
V
SS  
AI03020  
6/32  
M48T212Y, M48T212V  
Figure 4. Hardware Hookup  
A0-A18  
MOTOROLA  
MTD20P06HDL  
5V/3.3V  
A0-A3  
V
CCSW  
V
CC  
A0-Axx  
(1)  
1N5817  
0.1µF  
V
V
OUT  
CC  
A
E
0.1µF  
(3)  
E2  
CMOS  
SRAM  
E
EX  
W
E1  
CON  
Note 2  
G
E2  
CON  
WDI  
RSTIN1  
RSTIN2  
A0-Axx  
RST  
V
CC  
DQ0-DQ7  
IRQ/FT  
(3)  
E2  
CMOS  
SRAM  
V
E
SS  
M48T212Y/V  
AI03046  
Note: 1. See description in Power Supply Decoupling and Undershoot Protection.  
2. Traces connecting E1 and E2 to external SRAM should be as short as possible.  
CON  
CON  
3. If the second chip enable pin (E2) is unused, it should be tied to V  
.
OUT  
7/32  
M48T212Y, M48T212V  
OPERATION  
Automatic backup and write protection for an ex-  
ternal SRAM is provided through V  
timer can generate either a reset or an interrupt,  
depending on the state of the Watchdog Steering  
Bit (WDS). Bytes 6h-2h include bits that, when  
programmed, provide for clock alarm functionality.  
Alarms are activated when the register content  
matches the month, date, hours, minutes, and  
seconds of the clock registers. Byte 1h contains  
century information. Byte 0h contains additional  
flag information pertaining to the watchdog timer,  
alarm and battery status.  
, E1  
OUT  
CON  
and E2  
pins. (Users are urged to insure that  
CON  
voltage specifications, for both the SUPERVISOR  
chip and external SRAM chosen, are similar). The  
®
SNAPHAT containing the lithium energy source  
used to permanently power the real time clock is  
also used to retain RAM data in the absence of  
V
power through the V  
pin.  
CC  
OUT  
The chip enable outputs to RAM (E1  
and  
CON  
E2  
) are controlled during power transients to  
CON  
The M48T212Y/V also has its own Power-Fail De-  
tect circuit. This control circuitry constantly moni-  
tors the supply voltage for an out of tolerance  
prevent data corruption. The date is automatically  
adjusted for months with less than 31 days and  
corrects for leap years (valid until 2100). The inter-  
nal watchdog timer provides programmable alarm  
windows.  
condition. When V is out of tolerance, the circuit  
CC  
®
write protects the TIMEKEEPER register data  
and external SRAM, providing data security in the  
The nine clock bytes (Fh-9h and 1h) are not the  
actual clock counters, they are memory locations  
consisting of BiPORT READ/WRITE memory  
midst of unpredictable system operation. As V  
CC  
falls below V , the control circuitry automatically  
SO  
switches to the battery, maintaining data and clock  
operation until valid power is restored.  
Address Decoding  
The M48T212Y/V accommodates 4 address lines  
(A3-A0) which allow access to the sixteen bytes of  
the TIMEKEEPER clock registers. All TIMEKEEP-  
ER registers reside in the SUPERVISOR chip it-  
self. All TIMEKEEPER registers are accessed by  
enabling E (Chip Enable).  
cells within the static RAM array. Clock circuitry  
updates the clock bytes with current information  
once per second. The information can be access-  
ed by the user in the same manner as any other lo-  
cation in the static memory array.  
Byte 8h is the clock control register. This byte con-  
trols user access to the clock information and also  
stores the clock calibration setting. Byte 7h con-  
tains the watchdog timer setting. The watchdog  
Table 2. Operating Modes  
V
Mode  
Deselect  
WRITE  
READ  
E
G
X
X
W
DQ7-DQ0  
Power  
Standby  
Active  
CC  
V
IH  
X
High-Z  
4.5V to 5.5V  
or  
3.0V to 3.6V  
V
IL  
V
IL  
V
IL  
V
D
IL  
IH  
IH  
IN  
V
V
V
D
Active  
IL  
OUT  
V
IH  
READ  
High-Z  
High-Z  
High-Z  
Active  
(1)  
Deselect  
X
X
X
CMOS Standby  
V
SO  
to V  
(min)  
PFD  
(1)  
Deselect  
X
X
X
Battery Back-Up  
V  
SO  
Note: X = V or V ; V = Battery Back-up Switchover Voltage  
IH  
IL  
SO  
1. See Table 14., page 25 for details.  
Table 3. Truth Table for SRAM Bank Select  
V
E1  
E2  
Mode  
EX  
Low  
Low  
High  
A
Low  
High  
X
Power  
Active  
CC  
CON  
CON  
Low  
High  
Low  
High  
4.5V to 5.5V  
or  
3.0V to 3.6V  
Select  
High  
High  
Active  
Deselect  
Deselect  
Standby  
(1)  
X
X
X
X
High  
High  
High  
High  
CMOS Standby  
Battery Back-Up  
V
SO  
to V  
(min)  
PFD  
(1)  
Deselect  
V  
SO  
Note: X = V or V ; V = Battery Back-up Switchover Voltage  
IH  
IL  
SO  
1. See Table 14., page 25 for details.  
8/32  
M48T212Y, M48T212V  
Figure 5. Chip Enable Control and Bank Select Timing  
EX  
tEXPD  
tAPD  
A
tEXPD  
E1  
CON  
E2  
CON  
AI02639  
Table 4. Chip Enable Control and Bank Select Characteristics  
M48T212Y  
–70  
M48T212V  
Symbol  
Parameter  
–85  
Unit  
Min  
Max  
Min  
Max  
15  
t
EX to E1  
A to E1  
or E2  
(Low or High)  
CON  
10  
10  
ns  
ns  
EXPD  
CON  
t
or E2  
(Low or High)  
CON  
15  
APD  
CON  
9/32  
M48T212Y, M48T212V  
READ Mode  
The M48T212Y/V executes a READ cycle when-  
ever W (WRITE Enable) is high and E (Chip En-  
able) is low. The unique address specified by the  
address inputs (A3-A0) defines which one of the  
are also satisfied.If they are not, then data access  
must be measured from the latter occurring signal  
(E or G) and the limiting parameter is either t  
ELQV  
for E or t  
time.  
for G rather than the address access  
GLQV  
®
on-chip TIMEKEEPER registers is to be access-  
ed. When the address presented to the  
M48T212Y/V is in the range of 0h-Fh, one of the  
on-board TIMEKEEPER registers is accessed and  
valid data will be available to the eight data output  
When EX input is low, an external SRAM location  
will be selected.  
Note: Care should be taken to avoid taking both E  
and EX low simultaneously to avoid bus conten-  
tion.  
drivers within t  
after the address input signal  
AVQV  
is stable, providing that the E and G access times  
Figure 6. READ Cycle Timing: RTC Control Signal Waveforms  
READ  
tAVAV  
READ  
tAVAV  
WRITE  
tAVAV  
ADDRESS  
tELQV  
tAVQV  
tAVWL  
tWHAX  
E
tELQX  
tGLQV  
G
tWLWH  
W
tGLQX  
tAXQX  
tGHQZ  
DATA OUT  
VALID  
DATA OUT  
VALID  
DATA IN  
VALID  
DQ7-DQ0  
AI02640  
Note: EX is assumed High.  
Table 5. READ Mode AC Characteristics  
M48T212Y  
–70  
M48T212V  
–85  
(1)  
Symbol  
Unit  
Parameter  
Min  
Max  
Min  
Max  
t
Read Cycle Time  
70  
85  
ns  
ns  
ns  
ns  
ns  
AVAV  
t
Address Valid to Output Valid  
70  
70  
25  
85  
85  
35  
AVQV  
t
Chip Enable Low to Output Valid  
Output Enable Low to Output Valid  
Chip Enable Low to Output Transition  
ELQV  
t
GLQV  
(2)  
5
0
5
0
t
ELQX  
GLQX  
EHQZ  
(2)  
(2)  
(2)  
Output Enable Low to Output Transition  
Chip Enable High to Output Hi-Z  
ns  
ns  
ns  
ns  
t
t
20  
20  
25  
25  
Output Enable High to Output Hi-Z  
Address Transition to Output Transition  
t
GHQZ  
t
5
5
AXQX  
Note: 1. Valid for Ambient Operating Temperature: T = 0 to 70°C or –40 to 85°C; V = 4.5 to 5.5V or 3.0 to 3.6V (except where noted).  
A
CC  
2. C = 5pF.  
L
10/32  
M48T212Y, M48T212V  
WRITE Mode  
The M48T212Y/V is in the WRITE Mode whenever  
W (WRITE Enable) and E (Chip Enable) are in a  
low state after the address inputs are stable. The  
start of a WRITE is referenced from the latter oc-  
curring falling edge of W or E. A WRITE is termi-  
nated by the earlier rising edge of W or E. The  
addresses must be held valid throughout the cy-  
G should be kept high during WRITE cycles to  
avoid bus contention; although, if the output bus  
has been activated by a low on E and G a low on  
W will disable the outputs t  
after W falls.  
WLQZ  
When E is low during the WRITE, one of the on-  
®
board TIMEKEEPER registers will be selected  
and data will be written into the device. When EX  
is low (and E is high) an external SRAM location is  
selected.  
Note: Care should be taken to avoid taking both E  
and EX low simultaneously to avoid bus conten-  
tion.  
cle. E or W must return high for a minimum of t  
E-  
from Chip Enable or t  
from WRITE  
HAX  
WHAX  
Enable prior to the initiation of another READ or  
WRITE cycle. Data-in must be valid t prior to  
DVWH  
the end of WRITE and remain valid for t  
terward.  
af-  
WHDX  
Figure 7. WRITE Cycle Timing: RTC Control Signal Waveforms  
WRITE  
tAVAV  
WRITE  
tAVAV  
READ  
tAVAV  
ADDRESS  
tAVEH  
tELEH  
tAVWH  
tEHAX tWHAX  
tAVEL  
tAVQV  
E
tGLQV  
G
tEHDX  
tAVWL  
tWLWH  
tWHQX  
tWLQZ  
W
tEHQZ  
tDVEH tDVWH  
tWHDX  
DATA OUT  
VALID  
DATA IN  
VALID  
DATA IN  
VALID  
DATA OUT  
VALID  
DQ0-DQ7  
AI02641  
Note: EX is assumed High.  
11/32  
M48T212Y, M48T212V  
Table 6. WRITE Mode AC Characteristics  
M48T212Y  
–70  
M48T212V  
–85  
(1)  
Symbol  
Unit  
Parameter  
Min  
Max  
Min  
Max  
t
Write Cycle Time  
70  
0
85  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
AVAV  
t
Address Valid to Write Enable Low  
Address Valid to Chip Enable Low  
Write Enable Pulse Width  
AVWL  
t
0
0
AVEL  
t
45  
50  
0
55  
60  
0
WLWH  
t
Chip Enable Low to Chip Enable High  
Write Enable High to Address Transition  
Chip Enable High to Address Transition  
Input Valid to Write Enable High  
Input Valid to Chip Enable High  
ELEH  
t
WHAX  
t
0
0
EHAX  
t
25  
25  
0
30  
30  
0
DVWH  
t
DVEH  
t
Write Enable High to Input Transition  
Chip Enable High to Input Transition  
WHDX  
t
0
0
EHDX  
(2,3)  
Write Enable Low to Output High-Z  
Address Valid to Write Enable High  
Address Valid to Chip Enable High  
Write Enable High to Output Transition  
20  
25  
ns  
ns  
ns  
ns  
t
WLQZ  
t
55  
55  
5
65  
65  
5
AVWH  
t
AVEH  
(2,3)  
t
WHQX  
Note: 1. Valid for Ambient Operating Temperature: T = 0 to 70°C or –40 to 85°C; V = 4.5 to 5.5V or 3.0 to 3.6V (except where noted).  
A
CC  
2. C = 5pF  
L
3. If E goes low simultaneously with W going low, the outputs remain in the high impedance state.  
12/32  
M48T212Y, M48T212V  
Data Retention Mode  
With valid V applied, the M48T212Y/V can be  
accessed as described above with READ or  
WRITE cycles. Should the supply voltage decay,  
the M48T212Y/V will automatically deselect, write  
protecting itself (and any external SRAM) when  
some criteria which should be used in making the  
final choice of an SRAM to use. The SRAM must  
be designed in a way where the chip enable input  
disables all other inputs to the SRAM. This allows  
inputs to the M48T212Y/V and SRAMs to be  
CC  
V
falls between V  
(max) and V  
(min).  
“Don't care” once V falls below V  
SRAM should also guarantee data retention down  
(min). The  
CC  
PFD  
PFD  
CC  
PFD  
This is accomplished by internally inhibiting ac-  
cess to the clock registers via the E signal. At this  
time, the Reset pin (RST) is driven active and will  
to V = 2.0V. The chip enable access time must  
CC  
be sufficient to meet the system needs with the  
chip enable output propagation delays included.  
remain active until V returns to nominal levels.  
CC  
External RAM access is inhibited in a similar man-  
If the SRAM includes a second chip enable pin  
ner by forcing E1  
and E2  
to a high level.  
(E2), this pin should be tied to V  
.
CON  
CON  
OUT  
This level is within 0.2 volts of the V  
. E1  
BAT  
CON  
CC  
If data retention lifetime is a critical parameter for  
the system, it is important to review the data reten-  
tion current specifications for the particular  
SRAMs being evaluated. Most SRAMs specify a  
data retention current at 3.0V. Manufacturers gen-  
erally specify a typical condition for room temper-  
ature along with a worst case condition (generally  
at elevated temperatures). The system level re-  
quirements will determine the choice of which val-  
ue to use.  
and E2  
will remain at this level as long as V  
CON  
remains at an out-of-tolerance condition.  
When V falls below battery back-up switchover  
CC  
voltage (V ), power input is switched from the  
SO  
®
V
pin to the SNAPHAT battery and the clock  
CC  
registers and external SRAM are maintained from  
the attached battery supply. All outputs become  
high impedance. The V  
pin is capable of sup-  
OUT  
plying 100µA of current to the attached memory  
with less than 0.3V drop under this condition. On  
The data retention current value of the SRAMs can  
power up, when V  
returns to a nominal value,  
CC  
then be added to the I  
value of the M48T212Y/  
BAT  
write protection continues for 200ms (max) by in-  
hibiting E1 or E2  
V to determine the total current requirements for  
data retention. The available battery capacity for  
.
CON  
CON  
®
The RST signal also remains active during this  
time (see Figure 15., page 26).  
Note: Most low power SRAMs on the market to-  
the SNAPHAT of your choice can then be divided  
by this current to determine the amount of data re-  
tention available (see Table 20., page 30).  
day can be used with the M48T212Y/V TIME-  
KEEPER SUPERVISOR. There are, however  
For a further more detailed review of lifetime calcu-  
lations, please see Application Note AN1012.  
®
13/32  
M48T212Y, M48T212V  
CLOCK OPERATION  
®
TIMEKEEPER Registers  
Setting the Clock  
The M48T212Y/V offers 16 internal registers  
which contain TIMEKEEPER , Alarm, Watchdog,  
Bit D7 of the Control Register (8h) is the WRITE  
Bit. Setting the WRITE Bit to a '1,' like the READ  
Bit, halts updates to the TIMEKEEPER registers.  
The user can then load them with the correct day,  
date, and time data in 24 hour BCD format (see  
Table 7., page 15).  
®
Flag, and Control data. These registers are mem-  
ory locations which contain external (user accessi-  
ble) and internal copies of the data (usually  
referred to as BiPORT TIMEKEEPER cells).  
The external copies are independent of internal  
functions except that they are updated periodically  
by the simultaneous transfer of the incremented  
internal copy. TIMEKEEPER and Alarm Registers  
store data in BCD. Control, Watchdog and Flags  
Registers store data in Binary Format.  
Resetting the WRITE Bit to a '0' then transfers the  
values of all time registers (Fh-9h, 1h) to the actual  
TIMEKEEPER counters and allows normal opera-  
tion to resume. After the WRITE Bit is reset, the  
next clock update will occur one second later.  
Note: Upon power-up following a power failure,  
the READ Bit will automatically be set to a '1.' This  
will prevent the clock from updating the TIME-  
KEEPER registers, and will allow the user to read  
the exact time of the power-down event.  
Reading the Clock  
Updates to the TIMEKEEPER registers should be  
halted before clock data is read to prevent reading  
data in transition. The BiPORT TIMEKEEPER  
cells in the RAM array are only data registers and  
not the actual clock counters, so updating the reg-  
isters can be halted without disturbing the clock it-  
self.  
Resetting the READ Bit to a '0' will allow the clock  
to update these registers with the current time.  
The WRITE Bit will be reset to a '0' upon power-up.  
Stopping and Starting the Oscillator  
Updating is halted when a '1' is written to the  
READ Bit, D6 in the Control Register (8h). As long  
as a '1' remains in that position, updating is halted.  
After a halt is issued, the registers reflect the  
count; that is, the day, date, and time that were  
current at the moment the halt command was is-  
sued.  
All of the TIMEKEEPER registers are updated si-  
multaneously. A halt will not interrupt an update in  
progress. Updating occurs 1 second after the  
READ Bit is reset to a '0.'  
The oscillator may be stopped at any time. If the  
device is going to spend a significant amount of  
time on the shelf, the oscillator can be turned off to  
minimize current drain on the battery. The STOP  
Bit is located at Bit D7 within the Seconds Register  
(9h). Setting it to a '1' stops the oscillator. When re-  
set to a '0,' the M48T212Y/V oscillator starts within  
one second.  
Note: It is not necessary to set the WRITE Bit  
when setting or resetting the FREQUENCY TEST  
Bit (FT) or the STOP Bit (ST).  
14/32  
M48T212Y, M48T212V  
®
Table 7. TIMEKEEPER Register Map  
Function/Range  
BCD Format  
Address  
D7  
D6  
D5  
D4  
10M  
0
D3  
D2  
D1  
D0  
Fh  
Eh  
Dh  
Ch  
Bh  
Ah  
9h  
8h  
7h  
6h  
5h  
4h  
3h  
2h  
1h  
0h  
10 Years  
Year  
Year  
Month  
Date  
00-99  
01-12  
01-31  
01-7  
0
0
0
0
0
Month  
10 Date  
Date: Day of Month  
Day of Week  
0
FT  
0
0
0
Day  
0
10 Hours  
Hours (24 Hour Format)  
Minutes  
Hours  
Min  
00-23  
00-59  
00-59  
0
10 Minutes  
10 Seconds  
S
ST  
Seconds  
Sec  
W
R
BMB4  
0
Calibration  
Control  
Watchdog  
A Month  
A Date  
A Hour  
A Min  
A Sec  
Century  
Flag  
WDS  
AFE  
RPT4  
RPT3  
RPT2  
RPT1  
BMB3  
BMB2  
BMB1  
BMB0  
RB1  
RB0  
ABE  
Al 10M  
Alarm Month  
Alarm Date  
01-12  
01-31  
00-23  
00-59  
00-59  
00-99  
RPT5  
0
AI 10 Date  
AI 10 Hour  
Alarm Hour  
Alarm Minutes  
Alarm Seconds  
100 Year  
Alarm 10 Minutes  
Alarm 10 Seconds  
1000 Year  
WDF  
AF  
Y
BL  
Y
Y
Y
Y
Keys: S = Sign Bit  
FT = Frequency Test Bit  
AFE = Alarm Flag Enable Flag  
RB0-RB1 = Watchdog Resolution Bits  
WDS = Watchdog Steering Bit  
R = READ Bit  
W = WRITE Bit  
ST = Stop Bit  
0 = Must be set to '0'  
BL = Battery Low Flag (Read only)  
ABE = Alarm in Battery Back-Up Mode Enable Bit  
RPT1-RPT5 = Alarm Repeat Mode Bits  
WDF = Watchdog Flag (Read only)  
AF = Alarm Flag (Read only)  
BMB0-BMB4 = Watchdog Multiplier Bits  
Y = '1' or '0'  
15/32  
M48T212Y, M48T212V  
Setting the Alarm Clock  
Address locations 6h-2h contain the alarm set-  
tings. The alarm can be configured to go off at a  
prescribed time on a specific month, date, hour,  
minute, or second or repeat every year, month,  
day, hour, minute, or second. It can also be pro-  
grammed to go off while the M48T212Y/V is in the  
battery back-up to serve as a system wake-up call.  
Bits RPT5-RPT1 put the alarm in the repeat mode  
of operation. Table 8 shows the possible configu-  
rations. Codes not listed in the table default to the  
once per second mode to quickly alert the user of  
an incorrect alarm setting.  
If AFE (Alarm Flag Enable) is also set, the alarm  
condition activates the IRQ/FT pin. To disable  
alarm, write '0' to the Alarm Date registers and  
RPT1-5. The IRQ/FT output is cleared by a READ  
to the Flags Register as shown in Figure 8. A sub-  
sequent READ of the Flags Register is necessary  
to see that the value of the Alarm Flag has been  
reset to '0.'  
The IRQ/FT pin can also be activated in the bat-  
tery back-up mode. The IRQ/FT will go low if an  
alarm occurs and both ABE (Alarm in Battery  
Back-up Mode Enable) and AFE are set. The ABE  
and AFE Bits are reset during power-up, therefore  
an alarm generated during power-up will only set  
AF. The user can read the Flag Register at system  
boot-up to determine if an alarm was generated  
while the M48T212Y/V was in the deselect mode  
during power-up. Figure 9., page 17 illustrates the  
back-up mode alarm timing.  
Note: User must transition address (or toggle chip  
enable) to see Flag Bit change.  
When the clock information matches the alarm  
clock settings based on the match criteria defined  
by RPT5-RPT1, the AF (Alarm Flag) is set.  
Figure 8. Alarm Interrupt Reset Waveforms  
A0-A3  
1h  
ADDRESS 0h  
Fh  
ACTIVE FLAG BIT  
IRQ/FT  
HIGH-Z  
AI03021  
Table 8. Alarm Repeat Modes  
RPT5  
RPT4  
RPT3  
RPT2  
RPT1  
Alarm Setting  
Once per Second  
Once per Minute  
Once per Hour  
Once per Day  
1
1
1
1
1
0
1
1
1
1
0
0
1
1
1
0
0
0
1
1
0
0
0
0
1
0
0
0
0
0
Once per Month  
Once per Year  
16/32  
M48T212Y, M48T212V  
Figure 9. Back-up Mode Alarm Waveforms  
tREC  
V
CC  
V
V
(max)  
(min)  
PFD  
PFD  
AFE Bit/ABE Bit  
AF Bit in Flags Register  
IRQ/FT  
HIGH-Z  
HIGH-Z  
AI03622  
Watchdog Timer  
The watchdog timer can be used to detect an out-  
of-control microprocessor. The user programs the  
watchdog timer by setting the desired amount of  
time-out into the Watchdog Register, address 7h.  
Bits BMB4-BMB0 store a binary multiplier and the  
two lower-order bits RB1-RB0 select the resolu-  
tion, where 00=1/16 second, 01=1/4 second, 10=1  
second, and 11=4 seconds. The amount of time-  
out is then determined to be the multiplication of  
the five-bit multiplier value with the resolution. (For  
example: writing 00001110 in the Watchdog Reg-  
ister = 3*1 or 3 seconds).  
Watchdog time-out when the WDS Bit is set to a  
'1.'  
The watchdog timer can be reset by two methods:  
1. a transition (high-to-low or low-to-high) can be  
applied to the Watchdog Input pin (WDI) or  
2. the microprocessor can perform a WRITE of  
the Watchdog Register.  
The time-out period then starts over. The WDI pin  
should be tied to V if not used. The watchdog  
SS  
will be reset on each transition (edge) seen by the  
WDI pin. In the order to perform a software reset  
of the watchdog timer, the original time-out period  
can be written into the Watchdog Register, effec-  
tively restarting the count-down cycle.  
Should the watchdog timer time-out, and the WDS  
Bit is programmed to output an interrupt, a value of  
00h needs to be written to the Watchdog Register  
in order to clear the IRQ/FT pin. This will also dis-  
able the watchdog function until it is again pro-  
grammed correctly. A READ of the Flags Register  
will reset the Watchdog Flag (Bit D7; Register 0h).  
The watchdog function is automatically disabled  
upon power-down and the Watchdog Register is  
cleared. If the watchdog function is set to output to  
the IRQ/FT pin and the frequency test function is  
activated, the watchdog or alarm function prevails  
and the frequency test function is denied.  
Note: Accuracy of timer is within ± the selected  
resolution.  
If the processor does not reset the timer within the  
specified period, the M48T212Y/V sets the WDF  
(Watchdog Flag) and generates a watchdog inter-  
rupt or a microprocessor reset. WDF is reset by  
reading the Flags Register (Address 0h).  
The most significant bit of the Watchdog Register  
is the Watchdog Steering Bit (WDS). When set to  
a '0.' the watchdog will activate the IRQ/FT pin  
when timed-out. When WDS is set to a '1,' the  
watchdog will output a negative pulse on the RST  
pin for 40 to 200 ms. The Watchdog register, AFE,  
ABE, and FT Bits will reset to a '0' at the end of a  
17/32  
M48T212Y, M48T212V  
V
Switch Output  
CC  
Vccsw output goes low when V  
switches to  
priate pull-up resistor to V  
control rise time.  
should be chosen to  
CC  
OUT  
V
turning on a customer supplied P-Channel  
CC  
MOSFET (see Figure 4., page 7). The Motorola  
MTD20P06HDL is recommended. This MOSFET  
Note: If the RST output is fed back into either of  
the RSTIN inputs (for a microprocessor with a bi-  
directional reset) then a 1k(max) pull-up resistor  
is recommended.  
in turn connects V  
the current requirement is greater than I  
to a separate supply when  
OUT  
(see  
OUT1  
Table 14., page 25). This output may also be used  
simply to indicate the status of the internal battery  
switchover comparator, which controls the source  
Reset Inputs (RSTIN1 & RSTIN2)  
The M48T212Y/V provides two independent in-  
puts which can generate an output reset. The du-  
ration and function of these resets is identical to a  
reset generated by a power cycle. Table 9 and Fig-  
ure 10 illustrate the AC reset characteristics of this  
(V or battery) of the V  
output.  
CC  
OUT  
Power-on Reset  
The M48T212Y/V continuously monitors V  
.
CC  
When V  
falls to the power fail detect trip point,  
CC  
function. During the time RST is enabled (t  
R1HRH  
the RST pulls low (open drain) and remains low on  
power-up for t after V passes V (max).  
& t  
), the Reset Inputs are ignored.  
R2HRH  
rec  
CC  
PFD  
Note: RSTIN1 and RSTIN2 are each internally  
The RST pin is an open drain output and an appro-  
pulled up to V through a 100Kresistor.  
CC  
Figure 10. (RSTIN1 & RSTIN2) Timing Waveforms  
RSTIN1  
tR1  
RSTIN2  
tR2  
RST  
tR1HRH  
tR2HRH  
AI02642  
Table 9. Reset AC Characteristics  
(1)  
Symbol  
Min  
200  
100  
40  
Max  
Unit  
ns  
Parameter  
RSTIN1 Low to RSTIN1 High  
(2)  
t
t
R1  
(3)  
RSTIN2 Low to RSTIN2 High  
RSTIN1 High to RST High  
RSTIN2 High to RST High  
ms  
ms  
ms  
R2  
(4)  
(4)  
200  
200  
t
t
R1HRH  
40  
R2HRH  
Note: 1. Valid for Ambient Operating Temperature: T = 0 to 70°C or –40 to 85°C; V = 4.5 to 5.5V or 3.0 to 3.6V (except where noted).  
A
CC  
2. Pulse width less than 50ns will result in no RESET (for noise immunity).  
3. Pulse width less than 20ms will result in no RESET (for noise immunity).  
4. C = 5pF (see Figure 14., page 24).  
L
18/32  
M48T212Y, M48T212V  
Calibrating the Clock  
The M48T212Y/V is driven by a quartz controlled  
oscillator with a nominal frequency of 32,768 Hz.  
The devices are tested not to exceed ±35 ppm  
(parts per million) oscillator frequency error at  
25°C, which equates to about ±1.53 minutes per  
month (see Figure 11., page 21). When the Cali-  
bration circuit is properly employed, accuracy im-  
proves to better than +1/–2 ppm at 25°C.  
The oscillation rate of crystals changes with tem-  
perature. The M48T212Y/V design employs peri-  
odic counter correction. The calibration circuit  
adds or subtracts counts from the oscillator divider  
circuit at the divide by 256 stage, as shown in Fig-  
ure 12., page 21. The number of times pulses  
which are blanked (subtracted, negative calibra-  
tion) or split (added, positive calibration) depends  
upon the value loaded into the five Calibration bits  
found in the Control Register. Adding counts  
speeds the clock up, subtracting counts slows the  
clock down.  
The Calibration bits occupy the five lower-order  
bits (D4-D0) in the Control Register 8h. These bits  
can be set to represent any value between 0 and  
31 in binary form. Bit D5 is a Sign Bit; '1' indicates  
positive calibration, ‘0' indicates negative calibra-  
tion. Calibration occurs within a 64 minute cycle.  
The first 62 minutes in the cycle may, once per  
minute, have one second either shortened by 128  
or lengthened by 256 oscillator cycles.  
If a binary ‘1' is loaded into the register, only the  
first 2 minutes in the 64 minute cycle will be modi-  
fied; if a binary 6 is loaded, the first 12 will be af-  
fected, and so on.  
which corresponds to a total range of +5.5 or –2.75  
minutes per month.  
Two methods are available for ascertaining how  
much calibration a given M48T212Y/V may re-  
quire. The first involves setting the clock, letting it  
run for a month and comparing it to a known accu-  
rate reference and recording deviation over a fixed  
period of time. Calibration values, including the  
number of seconds lost or gained in a given peri-  
od, can be found in Application Note, “AN934,  
®
TIMEKEEPER Calibration.”  
This allows the designer to give the end user the  
ability to calibrate the clock as the environment re-  
quires, even if the final product is packaged in a  
non-user serviceable enclosure. The designer  
could provide a simple utility that accesses the  
Calibration byte.  
The second approach is better suited to a manu-  
facturing environment, and involves the use of the  
IRQ/FT pin. The pin will toggle at 512Hz, when the  
Stop Bit (ST, D7 of 9h) is '0,' the Frequency Test  
Bit (FT, D6 of Ch) is '1,' the Alarm Flag Enable Bit  
(AFE, D7 of 6h) is '0,' and the Watchdog Steering  
Bit (WDS, D7 of 7h) is '1' or the Watchdog Register  
(7h=0) is reset.  
Any deviation from 512 Hz indicates the degree  
and direction of oscillator frequency shift at the test  
temperature. For example,  
a
reading of  
512.010124 Hz would indicate a +20 ppm oscilla-  
tor frequency error, requiring a –10 (WR001010)  
to be loaded into the Calibration Byte for correc-  
tion. Note that setting or changing the Calibration  
Byte does not affect the Frequency test output fre-  
quency.  
Therefore, each calibration step has the effect of  
adding 512 or subtracting 256 oscillator cycles for  
every 125,829,120 actual oscillator cycles, that is  
+4.068 or –2.034 ppm of adjustment per calibra-  
tion step in the calibration register. Assuming that  
the oscillator is running at exactly 32,768 Hz, each  
of the 31 increments in the Calibration byte would  
represent +10.7 or –5.35 seconds per month  
The IRQ/FT pin is an open drain output which re-  
quires a pull-up resistor to V  
for proper opera-  
CC  
tion. A 500-10kresistor is recommended in order  
to control the rise time. The FT Bit is cleared on  
power-up.  
19/32  
M48T212Y, M48T212V  
Battery Low Warning  
The M48T212Y/V automatically performs battery  
voltage monitoring upon power-up and at factory-  
programmed time intervals of approximately 24  
hours. The Battery Low (BL) Bit, Bit D4 of Flags  
Register 0h, will be asserted if the battery voltage  
is found to be less than approximately 2.5V. The  
BL Bit will remain asserted until completion of bat-  
tery replacement and subsequent battery low  
monitoring tests, either during the next power-up  
sequence or the next scheduled 24-hour interval.  
If a battery low is generated during a power-up se-  
quence, this indicates that the battery is below ap-  
proximately 2.5 volts and may not be able to  
maintain data integrity in the SRAM. Data should  
be considered suspect and verified as correct. A  
fresh battery should be installed.  
subsequent periods of battery back-up mode, the  
battery should be replaced. The SNAPHAT bat-  
®
tery/crystal top should be replaced with V  
ering the device to avoid data loss.  
pow-  
CC  
Note: this will cause the clock to lose time during  
the time interval the battery crystal is removed.  
The M48T212Y/V only monitors the battery when  
a nominal V is applied to the device. Thus appli-  
CC  
cations which require extensive durations in the  
battery back-up mode should be powered-up peri-  
odically (at least once every few months) in order  
for this technique to be beneficial.  
Additionally, if a battery low is indicated, data in-  
tegrity should be verified upon power-up via a  
checksum or other technique.  
Initial Power-on Defaults  
If a battery low indication is generated during the  
24-hour interval check, this indicates that the bat-  
tery is near end of life. However, data is not com-  
Upon application of power to the device, the fol-  
lowing register bits are set to a ’0' state: WDS,  
BMB0-BMB4, RB0-RB1, AFE, ABE, W, and FT  
(see Tabel 10).  
promised due to the fact that a nominal V  
is  
CC  
supplied. In order to insure data integrity during  
Table 10. Default Values  
WATCHDOG  
Condition  
W
R
FT  
AFE  
ABE  
(1)  
Register  
Initial Power-up  
0
0
0
0
0
0
(2)  
(Battery Attach for SNAPHAT)  
(3)  
0
0
0
0
1
1
0
0
0
0
1
0
0
1
0
0
0
0
RESET  
(4)  
Power-down  
Subsequent Power-up  
Note: 1. WDS, BMB0-BMB4, RB0, RB1.  
2. State of other control bits undefined.  
3. State of other control bits remains unchanged.  
4. Assuming these bits set to '1' prior to power-down.  
20/32  
M48T212Y, M48T212V  
Figure 11. Crystal Accuracy Across Temperature  
Frequency (ppm)  
20  
0
–20  
–40  
–60  
–80  
2
F  
F
ppm  
C2  
= -0.038  
(T - T0) ± 10%  
–100  
–120  
–140  
–160  
T0 = 25 °C  
–40  
–30  
–20  
–10  
0
10  
20  
30  
40  
50  
60  
70  
80  
Temperature °C  
AI00999  
Figure 12. Calibration Waveform  
NORMAL  
POSITIVE  
CALIBRATION  
NEGATIVE  
CALIBRATION  
AI00594B  
21/32  
M48T212Y, M48T212V  
V
Noise And Negative Going Transients  
Figure 13. Supply Voltage Protection  
CC  
I
transients, including those produced by output  
CC  
switching, can produce voltage fluctuations, re-  
sulting in spikes on the V bus. These transients  
CC  
can be reduced if capacitors are used to store en-  
ergy which stabilizes the V  
bus. The energy  
CC  
stored in the bypass capacitors will be released as  
low going spikes are generated or energy will be  
absorbed when overshoots occur. A ceramic by-  
pass capacitor value of 0.1µF (as shown in Figure  
13) is recommended in order to provide the need-  
ed filtering.  
V
CC  
V
CC  
0.1µF  
DEVICE  
In addition to transients that are caused by normal  
SRAM operation, power cycling can generate neg-  
ative voltage spikes on V  
that drive it to values  
CC  
V
SS  
below V by as much as one volt. These negative  
SS  
spikes can cause data corruption in the SRAM  
while in battery backup mode. To protect from  
these voltage spikes, STMicroelectronics recom-  
AI02169  
mends connecting a schottky diode from V  
to  
CC  
V
(cathode connected to V , anode to V ).  
SS  
CC SS  
Schottky diode 1N5817 is recommended for  
through hole and MBRS120T3 is recommended  
for surface mount.  
22/32  
M48T212Y, M48T212V  
MAXIMUM RATING  
Stressing the device above the rating listed in the  
“Absolute Maximum Ratings” table may cause  
permanent damage to the device. These are  
stress ratings only and operation of the device at  
these or any other conditions above those indicat-  
ed in the Operating sections of this specification is  
not implied. Exposure to Absolute Maximum Rat-  
ing conditions for extended periods may affect de-  
vice  
reliability.  
Refer  
also  
to  
the  
STMicroelectronics SURE Program and other rel-  
evant quality documents.  
Table 11. Absolute Maximum Ratings  
Symbol  
Parameter  
Ambient Operating Temperature  
Value  
0 to 70  
Unit  
°C  
T
A
®
–40 to 85  
–55 to 125  
260  
°C  
SNAPHAT  
SOIC  
T
Storage Temperature  
STG  
°C  
(1,2)  
Lead Solder Temperature for 10 seconds  
Input or Output Voltage  
°C  
T
SLD  
–0.3 to V  
+ 0.3  
V
V
V
IO  
CC  
–0.3 to 7.0  
–0.3 to 4.6  
20  
M48T212Y  
M48T212V  
V
Supply Voltage  
CC  
V
I
Output Current  
mA  
W
O
P
D
Power Dissipation  
1
Note: 1. For SO package, standard (SnPb) lead finish: Reflow at peak temperature of 225°C (total thermal budget not to exceed 180°C for  
between 90 to 150 seconds).  
2. For SO package, Lead-free (Pb-free) lead finish: Reflow at peak temperature of 260°C (total thermal budget not to exceed 245°C  
for greater than 30 seconds).  
CAUTION: Negative undershoots below –0.3V are not allowed on any pin while in the Battery Back-up mode.  
CAUTION: Do NOT wave solder SOIC to avoid damaging SNAPHAT sockets.  
23/32  
M48T212Y, M48T212V  
DC AND AC PARAMETERS  
This section summarizes the operating and mea-  
surement conditions, as well as the DC and AC  
characteristics of the device. The parameters in  
the following DC and AC Characteristic tables are  
derived from tests performed under the Measure-  
ment Conditions listed in the relevant tables. De-  
signers should check that the operating conditions  
in their projects match the measurement condi-  
tions when using the quoted parameters.  
Table 12. DC and AC Measurement Conditions  
Parameter  
M48T212Y  
4.5 to 5.5V  
0 to 70°C  
–40 to 85°C  
100pF  
M48T212V  
3.0 to 3.6V  
0 to 70°C  
–40 to 85°C  
50pF  
V
Supply Voltage  
CC  
Grade 1  
Grade 6  
Ambient Operating Temperature  
Load Capacitance (C )  
L
Input Rise and Fall Times  
Input Pulse Voltages  
5ns  
5ns  
0 to 3V  
0 to 3V  
Input and Output Timing Ref. Voltages  
1.5V  
1.5V  
Note: Output High Z is defined as the point where data is no longer driven.  
Figure 14. AC Testing Load Circuit  
645Ω  
DEVICE  
UNDER  
TEST  
C
C
= 100pF or 5pF (1)  
= 30 pF (2)  
1.75V  
L
L
C
includes JIG capacitance  
L
AI03239  
Note: Excluding open-drain output pins; 50pF for M48T212V.  
1. DQ0-DQ7  
2. E1  
and E2  
CON  
CON  
Table 13. Capacitance  
Symbol  
(1,2)  
Min  
Max  
10  
Unit  
pF  
Parameter  
C
Input Capacitance  
Input/Output Capacitance  
IN  
(3)  
10  
pF  
C
OUT  
Note: 1. Effective capacitance measured with power supply at 5V (M48T212Y) or 3.3V (M48T212V); sampled only, not 100% tested.  
2. At 25°C, f = 1MHz.  
3. Outputs deselected.  
24/32  
M48T212Y, M48T212V  
Table 14. DC Characteristics  
M48T212Y  
–70  
M48T212V  
(1)  
Sym  
Parameter  
–85  
Typ  
Unit  
Test Condition  
Min  
Typ  
Max  
Min  
Max  
(2)  
0V V V  
Input Leakage Current  
Output Leakage Current  
Supply Current  
±1  
±1  
µA  
µA  
I
IN  
CC  
LI  
(3)  
0V V  
V  
CC  
±1  
15  
±1  
10  
I
OUT  
LO  
I
Outputs open  
8
4
mA  
CC  
Supply Current (Standby)  
TTL  
I
E = V  
5
3
mA  
CC1  
CC2  
IH  
Supply Current (Standby)  
CMOS  
I
E = V –0.2  
3
2
mA  
nA  
nA  
CC  
Battery Current OSC ON  
575  
950  
800  
1250  
575  
950  
800  
1250  
Battery Current OSC  
(4)  
I
V
CC  
= 0V  
BAT  
ON  
Battery Current OSC  
OFF  
100  
0.8  
100  
0.8  
nA  
V
V
V
Input Low Voltage  
Input High Voltage  
–0.3  
2.2  
–0.3  
2.0  
IL  
V
CC  
+
V
CC  
+
V
IH  
0.3  
0.3  
I
= 2.1mA  
= 10mA  
Output Low Voltage  
Output Low Voltage  
0.4  
0.4  
0.4  
0.4  
V
OL  
V
V
OL  
I
V
OL  
(5)  
(open drain)  
I
= –1.0mA  
= –1.0µA  
Output High Voltage  
2.4  
2.0  
2.4  
2.0  
V
V
OH  
OH  
(6)  
V
V
V
Battery Back-up  
Current (Active)  
I
OUT2  
3.6  
3.6  
70  
V
I
OH  
OHB  
(7)  
V
> V –0.3  
CC  
100  
mA  
OUT  
OUT1  
OUT1  
Current (Battery  
OUT  
I
V
> V  
–0.3  
100  
4.5  
100  
3.0  
µA  
V
OUT2  
OUT2  
BAT  
Back-up)  
Power-fail Deselect  
Voltage  
V
PFD  
4.2  
4.35  
2.7  
2.9  
V
Battery Back-up  
Switchover Voltage  
PFD  
V
3.0  
3.0  
V
V
SO  
100mV  
V
BAT  
Battery Voltage  
3.0  
Note: 1. Valid for Ambient Operating Temperature: T = 0 to 70°C or –40 to 85°C; V = 4.5 to 5.5V or 3.0 to 3.6V (except where noted).  
A
CC  
2. RSTIN1 and RSTIN2 internally pulled-up to V through 100Kresistor. WDI internally pulled-down to V through 100Kresistor.  
CC  
SS  
3. Outputs deselected.  
4. I (OSC ON) = Industrial Temperature Range - Grade 6 device.  
BAT  
5. For IRQ/FT & RST pins (Open Drain).  
6. Conditioned outputs (E1 - E2  
rents will reduce battery life.  
) can only sustain CMOS leakage currents in the battery back-up mode. Higher leakage cur-  
®
CON  
CON  
7. External SRAM must match TIMEKEEPER SUPERVISOR chip V specification.  
CC  
25/32  
M48T212Y, M48T212V  
Figure 15. Power Down/Up Mode AC Waveforms  
V
CC  
V
V
V
(max)  
(min)  
PFD  
PFD  
SO  
tF  
tR  
tFB  
tRB  
trec  
INPUTS  
VALID  
DON'T CARE  
VALID  
HIGH-Z  
OUTPUTS  
VALID  
VALID  
RST  
V
CCSW  
AI02638  
Table 15. Power Down/Up Mode AC Characteristics  
(1)  
Symbol  
Min  
Max  
Unit  
Parameter  
t
V
V
(max) to V  
(min) V Fall Time  
300  
10  
150  
10  
1
µs  
µs  
µs  
µs  
µs  
ms  
F
PFD  
PFD  
PFD  
PFD  
CC  
M48T212Y  
M48T212V  
t
(min) to V  
(min) to V  
V
Fall Time  
FB  
SS CC  
t
R
V
V
V
(max) V Rise Time  
PFD CC  
t
to V  
(min) V Rise Time  
PFD CC  
RB  
SS  
t
(max) to RST High  
40  
200  
rec  
PFD  
Note: 1. Valid for Ambient Operating Temperature: T = 0 to 70°C or –40 to 85°C; V = 4.5 to 5.5V or 3.0 to 3.6V (except where noted).  
A
CC  
26/32  
M48T212Y, M48T212V  
PACKAGE MECHANICAL INFORMATION  
Figure 16. SOH44 – 44-lead Plastic Small Outline, SNAPHAT, Package Outline  
A2  
A
C
eB  
B
e
CP  
D
N
E
H
A1  
α
L
1
SOH-A  
Note: Drawing is not to scale.  
Table 16. SOH44 – 44-lead Plastic Small Outline, SNAPHAT, Package Mechanical Data  
mm  
Min  
inches  
Min  
Symb  
Typ  
Max  
3.05  
0.36  
2.69  
0.46  
0.32  
18.49  
8.89  
Typ  
Max  
0.120  
0.014  
0.106  
0.018  
0.012  
0.728  
0.350  
A
A1  
A2  
B
0.05  
2.34  
0.36  
0.15  
17.71  
8.23  
0.002  
0.092  
0.014  
0.006  
0.697  
0.324  
C
D
E
e
0.81  
0.032  
eB  
H
3.20  
11.51  
0.41  
0°  
3.61  
12.70  
1.27  
8°  
0.126  
0.453  
0.016  
0°  
0.142  
0.500  
0.050  
8°  
L
α
N
44  
44  
CP  
0.10  
0.004  
27/32  
M48T212Y, M48T212V  
Figure 17. SH – 4-pin SNAPHAT Housing for 48 mAh Battery & Crystal, Package Outline  
A2  
A1  
A
A3  
L
eA  
D
B
eB  
E
SHTK-A  
Note: Drawing is not to scale.  
Table 17. SH – 4-pin SNAPHAT Housing for 48 mAh Battery & Crystal, Package Mech. Data  
mm  
Min  
inches  
Min  
Symb  
Typ  
Max  
9.78  
7.24  
6.99  
0.38  
0.56  
21.84  
14.99  
15.95  
3.61  
2.29  
Typ  
Max  
A
A1  
A2  
A3  
B
0.385  
0.285  
0.275  
0.015  
0.022  
0.860  
0.590  
0.628  
0.142  
0.090  
6.73  
6.48  
0.265  
0.255  
0.46  
21.21  
14.22  
15.55  
3.20  
0.018  
0.835  
0.560  
0.612  
0.126  
0.080  
D
E
eA  
eB  
L
2.03  
28/32  
M48T212Y, M48T212V  
Figure 18. SH – 4-pin SNAPHAT Housing for 120mAh Battery & Crystal, Package Outline  
A2  
A1  
A
A3  
L
eA  
D
B
eB  
E
SHTK-A  
Note: Drawing is not to scale.  
Table 18. SH – 4-pin SNAPHAT Housing for 120mAh Battery & Crystal, Package Mech. Data  
mm  
Min  
inches  
Min  
Symb  
Typ  
Max  
10.54  
8.51  
Typ  
Max  
A
A1  
A2  
A3  
B
0.415  
.0335  
0.315  
0.015  
0.022  
0.860  
.0710  
0.628  
0.142  
0.090  
8.00  
7.24  
0.315  
0.285  
8.00  
0.38  
0.46  
21.21  
17.27  
15.55  
3.20  
0.56  
0.018  
0.835  
0.680  
0.612  
0.126  
0.080  
D
21.84  
18.03  
15.95  
3.61  
E
eA  
eB  
L
2.03  
2.29  
29/32  
M48T212Y, M48T212V  
PART NUMBERING  
Table 19. Ordering Information Example  
Example:  
M48T  
212Y  
–70  
MH  
1
TR  
Device Type  
M48T  
Supply and Write Protect Voltage  
212Y = V = 4.5 to 5.5V; 4.2V V  
4.5V  
3.0V  
CC  
PFD  
212V = V = 3.0 to 3.6V; 2.7V V  
CC  
PFD  
Speed  
–70 = 70ns (for M48T212Y)  
–85 = 85ns (for M48T212V)  
Package  
(1)  
MH = SOH44  
Temperature Range  
1 = 0 to 70°C  
6 = –40 to 85°C  
Shipping Method  
blank = Tubes (Not for New Design - Use E)  
®
E = Lead-free Package (ECO PACK ), Tubes  
®
F = Lead-free Package (ECO PACK ), Tape & Reel  
TR = Tape & Reel (Not for New Design - Use F)  
®
Note: 1. The SOIC package (SOH44) requires the SNAPHAT battery package which is ordered separately under the part number  
“M4Txx-BR12SH” in plastic tube or “M4Txx-BR12SHTR” in Tape & Reel form (see Table 20).  
Caution: Do not place the SNAPHAT battery package “M4Txx-BR12SH” in conductive foam as it will drain the lithium button-cell bat-  
tery.  
For other options, or for more information on any aspect of this device, please contact the ST Sales Office  
nearest you.  
®
Table 20. SNAPHAT Battery Table  
Part Number  
M4T28-BR12SH  
M4T32-BR12SH  
Description  
Lithium Battery (48mAh) SNAPHAT  
Lithium Battery (120mAh) SNAPHAT  
Package  
SH  
SH  
30/32  
M48T212Y, M48T212V  
REVISION HISTORY  
Table 21. Document Revision History  
Date  
Rev. #  
1.0  
Revision Details  
October 1999  
01-Mar-00  
21-Apr-00  
10-Nov-00  
30-May-01  
First Issue  
2.0  
Document Layout changed; Default Values table added (Table 10)  
From Preliminary Data to Data Sheet  
3.0  
3.1  
Table 16 changed  
3.2  
Changed “Controller” references to “SUPERVISOR”  
Reformatted; added temp./voltage info. to tables (Table 14, 5, 6, 15, 9); added E2 to  
Hookup (Figure 4); Improve text in “Setting the Alarm Clock” section  
10-Sep-01  
4.0  
13-May-02  
16-Jul-02  
27-Mar-03  
31-Mar-04  
4.1  
4.1  
5.0  
6.0  
Modify reflow time and temperature footnote (Table 11)  
Updated DC Characteristics, footnotes (Table 14)  
v2.2 template applied; updated test condition (Table 14)  
Reformatted; updated with Pb-free information (Table 11, 19)  
31/32  
M48T212Y, M48T212V  
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences  
of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted  
by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject  
to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not  
authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.  
The ST logo is a registered trademark of STMicroelectronics.  
All other names are the property of their respective owners.  
© 2004 STMicroelectronics - All rights reserved  
STMicroelectronics GROUP OF COMPANIES  
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany -  
Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore -  
Spain - Sweden - Switzerland - United Kingdom - United States  
www.st.com  
32/32  

相关型号:

M48T212Y-85MH1F

5V/3.3V TIMEKEEPER CONTROLLER Supervisor
STMICROELECTR

M48T212Y-85MH1TR

5V/3.3V TIMEKEEPER[ CONTROLLER
STMICROELECTR

M48T212Y-85MH6

5V/3.3V TIMEKEEPER[ CONTROLLER
STMICROELECTR

M48T212Y-85MH6E

5V/3.3V TIMEKEEPER CONTROLLER Supervisor
STMICROELECTR

M48T212Y-85MH6F

5V/3.3V TIMEKEEPER CONTROLLER Supervisor
STMICROELECTR

M48T212Y-85MH6TR

5V/3.3V TIMEKEEPER[ CONTROLLER
STMICROELECTR

M48T212YMH

5V/3.3V TIMEKEEPER[ CONTROLLER
STMICROELECTR

M48T212YSH

5V/3.3V TIMEKEEPER[ CONTROLLER
STMICROELECTR

M48T248V

5.0 or 3.3V, 1024K TIMEKEEPER SRAM with PHANTOM
STMICROELECTR

M48T248V-70PM1

5.0 or 3.3V, 1024K TIMEKEEPER SRAM with PHANTOM
STMICROELECTR

M48T248V-70PM1TR

5.0 or 3.3V, 1024K TIMEKEEPER SRAM with PHANTOM
STMICROELECTR

M48T248V-85PM1

5.0 or 3.3V, 1024K TIMEKEEPER SRAM with PHANTOM
STMICROELECTR