M48T248V [STMICROELECTRONICS]

5.0 or 3.3V, 1024K TIMEKEEPER SRAM with PHANTOM; 5.0或3.3V , 1024K TIMEKEEPER SRAM ,带幻像
M48T248V
型号: M48T248V
厂家: ST    ST
描述:

5.0 or 3.3V, 1024K TIMEKEEPER SRAM with PHANTOM
5.0或3.3V , 1024K TIMEKEEPER SRAM ,带幻像

静态存储器
文件: 总24页 (文件大小:289K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
M48T248Y  
M48T248V  
®
5.0 or 3.3V, 1024K TIMEKEEPER SRAM with PHANTOM  
FEATURES SUMMARY  
5.0V OR 3.3V OPERATING VOLTAGE  
Figure 1. 32-pin, DIP Package  
REAL TIME CLOCK KEEPS TRACK OF  
TENTHS/HUNDREDTHS OF SECONDS,  
SECONDS, MINUTES, HOURS, DAYS, DATE  
OF THE MONTH, MONTHS, and YEARS  
AUTOMATIC LEAP YEAR CORRECTION  
VALID UP TO THE YEAR 2100  
AUTOMATIC SWITCH-OVER and DESELECT  
CIRCUITRY  
32  
CHOICE OF POWER-FAIL DESELECT  
1
VOLTAGES:  
(V  
= Power-fail Deselect Voltage):  
PFD  
PMDIP32 (PM)  
– M48T248Y: 4.25V VPFD 4.50V  
– M48T248V: 2.80V VPFD 2.97V  
FULL 10% V  
OPERATING RANGE  
CC  
OVER 10 YEARS’ DATA RETENTION IN THE  
ABSENCE OF POWER  
WATCH FUNCTION IS TRANSPARENT TO  
RAM OPERATION  
128K x 8 NV SRAM DIRECTLY REPLACES  
VOLATILE STATIC RAM OR EEPROM  
March 2003  
1/24  
Rev. 2.0  
M48T248Y, M48T248V  
TABLE OF CONTENTS  
SUMMARY DESCRIPTION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Figure 2. Logic Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Table 1. Signal Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Figure 3. DIP Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Figure 4. Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
MAXIMUM RATING. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Table 2. Absolute Maximum Ratings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
DC AND AC PARAMETERS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 7  
Table 3. DC and AC Measurement Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Figure 5. AC Testing Load Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Table 4. Capacitance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Table 5. DC Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
OPERATION MODES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Table 6. Operating Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
READ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
WRITE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Figure 6. Memory READ Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Figure 7. Memory WRITE Cycle 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Figure 8. Memory WRITE Cycle 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Table 7. Memory AC Characteristics, M48T248Y . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Table 8. Memory AC Characteristics, M48T248V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Data Retention Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Figure 9. Power Down/Up Mode AC Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Table 9. Power Down/Up Trip Points DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
PHANTOM CLOCK OPERATION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Figure 10. Comparison Register Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Clock Register Information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Clock Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
AM-PM/12/24 Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Oscillator and Reset Bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
2/24  
M48T248Y, M48T248V  
Zero Bits. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Table 10. Phantom Clock Register Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Figure 11. Phantom Clock READ Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Figure 12. Phantom Clock WRITE Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Figure 13. Phantom Clock Reset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Table 11. Phantom Clock AC Characteristics (M48T248Y) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Table 12. Phantom Clock AC Characteristics (M48T248V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
PACKAGE MECHANICAL INFORMATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
PART NUMBERING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
REVISION HISTORY. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
3/24  
M48T248Y, M48T248V  
SUMMARY DESCRIPTION  
®
The M48T248Y/V TIMEKEEPER RAM is a  
128Kbit x 8 non-volatile static RAM and real time  
clock organized as 131,072 words by 8 bits. The  
special DIP package provides a fully integrated  
battery back-up memory and real time clock solu-  
tion. In the event of power instability or absence, a  
self-contained battery maintains the timekeeping  
operation and provides power for a CMOS static  
and year information. The last day of the month is  
automatically adjusted for months with less than  
31 days, including leap year correction.  
The clock operates in one of two formats:  
– a 12-hour mode with an AM/PM indicator; or  
– a 24-hour mode  
The M48T248Y/V is a 32-pin (PM) DIP module  
that integrates the RTC, the battery, and SRAM in  
one package.  
The modules are shipped in plastic, anti-static  
tubes (see Table 14, page 22).  
RAM. Control circuitry monitors V  
and invokes  
CC  
write protection to prevent data corruption in the  
memory and RTC.  
The clock keeps track of tenths/hundredths of sec-  
onds, seconds, minutes, hours, day, date, month,  
Figure 2. Logic Diagram  
Table 1. Signal Names  
A0–A16  
RST  
Address Input  
V
CC  
Reset Input  
CE  
Chip Enable  
OE  
Output Enable Input  
WRITE Enable Input  
Data Inputs/Outputs  
Supply Voltage Input  
Ground  
A0-A16  
WE  
DQ0-D7  
WE  
DQ0–DQ7  
M48T248Y  
M48T248V  
CE  
V
CC  
V
SS  
OE  
RST  
Figure 3. DIP Connections  
V
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
RST  
1
2
CC  
V
SS  
A15  
NC  
A16  
A14  
AI04661  
3
WE  
4
A13  
5
A7  
A6  
A8  
6
A5  
7
A9  
M48T248Y  
M48T248V  
A4  
8
A11  
OE  
A3  
9
10  
11  
12  
13  
14  
15  
16  
A2  
A10  
CE  
A1  
A0  
DQ7  
DQ6  
DQ5  
DQ4  
DQ3  
DQ0  
20  
19  
18  
17  
DQ1  
DQ2  
V
SS  
AI04662  
4/24  
M48T248Y, M48T248V  
Figure 4. Block Diagram  
XO  
XI  
CLOCK/CALENDAR  
LOGIC  
32.768 Hz  
CRYSTAL  
UPDATE  
READ  
TIMEKEEPER  
REGISTER  
CE  
OE  
WRITE  
CONTROL  
LOGIC  
POWER  
FAIL  
WE  
RST  
A0–A16  
SRAM  
DQ0–DQ7  
ACCESS  
ENABLE  
SEQUENCE  
DETECTOR  
COMPARISON  
REGISTER  
I/O  
DATA  
DQ0  
BUFFERS  
INTERNAL V  
CC  
POWER-FAIL  
DETECT  
V
CC  
LOGIC  
V
BAT  
AI04238  
5/24  
M48T248Y, M48T248V  
MAXIMUM RATING  
Stressing the device above the rating listed in the  
“Absolute Maximum Ratings” table may cause  
permanent damage to the device. These are  
stress ratings only and operation of the device at  
these or any other conditions above those indicat-  
ed in the Operating sections of this specification is  
not implied. Exposure to Absolute Maximum Rat-  
ing conditions for extended periods may affect de-  
vice  
reliability.  
Refer  
also  
to  
the  
STMicroelectronics SURE Program and other rel-  
evant quality documents.  
Table 2. Absolute Maximum Ratings  
Symbol  
Parameter  
Operating Temperature  
Value  
0 to 70  
Unit  
°C  
T
A
T
Storage Temperature (V , Oscillator Off)  
–40 to 85  
°C  
STG  
CC  
(1)  
Lead Solder Temperature for 10 seconds  
260  
°C  
T
SLD  
M48T248Y  
–0.3 to +7.0  
–0.3 to +4.6  
V
V
Supply Voltage (on any pin  
relative to Ground)  
V
CC  
M48T248V  
V
–0.3 to V + 0.3  
Input or Output Voltages  
Output Current  
V
IO  
CC  
I
O
20  
1
mA  
W
P
Power Dissipation  
D
Note: 1. Soldering temperature not to exceed 260°C for 10 seconds (total thermal budget not to exceed 150°C for longer than 30 seconds).  
CAUTION! Negative undershoots below -0.3V are not allowed on any pin while in the Battery Back-up Mode.  
6/24  
M48T248Y, M48T248V  
DC AND AC PARAMETERS  
This section summarizes the operating and mea-  
surement conditions, as well as the DC and AC  
characteristics of the device. The parameters in  
the following DC and AC Characteristic tables are  
derived from tests performed under the Measure-  
ment Conditions listed in the relevant tables. De-  
signers should check that the operating conditions  
in their projects match the measurement condi-  
tions when using the quoted parameters.  
Table 3. DC and AC Measurement Conditions  
Parameter  
M48T248Y  
4.5 to 5.5V  
0 to 70°C  
100pF  
M48T248V  
3.0 to 3.6V  
0 to 70°C  
50pF  
V
Supply Voltage  
CC  
Ambient Operating Temperature  
Load Capacitance (C )  
L
Input Rise and Fall Times  
5ns  
5ns  
Input Pulse Voltages  
0 to 3V  
0 to 3V  
1.5V  
Input and Output Timing Ref. Voltages  
1.5V  
Note: Output High Z is defined as the point where data is no longer driven (see Table 3, page 7).  
Figure 5. AC Testing Load Circuit  
V
CCI  
1.1 KΩ  
DEVICE  
UNDER  
TEST  
680 Ω  
C = 50 pF  
L
AI04240  
Note: 50pF for M48T248V.  
Table 4. Capacitance  
Symbol  
(1,2)  
Min  
Max  
10  
Unit  
pF  
Parameter  
C
Input Capacitance  
Input / Output Capacitance  
IN  
(3)  
10  
pF  
C
IO  
Note: 1. Effective capacitance measured with power supply at 5V. Sampled only; not 100% tested.  
2. At 25°C, f = 1MHz.  
3. Outputs were deselected.  
7/24  
M48T248Y, M48T248V  
Table 5. DC Characteristics  
M48T248Y  
–70  
M48T248V  
–85  
Test  
Sym  
Parameter  
Unit  
(1)  
Condition  
Min  
Typ  
Max  
±1  
Min  
Typ  
Max  
±1  
(2)  
0V V V  
Input Leakage Current  
Output Leakage Current  
Supply Current  
µA  
µA  
I
IN  
CC  
LI  
I
0V V  
V  
OUT CC  
±1  
±1  
LO  
I
85  
50  
mA  
CC1  
Supply Current (TTL  
Standby)  
I
CE = V  
IH  
5
3
10  
5
2
7
mA  
CC2  
V
Power Supply  
CC  
I
CE = V  
– 0.2  
5
3
mA  
V
CC3  
CCI  
Current  
(3)  
Input Low Voltage  
–0.3  
2.2  
0.8  
–0.3  
2.2  
0.6  
V
V
IL  
(3)  
IH  
V
+ 0.3  
V
CC  
+ 0.3  
Input High Voltage  
Output Low Voltage  
Output High Voltage  
Power Fail Deselect  
V
V
V
V
CC  
V
I
= 2.0 mA  
0.4  
0.4  
OL  
OL  
V
I
= –1.0 mA  
2.4  
2.4  
OH  
OH  
(3)  
4.25  
4.37  
4.50  
2.80  
2.86  
2.5  
2.97  
V
PFD  
Battery Back-up  
Switchover  
(3)  
V
V
V
SO  
BAT  
Note: 1. Valid for Ambient Operating Temperature: T = 0 to 70°C; V = 4.5 to 5.5V or 3.0 to 3.6V (except where noted).  
A
CC  
2. RST (Pin 1) has an internal pull-up resistor.  
3. All voltages are referenced to Ground.  
8/24  
M48T248Y, M48T248V  
OPERATION MODES  
Table 6. Operating Modes  
V
Mode  
Deselect  
WRITE  
READ  
CE  
OE  
X
WE  
DQ7-DQ0  
Power  
Standby  
Active  
CC  
V
X
High-Z  
IH  
4.5V to 5.5V  
or  
3.0V to 3.6V  
V
IL  
V
D
X
IL  
IN  
V
IL  
V
V
D
Active  
IL  
IH  
OUT  
V
V
V
READ  
High-Z  
High-Z  
High-Z  
Active  
IL  
IH  
IH  
(1)  
Deselect  
X
X
X
X
X
X
CMOS Standby  
V
SO  
to V  
(min)  
PFD  
(1)  
Deselect  
Battery Back-Up  
V  
SO  
Note: X = V or V ; V = Battery Back-up Switchover Voltage  
IH  
IL  
SO  
1. See Table 9, page 14 for details.  
READ  
WRITE  
A READ cycle executes whenever WRITE Enable  
(WE) is high and Chip Enable (CE) is low (see Fig-  
ure 6). The distinct address defined by the 19 ad-  
dress inputs (A0-A18) specifies which of the 512K  
bytes of data is to be accessed. Valid data will be  
accessed by the eight data output drivers within  
WRITE Mode (see Figure 7, page 10 and Figure 8,  
page 11) occurs whenever CE and WE signals are  
low (after address inputs are stable). The most re-  
cent falling edge of CE and WE will determine  
when the WRITE cycle begins (the earlier, rising  
edge of CE or WE determines cycle termination).  
All address inputs must be kept stable throughout  
the WRITE cycle. WE must be high (inactive) for a  
the specified Access Time (t  
) after the last ad-  
ACC  
dress input signal is stable, the CE and OE access  
times, and their respective parameters are satis-  
minimum recovery time (t ) before a subsequent  
WR  
fied. When CE t  
and OE t  
are not satisfied,  
ACC  
cycle is initiated. The OE control signal should be  
kept high (inactive) during the WRITE cycles to  
avoid bus contention. If CE and OE are low (ac-  
tive), WE will disable the outputs for Output Data  
ACC  
then data access times must be measured from  
the more recent CE and OE signals, with the limit-  
ing parameter being t (for CE) or t (for OE) in-  
CO  
OE  
stead of address access.  
WRITE Time (t  
) from its falling edge.  
ODW  
Figure 6. Memory READ Cycle  
tRC  
ADDRESSES  
tACC  
tCO  
tOH  
CE  
OE  
tOD  
tOE  
tODO  
tCOE  
DATA OUTPUT  
VALID  
DQ0 - DQ7  
AI04230  
Note: WE is high for a READ cycle.  
9/24  
M48T248Y, M48T248V  
Figure 7. Memory WRITE Cycle 1  
tWC  
ADDRESSES  
tAW  
CE  
tWR  
tWP  
WE  
tOEW  
tODW  
HIGH IMPEDANCE  
tDS  
tDH  
DQ0–DQ7  
DATA IN  
STABLE  
AI04231  
Note: 1. OE = V or V . If OE = V during a WRITE cycle, the output buffers remain in a high impedance state.  
IH  
IL  
IH  
2. If the CE low transition occurs simultaneously with or later than the WE low transition in WRITE Cycle 1, the output buffers remain  
in a high impedance state during this period.  
3. If the CE high transition occurs simultaneously with the WE high transition, the output buffers remain in a high impedance state  
during this period.  
10/24  
M48T248Y, M48T248V  
Figure 8. Memory WRITE Cycle 2  
tWC  
ADDRESSES  
tAW  
tWP  
tWR  
CE  
tOEW  
WE  
tODW  
tCOE  
tDS  
tDH  
DQ0–DQ7  
DATA IN  
STABLE  
AI04232  
Note: 1. OE = V or V . If OE = V during a WRITE cycle, the output buffers remain in a high impedance state.  
IH  
IL  
IH  
2. If WE is low or the WE low transition occurs prior to or simultaneously with the CE low transition, the output buffers remain in a high  
impedance state during this period.  
11/24  
M48T248Y, M48T248V  
Table 7. Memory AC Characteristics, M48T248Y  
M48T248Y–70  
(1)  
Symbol  
Unit  
Parameter  
Min  
Max  
t
t
RC  
READ Cycle Time  
Access Time  
70  
ns  
ns  
ns  
ns  
AVAV  
t
t
ACC  
70  
70  
35  
AVQV  
ELQV  
t
t
t
t
Chip Enable Low to Output Valid  
Output Enable Low to Output Valid  
CO  
GLQV  
OE  
t
ELQX  
Chip Enable or Output Enable Low to Output Transition  
Output Hold from Address Change  
5
5
ns  
ns  
ns  
t
COE  
t
t
t
GLQX  
tOH  
AXQX  
EHQZ  
GHQZ  
(2)  
Chip Enable or Output Enable High to Output Hi-Z  
25  
25  
t
OD  
t
(2)  
t
Output Hi-Z from WE  
WRITE Cycle Time  
ns  
ns  
WLQZ  
t
ODW  
t
t
70  
50  
AVAV  
WC  
t
WLWH  
(3)  
WP  
WE, CE Pulse Width  
Address Setup Time  
ns  
ns  
t
t
ELEH  
t
AVEL  
t
0
AW  
t
AVWL  
t
t
WRITE Recovery Time  
15  
0
ns  
ns  
EHAX  
WR1  
t
t
t
t
Address Hold Time from WE  
WHAX  
WR2  
Output Active from WE  
Data Setup Time  
5
ns  
ns  
WHQX  
OEW  
t
DVEH  
(4)  
30  
t
DS  
t
DVWH  
(4)  
t
Data Hold Time from WE  
Data Hold Time from CE  
0
ns  
ns  
t
WHDX  
DH1  
(4)  
t
10  
t
EHDX  
DH2  
Note: 1. Valid for Ambient Operating Temperature: T = 0 to 70°C; V = 4.5 to 5.5V or 3.0 to 3.6V (except where noted).  
A
CC  
2. These parameters are sampled with a 5 pF load are not 100% tested.  
3. t is specified as the logical AND of CE and WE. t is measured from the latter of CE or WE going low to the earlier of CE or  
WP  
WP  
WE going high.  
4. t and t are measured from the earlier of CE or WE going high.  
DH  
DS  
12/24  
M48T248Y, M48T248V  
Table 8. Memory AC Characteristics, M48T248V  
M48T248V–85  
Unit  
(1)  
Symbol  
Parameter  
Min  
Max  
t
t
RC  
READ Cycle Time  
Access Time  
85  
ns  
ns  
ns  
ns  
AVAV  
t
t
ACC  
85  
85  
45  
AVQV  
ELQV  
t
t
t
t
Chip Enable Low to Output Valid  
Output Enable Low to Output Valid  
CO  
GLQV  
OE  
t
ELQX  
Chip Enable or Output Enable Low to Output Transition  
Output Hold from Address Change  
5
5
ns  
ns  
ns  
t
COE  
t
t
t
GLQX  
t
AXQX  
OH  
EHQZ  
GHQZ  
(2)  
Chip Enable or Output Enable High to Output Hi-Z  
35  
30  
t
OD  
t
(2)  
t
Output Hi-Z from WE  
WRITE Cycle Time  
ns  
ns  
ns  
ns  
WLQZ  
t
ODW  
t
t
85  
65  
75  
AVAV  
WC  
(3)  
t
WRITE Enable Pulse Width  
Chip Enable Pulse Width  
t
WLWH  
WP1  
t
t
ELEH  
WP2  
t
AVEL  
t
Address Setup Time  
0
ns  
AW  
t
AVWL  
(4)  
(4)  
t
WRITE Recovery Time  
Address Hold Time from WE  
Output Active from WE  
15  
5
ns  
ns  
ns  
EHAX  
t
t
WR1  
t
t
WHAX  
WR2  
5
WHQX  
t
OEW  
t
DVEH  
(5)  
DS  
Data Setup Time  
35  
ns  
t
t
DVWH  
(5)  
(5)  
t
Data Hold Time from WE  
Data Hold Time from CE  
0
ns  
ns  
t
WHDX  
DH1  
t
15  
t
EHDX  
DH2  
Note: 1. Valid for Ambient Operating Temperature: T = 0 to 70°C; V = 4.5 to 5.5V or 3.0 to 3.6V (except where noted).  
A
CC  
2. These parameters are sampled with a 5 pF load are not 100% tested.  
3. t is specified as the logical AND of CE and WE. t is measured from the latter of CE or WE going low to the earlier of CE or  
WP  
WP  
WE going high.  
4. t is a function of the latter occurring edge of WE or CE.  
WR  
5. t and t are measured from the earlier of CE or WE going high.  
DH  
DS  
13/24  
M48T248Y, M48T248V  
Data Retention Mode  
Data can be read or written only when V  
is  
data retention when V  
is absent or unstable.  
CC  
CC  
greater than V  
. When V  
is below V (the  
The capability of this source is sufficient to power  
the device continuously for the life of the equip-  
ment into which it has been installed. For specifi-  
cation purposes, life expectancy is ten (10) years  
at 25°C with the internal oscillator running without  
PFD  
CC  
PFD  
point at which write protection occurs), the clock  
registers and the SRAM are blocked from any ac-  
cess. When V  
falls below the Battery Switch  
CC  
Over threshold (V ), the device is switched from  
SO  
V
to battery backup (V  
). RTC operation and  
V
. Each unit is shipped with its energy source  
CC  
BAT  
CC  
SRAM data are maintained via battery backup un-  
til power is stable. All control, data, and address  
disconnected, guaranteeing full energy capacity.  
When V is first applied at a level greater than  
CC  
signals must be powered down when V is pow-  
ered down.  
The lithium power source is designed to provide  
power for RTC activity as well as RTC and RAM  
V
, the energy source is enabled for battery  
CC  
PFD  
backup operation. The actual life expectancy will  
be much longer if no battery energy is used (e.g.,  
when V is present).  
CC  
Figure 9. Power Down/Up Mode AC Waveforms  
V
CC  
tF  
tR  
V
(max)  
(min)  
PFD  
V
PFD  
V
SO  
tFB  
tREC  
tPD  
CE  
tDR  
AI04236  
Table 9. Power Down/Up Trip Points DC Characteristics  
(1)  
Symbol  
Min  
1.5  
300  
10  
0
Max  
Unit  
ms  
µs  
Parameter  
(max) to CE low  
t
V
PFD  
V
PFD  
V
PFD  
V
PFD  
2.5  
REC  
t
(max) to V  
(min) to V  
(min) V  
Fall Time  
F
PFD  
CC  
V
Fall Time  
t
FB  
µs  
SO CC  
PFD  
t
(min) to V  
(max) V  
Rise Time  
CC  
µs  
R
t
CE High to Power-Fail  
Expected Data Retention Time  
0
µs  
PD  
(2)  
10  
Years  
t
DR  
Note: 1. Valid for Ambient Operating Temperature: T = 0 to 70°C; V = 4.5 to 5.5V or 3.0 to 3.6V (except where noted).  
A
CC  
2. At 25°C, V = 0V; the expected t is defined as cumulative time in the absence of V with the clock oscillator running.  
CC  
DR  
CC  
14/24  
M48T248Y, M48T248V  
PHANTOM CLOCK OPERATION  
Communication with the Phantom Clock is estab-  
lished by pattern recognition of a serial bit-stream  
of 64 bits which must be matched by executing 64  
consecutive WRITE cycles containing the proper  
data on DQ0.  
All accesses which occur prior to recognition of the  
64-bit pattern are directed to memory.  
aside just one address location in RAM as a Phan-  
tom Clock scratch pad.  
When the first WRITE cycle is executed, it is com-  
pared to Bit 1 of the 64-bit comparison register. If  
a match is found, the pointer increments to the  
next location of the comparison register and  
awaits the next WRITE cycle.  
After recognition is established, the next 64 READ  
or WRITE cycles either extract or update data in  
the clock while disabling the memory.  
If a match is not found, the pointer does not ad-  
vance and all subsequent WRITE cycles are ig-  
nored. If a READ cycle occurs at any time during  
pattern recognition, the present sequence is abort-  
ed and the comparison register pointer is reset.  
Pattern recognition continues for a total of 64  
WRITE cycles as described above until all of the  
bits in the comparison register have been  
matched. With a correct match for 64-bits, the  
Phantom Clock is enabled and data transfer to or  
from the timekeeping registers can proceed. The  
next 64 cycles will cause the Phantom Clock to ei-  
ther receive or transmit data on DQ0, depending  
on the level of the OE pin or the WE pin. Cycles to  
other locations outside the memory block can be  
interleaved with CE cycles without interrupting the  
pattern recognition sequence or data transfer se-  
quence to the Phantom Clock.  
Data transfer to and from the timekeeping function  
is accomplished with a serial bit-stream under con-  
trol of Chip Enable (CE), Output Enable (OE), and  
WRITE Enable (WE). Initially, a READ cycle using  
the CE and OE control of the clock starts the pat-  
tern recognition sequence by moving the pointer to  
the first bit of the 64-bit comparison register (see  
Figure 10, page 16).  
Next, 64 consecutive WRITE cycles are executed  
using the CE and WE control of the device. These  
64 WRITE cycles are used only to gain access to  
the clock. Therefore, any address to the memory  
is acceptable. However, the WRITE cycles gener-  
ated to gain access to the Phantom Clock are also  
writing data to a location in the mated RAM. The  
preferred way to manage this requirement is to set  
15/24  
M48T248Y, M48T248V  
Figure 10. Comparison Register Definition  
Hex  
Value  
6
1
5
0
4
0
3
0
2
1
0
1
7
1
1
0
C5  
3A  
BYTE 0  
BYTE 1  
1
1
0
1
1
0
0
1
0
1
0
1
0
0
1
0
1
0
0
0
1
1
0
1
BYTE 2  
BYTE 3  
BYTE 4  
BYTE 5  
BYTE 6  
A3  
5C  
C5  
3A  
A3  
5C  
0
1
1
0
1
1
1
0
1
0
1
0
1
0
0
1
0
1
1
0
0
0
1
0
0
0
BYTE 7  
0
1
1
0
1
1
AI04262  
19  
Note: The odds of this pattern being accidentally duplicated and sending aberrant entries to the RTC is less than 1 in 10 . This pattern is  
sent to the clock LSB to MSB.  
16/24  
M48T248Y, M48T248V  
Clock Register Information  
AM-PM/12/24 Mode  
Clock information is contained in eight registers of  
8 bits, each of which is sequentially accessed one  
(1) bit at a time after the 64-bit pattern recognition  
sequence has been completed. When updating  
the clock registers, each must be handled in  
groups of 8 bits. Writing and reading individual bits  
within a register could produce erroneous results.  
These READ/WRITE registers are defined in the  
clock register map (see Table 10).  
Bit 7 of the hours register is defined as the 12-hour  
or 24-hour mode select bit. When it is high, the 12-  
hour mode is selected. In the 12-hour mode, Bit 5  
is the AM/PM bit with the logic high being “PM.” In  
the 24-hour mode, Bit 5 is the second 10-hour bit  
(20-23 hours).  
Oscillator and Reset Bits  
Bits 4 and 5 of the day register are used to control  
the reset and oscillator functions. Bit 4 controls the  
reset pin input. When the reset bit is set to logic '1,'  
the Reset Input pin is ignored. When the reset bit  
logic is set to '0,' a low input on the reset pin will  
cause the device to abort data transfer without  
changing data in the timekeeping registers. Reset  
operates independently of all other inputs. Bit 5  
controls the oscillator. When set to logic '0,' the os-  
cillator turns on and the RTC/calendar begins to  
increment.  
Data contained in the clock registers is in Binary  
Coded Decimal format (BCD). Reading and writing  
the registers is always accomplished by stepping  
through all eight registers, starting with Bit 0 of  
Register 0 and ending with Bit 7 of Register 7.  
Clock Accuracy  
The RTC is guaranteed to keep time accuracy to  
with ±1 minute per month at 25°C. The clock is fac-  
tory-tuned with special calibration elements, and  
does not require additional calibration. Moderate  
temperature deviation will have a negligible effect  
in most applications.  
Zero Bits  
Registers 1, 2, 3, 4, 5, and 6 contain one (1) or  
more bits that will always read logic '0.' When writ-  
ing to these locations, either a logic '1' or '0' is ac-  
ceptable.  
Table 10. Phantom Clock Register Map  
Function/Range  
BCD Format  
Register  
D7  
D6  
0.1 Seconds  
10 Seconds  
D5  
D4  
D3  
D2  
D1  
D0  
0
1
2
0.01 Seconds  
Seconds  
Seconds  
Seconds  
Minutes  
00-99  
00-59  
00-59  
0
0
10 Minutes  
Minutes  
10 /  
A/P  
01-12/  
00-23  
3
12/24  
0
Hrs  
Hours (24 Hour Format)  
Hours  
4
5
6
7
0
0
0
0
0
0
OSC  
RST  
0
Day of the Week  
Date: Day of the Month  
Month  
Day  
Date  
Month  
Year  
01-7  
01-31  
01-12  
00-99  
10 date  
0
10M  
10 Years  
Year  
Keys: A/P = AM/PM Bit  
RST = Reset Bit  
12/24 = 12 or 24-hour mode Bit  
OSC = Oscillator Bit  
0 = Must be set to '0'  
17/24  
M48T248Y, M48T248V  
Figure 11. Phantom Clock READ Cycle  
WE  
tRC  
tCW  
tRR  
tCO  
CE  
OE  
tOW  
tOD  
tODO  
tOE  
tOEE  
tCOE  
DATA OUTPUT VALID  
Q
AI04259  
Figure 12. Phantom Clock WRITE Cycle  
OE  
tWC  
tWP  
tWR  
WE  
tWR  
tCW  
CE  
t
DH  
tDH  
tDS  
D
DATA INPUT STABLE  
AI04261  
Figure 13. Phantom Clock Reset  
tRST  
RST  
AI04235  
18/24  
M48T248Y, M48T248V  
Table 11. Phantom Clock AC Characteristics (M48T248Y)  
(1)  
Symbol  
Min  
Typ  
Max  
Unit  
ns  
Parameter  
READ Cycle Time  
t
t
65  
AVAV  
RC  
t
t
t
CE Access Time  
55  
55  
ns  
ELQV  
CO  
t
OE Access Time  
CE to Output Low Z  
OE to Output Low Z  
ns  
GLQV  
OE  
t
t
COE  
5
5
ns  
ELQX  
t
t
t
t
ns  
GLQX  
OEE  
(2)  
CE to Output High Z  
25  
25  
ns  
t
EHQZ  
OD  
(2)  
OE to Output High Z  
READ Recovery  
ns  
ns  
ns  
t
GHQZ  
ODO  
t
10  
65  
RR  
t
t
WC  
WRITE Cycle Time  
AVAV  
(3)  
t
WRITE Pulse Width  
WRITE Recovery  
55  
10  
30  
0
ns  
ns  
ns  
ns  
WLWH  
t
WP  
(4)  
t
t
EHAX  
DVEH  
WHDX  
WR  
(5)  
DS  
t
Data Setup Time  
t
(5)  
t
Data Hold Time from WE  
t
DH1  
(5)  
t
Data Hold Time from CE  
CE Pulse Width  
0
ns  
ns  
ns  
t
EHDX  
DH2  
t
t
55  
65  
ELEH  
CW  
t
RST Pulse Width  
RST  
Note: 1. Valid for Ambient Operating Temperature: T = 0 to 70°C; V = 4.5 to 5.5V or 3.0 to 3.6V (except where noted).  
A
CC  
2. These parameters are sampled with a 5 pF load and are not 100% tested.  
3. t is specified as the logical AND of CE and WE. t is measured from the latter of CE or WE going low to the earlier of CE or  
WP  
WP  
WE going high.  
4. t is a function of the latter occurring edge of WE or CE.  
WR  
5. t and t are measured from the earlier of CE or WE going high.  
DH  
DS  
19/24  
M48T248Y, M48T248V  
Table 12. Phantom Clock AC Characteristics (M48T248V)  
(1)  
Symbol  
Min  
Typ  
Max  
Unit  
ns  
Parameter  
READ Cycle Time  
t
t
85  
AVAV  
RC  
t
t
t
CE Access Time  
85  
85  
ns  
ELQV  
CO  
t
OE Access Time  
CE to Output Low Z  
OE to Output Low Z  
ns  
GLQV  
OE  
t
t
COE  
5
5
ns  
ELQX  
t
t
t
t
ns  
GLQX  
OEE  
(2)  
CE to Output High Z  
30  
30  
ns  
t
EHQZ  
OD  
(2)  
OE to Output High Z  
READ Recovery  
ns  
ns  
ns  
t
GHQZ  
ODO  
t
20  
85  
RR  
t
t
WC  
WRITE Cycle Time  
AVAV  
(3)  
t
WRITE Pulse Width  
WRITE Recovery  
60  
20  
35  
0
ns  
ns  
ns  
ns  
WLWH  
t
WP  
(4)  
t
t
EHAX  
DVEH  
WHDX  
WR  
(5)  
DS  
t
Data Setup Time  
t
(5)  
t
Data Hold Time from WE  
t
DH1  
(5)  
t
Data Hold Time from CE  
CE Pulse Width  
0
ns  
ns  
ns  
t
EHDX  
DH2  
t
t
65  
85  
ELEH  
CW  
t
RST Pulse Width  
RST  
Note: 1. Valid for Ambient Operating Temperature: T = 0 to 70°C; V = 4.5 to 5.5V or 3.0 to 3.6V (except where noted).  
A
CC  
2. These parameters are sampled with a 5 pF load and are not 100% tested.  
3. t is specified as the logical AND of CE and WE. t is measured from the latter of CE or WE going low to the earlier of CE or  
WP  
WP  
WE going high.  
4. t is a function of the latter occurring edge of WE or CE.  
WR  
5. t and t are measured from the earlier of CE or WE going high.  
DH  
DS  
20/24  
M48T248Y, M48T248V  
PACKAGE MECHANICAL INFORMATION  
Figure 14. PMDIP32 – 32-pin Plastic Module DIP, Package Outline  
A
A1  
e1  
L
C
eA  
S
B
e3  
D
N
1
E
PMDIP  
Note: Drawing is not to scale.  
Table 13. PMDIP32 – 32-pin Plastic Module DIP, Package Mechanical Data  
mm  
inches  
Min  
Symb  
Typ  
Min  
9.27  
0.38  
0.43  
0.20  
42.42  
18.03  
2.29  
34.29  
14.99  
3.05  
1.91  
32  
Max  
9.52  
Typ  
Max  
0.375  
A
A1  
B
0.365  
0.015  
0.017  
0.008  
1.670  
0.710  
0.090  
1.350  
0.590  
0.120  
0.075  
32  
0.59  
0.33  
43.18  
18.80  
2.79  
41.91  
16.00  
3.81  
2.79  
0.023  
0.013  
1.700  
0.740  
0.110  
1.650  
0.630  
0.150  
0.110  
C
D
E
e1  
e3  
eA  
L
S
N
21/24  
M48T248Y, M48T248V  
PART NUMBERING  
Table 14. Ordering Information Example  
Example:  
M48T  
248Y  
–70  
PM  
1
TR  
Device Type  
M48T  
Supply Voltage and Write Protect Voltage  
248Y = V  
248V = V  
= 4.5 to 5.5V; V  
= 4.25 to 4.50V  
= 2.80 to 2.97V  
CC  
CC  
PFD  
PFD  
= 3.0 to 3.6V; V  
Speed  
–70 = 70ns (M48T248Y)  
–85 = 85ns (M48T248V)  
Package  
PM = PMDIP32  
Temperature Range  
1 = 0 to 70°C  
Shipping Method for SOIC  
blank = Tubes  
TR = Tape & Reel  
For a list of available options (e.g., Speed, Package) or for further information on any aspect of this device,  
please contact the ST Sales Office nearest to you.  
22/24  
M48T248Y, M48T248V  
REVISION HISTORY  
Table 15. Document Revision History  
Date  
Rev. #  
1.0  
Revision Details  
June 2001  
28-Mar-03  
First Issue  
v2.2 template applied; test condition updated (Table 9)  
2.0  
23/24  
M48T248Y, M48T248V  
M48T248, M48T248Y, M48T248V, 48T248, 48T248Y, 48T248V,  
T248, T248Y, T248V, TIMEKEEPER, TIMEKEEPER, TIMEKEEP-  
ER, TIMEKEEPER, TIMEKEEPER, TIMEKEEPER, TIMEKEEP-  
Clock, Clock, Clock, Clock, Clock, Clock, Clock, Clock, Clock,  
Clock, Clock, Clock, Clock, Clock, Clock, Clock, Clock, Clock,  
Clock, Clock, Clock, Clock, Clock, Clock, Clock, Clock, Clock,  
Clock, Clock, Clock, Clock, Clock, Clock, Clock, Clock, Clock,  
Clock, Clock, Clock, Clock, Clock, Clock, Clock, Clock, Clock,  
Clock, Clock, Clock, Clock, Clock, Clock, Clock, Clock, Clock,  
Clock, Clock, Clock, Clock, Clock, Clock, Clock, Clock, Clock,  
Clock, Clock, Clock, Clock, Clock, Clock, Clock, Clock, Clock,  
Clock, Clock, Clock, Clock, Clock, Clock, Power-fail, Power-fail,  
Power-fail, Power-fail, Power-fail, Power-fail, Power-fail, Power-  
fail, Power-fail, Power-fail, Comparator, Comparator, Comparator,  
Comparator, Comparator, Comparator, Comparator, Comparator,  
Comparator, Comparator, Comparator, Comparator, Comparator,  
Comparator, Comparator, Comparator, Comparator, Comparator,  
Comparator, Comparator, Comparator, Comparator, Comparator,  
Comparator, Comparator, Comparator, Comparator, Comparator,  
Comparator, Comparator, Comparator, Comparator, Comparator,  
Comparator, Comparator, Crystal, Crystal, Crystal, Crystal, Crys-  
tal, Crystal, Crystal, Crystal, Crystal, Crystal, Crystal, Crystal, Crys-  
tal, Crystal, Crystal, Crystal, Crystal, Crystal, Crystal, Crystal,  
Crystal, Crystal, Crystal, Crystal, Crystal, Crystal, Crystal, Crystal,  
Crystal, Crystal, Battery, Battery, Battery, Battery, Battery, Battery,  
Battery, Battery, Battery, Battery, Battery, Battery, Battery, Battery,  
Battery, Battery, Battery, Battery, Battery, Battery, Battery, Battery,  
Battery, Battery, Battery, Battery, Battery, Battery, Battery, Battery,  
Battery, Battery, Battery, Battery, Battery, Battery, Battery, Battery,  
Battery, Battery, Battery, Battery, Battery, Battery, Battery, Battery,  
Battery, Battery, Battery, Battery, Battery, Battery, Battery, Battery,  
Battery, Battery, Battery, Battery, Battery, Battery, Switchover,  
Switchover, Switchover, Switchover, Switchover, Switchover,  
Switchover, Switchover, Switchover, Switchover, Backup, Backup,  
Backup, Backup, Backup, Backup, Backup, Backup, Backup, Back-  
up, Backup, Backup, Backup, Backup, Backup, Backup, Backup,  
Backup, Backup, Backup,5V,5V,5V, 5V, 5V, 5V, 5V, 5V, 5V, 5V,  
5V, 5V, 5V, 5V, 5V, 5V, 5V, 5V, 5V, 5V, 5V, 5V, 5V, 5V, 5V, 5V, 5V,  
5V, 5V, 5V, 5V, 5V, 5V, 5V, 5V, 5V, 5V, 5V, 5V, 5V, 3.3V, 3.3V,  
3.3V, 3.3V, 3.3V, 3.3V, 3.3V, 3.3V, 3.3V, 3.3V  
ER,  
TIMEKEEPER,  
TIMEKEEPER,  
TIMEKEEPER,  
TIMEKEEPER, TIMEKEEPER, TIMEKEEPER, TIMEKEEPER,  
TIMEKEEPER, TIMEKEEPER, TIMEKEEPER, TIMEKEEPER,  
TIMEKEEPER, TIMEKEEPER, TIMEKEEPER, TIMEKEEPER,  
TIMEKEEPER, TIMEKEEPER, TIMEKEEPER, NVRAM, NVRAM,  
NVRAM, NVRAM, NVRAM, NVRAM, NVRAM, NVRAM, NVRAM,  
NVRAM, NVRAM, NVRAM, NVRAM, NVRAM, NVRAM, NVRAM,  
NVRAM, NVRAM, NVRAM, NVRAM, NVRAM, NVRAM, NVRAM,  
NVRAM, NVRAM, NVRAM, NVRAM, NVRAM, NVRAM, NVRAM,  
NVRAM, NVRAM, NVRAM, NVRAM, NVRAM, NVRAM, NVRAM,  
NVRAM, NVRAM, NVRAM, NVRAM, NVRAM, NVRAM, NVRAM,  
NVRAM, NVRAM, NVRAM, NVRAM, NVRAM, NVRAM, SRAM,  
SRAM, SRAM, SRAM, SRAM, SRAM, SRAM, SRAM, SRAM,  
SRAM, SRAM, SRAM, SRAM, SRAM, SRAM, SRAM, SRAM,  
SRAM, SRAM, SRAM, SRAM, SRAM, SRAM, SRAM, SRAM,  
SRAM, SRAM, SRAM, SRAM, SRAM, SRAM, SRAM, SRAM,  
SRAM, SRAM, SRAM, SRAM, SRAM, SRAM, SRAM, SRAM,  
SRAM, SRAM, SRAM, SRAM, RTC, RTC, RTC, RTC, RTC, RTC,  
RTC, RTC, RTC, RTC, RTC, RTC, RTC, RTC, RTC, RTC, RTC,  
RTC, RTC, RTC, RTC, RTC, RTC, RTC, RTC, RTC, RTC, RTC,  
RTC, RTC, RTC, RTC, RTC, RTC, RTC, RTC, RTC, RTC, RTC,  
RTC, RTC, RTC, RTC, RTC, RTC, RTC, RTC, RTC, RTC, RTC,  
RTC, RTC, RTC, RTC, RTC, RTC, RTC, RTC, RTC, RTC, RTC,  
RTC, RTC, RTC, RTC, Transparent, Transparent, Transparent,  
Transparent, Transparent, Transparent, Transparent, Transparent,  
Transparent, Transparent, Transparent, Transparent, Transparent,  
Transparent, Transparent, Transparent, Transparent, Transparent,  
Transparent, Transparent, Transparent, Transparent, Transparent,  
Transparent, Transparent, Transparent, Transparent, Transparent,  
Transparent, Transparent, Transparent, Transparent, Transparent,  
Transparent, Transparent, Clock, Clock, Clock, Clock, Clock,  
Clock, Clock, Clock, Clock, Clock, Clock, Clock, Clock, Clock,  
Clock, Clock, Clock, Clock, Clock, Clock, Clock, Clock, Clock,  
Clock, Clock, Clock, Clock, Clock, Clock, Clock, Clock, Clock,  
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences  
of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted  
by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject  
to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not  
authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.  
The ST logo is registered trademark of STMicroelectronics  
All other names are the property of their respective owners.  
© 2003 STMicroelectronics - All Rights Reserved  
STMicroelectronics GROUP OF COMPANIES  
Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia -  
Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - U.S.A.  
www.st.com  
24/24  

相关型号:

M48T248V-70PM1

5.0 or 3.3V, 1024K TIMEKEEPER SRAM with PHANTOM
STMICROELECTR

M48T248V-70PM1TR

5.0 or 3.3V, 1024K TIMEKEEPER SRAM with PHANTOM
STMICROELECTR

M48T248V-85PM1

5.0 or 3.3V, 1024K TIMEKEEPER SRAM with PHANTOM
STMICROELECTR

M48T248V-85PM1TR

5.0 or 3.3V, 1024K TIMEKEEPER SRAM with PHANTOM
STMICROELECTR

M48T248VPM

5.0 or 3.3V, 1024K TIMEKEEPER SRAM with PHANTOM
STMICROELECTR

M48T248Y

5.0 or 3.3V, 1024K TIMEKEEPER SRAM with PHANTOM
STMICROELECTR

M48T248Y-70PM1

5.0 or 3.3V, 1024K TIMEKEEPER SRAM with PHANTOM
STMICROELECTR

M48T248Y-70PM1TR

5.0 or 3.3V, 1024K TIMEKEEPER SRAM with PHANTOM
STMICROELECTR

M48T248Y-85PM1

5.0 or 3.3V, 1024K TIMEKEEPER SRAM with PHANTOM
STMICROELECTR

M48T248Y-85PM1TR

5.0 or 3.3V, 1024K TIMEKEEPER SRAM with PHANTOM
STMICROELECTR

M48T248YPM

5.0 or 3.3V, 1024K TIMEKEEPER SRAM with PHANTOM
STMICROELECTR

M48T251V

5.0 or 3.3V, 4096K TIMEKEEPER SRAM with PHANTOM
STMICROELECTR