M48T128V-85PM1TR [STMICROELECTRONICS]

3.3V-5V 1 Mbit 128Kb x8 TIMEKEEPER SRAM; 3.3V - 5V 1兆位128KB X8 TIMEKEEPER SRAM
M48T128V-85PM1TR
型号: M48T128V-85PM1TR
厂家: ST    ST
描述:

3.3V-5V 1 Mbit 128Kb x8 TIMEKEEPER SRAM
3.3V - 5V 1兆位128KB X8 TIMEKEEPER SRAM

静态存储器
文件: 总22页 (文件大小:343K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
M48T128Y  
M48T128V*  
®
5.0 or 3.3V, 1 Mbit (128 Kb x 8) TIMEKEEPER SRAM  
FEATURES SUMMARY  
INTEGRATED, ULTRA LOW POWER SRAM,  
REAL TIME CLOCK, POWER-FAIL  
CONTROL CIRCUIT, BATTERY, AND  
CRYSTAL  
Figure 1. 32-pin PMDIP Module  
BCD CODED YEAR, MONTH, DAY, DATE,  
HOURS, MINUTES, AND SECONDS  
AUTOMATIC POWER-FAIL CHIP  
DESELECT AND WRITE PROTECTION  
WRITE PROTECT VOLTAGES  
(V  
= Power-fail Deselect Voltage):  
PFD  
M48T128Y: V = 4.5 to 5.5V  
CC  
4.1V V  
4.5V  
PFD  
M48T128V*: V = 3.0 to 3.6V  
CC  
32  
2.7V V  
3.0V  
PFD  
1
CONVENTIONAL SRAM OPERATION;  
UNLIMITED WRITE CYCLES  
SOFTWARE CONTROLLED CLOCK  
CALIBRATION FOR HIGH ACCURACY  
APPLICATIONS  
PMDIP32 (PM)  
Module  
10 YEARS OF DATA RETENTION AND  
CLOCK OPERATION IN THE ABSENCE OF  
POWER  
SELF-CONTAINED BATTERY AND  
CRYSTAL IN THE DIP PACKAGE  
PIN AND FUNCTION COMPATIBLE WITH  
JEDEC STANDARD 128K x 8 SRAMs  
* Contact local ST sales office for availability of 3.3V version.  
February 2005  
1/22  
M48T128Y, M48T128V*  
TABLE OF CONTENTS  
FEATURES SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Figure 1. 32-pin PMDIP Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
SUMMARY DESCRIPTION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Figure 2. Logic Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Table 1. Signal Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Figure 3. DIP Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Figure 4. Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
OPERATION MODES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Table 2. Operating Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
READ Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Figure 5. READ Mode AC Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Table 3. READ Mode AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
WRITE Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Figure 6. WRITE Enable Controlled, WRITE AC Waveform. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Figure 7. Chip Enable Controlled, WRITE AC Waveforms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Table 4. WRITE Mode AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Data Retention Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
CLOCK OPERATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Reading the Clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Setting the Clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Stopping and Starting the Oscillator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Table 5. Register Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Calibrating the Clock. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Figure 8. Crystal Accuracy Across Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Figure 9. Clock Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
V
CC  
Noise And Negative Going Transients. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Figure 10.Supply Voltage Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
MAXIMUM RATING. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Table 6. Absolute Maximum Ratings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
DC AND AC PARAMETERS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Table 7. Operating and AC Measurement Conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Figure 11.AC Testing Load Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Table 8. Capacitance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Table 9. DC Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Figure 12.Power Down/Up Mode AC Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Table 10. Power Down/Up AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Table 11. Power Down/Up Trip Points DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
2/22  
M48T128Y, M48T128V*  
PACKAGE MECHANICAL INFORMATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Figure 13.PMDIP32 – 32-pin Plastic Module DIP, Package Outline . . . . . . . . . . . . . . . . . . . . . . . . 19  
Table 12. PMDIP32 – 32-pin Plastic Module DIP, Package Mechanical Data . . . . . . . . . . . . . . . . 19  
PART NUMBERING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Table 13. Ordering Information Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
REVISION HISTORY. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Table 14. Document Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
3/22  
M48T128Y, M48T128V*  
SUMMARY DESCRIPTION  
®
The M48T128Y/V TIMEKEEPER RAM is a  
128Kb x 8 non-volatile static RAM and real time  
clock. The special DIP package provides a fully in-  
tegrated battery back-up memory and real time  
clock solution. The M48T128Y/V directly replaces  
industry standard 128Kb x 8 SRAM.  
It also provides the non-volatility of Flash without  
any requirement for special WRITE timing or limi-  
tations on the number of WRITEs that can be per-  
formed. The 32-pin, 600mil DIP Hybrid houses a  
controller chip, SRAM, quartz crystal, and a long  
life lithium button cell in a single package.  
Figure 2. Logic Diagram  
Table 1. Signal Names  
V
A0-A16  
Address Inputs  
Data Inputs / Outputs  
Chip Enable  
CC  
DQ0-DQ7  
17  
8
E
A0-A16  
DQ0-DQ7  
G
W
Output Enable  
WRITE Enable  
Supply Voltage  
Ground  
W
E
M48T128Y  
M48T128V  
V
CC  
V
G
SS  
NC  
Not Connected Internally  
V
SS  
AI02244  
Figure 3. DIP Connections  
NC  
A16  
A14  
A12  
A7  
1
2
3
4
5
6
7
8
9
32  
V
CC  
31 A15  
30 NC  
29  
W
28 A13  
27 A8  
A6  
A5  
26 A9  
A4  
M48T128Y 25 A11  
M48T128V  
A3  
24  
23 A10  
22  
G
A2 10  
A1 11  
E
A0 12  
21 DQ7  
20 DQ6  
19 DQ5  
18 DQ4  
17 DQ3  
DQ0 13  
DQ1 14  
DQ2 15  
V
16  
SS  
AI02245  
4/22  
M48T128Y, M48T128V*  
Figure 4. Block Diagram  
8 x 8  
TIMEKEEPER  
REGISTERS  
OSCILLATOR AND  
CLOCK CHAIN  
32,768 Hz  
CRYSTAL  
A0-A16  
POWER  
DQ0-DQ7  
131,064 x 8  
SRAM ARRAY  
LITHIUM  
CELL  
E
VOLTAGE SENSE  
AND  
W
G
V
PFD  
SWITCHING  
CIRCUITRY  
V
V
CC  
SS  
AI01804  
5/22  
M48T128Y, M48T128V*  
OPERATION MODES  
Figure 4., page 5 illustrates the static memory ar-  
ray and the quartz controlled clock oscillator. The  
clock locations contain the year, month, date, day,  
hour, minute, and second in 24 hour BCD format.  
Corrections for 28, 29 (leap year - valid until 2100),  
30, and 31 day months are made automatically.  
Byte 1FFF8h is the clock control register. This byte  
controls user access to the clock information and  
also stores the clock calibration setting. The seven  
clock bytes (1FFFFh - 1FFF8h) are not the actual  
clock counters, they are memory locations consist-  
ing of BiPORT™ READ/WRITE memory cells  
within the static RAM array. The M48T128Y/V in-  
cludes a clock control circuit which updates the  
clock bytes with current information once per sec-  
ond. The information can be accessed by the user  
in the same manner as any other location in the  
static memory array. The M48T128Y/V also has its  
own Power-Fail Detect circuit. This control circuitry  
constantly monitors the supply voltage for an out  
of tolerance condition. When V  
is out of toler-  
CC  
®
ance, the circuit write protects the TIMEKEEPER  
Register data and external SRAM, providing data  
security in the midst of unpredictable system oper-  
ation. As V  
falls below the Battery Back-up  
CC  
Switchover Voltage (V ), the control circuitry au-  
SO  
tomatically switches to the battery, maintaining  
data and clock operation until valid power is re-  
stored.  
Table 2. Operating Modes  
V
Mode  
Deselect  
WRITE  
READ  
E
G
X
X
W
DQ0-DQ7  
Power  
Standby  
Active  
CC  
V
IH  
X
High Z  
4.5 to 5.5V  
or  
3.0 to 3.6V  
V
V
V
V
D
IL  
IL  
IL  
IL  
IH  
IH  
IN  
V
V
V
D
Active  
IL  
OUT  
V
IH  
READ  
High Z  
High Z  
High Z  
Active  
(1)  
Deselect  
X
X
X
CMOS Standby  
V
SO  
to V  
(min)  
PFD  
(1)  
Deselect  
X
X
X
Battery Back-up Mode  
V  
SO  
Note: X = V or V ; V = Battery Back-up Switchover Voltage.  
IH  
IL  
SO  
1. See Table 11., page 18 for details.  
6/22  
M48T128Y, M48T128V*  
READ Mode  
The M48T128Y/V is in the READ Mode whenever  
W (WRITE Enable) is high and E (Chip Enable) is  
low. The unique address specified by the 17 Ad-  
dress Inputs defines which one of the 131,072  
bytes of data is to be accessed.  
able after the latter of the Chip Enable Access  
Times (t ) or Output Enable Access Time  
ELQV  
(t  
). The state of the eight three-state Data I/O  
GLQV  
signals is controlled by E and G. If the outputs are  
activated before t , the data lines will be driven  
AVQV  
to an indeterminate state until t  
. If the Ad-  
AVQV  
Valid data will be available at the Data I/O pins  
dress Inputs are changed while E and G remain  
active, output data will remain valid for t (Out-  
within t  
(Address Access Time) after the last  
AVQV  
AXQX  
address input signal is stable, providing the E and  
G access times are also satisfied. If the E and G  
access times are not met, valid data will be avail-  
put Data Hold Time) but will go indeterminate until  
the next Address Access.  
Figure 5. READ Mode AC Waveforms  
tAVAV  
VALID  
A0-A16  
tAVQV  
tELQV  
tAXQX  
tEHQZ  
E
tELQX  
tGLQV  
tGHQZ  
G
tGLQX  
DQ0-DQ7  
DATA OUT  
AI01197  
Note: WE = High.  
Table 3. READ Mode AC Characteristics  
M48T128Y  
–70  
M48T128V  
–85  
(1)  
Symbol  
Unit  
Parameter  
Min  
Max  
Min  
Max  
t
READ Cycle Time  
70  
85  
ns  
ns  
ns  
ns  
ns  
AVAV  
t
Address Valid to Output Valid  
70  
70  
40  
85  
85  
55  
AVQV  
t
Chip Enable Low to Output Valid  
Output Enable Low to Output Valid  
Chip Enable Low to Output Transition  
ELQV  
t
GLQV  
(2)  
5
5
5
5
t
ELQX  
GLQX  
EHQZ  
(2)  
(2)  
(2)  
Output Enable Low to Output Transition  
Chip Enable High to Output Hi-Z  
ns  
ns  
ns  
ns  
t
t
25  
25  
30  
30  
Output Enable High to Output Hi-Z  
Address Transition to Output Transition  
t
GHQZ  
t
10  
5
AXQX  
Note: 1. Valid for Ambient Operating Temperature: T = 0 to 70°C; V = 4.5 to 5.5V or 3.0 to 3.6V (except where noted).  
A
CC  
2. C = 5pF.  
L
7/22  
M48T128Y, M48T128V*  
WRITE Mode  
The M48T128Y/V is in the WRITE Mode whenever  
W (WRITE Enable) and E (Chip Enable) are low  
state after the address inputs are stable.  
The start of a WRITE is referenced from the latter  
occurring falling edge of W or E. A WRITE is termi-  
nated by the earlier rising edge of W or E. The ad-  
dresses must be held valid throughout the cycle. E  
Chip Enable or t  
the initiation of another READ or WRITE cycle.  
Data-in must be valid t prior to the end of  
WRITE and remain valid for t  
should be kept high during WRITE cycles to avoid  
bus contention; although, if the output bus has  
been activated by a low on E and G a low on W will  
from WRITE Enable prior to  
WHAX  
DVWH  
afterward. G  
WHDX  
disable the outputs t  
after W falls.  
WLQZ  
or W must return high for a minimum of t  
from  
EHAX  
Figure 6. WRITE Enable Controlled, WRITE AC Waveform  
tAVAV  
A0-A16  
VALID  
tAVWH  
tAVEL  
tAVWL  
tWHAX  
E
tWLWH  
W
tWLQZ  
tWHQX  
tWHDX  
DQ0-DQ7  
DATA INPUT  
tDVWH  
AI02382  
Figure 7. Chip Enable Controlled, WRITE AC Waveforms  
tAVAV  
A0-A16  
VALID  
tAVEH  
tELEH  
tAVEL  
tEHAX  
E
tAVWL  
W
tEHDX  
DQ0-DQ7  
DATA INPUT  
tDVEH  
AI02383  
8/22  
M48T128Y, M48T128V*  
Table 4. WRITE Mode AC Characteristics  
M48T128Y  
–70  
M48T128V  
(1)  
Symbol  
–85  
Unit  
Parameter  
Min  
Max  
Min  
85  
0
Max  
t
WRITE Cycle Time  
70  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
AVAV  
t
Address Valid to WRITE Enable Low  
Address Valid to Chip Enable Low  
WRITE Enable Pulse Width  
AVWL  
t
0
0
AVEL  
t
50  
55  
5
60  
65  
5
WLWH  
t
Chip Enable Low to Chip Enable 1 High  
WRITE Enable High to Address Transition  
Chip Enable High to Address Transition  
Input Valid to WRITE Enable High  
Input Valid to Chip Enable High  
ELEH  
t
WHAX  
t
10  
30  
30  
5
15  
35  
35  
5
EHAX  
t
DVWH  
t
DVEH  
t
WRITE Enable High to Input Transition  
Chip Enable High to Input Transition  
WHDX  
t
10  
15  
EHDX  
(2,3)  
WRITE Enable Low to Output Hi-Z  
Address Valid to WRITE Enable High  
Address Valid to Chip Enable High  
WRITE Enable High to Output Transition  
25  
30  
ns  
ns  
ns  
ns  
t
WLQZ  
t
60  
60  
5
70  
70  
5
AVWH  
t
AVEH  
(2,3)  
t
WHQX  
Note: 1. Valid for Ambient Operating Temperature: T = 0 to 70°C; V = 4.5 to 5.5V or 3.0 to 3.6V (except where noted).  
A
CC  
2. C = 5pF.  
L
3. If E goes low simultaneously with W going low, the outputs remain in the high impedance state.  
9/22  
M48T128Y, M48T128V*  
Data Retention Mode  
With valid V applied, the M48T128Y/V operates  
spikes on V that reach into the deselect window  
CC  
CC  
as a conventional BYTEWIDE™ static RAM.  
Should the supply voltage decay, the RAM will au-  
tomatically power-fail deselect, write protecting it-  
during the time the device is sampling V . There-  
CC  
fore, decoupling of the power supply lines is rec-  
ommended.  
self when V  
falls within the V  
(max), V  
CC  
PFD PFD  
When V  
drops below V , the control circuit  
SO  
CC  
(min) window. All outputs become high imped-  
ance, and all inputs are treated as “Don't care.”  
Note: A power failure during a WRITE cycle may  
corrupt data at the currently addressed location,  
but does not jeopardize the rest of the RAM's con-  
switches power to the internal battery, preserving  
data and powering the clock. The internal energy  
source will maintain data in the M48T128Y/V for  
an accumulated period of at least 10 years at room  
temperature. As system power rises above V  
,
SO  
tent. At voltages below V  
assured the memory will be in a write protected  
(min), the user can be  
the battery is disconnected, and the power supply  
is switched to external V . Deselect continues for  
PFD  
CC  
state, provided the V fall time is not less than t .  
t
after V reaches V  
(max).  
CC  
F
REC  
CC  
PFD  
The M48T128Y/V may respond to transient noise  
10/22  
M48T128Y, M48T128V*  
CLOCK OPERATIONS  
Reading the Clock  
®
Updates to the TIMEKEEPER registers should  
be halted before clock data is read to prevent  
reading data in transition. The BiPORT™ TIME-  
KEEPER cells in the RAM array are only data reg-  
isters and not the actual clock counters, so  
updating the registers can be halted without dis-  
turbing the clock itself.  
Updating is halted when a '1' is written to the  
READ Bit, D6 in the Control Register (1FFF8h). As  
long as a '1' remains in that position, updating is  
halted. After a halt is issued, the registers reflect  
the count; that is, the day, date, and time that were  
current at the moment the halt command was is-  
sued. All of the TIMEKEEPER registers are updat-  
ed simultaneously. A halt will not interrupt an  
update in progress. Updating is within a second af-  
ter the bit is reset to a '0.'  
READ Bit, halts updates to the TIMEKEEPER reg-  
isters. The user can then load them with the cor-  
rect day, date, and time data in 24 hour BCD  
format (see Table 5., page 11). Resetting the  
WRITE Bit to a '0' then transfers the values of all  
time registers 1FFFFh-1FFF9h to the actual TIME-  
KEEPER counters and allows normal operation to  
resume. After the WRITE Bit is reset, the next  
clock update will occur one second later.  
Stopping and Starting the Oscillator  
The oscillator may be stopped at any time. If the  
device is going to spend a significant amount of  
time on the shelf, the oscillator can be turned off to  
minimize current drain on the battery. The STOP  
Bit is located at Bit D7 within 1FFF9h. Setting it to  
a '1' stops the oscillator. The M48T128Y/V is  
shipped from STMicroelectronics with the STOP  
Bit set to a '1.' When reset to a '0,' the M48T128Y/  
V oscillator starts after one second.  
Setting the Clock  
Bit D7 of the Control Register (1FFF8h) is the  
WRITE Bit. Setting the WRITE Bit to a '1,' like the  
Table 5. Register Map  
Data  
Function/Range  
BCD Format  
Address  
D7  
D6  
D5  
D4  
10 M  
0
D3  
D2  
D1  
D0  
1FFFFh  
1FFFEh  
1FFFDh  
1FFFCh  
1FFFBh  
1FFFAh  
1FFF9h  
1FFF8h  
10 Years  
Year  
Month  
Date  
Year  
Month  
Date  
00-99  
01-12  
01-31  
01-07  
00-23  
00-59  
00-59  
0
0
0
0
0
10 Date  
0
FT  
0
0
0
Day  
Hours  
Day  
0
10 Hours  
Hours  
Minutes  
Seconds  
Control  
0
10 Minutes  
10 Seconds  
S
Minutes  
ST  
W
Seconds  
R
Calibration  
Keys: S = SIGN Bit  
R = READ Bit  
W = WRITE Bit  
ST = STOP Bit  
0 = Must be set to '0'  
Z = '0' and are Read only  
Y = '1' or '0'  
11/22  
M48T128Y, M48T128V*  
Calibrating the Clock  
The M48T128Y/V is driven by a quartz controlled  
oscillator with a nominal frequency of 32,768Hz.  
The devices are factory calibrated at 25°C and  
tested for accuracy. Clock accuracy will not ex-  
ceed 35 ppm (parts per million) oscillator frequen-  
cy error at 25°C, which equates to about ±1.53  
minutes per month. When the Calibration circuit is  
properly employed, accuracy improves to better  
than +1/–2 ppm at 25°C. The oscillation rate of  
crystals changes with temperature (see Figure  
8., page 13). The M48T128Y/V design employs  
periodic counter correction. The calibration circuit  
adds or subtracts counts from the oscillator divider  
circuit at the divide by 128 stage, as shown in Fig-  
ure 9., page 13.  
The number of times pulses are blanked (subtract-  
ed, negative calibration) or split (added, positive  
calibration) depends upon the value loaded into  
the five Calibration bits found in the Control Regis-  
ter. Adding counts speeds the clock up, subtract-  
ing counts slows the clock down. The Calibration  
bits occupy the five lower order bits (D4-D0) in the  
Control Register 1FFF8h. These bits can be set to  
represent any value between 0 and 31 in binary  
form. Bit D5 is a Sign Bit; '1' indicates positive cal-  
ibration, '0' indicates negative calibration. Calibra-  
tion occurs within a 64 minute cycle. The first 62  
minutes in the cycle may, once per minute, have  
one second either shortened by 128 or lengthened  
by 256 oscillator cycles. If a binary '1' is loaded into  
the register, only the first 2 minutes in the 64  
minute cycle will be modified; if a binary 6 is load-  
ed, the first 12 will be affected, and so on. There-  
fore, each calibration step has the effect of adding  
512 or subtracting 256 oscillator cycles for every  
125, 829, 120 actual oscillator cycles, that is  
+4.068 or –2.034 ppm of adjustment per calibra-  
tion step in the calibration register. Assuming that  
the oscillator is running at exactly 32,768Hz, each  
of the 31 increments in the Calibration byte would  
represent +10.7 or –5.35 seconds per month  
which corresponds to a total range of +5.5 or –2.75  
minutes per month.  
One method is available for ascertaining how  
much calibration a given M48T128Y/V may re-  
quire. This involves setting the clock, letting it run  
for a month and comparing it to a known accurate  
reference and recording deviation over a fixed pe-  
riod of time.  
Calibration values, including the number of sec-  
onds lost or gained in a given period, can be found  
in the STMicroelectronics Application Note,  
“TIMEKEEPER CALIBRATION.”  
This allows the designer to give the end user the  
ability to calibrate the clock as the environment re-  
quires, even if the final product is packaged in a  
non-user serviceable enclosure. The designer  
could provide a simple utility that accesses the  
Calibration byte. For example, a deviation of 21  
seconds slow over a period of 30 days would indi-  
cate a –8 ppm oscillator frequency error, requiring  
a +2(WR100010) to be loaded into the Calibration  
Byte for correction.  
12/22  
M48T128Y, M48T128V*  
Figure 8. Crystal Accuracy Across Temperature  
ppm  
20  
0
-20  
-40  
2
F  
F
ppm  
C2  
= -0.038  
(T - T0) ± 10%  
-60  
-80  
T0 = 25 °C  
-100  
0
5
10 15 20 25 30 35 40 45 50 55 60 65 70  
AI02124  
°C  
Figure 9. Clock Calibration  
NORMAL  
POSITIVE  
CALIBRATION  
NEGATIVE  
CALIBRATION  
AI00594B  
13/22  
M48T128Y, M48T128V*  
V
Noise And Negative Going Transients  
Figure 10. Supply Voltage Protection  
CC  
I
transients, including those produced by output  
CC  
switching, can produce voltage fluctuations, re-  
sulting in spikes on the V bus. These transients  
CC  
can be reduced if capacitors are used to store en-  
ergy which stabilizes the V  
bus. The energy  
CC  
stored in the bypass capacitors will be released as  
low going spikes are generated or energy will be  
absorbed when overshoots occur. A ceramic by-  
pass capacitor value of 0.1µF (as shown in Figure  
10) is recommended in order to provide the need-  
ed filtering.  
V
CC  
V
CC  
0.1µF  
DEVICE  
In addition to transients that are caused by normal  
SRAM operation, power cycling can generate neg-  
ative voltage spikes on V  
that drive it to values  
V
CC  
SS  
below V by as much as one volt. These negative  
SS  
spikes can cause data corruption in the SRAM  
while in battery backup mode. To protect from  
these voltage spikes, it is recommended to con-  
AI02169  
nect a schottky diode from V  
to V  
(cathode  
CC  
SS  
connected to V , anode to V ). Schottky diode  
CC  
SS  
1N5817 is recommended for through hole and  
MBRS120T3 is recommended for surface mount.  
14/22  
M48T128Y, M48T128V*  
MAXIMUM RATING  
Stressing the device above the rating listed in the  
“Absolute Maximum Ratings” table may cause  
permanent damage to the device. These are  
stress ratings only and operation of the device at  
these or any other conditions above those indicat-  
ed in the Operating sections of this specification is  
not implied. Exposure to Absolute Maximum Rat-  
ing conditions for extended periods may affect de-  
vice  
reliability.  
Refer  
also  
to  
the  
STMicroelectronics SURE Program and other rel-  
evant quality documents.  
Table 6. Absolute Maximum Ratings  
Symbol  
Parameter  
Ambient Operating Temperature  
Value  
0 to 70  
Unit  
°C  
T
A
T
Storage Temperature (V Off, Oscillator Off)  
–40 to 85  
°C  
STG  
CC  
(1)  
Lead Solder Temperature for 10 seconds  
Input or Output Voltages  
260  
°C  
T
SLD  
V
–0.3 to 7  
–0.3 to 7  
–0.3 to 4.6  
20  
V
V
IO  
M48T128Y  
M48T128V  
V
Supply Voltage  
CC  
I
Output Current  
mA  
W
O
P
Power Dissipation  
1
D
Note: 1. Soldering temperature not to exceed 260°C for 10 seconds (total thermal budget not to exceed 150°C for longer than 30 seconds).  
No preheat above 150°C, or direct exposure to IR reflow (or IR preheat) allowed, to avoid damaging the Lithium battery.  
CAUTION: Negative undershoots below –0.3V are not allowed on any pin while in the Battery Back-up mode.  
15/22  
M48T128Y, M48T128V*  
DC AND AC PARAMETERS  
This section summarizes the operating and mea-  
surement conditions, as well as the DC and AC  
characteristics of the device. The parameters in  
the following DC and AC Characteristic tables are  
derived from tests performed under the Measure-  
ment Conditions listed in the relevant tables. De-  
signers should check that the operating conditions  
in their projects match the measurement condi-  
tions when using the quoted parameters.  
Table 7. Operating and AC Measurement Conditions  
Parameter  
Supply Voltage (V  
M48T128Y  
M48T128V  
3.0 to 3.6  
0 to 70  
50  
Unit  
V
)
4.5 to 5.5  
0 to 70  
100  
CC  
Ambient Operating Temperature (T )  
°C  
pF  
ns  
V
A
Load Capacitance (C )  
L
Input Rise and Fall Times  
5  
5  
Input Pulse Voltages  
0 to 3  
1.5  
0 to 3  
1.5  
Input and Output Timing Ref. Voltages  
V
Note: Output Hi-Z is defined as the point where data is no longer driven.  
Figure 11. AC Testing Load Circuit  
650Ω  
DEVICE  
UNDER  
TEST  
1.75V  
C
= 100pF  
L
or 50pF(1)  
C
includes JIG capacitance  
L
AI03630  
Note: 50pF for M48T128V.  
Table 8. Capacitance  
Symbol  
(1,2)  
Min  
Max  
Unit  
pF  
Parameter  
C
Input Capacitance  
Input / Output Capacitance  
20  
20  
IN  
(3)  
pF  
C
IO  
Note: 1. Effective capacitance measured with power supply at 5V. Sampled only, not 100% tested.  
2. At 25°C, f = 1MHz.  
3. Outputs deselected.  
16/22  
M48T128Y, M48T128V*  
Table 9. DC Characteristics  
M48T128Y  
–70  
M48T128V  
(1)  
Symbol  
Parameter  
–85  
Unit  
Test Condition  
Min  
Max  
Min  
Max  
I
0V V V  
Input Leakage Current  
Output Leakage Current  
Supply Current  
±2  
±2  
95  
±2  
µA  
µA  
LI  
IN  
CC  
(2)  
0V V  
V  
CC  
±2  
50  
I
OUT  
LO  
I
Outputs open  
mA  
CC  
Supply Current (Standby)  
TTL  
I
E = V  
8
4
mA  
mA  
CC1  
IH  
Supply Current (Standby)  
CMOS  
I
E = V – 0.2V  
4
3
CC2  
CC  
V
Input Low Voltage  
Input High Voltage  
Output Low Voltage  
Output High Voltage  
–0.3  
2.2  
0.8  
–0.3  
2.2  
0.4  
V
V
V
V
IL  
V
IH  
V
+ 0.3  
V
+ 0.3  
CC  
CC  
V
OL  
I
= 2.1mA  
= –1mA  
0.4  
0.4  
OL  
V
OH  
I
OH  
2.4  
2.2  
Note: 1. Valid for Ambient Operating Temperature: T = 0 to 70°C; V = 4.5 to 5.5V or 3.0 to 3.6V (except where noted).  
A
CC  
2. Outputs deselected.  
17/22  
M48T128Y, M48T128V*  
Figure 12. Power Down/Up Mode AC Waveforms  
V
CC  
V
V
V
(max)  
(min)  
PFD  
PFD  
SS  
tDR  
tF  
tREC  
tFB  
tRB  
DON'T CARE  
RECOGNIZED  
RECOGNIZED  
INPUTS  
HIGH-Z  
OUTPUTS  
VALID  
VALID  
AI03612  
Table 10. Power Down/Up AC Characteristics  
(1)  
Symbol  
Min  
Max  
Unit  
Parameter  
(2)  
V
(max) to V  
(min) to V  
(min) V Fall Time  
300  
µs  
t
PFD  
PFD  
PFD  
PFD  
CC  
F
(3)  
V
V
V
V
V
Fall Time  
10  
0
µs  
µs  
µs  
ms  
t
SS CC  
FB  
t
(min) to V  
(max) V Rise Time  
PFD CC  
R
t
to V  
(min) V Rise Time  
PFD CC  
1
RB  
SS  
t
(max) to Inputs Recognized  
40  
200  
REC  
PFD  
Note: 1. Valid for Ambient Operating Temperature: T = 0 to 70°C; V = 4.5 to 5.5V or 3.0 to 3.6V (except where noted).  
A
CC  
2. V  
(max) to V  
(min) fall time of less than tF may result in deselection/write protection not occurring until 200µs after V pass-  
PFD CC  
PFD  
es V  
(min).  
PFD  
3. V  
(min) to V fall time of less than t may cause corruption of RAM data.  
PFD  
SS FB  
Table 11. Power Down/Up Trip Points DC Characteristics  
(1,2)  
Symbol  
Min  
Typ  
Max  
Unit  
Parameter  
M48T128Y  
M48T128V  
M48T128Y  
M48T128V  
4.1  
2.7  
4.35  
2.9  
4.5  
3.0  
V
V
V
V
V
Power-fail Deselect Voltage  
PFD  
3.0  
V
Battery Back-up Switchover Voltage  
Expected Data Retention Time  
SO  
V
–100mV  
PFD  
(3)  
10  
YEARS  
t
DR  
Note: 1. All voltages referenced to V  
.
SS  
2. Valid for Ambient Operating Temperature: T = 0 to 70°C; V = 4.5 to 5.5V or 3.0 to 3.6V (except where noted).  
A
CC  
3. At 25°C; V = 0V.  
CC  
18/22  
M48T128Y, M48T128V*  
PACKAGE MECHANICAL INFORMATION  
Figure 13. PMDIP32 – 32-pin Plastic Module DIP, Package Outline  
A
A1  
e1  
L
C
eA  
S
B
e3  
D
N
1
E
PMDIP  
Note: Drawing is not to scale.  
Table 12. PMDIP32 – 32-pin Plastic Module DIP, Package Mechanical Data  
mm  
inches  
Min  
Symb  
Typ  
Min  
9.27  
0.38  
0.43  
0.20  
42.42  
18.03  
2.29  
34.29  
14.99  
3.05  
1.91  
32  
Max  
9.52  
Typ  
Max  
0.375  
A
A1  
B
0.365  
0.015  
0.017  
0.008  
1.670  
0.710  
0.090  
1.350  
0.590  
0.120  
0.075  
32  
0.59  
0.33  
43.18  
18.80  
2.79  
41.91  
16.00  
3.81  
2.79  
0.023  
0.013  
1.700  
0.740  
0.110  
1.650  
0.630  
0.150  
0.110  
C
D
E
e1  
e3  
eA  
L
S
N
19/22  
M48T128Y, M48T128V*  
PART NUMBERING  
Table 13. Ordering Information Scheme  
Example:  
M48T  
128Y  
–70  
PM  
1
TR  
Device Type  
M48T  
Supply Voltage and Write Protect Voltage  
128Y = V = 4.5 to 5.5V; V  
= 4.1 to 4.5V  
CC  
PFD  
(1)  
128V = V = 3.0 to 3.6V; V  
= 2.7 to 3.0V  
PFD  
CC  
Speed  
–70 = 70ns (128Y)  
–85 = 85ns (128V)  
Package  
PM = PMDIP32  
Temperature Range  
1 = 0 to 70°C  
Shipping Method for SOIC  
blank = Tubes  
TR = Tape & Reel  
Note: 1. Contact local ST sales office for availability of 3.3V version.  
For other options, or for more information on any aspect of this device, please contact the ST Sales Office  
nearest you.  
20/22  
M48T128Y, M48T128V*  
REVISION HISTORY  
Table 14. Document Revision History  
Date  
Version  
1.0  
Revision Details  
June 1998  
01/31/00  
03/30/00  
07/20/01  
09/21/01  
05/23/02  
08/07/02  
28-Mar-03  
06-Aug-04  
22-Feb-05  
First Issue  
1.1  
Calibrating The Clock Paragraph changed  
Storage Temperature changed (Table 6)  
1.2  
2.0  
Reformatted; temperature information added to tables (Table 8, 9, 3, 4, 10, 11)  
Corrected speed grade in ordering information  
Add countries to disclaimer; add marketing status  
Refine marketing status text  
2.1  
2.2  
2.3  
3.0  
v2.2 template applied; test condition updated (Table 11)  
Reformatted; updated Register Map (Table 5)  
IR reflow update (Table 6)  
4.0  
5.0  
21/22  
M48T128Y, M48T128V*  
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences  
of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted  
by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject  
to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not  
authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.  
The ST logo is a registered trademark of STMicroelectronics.  
All other names are the property of their respective owners  
© 2005 STMicroelectronics - All rights reserved  
STMicroelectronics group of companies  
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -  
Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America  
www.st.com  
22/22  

相关型号:

M48T128VPM

3.3V-5V 1 Mbit 128Kb x8 TIMEKEEPER SRAM
STMICROELECTR

M48T128Y

3.3V-5V 1 Mbit 128Kb x8 TIMEKEEPER SRAM
STMICROELECTR

M48T128Y-70PM1

3.3V-5V 1 Mbit 128Kb x8 TIMEKEEPER SRAM
STMICROELECTR

M48T128Y-70PM1TR

3.3V-5V 1 Mbit 128Kb x8 TIMEKEEPER SRAM
STMICROELECTR

M48T128Y-80PM1

5.0 or 3.3 V, 1 Mbit (128 Kb x 8) TIMEKEEPER® SRAM
STMICROELECTR

M48T128Y-85PM1

3.3V-5V 1 Mbit 128Kb x8 TIMEKEEPER SRAM
STMICROELECTR

M48T128Y-85PM1TR

3.3V-5V 1 Mbit 128Kb x8 TIMEKEEPER SRAM
STMICROELECTR

M48T128YPM

3.3V-5V 1 Mbit 128Kb x8 TIMEKEEPER SRAM
STMICROELECTR

M48T128Y_10

5.0 or 3.3 V, 1 Mbit (128 Kb x 8) TIMEKEEPER® SRAM
STMICROELECTR

M48T129

3.3V-5V 1 Mbit 128Kb x8 TIMEKEEPER SRAM
STMICROELECTR

M48T129V

3.3V-5V 1 Mbit 128Kb x8 TIMEKEEPER SRAM
STMICROELECTR

M48T129V-70CS1

3.3V-5V 1 Mbit 128Kb x8 TIMEKEEPER SRAM
STMICROELECTR