M41T11_08 [STMICROELECTRONICS]

Serial real-time clock with 56 bytes of NVRAM; 56字节的NVRAM串行实时时钟
M41T11_08
型号: M41T11_08
厂家: ST    ST
描述:

Serial real-time clock with 56 bytes of NVRAM
56字节的NVRAM串行实时时钟

时钟
文件: 总29页 (文件大小:255K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
M41T11  
Serial real-time clock with 56 bytes of NVRAM  
Features  
Counters for seconds, minutes, hours, day,  
date, month, years and century  
8
32 KHz crystal oscillator integrating load  
capacitance (12.5 pF) providing exceptional  
oscillator stability and high crystal series  
resistance operation  
1
SO8 (M)  
2
Serial interface supports I C bus (100 kHz  
protocol)  
Ultra-low battery supply current of 0.8 µA (typ.  
at 3 V)  
2.0 to 5.5 V clock operating voltage  
Automatic switchover and deselect circuitry  
56 bytes of general purpose RAM  
SNAPHAT (SH) battery & crystal  
Software clock calibration to compensate  
crystal deviation due to temperature  
Automatic leap year compensation  
Operating temperature of –40 to 85°C  
Packaging includes a 28-lead SOIC and  
28  
1
®
SNAPHAT top (to be ordered separately;  
3.3 V to 5.0 V supply voltage only)  
SOH28 (MH)  
RoHS compliant  
– Lead-free second level interconnect  
May 2008  
Rev 8  
1/29  
www.st.com  
1
Contents  
M41T11  
Contents  
1
2
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
2.1  
2-wire bus characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
2.1.1  
2.1.2  
2.1.3  
2.1.4  
2.1.5  
Bus not busy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Start data transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Stop data transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Data valid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Acknowledge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
2.2  
2.3  
2.4  
Read mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Write mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Data retention mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
3
Clock operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
3.1  
3.2  
3.3  
Clock calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Output driver pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Preferred initial power-on defaults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
4
5
6
7
8
Maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
DC and AC parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Part numbering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
2/29  
M41T11  
List of tables  
List of tables  
Table 1.  
Table 2.  
Table 3.  
Table 4.  
Table 5.  
Table 6.  
Table 7.  
Table 8.  
Table 9.  
Table 10.  
Table 11.  
Table 12.  
Table 13.  
Table 14.  
Table 15.  
Table 16.  
Table 17.  
Signal names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
AC characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Operating and AC measurement conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Capacitance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
DC characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Crystal electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Power down/up AC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Power down/up trip points DC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
SO8 – 8-lead plastic small outline (150 mils body width) pack. mech. data . . . . . . . . . . . . 23  
SOH28 – 28-lead plastic small outline, battery snaphat pack. mech. data. . . . . . . . . . . . . 24  
SH – 4-pin SNAPHAT housing for 48 mAh battery & crystal, package mechanical data . . 25  
SH – 4-pin SNAPHAT housing for 120mAh battery & crystal, package mech. data. . . . . . 26  
Ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
SNAPHAT battery table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
3/29  
List of figures  
M41T11  
List of figures  
Figure 1.  
Figure 2.  
Figure 3.  
Figure 4.  
Figure 5.  
Figure 6.  
Figure 7.  
Figure 8.  
Figure 9.  
Logic diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
8-pin SOIC connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
28-pin SOIC connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Serial bus data transfer sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Acknowledgement sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Bus timing requirements sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Slave address location . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Read mode sequence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Figure 10. Alternate read mode sequence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Figure 11. Write mode sequence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Figure 12. Crystal accuracy across temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Figure 13. Clock calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Figure 14. AC testing input/output waveform. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Figure 15. Power down/up mode AC waveforms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Figure 16. SO8 – 8-lead plastic small outline package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Figure 17. SOH28 – 28-lead plastic small outline, battery snaphat package outline. . . . . . . . . . . . . . 24  
Figure 18. SH – 4-pin SNAPHAT housing for 48mAh battery & crystal package outline. . . . . . . . . . . 25  
Figure 19. SH – 4-pin SNAPHAT housing for 120mAh battery & crystal, package outline . . . . . . . . . 26  
4/29  
M41T11  
Description  
1
Description  
The M41T11is a low-power serial real time clock with 56 bytes of NVRAM. A built-in  
32.768 kHz oscillator (external crystal controlled) and the first 8 bytes of the RAM are used  
for the clock/calendar function and are configured in binary coded decimal (BCD) format.  
Addresses and data are transferred serially via a two-line bi-directional bus. The built-in  
address register is incremented automatically after each write or read data byte.  
The M41T11 clock has a built-in power sense circuit which detects power failures and  
automatically switches to the battery supply during power failures. The energy needed to  
sustain the RAM and clock operations can be supplied from a small lithium coin cell.  
Typical data retention time is in excess of 5 years with a 50 mA/h 3 V lithium cell. The  
®
M41T11 is supplied in 8-lead plastic small outline package or 28-lead SNAPHAT package.  
The 28-pin, 330 mil SOIC provides sockets with gold plated contacts at both ends for direct  
connection to a separate SNAPHAT housing containing the battery and crystal. The unique  
design allows the SNAPHAT battery package to be mounted on top of the SOIC package  
after the completion of the surface mount process. Insertion of the SNAPHAT housing after  
reflow prevents potential battery and crystal damage due to the high temperatures required  
for device surface-mounting. The SNAPHAT housing is keyed to prevent reverse insertion.  
The SOIC and battery/crystal packages are shipped separately in plastic anti-static tubes or  
in tape & reel form.  
For the 28-lead SOIC, the battery/crystal package (i.e. SNAPHAT) part number is “M4Txx-  
BR12SH” (see Table 16 on page 27).  
Caution:  
Do not place the SNAPHAT battery/crystal package “M4Txx-BR12SH” in conductive foam  
since this will drain the lithium button-cell battery.  
Figure 1.  
Logic diagram  
V
V
BAT  
CC  
OSCO  
SDA  
OSCI  
SCL  
M41T11  
FT/OUT  
V
SS  
AI01000  
5/29  
Description  
M41T11  
Table 1.  
Signal names  
OSCI  
Oscillator input  
OCSO  
FT/OUT  
SDA  
Oscillator output  
Frequency test/output driver (open drain)  
Serial data address input/output  
Serial clock  
SCL  
VBAT  
Battery supply voltage  
Supply voltage  
VCC  
VSS  
Ground  
Figure 2.  
8-pin SOIC connections  
M41T11  
OSCI  
1
8
V
CC  
OSCO  
2
3
4
7
6
FT/OUT  
V
SCL  
BAT  
V
5
SDA  
SS  
AI01001  
Figure 3.  
28-pin SOIC connections  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
1
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
V
CC  
NC  
2
3
FT/OUT  
NC  
4
5
NC  
6
NC  
7
NC  
M41T11  
8
NC  
9
SCL  
NC  
10  
11  
12  
13  
14  
NC  
NC  
SDA  
NC  
V
SS  
AI03606  
6/29  
M41T11  
Description  
Figure 4.  
Block diagram  
1 Hz  
SECONDS  
OSCI  
OSCILLATOR  
32.768 kHz  
MINUTES  
CENTURY/HOURS  
DAY  
DIVIDER  
OSCO  
FT/OUT  
DATE  
MONTH  
VOLTAGE  
SENSE  
V
CC  
YEAR  
CONTROL  
LOGIC  
and  
V
SS  
CONTROL  
SWITCH  
CIRCUITRY  
V
BAT  
RAM  
(56 x 8)  
SCL  
SDA  
SERIAL  
BUS  
INTERFACE  
ADDRESS  
REGISTER  
AI02566  
7/29  
Operation  
M41T11  
2
Operation  
The M41T11 clock operates as a slave device on the serial bus. Access is obtained by  
implementing a start condition followed by the correct slave address (D0h). The 64 bytes  
contained in the device can then be accessed sequentially in the following order:  
st  
1 byte: seconds register  
nd  
2
3
byte: minutes register  
rd  
th  
byte: century/hours register  
4 byte: day register  
th  
5 byte: date register  
th  
6 byte: month register  
th  
7 byte: years register  
th  
8 byte: control register  
th  
th  
9 - 64 bytes: RAM  
The M41T11 clock continually monitors V for an out of tolerance condition. Should V  
CC  
CC  
fall below V , the device terminates an access in progress and resets the device address  
SO  
counter. Inputs to the device will not be recognized at this time to prevent erroneous data  
from being written to the device from an out of tolerance system. When V falls below V  
,
CC  
SO  
the device automatically switches over to the battery and powers down into an ultra low  
current mode of operation to conserve battery life. Upon power-up, the device switches from  
battery to V at V and recognizes inputs.  
CC  
SO  
2.1  
2-wire bus characteristics  
This bus is intended for communication between different ICs. It consists of two lines: one  
bi-directional for data signals (SDA) and one for clock signals (SCL). Both the SDA and the  
SCL lines must be connected to a positive supply voltage via a pull-up resistor.  
The following protocol has been defined:  
Data transfer may be initiated only when the bus is not busy.  
During data transfer, the data line must remain stable whenever the clock line is high.  
Changes in the data line while the clock line is high will be interpreted as control  
signals.  
Accordingly, the following bus conditions have been defined:  
2.1.1  
2.1.2  
Bus not busy  
Both data and clock lines remain high.  
Start data transfer  
A change in the state of the data line, from high to low, while the clock is high, defines the  
START condition.  
8/29  
M41T11  
Operation  
2.1.3  
Stop data transfer  
A change in the state of the data line, from low to high, while the clock is high, defines the  
STOP condition.  
2.1.4  
Data valid  
The state of the data line represents valid data when after a start condition, the data line is  
stable for the duration of the high period of the clock signal. The data on the line may be  
changed during the low period of the clock signal. There is one clock pulse per bit of data.  
Each data transfer is initiated with a start condition and terminated with a stop condition.  
The number of data bytes transferred between the start and stop conditions is not limited.  
The information is transmitted byte-wide and each receiver acknowledges with a ninth bit.  
By definition, a device that gives out a message is called “transmitter”, the receiving device  
that gets the message is called “receiver”. The device that controls the message is called  
“master”. The devices that are controlled by the master are called “slaves”.  
2.1.5  
Acknowledge  
Each byte of eight bits is followed by one acknowledge bit. This acknowledge bit is a low  
level put on the bus by the receiver, whereas the master generates an extra acknowledge  
related clock pulse.  
A slave receiver which is addressed is obliged to generate an acknowledge after the  
reception of each byte. Also, a master receiver must generate an acknowledge after the  
reception of each byte that has been clocked out of the slave transmitter.  
The device that acknowledges has to pull down the SDA line during the acknowledge clock  
pulse in such a way that the SDA line is a stable low during the high period of the  
acknowledge related clock pulse. Of course, setup and hold times must be taken into  
account. A master receiver must signal an end-of-data to the slave transmitter by not  
generating an acknowledge on the last byte that has been clocked out of the slave. In this  
case, the transmitter must leave the data line high to enable the master to generate the  
STOP condition.  
Figure 5.  
Serial bus data transfer sequence  
DATA LINE  
STABLE  
DATA VALID  
CLOCK  
DATA  
START  
CHANGE OF  
STOP  
CONDITION  
DATA ALLOWED  
CONDITION  
AI00587  
9/29  
Operation  
Figure 6.  
M41T11  
Acknowledgement sequence  
CLOCK PULSE FOR  
ACKNOWLEDGEMENT  
START  
SCLK FROM  
MASTER  
1
2
8
9
DATA OUTPUT  
BY TRANSMITTER  
MSB  
LSB  
DATA OUTPUT  
BY RECEIVER  
AI00601  
Figure 7.  
Bus timing requirements sequence  
SDA  
tBUF  
tHD:STA  
tR  
tHD:STA  
tF  
SCL  
tHIGH  
tSU:DAT  
tHD:DAT  
tSU:STA  
tSU:STO  
P
S
tLOW  
SR  
P
AI00589  
1. P = STOP and S = START  
10/29  
M41T11  
Operation  
Table 2.  
Symbol  
AC characteristics  
Parameter(1)  
Min  
Max  
Unit  
fSCL  
tLOW  
tHIGH  
tR  
SCL clock frequency  
Clock low period  
0
4.7  
4
100  
kHz  
µs  
Clock high period  
µs  
SDA and SCL rise time  
SDA and SCL fall time  
1
µs  
tF  
300  
ns  
START condition hold time  
(after this period the first clock pulse is generated)  
tHD:STA  
tSU:STA  
4
µs  
µs  
START condition setup time  
(only relevant for a repeated start condition)  
4.7  
tSU:DAT Data setup time  
250  
0
ns  
µs  
µs  
µs  
(2)  
tHD:DAT  
Data hold time  
tSU:STO STOP condition setup time  
tBUF Time the bus must be free before a new transmission can start  
4.7  
4.7  
1. Valid for ambient operating temperature: TA = –40 to 85°C; VCC = 2.0 to 5.5 V (except where noted).  
2. Transmitter must internally provide a hold time to bridge the undefined region (300 ns max.) of the falling  
edge of SCL.  
2.2  
Read mode  
In this mode, the master reads the M41T11 slave after setting the slave address (see  
Figure 8). Following the write mode control bit (R/W = 0) and the acknowledge bit, the word  
address A is written to the on-chip address pointer. Next the START condition and slave  
n
address are repeated, followed by the READ mode control bit (R/W = 1). At this point, the  
master transmitter becomes the master receiver. The data byte which was addressed will be  
transmitted and the master receiver will send an acknowledge bit to the slave transmitter  
(see Figure 9). The address pointer is only incremented on reception of an acknowledge bit.  
The M41T11 slave transmitter will now place the data byte at address A + 1 on the bus. The  
n
master receiver reads and acknowledges the new byte and the address pointer is  
incremented to A + 2.  
n
This cycle of reading consecutive addresses will continue until the master receiver sends a  
STOP condition to the slave transmitter.  
An alternate READ mode may also be implemented, whereby the master reads the M41T11  
slave without first writing to the (volatile) address pointer. The first address that is read is the  
last one stored in the pointer (see Figure 10 on page 12).  
11/29  
Operation  
Figure 8.  
M41T11  
Slave address location  
R/W  
START  
SLAVE ADDRESS  
A
1
1
0
1
0
0
0
AI00602  
Figure 9.  
Read mode sequence  
BUS ACTIVITY:  
MASTER  
WORD  
ADDRESS (An)  
SDA LINE  
S
S
DATA n  
DATA n+1  
BUS ACTIVITY:  
SLAVE  
ADDRESS  
SLAVE  
ADDRESS  
DATA n+X  
P
AI00899  
Figure 10. Alternate read mode sequence  
BUS ACTIVITY:  
MASTER  
SDA LINE  
S
DATA n  
DATA n+1  
DATA n+X  
P
BUS ACTIVITY:  
SLAVE  
ADDRESS  
AI00895  
12/29  
M41T11  
Operation  
2.3  
Write mode  
In this mode the master transmitter transmits to the M41T11 slave receiver. Bus protocol is  
shown in Figure 11. Following the START condition and slave address, a logic '0' (R/W = 0)  
is placed on the bus and indicates to the addressed device that word address An will follow  
and is to be written to the on-chip address pointer. The data word to be written to the  
memory is strobed in next and the internal address pointer is incremented to the next  
memory location within the RAM on the reception of an acknowledge clock. The M41T11  
slave receiver will send an acknowledge clock to the master transmitter after it has received  
the slave address and again after it has received the word address and each data byte.  
2.4  
Data retention mode  
With valid V applied, the M41T11 can be accessed as described above with read or write  
CC  
cycles. Should the supply voltage decay, the M41T11 will automatically deselect, write  
protecting itself when V falls (see Figure 15).  
CC  
Figure 11. Write mode sequence  
BUS ACTIVITY:  
MASTER  
WORD  
ADDRESS (An)  
SDA LINE  
S
DATA n  
DATA n+1  
DATA n+X  
P
BUS ACTIVITY:  
SLAVE  
ADDRESS  
AI00591  
13/29  
Clock operation  
M41T11  
3
Clock operation  
The eight byte clock register (see Table 3) is used to both set the clock and to read the date  
and time from the clock, in a binary coded decimal format. Seconds, minutes, and hours are  
contained within the first three registers. Bits D6 and D7 of clock register 2 (hours register)  
contain the CENTURY ENABLE bit (CEB) and the CENTURY bit (CB). Setting CEB to a '1'  
will cause CB to toggle, either from '0' to '1' or from '1' to '0' at the turn of the century  
(depending upon its initial state). If CEB is set to a '0', CB will not toggle. Bits D0 through D2  
of register 3 contain the day (day of week). Registers 4, 5 and 6 contain the date (day of  
month), month and years. The final register is the control register (this is described in the  
clock calibration section). Bit D7 of register 0 contains the STOP bit (ST). Setting this bit to a  
'1' will cause the oscillator to stop. If the device is expected to spend a significant amount of  
time on the shelf, the oscillator may be stopped to reduce current drain. When reset to a '0'  
the oscillator restarts within one second.  
Note:  
In order to guarantee oscillator startup after the initial power-up, set the ST bit to a '1,' then  
reset this bit to a '0.' This sequence enables a “kick start” circuit which aids the oscillator  
startup during worst case conditions of voltage and temperature.  
The seven clock registers may be read one byte at a time, or in a sequential block. The  
control register (address location 7) may be accessed independently. Provision has been  
made to assure that a clock update does not occur while any of the seven clock addresses  
are being read. If a clock address is being read, an update of the clock registers will be  
delayed by 250 ms to allow the read to be completed before the update occurs. This will  
prevent a transition of data during the read.  
Note:  
This 250 ms delay affects only the clock register update and does not alter the actual clock  
time.  
14/29  
M41T11  
Clock operation  
(1)  
Table 3.  
Address  
Register map  
Data  
D3  
Function/range  
BCD format  
D7  
D6  
D5  
D4  
D2  
D1  
D0  
0
ST  
X
10 seconds  
10 minutes  
Seconds  
Seconds  
Minutes  
00-59  
00-59  
1
Minutes  
Hours  
2
CEB(2) CB  
10 hours  
Century/hours 0-1/00-23  
3
X
X
X
X
X
X
X
X
X
X
Day  
Day  
Date  
01-07  
01-31  
01-12  
00-99  
4
10 date  
Date  
Month  
5
10 M.  
Month  
Year  
6
7
10 years  
FT  
Years  
OUT  
S
Calibration  
Control  
1. Keys:  
S = SIGN bit  
FT = FREQUENCY TEST bit  
ST = STOP bit  
OUT = Output level  
X = Don’t care  
CEB = Century enable bit  
CB = Century bit  
2. When CEB is set to '1', CB will toggle from '0' to '1' or from '1' to '0' every 100 years (dependent upon the  
initial value set). When CEB is set to '0', CB will not toggle.When CEB is set to '1', CB will toggle from '0' to  
'1' or from '1' to '0' every 100 years (dependent upon the initial value set). When CEB is set to '0', CB will  
not toggle.  
3.1  
Clock calibration  
The M41T11 is driven by a quartz controlled oscillator with a nominal frequency of  
32,768 Hz. The devices are tested not to exceed 35 ppm (parts per million) oscillator  
frequency error at 25°C, which equates to about 1.53 minutes per month. With the  
calibration bits properly set, the accuracy of each M41T11 improves to better than 2 ppm  
at 25°C.  
The oscillation rate of any crystal changes with temperature (see Figure 12 on page 17).  
Most clock chips compensate for crystal frequency and temperature shift error with  
cumbersome trim capacitors. The M41T11 design, however, employs periodic counter  
correction. The calibration circuit adds or subtracts counts from the oscillator divider circuit  
at the divide by 256 stage, as shown in Figure 13 on page 17. The number of times pulses  
are blanked (subtracted, negative calibration) or split (added, positive calibration) depends  
upon the value loaded into the five-bit calibration byte found in the control register. Adding  
counts speeds the clock up, subtracting counts slows the clock down.  
The calibration byte occupies the five lower order bits (D4-D0) in the control register (addr  
7). This byte can be set to represent any value between 0 and 31 in binary form. Bit D5 is a  
sign bit; '1' indicates positive calibration, '0' indicates negative calibration. Calibration occurs  
within a 64 minute cycle. The first 62 minutes in the cycle may, once per minute, have one  
second either shortened by 128 or lengthened by 256 oscillator cycles. If a binary '1' is  
loaded into the register, only the first 2 minutes in the 64 minute cycle will be modified; if a  
binary 6 is loaded, the first 12 will be affected, and so on.  
Therefore, each calibration step has the effect of adding 512 or subtracting 256 oscillator  
cycles for every 125,829,120 actual oscillator cycles, that is +4.068 or –2.034 ppm of  
15/29  
Clock operation  
M41T11  
adjustment per calibration step in the calibration register. Assuming that the oscillator is in  
fact running at exactly 32,768 Hz, each of the 31 increments in the calibration byte would  
represent +10.7 or –5.35 seconds per month which corresponds to a total range of +5.5 or  
–2.75 minutes per month.  
Two methods are available for ascertaining how much calibration a given M41T11 may  
require. The first involves simply setting the clock, letting it run for a month and comparing it  
to a known accurate reference (like WWV broadcasts). While that may seem crude, it allows  
the designer to give the end user the ability to calibrate his clock as his environment may  
require, even after the final product is packaged in a non-user serviceable enclosure. All the  
designer has to do is provide a simple utility that accessed the calibration byte.  
The second approach is better suited to a manufacturing environment, and involves the use  
of some test equipment. When the frequency test (FT) bit, the seventh-most significant bit in  
the control register, is set to a '1', and the oscillator is running at 32,768 Hz, the FT/OUT pin  
of the device will toggle at 512 Hz. Any deviation from 512 Hz indicates the degree and  
direction of oscillator frequency shift at the test temperature.  
For example, a reading of 512.01024 Hz would indicate a +20 ppm oscillator frequency  
error, requiring a –10(XX001010) to be loaded into the calibration byte for correction. Note  
that setting or changing the calibration byte does not affect the frequency test output  
frequency.  
3.2  
3.3  
Output driver pin  
When the FT Bit is not set, the FT/OUT pin becomes an output driver that reflects the  
contents of D7 of the control register. In other words, when D6 of location 7 is a zero and D7  
of location 7 is a zero and then the FT/OUT pin will be driven low.  
Note: The FT/OUT pin is open drain which requires an external pull-up resistor.  
Preferred initial power-on defaults  
Upon initial application of power to the device, the FT bit will be set to a '0' and the OUT bit  
will be set to a '1'. All other register bits will initially power-on in a random state.  
16/29  
M41T11  
Clock operation  
Figure 12. Crystal accuracy across temperature  
Frequency (ppm)  
20  
0
–20  
–40  
–60  
–80  
ΔF  
F
= K x (T –TO)2  
–100  
–120  
–140  
–160  
K = –0.036 ppm/°C2 0.006 ppm/°C2  
TO = 25°C 5°C  
–40  
–30  
–20  
–10  
0
10  
20  
30  
40  
50  
60  
70  
80  
Temperature °C  
AI00999b  
Figure 13. Clock calibration  
NORMAL  
POSITIVE  
CALIBRATION  
NEGATIVE  
CALIBRATION  
AI00594B  
17/29  
Maximum ratings  
M41T11  
4
Maximum ratings  
Stressing the device above the rating listed in the “Absolute maximum ratings” table may  
cause permanent damage to the device. These are stress ratings only and operation of the  
device at these or any other conditions above those indicated in the Operating sections of  
this specification is not implied. Exposure to absolute maximum rating conditions for  
extended periods may affect device reliability. Refer also to the STMicroelectronics SURE  
Program and other relevant quality documents.  
Table 4.  
Symbol  
Absolute maximum ratings  
Parameter  
Value  
Unit  
TA  
Ambient operating temperature  
–40 to 85  
–40 to 85  
–55 to 125  
260  
°C  
SNAPHAT®  
SOIC  
TSTG  
Storage temperature (VCC off, oscillator off)  
°C  
(1)  
TSLD  
Lead solder temperature for 10 seconds  
Input or output voltages  
Supply voltage  
°C  
V
VIO  
VCC  
IO  
–0.3 to 7  
–0.3 to 7  
20  
V
Output current  
mA  
W
PD  
Power dissipation  
0.25  
1. Lead-free (Pb-free) lead finish: Reflow at peak temperature of 260°C (total thermal budget not to exceed  
245°C for greater than 30 seconds).  
Caution:  
Caution:  
Negative undershoots below –0.3V are not allowed on any pin while in the Battery Back-up  
mode.  
Do NOT wave solder SOIC to avoid damaging SNAPHAT sockets.  
18/29  
M41T11  
DC and AC parameters  
5
DC and AC parameters  
This section summarizes the operating and measurement conditions, as well as the DC and  
AC characteristics of the device. The parameters in the following DC and AC characteristic  
tables are derived from tests performed under the measurement conditions listed in the  
Table 5: Operating and AC measurement conditions. Designers should check that the  
operating conditions in their projects match the measurement conditions when using the  
quoted parameters.  
(1)  
Table 5.  
Operating and AC measurement conditions  
Parameter  
M41T11  
Unit  
Supply voltage (VCC  
)
2.0 to 5.5(2)  
–40 to 85  
V
°C  
pF  
ns  
V
Ambient operating temperature (TA)  
Load capacitance (CL)  
100  
Input rise and fall times  
50  
Input pulse voltages  
0.2VCC to 0.8VCC  
0.3VCC to 0.7VCC  
Input and output timing ref. voltages  
V
1. Output Hi-Z is defined as the point where data is no longer driven.  
2. Supply voltage for SOH28 is 3.3V to 5.5V.  
Figure 14. AC testing input/output waveform  
0.8V  
CC  
0.7V  
CC  
0.3V  
CC  
0.2V  
CC  
AI02568  
19/29  
DC and AC parameters  
M41T11  
Unit  
Table 6.  
Symbol  
Capacitance  
Parameter(1)(2)  
Min  
Max  
CIN  
Input capacitance (SCL)  
7
pF  
pF  
ns  
(3)  
COUT  
Output capacitance (SDA, FT/OUT)  
Low-pass filter input time constant (SDA and SCL)  
10  
tLP  
250  
1000  
1. Effective capacitance measured with power supply at 5V; sampled only, not 100% tested.  
2. At 25°C, f = 1 MHz.  
3. Outputs deselected.  
Table 7.  
Symbol  
DC characteristics  
Parameter  
Test Condition(1)  
Min  
Typ  
Max  
Unit  
ILI  
Input leakage current  
Output leakage current  
Supply current  
0V VIN VCC  
0V VOUT VCC  
1
1
µA  
µA  
µA  
µA  
V
ILO  
ICC1  
ICC2  
VIL  
Switch frequency = 100 kHz  
SCL, SDA = VCC – 0.3 V  
300  
70  
Supply current (standby)  
Input low voltage  
–0.3  
0.3VCC  
VIH  
VOL  
Input high voltage  
Output low voltage  
0.7VCC  
VCC + 0.5  
0.4  
V
V
IOL = 3 mA  
FT/OUT  
Pull-up supply voltage  
(open drain)  
5.5  
3.5(4)  
1
V
V
VBAT  
Battery supply voltage  
Battery supply current  
2.5(3)  
3
(2)  
TA = 25°C, VCC = 0 V,  
oscillator ON, VBAT = 3 V  
IBAT  
0.8  
µA  
1. Valid for ambient operating temperature: TA = –40 to 85°C; VCC = 2.0 to 5.5V (except where noted).  
2. STMicroelectronics recommends the RAYOVAC BR1225 or BR1632 (or equivalent) as the battery supply.  
3. After switchover (VSO), VBAT(min) can be 2.0 V for crystal with RS = 40 KΩ.  
4. For rechargeable back-up, VBAT(max) may be considered VCC  
.
Table 8.  
Symbol  
Crystal electrical characteristics  
Parameter(1)(2)(3)  
Min  
Typ  
Max  
Unit  
f
Resonant frequency  
Series resistance  
Load capacitance  
32.768  
kHz  
kΩ  
pF  
O
RS  
CL  
60  
12.5  
1. These values are externally supplied if using the SO8 package. STMicroelectronics recommends the KDS  
DT-38: 1TA/1TC252E127, Tuning Fork Type (thru-hole) or the DMX-26S: 1TJS125FH2A212, (SMD)  
quartz crystal for industrial temperature operations. KDS can be contacted at kouhou@kdsj.co.jp or  
http://www.kdsj.co.jp for further information on this crystal type.  
2. Load capacitors are integrated within the M41T11. Circuit board layout considerations for the 32.768 kHz  
crystal of minimum trace lengths and isolation from RF generating signals should be taken into account.  
®
3. All SNAPHAT battery:crystal tops meet these specifications.  
20/29  
M41T11  
DC and AC parameters  
Figure 15. Power down/up mode AC waveforms  
V
CC  
V
SO  
tPD  
tREC  
SDA  
SCL  
DON'T CARE  
AI00596  
Table 9.  
Power down/up AC characteristics  
Parameter(1)(2)  
Symbol  
Min  
Max  
Unit  
tPD  
SCL and SDA at VIH before power down  
SCL and SDA at VIH after power up  
0
ns  
µs  
tREC  
10  
1. Valid for ambient operating temperature: TA = –40 to 85°C; VCC = 2.0 to 5.5 V (except where noted).  
2. VCC fall time should not exceed 5 mV/µs.  
Table 10. Power down/up trip points DC characteristics  
Symbol  
Parameter(1)(2)  
Min  
Typ  
Max(3)  
Unit  
(4)  
VSO  
Battery back-up switchover voltage VBAT – 0.80 VBAT – 0.50 VBAT – 0.30  
V
1. Valid for ambient operating temperature: TA = –40 to 85°C; VCC = 2.0 to 5.5 V (except where noted).  
2. All voltages referenced to VSS  
.
3. In 3.3 V application, if initial battery voltage is 3.4 V, it may be necessary to reduce battery voltage (i.e.,  
through wave soldering the battery) in order to avoid inadvertent switchover/deselection for VCC – 10%  
operation.  
4. Switchover and deselect point.  
21/29  
Package mechanical data  
M41T11  
6
Package mechanical data  
®
In order to meet environmental requirements, ST offers these devices in ECOPACK  
packages. These packages have a Lead-free second level interconnect. The category of  
second Level Interconnect is marked on the package and on the inner box label, in  
compliance with JEDEC Standard JESD97. The maximum ratings related to soldering  
conditions are also marked on the inner box label. ECOPACK is an ST trademark.  
ECOPACK specifications are available at: www.st.com.  
22/29  
M41T11  
Package mechanical data  
Figure 16. SO8 – 8-lead plastic small outline package outline  
h x 45˚  
c
A2  
A
ccc  
b
e
0.25 mm  
D
GAUGE PLANE  
k
8
1
E1  
E
L
A1  
L1  
SO-A  
1. Drawing is not to scale.  
Table 11. SO8 – 8-lead plastic small outline (150 mils body width) pack. mech. data  
millimeters  
Min  
inches  
Min  
Symbol  
Typ  
Max  
Typ  
Max  
A
A1  
A2  
b
1.75  
0.25  
0.069  
0.010  
0.10  
1.25  
0.28  
0.17  
0.004  
0.049  
0.011  
0.007  
0.48  
0.23  
0.10  
5.00  
6.20  
4.00  
0.019  
0.009  
0.004  
0.197  
0.244  
0.157  
c
ccc  
D
4.90  
6.00  
3.90  
1.27  
4.80  
5.80  
3.80  
0.193  
0.236  
0.154  
0.050  
0.189  
0.228  
0.150  
E
E1  
e
h
0.25  
0°  
0.50  
8°  
0.010  
0°  
0.020  
8°  
k
L
0.40  
1.27  
0.016  
0.050  
L1  
1.04  
0.041  
23/29  
Package mechanical data  
M41T11  
Figure 17. SOH28 – 28-lead plastic small outline, battery snaphat package outline  
A2  
A
C
eB  
B
e
CP  
D
N
E
H
A1  
α
L
1
SOH-A  
1. Drawing is not to scale.  
Table 12. SOH28 – 28-lead plastic small outline, battery snaphat pack. mech. data  
mm  
Min  
inches  
Min  
Symb  
Typ  
Max  
Typ  
Max  
A
A1  
A2  
B
3.05  
0.36  
2.69  
0.51  
0.32  
18.49  
8.89  
0.120  
0.014  
0.106  
0.020  
0.012  
0.728  
0.350  
0.05  
2.34  
0.36  
0.15  
17.71  
8.23  
0.002  
0.092  
0.014  
0.006  
0.697  
0.324  
C
D
E
e
1.27  
0.050  
eB  
H
3.20  
11.51  
0.41  
0°  
3.61  
12.70  
1.27  
8°  
0.126  
0.453  
0.016  
0°  
0.142  
0.500  
0.050  
8°  
L
α
N
28  
28  
CP  
0.10  
0.004  
24/29  
M41T11  
Package mechanical data  
Figure 18. SH – 4-pin SNAPHAT housing for 48mAh battery & crystal package  
outline  
A2  
A1  
A
A3  
L
eA  
D
B
eB  
E
SHTK-A  
1. Drawing is not to scale.  
Table 13. SH – 4-pin SNAPHAT housing for 48 mAh battery & crystal, package  
mechanical data  
mm  
Min  
inches  
Min  
Symb  
Typ  
Max  
Typ  
Max  
A
A1  
A2  
A3  
B
9.78  
7.24  
6.99  
0.38  
0.56  
21.84  
14.99  
15.95  
3.61  
2.29  
0.385  
0.285  
0.275  
0.015  
0.022  
0.860  
0.590  
0.628  
0.142  
0.090  
6.73  
6.48  
0.265  
0.255  
0.46  
21.21  
14.22  
15.55  
3.20  
0.018  
0.835  
0.560  
0.612  
0.126  
0.080  
D
E
eA  
eB  
L
2.03  
25/29  
Package mechanical data  
M41T11  
Figure 19. SH – 4-pin SNAPHAT housing for 120mAh battery & crystal, package  
outline  
A2  
A1  
A
A3  
L
eA  
D
B
eB  
E
SHTK-B  
1. Drawing is not to scale.  
Table 14. SH – 4-pin SNAPHAT housing for 120mAh battery & crystal, package  
mech. data  
mm  
Min  
inches  
Min  
Symb  
Typ  
Max  
Typ  
Max  
A
A1  
A2  
A3  
B
10.54  
8.51  
0.415  
0.335  
0.315  
0.015  
0.022  
0.860  
0.710  
0.628  
0.142  
0.090  
8.00  
7.24  
0.315  
0.285  
8.00  
0.38  
0.46  
21.21  
17.27  
15.55  
3.20  
0.56  
0.018  
0.835  
0.680  
0.612  
0.126  
0.080  
D
21.84  
18.03  
15.95  
3.61  
E
eA  
eB  
L
2.03  
2.29  
26/29  
M41T11  
Part numbering  
7
Part numbering  
Table 15. Ordering information scheme  
Example:  
M41T  
11  
M
6
E
Device type  
M41T  
Supply voltage  
11 = VCC = 2.0 to 5.5 V(1)  
Package  
M = SO8 (150 mil width)  
MH(2) = SOH28  
Temperature range  
6 = –40 to 85°C  
Shipping method  
E = ECOPACK® package, tubes  
F = ECOPACK® package, tape & reel  
1. SOH28 supply voltage is 3.3 V to 5.5 V.  
2. The SOIC package (SOH28) requires the SNAPHAT® battery package which is ordered separately under  
the part number “M4Txx-BR12SHx” in plastic tube or “M4Txx-BR12SHxTR” in tape & reel form (see  
Table 16).  
Caution:  
Do not place the SNAPHAT battery package “M4TXX-BR12SH” in conductive foam as it will  
drain the lithium button-cell battery.  
For other options, or for more information on any aspect of this device, please contact the  
ST sales office nearest you.  
Table 16. SNAPHAT battery table  
Part Number  
Description  
Package  
M4T28-BR12SH  
M4T32-BR12SH  
Lithium battery (48 mAh) SNAPHAT  
Lithium battery (120 mAh) SNAPHAT  
SH  
SH  
27/29  
Revision history  
M41T11  
8
Revision history  
Table 17. Revision history  
Date  
Revision  
Revision changes  
Mar-1999  
23-Dec-1999  
25-Jul-2000  
12-Dec-2000  
24-Jan-2001  
27-Feb-2001  
1.0  
1.1  
1.2  
1.3  
2.0  
3.0  
First issue  
SOH28 package added  
Crystal electrical characteristics: RS Max changed (Table 8)  
Edit VSO (Table 10)  
Reformatted  
Document status changed  
Change to DC and AC characteristics (Table 7, Table ); added  
temp/voltage info. to (Table 6, Table 7, Table 8, Table , Table 9,  
Table 10); added SNAPHAT battery table (Table 16).  
17-Jul-2001  
27-Nov-2001  
3.1  
3.2  
Features, (page 1); DC characteristics (Table 7); crystal electrical  
(Table 8); power down/up trip points (Table 10) changes; add table  
footnotes (Table 5, Table 10, Table 15)  
21-Jan-2002  
01-May-2002  
3.3  
3.4  
Fix table footnotes (Table 7, Table 8)  
Modify reflow time and temperature footnote (Table 4)  
Modify “Clock operation” text, crystal electrical characteristics table  
footnote (Table 8)  
03-Jul-2002  
07-Nov-2002  
15-Jun-2004  
14-Dec-2004  
3.5  
3.6  
4.0  
5.0  
Correct figure name in Features on page 1;  
Reformatted; added Lead-free information; updated characteristics  
(Figure 12; Table 4, Table 7, Table 15)  
Correct footnote (Table 8)  
Changed document to new template; changed title on page 1; re-ordered  
text and amalgamated figures in Features on page 1; updated package  
mechanical data in Section 6: Package mechanical data; amended  
footnotes in Table and Table 9; Table 15 ecopack compliant; small text  
changes for entire document  
22-Aug-2006  
6
Added lead-free second level interconnect information to cover page and  
Section 6: Package mechanical data; some text changes; updated  
Table 4.  
03-Oct-2007  
02-May-2008  
7
8
Updated Figure 16, Table 11, 15.  
28/29  
M41T11  
Please Read Carefully:  
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the  
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any  
time, without notice.  
All ST products are sold pursuant to ST’s terms and conditions of sale.  
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no  
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.  
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this  
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products  
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such  
third party products or services or any intellectual property contained therein.  
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED  
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED  
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS  
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.  
UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT  
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING  
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,  
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE  
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.  
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void  
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any  
liability of ST.  
ST and the ST logo are trademarks or registered trademarks of ST in various countries.  
Information in this document supersedes and replaces all information previously supplied.  
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.  
© 2008 STMicroelectronics - All rights reserved  
STMicroelectronics group of companies  
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -  
Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America  
www.st.com  
29/29  

相关型号:

M41T11_11

Serial real-time clock (RTC) with 56 bytes of NVRAM
STMICROELECTR

M41T256Y

256 Kbit 32K x8 SERIAL RTC
STMICROELECTR

M41T256YMH

256 Kbit 32K x8 SERIAL RTC
STMICROELECTR

M41T256YMH7

256 Kbit 32K x8 SERIAL RTC
STMICROELECTR

M41T256YMH7E

256 Kbit 32K x8 SERIAL RTC
STMICROELECTR

M41T256YMH7F

256 Kbit 32K x8 SERIAL RTC
STMICROELECTR

M41T256YMH7TR

256 Kbit 32K x8 SERIAL RTC
STMICROELECTR

M41T256YMT

256 Kbit 32K x8 SERIAL RTC
STMICROELECTR

M41T256YMT7

256 Kbit 32K x8 SERIAL RTC
STMICROELECTR

M41T256YMT7E

256 Kbit 32K x8 SERIAL RTC
STMICROELECTR

M41T256YMT7F

256 Kbit 32K x8 SERIAL RTC
STMICROELECTR

M41T256YMT7TR

256 Kbit 32K x8 SERIAL RTC
STMICROELECTR