M34E02-FDW1T [STMICROELECTRONICS]

2 Kbit Serial IC Bus EEPROM Serial Presence Detect for DDR2 DIMMs; 2千位串行I2C总线EEPROM串行存在检测的DDR2 DIMM内存模块
M34E02-FDW1T
型号: M34E02-FDW1T
厂家: ST    ST
描述:

2 Kbit Serial IC Bus EEPROM Serial Presence Detect for DDR2 DIMMs
2千位串行I2C总线EEPROM串行存在检测的DDR2 DIMM内存模块

存储 内存集成电路 光电二极管 双倍数据速率 可编程只读存储器 电动程控只读存储器 电可擦编程只读存储器 时钟
文件: 总23页 (文件大小:352K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
M34E02  
2 Kbit Serial I²C Bus EEPROM  
Serial Presence Detect for DDR2 DIMMs  
FEATURES SUMMARY  
Software Data Protection for lower 128 bytes  
Figure 1. Packages  
Two Wire I2C Serial Interface  
100kHz Transfer Rates  
1.7 to 3.6V Single Supply Voltage:  
BYTE and PAGE WRITE (up to 16 bytes)  
RANDOM and SEQUENTIAL READ Modes  
Self-Timed Programming Cycle  
Automatic Address Incrementing  
Enhanced ESD/Latch-Up Protection  
More than 1 Million Erase/Write Cycles  
More than 40 Year Data Retention  
UFDFPN8 (MB)  
2x3mm² (MLP)  
TSSOP8 (DW)  
4.4x3mm²  
November 2004  
1/23  
M34E02  
TABLE OF CONTENTS  
FEATURES SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Figure 1. Packages. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
SUMMARY DESCRIPTION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Figure 2. Logic Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Figure 3. TSSOP and MLP Connections (Top View) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Table 1. Signal Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Power On Reset: VCC Lock-Out Write Protect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
SIGNAL DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Serial Clock (SCL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Serial Data (SDA). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Chip Enable (E0, E1, E2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Write Control (WC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Figure 4. Maximum RL Value versus Bus Capacitance (CBUS) for an I2C Bus . . . . . . . . . . . . . . . . 5  
Figure 5. I2C Bus Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Table 2. Device Select Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
DEVICE OPERATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Start Condition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Stop Condition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Acknowledge Bit (ACK) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Data Input. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Memory Addressing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Table 3. Operating Modes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Figure 6. Result of Setting the Write Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Setting the Write-Protection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
SWP and CWP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
PSWP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Figure 7. Setting the Write Protection (WC = 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Figure 8. Write Mode Sequences in a Non Write-Protected Area . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Write Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Byte Write. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Page Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Figure 9. Write Cycle Polling Flowchart using ACK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Minimizing System Delays by Polling On ACK. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Figure 10.Read Mode Sequences. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Read Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Random Address Read. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Current Address Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Sequential Read. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Acknowledge in Read Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
INITIAL DELIVERY STATE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
2/23  
M34E02  
USE WITHIN A DDR2 DIMM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Table 4. DRAM DIMM Connections. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Programming the M34E02 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
DDR2 DIMM Isolated. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
DDR2 DIMM Inserted in the Application Mother Board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Table 5. Acknowledge when Writing Data or Defining the Write-protection  
(Instructions with R/W bit=0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Table 6. Acknowledge when Reading the Write Protection (Instructions with R/W bit=1). . . . . . . 13  
Figure 11.Serial Presence Detect Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
MAXIMUM RATING. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Table 7. Absolute Maximum Ratings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
DC AND AC PARAMETERS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Table 8. Operating Conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Table 9. AC Measurement Conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Figure 12.AC Measurement I/O Waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Table 10. Input Parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Table 11. DC Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Table 12. AC Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Figure 13.AC Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
PACKAGE MECHANICAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Figure 14.UFDFPN8 (MLP8) 8-lead Ultra thin Fine pitch Dual Flat Package No lead 2x3mm²,  
Package Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Table 13. UFDFPN8 (MLP8) 8-lead Ultra thin Fine pitch Dual Flat Package No lead 2x3mm²,  
Package Mechanical Data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Figure 15.TSSOP8 – 8 lead Thin Shrink Small Outline, Package Outline . . . . . . . . . . . . . . . . . . . 20  
Table 14. TSSOP8 – 8 lead Thin Shrink Small Outline, Package Mechanical Data . . . . . . . . . . . . 20  
PART NUMBERING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Table 15. Ordering Information Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
REVISION HISTORY. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Table 16. Revision History. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
3/23  
M34E02  
SUMMARY DESCRIPTION  
The M34E02 is a 2 Kbit serial EEPROM memory  
able to lock permanently the data in its first half  
(from location 00h to 7Fh). This facility has been  
designed specifically for use in DRAM DIMMs  
(dual interline memory modules) with Serial  
Presence Detect. All the information concerning  
the DRAM module configuration (such as its  
access speed, its size, its organization) can be  
kept write protected in the first half of the memory.  
This bottom half of the memory area can be write-  
protected using two different software write  
protection mechanisms. By sending the device a  
specific sequence, the first 128 bytes of the  
memory become write protected: permanently or  
resetable. In addition, the device allows the entire  
memory area to be write protected, using the WC  
input (for example by tieing this input to VCC).  
Device Select Code and RW bit (as described in  
Table 2), terminated by an acknowledge bit.  
When writing data to the memory, the memory  
inserts an acknowledge bit during the 9th bit time,  
following the bus master’s 8-bit transmission.  
When data is read by the bus master, the bus  
master acknowledges the receipt of the data byte  
in the same way. Data transfers are terminated by  
a STOP condition after an Ack for WRITE, and  
after a NoAck for READ.  
Figure 3. TSSOP and MLP Connections (Top  
View)  
M34E02  
These I2C-compatible electrically erasable  
programmable memory (EEPROM) devices are  
organized as 256x8 bits.  
E0  
E1  
E2  
1
2
3
4
8
V
CC  
WC  
7
6
SCL  
SDA  
Figure 2. Logic Diagram  
V
5
SS  
AI09021  
V
CC  
Note: 1. See the pages after page 19 for package dimensions,  
and how to identify pin-1.  
3
E0-E2  
SDA  
Table 1. Signal Names  
M34E02  
E0, E1, E2  
SDA  
Chip Enable  
Serial Data  
Serial Clock  
Write Control  
Supply Voltage  
Ground  
SCL  
WC  
SCL  
WC  
V
SS  
V
V
CC  
SS  
AI09020  
I2C uses a two wire serial interface, comprising a  
bi-directional data line and a clock line. The device  
carries a built-in 4-bit Device Type Identifier code  
(1010) in accordance with the I2C bus definition to  
access the memory area and a second Device  
Type Identifier Code (0110) to define the  
protection. These codes are used together with  
the voltage level applied on the three chip enable  
inputs (E2, E1, E0).  
The device behaves as a slave device in the I2C  
protocol, with all memory operations synchronized  
by the serial clock. Read and Write operations are  
initiated by a START condition, generated by the  
bus master. The START condition is followed by a  
Power On Reset: VCC Lock-Out Write Protect  
In order to prevent data corruption and inadvertent  
Write operations during power up, a Power On  
Reset (POR) circuit is included. At Power-on, the  
internal reset is held active until VCC has reached  
the POR threshold value, and all operations are  
disabled – the device will not respond to any  
command. In the same way, when VCC drops from  
the operating voltage, below the POR threshold  
value, all operations are disabled and the device  
will not respond to any command.  
A stable and valid VCC (as defined in Table 8) must  
be applied before applying any logic signal.  
4/23  
M34E02  
SIGNAL DESCRIPTION  
Serial Clock (SCL)  
Chip Enable (E0, E1, E2)  
This input signal is used to strobe all data in and  
out of the device. In applications where this signal  
is used by slave devices to synchronize the bus to  
a slower clock, the bus master must have an open  
drain output, and a pull-up resistor can be con-  
nected from Serial Clock (SCL) to VCC. (Figure 4  
indicates how the value of the pull-up resistor can  
be calculated). In most applications, though, this  
method of synchronization is not employed, and  
so the pull-up resistor is not necessary, provided  
that the bus master has a push-pull (rather than  
open drain) output.  
These input signals are used to set the value that  
is to be looked for on the three least significant bits  
(b3, b2, b1) of the 7-bit Device Select Code. In the  
end application, E0, E1 and E2 must be directly  
(not through a pull-up or pull-down resistor) con-  
nected to VCC or VSS to establish the Device Se-  
lect Code. When these inputs are not connected,  
an internal pull-down circuitry makes (E0,E1,E2) =  
(0,0,0).  
The E0 input is used to detect the VHV voltage,  
when decoding an SWP or CWP instruction.  
Write Control (WC)  
Serial Data (SDA)  
This input signal is provided for protecting the con-  
tents of the whole memory from inadvertent write  
operations. Write Control (WC) is used to enable  
(when driven Low) or disable (when driven High)  
write instructions to the entire memory area or to  
the Protection Register.  
When Write Control (WC) is tied Low or left  
unconnected, the write protection of the first half of  
the memory is determined by the status of the  
Protection Register.  
This bi-directional signal is used to transfer data in  
or out of the device. It is an open drain output that  
may be wire-OR’ed with other open drain or open  
collector signals on the bus. A pull up resistor must  
be connected from Serial Data (SDA) to VCC. (Fig-  
ure 4 indicates how the value of the pull-up resistor  
can be calculated).  
Figure 4. Maximum RL Value versus Bus Capacitance (CBUS) for an I2C Bus  
V
CC  
20  
16  
12  
R
R
L
L
SDA  
MASTER  
C
BUS  
8
SCL  
fc = 100kHz  
4
0
fc = 400kHz  
C
BUS  
10  
100  
(pF)  
1000  
C
BUS  
AI01665  
5/23  
M34E02  
Figure 5. I2C Bus Protocol  
SCL  
SDA  
SDA  
Input  
SDA  
Change  
START  
Condition  
STOP  
Condition  
1
2
3
7
8
9
SCL  
SDA  
ACK  
MSB  
START  
Condition  
1
2
3
7
8
9
SCL  
SDA  
MSB  
ACK  
STOP  
Condition  
AI00792B  
Table 2. Device Select Code  
Chip Enable Signals  
Device Type Identifier  
Chip Enable Bits  
RW  
1
b6  
0
b5  
1
b4  
0
b3  
E2  
b2  
E1  
b1  
E0  
b0  
b7  
1
Memory Area Select Code  
E2  
E1  
E0  
RW  
2
(two arrays)  
V
V
V
Set Write Protection (SWP)  
Clear Write Protection (CWP)  
Permanently Set Write  
0
0
0
1
1
1
0
0
SS  
SS  
HV  
HV  
V
SS  
V
V
CC  
E2  
E1  
E0  
E2  
E1  
E0  
0
2
Protection (PSWP)  
0
1
1
0
V
V
V
V
V
Read SWP  
Read CWP  
0
0
0
1
1
1
1
1
1
SS  
SS  
HV  
HV  
V
SS  
CC  
2
E2  
E1  
E0  
E2  
E1  
E0  
Read PSWP  
Note: 1. The most significant bit, b7, is sent first.  
2. E0, E1 and E2 are compared against the respective external pins on the memory device.  
6/23  
M34E02  
DEVICE OPERATION  
The device supports the I2C protocol. This is sum-  
marized in Figure 5. Any device that sends data on  
to the bus is defined to be a transmitter, and any  
device that reads the data to be a receiver. The  
device that controls the data transfer is known as  
the bus master, and the other as the slave device.  
A data transfer can only be initiated by the bus  
master, which will also provide the serial clock for  
synchronization. The memory device is always a  
slave in all communication.  
Data Input  
During data input, the device samples Serial Data  
(SDA) on the rising edge of Serial Clock (SCL).  
For correct device operation, Serial Data (SDA)  
must be stable during the rising edge of Serial  
Clock (SCL), and the Serial Data (SDA) signal  
must change only when Serial Clock (SCL) is driv-  
en Low.  
Memory Addressing  
To start communication between the bus master  
and the slave device, the bus master must initiate  
a Start condition. Following this, the bus master  
sends the Device Select Code, shown in Table 2  
(on Serial Data (SDA), most significant bit first).  
The Device Select Code consists of a 4-bit Device  
Type Identifier, and a 3-bit Chip Enable “Address”  
(E2, E1, E0). To address the memory array, the 4-  
bit Device Type Identifier is 1010b; to access the  
write-protection settings, it is 0110b.  
Start Condition  
Start is identified by a falling edge of Serial Data  
(SDA) while Serial Clock (SCL) is stable in the  
High state. A Start condition must precede any  
data transfer command. The device continuously  
monitors (except during a Write cycle) Serial Data  
(SDA) and Serial Clock (SCL) for a Start condition,  
and will not respond unless one is given.  
Stop Condition  
Stop is identified by a rising edge of Serial Data  
(SDA) while Serial Clock (SCL) is stable and driv-  
en High. A Stop condition terminates communica-  
tion between the device and the bus master. A  
Read command that is followed by NoAck can be  
followed by a Stop condition to force the device  
into the Stand-by mode. A Stop condition at the  
end of a Write command triggers the internal EE-  
PROM Write cycle.  
Up to eight memory devices can be connected on  
a single I2C bus. Each one is given a unique 3-bit  
code on the Chip Enable (E0, E1, E2) inputs.  
When the Device Select Code is received, the  
device only responds if the Chip Enable Address  
is the same as the value on the Chip Enable (E0,  
E1, E2) inputs.  
The 8th bit is the Read/Write bit (RW). This bit is  
set to 1 for Read and 0 for Write operations.  
Acknowledge Bit (ACK)  
If a match occurs on the Device Select code, the  
corresponding device gives an acknowledgment  
on Serial Data (SDA) during the 9th bit time. If the  
device does not match the Device Select code, it  
deselects itself from the bus, and goes into Stand-  
by mode.  
The acknowledge bit is used to indicate a success-  
ful byte transfer. The bus transmitter, whether it be  
bus master or slave device, releases Serial Data  
(SDA) after sending eight bits of data. During the  
9th clock pulse period, the receiver pulls Serial  
Data (SDA) Low to acknowledge the receipt of the  
eight data bits.  
Table 3. Operating Modes  
1
Mode  
RW bit  
Bytes  
Initial Sequence  
WC  
X
Current Address Read  
1
0
1
1
0
0
1
START, Device Select, RW = 1  
X
START, Device Select, RW = 0, Address  
reSTART, Device Select, RW = 1  
Similar to Current or Random Address Read  
START, Device Select, RW = 0  
Random Address Read  
1
X
Sequential Read  
Byte Write  
X
1  
1
VIL  
VIL  
Page Write  
16  
START, Device Select, RW = 0  
Note: 1. X = VIH or VIL.  
7/23  
M34E02  
Figure 6. Result of Setting the Write Protection  
FFh  
Standard  
Array  
FFh  
Standard  
Array  
Memory  
80h  
80h  
7Fh  
Area  
7Fh  
Write  
Protected  
Array  
Standard  
Array  
00h  
00h  
Default EEPROM memory area  
state before write access  
to the Protect Register  
State of the EEPROM memory  
area after write access  
to the Protect Register  
AI01936C  
Setting the Write-Protection  
SWP and CWP. If the software write-protection  
has been set with the SWP instruction, it can be  
cleared again with a CWP instruction.  
The M34E02 has a hardware write-protection  
feature, using the Write Control (WC) signal. This  
signal can be driven High or Low, and must be  
held constant for the whole instruction sequence.  
When Write Control (WC) is held High, the whole  
memory array (addresses 00h to FFh) is write  
protected. When Write Control (WC) is held Low,  
the write protection of the memory array is  
dependent on whether software write-protection  
has been set.  
Software write-protection allows the bottom half of  
the memory area (addresses 00h to 7Fh) to be  
write protected irrespective of subsequent states  
of the Write Control (WC) signal.  
Software write-protection is handled by three in-  
structions:  
– SWP: Set Write Protection  
– CWP: Clear Write Protection  
– PSWP: Permanently Set Write Protection  
The two instructions (SWP and CWP) have the  
same format as a Byte Write instruction, but with a  
different Device Type Identifier (as shown in Table  
2). Like the Byte Write instruction, it is followed by  
an address byte and a data byte, but in this case  
the contents are all “Don’t Care” (Figure 7). Anoth-  
er difference is that the voltage, VHV, must be ap-  
plied on the E0 pin, and specific logical levels must  
be applied on the other two (E1 and E2, as shown  
in Table 2).  
PSWP. If the software write-protection has been  
set with the PSWP instruction, the first 128 bytes  
of the memory are permanently write-protected.  
This write-protection cannot be cleared by any in-  
struction, or by power-cycling the device, and re-  
gardless the state of Write Control (WC). Also,  
once the PSWP instruction has been successfully  
executed, the M34E02 no longer acknowledges  
any instruction (with a Device Type Identifier of  
0110) to access the write-protection settings.  
The level of write-protection (set or cleared) that  
has been defined using these instructions, re-  
mains defined even after a power cycle.  
Figure 7. Setting the Write Protection (WC = 0)  
BUS ACTIVITY  
MASTER  
CONTROL  
BYTE  
WORD  
ADDRESS  
DATA  
SDA LINE  
BUS ACTIVITY  
ACK  
ACK  
ACK  
VALUE  
VALUE  
(DON'T CARE) (DON'T CARE)  
AI01935B  
8/23  
M34E02  
Figure 8. Write Mode Sequences in a Non Write-Protected Area  
ACK  
ACK  
ACK  
ACK  
BYTE WRITE  
DEV SEL  
BYTE ADDR  
DATA IN  
R/W  
ACK  
BYTE ADDR  
ACK  
PAGE WRITE  
DEV SEL  
ACK  
DATA IN 1  
DATA IN 2  
R/W  
ACK  
DATA IN N  
AI01941  
Write Operations  
replies with Ack. The bus master terminates the  
transfer by generating a Stop condition, as shown  
in Figure 8.  
Following a Start condition the bus master sends  
a Device Select Code with the RW bit reset to 0.  
The device acknowledges this, as shown in Figure  
8, and waits for an address byte. The device re-  
sponds to the address byte with an acknowledge  
bit, and then waits for the data byte.  
When the bus master generates a Stop condition  
immediately after the Ack bit (in the “10th bit” time  
slot), either at the end of a Byte Write or a Page  
Write, the internal memory Write cycle is triggered.  
A Stop condition at any other time slot does not  
trigger the internal Write cycle.  
Page Write  
The Page Write mode allows up to 16 bytes to be  
written in a single Write cycle, provided that they  
are all located in the same page in the memory:  
that is, the most significant memory address bits  
are the same. If more bytes are sent than will fit up  
to the end of the page, a condition known as ‘roll-  
over’ occurs. This should be avoided, as data  
starts to become overwritten in an implementation  
dependent way.  
During the internal Write cycle, Serial Data (SDA)  
and Serial Clock (SCL) are ignored, and the de-  
vice does not respond to any requests.  
The bus master sends from 1 to 16 bytes of data,  
each of which is acknowledged by the device if  
Write Control (WC) is Low. If the addressed loca-  
tion is hardware write-protected, the device replies  
to the data byte with NoAck, and the locations are  
not modified. After each byte is transferred, the in-  
ternal byte address counter (the 4 least significant  
address bits only) is incremented. The transfer is  
terminated by the bus master generating a Stop  
condition.  
Byte Write  
After the Device Select Code and the address  
byte, the bus master sends one data byte. If the  
addressed location is hardware write-protected,  
the device replies to the data byte with NoAck, and  
the location is not modified. If, instead, the ad-  
dressed location is not Write-protected, the device  
9/23  
M34E02  
Figure 9. Write Cycle Polling Flowchart using ACK  
WRITE Cycle  
in Progress  
START Condition  
DEVICE SELECT  
with RW = 0  
ACK  
Returned  
NO  
First byte of instruction  
with RW = 0 already  
decoded by the device  
YES  
Next  
Operation is  
Addressing the  
Memory  
NO  
YES  
Send Address  
and Receive ACK  
ReSTART  
START  
NO  
YES  
STOP  
Condition  
DATA for the  
WRITE Operation  
DEVICE SELECT  
with RW = 1  
Continue the  
Continue the  
Random READ Operation  
WRITE Operation  
AI01847C  
Minimizing System Delays by Polling On ACK  
The sequence, as shown in Figure 9, is:  
During the internal Write cycle, the device discon-  
nects itself from the bus, and writes a copy of the  
data from its internal latches to the memory cells.  
– Initial condition: a Write cycle is in progress.  
– Step 1: the bus master issues a Start condition  
followed by a Device Select Code (the first byte  
of the new instruction).  
The maximum Write time (t ) is shown in Table  
w
12, but the typical time is shorter. To make use of  
this, a polling sequence can be used by the bus  
master.  
– Step 2: if the device is busy with the internal  
Write cycle, no Ack will be returned and the bus  
master goes back to Step 1. If the device has  
terminated the internal Write cycle, it responds  
with an Ack, indicating that the device is ready  
to receive the second part of the instruction (the  
first byte of this instruction having been sent  
during Step 1).  
10/23  
M34E02  
Figure 10. Read Mode Sequences  
ACK  
NO ACK  
DATA OUT  
CURRENT  
ADDRESS  
READ  
DEV SEL  
R/W  
ACK  
ACK  
ACK  
NO ACK  
DATA OUT  
RANDOM  
ADDRESS  
READ  
DEV SEL *  
BYTE ADDR  
DEV SEL *  
R/W  
R/W  
ACK  
ACK  
ACK  
NO ACK  
DATA OUT N  
SEQUENTIAL  
CURRENT  
READ  
DEV SEL  
DATA OUT 1  
R/W  
ACK  
ACK  
ACK  
ACK  
SEQUENTIAL  
RANDOM  
READ  
DEV SEL *  
BYTE ADDR  
DEV SEL * DATA OUT 1  
R/W  
R/W  
ACK  
NO ACK  
DATA OUT N  
AI01942  
st  
rd  
Note: 1. The seven most significant bits of the Device Select Code of a Random Read (in the 1 and 3 bytes) must be identical.  
Read Operations  
and outputs the contents of the addressed byte.  
The bus master must not acknowledge the byte,  
and terminates the transfer with a Stop condition.  
Read operations are performed independently of  
whether hardware or software protection has been  
set.  
Current Address Read  
The device has an internal address counter which  
is incremented each time a byte is read.  
Random Address Read  
A dummy Write is first performed to load the ad-  
dress into this address counter (as shown in Fig-  
ure 10) but without sending a Stop condition.  
Then, the bus master sends another Start condi-  
tion, and repeats the Device Select Code, with the  
RW bit set to 1. The device acknowledges this,  
For the Current Address Read operation, following  
a Start condition, the bus master only sends a De-  
vice Select Code with the RW bit set to 1. The de-  
vice acknowledges this, and outputs the byte  
addressed by the internal address counter. The  
counter is then incremented. The bus master ter-  
minates the transfer with a Stop condition, as  
shown in Figure 10, without acknowledging the  
byte.  
11/23  
M34E02  
Sequential Read  
Table 4. DRAM DIMM Connections  
This operation can be used after a Current Ad-  
dress Read or a Random Address Read. The bus  
master does acknowledge the data byte output,  
and sends additional clock pulses so that the de-  
vice continues to output the next byte in sequence.  
To terminate the stream of bytes, the bus master  
must not acknowledge the last byte, and must  
generate a Stop condition, as shown in Figure 10.  
The output data comes from consecutive address-  
es, with the internal address counter automatically  
incremented after each byte output. After the last  
memory address, the address counter ‘rolls-over’,  
and the device continues to output data from  
memory address 00h.  
DIMM Position  
E2  
E1  
E0  
V
V
SS  
V
SS  
0
1
2
3
4
5
6
7
SS  
SS  
SS  
SS  
V
V
V
V
V
V
V
SS  
CC  
V
V
CC  
CC  
SS  
V
CC  
V
V
V
V
CC  
CC  
CC  
CC  
SS  
SS  
SS  
CC  
V
V
V
V
V
SS  
CC  
CC  
V
V
CC  
Acknowledge in Read Mode  
Programming the M34E02  
The situations in which the M34E02 is pro-  
grammed can be considered under two headings:  
– when the DDR2 DIMM is isolated (not inserted  
on the PCB motherboard)  
– when the DDR2 DIMM is inserted on the PCB  
motherboard  
For all Read commands, the device waits, after  
each byte read, for an acknowledgment during the  
9th bit time. If the bus master does not drive Serial  
Data (SDA) Low during this time, the device termi-  
nates the data transfer and switches to its Stand-  
by mode.  
DDR2 DIMM Isolated. With specific program-  
ming equipment, it is possible to define the  
M34E02 content, using Byte and Page Write in-  
structions, and its write-protection using the SWP  
and CWP instructions. To issue the SWP and  
CWP instructions, the DDR2 DIMM must be insert-  
ed in the DDR2-specific slot where the E0 signal  
can be driven to VHV during the whole instruction.  
This programming step is mainly intended for use  
by DDR2 DIMM makers, whose end application  
manufacturers will want to clear this write-protec-  
tion with the CWP on their own specific program-  
ming equipment, to modify the lower 128 Bytes,  
and finally to set permanently the write-protection  
with the PSWP instruction.  
DDR2 DIMM Inserted in the Application Mother  
Board. As the final application cannot drive the  
E0 pin to VHV, the only possible action is to freeze  
the write-protection with the PSWP instruction.  
Table 5 and Table 6 show how the Ack bits can be  
used to identify the write-protection status.  
INITIAL DELIVERY STATE  
The device is delivered with the memory array  
erased: all bits are set to 1 (each byte contains  
FFh).  
USE WITHIN A DDR2 DIMM  
In the application, the M34E02 is soldered directly  
in the printed circuit module. The three Chip  
Enable inputs (E0, E1, E2) must be connected to  
VSS or VCC directly (that is without using a pull-up  
or pull-down resistor) through the DIMM socket  
(see Table 4.). The pull-up resistors needed for  
normal behavior of the I2C bus are connected on  
the I2C bus of the mother-board (as shown in  
Figure 11).  
The Write Control (WC) of the M34E02 can be left  
unconnected. However, connecting it to VSS is  
recommended, to maintain full read and write  
access.  
12/23  
M34E02  
Table 5. Acknowledge when Writing Data or Defining the Write-protection  
(Instructions with R/W bit=0)  
Write  
Cycle  
(t )  
W
WC  
Input  
Level  
Status  
Instruction  
Ack  
Address  
Ack  
Data Byte  
Ack  
Not  
significant  
Not  
significant  
PSWP, SWP or CWP NoAck  
NoAck  
Ack  
NoAck  
NoAck  
NoAck  
Ack  
No  
No  
No  
Yes  
Yes  
No  
No  
No  
Permanently  
protected  
X
Page or Byte Write in  
Ack  
Address  
Data  
lower 128 Bytes  
Not  
significant  
Not  
significant  
SWP  
CWP  
NoAck  
Ack  
NoAck  
Ack  
Not  
significant  
Not  
significant  
Not  
significant  
Not  
significant  
0
1
PSWP  
Ack  
Ack  
Ack  
Page or Byte Write in  
lower 128 Bytes  
Ack  
Address  
Ack  
Data  
NoAck  
NoAck  
NoAck  
Protected with  
SWP  
Not  
significant  
Not  
significant  
SWP  
CWP  
NoAck  
Ack  
NoAck  
Ack  
Not  
significant  
Not  
significant  
Not  
significant  
Not  
significant  
PSWP  
Ack  
Ack  
Ack  
Ack  
Ack  
Ack  
Ack  
Ack  
Ack  
Ack  
Ack  
Ack  
NoAck  
NoAck  
Ack  
No  
No  
Page or Byte Write  
PSWP, SWP or CWP  
Page or Byte Write  
PSWP, SWP or CWP  
Page or Byte Write  
Address  
Data  
Not  
significant  
Not  
significant  
0
1
Yes  
Yes  
No  
Address  
Data  
Ack  
Not Protected  
Not  
significant  
Not  
significant  
NoAck  
NoAck  
Address  
Data  
No  
Table 6. Acknowledge when Reading the Write Protection (Instructions with R/W bit=1)  
Status  
Instruction  
Ack  
Address  
Ack  
Data byte  
Ack  
Permanently  
protected  
PSWP, SWP or CWP  
NoAck  
Not significant  
NoAck  
Not significant  
NoAck  
SWP  
CWP  
NoAck  
Ack  
Not significant  
Not significant  
Not significant  
Not significant  
NoAck  
NoAck  
NoAck  
NoAck  
Not significant  
Not significant  
Not significant  
Not significant  
NoAck  
NoAck  
NoAck  
NoAck  
Protected with  
SWP  
PSWP  
Ack  
Not Protected  
PSWP, SWP or CWP  
Ack  
13/23  
M34E02  
Figure 11. Serial Presence Detect Block Diagram  
R = 4.7kΩ  
DIMM Position 7  
E2  
E1  
E0 SCL SDA  
V
CC  
DIMM Position 6  
DIMM Position 5  
DIMM Position 4  
DIMM Position 3  
DIMM Position 2  
DIMM Position 1  
DIMM Position 0  
E2  
E1  
E0 SCL SDA  
V
V
SS  
CC  
E2  
E1  
E0 SCL SDA  
V
V
V
CC  
CC  
SS  
E2  
E1  
E0 SCL SDA  
V
V
SS  
CC  
E2  
E1  
E1  
E0 SCL SDA  
V
V
CC  
SS  
E2  
E0 SCL SDA  
V
V
V
SS  
SS  
CC  
E2  
E1  
E0 SCL SDA  
V
V
CC  
SS  
E2  
E1  
E0 SCL SDA  
V
SS  
SCL line  
SDA line  
From the motherboard  
I2C master controller  
AI01937  
Note: 1. E0, E1 and E2 are wired at each DIMM socket in a binary sequence for a maximum of 8 devices.  
2. Common clock and common data are shared across all the devices.  
3. Pull-up resistors are required on all SDA and SCL bus lines (typically 4.7 k) because these lines are open drain when used as  
outputs.  
14/23  
M34E02  
MAXIMUM RATING  
Stressing the device above the rating listed in the  
Absolute Maximum Ratings table may cause per-  
manent damage to the device. These are stress  
ratings only and operation of the device at these or  
any other conditions above those indicated in the  
Operating sections of this specification is not im-  
plied. Exposure to Absolute Maximum Rating con-  
ditions for extended periods may affect device  
reliability. Refer also to the STMicroelectronics  
SURE Program and other relevant quality docu-  
ments.  
Table 7. Absolute Maximum Ratings  
Symbol  
TSTG  
Parameter  
Min.  
Max.  
Unit  
°C  
Storage Temperature  
–65  
150  
1
1
TLEAD  
°C  
Lead Temperature during Soldering  
Input or Output range  
See note  
E0  
Others  
–0.50  
–0.50  
10.0  
6.5  
VIO  
V
VCC  
Supply Voltage  
–0.5  
6.5  
V
V
2
VESD  
–4000  
4000  
Electrostatic Discharge Voltage (Human Body model)  
®
Note: 1. Compliant with JEDEC Std J-STD-020B (for small body, Sn-Pb or Pb assembly), the ST ECOPACK 7191395 specification, and  
the European directive on Restrictions on Hazardous Substances (RoHS) 2002/95/EU.  
2. JEDEC Std JESD22-A114A (C1=100 pF, R1=1500 , R2=500 )  
15/23  
M34E02  
DC AND AC PARAMETERS  
This section summarizes the operating and mea-  
surement conditions, and the DC and AC charac-  
teristics of the device. The parameters in the DC  
and AC Characteristic tables that follow are de-  
rived from tests performed under the Measure-  
ment Conditions summarized in the relevant  
tables. Designers should check that the operating  
conditions in their circuit match the measurement  
conditions when relying on the quoted parame-  
ters.  
Table 8. Operating Conditions  
Symbol  
Parameter  
Min.  
1.7  
0
Max.  
3.6  
Unit  
V
V
Supply Voltage  
Ambient Operating Temperature  
CC  
TA  
70  
°C  
Table 9. AC Measurement Conditions  
Symbol  
Parameter  
Min.  
Max.  
Unit  
pF  
ns  
V
C
Load Capacitance  
100  
L
Input Rise and Fall Times  
Input Levels  
50  
0.2V to 0.8V  
CC  
CC  
CC  
0.3V to 0.7V  
Input and Output Timing Reference Levels  
V
CC  
Figure 12. AC Measurement I/O Waveform  
Input Levels  
Input and Output  
Timing Reference Levels  
0.8V  
CC  
0.7V  
CC  
0.3V  
CC  
0.2V  
CC  
AI00825B  
Table 10. Input Parameters  
1,2  
Symbol  
CIN  
Test Condition  
Min.  
Max.  
Unit  
pF  
Parameter  
Input Capacitance (SDA)  
Input Capacitance (other pins)  
8
6
CIN  
pF  
Ei (E0, E1, E2) Input  
Impedance  
ZEiL  
ZEiH  
VIN < 0.3VCC  
VIN > 0.7VCC  
30  
kΩ  
kΩ  
Ei (E0, E1, E2) Input  
Impedance  
800  
ZWCL  
ZWCH  
WC Input Impedance  
WC Input Impedance  
V
V
IN < 0.3VCC  
IN > 0.7VCC  
5
kΩ  
kΩ  
500  
Pulse width ignored  
(Input Filter on SCL and SDA)  
tNS  
Single glitch  
100  
ns  
Note: 1. T = 25 °C, f = 400 kHz  
A
2. Sampled only, not 100% tested.  
16/23  
M34E02  
Table 11. DC Characteristics  
Test Condition  
(in addition to those in Table 8)  
1
1
Symbol  
Parameter  
Unit  
Min.  
Max.  
Input Leakage Current  
(SCL, SDA)  
ILI  
VIN = VSS or VCC  
± 2  
± 2  
1
µA  
µA  
ILO  
ICC  
Output Leakage Current  
Supply Current  
VOUT = VSS or VCC, SDA in Hi-Z  
VCC =1.7V, f =100kHz (rise/fall time <  
c
mA  
30ns)  
VIN = VSS or VCC, VCC = 3.6V  
1
µA  
µA  
ICC1  
Stand-by Supply Current  
V
IN = VSS or VCC, VCC = 1.7V  
0.5  
Input Low Voltage  
(SCL, SDA, WC)  
VIL  
–0.45  
0.3 VCC  
VCC+1  
V
V
Input High Voltage  
(SCL, SDA, WC)  
VIH  
0.7VCC  
7
VHV  
E0 High Voltage  
V
HV – VCC 4.8V  
IOL = 2.1mA, 2.2V VCC 3.6V  
OL = 0.7mA, VCC = 1.7V  
10  
0.4  
0.2  
V
V
V
VOL  
Output Low Voltage  
I
Note: 1. Preliminary Data.  
Table 12. AC Characteristics  
Test conditions specified in Table 9 and 8  
Parameter  
Symbol  
fC  
Alt.  
fSCL  
Min.  
Max.  
Unit  
Clock Frequency  
100  
kHz  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ms  
tCHCL  
tCLCH  
tHIGH  
tLOW  
tF  
Clock Pulse Width High  
Clock Pulse Width Low  
4000  
4700  
20  
2
SDA Fall Time  
300  
tDL1DL2  
tDXCX  
tCLDX  
tCLQX  
tSU:DAT  
tHD:DAT  
tDH  
Data In Set Up Time  
250  
0
Data In Hold Time  
Data Out Hold Time  
200  
200  
4700  
4000  
4000  
4700  
3
tAA  
Clock Low to Next Data Valid (Access Time)  
Start Condition Set Up Time  
Start Condition Hold Time  
Stop Condition Set Up Time  
Time between Stop Condition and Next Start Condition  
Write Time  
3500  
tCLQV  
1
tSU:STA  
tHD:STA  
tSU:STO  
tBUF  
tCHDX  
tDLCL  
tCHDH  
tDHDL  
tW  
tWR  
10  
Note: 1. For a reSTART condition, or following a Write cycle.  
2. Sampled only, not 100% tested.  
3. To avoid spurious START and STOP conditions, a minimum delay is placed between SCL=1 and the falling or rising edge of SDA.  
17/23  
M34E02  
Figure 13. AC Waveforms  
tCHCL  
tCLCH  
SCL  
tDLCL  
SDA In  
tCHDX  
tCLDX  
tDXCX  
SDA  
tCHDH tDHDL  
Change  
START  
Condition  
START  
Condition  
SDA  
Input  
STOP  
Condition  
SCL  
SDA In  
tCHDH  
STOP  
tCHDX  
START  
Condition  
tW  
Write Cycle  
Condition  
SCL  
tCLQV  
tCLQX  
Data Valid  
SDA Out  
AI00795C  
18/23  
M34E02  
PACKAGE MECHANICAL  
Figure 14. UFDFPN8 (MLP8) 8-lead Ultra thin Fine pitch Dual Flat Package No lead 2x3mm²,  
Package Outline  
e
b
D
L1  
L3  
E
E2  
L
A
D2  
ddd  
A1  
UFDFPN-01  
Note: 1. Drawing is not to scale.  
2. The central pad (the area E2 by D2 in the above illustration) is pulled, internally, to V . It must not be allowed to be connected to  
SS  
any other voltage or signal line on the PCB, for example during the soldering process.  
Table 13. UFDFPN8 (MLP8) 8-lead Ultra thin Fine pitch Dual Flat Package No lead 2x3mm²,  
Package Mechanical Data  
millimeters  
Min.  
inches  
Min.  
Symbol  
Typ.  
Max.  
0.60  
0.05  
0.30  
Typ.  
Max.  
0.024  
0.002  
0.012  
A
A1  
b
0.55  
0.50  
0.022  
0.020  
0.000  
0.008  
0.00  
0.25  
2.00  
0.20  
0.010  
0.079  
D
D2  
ddd  
E
1.55  
1.65  
0.05  
0.061  
0.065  
0.002  
3.00  
0.118  
E2  
e
0.15  
0.25  
0.006  
0.010  
0.50  
0.45  
0.020  
0.018  
L
0.40  
0.50  
0.15  
0.016  
0.020  
0.006  
L1  
L3  
N
0.30  
8
0.012  
8
19/23  
M34E02  
Figure 15. TSSOP8 – 8 lead Thin Shrink Small Outline, Package Outline  
D
8
5
c
E1  
E
1
4
α
A1  
L
A
A2  
L1  
CP  
b
e
TSSOP8AM  
Notes: 1. Drawing is not to scale.  
Table 14. TSSOP8 – 8 lead Thin Shrink Small Outline, Package Mechanical Data  
millimeters  
Min.  
inches  
Min.  
Symbol  
Typ.  
Max.  
1.200  
0.150  
1.050  
0.300  
0.200  
0.100  
3.100  
Typ.  
Max.  
0.0472  
0.0059  
0.0413  
0.0118  
0.0079  
0.0039  
0.1220  
A
A1  
A2  
b
0.050  
0.800  
0.190  
0.090  
0.0020  
0.0315  
0.0075  
0.0035  
1.000  
0.0394  
c
CP  
D
3.000  
0.650  
6.400  
4.400  
0.600  
1.000  
2.900  
0.1181  
0.0256  
0.2520  
0.1732  
0.0236  
0.0394  
0.1142  
e
E
6.200  
4.300  
0.450  
6.600  
4.500  
0.750  
0.2441  
0.1693  
0.0177  
0.2598  
0.1772  
0.0295  
E1  
L
L1  
α
0°  
8
8°  
0°  
8
8°  
N
20/23  
M34E02  
PART NUMBERING  
Table 15. Ordering Information Scheme  
Example:  
M34E02  
F
DW  
1
T
P
Device Type  
2
M34 = ASSP I C serial access EEPROM  
Device Function  
E02 = 2 Kbit (256 x 8) SPD (Serial Presence Detect) for DDR2  
Operating Voltage  
F = V = 1.7 to 3.6V (100kHz)  
CC  
Package  
MB = UDFDFPN8 (MLP8)  
DW = TSSOP8 (4.4x3mm² body size)  
Temperature Range  
1 = 0 to 70 °C  
Option  
blank = Standard Packing  
T = Tape & Reel Packing  
Plating Technology  
blank = Standard SnPb plating  
P = Lead-Free and RoHS compliant  
G = Lead-Free, RoHS compliant, Sb O -free and TBBA-free  
2
3
For a list of available options (speed, package,  
etc.) or for further information on any aspect of this  
device, please contact your nearest ST Sales Of-  
fice.  
21/23  
M34E02  
REVISION HISTORY  
Table 16. Revision History  
Date  
Rev.  
Description of Revision  
13-Nov-2003  
1.0  
First release  
TSSOP8 4.4x3 package replaces TSSOP8 3x3 (MSOP8) package. Correction to sentence in  
01-Dec-2003  
1.1  
“Setting the Write Protection”. Correction to specification of t values.  
NS  
Always NoACK after Address and Data bytes in Table 6. Improvement in V and V (min) in  
IO  
CC  
Absolute Maximum Ratings table. I changed for test condition of V . MLP package  
mechanical data respecified. Soldering temperature information clarified for RoHS compliant  
devices.  
OL  
OL  
29-Mar-2004  
14-Apr-2004  
1.2  
2.0  
First public release  
Direct connection of E0, E1, E2 to V and V (see Chip Enable (E0, E1, E2) and USE  
SS  
CC  
WITHIN A DDR2 DIMM paragraphs). Z and Z  
parameters added to Table 10., Input  
EiH  
EiL  
24-Nov-2004  
3.0  
Parameters. E0, E1, E2 removed from the Parameter descriptions of V and V in Table  
IL  
IH  
11., DC Characteristics.  
Document status promoted from Product Preview to full Datasheet.  
22/23  
M34E02  
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences  
of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted  
by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject  
to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not  
authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.  
The ST logo is a registered trademark of STMicroelectronics.  
All other names are the property of their respective owners  
© 2004 STMicroelectronics - All rights reserved  
STMicroelectronics group of companies  
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -  
Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America  
www.st.com  
23/23  

相关型号:

M34E02-FDW1TG

2 Kbit Serial IC Bus EEPROM Serial Presence Detect for DDR2 DIMMs
STMICROELECTR

M34E02-FDW1TP

2 Kbit Serial IC Bus EEPROM Serial Presence Detect for DDR2 DIMMs
STMICROELECTR

M34E02-FDW6G

2 Kbit serial presence detect (SPD) EEPROM for double data rate (DDR1 and DDR2) DRAM modules
STMICROELECTR

M34E02-FDW6GM34E02-FDW6G

256X8 I2C/2-WIRE SERIAL EEPROM, PDSO8, 4.40 X 3 MM, ROHS COMPLIANT, TSSOP-8
STMICROELECTR

M34E02-FDW6P

2 Kbit serial presence detect (SPD) EEPROM for double data rate (DDR1 and DDR2) DRAM modules
STMICROELECTR

M34E02-FDW6TG

2 Kbit serial presence detect (SPD) EEPROM for double data rate (DDR1 and DDR2) DRAM modules
STMICROELECTR

M34E02-FDW6TGM34E02-FDW6TG

256X8 I2C/2-WIRE SERIAL EEPROM, PDSO8, 4.40 X 3 MM, ROHS COMPLIANT, TSSOP-8
STMICROELECTR

M34E02-FDW6TP

2 Kbit serial presence detect (SPD) EEPROM for double data rate (DDR1 and DDR2) DRAM modules
STMICROELECTR

M34E02-FDW6TPM34E02-FDW6TP

256X8 I2C/2-WIRE SERIAL EEPROM, PDSO8, 4.40 X 3 MM, ROHS COMPLIANT, TSSOP-8
STMICROELECTR

M34E02-FMB1

2 Kbit Serial IC Bus EEPROM Serial Presence Detect for DDR2 DIMMs
STMICROELECTR

M34E02-FMB1G

2 Kbit Serial IC Bus EEPROM Serial Presence Detect for DDR2 DIMMs
STMICROELECTR

M34E02-FMB1GM34E02-FMB1G

256X8 I2C/2-WIRE SERIAL EEPROM, PDSO8, 3 X 2 MM, ROHS COMPLIANT, UFDFP-8
STMICROELECTR