M34E02-FDW6TP [STMICROELECTRONICS]

2 Kbit serial presence detect (SPD) EEPROM for double data rate (DDR1 and DDR2) DRAM modules; 2 Kbit的串行存在检测( SPD) EEPROM的双数据速率( DDR1和DDR2 ) DRAM模块
M34E02-FDW6TP
型号: M34E02-FDW6TP
厂家: ST    ST
描述:

2 Kbit serial presence detect (SPD) EEPROM for double data rate (DDR1 and DDR2) DRAM modules
2 Kbit的串行存在检测( SPD) EEPROM的双数据速率( DDR1和DDR2 ) DRAM模块

存储 内存集成电路 光电二极管 动态存储器 双倍数据速率 可编程只读存储器 电动程控只读存储器 电可擦编程只读存储器 时钟
文件: 总34页 (文件大小:407K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
M34E02  
M34E02-F  
2 Kbit serial presence detect (SPD) EEPROM  
for double data rate (DDR1 and DDR2) DRAM modules  
Features  
2 Kbit EEPROM for DDR1 and DDR2 serial  
presence detect  
Backward compatible with the M34C02  
Permanent and reversible software data  
UFDFPN8 (MB or MC)  
2 × 3 mm (MLP)  
protection for lower 128 bytes  
2
100 kHz and 400 kHz I C bus serial interface  
Single supply voltage:  
– 1.7 V to 5.5 V  
Byte and Page Write (up to 16 bytes)  
Self-timed write cycle  
Noise filtering  
– Schmitt trigger on bus inputs  
– Noise filter on bus inputs  
TSSOP8 (DW)  
4.4 × 3 mm  
Enhanced ESD/latch-up protection  
More than 1 Million erase/write cycles  
More than 40 years’ data retention  
®
ECOPACK (RoHS compliant) packages  
Packages:  
®
ECOPACK2 (RoHS-compliant and  
Halogen-free)  
July 2010  
Doc ID 10367 Rev 10  
1/34  
www.st.com  
1
Contents  
M34E02, M34E02-F  
Contents  
1
2
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Signal description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
2.1  
2.2  
2.3  
2.4  
2.5  
Serial Clock (SCL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Serial Data (SDA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Chip Enable (E0, E1, E2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Write Control (WC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Supply voltage (VCC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
2.5.1  
2.5.2  
2.5.3  
2.5.4  
Operating supply voltage V  
CC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9  
Power-up conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Device reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Power-down conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
3
Device operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
Start condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Stop condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Acknowledge bit (ACK) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Data input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Memory addressing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Setting the write-protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
3.6.1  
3.6.2  
SWP and CWP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
PSWP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
3.7  
3.8  
Write operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
3.7.1  
3.7.2  
3.7.3  
Byte Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Page Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Minimizing system delays by polling on ACK . . . . . . . . . . . . . . . . . . . . . 16  
Read operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
3.8.1  
3.8.2  
3.8.3  
3.8.4  
Random Address Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Current Address Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Sequential Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Acknowledge in Read mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
4
Initial delivery state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
2/34  
Doc ID 10367 Rev 10  
M34E02, M34E02-F  
Contents  
5
Use within a DDR1/DDR2 DRAM module . . . . . . . . . . . . . . . . . . . . . . . 18  
5.1  
Programming the M34E02 and M34E02-F . . . . . . . . . . . . . . . . . . . . . . . . 18  
5.1.1  
5.1.2  
Isolated DRAM module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
DRAM module inserted in the application motherboard . . . . . . . . . . . . 19  
6
Maximum rating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
DC and AC parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Part numbering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
7
8
9
10  
Doc ID 10367 Rev 10  
3/34  
List of tables  
M34E02, M34E02-F  
List of tables  
Table 1.  
Table 2.  
Table 3.  
Table 4.  
Table 5.  
Signal names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Device select code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Operating modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
DRAM DIMM connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Acknowledge when writing data or defining the write-protection  
(instructions with R/W bit = 0). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Acknowledge when reading the write protection (instructions with R/W bit = 1). . . . . . . . . 20  
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Operating conditions (for temperature range 1 devices) . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Operating conditions (for temperature range 6 devices) . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
AC measurement conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Input parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
DC characteristics (for temperature range 1 devices) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
DC characteristics (for temperature range 6 devices) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
AC characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
UFDFPN8 (MLP8) 8-lead ultra thin fine pitch dual flat package no lead  
Table 6.  
Table 7.  
Table 8.  
Table 9.  
Table 10.  
Table 11.  
Table 12.  
Table 13.  
Table 14.  
Table 15.  
2 x 3 mm, data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
TSSOP8 – 8-lead thin shrink small outline, package mechanical data. . . . . . . . . . . . . . . . 30  
Ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Table 16.  
Table 17.  
Table 18.  
4/34  
Doc ID 10367 Rev 10  
M34E02, M34E02-F  
List of figures  
List of figures  
Figure 1.  
Figure 2.  
Figure 3.  
Figure 4.  
Figure 5.  
Figure 6.  
Figure 7.  
Figure 8.  
Figure 9.  
Logic diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
TSSOP and MLP connections (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Device select code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
2
Maximum R value versus bus parasitic capacitance (C) for an I C bus. . . . . . . . . . . . . . . 9  
P
2
I C bus protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Result of setting the write protection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Setting the write protection (WC = 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Write mode sequences in a non write-protected area . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Write cycle polling flowchart using ACK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Figure 10. Read mode sequences. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Figure 11. Serial presence detect block diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Figure 12. AC measurement I/O waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Figure 13. AC waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Figure 14. UFDFPN8 (MLP8) 8-lead ultra thin fine pitch dual flat package no lead  
2 x 3 mm, outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Figure 15. TSSOP8 – 8-lead thin shrink small outline, package outline . . . . . . . . . . . . . . . . . . . . . . . 30  
Doc ID 10367 Rev 10  
5/34  
Description  
M34E02, M34E02-F  
1
Description  
The M34E02 and M34E02-F are 2 Kbit serial EEPROM memories able to lock permanently  
the data in its first half (from location 00h to 7Fh). This facility has been designed specifically  
for use in DRAM DIMMs (dual interline memory modules) with serial presence detect (SPD).  
All the information concerning the DDR1 or DDR2 configuration of the DRAM module (such  
as its access speed, size and organization) can be kept write-protected in the first half of the  
memory.  
The first half of the memory area can be write-protected using two different software write  
protection mechanisms. By sending the device a specific sequence, the first 128 bytes of  
the memory become write protected: permanently or resettable. In addition, the devices  
allow the entire memory area to be write protected, using the WC input (for example by  
tieing this input to V ).  
CC  
2
These I C-compatible electrically erasable programmable memory (EEPROM) devices are  
organized as 256 × 8 bits.  
2
I C uses a two wire serial interface, comprising a bi-directional data line and a clock line.  
The devices carry a built-in 4-bit device type identifier code (1010) in accordance with the  
2
I C bus definition to access the memory area and a second device type identifier code  
(0110) to define the protection. These codes are used together with the voltage level applied  
on the three chip enable inputs (E2, E1, E0).  
2
The devices behave as a slave device in the I C protocol, with all memory operations  
synchronized by the serial clock. Read and Write operations are initiated by a Start  
condition, generated by the bus master. The Start condition is followed by a device select  
code and RW bit (as described in the Device select code table), terminated by an  
acknowledge bit.  
th  
When writing data to the memory, the memory inserts an acknowledge bit during the 9 bit  
time, following the bus master’s 8-bit transmission. When data is read by the bus master, the  
bus master acknowledges the receipt of the data byte in the same way. Data transfers are  
terminated by a Stop condition after an Ack for WRITE, and after a NoAck for READ.  
Figure 1.  
Logic diagram  
6
##  
%ꢀꢄ%ꢂ  
3$!  
-ꢃꢅ%ꢀꢂ  
-ꢃꢅ%ꢀꢂꢄ&  
3#,  
7#  
6
33  
!)ꢀꢁꢀꢂꢀB  
6/34  
Doc ID 10367 Rev 10  
M34E02, M34E02-F  
Figure 2.  
Description  
TSSOP and MLP connections (top view)  
-ꢃꢅ%ꢀꢂꢇ -ꢃꢅ%ꢀꢂꢄ&  
%ꢀ  
%ꢆ  
%ꢂ  
6
##  
7#  
3#,  
3$!  
6
33  
!)ꢀꢁꢀꢂꢆB  
1. See the Package mechanical data section for package dimensions, and how to identify pin-1.  
Table 1.  
Signal names  
Signal names  
Description  
E0, E1, E2  
SDA  
Chip Enable  
Serial Data  
Serial Clock  
Write Control  
Supply voltage  
Ground  
SCL  
WC  
VCC  
VSS  
Doc ID 10367 Rev 10  
7/34  
Signal description  
M34E02, M34E02-F  
2
Signal description  
2.1  
Serial Clock (SCL)  
This input signal is used to strobe all data in and out of the device. In applications where this  
signal is used by slave devices to synchronize the bus to a slower clock, the bus master  
must have an open drain output, and a pull-up resistor can be connected from Serial Clock  
(SCL) to V . (Figure 4 indicates how the value of the pull-up resistor can be calculated). In  
CC  
most applications, though, this method of synchronization is not employed, and so the pull-  
up resistor is not necessary, provided that the bus master has a push-pull (rather than open  
drain) output.  
2.2  
2.3  
Serial Data (SDA)  
This bidirectional signal is used to transfer data in or out of the device. It is an open drain  
output that may be wire-OR’ed with other open drain or open collector signals on the bus. A  
pull up resistor must be connected from Serial Data (SDA) to V . (Figure 4 indicates how  
CC  
the value of the pull-up resistor can be calculated).  
Chip Enable (E0, E1, E2)  
These input signals are used to set the value that is to be looked for on the three least  
significant bits (b3, b2, b1) of the 7-bit device select code. In the end application, E0, E1 and  
E2 must be directly (not through a pull-up or pull-down resistor) connected to V or V to  
CC  
SS  
establish the device select code. When these inputs are not connected, an internal pull-  
down circuitry makes (E0,E1,E2) = (0,0,0).  
The E0 input is used to detect the V voltage, when decoding an SWP or CWP instruction.  
HV  
Figure 3.  
Device select code  
6
6
##  
##  
-ꢃꢅ%ꢀꢂ  
-ꢃꢅ%ꢀꢂ  
-ꢃꢅ%ꢀꢂꢄ&  
-ꢃꢅ%ꢀꢂꢄ&  
%
I
%
I
6
6
33  
33  
!IꢆꢂꢃꢀꢆB  
2.4  
Write Control (WC)  
This input signal is provided for protecting the contents of the whole memory from  
inadvertent write operations. Write Control (WC) is used to enable (when driven low) or  
disable (when driven high) write instructions to the entire memory area or to the Protection  
Register.  
When Write Control (WC) is tied low or left unconnected, the write protection of the first half  
of the memory is determined by the status of the Protection Register.  
8/34  
Doc ID 10367 Rev 10  
M34E02, M34E02-F  
Signal description  
2.5  
Supply voltage (VCC)  
2.5.1  
Operating supply voltage V  
CC  
Prior to selecting the memory and issuing instructions to it, a valid and stable V voltage  
CC  
within the specified [V (min), V (max)] range must be applied (see Table 8). In order to  
CC  
CC  
secure a stable DC supply voltage, it is recommended to decouple the V line with a  
CC  
suitable capacitor (usually of the order of 10 nF to 100 nF) close to the V /V package  
CC SS  
pins.  
This voltage must remain stable and valid until the end of the transmission of the instruction  
and, for a Write instruction, until the completion of the internal write cycle (t ).  
W
2.5.2  
2.5.3  
Power-up conditions  
The V voltage has to rise continuously from 0 V up to the minimum V operating voltage  
CC  
CC  
defined in Table 8 and the rise time must not vary faster than 1 V/µs.  
Device reset  
In order to prevent inadvertent write operations during power-up, a power-on reset (POR)  
circuit is included. At power-up, the device does not respond to any instruction until V  
CC  
reaches the internal reset threshold voltage (this threshold is lower than the minimum V  
CC  
operating voltage defined in Table 8).  
When V passes over the POR threshold, the device is reset and enters the Standby  
CC  
Power mode. However, the device must not be accessed until V reaches a valid and  
CC  
stable V voltage within the specified [V (min), V (max)] range.  
CC  
CC  
CC  
In a similar way, during power-down (continuous decrease in V ), as soon as V drops  
CC  
CC  
below the power-on reset threshold voltage, the device stops responding to any instruction  
sent to it.  
2.5.4  
Power-down conditions  
During power-down (continuous decrease in V ), the device must be in Standby Power  
CC  
mode (mode reached after decoding a Stop condition, assuming that there is no internal  
write cycle in progress).  
2
Figure 4.  
Maximum R value versus bus parasitic capacitance (C) for an I C bus  
P
100  
When t  
= 1.3 µs (min value for  
LOW  
= 400 kHz), the R  
f
× C  
C
bus bus  
V
CC  
time constant must be below the  
400 ns time constant line  
represented on the left.  
10  
R
bus  
Here R  
bus  
× C = 120 ns  
bus  
4 kΩ  
SCL  
SDA  
I²C bus  
master  
M24xxx  
1
30 pF  
C
bus  
10  
100  
Bus line capacitor (pF)  
1000  
ai14796b  
Doc ID 10367 Rev 10  
9/34  
Signal description  
Figure 5.  
M34E02, M34E02-F  
2
I C bus protocol  
SCL  
SDA  
SDA  
Input  
SDA  
Change  
Start  
condition  
Stop  
condition  
1
2
3
7
8
9
SCL  
SDA  
ACK  
MSB  
Start  
condition  
1
2
3
7
8
9
SCL  
SDA  
MSB  
ACK  
Stop  
condition  
AI00792c  
Table 2.  
Device select code  
Device type identifier Chip Enable bits RW  
Chip Enable  
signals  
b7(1) b6  
b5  
b4  
b3  
b2  
b1  
b0  
Memory area select  
code (two arrays)(2)  
E2  
E1  
E0  
1
0
1
0
E2  
E1  
E0 RW  
Set write protection  
(SWP)  
(3)  
VSS VSS VHV  
0
0
0
1
1
1
0
0
0
Clear write protection  
(CWP)  
(3)  
VSS VCC VHV  
E2 E1 E0  
Permanently set write  
protection (PSWP)(2)  
0
1
1
0
E2  
E1  
E0  
(3)  
Read SWP  
VSS VSS VHV  
VSS VCC VHV  
0
0
0
1
1
1
1
1
1
(3)  
Read CWP  
Read PSWP(2)  
E2  
E1  
E0  
E2  
E1  
E0  
1. The most significant bit, b7, is sent first.  
2. E0, E1 and E2 are compared against the respective external pins on the memory device.  
3. VHV is defined in Table 13.  
10/34  
Doc ID 10367 Rev 10  
M34E02, M34E02-F  
Device operation  
3
Device operation  
2
The device supports the I C protocol. This is summarized in Figure 5 Any device that sends  
data on to the bus is defined to be a transmitter, and any device that reads the data to be a  
receiver. The device that controls the data transfer is known as the bus master, and the  
other as the slave device. A data transfer can only be initiated by the bus master, which will  
also provide the serial clock for synchronization. The memory device is always a slave in all  
communication.  
3.1  
3.2  
Start condition  
Start is identified by a falling edge of Serial Data (SDA) while Serial Clock (SCL) is stable in  
the high state. A Start condition must precede any data transfer command. The device  
continuously monitors (except during a Write cycle) Serial Data (SDA) and Serial Clock  
(SCL) for a Start condition.  
Stop condition  
Stop is identified by a rising edge of Serial Data (SDA) while Serial Clock (SCL) is stable  
and driven high. A Stop condition terminates communication between the device and the  
bus master. A Read command that is followed by NoAck can be followed by a Stop condition  
to force the device into the Standby mode. A Stop condition at the end of a Write command  
triggers the internal EEPROM Write cycle.  
3.3  
3.4  
Acknowledge bit (ACK)  
The acknowledge bit is used to indicate a successful byte transfer. The bus transmitter,  
whether it be bus master or slave device, releases Serial Data (SDA) after sending eight bits  
th  
of data. During the 9 clock pulse period, the receiver pulls Serial Data (SDA) low to  
acknowledge the receipt of the eight data bits.  
Data input  
During data input, the device samples Serial Data (SDA) on the rising edge of Serial Clock  
(SCL). For correct device operation, Serial Data (SDA) must be stable during the rising edge  
of Serial Clock (SCL), and the Serial Data (SDA) signal must change only when Serial Clock  
(SCL) is driven low.  
Doc ID 10367 Rev 10  
11/34  
Device operation  
M34E02, M34E02-F  
3.5  
Memory addressing  
To start communication between the bus master and the slave device, the bus master must  
initiate a Start condition. Following this, the bus master sends the device select code, shown  
in Table 2 (on Serial Data (SDA), most significant bit first).  
The device select code consists of a 4-bit device type identifier, and a 3-bit Chip Enable  
“Address” (E2, E1, E0). To address the memory array, the 4-bit device type identifier is  
1010b; to access the write-protection settings, it is 0110b.  
2
Up to eight memory devices can be connected on a single I C bus. Each one is given a  
unique 3-bit code on the Chip Enable (E0, E1, E2) inputs. When the device select code is  
received, the device only responds if the Chip Enable address is the same as the value on  
the Chip Enable (E0, E1, E2) inputs.  
th  
The 8 bit is the Read/Write bit (RW). This bit is set to 1 for Read and 0 for Write operations.  
If a match occurs on the device select code, the corresponding device gives an  
th  
acknowledgment on Serial Data (SDA) during the 9 bit time. If the device does not match  
the device select code, it deselects itself from the bus, and goes into Standby mode.  
Table 3.  
Operating modes  
Mode  
RW bit  
WC(1)  
Bytes  
Initial Sequence  
Current Address Read  
Random Address Read  
1
0
1
X
X
X
1
Start, Device Select, RW = 1  
Start, Device Select, RW = 0, Address  
reStart, Device Select, RW = 1  
1
Similar to Current or Random Address  
Read  
Sequential Read  
1
X
1  
Byte Write  
Page Write  
0
0
VIL  
VIL  
1
Start, Device Select, RW = 0  
Start, Device Select, RW = 0  
16  
1. X = V or V .  
IH  
IL  
Figure 6.  
Result of setting the write protection  
FFh  
Standard  
FFh  
Standard  
Array  
Array  
Memory  
80h  
80h  
7Fh  
Area  
7Fh  
Write  
Protected  
Array  
Standard  
Array  
00h  
00h  
Default EEPROM memory area  
state before write access  
to the Protect Register  
State of the EEPROM memory  
area after write access  
to the Protect Register  
AI01936C  
12/34  
Doc ID 10367 Rev 10  
M34E02, M34E02-F  
Device operation  
3.6  
Setting the write-protection  
The M34E02 and M34E02-F have a hardware write-protection feature, using the Write  
Control (WC) signal. This signal can be driven high or low, and must be held constant for the  
whole instruction sequence. When Write Control (WC) is held high, the whole memory array  
(addresses 00h to FFh) is write protected. When Write Control (WC) is held low, the write  
protection of the memory array is dependent on whether software write-protection has been  
set.  
Software write-protection allows the bottom half of the memory area (addresses 00h to 7Fh)  
to be write protected irrespective of subsequent states of the Write Control (WC) signal.  
Software write-protection is handled by three instructions:  
SWP: Set Write Protection  
CWP: Clear Write Protection  
PSWP: Permanently Set Write Protection  
The level of write-protection (set or cleared) that has been defined using these instructions,  
remains defined even after a power cycle.  
3.6.1  
SWP and CWP  
If the software write-protection has been set with the SWP instruction, it can be cleared  
again with a CWP instruction.  
The two instructions (SWP and CWP) have the same format as a Byte Write instruction, but  
with a different device type identifier (as shown in Table 2). Like the Byte Write instruction, it  
is followed by an address byte and a data byte, but in this case the contents are all “Don’t  
Care” (Figure 7). Another difference is that the voltage, V , must be applied on the E0 pin,  
HV  
and specific logical levels must be applied on the other two (E1 and E2, as shown in  
Table 2).  
3.6.2  
PSWP  
If the software write-protection has been set with the PSWP instruction, the first 128 bytes of  
the memory are permanently write-protected. This write-protection cannot be cleared by  
any instruction, or by power-cycling the device, and regardless the state of Write Control  
(WC). Also, once the PSWP instruction has been successfully executed, the M34E02 and  
M34E02-F no longer acknowledge any instruction (with a device type identifier of 0110) to  
access the write-protection settings.  
Figure 7.  
Setting the write protection (WC = 0)  
BUS ACTIVITY  
MASTER  
CONTROL  
BYTE  
WORD  
ADDRESS  
DATA  
SDA LINE  
BUS ACTIVITY  
ACK  
ACK  
ACK  
VALUE  
VALUE  
(DON'T CARE) (DON'T CARE)  
AI01935B  
Doc ID 10367 Rev 10  
13/34  
Device operation  
M34E02, M34E02-F  
3.7  
Write operations  
Following a Start condition the bus master sends a device select code with the RW bit reset  
to 0. The device acknowledges this, as shown in Figure 8, and waits for an address byte.  
The device responds to the address byte with an acknowledge bit, and then waits for the  
data byte.  
When the bus master generates a Stop condition immediately after a data byte Ack bit (in  
th  
the “10 bit” time slot), either at the end of a Byte Write or a Page Write, the internal  
memory Write cycle is triggered. A Stop condition at any other time slot does not trigger the  
internal Write cycle.  
During the internal Write cycle, Serial Data (SDA) and Serial Clock (SCL) are ignored, and  
the device does not respond to any requests.  
3.7.1  
3.7.2  
Byte Write  
After the device select code and the address byte, the bus master sends one data byte. If  
the addressed location is hardware write-protected, the device replies to the data byte with  
NoAck, and the location is not modified. If, instead, the addressed location is not Write-  
protected, the device replies with Ack. The bus master terminates the transfer by generating  
a Stop condition, as shown in Figure 8  
Page Write  
The Page Write mode allows up to 16 bytes to be written in a single Write cycle, provided  
that they are all located in the same page in the memory: that is, the most significant  
memory address bits are the same. If more bytes are sent than will fit up to the end of the  
page, a condition known as ‘roll-over’ occurs. This should be avoided, as data starts to  
become overwritten in an implementation dependent way.  
The bus master sends from 1 to 16 bytes of data, each of which is acknowledged by the  
device if Write Control (WC) is low. If the addressed location is hardware write-protected,  
the device replies to the data byte with NoAck, and the locations are not modified. After each  
byte is transferred, the internal byte address counter (the 4 least significant address bits  
only) is incremented. The transfer is terminated by the bus master generating a Stop  
condition.  
14/34  
Doc ID 10367 Rev 10  
M34E02, M34E02-F  
Figure 8.  
Device operation  
Write mode sequences in a non write-protected area  
ACK  
ACK  
ACK  
Byte Write  
Device select  
Byte address  
Data in  
R/W  
ACK  
Byte address  
ACK  
ACK  
Page Write  
Device select  
Data in 1  
Data in 2  
R/W  
ACK  
ACK  
Data in N  
AI01941b  
Figure 9.  
Write cycle polling flowchart using ACK  
WRITE cycle  
in progress  
Start condition  
Device select  
with RW = 0  
ACK  
NO  
returned  
First byte of instruction  
with RW = 0 already  
decoded by the device  
YES  
Next  
operation is  
addressing the  
memory  
NO  
YES  
Send address  
and receive ACK  
ReStart  
Start  
NO  
YES  
Stop  
condition  
Data for the  
WRITE operation  
Device select  
with RW = 1  
Continue the  
Continue the  
Random READ operation  
WRITE operation  
AI01847d  
Doc ID 10367 Rev 10  
15/34  
Device operation  
M34E02, M34E02-F  
3.7.3  
Minimizing system delays by polling on ACK  
During the internal Write cycle, the device disconnects itself from the bus, and writes a copy  
of the data from its internal latches to the memory cells. The maximum Write time (tw) is  
shown in Table 14, but the typical time is shorter. To make use of this, a polling sequence  
can be used by the bus master.  
The sequence, as shown in Figure 9, is:  
Initial condition: a Write cycle is in progress.  
Step 1: the bus master issues a Start condition followed by a device select code (the  
first byte of the new instruction).  
Step 2: if the device is busy with the internal Write cycle, no Ack will be returned and  
the bus master goes back to Step 1. If the device has terminated the internal Write  
cycle, it responds with an Ack, indicating that the device is ready to receive the second  
part of the instruction (the first byte of this instruction having been sent during Step 1).  
3.8  
Read operations  
Read operations are performed independently of whether hardware or software protection  
has been set.  
The device has an internal address counter which is incremented each time a byte is read.  
3.8.1  
Random Address Read  
A dummy Write is first performed to load the address into this address counter (as shown in  
Figure 10) but without sending a Stop condition. Then, the bus master sends another Start  
condition, and repeats the device select code, with the RW bit set to 1. The device  
acknowledges this, and outputs the contents of the addressed byte. The bus master must  
not acknowledge the byte, and terminates the transfer with a Stop condition.  
3.8.2  
3.8.3  
Current Address Read  
For the Current Address Read operation, following a Start condition, the bus master only  
sends a device select code with the RW bit set to 1. The device acknowledges this, and  
outputs the byte addressed by the internal address counter. The counter is then  
incremented. The bus master terminates the transfer with a Stop condition, as shown in  
Figure 10, without acknowledging the byte.  
Sequential Read  
This operation can be used after a Current Address Read or a Random Address Read. The  
bus master does acknowledge the data byte output, and sends additional clock pulses so  
that the device continues to output the next byte in sequence. To terminate the stream of  
bytes, the bus master must not acknowledge the last byte, and must generate a Stop  
condition, as shown in Figure 10.  
The output data comes from consecutive addresses, with the internal address counter  
automatically incremented after each byte output. After the last memory address, the  
address counter ‘rolls-over’, and the device continues to output data from memory address  
00h.  
16/34  
Doc ID 10367 Rev 10  
M34E02, M34E02-F  
Device operation  
3.8.4  
Acknowledge in Read mode  
For all Read commands, the device waits, after each byte read, for an acknowledgment  
th  
during the 9 bit time. If the bus master does not drive Serial Data (SDA) low during this  
time, the device terminates the data transfer and switches to its Standby mode.  
Figure 10. Read mode sequences  
ACK  
NO ACK  
Current  
Address  
Read  
Dev select  
Data out  
R/W  
ACK  
ACK  
ACK  
NO ACK  
Random  
Address  
Read  
Dev select *  
Byte address  
Dev select *  
Data out  
R/W  
R/W  
ACK  
ACK  
ACK  
NO ACK  
Data out N  
Sequential  
Current  
Read  
Dev select  
Data out 1  
R/W  
ACK  
ACK  
ACK  
R/W  
ACK  
Sequential  
Random  
Read  
Dev select *  
Byte address  
Dev select *  
Data out 1  
R/W  
ACK  
NO ACK  
Data out N  
AI01942b  
1. The seven most significant bits of the device select code of a Random Read (in the 1st and 3rd bytes) must  
be identical.  
Doc ID 10367 Rev 10  
17/34  
Initial delivery state  
M34E02, M34E02-F  
4
Initial delivery state  
The device is delivered with all bits in the memory array set to ‘1’ (each Byte contains FFh).  
5
Use within a DDR1/DDR2 DRAM module  
In the application, the M34E02/M34E02-F is soldered directly in the printed circuit module.  
The three Chip Enable inputs (E0, E1, E2) must be connected to V or V directly (that is  
SS  
CC  
without using a pull-up or pull-down resistor) through the DIMM socket (see Table 4). The  
2
2
pull-up resistors needed for normal behavior of the I C bus are connected on the I C bus of  
the mother-board (as shown in Figure 11).  
The Write Control (WC) of the M34E02/M34E02-F can be left unconnected. However,  
connecting it to V is recommended, to maintain full read and write access.  
SS  
Table 4.  
DRAM DIMM connections  
DIMM position E2  
E1  
E0  
0
1
2
3
4
5
6
7
VSS  
VSS  
VSS  
VSS  
VCC  
VCC  
VCC  
VCC  
VSS  
VSS  
VCC  
VCC  
VSS  
VSS  
VCC  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
5.1  
Programming the M34E02 and M34E02-F  
The situations in which the M34E02 and M34E02-F are programmed can be considered  
under two headings:  
when the DDR2 DRAM is isolated (not inserted on the PCB motherboard)  
when the DDR2 DRAM is inserted on the PCB motherboard  
5.1.1  
Isolated DRAM module  
With specific programming equipment, it is possible to define the M34E02/M34E02-F  
content, using Byte and Page Write instructions, and its write-protection using the SWP and  
CWP instructions. To issue the SWP and CWP instructions, the DRAM module must be  
inserted in a specific slot where the E0 signal can be driven to V during the whole  
HV  
instruction. This programming step is mainly intended for use by DRAM module makers,  
whose end application manufacturers will want to clear this write-protection with the CWP  
on their own specific programming equipment, to modify the lower 128 Bytes, and finally to  
set permanently the write-protection with the PSWP instruction.  
18/34  
Doc ID 10367 Rev 10  
M34E02, M34E02-F  
Use within a DDR1/DDR2 DRAM module  
5.1.2  
DRAM module inserted in the application motherboard  
As the final application cannot drive the E0 pin to V , the only possible action is to freeze  
HV  
the write-protection with the PSWP instruction.  
Table 5 and Table 6 show how the Ack bits can be used to identify the write-protection  
status.  
Table 5.  
Status  
Acknowledge when writing data or defining the write-protection  
(instructions with R/W bit = 0)  
WC  
Write  
cycle  
(tW)  
input  
level  
Instruction  
Ack  
Address  
Ack Data byte Ack  
PSWP, SWP or  
CWP  
Not  
significant  
Not  
significant  
NoAck  
Ack  
NoAck  
Ack  
NoAck  
NoAck  
NoAck  
Ack  
No  
No  
No  
Yes  
Yes  
No  
No  
No  
Permanently  
protected  
X
Page or Byte Write  
in lower 128 bytes  
Address  
Data  
Not  
significant  
Not  
significant  
SWP  
CWP  
NoAck  
Ack  
NoAck  
Ack  
Not  
significant  
Not  
significant  
Not  
significant  
Not  
significant  
0
1
PSWP  
Ack  
Ack  
Ack  
Page or Byte Write  
in lower 128 bytes  
Ack  
Address  
Ack  
Data  
NoAck  
NoAck  
NoAck  
Protected  
with SWP  
Not  
significant  
Not  
significant  
SWP  
CWP  
NoAck  
Ack  
NoAck  
Ack  
Not  
significant  
Not  
significant  
Not  
significant  
Not  
significant  
PSWP  
Ack  
Ack  
Ack  
Ack  
Ack  
Ack  
Ack  
Ack  
Ack  
Ack  
Ack  
Ack  
NoAck  
NoAck  
Ack  
No  
No  
Yes  
Yes  
No  
No  
Page or Byte Write  
Address  
Data  
PSWP, SWP or  
CWP  
Not  
significant  
Not  
significant  
0
1
Page or Byte Write  
Address  
Data  
Ack  
Not  
Protected  
PSWP, SWP or  
CWP  
Not  
significant  
Not  
significant  
NoAck  
NoAck  
Page or Byte Write  
Address  
Data  
Doc ID 10367 Rev 10  
19/34  
Use within a DDR1/DDR2 DRAM module  
M34E02, M34E02-F  
Table 6.  
Status  
Acknowledge when reading the write protection (instructions with R/W  
bit = 1)  
Instruction  
Ack  
Address  
Ack  
Data byte  
Ack  
Permanently  
protected  
PSWP, SWP or CWP NoAck Not significant NoAck Not significant NoAck  
SWP  
CWP  
NoAck Not significant NoAck Not significant NoAck  
Protected with  
SWP  
Ack  
Ack  
Ack  
Not significant NoAck Not significant NoAck  
Not significant NoAck Not significant NoAck  
Not significant NoAck Not significant NoAck  
PSWP  
Not protected PSWP, SWP or CWP  
20/34  
Doc ID 10367 Rev 10  
M34E02, M34E02-F  
Use within a DDR1/DDR2 DRAM module  
Figure 11. Serial presence detect block diagram  
R = 4.7 kΩ  
DRAM module slot number 7  
E2  
E1  
E0 SCL SDA  
V
CC  
DRAM module slot number 6  
E2  
E1  
E0 SCL SDA  
V
V
SS  
CC  
DRAM module slot number 5  
E2  
E1  
E0 SCL SDA  
V
V
V
CC  
CC  
SS  
DRAM module slot number 4  
E2  
E1  
E0 SCL SDA  
V
V
SS  
CC  
DRAM module slot number 3  
E2  
E1  
E1  
E0 SCL SDA  
V
V
CC  
SS  
DRAM module slot number 2  
E2  
E0 SCL SDA  
V
V
V
SS  
SS  
CC  
DRAM module slot number 1  
E2  
E1  
E0 SCL SDA  
V
V
CC  
SS  
DRAM module slot number 0  
E2  
E1  
E0 SCL SDA  
V
SS  
SCL line  
SDA line  
From the motherboard  
I2C master controller  
AI01937b  
1. E0, E1 and E2 are wired at each DRAM module slot in a binary sequence for a maximum of 8 devices.  
2. Common clock and common data are shared across all the devices.  
Doc ID 10367 Rev 10  
21/34  
Maximum rating  
M34E02, M34E02-F  
6
Maximum rating  
Stressing the device above the rating listed in the absolute maximum ratings table may  
cause permanent damage to the device. These are stress ratings only and operation of the  
device at these or any other conditions above those indicated in the operating sections of  
this specification is not implied. Exposure to absolute maximum rating conditions for  
extended periods may affect device reliability. Refer also to the STMicroelectronics SURE  
Program and other relevant quality documents.  
Table 7.  
Symbol  
Absolute maximum ratings  
Parameter  
Min.  
Max.  
Unit  
Ambient temperature with power applied  
Storage temperature  
–55  
–65  
130  
150  
°C  
°C  
TSTG  
VIO  
E0  
–0.50  
–0.50  
10.0  
6.5  
Input or output range  
V
Others  
IOL  
VCC  
VESD  
DC output current (SDA = 0)  
Supply voltage  
-
5
mA  
V
–0.5  
–4000  
6.5  
Electrostatic discharge voltage (human body model)(1)  
4000  
V
1. JEDEC Std JESD22-A114A (C1=100 pF, R1=1500 Ω, R2=500 Ω)  
22/34  
Doc ID 10367 Rev 10  
M34E02, M34E02-F  
DC and AC parameters  
7
DC and AC parameters  
This section summarizes the operating and measurement conditions, and the DC and AC  
characteristics of the device. The parameters in the DC and AC characteristic tables that  
follow are derived from tests performed under the measurement conditions summarized in  
the relevant tables. Designers should check that the operating conditions in their circuit  
match the measurement conditions when relying on the quoted parameters.  
Table 8.  
Symbol  
Operating conditions (for temperature range 1 devices)  
Parameter  
Min.  
Max.  
Unit  
VCC  
TA  
Supply voltage  
Ambient operating temperature  
1.7  
0
3.6  
70  
V
°C  
Table 9.  
Symbol  
Operating conditions (for temperature range 6 devices)  
Parameter  
Min.  
Max.  
Unit  
VCC  
TA  
Supply voltage  
Ambient operating temperature  
1.7  
5.5  
V
–40  
+85  
°C  
Table 10. AC measurement conditions  
Symbol  
Parameter  
Min.  
Max.  
Unit  
CL  
Load capacitance  
100  
pF  
SCL input rise and fall time,  
SDA input fall time  
50  
ns  
Input levels  
0.2VCC to 0.8VCC  
0.3VCC to 0.7VCC  
V
V
Input and output timing reference levels  
Figure 12. AC measurement I/O waveform  
Input Levels  
Input and Output  
Timing Reference Levels  
0.8V  
CC  
0.7V  
CC  
0.3V  
CC  
0.2V  
CC  
AI00825B  
Doc ID 10367 Rev 10  
23/34  
DC and AC parameters  
M34E02, M34E02-F  
Table 11. Input parameters  
Symbol  
Parameter(1)  
Test condition  
Min.  
Max.  
Unit  
CIN  
CIN  
Input capacitance (SDA)  
Input capacitance (other pins)  
Ei (E0, E1, E2) input impedance  
Ei (E0, E1, E2) input impedance  
WC input impedance  
8
6
pF  
pF  
kΩ  
kΩ  
kΩ  
kΩ  
ZEiL  
VIN < 0.3VCC  
VIN > 0.7VCC  
VIN < 0.3VCC  
VIN > 0.7VCC  
30  
800  
5
ZEiH  
ZWCL  
ZWCH  
WC input impedance  
500  
Pulse width ignored (input filter on  
SCL and SDA)  
tNS  
100  
ns  
1. Characterized, not tested in production.  
Table 12. DC characteristics (for temperature range 1 devices)  
Test condition (in addition to  
Symbol  
Parameter  
Min  
Max  
Unit  
those in Table 8)  
Input leakage current  
(SCL, SDA)  
ILI  
VIN = VSS or VCC  
2
2
µA  
µA  
SDA in Hi-Z, external voltage  
applied on SDA: VSS or VCC  
ILO  
Output leakage current  
Supply current (read)  
VCC = 1.7 V, fc = 100 kHz  
VCC = 3.6 V, fc = 100 kHz  
1
2
mA  
mA  
ICC  
ICC1  
VIL  
Device not selected(1)  
VIN = VSS or VCC, VCC = 3.6 V  
Device not selected(1)  
,
2
1
µA  
µA  
Standby supply current  
,
VIN = VSS or VCC, VCC = 1.7 V  
2.5 VCC  
–0.45 0.3 VCC  
–0.45 0.25VCC  
V
V
Input low voltage  
(SCL, SDA, WC)  
1.7 V VCC < 2.5 V  
Input high voltage  
(SCL, SDA, WC)  
VIH  
0.7VCC VCC+1  
V
VHV  
E0 high voltage  
VHV – VCC 4.8 V  
7
10  
0.4  
0.2  
V
V
V
I
OL = 2.1 mA, 2.2 V VCC 3.6 V  
VOL  
Output low voltage  
I
OL = 0.7 mA, VCC = 1.7 V  
1. The device is not selected after a power-up, after a read command (after the Stop condition), or after the  
completion of the internal write cycle tW (tW is triggered by the correct decoding of a write command).  
24/34  
Doc ID 10367 Rev 10  
M34E02, M34E02-F  
DC and AC parameters  
Table 13. DC characteristics (for temperature range 6 devices)  
Test condition (in addition to  
Symbol  
Parameter  
Min  
Max  
Unit  
those in Table 9)  
Input leakage current  
(SCL, SDA)  
ILI  
V
IN = VSS or VCC  
2
2
µA  
µA  
SDA in Hi-Z, external voltage  
applied on SDA: VSS or VCC  
ILO  
Output leakage current  
Supply current (read)  
V
CC < 2.5 V, fc = 400 kHz  
VCC 2.5 V, fc = 400 kHz  
Device not selected(1)  
VIN = VSS or VCC, VCC 2.5 V  
Device not selected(1)  
VIN = VSS or VCC, VCC < 2.5 V  
1
3
mA  
mA  
ICC  
ICC1  
VIL  
,
2
µA  
µA  
Standby supply current  
,
1
2.5 VCC  
–0.45  
0.3 VCC  
V
V
Input low voltage  
(SCL, SDA, WC)  
1.8 V VCC < 2.5 V  
–0.45 0.25VCC  
Input high voltage  
(SCL, SDA, WC)  
VIH  
0.7VCC  
7
VCC+1  
V
VHV  
E0 high voltage  
VHV – VCC 4.8 V  
10  
0.4  
0.4  
0.2  
V
V
V
V
IOL = 3.0 mA, VCC = 5.5 V  
VOL  
Output low voltage  
I
OL = 2.1 mA, VCC = 2.5 V  
IOL = 0.7 mA, VCC = 1.7 V  
1. The device is not selected after a power-up, after a read command (after the Stop condition), or after the  
completion of the internal write cycle tW (tW is triggered by the correct decoding of a write command).  
Doc ID 10367 Rev 10  
25/34  
DC and AC parameters  
M34E02, M34E02-F  
Table 14. AC characteristics  
Test conditions specified in Table 10, Table 8 and Table 9  
Symbol  
Alt.  
Parameter  
Min.  
Max.  
Unit  
fC  
fSCL  
tHIGH  
tLOW  
tF  
Clock frequency  
400  
kHz  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tCHCL  
tCLCH  
Clock pulse width high  
Clock pulse width low  
SDA (out) fall time  
600  
1300  
20  
(1)  
tDL1DL2  
100  
300  
300  
(2)  
tXH1XH2  
tR  
Input signal rise time  
Input signal fall time  
20  
(2)  
tXL1XL2  
tF  
20  
tDXCX  
tCLDX  
tCLQX  
tSU:DAT Data in set up time  
tHD:DAT Data in hold time  
100  
0
tDH  
tAA  
Data out hold time  
200  
200  
600  
600  
600  
(3)(4)  
tCLQV  
Clock low to next data valid (access time)  
900  
(5)  
tCHDL  
tSU:STA Start condition setup time  
tHD:STA Start condition hold time  
tSU:STO Stop condition setup time  
tDLCL  
tCHDH  
Time between Stop condition and next Start  
condition  
tDHDL  
tW  
tBUF  
tWR  
1300  
ns  
Write time  
5
ms  
1. Sampled only, not 100% tested.  
2. Values recommended by I²C-bus/Fast-Mode specification.  
3. To avoid spurious Start and Stop conditions, a minimum delay is placed between SCL=1 and the falling or  
rising edge of SDA.  
4. tCLQV is the time (from the falling edge of SCL) required by the SDA bus line to reach either 0.3VCC or  
0.7VCC, assuming that the Rbus × Cbus time constant is within the values specified in Figure 4).  
5. For a re-Start condition, or following a Write cycle.  
26/34  
Doc ID 10367 Rev 10  
M34E02, M34E02-F  
DC and AC parameters  
Figure 13. AC waveforms  
tXL1XL2  
tXH1XH2  
tCHCL  
tCLCH  
SCL  
tDLCL  
tXL1XL2  
SDA In  
tCHDL  
Start  
condition  
tCLDX  
tDXCX  
SDA  
Change  
tXH1XH2  
tCHDH tDHDL  
Start  
SDA  
Input  
Stop  
condition  
condition  
SCL  
SDA In  
tW  
Write cycle  
tCHDH  
tCHDL  
Stop  
condition  
Start  
condition  
tCHCL  
SCL  
tCLQV  
tCLQX  
Data valid  
tDL1DL2  
Data valid  
SDA Out  
AI00795f  
Doc ID 10367 Rev 10  
27/34  
Package mechanical data  
M34E02, M34E02-F  
8
Package mechanical data  
In order to meet environmental requirements, ST offers these devices in different grades of  
®
®
ECOPACK packages, depending on their level of environmental compliance. ECOPACK  
specifications, grade definitions and product status are available at: www.st.com.  
®
ECOPACK is an ST trademark.  
28/34  
Doc ID 10367 Rev 10  
M34E02, M34E02-F  
Package mechanical data  
Figure 14. UFDFPN8 (MLP8) 8-lead ultra thin fine pitch dual flat package no lead  
2 x 3 mm, outline  
REV MB  
REV MC  
e
b
e
b
D
L1  
L1  
L3  
L3  
Pin 1  
E2  
K
E
E2  
K
L
L
A
D2  
D2  
ddd  
A1  
ZW_MEd  
1. Drawing is not to scale.  
2. The central pad (the area E2 by D2 in the above illustration) is pulled, internally, to VSS. It must not be  
allowed to be connected to any other voltage or signal line on the PCB, for example during the soldering  
process.  
3. The circle in the top view of the package indicates the position of pin 1.  
Table 15. UFDFPN8 (MLP8) 8-lead ultra thin fine pitch dual flat package no lead  
2 x 3 mm, data  
millimeters  
Min  
inches(1)  
Symbol  
Typ  
Max  
Typ  
Min  
Max  
A
0.550  
0.020  
0.250  
2.000  
1.600  
0.450  
0
0.600  
0.050  
0.300  
2.100  
1.700  
1.600  
3.100  
0.300  
1.6  
0.0217  
0.0008  
0.0098  
0.0787  
0.0630  
0.0177  
0
0.0236  
0.0020  
0.0118  
0.0827  
0.0669  
0.0630  
0.1220  
0.0118  
0.0630  
-
A1  
b
0.200  
1.900  
1.500  
1.200  
2.900  
0.100  
1.20  
-
0.0079  
0.0748  
0.0591  
0.0472  
0.1142  
0.0039  
0.0472  
-
D
D2 (rev MB)  
D2 (rev MC)  
E
3.000  
0.200  
0.1181  
0.0079  
E2 (rev MB)  
E2 (rev MC)  
e
K
0.500  
-
0.0197  
-
-
-
0.300  
0.300  
-
-
-
0.0118  
0.0118  
-
L
0.500  
0.150  
-
-
0.0197  
0.0059  
-
L1  
-
L3  
0.300  
-
-
0.0118  
-
ddd(2)  
0.050  
-
0.0020  
-
1. Values in inches are converted from mm and rounded to 4 decimal digits.  
2. Applied for exposed die paddle and terminals. Exclude embedding part of exposed die paddle from  
measuring.  
Doc ID 10367 Rev 10  
29/34  
Package mechanical data  
M34E02, M34E02-F  
Figure 15. TSSOP8 – 8-lead thin shrink small outline, package outline  
D
8
5
c
E1  
E
1
4
α
A1  
L
A
A2  
L1  
CP  
b
e
TSSOP8AM  
1. Drawing is not to scale.  
2. The circle around the number 1 in the top view of the package indicates the position of pin 1. The numbers  
4, 5 and 8 indicate the positions of pins 4, 5 and 8, respectively.  
Table 16. TSSOP8 – 8-lead thin shrink small outline, package mechanical data  
millimeters  
Min.  
inches(1)  
Symbol  
Typ.  
Max.  
Typ.  
Min.  
Max.  
A
A1  
A2  
b
1.200  
0.150  
1.050  
0.300  
0.200  
0.100  
3.100  
0.0472  
0.0059  
0.0413  
0.0118  
0.0079  
0.0039  
0.1220  
0.050  
0.800  
0.190  
0.090  
0.0020  
0.0315  
0.0075  
0.0035  
1.000  
0.0394  
c
CP  
D
3.000  
0.650  
6.400  
4.400  
0.600  
1.000  
2.900  
0.1181  
0.0256  
0.2520  
0.1732  
0.0236  
0.0394  
0.1142  
e
E
6.200  
4.300  
0.450  
6.600  
4.500  
0.750  
0.2441  
0.1693  
0.0177  
0.2598  
0.1772  
0.0295  
E1  
L
L1  
α
0°  
8
8°  
0°  
8
8°  
N
1. Values in inches are converted from mm and rounded to 4 decimal digits.  
30/34  
Doc ID 10367 Rev 10  
M34E02, M34E02-F  
Part numbering  
9
Part numbering  
Table 17. Ordering information scheme  
Example:  
M34E02  
F DW  
1
T
P
Device type  
M34 = ASSP I2C serial access EEPROM  
Device function  
E02 = 2 Kbit (256 × 8) SPD (serial presence detect) for DDR1 and DDR2  
Operating voltage  
F = VCC = 1.7 to 3.6 V over 0°C to 70 °C(1) or  
F = VCC = 1.7 to 5.5 V over –40 °C to 85 °C(2)  
Package  
MB or MC= UDFDFPN8 (MLP8)  
DW = TSSOP8 (4.4 × 3 mm body size)  
Temperature range  
1 = 0 to 70 °C  
6 = –40 to 85 °C  
Option  
blank = Standard packing  
T = Tape & reel packing  
Plating technology  
P or G = ECOPACK (RoHS compliant)  
1. The 1.7 to 3.6 V operating voltage range is available only on temperature range 1 devices.  
2. The 1.7 to 5.5 V operating voltage range is available only on temperature range 6 devices.  
For a list of available options (speed, package, etc.) or for further information on any aspect  
of this device, please contact your nearest ST sales office.  
Doc ID 10367 Rev 10  
31/34  
Revision history  
M34E02, M34E02-F  
10  
Revision history  
Table 18. Document revision history  
Date  
Revision  
Changes  
13-Nov-2003  
1.0  
First release  
TSSOP8 4.4x3 package replaces TSSOP8 3x3 (MSOP8) package.  
Correction to sentence in “Setting the Write Protection”. Correction to  
specification of tNS values.  
01-Dec-2003  
1.1  
Always NoACK after Address and Data bytes in Table 6. Improvement in  
VIO and VCC (min) in Absolute Maximum Ratings table. IOL changed for  
test condition of VOL. MLP package mechanical data respecified.  
Soldering temperature information clarified for RoHS compliant devices.  
29-Mar-2004  
14-Apr-2004  
1.2  
2.0  
First public release  
Direct connection of E0, E1, E2 to VSS and VCC (see Chip Enable (E0,  
E1, E2) and Use within a DDR1/DDR2 DRAM module paragraphs). ZEiL  
and ZEiH parameters added to Table 11: Input parameters. E0, E1, E2  
removed from the Parameter descriptions of VIL and VIH in Table 13: DC  
characteristics (for temperature range 6 devices).  
24-Nov-2004  
3.0  
Document status promoted from Product Preview to full Datasheet.  
Datasheet title changed. Features revised.  
Plating Technology options updated in Table 17: Ordering information  
scheme.  
11-Mar-2005  
28 -Apr-2005  
4.0  
5.0  
Resistance and capacitance renamed in Figure 4: Maximum RP value  
versus bus parasitic capacitance (C) for an I2C bus.  
Text in Power On Reset changed. Noise filter value in Table 11: Input  
parameters modified. ICC value 2mA, when Vcc=3/6V, added to Table 13:  
DC characteristics (for temperature range 6 devices).  
In Table 14: AC characteristics: Frequency fC changed from 100kHz to  
400kHz, related AC timings (tCHCL, tCLCH, tDXCX, tCLQV max, tCHDX, tDLCL  
tCHDH, tDHDL) also modified.  
,
Power On Reset paragraph removed replaced by Internal device reset.  
10-Apr-2006  
6
Figure 3: Device select code inserted. ICC1 modified in Table 13: DC  
characteristics (for temperature range 6 devices).  
Note 3 added to Figure 14 and Note 2 added to Figure 15  
All packages are ECOPACK® (see text added under Description and Part  
numbering, TLEAD removed from Table 7: Absolute maximum ratings).  
32/34  
Doc ID 10367 Rev 10  
M34E02, M34E02-F  
Table 18. Document revision history (continued)  
Revision history  
Date  
Revision  
Changes  
Datasheet title and Features on page 1 modified: the device can be used  
with DDR1 and DDR2 DRAM configurations.  
Temperature range 6 added, operating voltage range VCC extended in  
device temperature range 6. IOL added to and TA modified in Table 7:  
Absolute maximum ratings.  
ILO, ICC and VIL modified in Table 13: DC characteristics (for temperature  
range 6 devices). Table 14: AC characteristics added. Table 13: DC  
characteristics (for temperature range 6 devices) modified. Figure 13: AC  
waveforms modified.  
18-Mar-2009  
7
Figure 4: Maximum RP value versus bus parasitic capacitance (C) for an  
I2C bus updated. Note removed below Figure 11: Serial presence detect  
block diagram.  
UFDFPN8 package specifications updated (see Table 15: UFDFPN8  
(MLP8) 8-lead ultra thin fine pitch dual flat package no lead 2 x 3 mm,  
data).  
Blank option removed under plating technology in Table 17: Ordering  
information scheme. Small text changes.  
Section 2.5.2: Power-up conditions and Section 2.5.3: Device reset  
updated. Figure 4: Maximum RP value versus bus parasitic capacitance  
(C) for an I2C bus modified.  
25-Sep-2009  
01-Apr-2010  
8
9
tNS modified in Table 11: Input parameters.  
ICC and VIL test conditions extended in Table 12: DC characteristics (for  
temperature range 1 devices).  
Test condition updated in Table 12: DC characteristics (for temperature  
range 1 devices) and Table 13: DC characteristics (for temperature range  
6 devices)  
Updated Figure 14: UFDFPN8 (MLP8) 8-lead ultra thin fine pitch dual flat  
package no lead 2 x 3 mm, outline and Table 15: UFDFPN8 (MLP8) 8-  
lead ultra thin fine pitch dual flat package no lead 2 x 3 mm, data  
Added M34E02-F part number.  
Added ambient temperature with power applied in Table 7: Absolute  
maximum ratings.  
Updated ICC1 conditions in Table 12: DC characteristics (for temperature  
range 1 devices).  
23-Jul-2010  
10  
Added Note 4 for tCLQV in Table 14: AC characteristics. Updated  
Figure 13: AC waveforms.  
tCHDX replaced by tCHDL in Figure 13: AC waveforms.  
Modified MC package outline in Figure 14: UFDFPN8 (MLP8) 8-lead ultra  
thin fine pitch dual flat package no lead 2 x 3 mm, outline.  
Doc ID 10367 Rev 10  
33/34  
M34E02, M34E02-F  
Please Read Carefully:  
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the  
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any  
time, without notice.  
All ST products are sold pursuant to ST’s terms and conditions of sale.  
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no  
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.  
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this  
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products  
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such  
third party products or services or any intellectual property contained therein.  
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED  
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED  
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS  
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.  
UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT  
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING  
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,  
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE  
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.  
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void  
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any  
liability of ST.  
ST and the ST logo are trademarks or registered trademarks of ST in various countries.  
Information in this document supersedes and replaces all information previously supplied.  
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.  
© 2010 STMicroelectronics - All rights reserved  
STMicroelectronics group of companies  
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -  
Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America  
www.st.com  
34/34  
Doc ID 10367 Rev 10  

相关型号:

M34E02-FDW6TPM34E02-FDW6TP

256X8 I2C/2-WIRE SERIAL EEPROM, PDSO8, 4.40 X 3 MM, ROHS COMPLIANT, TSSOP-8
STMICROELECTR

M34E02-FMB1

2 Kbit Serial IC Bus EEPROM Serial Presence Detect for DDR2 DIMMs
STMICROELECTR

M34E02-FMB1G

2 Kbit Serial IC Bus EEPROM Serial Presence Detect for DDR2 DIMMs
STMICROELECTR

M34E02-FMB1GM34E02-FMB1G

256X8 I2C/2-WIRE SERIAL EEPROM, PDSO8, 3 X 2 MM, ROHS COMPLIANT, UFDFP-8
STMICROELECTR

M34E02-FMB1P

2 Kbit Serial IC Bus EEPROM Serial Presence Detect for DDR2 DIMMs
STMICROELECTR

M34E02-FMB1T

2 Kbit Serial IC Bus EEPROM Serial Presence Detect for DDR2 DIMMs
STMICROELECTR

M34E02-FMB1TG

2 Kbit Serial IC Bus EEPROM Serial Presence Detect for DDR2 DIMMs
STMICROELECTR

M34E02-FMB1TGM34E02-FMB1TG

256X8 I2C/2-WIRE SERIAL EEPROM, PDSO8, 3 X 2 MM, ROHS COMPLIANT, UFDFP-8
STMICROELECTR

M34E02-FMB1TP

2 Kbit Serial IC Bus EEPROM Serial Presence Detect for DDR2 DIMMs
STMICROELECTR

M34E02-FMB1TPM34E02-FMB1TP

256X8 I2C/2-WIRE SERIAL EEPROM, PDSO8, 3 X 2 MM, ROHS COMPLIANT, UFDFP-8
STMICROELECTR

M34E02-FMB6G

2 Kbit serial presence detect (SPD) EEPROM for double data rate (DDR1 and DDR2) DRAM modules
STMICROELECTR

M34E02-FMB6GM34E02-FMB6G

256X8 I2C/2-WIRE SERIAL EEPROM, PDSO8, 3 X 2 MM, ROHS COMPLIANT, UFDFP-8
STMICROELECTR