M27V320-120M6 [STMICROELECTRONICS]

32 Mbit 4Mb x8 or 2Mb x16 OTP EPROM; 32兆位4Mb的X8或X16的2Mb OTP EPROM
M27V320-120M6
型号: M27V320-120M6
厂家: ST    ST
描述:

32 Mbit 4Mb x8 or 2Mb x16 OTP EPROM
32兆位4Mb的X8或X16的2Mb OTP EPROM

可编程只读存储器 电动程控只读存储器
文件: 总15页 (文件大小:147K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
M27V320  
32 Mbit (4Mb x8 or 2Mb x16) OTP EPROM  
3.3V ± 10% SUPPLY VOLTAGE in READ  
OPERATION  
ACCESS TIME: 100ns  
BYTE-WIDE or WORD-WIDE  
CONFIGURABLE  
32 Mbit MASK ROM REPLACEMENT  
LOW POWER CONSUMPTION  
– Active Current 30mA at 5MHz  
– Standby Current 60µA  
SO44 (M)  
TSOP48 (N)  
12 x 20 mm  
PROGRAMMING VOLTAGE: 12V ± 0.25V  
PROGRAMMING TIME: 50µs/word  
ELECTRONIC SIGNATURE:  
– Manufacturer Code 20h  
Figure 1. Logic Diagram  
– Device Code: 32h  
DESCRIPTION  
The M27V320 is a low voltage 32 Mbit EPROM of-  
fered in the OTP range (one time programmable).  
It is ideally suited for microprocessor systems re-  
quiring large data or program storage. It is organ-  
ised as either 4 MWords of 8 bit or 2 MWords of 16  
bit. The pin-out is compatible with the 32 Mbit  
Mask ROM.  
V
CC  
21  
Q15A–1  
A0-A20  
E
15  
The M27V320 is offered in SO44 and TSOP48  
(12 x 20 mm) packages.  
Q0-Q14  
BYTE  
M27V320  
GV  
PP  
V
SS  
AI05852  
August 2002  
1/15  
M27V320  
Figure 2. SO Connections  
Figure 3. TSOP Connections  
BYTE  
A16  
A15  
A14  
A13  
A12  
A11  
A10  
A9  
1
48  
V
V
SS  
SS  
NC  
A18  
A17  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
E
1
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
A20  
A19  
A8  
2
Q15A–1  
3
Q7  
4
A9  
Q14  
Q6  
5
A10  
A11  
A12  
A13  
A14  
A15  
A16  
BYTE  
6
Q13  
Q5  
7
8
Q12  
Q4  
9
A8  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
A19  
V
V
V
CC  
CC  
SS  
V
12  
13  
37  
36  
M27V320  
SS  
M27V320  
A20  
A18  
A17  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
E
V
V
SS  
Q15A–1  
SS  
Q11  
GV  
PP  
Q0  
Q3  
Q7  
Q10  
Q2  
Q8  
Q1  
Q9  
Q2  
Q14  
Q6  
Q9  
Q13  
Q5  
Q1  
Q8  
Q10  
Q3  
Q12  
Q4  
Q0  
GV  
PP  
Q11  
V
CC  
V
V
SS  
SS  
AI05853  
24  
25  
AI05854  
Table 1. Signal Names  
DEVICE OPERATION  
The operating modes of the M27V320 are listed in  
the Operating Modes Table. A single power supply  
is required in the read mode. All inputs are TTL  
A0-A20  
Q0-Q7  
Q8-Q14  
Q15A–1  
E
Address Inputs  
Data Outputs  
Data Outputs  
compatible except for V and 12V on A9 for the  
PP  
Electronic Signature.  
Read Mode  
The M27V320 has two organisations, Word-wide  
and Byte-wide. The organisation is selected by the  
Data Output / Address Input  
Chip Enable  
GV  
Output Enable / Program Supply  
Byte-Wide Select  
PP  
signal level on the BYTE pin. When BYTE is at V  
IH  
the Word-wide organisation is selected and the  
Q15A–1 pin is used for Q15 Data Output. When  
BYTE  
V
Supply Voltage  
CC  
the BYTE pin is at V the Byte-wide organisation  
IL  
is selected and the Q15A–1 pin is used for the Ad-  
dress Input A–1. When the memory is logically re-  
garded as 16 bit wide, but read in the Byte-wide  
V
Ground  
SS  
NC  
Not Connected Internally  
organisation, then with A–1 at V the lower 8 bits  
IL  
of the 16 bit data are selected and with A–1 at V  
the upper 8 bits of the 16 bit data are selected.  
IH  
2/15  
M27V320  
(1)  
Table 2. Absolute Maximum Ratings  
Symbol  
Parameter  
Value  
–40 to 125  
–50 to 125  
–65 to 150  
–2 to 7  
Unit  
°C  
°C  
°C  
V
(3)  
T
A
Ambient Operating Temperature  
T
Temperature Under Bias  
Storage Temperature  
Input or Output Voltage (except A9)  
Supply Voltage  
BIAS  
T
STG  
(2)  
V
IO  
V
CC  
–2 to 7  
V
(2)  
A9 Voltage  
–2 to 13.5  
–2 to 14  
V
V
A9  
V
Program Supply Voltage  
V
PP  
Note: 1. Except for the rating "Operating Temperature Range", stresses above those listed in the Table "Absolute Maximum Ratings" may  
cause permanent damage to the device. These are stress ratings only and operation of the device at these or any other conditions  
above those indicated in the Operating sections of this specification is not implied. Exposure to Absolute Maximum Rating condi-  
tions for extended periods may affect device reliability. Refer also to the STMicroelectronics SURE Program and other relevant qual-  
ity documents.  
2. Minimum DC voltage on Input or Output is –0.5V with possible undershoot to –2.0V for a period less than 20ns. Maximum DC  
voltage on Output is V  
3. Depends on range.  
+0.5V with possible overshoot to V  
+2V for a period less than 20ns.  
CC  
CC  
Table 3. Operating Modes  
Mode  
GV  
E
BYTE  
A9  
X
Q15A–1  
Q14-Q8  
Data Out  
Hi-Z  
Q7-Q0  
Data Out  
Data Out  
Data Out  
Hi-Z  
PP  
V
V
IL  
V
IH  
Read Word-wide  
Read Byte-wide Upper  
Read Byte-wide Lower  
Output Disable  
Program  
Data Out  
IL  
V
V
V
V
V
V
V
IL  
V
IL  
V
X
IL  
IL  
IL  
IL  
IH  
V
IL  
X
Hi-Z  
IL  
X
X
Hi-Z  
Data In  
Hi-Z  
Hi-Z  
IH  
PP  
PP  
V
Pulse  
V
V
V
V
X
Data In  
Hi-Z  
Data In  
Hi-Z  
IL  
IH  
IH  
V
Program Inhibit  
Standby  
X
IH  
V
X
X
X
Hi-Z  
Hi-Z  
Hi-Z  
IH  
V
IL  
V
IL  
V
V
ID  
Electronic Signature  
Code  
Codes  
Codes  
IH  
Note: X = V or V , V = 12V ± 0.5V.  
IH IL ID  
Table 4. Electronic Signature  
Identifier  
Manufacturer’s Code  
Device Code  
A0  
Q7  
0
Q6  
0
Q5  
Q4  
0
Q3  
Q2  
0
Q1  
0
Q0  
0
Hex Data  
20h  
V
IL  
1
1
0
0
V
0
0
1
0
1
0
32h  
IH  
Note: Outputs Q15-Q8 are set to '0'.  
3/15  
M27V320  
Table 5. AC Measurement Conditions  
High Speed  
10ns  
Standard  
20ns  
Input Rise and Fall Times  
Input Pulse Voltages  
0 to 3V  
1.5V  
0.4V to 2.4V  
0.8V and 2V  
Input and Output Timing Ref. Voltages  
Figure 4. AC Testing Input Output Waveform  
Figure 5. AC Testing Load Circuit  
1.3V  
High Speed  
1N914  
3V  
1.5V  
3.3kΩ  
0V  
DEVICE  
UNDER  
TEST  
OUT  
Standard  
C
L
2.4V  
2.0V  
0.8V  
0.4V  
C
C
C
= 30pF for High Speed  
= 100pF for Standard  
includes JIG capacitance  
L
L
L
AI01822  
AI01823B  
(1)  
Table 6. Capacitance  
Symbol  
(T = 25 °C, f = 1 MHz)  
A
Parameter  
Input Capacitance  
Output Capacitance  
Test Condition  
Min  
Max  
10  
Unit  
pF  
C
IN  
V
= 0V  
= 0V  
IN  
C
V
OUT  
12  
pF  
OUT  
Note: 1. Sampled only, not 100% tested.  
The M27V320 has two control functions, both of  
which must be logically active in order to obtain  
data at the outputs. In addition the Word-wide or  
Byte-wide organisation must be selected.  
output after a delay of t  
from the falling edge  
GLQV  
of GV , assuming that E has been low and the  
PP  
addresses have been stable for at least t  
-
AVQV  
t
.
GLQV  
Chip Enable (E) is the power control and should be  
Standby Mode  
used for device selection. Output Enable (GV ) is  
PP  
The M27V320 has standby mode which reduces  
the supply current from 50mA to 100µA. The  
M27V320 is placed in the standby mode by apply-  
ing a CMOS high signal to the E input. When in the  
standby mode, the outputs are in a high imped-  
the output control and should be used to gate data  
to the output pins independent of device selection.  
Assuming that the addresses are stable, the ad-  
dress access time (t  
) is equal to the delay  
). Data is available at the  
AVQV  
from E to output (t  
ELQV  
ance state, independent of the GV input.  
PP  
4/15  
M27V320  
(1)  
Table 7. Read Mode DC Characteristics  
(T = 0 to 70°C or –40 to 85°C; V = 3.3V ± 10%; V = V  
)
A
CC  
PP  
CC  
Symbol  
Parameter  
Input Leakage Current  
Output Leakage Current  
Test Condition  
Min  
Max  
±1  
Unit  
µA  
I
0V V V  
LI  
IN  
CC  
I
LO  
0V V  
V  
OUT CC  
±10  
µA  
E = V , GV = V , I = 0mA,  
IL OUT  
IL  
PP  
I
Supply Current  
30  
mA  
CC  
f = 5MHz, V 3.6V  
CC  
I
I
1
2
E = V  
Supply Current (Standby) TTL  
Supply Current (Standby) CMOS  
Program Current  
1
mA  
µA  
µA  
CC  
IH  
E > V – 0.2V, V 3.6V  
60  
10  
CC  
CC  
CC  
I
V
= V  
PP CC  
PP  
V
0.2V  
CC  
Input Low Voltage  
–0.6  
V
V
V
V
IL  
(2)  
0.7V  
V
+ 0.5  
CC  
Input High Voltage  
V
CC  
IH  
V
V
I
= 2.1mA  
Output Low Voltage  
0.4  
OL  
OL  
I
= –400µA  
Output High Voltage TTL  
2.4  
.
OH  
OH  
Note: 1. V must be applied simultaneously with or before V and removed simultaneously or after V  
CC  
PP  
PP  
2. Maximum DC voltage on Output is V +0.5V.  
CC  
Two Line Output Control  
System Considerations  
Because EPROMs are usually used in larger  
memory arrays, this product features a 2 line con-  
trol function which accommodates the use of mul-  
tiple memory connection. The two line control  
function allows:  
a. the lowest possible memory power dissipation,  
b. complete assurance that output bus contention  
will not occur.  
The power switching characteristics of Advanced  
CMOS EPROMs require careful decoupling of the  
supplies to the devices. The supply current I  
CC  
has three segments of importance to the system  
designer: the standby current, the active current  
and the transient peaks that are produced by the  
falling and rising edges of E.  
The magnitude of the transient current peaks is  
dependent on the capacitive and inductive loading  
of the device outputs. The associated transient  
voltage peaks can be suppressed by complying  
with the two line output control and by properly se-  
lected decoupling capacitors. It is recommended  
that a 0.1µF ceramic capacitor is used on every  
For the most efficient use of these two control  
lines, E should be decoded and used as the prima-  
ry device selecting function, while GV should be  
PP  
made a common connection to all devices in the  
array and connected to the READ line from the  
system control bus. This ensures that all deselect-  
ed memory devices are in their low power standby  
mode and that the output pins are only active  
when data is required from a particular memory  
device.  
device between V  
and V . This should be a  
CC  
SS  
high frequency type of low inherent inductance  
and should be placed as close as possible to the  
device. In addition, a 4.7µF electrolytic capacitor  
should be used between V  
and V for every  
CC  
SS  
eight devices. This capacitor should be mounted  
near the power supply connection point. The pur-  
pose of this capacitor is to overcome the voltage  
drop caused by the inductive effects of PCB trac-  
es.  
5/15  
M27V320  
(1)  
Table 8. Read Mode AC Characteristics  
(T = 0 to 70°C or –40 to 85°C; V = 3.3V ± 10%)  
A
CC  
M27V320  
-120  
Test  
Condition  
Unit  
(3)  
Symbol  
Alt  
Parameter  
-150  
-100  
Min Max Min Max Min Max  
E = V ,  
IL  
t
t
ACC  
Address Valid to Output Valid  
BYTE High to Output Valid  
100  
100  
120  
120  
150  
150  
ns  
ns  
AVQV  
GV = V  
PP  
IL  
E = V ,  
IL  
t
t
ST  
BHQV  
GV = V  
PP  
IL  
t
t
GV = V  
Chip Enable Low to Output Valid  
Output Enable Low to Output Valid  
100  
45  
120  
50  
150  
60  
ns  
ns  
ELQV  
CE  
PP  
IL  
t
t
E = V  
GLQV  
OE  
IL  
E = V ,  
IL  
(2)  
t
BYTE Low to Output Hi-Z  
45  
45  
45  
50  
50  
50  
50  
50  
50  
ns  
ns  
ns  
t
STD  
BLQZ  
GV = V  
PP  
IL  
(2)  
t
GV = V  
Chip Enable High to Output Hi-Z  
0
0
0
0
0
0
t
DF  
PP  
IL  
EHQZ  
Output Enable High to Output  
Hi-Z  
(2)  
t
E = V  
t
DF  
IL  
GHQZ  
E = V ,  
Address Transition to Output  
Transition  
IL  
t
t
5
5
5
5
5
ns  
ns  
AXQX  
OH  
GV = V  
PP  
IL  
E = V ,  
IL  
t
t
BYTE Low to Output Transition  
5
BLQX  
OH  
GV = V  
PP  
IL  
Note: 1. V must be applied simultaneously with or before V and removed simultaneously or after V  
CC  
PP  
PP.  
2. Sampled only, not 100% tested.  
3. Speed obtained with High Speed AC measurement conditions.  
Figure 6. Word-Wide Read Mode AC Waveforms  
VALID  
VALID  
A0-A20  
tAVQV  
tAXQX  
E
tEHQZ  
tGHQZ  
tGLQV  
GV  
PP  
tELQV  
Hi-Z  
Q0-Q15  
AI02207  
Note: BYTE = V  
.
IH  
6/15  
M27V320  
Figure 7. Byte-Wide Read Mode AC Waveforms  
VALID  
VALID  
A0-A20  
tAVQV  
tAXQX  
E
tEHQZ  
tGHQZ  
tGLQV  
GV  
PP  
tELQV  
Hi-Z  
Q0-Q7  
AI02218  
Note: BYTE = V .  
IL  
Figure 8. BYTE Transition AC Waveforms  
A0-A20  
VALID  
A–1  
VALID  
tAVQV  
tAXQX  
BYTE  
tBHQV  
Q0-Q7  
tBLQX  
Q8-Q15  
tBLQZ  
DATA OUT  
Hi-Z  
DATA OUT  
AI02219  
Note: E = V ; GV = V .  
IL  
PP  
IL  
7/15  
M27V320  
(1)  
Table 9. Programming Mode DC Characteristics  
(T = 25 °C; V = 6.25V ± 0.25V; V = 12V ± 0.25V)  
A
CC  
PP  
Symbol  
Parameter  
Test Condition  
Min  
Max  
±10  
50  
Unit  
µA  
mA  
mA  
V
I
V
IL  
V V  
Input Leakage Current  
Supply Current  
LI  
IN  
IH  
I
CC  
I
PP  
E = V  
Program Current  
Input Low Voltage  
Input High Voltage  
Output Low Voltage  
Output High Voltage TTL  
A9 Voltage  
50  
IL  
V
IL  
–0.3  
2.4  
0.8  
V
V
+ 0.5  
V
IH  
CC  
V
OL  
I
OL  
= 2.1mA  
0.4  
V
V
OH  
I
= –2.5mA  
3.5  
V
OH  
V
11.5  
12.5  
V
ID  
Note: 1. V must be applied simultaneously with or before V and removed simultaneously or after V .  
PP  
CC  
PP  
(1)  
Table 10. MARGIN MODE AC Characteristics  
(T = 25 °C; V = 6.25V ± 0.25V; V = 12V ± 0.25V)  
A
CC  
PP  
Symbol  
Alt  
Parameter  
Test Condition  
Min  
2
Max  
Unit  
t
t
t
V
High to V High  
A9 PP  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
A9HVPH  
AS9  
t
V
V
High to Chip Enable Low  
PP  
2
VPHEL  
VPS  
AS10  
AS10  
t
t
t
t
High to Chip Enable High (Set)  
Low to Chip Enable High (Reset)  
1
A10HEH  
A10  
t
t
V
A10  
1
A10LEH  
Chip Enable Transition to V  
Transition  
1
EXA10X  
AH10  
A10  
t
t
Chip Enable Transition to V Transition  
PP  
2
EXVPX  
VPH  
t
t
V
Transition to V Transition  
PP A9  
2
VPXA9X  
AH9  
Note: 1. V must be applied simultaneously with or before V and removed simultaneously or after V .  
PP  
CC  
PP  
Programming  
is in the programming mode when V input is at  
PP  
12.5V, GV is at V and E is pulsed to V . The  
PP  
IH  
IL  
When delivered, all bits of the M27V320 are in the  
'1' state. Data is introduced by selectively pro-  
gramming '0's into the desired bit locations. Al-  
though only '0's will be programmed, both '1's and  
'0's can be present in the data word. The M27V320  
data to be programmed is applied to 16 bits in par-  
allel to the data output pins. The levels required for  
the address and data inputs are TTL. V is spec-  
CC  
ified to be 6.25V ± 0.25V.  
8/15  
M27V320  
(1)  
Table 11. Programming Mode AC Characteristics  
(T = 25 °C; V = 6.25V ± 0.25V; V = 12V ± 0.25V)  
A
CC  
PP  
Symbol  
Alt  
Parameter  
Test Condition  
Min  
1
Max  
Unit  
µs  
µs  
µs  
µs  
ns  
µs  
µs  
µs  
µs  
µs  
t
t
t
Address Valid to Chip Enable Low  
Input Valid to Chip Enable Low  
AVEL  
AS  
t
1
QVEL  
DS  
t
t
t
V
V
V
High to Chip Enable Low  
High to Chip Enable Low  
Rise Time  
2
VCHEL  
VCS  
CC  
PP  
PP  
t
1
VPHEL  
OES  
t
t
PRT  
50  
45  
2
VPLVPH  
t
t
PW  
Chip Enable Program Pulse Width (Initial)  
Chip Enable High to Input Transition  
55  
ELEH  
t
t
DH  
EHQX  
t
t
Chip Enable High to V Transition  
2
EHVPX  
OEH  
PP  
t
t
VR  
V
PP  
Low to Chip Enable Low  
1
VPLEL  
t
t
Chip Enable Low to Output Valid  
Chip Enable High to Output Hi-Z  
Chip Enable High to Address Transition  
1
ELQV  
DV  
(2)  
t
0
0
130  
ns  
ns  
t
DFP  
EHQZ  
t
t
AH  
EHAX  
Note: 1. V must be applied simultaneously with or before V and removed simultaneously or after V .  
PP  
CC  
PP  
2. Sampled only, not 100% tested.  
Figure 9. MARGIN MODE AC Waveforms  
V
CC  
A8  
A9  
tA9HVPH  
tVPXA9X  
GV  
E
PP  
tVPHEL  
tEXVPX  
tA10HEH  
tEXA10X  
A10 Set  
A10 Reset  
tA10LEH  
AI00736B  
Note: A8 High level = 5V; A9 High level = 12V.  
9/15  
M27V320  
Figure 10. Programming and Verify Modes AC Waveforms  
VALID  
A0-A20  
Q0-Q15  
tAVEL  
tQVEL  
tEHAX  
tEHQZ  
DATA IN  
DATA OUT  
tEHQX  
V
CC  
tVCHEL  
tVPHEL  
tEHVPX  
tELQV  
GV  
PP  
tVPLEL  
E
tELEH  
PROGRAM  
VERIFY  
AI02205  
Note: BYTE = V ; GV High level = 12V.  
IH  
PP  
Figure 11. Programming Flowchart  
PRESTO III Programming Algorithm  
The PRESTO III Programming Algorithm allows  
the whole array to be programed with a guaran-  
teed margin in a typical time of 100 seconds. Pro-  
gramming with PRESTO III consists of applying a  
sequence of 50µs program pulses to each word  
until a correct verify occurs (see Figure 11). During  
programing and verify operation a MARGIN  
MODE circuit must be activated to guarantee that  
each cell is programed with enough margin. No  
overprogram pulse is applied since the verify in  
MARGIN MODE provides the necessary margin to  
each programmed cell.  
V
= 6.25V, V  
= 12V  
PP  
CC  
SET MARGIN MODE  
n = 0  
E = 50µs Pulse  
NO  
NO  
++n  
= 25  
VERIFY  
++ Addr  
Program Inhibit  
Programming of multiple M27V320s in parallel  
with different data is also easily accomplished. Ex-  
YES  
YES  
cept for E, all like inputs including GV of the par-  
allel M27V320 may be common. A TTL low level  
PP  
Last  
Addr  
NO  
FAIL  
pulse applied to a M27V320's E input and V at  
PP  
12V, will program that M27V320. A high level E in-  
put inhibits the other M27V320s from being pro-  
grammed.  
YES  
RESET MARGIN MODE  
Program Verify  
CHECK ALL WORDS  
A verify (read) should be performed on the pro-  
grammed bits to determine that they were correct-  
ly programmed. The verify is accomplished with  
BYTE = V  
IH  
1st: V  
2nd: V  
= 5V  
= 3V  
CC  
CC  
GV at V . Data should be verified with t af-  
PP  
IL  
ELQV  
AI05820  
ter the falling edge of E.  
10/15  
M27V320  
Electronic Signature  
12.5V on address line A9 of the M27V320, with  
V
= V = 5V. Two identifier bytes may then be  
PP  
CC  
The Electronic Signature (ES) mode allows the  
reading out of a binary code from an EPROM that  
will identify its manufacturer and type. This mode  
is intended for use by programming equipment to  
automatically match the device to be programmed  
with its corresponding programming algorithm.  
The ES mode is functional in the 25°C ± 5°C am-  
bient temperature range that is required when pro-  
gramming the M27V320. To activate the ES mode,  
the programming equipment must force 11.5V to  
sequenced from the device outputs by toggling ad-  
dress line A0 from V to V . All other address  
IL  
IH  
lines must be held at V during Electronic Signa-  
IL  
ture mode.  
Byte 0 (A0 = V ) represents the manufacturer  
IL  
code and byte 1 (A0 = V ) the device identifier  
IH  
code. For the STMicroelectronics M27V320, these  
two identifier bytes are given in Table 4 and can be  
read-out on outputs Q7 to Q0.  
11/15  
M27V320  
Table 12. Ordering Information Scheme  
Example:  
M27V320  
-100 M  
1
Device Type  
M27  
Supply Voltage  
V = 3.3V ± 10%  
Device Function  
320 = 32 Mbit (4Mb x 8 or 2Mb x 16)  
Speed  
(1)  
-100 = 100 ns  
-120 = 120 ns  
-150 = 150 ns  
Package  
M = SO44  
N = TSOP48: 12 x 20 mm  
Temperature Range  
1 = 0 to 70 °C  
6 = –40 to 85 °C  
Note: 1. High Speed, see AC Characteristics section for further information.  
For a list of available options (Speed, Package, etc...) or for further information on any aspect of this de-  
vice, please contact the STMicroelectronics Sales Office nearest to you.  
Table 13. Revision History  
Date  
Version  
1.0  
Revision Details  
December 2001  
26-Aug-2002  
First Issue  
Document status moved to Data Sheet  
1.1  
12/15  
M27V320  
Table 14. SO44 - 44 lead Plastic Small Outline, 525 mils body width, Package Mechanical Data  
millimeters  
Min  
inches  
Min  
Symbol  
Typ  
Max  
Typ  
Max  
A
A1  
A2  
b
2.80  
0.1102  
0.10  
2.20  
0.35  
0.10  
0.0039  
0.0866  
0.0138  
0.0039  
2.30  
0.40  
0.15  
2.40  
0.50  
0.20  
0.08  
28.40  
0.0906  
0.0157  
0.0059  
0.0945  
0.0197  
0.0079  
0.0030  
1.1181  
C
CP  
D
28.20  
1.27  
28.00  
1.1102  
0.0500  
0.5236  
0.6299  
0.0315  
1.1024  
e
E
13.30  
16.00  
0.80  
13.20  
15.75  
13.50  
16.25  
0.5197  
0.6201  
0.5315  
0.6398  
EH  
L
α
8°  
8°  
N
44  
44  
Figure 12. SO44 - 44 lead Plastic Small Outline, 525 mils body width, Package Outline  
A2  
A
C
b
e
CP  
D
N
E
EH  
1
A1  
α
L
SO-d  
Drawing is not to scale.  
13/15  
M27V320  
Table 15. TSOP48 - 48 lead Plastic Thin Small Outline, 12 x 20 mm, Package Mechanical Data  
mm  
Min  
inches  
Min  
Symb  
Typ  
Max  
1.20  
0.15  
1.05  
0.27  
0.21  
0.10  
20.20  
18.50  
12.10  
-
Typ  
Max  
0.047  
0.006  
0.041  
0.011  
0.008  
0.004  
0.795  
0.728  
0.476  
-
A
A1  
A2  
B
0.05  
0.95  
0.17  
0.10  
0.002  
0.037  
0.007  
0.004  
C
CP  
D
19.80  
18.30  
11.90  
-
0.780  
0.720  
0.469  
-
D1  
E
e
0.50  
0.020  
L
0.50  
0°  
0.70  
5°  
0.020  
0°  
0.028  
5°  
α
N
48  
48  
Figure 13. TSOP48 - 48 lead Plastic Thin Small Outline, 12 x 20 mm, Package Outline  
A2  
1
N
e
E
B
N/2  
D1  
D
A
CP  
DIE  
C
TSOP-a  
Drawing is not to scale.  
A1  
α
L
14/15  
M27V320  
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences  
of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted  
by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject  
to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not  
authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.  
The ST logo is registered trademark of STMicroelectronics  
All other names are the property of their respective owners  
2002 STMicroelectronics - All Rights Reserved  
STMicroelectronics GROUP OF COMPANIES  
Austalia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta -  
Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States  
www.st.com  
15/15  

相关型号:

M27V320-120N1

32 Mbit 4Mb x8 or 2Mb x16 OTP EPROM
STMICROELECTR

M27V320-120N6

32 Mbit 4Mb x8 or 2Mb x16 OTP EPROM
STMICROELECTR

M27V320-150M1

32 Mbit 4Mb x8 or 2Mb x16 OTP EPROM
STMICROELECTR

M27V320-150M6

32 Mbit 4Mb x8 or 2Mb x16 OTP EPROM
STMICROELECTR

M27V320-150N1

32 Mbit 4Mb x8 or 2Mb x16 OTP EPROM
STMICROELECTR

M27V320-150N6

32 Mbit 4Mb x8 or 2Mb x16 OTP EPROM
STMICROELECTR

M27V322

32 Mbit 2Mb x16 Low Voltage UV EPROM and OTP EPROM
STMICROELECTR

M27V322-100B1

32 Mbit 2Mb x16 Low Voltage UV EPROM and OTP EPROM
STMICROELECTR

M27V322-100B6

32 Mbit (2Mb 】16) low-voltage UV EPROM and OTP EPROM
STMICROELECTR

M27V322-100F1

32 Mbit 2Mb x16 Low Voltage UV EPROM and OTP EPROM
STMICROELECTR

M27V322-100F6

32 Mbit 2Mb x16 Low Voltage UV EPROM and OTP EPROM
STMICROELECTR

M27V322-100P1

32 Mbit 2Mb x16 Low Voltage UV EPROM and OTP EPROM
STMICROELECTR