LNBK20D2 [STMICROELECTRONICS]

LNB SUPPLY AND CONTROL VOLTAGE REGULATOR (PARALLEL INTERFACE); LNB电源和控制稳压器(并行接口)
LNBK20D2
型号: LNBK20D2
厂家: ST    ST
描述:

LNB SUPPLY AND CONTROL VOLTAGE REGULATOR (PARALLEL INTERFACE)
LNB电源和控制稳压器(并行接口)

稳压器 模拟IC 信号电路 光电二极管
文件: 总14页 (文件大小:469K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LNBK20D2  
LNB SUPPLY AND CONTROL VOLTAGE  
REGULATOR (PARALLEL INTERFACE)  
COMPLETE INTERFACE FOR TWO LNBs  
REMOTE SUPPLY AND CONTROL  
GUARANTEED 400mA OUTPUT CURRENT  
LNB SELECTION AND STAND-BY  
FUNCTION  
BUILT-IN TONE OSCILLATOR FACTORY  
TRIMMED AT 22KHz  
FAST OSCILLATOR START-UP FACILITATES  
DiSEqC ENCODING  
TWO SUPPLY INPUTS FOR LOWEST  
DISSIPATION  
BYPASS FUNCTION FOR SLAVE  
OPERATION  
LNB SHORT CIRCUIT PROTECTION AND  
DIAGNOSTIC  
AUXILIARY MODULATION INPUT EXTENDS  
FLEXIBILITY  
SO-20  
(MI) and the LNBA pin, thus leaving all LNB  
powering and control functions to the Master  
Receiver. This electronic switch is closed when  
the device is powered and EN pin is LOW.  
The regulator outputs can be logic controlled to be  
13 or 18 V (typ.) by mean of the VSEL pin for  
remote controlling of LNBs. Additionally, it is  
possible to increment by 1V (typ.) the selected  
voltage value to compensate the excess voltage  
drop along the coaxial cable (LLC pin HIGH).  
In order to reduce the power dissipation of the  
device when the lowest output voltage is selected,  
CABLE LENGTH COMPENSATION  
INTERNAL OVER TEMPERATURE  
PROTECTION  
BACKWARD CURRENT PROTECTION  
COST-EFFECTIVE VERSION OF LNBP  
SERIES  
DESCRIPTION  
the regulator has two Supply Input pins V  
and  
CC1  
Intended for analog and digital satellite receivers,  
the LNBK20D2 is a monolithic linear voltage  
regulator, assembled in SO-20, specifically  
designed to provide the powering voltages and the  
interfacing signals to the LNB downconverter  
situated in the antenna via the coaxial cable. It has  
the same functionality of the LNBP1X and  
LNBP20 series, at a reduced output current  
capability. Since most satellite receivers have two  
antenna ports, the output voltage of the regulator  
is available at one of two logic-selectable output  
pins (LNBA, LNBB). When the IC is powered and  
put in Stand-by (EN pin LOW), both regulator  
outputs are disabled to allow the antenna  
downconverters to be supplied/controlled by  
others satellite receivers sharing the same coaxial  
lines. In this occurrence the device will limit at 3  
mA (max) the backward current that could flow  
from LNBA and LNBB output pins to GND.  
V
. They must be powered respectively at 16V  
CC2  
(min) and 23V (min), and an internal switch  
automatically will select the suitable supply pin  
according to the selected output voltage. If  
adequate heatsink is provided and higher power  
losses are acceptable, both supply pins can be  
powered by the same 23V source without  
affecting any other circuit performance.  
The ENT (Tone Enable) pin activates the internal  
oscillator so that the DC output is modulated by a  
±0.3 V, 22KHz (typ.) square wave. This internal  
oscillator is factory trimmed within a tolerance of  
±2KHz, thus no further adjustments neither  
external components are required.  
A burst coding of the 22KHz tone can be  
accomplished thanks to the fast response of the  
ENT input and the prompt oscillator start-up. This  
helps designers who want to implement the  
DiSEqC protocols (*).  
For slave operation in single dish, dual receiver  
systems, the bypass function is implemented by  
an electronic switch between the Master Input pin  
In order to improve design flexibility and to allow  
implementation of newcoming LNB remote control  
standards, an analogic modulation input pin is  
July 2003  
1/14  
LNBK20D2  
available (EXTM). An appropriate DC blocking  
capacitor must be used to couple the modulating  
signal source to the EXTM pin. When external  
modulation is not used, the relevant pin can be left  
open.  
IMPEDANCE. If the overload is still present, the  
protection circuit will cycle again through t and  
off  
ton until the overload is removed. Typical t +t  
on off  
value is 1200ms when a 4.7µF external capacitor  
is used.  
Two pins are dedicated to the overcurrent  
protection/monitoring: CEXT and OLF. The  
overcurrent protection circuit works dynamically:  
as soon as an overload is detected in either LNB  
output, the output is shut-down for a time Toff  
determined by the capacitor connected between  
CEXT and GND. Simultaneously the OLF pin, that  
is an open collector diagnostic output flag, from  
HIGH IMPEDANCE state goes LOW.  
This dynamic operation can greatly reduce the  
power dissipation in short circuit condition, still  
ensuring excellent power-on start up even with  
highly capacitive loads on LNB outputs.  
The device is packaged in Multiwatt15 for  
thru-holes mounting and in PowerSO-20 for  
surface mounting. When a limited functionality in a  
smaller package matches design needs, a range  
of cost-effective PowerSO-10 solutions is also  
offered. All versions have built-in thermal  
protection against overheating damage.  
After the time has elapsed, the output is resumed  
for a time t =1/15t (typ.) and OLF goes in HIGH  
on  
off  
(*): External components are needed to comply to level 2.x and above (bidirectiona) DiSEqC bus hardware requirements. DiSEqC is a  
trademark or EUTELSAT.  
PIN CONFIGURATION (top view)  
2/14  
LNBK20D2  
TABLE A: PIN CONFIGURATIONS  
PIN N°  
SYMBOL  
NAME  
FUNCTION  
1
LLC  
Line Length Compens.  
(1V typ)  
Logic control input: see truth table  
2
OLF  
MI  
Over Load Flag  
Logic output (open collector). Normally in HIGH  
IMPEDANCE, goes LOW when current or thermal overload  
occurs  
3
4
Master Input  
In stand-by mode, the voltage on MI is routed to LNBA pin.  
Can be left open if bypass function is not needed  
LNBB  
GND  
Output Port  
Ground  
See truth tables for voltage and port selection  
5, 6, 15,  
16  
Circuit Ground. It is internally connected to the die frame  
7, 13  
8
N.C.  
Not Connected  
Supply Input 1  
V
15V to 27V supply. It is automatically selected when  
CC1  
V
= 13 or 14V  
OUT  
9
V
Supply Input 2  
Output Port  
22V to 27V supply. It is automatically selected when  
= 18 or 19V  
CC2  
V
OUT  
10  
LNBA  
See truth table voltage and port selection. In stand-by mode  
this port is powered by the MI pin via the internal Bypass  
Switch  
11  
V
Output Voltage Selection: Logic control input: see truth table  
13 or 18V (typ)  
SEL  
12  
14  
18  
19  
EN  
Port Enable  
Port Selection  
Logic control input: see truth table  
Logic control input: see truth table  
Logic control input: see truth table  
OSEL  
ENT  
22KHz Tone Enable  
External Capacitor  
CEXT  
Timing Capacitor used by the Dynamic Overload protection.  
Typical application is 4.7µF for a 1200ms cycle  
20  
EXTM  
External Modulator  
External Modulation Input. Needs DC decoupling to the AC  
source. if not used, can be left open.  
NOTE: the limited pin availability of the PowerSO-10 package leads to drop some functions.  
ABSOLUTE MAXIMUM RATINGS  
Symbol  
Parameter²  
Value  
Unit  
V
DC Input Voltage (V  
, V  
, MI)  
28  
Internally Limited  
-0.5 to 7  
900  
V
mA  
V
I
CC1  
CC2  
I
Output Current (LNBA, LNBB)  
O
V
Logic Input Voltage (ENT, EN OSEL, VSEL, LLC)  
Bypass Switch Current  
I
I
mA  
W
SW  
P
Power Dissipation at T  
< 85°C  
3
D
case  
T
Storage Temperature Range  
-40 to +150  
-40 to +125  
°C  
°C  
stg  
T
Operating Junction Temperature Range  
op  
Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these condition is  
not implied.  
THERMAL DATA  
Symbol  
Parameter  
Thermal Resistance Junction-case  
Value  
Unit  
R
15  
°C/W  
thj-case  
3/14  
LNBK20D2  
LOGIC CONTROLS TRUTH TABLE  
CONTROL I/O  
PIN NAME  
L
H
OUT  
OLF  
I
> I  
or T > 150°C  
I
< I  
OMAX  
OUT  
OMAX  
j
OUT  
IN  
IN  
IN  
IN  
IN  
ENT  
EN  
22KHz tone OFF  
See Table Below  
See Table Below  
See Table Below  
See Table Below  
22KHz tone ON  
See Table Below  
See Table Below  
See Table Below  
See Table Below  
OSEL  
VSEL  
LLC  
V
V
EN  
OSEL  
VSEL  
LLCO  
LNBA  
LNBB  
L
X
X
X
V
- 0.4V (typ.)  
Disabled  
MI  
H
H
H
H
H
H
H
H
L
L
L
H
L
L
L
13V (typ.)  
18V (typ.)  
14V (typ.)  
19V (typ.)  
Disabled  
Disabled  
Disabled  
Disabled  
Disabled  
Disabled  
Disabled  
Disabled  
13V (typ.)  
18V (typ.)  
14V (typ.)  
19V (typ.)  
L
H
H
L
L
H
L
H
H
H
H
H
L
L
H
H
H
NOTE: All logic input pins have internal pull-down resistor (typ. = 250K)  
BLOCK DIAGRAM  
4/14  
LNBK20D2  
ELECTRICAL CHARACTERISTICS FOR LNBK SERIES (T = 0 to 85°C, C = 0.22µF, C =0.1µF,  
J
I
O
EN=H, ENT=L, LLC=L, V =16V, V =23V I  
=50mA, unless otherwise specified.)  
IN1  
IN2  
OUT  
Symbol  
Parameter  
Test Conditions  
Min.  
15  
Typ.  
Max.  
Unit  
V
V
V
V
Supply Voltage  
Supply Voltage  
I
I
I
I
I
I
I
I
= 400 mA ENT=H, VSEL=L, LLC=L  
= 400 mA ENT=H, VSEL=L, LLC=H  
= 400 mA ENT=H, VSEL=L, LLC=L  
= 400 mA VSEL=L, LLC=H  
27  
27  
IN1  
IN2  
CC1  
CC2  
O
O
O
O
O
O
O
O
16  
V
V
22  
27  
V
23  
27  
V
V
V
Output Voltage  
Output Voltage  
Line Regulation  
Load Regulation  
= 400 mA VSEL=L, LLC=L  
17.3  
18  
19  
13  
14  
5
18.7  
V
O1  
O2  
= 400 mA ENT=H, VSEL=L, LLC=H  
= 400 mA VSEL=L, LLC=L  
V
12.5  
13.5  
V
= 400 mA ENT=H, VSEL=L, LLC=H  
V
V  
V  
V
V
V
=15 to 18V  
=22 to 25V  
V
V
V
=13V  
50  
50  
mV  
mV  
mV  
O
O
IN1  
IN2  
IN1  
OUT  
OUT  
OUT  
=18V  
5
=V =22V  
=13 or 18V  
65  
150  
IN2  
I
= 0 to 3A  
O
SVR Supply Voltage Rejection  
V
= V  
= 23 ± 0.5V f = 120 Hz,  
ac ac  
45  
dB  
mA  
ms  
IN1  
IN2  
I
Output Current Limiting  
500  
650  
1100  
800  
MAX  
t
Dynamic Overload  
Output Shorted  
Output Shorted  
C
C
=4.7µF  
OFF  
EXT  
protection OFF Time  
t
Dynamic Overload  
protection ON Time  
=4.7µF  
t
/15  
ms  
ON  
EXT  
OFF  
f
Tone Frequency  
ENT=H  
ENT=H  
ENT=H  
ENT=H  
20  
0.55  
40  
22  
24  
0.9  
60  
15  
KHz  
Vpp  
%
TONE  
A
Tone Amplitude  
0.72  
50  
10  
5
TONE  
D
Tone Duty Cycle  
TONE  
t , t  
Tone Rise and Fall Time  
External Modulation Gain  
5
µs  
r
f
G
V
V  
/V ,  
EXTM  
f = 10Hz to 40KHz  
EXTM  
EXTM  
OUT  
External Modulation Input  
Voltage  
AC Coupling  
f = 10Hz to 40KHz  
EN=L, =300mA,  
=8mA  
400  
mVpp  
Z
External Modulation  
Impedance  
400  
0.35  
0.28  
EXTM  
V
Bypass Switch Voltage  
Drop (MI to LNBA)  
I
V
-V =4V  
0.6  
0.5  
10  
V
SW  
SW  
CC2 MI  
V
Overload Flag Pin Logic  
LOW  
I
V
OL  
OZ  
OL  
I
Overload Flag Pin OFF  
State Leakage Current  
V
= 6V  
µA  
V
OH  
V
Control Input Pin Logic  
LOW  
0.8  
IL  
IH  
IH  
V
Control Input Pin Logic  
HIGH  
2.5  
V
I
Control Pins Input Current  
Supply Current  
V
= 5V  
20  
µA  
IH  
I
Output Disabled (EN=L)  
0.3  
3.1  
1
6
mA  
mA  
CC  
ENT=H,  
I
=500mA  
OUT  
I
Output Backward Current  
EN=L  
V
= V  
= 18V  
0.2  
3
mA  
OBK  
LNBA  
LNBB  
V
= V  
= 22V or floating  
IN1  
IN2  
T
Temperature Shutdown  
Threshold  
150  
°C  
SHDN  
5/14  
LNBK20D2  
TYPICAL CHARACTERISTICS (unless otherwise specified T = 25°C)  
j
Figure 1 : Output Voltage vs Output Current  
Figure 2 : Tone Duty Cycle vs Temperature  
Figure 3 : Tone Fall Time vs Temperature  
Figure 4 : Tone Frequency vs Temperature  
Figure 5 : Tone Rise Time vs Temperature  
Figure 6 : Tone Amplitude vs Temperature  
6/14  
LNBK20D2  
Figure 7 : S.V.R. vs Frequency  
Figure 10 : LNBA External Modulation gain vs  
Frequency  
Figure 8 : External Modulation vs Temperature  
Figure 11 : Bypass switch Drop vs Output  
Current  
Figure 9 : Bypass Switch Drop vs Output Current  
Figure 12 : overload Flag pin Logic LOW vs Flag  
Current  
7/14  
LNBK20D2  
Figure 13 : Supply Voltage vs Temperature  
Figure 16 : Tone Enable  
Figure 17 : Tone Disable  
Figure 18 : 22KHz Tone  
Figure 14 : Supply Current vs Temperature  
Figure 15 : Dynamic Overload protection (I vs  
SC  
Time)  
8/14  
LNBK20D2  
Figure 19 : Enable Time  
Figure 21 : 18V to 13V Change  
Figure 20 : Disable Time  
Figure 22 : 18V to 13V Change  
TYPICAL APPLICATION SCHEMATICS  
TWO ANTENNA PORTS RECEIVER  
MCU+V  
10uF  
17V  
24V  
ANT CONNECTORS  
C2  
11  
1
2
AUX DATA  
EXTM  
OLF  
VCC1  
VCC2  
R1  
JA  
JB  
3
15  
14  
LNBA  
LNBB  
MI  
47K  
13  
TUNER  
4
9
5
7
12  
10  
VSEL  
ENT  
EN  
OSEL  
LLC  
CEXT  
C1  
4.7µF  
C3 C4 C5 C6  
+
8
GND  
2x 47nF  
2x 0.1µF  
LNBK20  
Vcc  
I/Os  
I/Os  
MCU  
9/14  
LNBK20D2  
SINGLE ANTENNA RECEIVER WITH MASTER RECEIVER PORT  
17V  
24V  
MCU+V  
10uF  
C2  
1
2
11  
13  
AUX DATA  
EXTM  
OLF  
VCC1  
VCC2  
R1  
ANT  
3
15  
14  
LNBA  
LNBB  
MI  
47K  
MASTER  
10  
4
9
5
7
12  
TUNER  
VSEL  
ENT  
EN  
OSEL  
LLC  
CEXT  
4.7µF  
C1  
C3 C4 C5  
+
47nF  
8
GND  
2x 0.1µF  
LNBK20  
Vcc  
I/Os  
I/Os  
MCU  
USING SERIAL BUS TO SAVE MPU I/Os  
17V  
24V  
MCU+V  
ANT  
CONNECTORS  
C2  
R1  
11  
13  
1
2
AUX DATA  
EXTM  
VCC1  
VCC2  
47K  
JA  
10uF  
3
15  
14  
LNBA  
LNBB  
MI  
OLF  
JB  
TUNER  
1
2
3
15  
4
5
6
4
9
5
7
12  
10  
VSEL  
STR  
D
CLK  
OE  
Q1  
Q2  
Q3  
Q4  
Q5  
Q6  
Q7  
Q8  
CEXT  
ENT  
EN  
OSEL  
LLC  
4.7µF  
C1  
C3 C4 C5 C6  
2x 0.1µF 2x 47nF  
+
7
14  
13  
12  
11  
8
GND  
LNBK20  
9
10  
QS  
QS  
4094  
SERIAL  
BUS  
MCU+V  
I/Os  
Vcc  
MCU  
10/14  
LNBK20D2  
THERMAL DESIGN NOTE  
During normal operation, this device dissipates some power. At maximum rated output current (400mA),  
the voltage drop on the linear regulator lead to a total dissipated power that is of about 2W. The heat  
generated requires a suitable heatsink to keep the junction temperature below the over temperature  
protection threshold. Assuming a 40°C temperature inside the Set-Top-Box case, the total Rthj-amb has  
to be less than 43°C/W.  
While this can be easily achieved using a through-hole power package that can be attached to a small  
heatsink or to the metallic frame of the receiver, a surface mount power package must rely on PCB  
solutions whose thermal efficiency is often limited. The simplest solution is to use a large, continuous  
copper area of the GND layer to dissipate the heat coming from the IC body.  
The SO-20 package of this IC has 4 GND pins that are not just intended for electrical GND connection, but  
also to provide a low thermal resistance path between the silicon chip and the PCB heatsink. Given an  
Rthj-c equal to 15°C/W, a maximum of 28°C/W are left to the PCB heatsink. This figure is achieved if a  
2
minimum of 25cm copper area is placed just below the IC body. This area can be the inner GND layer of  
a multi-layer PCB, or, in a dual layer PCB, an unbroken GND area even on the opposite side where the  
IC is placed. In both cases, the thermal path between the IC GND pins and the dissipating copper area  
must exhibit a low thermal resistance.  
In figure 4, it is shown a suggested layout for the SO-20 package with a dual layer PCB, where the IC  
Ground pins and the square dissipating area are thermally connected through 32 vias holes, filled by  
solder. This arrangement, when L=50mm, achieves an Rthc-a of about 28°C/W.  
Different layouts are possible, too. Basic principles, however, suggest to keep the IC and its ground pins  
approximately in the middle of the dissipating area; to provide as many vias as possible; to design a  
dissipating area having a shape as square as possible and not interrupted by other copper traces.  
SO-20 SUGGESTED PCB HEATSINK LAYOUT  
11/14  
LNBK20D2  
SO-20 MECHANICAL DATA  
mm.  
inch  
TYP.  
DIM.  
MIN.  
TYP  
MAX.  
2.65  
0.2  
MIN.  
MAX.  
0.104  
0.008  
0.096  
0.019  
0.012  
A
a1  
a2  
b
0.1  
0.004  
2.45  
0.49  
0.32  
0.35  
0.23  
0.014  
0.009  
b1  
C
0.5  
0.020  
c1  
D
45˚ (typ.)  
12.60  
10.00  
13.00  
10.65  
0.496  
0.393  
0.512  
0.419  
E
e
1.27  
0.050  
0.450  
e3  
F
11.43  
7.40  
0.50  
7.60  
1.27  
0.75  
0.291  
0.020  
0.300  
0.050  
0.029  
L
M
S
˚ (max.)  
8
PO13L  
12/14  
LNBK20D2  
Tape & Reel SO-20 MECHANICAL DATA  
mm.  
TYP  
inch  
TYP.  
DIM.  
MIN.  
MAX.  
330  
MIN.  
MAX.  
12.992  
0.519  
A
C
12.8  
20.2  
60  
13.2  
0.504  
0.795  
2.362  
D
N
T
30.4  
11  
1.197  
0.433  
0.528  
0.130  
0.161  
0.476  
Ao  
Bo  
Ko  
Po  
P
10.8  
13.2  
3.1  
0.425  
0.520  
0.122  
0.153  
0.468  
13.4  
3.3  
3.9  
4.1  
11.9  
12.1  
13/14  
LNBK20D2  
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the  
consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from  
its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications  
mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information  
previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or  
systems without express written approval of STMicroelectronics.  
© The ST logo is a registered trademark of STMicroelectronics  
© 2003 STMicroelectronics - Printed in Italy - All Rights Reserved  
STMicroelectronics GROUP OF COMPANIES  
Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco  
Singapore - Spain - Sweden - Switzerland - United Kingdom - United States.  
© http://www.st.com  
14/14  

相关型号:

LNBK20PD

LNB SUPPLY AND CONTROL VOLTAGE REGULATOR PARALLEL INTERFACE
STMICROELECTR

LNBK20PD-TR

DUAL OUTPUT, FIXED POSITIVE REGULATOR, PDSO20, POWER, SO-20
STMICROELECTR

LNBK20SP

LNBK20SP
STMICROELECTR

LNBP10

LNB SUPPLY AND CONTROL VOLTAGE REGULATOR PARALLEL INTERFACE
STMICROELECTR

LNBP10L

500 mA guaranteed output current
STMICROELECTR

LNBP10LPUR

0.85A SWITCHING REGULATOR, 24kHz SWITCHING FREQ-MAX, PDSO8, 5 X 6 MM, ROHS COMPLIANT, DFN-8
STMICROELECTR

LNBP10SP

LNB SUPPLY AND CONTROL VOLTAGE REGULATOR PARALLEL INTERFACE
STMICROELECTR

LNBP10SP-TR

LNBP supply and control voltage regulator (parallel interface)
STMICROELECTR

LNBP11

LNB SUPPLY AND CONTROL VOLTAGE REGULATOR PARALLEL INTERFACE
STMICROELECTR

LNBP11L

500 mA guaranteed output current
STMICROELECTR

LNBP11LPUR

0.85A SWITCHING REGULATOR, 24kHz SWITCHING FREQ-MAX, PDSO8, 5 X 6 MM, ROHS COMPLIANT, DFN-8
STMICROELECTR

LNBP11SP

LNB SUPPLY AND CONTROL VOLTAGE REGULATOR PARALLEL INTERFACE
STMICROELECTR