L6932D1.5TR [STMICROELECTRONICS]

HIGH PERFORMANCE 2A ULDO LINEAR REGULATOR; 高性能2A ULDO线性稳压器
L6932D1.5TR
型号: L6932D1.5TR
厂家: ST    ST
描述:

HIGH PERFORMANCE 2A ULDO LINEAR REGULATOR
高性能2A ULDO线性稳压器

稳压器
文件: 总11页 (文件大小:354K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
L6932  
HIGH PERFORMANCE 2A ULDO LINEAR REGULATOR  
2V TO 14V INPUT VOLTAGE RANGE  
200mRdson MAX.  
200µA QUIESCENT CURRENT AT ANY LOAD  
EXCELLENT LOAD AND LINE REGULATION  
1.5V, 1.8V AND 2.5V FIXED VOLTAGE  
ADJUSTABLE FROM 1.2V TO 5V (L6932D1.2)  
1% VOLTAGE REGULATION ACCURACY  
SHORT CIRCUIT PROTECTION  
THERMAL SHUT DOWN  
SO-8 (4+4)  
ORDERING NUMBERS:  
L6932D1.2 (SO-8) L6932D1.2TR (T&R)  
L6932D1.5 (SO-8) L6932D1.5TR (T&R)  
L6932D1.8 (SO-8) L6932D1.8TR (T&R)  
L6932D2.5 (SO-8) L6932D2.5TR (T&R)  
SO-8 (4+4) PACKAGE  
APPLICATIONS  
MOTHERBOARDS  
MOBILE PC  
Mosfet, can be usefull for the DC-DC conversion  
between 2.5V and 1.5V at 2A in portable applica-  
tions reducing the power dissipation.  
L6932 is available in 1.5V, 1.8V, 2.5V and adj ver-  
sion from 1.2V and ensure a voltage regulation ac-  
curacy of 1%.  
HAND-HELD INSTRUMENTS  
PCMCIA CARDS  
PROCESSORS I/O  
CHIPSET AND RAM SUPPLY  
The current limit is fixed at 2.5A to control the cur-  
rent in short circuit condition within 8%. The cur-  
rent is sensed in the power mos in order to limit the  
power dissipation.  
DESCRIPTION  
The device is also provided of a thermal shut down  
that limits the internal temperature at 150°C with  
an histeresys of 20°C. L6932 provides the Enable  
and the Power good functions.  
The L6932 Ultra Low Drop Output linear regulator  
operates from 2V to 14V and is able to support 2A.  
Designed with an internal 50mN-channel  
TYPICAL OPERATING CIRCUIT  
VOUT  
OUT  
VIN  
IN  
3
4
2
1.5V-1.8V-2.5V  
2V to 14V  
L6932D  
PGOOD  
C2  
C1  
1
5,6,7,8  
GND  
EN  
VOUT  
OUT  
ADJ  
VIN  
IN  
4
3
2
1.2V to 5V  
2V to 14V  
R1  
R2  
L6932D  
C2  
C1  
1
5,6,7,8  
GND  
EN  
Rev. 9  
1/11  
December 2005  
L6932  
PIN CONNECTIONS  
EN  
EN  
IN  
1
2
3
4
GND  
GND  
GND  
GND  
1
2
3
4
GND  
GND  
GND  
GND  
8
7
6
5
8
7
6
5
IN  
ADJ  
OUT  
OUT  
PGOOD  
L6932D1.2  
L6932D1.5  
L6932D1.8  
L6932D2.5  
PIN FUNCTION  
L6232D  
1.5/1.8/  
2.5  
L6232D  
1.2  
N°  
Description  
1
2
EN  
IN  
Enables the device if connected to Vin and disables the device if forced to gnd.  
Supply voltage. This pin is connected to the drain of the internal N-mos. Connect this  
pin to a capacitor larger than 10µF.  
ADJ  
OUT  
Connecting this pin to a voltage divider it is possible to programme the output voltage  
between 1.2V and 5V.  
3
Regulated output voltage. This pin is connected to the source of the internal N-mos.  
Connect this pin to a capacitor of 10µF.  
OUT  
Regulated output voltage. This pin is connected to the source of the internal N-mos.  
Connect this pin to a capacitor of 10µF.  
4
PGOOD Power good output. The pin is open drain and detects the output voltage. It is forced  
low if the output voltage is lower than 90% of the programmed voltage.  
5, 6, 7, 8  
GND  
Ground pin.  
ABSOLUTE MAXIMUM RATINGS  
Symbol  
Parameter  
Parameter  
Value  
14.5  
Unit  
V
Vin  
VIN and Pgood  
EN, OUT and ADJ  
-0.3 to (Vin +0.3)  
V
THERMAL DATA  
Symbol  
Value  
62 (*)  
Unit  
°C/W  
°C  
Rth J-amb  
Tmax  
Thermal Resistance Junction to Ambient  
Maximum Junction Temperature  
150  
Storage Temperature Range  
-65 to 150  
°C  
Tstg  
2
(*) Measured on Demoboard with about 4 cm of dissipating area 2 Oz.  
2/11  
L6932  
BLOCK DIAGRAM (Referred to the Fixed Voltage version)  
IN  
CHARGE  
PUMP  
CURRENT  
LIMIT  
VREF  
DRIVER  
+
REFERENCE  
VREF=1.25V  
-
ERROR  
AMPL.  
OUT  
THERMAL  
SENSOR  
EN  
ENABLE  
PG  
-
0.9 VREF  
+
GND  
D99IN1100  
ELECTRICAL CHARACTERISTCS (T = 25°C, V = 5V unless otherwise specified)  
j
IN  
(*) Specification referred to T from -25°C to 125°C.  
j
Symbol  
Vin  
Parameter  
Test Condition  
Min.  
2
Typ.  
Max.  
Unit  
V
Operating Supply Voltage  
Output voltage L6932D1.2  
Output voltage L6932D1.5  
Output voltage L6932D1.8  
Output voltage L6932D2.5  
14  
Vo  
Io = 0.1A; Vin = 3.3V  
1.188  
1.485  
1.782  
2.475  
1.2  
1.5  
1.8  
2.5  
1.212  
V
Io = 0.1A; Vin = 3.3V  
Io = 0.1A; Vin = 3.3V  
Io = 0.1A; Vin = 3.3V  
1.515  
V
1.818  
V
2.525  
5
V
L6932D1.2  
Line Regulation  
V
V
V
in = 2.5V 10%; Io = 10mA  
in = 3.3V 10%; Io = 10mA  
in = 5V 10%; Io = 10mA  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mΩ  
5
5
L6932D1.5  
Line Regulation  
Vin = 2.5V 10%; Io = 10mA  
in = 3.3V 10%; Io = 10mA  
Vin = 5V 10%; Io = 10mA  
5
V
5
5
L6932D1.8  
Line Regulation  
V
in = 2.5V 10%; Io = 10mA  
in = 3.3V 10%; Io = 10mA  
5
V
5
Vin = 5V 10%; Io = 10mA  
5
L6932D2.5  
Line Regulation  
V
V
V
V
in = 3.3V 10%; Io = 10mA  
in = 5V 10%; Io = 10mA  
in = 3.3V; 0.1A < Io < 2A  
in = 3.3V; 0.1A < Io < 2A  
5
5
L6932D1.2 Load Regulation  
L6932D1.5 Load Regulation  
L6932D1.8 Load Regulation  
L6932D2.5 Load Regulation  
Drain Source ON resistance  
15  
15  
15  
15  
200  
Vin = 3.3V; 0.1A < Io < 2A  
in = 3.3V; 0.1A < Io < 2A  
V
Rdson  
3/11  
L6932  
ELECTRICAL CHARACTERISTCS (continued)  
Symbol  
Iocc  
Parameter  
Current limiting  
Test Condition  
Min.  
Typ.  
2.5  
Max.  
2.7  
Unit  
A
2.3  
Iq  
Quiescent current  
Shutdown current  
Ripple Rejection  
0.2  
0.4  
mA  
µA  
dB  
Ish  
2V < Vin < 14V  
25  
*
f = 120Hz, Io = 1A  
60  
75  
Vin = 5V, Vin = 2Vpp  
Ven  
EN Input Threshold  
Pgood threshold  
Pgood Hysteresis  
Pgood saturation  
0.5  
0.65  
90  
0.8  
0.4  
V
Vo rise  
%Vo  
%Vo  
V
10  
Ipgood =1mA  
0.2  
Figure 1. Output Voltage vs. Junction  
Temperature (L6932D1.2)  
Figure 3. Output Voltage vs. Junction  
Temperature (L6932D2.5)  
1.213  
1.212  
1.212  
2.520  
2.515  
2.510  
1.211  
V
V
1.211  
1.210  
1.210  
1.209  
2.505  
2.500  
2.495  
-60 -40 -20  
0
20 40 60 80 100 120 140 160  
-60 -40 -20  
0
20 40 60 80 100 120 140 160  
Temp [°C]  
Temp [°C]  
Figure 4. Quiescent Current vs. Junction  
Temperature  
Figure 2. Output Voltage vs. Junction  
Temperature (L6932D1.8)  
310  
1.808  
1.804  
1.800  
1.796  
1.792  
1.788  
300  
Vin=5V  
290  
Iq  
280  
(uA)  
270  
260  
250  
-60 -40 -20  
0
20 40 60 80 100 120 140 160  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
140  
Temp [°C]  
Temp [°C ]  
4/11  
L6932  
Figure 5. Shutdown Current vs. Junction TemperatureAPPLICATION INFORMATIONS  
7.5  
7
6.5  
Vin=5V  
Ishdn  
(uA)  
6
5.5  
5
4.5  
4
-40  
-20  
0
20  
40  
60  
80  
100  
120  
140  
Temp [°C ]  
APPLICATION CIRCUIT  
In figure 6 the schematic circuit of the demoboards are shown.  
Figure 6. Demoboards Schematic Circuit  
VOUT  
OUT  
VIN  
IN  
3
4
2
1
L6932D1.5  
L6932D1.8  
L6932D2.5  
EN  
PGOOD  
C2  
C1  
5
6
7
8
GND  
VOUT  
1.2V to 5V  
VIN  
IN  
OUT  
ADJ  
4
3
2
1
EN  
R1  
R2  
L6932D1.2  
C2  
C1  
1.2  
R2  
5
6
7
8
VOUT =  
×(R1+R2)  
GND  
COMPONENT LIST  
Fixed version  
Reference  
Part Number  
Description  
Manufacturer  
C1  
C2  
C34Y5U1E106Z  
C34Y5U1E106Z  
10uF, 25V  
10uF, 25V  
TOKIN  
TOKIN  
5/11  
L6932  
Figure 7. Demoboard Layout (Fixed Version)  
Adjustable version  
Reference  
Part Number  
C34Y5U1E106Z  
C34Y5U1E106Z  
Description  
10uF, 25V  
Manufacturer  
TOKIN  
C1  
C2  
R1  
R2  
10uF, 25V  
TOKIN  
Neohm  
Neohm  
5.6K, 1%, 0.25W  
3.3K, 1%, 0.25W  
Figure 8. Demoboard Layout (Adjustable Version)  
COMPONENTS SELECTION  
Input Capacitor  
The input capacitor value depends on a lot of factors such as load transient requirements, input source (battery  
or DC/DC converter) and its distance from the input cap. Usually a 47  
much lower value can be sufficient in many cases.  
µF is enough for any application but a  
Output Capacitor  
The output capacitor choice depends basically on the load transient requirements.  
Tantalum, Speciality Polimer, POSCAP and aluminum capacitors are good and offer very low ESR values.  
6/11  
L6932  
Multilayer ceramic caps have the lowest ESR and can be required for particular applications. Nevertheless in  
several applications they are ok, the loop stability issue has to be considered (see loop stability section).  
Below a list of some suggested capacitor manufacturers.  
Manufacturer  
PANASONIC  
Type  
CERAMIC  
Cap Value (µF)  
1 to 47  
Rated Voltage (V)  
4 to 16  
4 to 16  
4 to 16  
4 to 16  
4 to 16  
4 to 16  
4 to 16  
TAYO YUDEN  
TDK  
CERAMIC  
CERAMIC  
CERAMIC  
POSCAP  
SP  
1 to 47  
1 to 47  
1 to 47  
1 to 47  
1 to 47  
1 to 47  
TOKIN  
SANYO  
PANASONIC  
KEMET  
TANTALUM  
Loop Stability  
The stability of the loop is affected by the zero introduced by the output capacitor.  
The time constant of the zero is given by:  
1
T = ESR C  
F
= --------------------------------------------  
OUT  
ZERO  
2π ⋅ ESR C  
OUT  
This zero helps to increase the phase margin of the loop until the time constant is higher than some hundreds  
of nsec, depending also on the output voltage and current.  
So, using very low ESR ceramic capacitors could produce oscillations at the output, in particular when regulating  
high output voltages (adjustable version).  
To solve this issue is sufficient to add a small capacitor (e.g. 1nF to 10nF) in parallel to the high side resistor of  
the external divider, as shown in figure 9.  
Figure 9. Compensation Network  
VIN=2V TO 14V  
VOUT=1.2V TO 5V UP to 2A  
OUT  
IN  
2
1
4
3
C3  
R1  
ADJ  
L6932D1.2  
EN  
C2  
C1  
6
7
5
8
R2  
GND  
Thermal Considerations  
Since the device is housed in a small SO(4+2+2) package the thermal issue can be the bottleneck of many ap-  
plications. The power dissipated by the device is given by:  
P
DISS  
= (V - V  
) · I  
OUT OUT  
IN  
7/11  
L6932  
The thermal resistance junction to ambient of the demoboard is approximately 62°C/W. This mean that, consid-  
ering an ambient temperature of 60°C and a maximum junction temperature of 150°C, the maximum power that  
the device can handle is 1.5W.  
This means that the device is able to deliver a DC output current of 2A only with a very low dropout.  
In many applications, high output current pulses are required. If their duration is shorter than the thermal con-  
stant time of the board, the thermal impedance (not the thermal resistance) has to be considered.  
In figure 10 the thermal impedance versus the duration of the current pulse for the SO(4+2+2) mounted on board  
is shown.  
Figure 10. Thermal Impedance  
Considering a pulse duration of 1sec, the thermal impedance is close to 20°C/W, allowing much bigger power  
dissipated.  
Example:  
Vin = 3.3V  
Vout = 1.8V  
Iout = 2A  
Pulse Duration = 1sec  
The power dissipated by the device is:  
P
DISS  
= (V - V  
) · I  
= 1.5 · 2 3W  
OUT  
IN  
OUT  
Considering a thermal impedance of 20°C/W, the maximum junction temperature will be:  
T = T + Z · P = 60 + 60 = 120°C  
J
A
THJA  
DISS  
Obviously, with pulse durations longer than approximately 10sec the thermal impedance is very close to the  
thermal resistance (60°C/W to 70°C/W).  
8/11  
L6932  
Figure 11. SO-8 Mechanical Data & Package Dimensions  
mm  
inch  
DIM.  
OUTLINE AND  
MECHANICAL DATA  
MIN. TYP. MAX. MIN.  
TYP. MAX.  
0.069  
A
A1  
A2  
B
1.35  
0.10  
1.10  
0.33  
0.19  
4.80  
1.75 0.053  
0.25 0.004  
1.65 0.043  
0.51 0.013  
0.25 0.007  
5.00 0.189  
0.010  
0.065  
0.020  
C
0.010  
(1)  
D
0.197  
E
e
3.80  
4.00  
0.15  
0.157  
0.050  
1.27  
H
5.80  
0.25  
0.40  
6.20 0.228  
0.50 0.010  
1.27 0.016  
0˚ (min.), 8˚ (max.)  
0.10  
0.244  
h
0.020  
L
0.050  
k
ddd  
0.004  
Note: (1) Dimensions D does not include mold flash, protru-  
sions or gate burrs.  
SO-8  
Mold flash, potrusions or gate burrs shall not exceed  
0.15mm (.006inch) in total (both side).  
0016023 C  
9/11  
L6932  
Table 1. Revision History  
Date  
Revision  
Description of Changes  
February 2003  
December 2005  
8
9
First Issue  
Added new Ordering Numbers: L6932D1.5 & L6932D1.5TR.  
10/11  
L6932  
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences  
of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted  
by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject  
to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not  
authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.  
The ST logo is a registered trademark of STMicroelectronics.  
All other names are the property of their respective owners  
© 2005 STMicroelectronics - All rights reserved  
STMicroelectronics group of companies  
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -  
Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America  
www.st.com  
11/11  

相关型号:

L6932D1.8

HIGH PERFORMANCE 2A ULDO LINEAR REGULATOR
STMICROELECTR

L6932D1.8TR

HIGH PERFORMANCE 2A ULDO LINEAR REGULATOR
STMICROELECTR

L6932D12

HIGH PERFORMANCE 2A ULDO LINEAR REGULATOR
STMICROELECTR

L6932D12TR

HIGH PERFORMANCE 2A ULDO LINEAR REGULATOR
STMICROELECTR

L6932D18

HIGH PERFORMANCE 2A ULDO LINEAR REGULATOR
STMICROELECTR

L6932D18TR

HIGH PERFORMANCE 2A ULDO LINEAR REGULATOR
STMICROELECTR

L6932D2.5

HIGH PERFORMANCE 2A ULDO LINEAR REGULATOR
STMICROELECTR

L6932D2.5TR

HIGH PERFORMANCE 2A ULDO LINEAR REGULATOR
STMICROELECTR

L6932D25

HIGH PERFORMANCE 2A ULDO LINEAR REGULATOR
STMICROELECTR

L6932D25TR

HIGH PERFORMANCE 2A ULDO LINEAR REGULATOR
STMICROELECTR

L6932H1.2

High performance 2A ULDO linear regulator
STMICROELECTR

L6932H1.2TR

High performance 2A ULDO linear regulator
STMICROELECTR