ICX424AL [SONY]

Diagonal 6mm (Type 1/3) Progressive Scan CCD Solid-state Image Sensor with Square Pixel for B/W Cameras; 对角线6毫米(类型1/3)逐行扫描CCD固态图像与正方形像素为B / W摄像机传感器
ICX424AL
型号: ICX424AL
厂家: SONY CORPORATION    SONY CORPORATION
描述:

Diagonal 6mm (Type 1/3) Progressive Scan CCD Solid-state Image Sensor with Square Pixel for B/W Cameras
对角线6毫米(类型1/3)逐行扫描CCD固态图像与正方形像素为B / W摄像机传感器

传感器 CD 摄像机
文件: 总29页 (文件大小:300K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ICX424AL  
Diagonal 6mm (Type 1/3) Progressive Scan CCD Solid-state Image Sensor with Square Pixel for B/W Cameras  
Description  
16 pin DIP (Plastic)  
The ICX424AL is a diagonal 6mm (Type 1/3) interline  
CCD solid-state image sensor with a square pixel  
array suitable for EIA black-and-white cameras.  
Progressive scan allows all pixel's signals to be output  
independently within approximately 1/60 second. This  
chip features an electronic shutter with variable  
charge-storage time which makes it possible to  
realize full-frame still images without a mechanical  
shutter. High sensitivity and low dark current are  
achieved through the adoption of the HAD (Hole-  
Accumulation Diode) sensors.  
This chip is suitable for applications such as FA  
and surveillance cameras.  
Pin 1  
Features  
2
Progressive scan allows individual readout of the image signals  
from all pixels.  
V
2
High vertical resolution (480 TV-lines) still images without a  
mechanical shutter  
Square pixel  
8
Supports VGA format  
H
31  
Horizontal drive frequency: 24.54MHz  
No voltage adjustments (reset gate and substrate bias are not  
adjusted.)  
High resolution, high sensitivity, low dark current  
Continuous variable-speed shutter  
Low smear  
Pin 9  
Optical black position  
(Top View)  
Excellent anti-blooming characteristics  
Horizontal register: 5.0V drive  
16-pin high precision plastic package (enables dual-surface standard)  
Device Structure  
Interline CCD image sensor  
Image size:  
Diagonal 6mm (Type 1/3)  
Number of effective pixels: 659 (H) × 494 (V) approx. 330K pixels  
Total number of pixels:  
Chip size:  
692 (H) × 504 (V) approx. 350K pixels  
5.79mm (H) × 4.89mm (V)  
Unit cell size:  
Optical black:  
7.4µm (H) × 7.4µm (V)  
Horizontal (H) direction: Front 2 pixels, rear 31 pixels  
Vertical (V) direction:  
Horizontal 16  
Vertical 5  
Front 8 pixels, rear 2 pixels  
Number of dummy bits:  
Substrate material:  
Silicon  
Sony reserves the right to change products and specifications without prior notice. This information does not convey any license by  
any implication or otherwise under any patents or other right. Application circuits shown, if any, are typical examples illustrating the  
operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits.  
– 1 –  
E01Z09B35  
ICX424AL  
Block Diagram and Pin Configuration  
(Top View)  
8
7
6
5
4
3
2
1
Note)  
16  
Horizontal register  
12 13 14  
Note)  
: Photo sensor  
9
10  
11  
15  
Pin Description  
Pin No. Symbol  
Description  
Pin No. Symbol  
Description  
Supply voltage  
1
Vφ3  
Vertical register transfer clock  
Vertical register transfer clock  
Vertical register transfer clock  
9
VDD  
Supply voltage for the substrate  
voltage generation  
2
Vφ2  
10  
SUBCIR  
3
4
5
6
7
8
Vφ1  
11  
12  
13  
14  
15  
16  
GND  
φSUB  
VL  
GND  
NC  
Substrate clock  
GND  
CGG  
GND  
VOUT  
GND  
Protective transistor bias  
Reset gate clock  
1
Output amplifier gate  
φRG  
Hφ1  
GND  
Horizontal register transfer clock  
Horizontal register transfer clock  
Signal output  
Hφ2  
1
DC bias is applied within the CCD, so that this pin should be grounded externally through a capacitance  
of 1000pF.  
– 2 –  
ICX424AL  
Absolute Maximum Ratings  
Item  
Substrate clock φSUB – GND  
Ratings  
–0.3 to +36  
–0.3 to +18  
–22 to +9  
–15 to +16  
to +10  
Unit  
V
Remarks  
VDD, VOUT, CGG, SUBCIR – GND  
V
Supply voltage  
VDD, VOUT, CGG, SUBCIR – φSUB  
Vφ1, Vφ2, Vφ3 – GND  
V
V
Clock input voltage  
Vφ1, Vφ2, Vφ3 φSUB  
V
2
Voltage difference between vertical clock input pins  
Voltage difference between horizongal clock input pins  
Hφ1, Hφ2 – Vφ3  
to +15  
V
to +16  
V
–16 to +16  
–10 to +15  
–55 to +10  
–65 to +0.3  
–0.3 to +27.5  
–0.3 to +20.5  
–0.3 to +17.5  
–30 to +80  
–10 to +60  
–10 to +75  
V
Hφ1, Hφ2 – GND  
V
Hφ1, Hφ2 φSUB  
V
VL φSUB  
V
Vφ2, Vφ3 – VL  
V
RG – GND  
V
Vφ1, Hφ1, Hφ2, GND – VL  
Storage temperature  
V
°C  
°C  
°C  
Performance guarantee temperature  
Operating temperature  
2
+24V (Max.) when clock width < 10µs, clock duty factor < 0.1%.  
+16V (Max.) is guaranteed for power-on and power-off.  
– 3 –  
ICX424AL  
Bias Conditions  
Item  
Symbol Min.  
Typ.  
Max.  
Unit Remarks  
V
Supply voltage  
Protective transistor bias  
Substrate clock  
Reset gate clock  
1
VDD  
VL  
14.55  
15.0  
15.45  
1
2
3
φSUB  
φRG  
VL setting is the VVL voltage of the vertical transfer clock waveform, or the same voltage as the VL power  
supply for the V driver should be used.  
2
3
Set SUBCIR pin to open when applying a DC bias to the substrate clock pin.  
Do not apply a DC bias to the reset gate clock pins, because a DC bias is generated within the CCD.  
DC Characteristics  
Item  
Symbol Min.  
Typ.  
7
Max.  
9
Unit Remarks  
mA  
Supply current  
IDD  
Clock Voltage Conditions  
Item  
Waveform  
Diagram  
Symbol  
Min.  
Typ.  
Max. Unit  
Remarks  
Readout clock voltage VVT  
14.55 15.0 15.45  
V
V
V
1
VVH02  
–0.05  
0
0
0.05  
0.05  
2
2
VVH = VVH02  
VVH1, VVH2, VVH3 –0.2  
VVL = VVL1 (VVL3)/2  
(During 24.54MHz)  
VVL1, VVL2, VVL3  
VVL1, VVL2, VVL3  
–7.8  
–7.5  
–7.2  
–7.0  
V
V
2
2
VVL = VVL1 (VVL3)/2  
(During 12.27MHz)  
–8.0  
6.8  
–7.5  
7.5  
Vertical transfer clock  
voltage  
Vφ1, Vφ2, Vφ3  
| VVL1 – VVL3 |  
VVHH  
8.05  
0.1  
V
V
V
V
V
V
V
V
V
V
V
V
V
2
2
2
2
2
2
3
3
3
4
4
4
5
1.0  
High-level coupling  
High-level coupling  
Low-level coupling  
Low-level coupling  
VVHL  
2.3  
VVLH  
1.0  
VVLL  
1.0  
VφH  
4.75  
–0.05  
0.8  
5.0  
0
5.25  
0.05  
Horizontal transfer  
clock voltage  
VHL  
VCR  
2.5  
5.0  
Cross-point voltage  
VφRG  
4.5  
5.5  
0.8  
Reset gate clock  
voltage  
VRGLH – VRGLL  
VRGL – VRGLm  
Low-level coupling  
Low-level coupling  
0.5  
Substrate clock voltage VφSUB  
21.5  
22.5  
23.5  
– 4 –  
ICX424AL  
Clock Equivalent Circuit Constants  
Symbol  
Typ.  
3900  
3300  
3300  
1000  
1000  
1000  
47  
Item  
Min.  
Max. Unit Remarks  
CφV1  
pF  
pF  
pF  
pF  
pF  
pF  
pF  
pF  
pF  
pF  
CφV2  
Capacitance between vertical transfer clock and GND  
Capacitance between vertical transfer clocks  
CφV3  
CφV12  
CφV23  
CφV31  
CφH1, CφH2  
CφHH  
Capacitance between horizontal transfer clock and GND  
Capacitance between horizontal transfer clocks  
Capacitance between reset gate clock and GND  
Capacitance between substrate clock and GND  
30  
CφRG  
6
CφSUB  
R1, R2  
R3  
560  
33  
Vertical transfer clock series resistor  
18  
RGND  
100  
10  
Vertical transfer clock ground resistor  
Horizontal transfer clock series resistor  
Reset gate clock series resistor  
RφH1, RφH2  
RφRG  
39  
R1  
R2  
Vφ1  
Vφ2  
CφV12  
CφV1  
CφV2  
CφV3  
RφH1  
RφH2  
Hφ2  
Hφ1  
RGND  
CφHH  
CφV31  
CφV23  
CφH2  
CφH1  
R3  
Vφ3  
Vertical transfer clock equivalent circuit  
Horizontal transfer clock equivalent circuit  
RφRG  
φRG  
CφRG  
Reset gate clock equivalent circuit  
– 5 –  
ICX424AL  
Drive Clock Waveform Conditions  
(1) Readout clock waveform  
VT  
100%  
90%  
φM  
VVT  
φM  
2
10%  
0%  
0V  
tr  
twh  
tf  
Note) Readout clock is used by composing vertical transfer clocks Vφ2 and Vφ3.  
(2) Vertical transfer clock waveform  
VVH1  
Vφ1  
VVHH  
VVH  
VVHL  
VVLH  
V
VL01  
VH02  
VVL1  
V
VL  
V
VLL  
Vφ2  
V
VH2  
V
VVHH  
VVH  
VVHL  
VVLH  
VVL2  
VVL  
VVLL  
VVH3  
Vφ3  
VVHH  
VVH  
VVHL  
VVL03  
VVLH  
VVL  
VVLL  
V
V
V
VH = VVH02  
VL = (VVL01 + VVL03)/2  
VL3 = VVL03  
VφV1 = VVH1 – VVL01  
VφV2 = VVH02 – VVL2  
VφV3 = VVH3 – VVL03  
– 6 –  
ICX424AL  
(3) Horizontal transfer clock waveform  
tf  
tr  
Hφ1, Hφ2  
twh  
Hφ2  
90%  
VCR  
VφH  
twl  
VφH  
2
10%  
Hφ1  
VHL  
two  
Cross-point voltage for the Hφ1 rising side of the horizontal transfer clocks Hφ1 and Hφ2 waveforms is VCR.  
The overlap period for twh and twl of horizontal transfer clocks Hφ1 and Hφ2 is two.  
(4) Reset gate clock waveform  
φRG  
tr  
twh  
tf  
VRGH  
RG waveform  
twl  
VφRG  
Point A  
V
V
V
RGLH  
RGLL  
RGLm  
V
RGL  
VRGLH is the maximum value and VRGLL is the minimum value of the coupling waveform during the period from  
Point A in the above diagram until the rising edge of RG.  
In addition, VRGL is the average value of VRGLH and VRGLL.  
VRGL = (VRGLH + VRGLL)/2  
Assuming VRGH is the minimum value during the interval twh, then:  
VφRG = VRGH – VRGL  
Negative overshoot level during the falling edge of RG is VRGLm.  
(5) Substrate clock waveform  
φSUB  
100%  
90%  
φM  
VφSUB  
φM  
2
10%  
V
SUB  
0%  
(A bias generated within the CCD)  
tr  
twh  
tf  
– 7 –  
ICX424AL  
Clock Switching Characteristics (Horizontal drive frequency: 24.54MHz)  
twh  
twl  
tr  
tf  
Item  
Symbol  
Unit Remarks  
Min. Typ. Max.Min. Typ. Max. Min. Typ. Max. Min. Typ. Max.  
During  
readout  
Readout clock  
VT  
2.3 2.5  
0.5  
0.5  
µs  
Vertical transfer Vφ1, Vφ2,  
When using  
CXD3400N  
15  
250 ns  
clock  
Vφ3  
Hφ1  
Hφ2  
10.5 14.6  
10.5 14.6  
10.5 14.6  
10.5 14.6  
6.4 10.5  
6.4 10.5  
6.4 10.5  
6.4 10.5  
Horizontal  
transfer clock  
ns  
ns  
tf tr – 2ns  
Reset gate clock φRG  
Substrate clock φSUB  
6
8
25.8  
4
3
When draining  
charge  
0.75 0.9  
0.5  
0.5 µs  
two  
Min. Typ. Max.  
Item  
Symbol  
Unit Remarks  
1
Horizontal transfer clock Hφ1, Hφ2 10.5 14.6  
ns  
Clock Switching Characteristics (Horizontal drive frequency: 12.27MHz)  
twh  
twl  
tr  
tf  
Item  
Symbol  
VT  
Unit Remarks  
Min. Typ. Max.Min. Typ. Max. Min. Typ. Max. Min. Typ. Max.  
During  
µs  
Readout clock  
4.6 5.0  
0.5  
0.5  
readout  
Vertical transfer Vφ1, Vφ2,  
When using  
CXD3400N  
15  
350 ns  
clock  
Vφ3  
Hφ1  
Hφ2  
24 30  
25 31.5  
25 30  
10 17.5  
10 15  
10 17.5  
10 15  
Horizontal  
transfer clock  
ns  
ns  
tf tr – 2ns  
26.5 31.5  
Reset gate clock φRG  
Substrate clock φSUB  
11 13  
1.5 1.8  
62.5  
3
3
When draining  
charge  
0.5  
0.5 µs  
two  
Min. Typ. Max.  
Item  
Symbol  
Unit Remarks  
1
Horizontal transfer clock Hφ1, Hφ2 21.5 25.5  
ns  
1
The overlap period of twh and twl of horizontal transfer clocks Hφ1 and Hφ2 is two.  
– 8 –  
ICX424AL  
Image Sensor Characteristics  
Item Symbol Min. Typ. Max. Unit  
Sensitivity  
(Ta = 25°C)  
Measurement  
method  
Remarks  
S
700 880  
500  
mV  
mV  
1
2
3
4
4
5
6
7
1/30s accumulation conversion value  
Saturation signal  
Smear  
Vsat  
Sm  
Ta = 60°C  
–100 –92 dB  
20  
25  
2
%
%
Zone 0, I  
SH  
Video signal shading  
Zone 0 to II'  
Ta = 60°C  
Ta = 60°C  
Vdt  
Dark signal  
Dark signal shading  
Lag  
mV  
Vdt  
Lag  
0.5 mV  
0.5  
%
Note) All image sensor characteristic data noted above is for operation in 1/60s progressive scan mode.  
Zone Definition of Video Signal Shading  
659 (H)  
12  
12  
12  
V
10  
H
8
H
8
494 (V)  
Zone 0, I  
Zone II, II'  
10  
Ignored region  
V
10  
Effective pixel region  
Measurement System  
CCD signal output [ A]  
CCD  
C.D.S  
AMP  
Signal output [ B]  
S/H  
Note) Adjust the amplifier gain so that the gain between [ A] and [ B] equals 1.  
– 9 –  
ICX424AL  
Image sensor readout mode  
The diagram below shows the output methods for the following three readout modes.  
(1) Progressive scan mode  
(2) Field readout mode  
VOUT  
VOUT  
1. Progressive scan mode  
In this mode, all pixel signals are output in non-interlace format in 1/60s.  
All pixel signals within the same exposure period are read out simultaneously, making this mode suitable for  
high resolution image capturing.  
2. Field readout mode  
All pixels are readout, 2-line transfer is performed during H blanking period and 2 pixels are added by  
horizontal register. (However, guarantees only at the time of a 12MHz drive.)  
(3) Center scan mode  
Undesired portions (Swept by vertical register high-speed transfer)  
Picture center cut-out portion  
3. Center scan mode  
This is the center scan mode using the progressive scan method.  
The undesired portions are swept by vertical register high-speed transfer, and the picture center portion is  
cut out.  
There are the mode (120 frames/s) which outputs 222 lines of an output line portion, and the mode  
(240 frames/s) which outputs 76 lines.  
– 10 –  
ICX424AL  
Image Sensor Characteristics Measurement Method  
Measurement conditions  
(1) In the following measurements, the device drive conditions are at the typical values of the bias and clock  
voltage conditions.  
(2) In the following measurements, spot blemishes are excluded and, unless otherwise specified, the optical  
black level (OB) is used as the reference for the signal output, which is taken as the value measured at  
point [ B] of the measurement system.  
Definition of standard imaging conditions  
(1) Standard imaging condition I:  
Use a pattern box (luminance: 706cd/m2, color temperature of 3200K halogen source) as a subject.  
(Pattern for evaluation is not applicable.) Use a testing standard lens with CM500S (t = 1.0mm) as an IR  
cut filter and image at F8. The luminous intensity to the sensor receiving surface at this point is defined as  
the standard sensitivity testing luminous intensity.  
(2) Standard imaging condition II:  
Image a light source (color temperature of 3200K) with a uniformity of brightness within 2% at all angles.  
Use a testing standard lens with CM500S (t = 1.0mm) as an IR cut filter. The luminous intensity is adjusted  
to the value indicated in each testing item by the lens diaphragm.  
1. Sensitivity  
Set to standard imaging condition I. After setting the electronic shutter mode with a shutter speed of  
1/250s, measure the signal voltage (Vs) at the center of the screen, and substitute the value into the  
following formula.  
250  
30  
S = Vs ×  
[mV]  
2. Saturation signal  
Set to standard imaging condition II. After adjusting the luminous intensity to 10 times the intensity with the  
average value of the signal output, 150mV, measure the minimum value of the signal output.  
3. Smear  
Set to standard imaging condition II. With the lens diaphragm at F5.6 to F8, first adjust the luminous intensity  
to 500 times the intensity with the average value of signal output, 150mV. Then after the readout clock is  
stopped and the charge drain is executed by the electronic shutter at the respective H blankings, measure  
the maximum value (VSm [mV]) of the signal output and substitute the value into the following formula.  
VSm  
150  
1
500  
1
10  
Sm = 20 × log  
×
×
[dB] (1/10V method conversion value)  
4. Video signal shading  
Set to standard imaging condition II. With the lens diaphragm at F5.6 to F8, adjust the luminous intensity so  
that the average value of the signal output is 150mV. Then measure the maximum (Vmax [mV]) and  
minimum (Vmin [mV]) values of the signal output and substitute the values into the following formula.  
SH = (Vmax – Vmin)/150 × 100 [%]  
5. Dark signal  
Measure the average value of the signal output (Vdt [mV]) with the device ambient temperature 60°C and  
the device in the light-obstructed state, using the horizontal idle transfer level as a reference.  
– 11 –  
ICX424AL  
6. Dark signal shading  
After measuring 5, measure the maximum (Vdmax [mV]) and minimum (Vdmin [mV]) values of the dark  
signal output and substitute the values into the following formula.  
Vdt = Vdmax – Vdmin [mV]  
7. Lag  
Adjust the signal output generated by strobe light to 150mV. After setting the strobe light so that it strobes  
with the following timing, measure the residual signal (Vlag). Substitute the value into the following formula.  
Lag = (Vlag/150) × 100 [%]  
VD  
V2  
Light  
Strobe light  
timing  
Signal output 150mV  
Vlag (lag)  
Output  
– 12 –  
ICX424AL  
O U V T  
G N D  
G G C  
G N D  
N C  
1 φ V  
D D V  
S U B C I R  
G N D  
S φ U B  
L V  
R φ G  
2 φ V  
3 φ V  
1 φ H  
2 φ H  
– 13 –  
ICX424AL  
Spectral Sensitivity Characteristics (Excludes lens characteristics and light source characteristics)  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
400  
500  
600  
700  
800  
900  
1000  
Wave Length [nm]  
– 14 –  
ICX424AL  
8
7
6
5
4
3
2
1
7
1
5 2 5  
2
1
5 1 0  
5 0 8  
4 9 4  
3
2
1
8
7
6
5
4
3
2
1
7
1
5 2 5  
5 1 0  
2
1
4 9 4  
– 15 –  
ICX424AL  
– 16 –  
ICX424AL  
1 2 5  
1 2 3  
1 6  
1 0 7 7 2 1  
1
3 5  
1
1
7 8 0  
– 17 –  
ICX424AL  
8
7
6
5
4
3
2
1
1
2 6 2  
2 6 1  
2 4 6  
2 4 5  
3 5 7  
3 5 6  
1 3 7  
1 3 6  
2 4  
2 1  
2 0  
8
7
6
5
4
3
2
1
1
2 6 2  
2 6 1  
2 4 6  
2 4 5  
3 5 7  
3 5 6  
– 18 –  
ICX424AL  
1 0 7  
3 5  
– 19 –  
ICX424AL  
1 0 7  
3 5  
– 20 –  
ICX424AL  
8
7
6
5
4
3
2
1
1
1 3 1  
1 3 0  
1 2 9  
1 0 6  
1 0 5  
2 8 4  
2 8 3  
2 1 0  
2 0 9  
3 0  
2 7  
2 6  
8
7
6
5
4
3
2
1
1
1 3 1  
1 3 0  
1 2 9  
1 0 6  
1 0 5  
2 8 4  
2 8 3  
– 21 –  
ICX424AL  
1 0 7  
3 5  
– 22 –  
ICX424AL  
1 0 7  
3 5  
– 23 –  
ICX424AL  
7
5
3
1
8
6
4
2
7
5
3
1
8
6
4
2
2 7 4  
2 7 3  
2 7 0  
2 6 4  
2 6 3  
4 9 4  
4 9 3  
8
6
4
2
7
5
3
8
1
6
4
2
7
5
3
1
7
1
5 2 5  
4 9 4 4 9 3  
– 24 –  
ICX424AL  
– 25 –  
ICX424AL  
1 2 5  
1 2 3  
1 6  
1 0 7 7 2 1  
1
3 5  
1
1
7 8 0  
– 26 –  
ICX424AL  
Notes on Handling  
1) Static charge prevention  
CCD image sensors are easily damaged by static discharge. Before handling be sure to take the following  
protective measures.  
a) Either handle bare handed or use non-chargeable gloves, clothes or material.  
Also use conductive shoes.  
b) When handling directly use an earth band.  
c) Install a conductive mat on the floor or working table to prevent the generation of static electricity.  
d) Ionized air is recommended for discharge when handling CCD image sensors.  
e) For the shipment of mounted substrates, use boxes treated for the prevention of static charges.  
2) Soldering  
a) Make sure the package temperature does not exceed 80°C.  
b) Solder dipping in a mounting furnace causes damage to the glass and other defects. Use a 30W  
soldering iron with a ground wire and solder each pin in less than 2 seconds. For repairs and remount,  
cool sufficiently.  
c) To dismount an image sensor, do not use a solder suction equipment. When using an electric desoldering  
tool, use a thermal controller of the zero-cross On/Off type and connect it to ground.  
3) Dust and dirt protection  
Image sensors are packed and delivered by taking care of protecting its glass plates from harmful dust and  
dirt. Clean glass plates with the following operations as required, and use them.  
a) Perform all assembly operations in a clean room (class 1000 or less).  
b) Do not either touch glass plates by hand or have any object come in contact with glass surfaces. Should  
dirt stick to a glass surface, blow it off with an air blower. (For dirt stuck through static electricity ionized  
air is recommended.)  
c) Clean with a cotton bud and ethyl alcohol if grease stained. Be careful not to scratch the glass.  
d) Keep in a case to protect from dust and dirt. To prevent dew condensation, preheat or precool when  
moving to a room with great temperature differences.  
e) When a protective tape is applied before shipping, just before use remove the tape applied for  
electrostatic protection. Do not reuse the tape.  
4) Installing (attaching)  
a) Remain within the following limits when applying a static load to the package. Do not apply any load  
more than 0.7mm inside the outer perimeter of the glass portion, and do not apply any load or impact to  
limited portions. (This may cause cracks in the package.)  
Cover glass  
50N  
50N  
1.2Nm  
Plactic package  
Compressive strength  
Torsional strength  
b) If a load is applied to the entire surface by a hard component, bending stress may be generated and the  
package may fracture, etc., depending on the flatness of the bottom of the package. Therefore, for  
installation, use either an elastic load, such as a spring plate, or an adhesive.  
– 27 –  
ICX424AL  
c) The adhesive may cause the marking on the rear surface to disappear, especially in case the regulated  
voltage value is indicated on the rear surface. Therefore, the adhesive should not be applied to this area,  
and indicated values should be transferred to other locations as a precaution.  
d) The notch of the package is used for directional index, and that can not be used for reference of fixing.  
In addition, the cover glass and seal resin may overlap with the notch of the package.  
e) If the leads are bent repeatedly and metal, etc., clash or rub against the package, the dust may be  
generated by the fragments of resin.  
f) Acrylate anaerobic adhesives are generally used to attach CCD image sensors. In addition, cyano-  
acrylate instantaneous adhesives are sometimes used jointly with acrylate anaerobic adhesives.  
(reference)  
5) Others  
a) Do not expose to strong light (sun rays) for long periods. For continuous using under cruel condition  
exceeding the normal using condition, consult our company.  
b) Exposure to high temperature or humidity will affect the characteristics. Accordingly avoid storage or  
usage in such conditions.  
c) Brown stains may be seen on the bottom or side of the package. But this does not affect the CCD  
characteristics.  
d) This package has 2 kinds internal structure. However, their package outline, optical size, and strength  
are the same.  
Structure A  
Structure B  
Package  
Chip  
Metal plate  
(lead frame)  
Cross section of  
lead frame  
The cross section of lead frame can be seen on the side of package for structure A.  
– 28 –  
ICX424AL  
2 . 5  
0 . 2 5  
t o 0 9 ˚ ˚  
1 1 . 4 3  
0 . 1 5 3 . 3 5 ±  
0 . 3 3 . 5 ±  
1 . 2 7  
0 . 1 1 1 . 4 ±  
9 . 5  
3 . 1  
1 . 2  
5 . 7  
8 . 4  
2 . 5  
0 . 5  
2 . 5  
~
~
Sony Corporation  
– 29 –  

相关型号:

ICX424ALB

CCD Sensor, 659 Horiz pixels, 494 Vert pixels, Square, Through Hole Mount, 0.200 INCH, CERAMIC, DIP-14
SONY

ICX424AQ

Diagonal 6mm Progressive Scan CCD Image Sensor with Square Pixel for Color Cameras
SONY

ICX424AQB

CCD Sensor, 659 Horiz pixels, 494 Vert pixels, Square, Through Hole Mount, 0.200 INCH, CERAMIC, DIP-14
SONY

ICX428AKL

Diagonal 8mm (Type 1/2) CCD Image Sensor for NTSC Color Video Cameras
SONY

ICX428ALB

Diagonal 8mm (Type 1/2) CCD Image Sensor for EIA B/W Video Cameras
SONY

ICX428ALL

Diagonal 8mm (Type 1/2) CCD Image Sensor for EIA B/W Video Cameras
SONY

ICX429AKL

Diagonal 8mm (Type 1/2) CCD Image Sensor for PAL Color Video Cameras
SONY

ICX429ALB

Diagonal 8mm (Type 1/2) CCD Image Sensor for CCIR B/W Video Cameras
SONY

ICX429ALL

Diagonal 8mm (Type 1/2) CCD Image Sensor for CCIR B/W Video Cameras
SONY

ICX432DQ

Diagonal 6.67mm (Type 1/2.7) Frame Readout CCD Image Sensor with a Square Pixel for Color Cameras
SONY

ICX432DQF

Diagonal 6.67mm (Type 1/2.7) Frame Readout CCD Image Sensor with a Square Pixel for Color Cameras
SONY

ICX434AQ

Diagonal 5.68mm (Type 1/3.2) Frame Readout CCD Image Sensor with Square Pixel for Color Cameras
SONY