CXD3511 [SONY]

Digital Signal Driver/Timing Generator; 数字信号驱动器/时序发生器
CXD3511
型号: CXD3511
厂家: SONY CORPORATION    SONY CORPORATION
描述:

Digital Signal Driver/Timing Generator
数字信号驱动器/时序发生器

驱动器
文件: 总84页 (文件大小:563K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
CXD3511AQ  
Digital Signal Driver/Timing Generator  
Description  
240 pin QFP (Plastic)  
The CXD3511AQ incorporates digital signal  
processor type RGB driver, color shading correction,  
selectable delay line and timing generator functions  
onto a single IC. Operation is possible with a system  
clock up to 200 [MHz] (max.). This IC can process  
video signals in bands up to UXGA standard, and  
can output the timing signals for driving various Sony  
LCD panels such as UXGA, SXGA and XGA.  
Absolute Maximum Ratings (VSS = 0V)  
Features  
Supply voltage  
VDD1  
VDD2  
VI  
VSS – 0.5 to +3.0  
VSS – 0.5 to +4.0  
V
V
Various picture quality adjustment functions such  
as user adjustment, white balance adjustment and  
gamma correction  
Input voltage  
VSS – 0.5 to VDD1 + 0.5 V  
VSS – 0.5 to VDD1 + 0.5 V  
Output voltage  
VO  
OSD MIX, black frame processing, mute and  
limiter functions  
Storage temperature  
Tstg  
–55 to +125  
125  
°C  
°C  
LCD panel color shading correction function  
Selectable delay line  
Junction temperature  
Tj  
Drives various Sony data projector LCD panels  
such as UXGA, SXGA and XGA  
Recommended Operating Conditions  
Controls the CXA3562AR and CXA7000R sample-  
and-hold drivers  
Supply voltage  
VDD1  
VDD2  
2.3 to 2.7  
3.0 to 3.6  
V
V
Line inversion and field inversion signal generation  
Supports AC drive of LCD panels during no signal  
Operating temperature  
Topr  
–20 to +75  
°C  
Applications  
LCD projectors and other video equipment  
Structure  
Silicon gate CMOS IC  
Sony reserves the right to change products and specifications without prior notice. This information does not convey any license by  
any implication or otherwise under any patents or other right. Application circuits shown, if any, are typical examples illustrating the  
operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits.  
– 1 –  
E02401-PS  
CXD3511AQ  
Block Diagram  
8 × 2 × 3  
R, G, B IN  
R, G, B OSD  
YM  
2 × 2 × 3  
10 × 2 × 3  
DSD  
2
2
R, G, B OUT  
YS  
PCTL  
PCLK  
PARALLEL I/F  
10  
PDAT  
CLKOUT  
CTRL  
PLL  
TG  
RGT, DWN  
PCG, BLK, HST,  
ENBR, ENBL, VSTR,  
VSTL, VCKR, VCKL,  
HCK1, DCK1, DCK2,  
HCK2, DCK1X, DCK2X,  
XRGT, FRP, XFRP,  
PRG, DENB, CLP,  
D
Q
Q
CLKC  
CLKP  
CLKN  
PO1, PO2, PO3, PO4,  
PO5, PST, HD1, HD2  
CLKSEL1  
CLKSEL2  
PLLDIV  
HDIN  
VDIN  
Direct Clear  
XCLR1  
XCLR2  
XCLR3  
– 2 –  
CXD3511AQ  
Pin Configuration  
180 179 178 177 176 175 174 173 172 171 170 169 168 167 166 165 164 163 162 161 160 159 158 157 156 155 154 153 152 151 150 149 148 147 146 145 144 143 142 141 140 139 138 137 136 135 134 133 132 131 130 129 128 127 126 125 124 123 122 121  
R1IN2 181  
R1IN1 182  
R1IN0 183  
R2IN7 184  
R2IN6 185  
120 R1OUT7  
119 R1OUT6  
118 R1OUT5  
117 R1OUT4  
116 R1OUT3  
V
DD2 186  
SS 187  
115  
114  
V
V
SS  
V
DD2  
R2IN5 188  
R2IN4 189  
R2IN3 190  
R2IN2 191  
R2IN1 192  
R2IN0 193  
G1IN7 194  
G1IN6 195  
G1IN5 196  
113 R1OUT2  
112 R1OUT1  
111 R1OUT0  
110 R2OUT9  
109 R2OUT8  
108 R2OUT7  
107 R2OUT6  
106 R2OUT5  
105 R2OUT4  
104 R2OUT3  
103 R2OUT2  
V
DD1 197  
SS 198  
V
G1IN4 199  
G1IN3 200  
G1IN2 201  
G1IN1 202  
G1IN0 203  
G2IN7 204  
G2IN6 205  
G2IN5 206  
G2IN4 207  
G2IN3 208  
102  
101  
100  
V
V
V
SS  
DD1  
DD2  
99 R2OUT1  
98 R2OUT0  
97 G1OUT9  
96 G1OUT8  
95 G1OUT7  
94 G1OUT6  
93 G1OUT5  
92 G1OUT4  
91 G1OUT3  
V
DD1 209  
SS 210  
V
G2IN2 211  
G2IN1 212  
G2IN0 213  
B1IN7 214  
B1IN6 215  
B1IN5 216  
B1IN4 217  
B1IN3 218  
B1IN2 219  
B1IN1 220  
90  
89  
V
V
SS  
DD1  
88 G1OUT2  
87 G1OUT1  
86 G1OUT0  
85 G2OUT9  
84  
VDD2  
83 G2OUT8  
82 G2OUT7  
81 G2OUT6  
80 G2OUT5  
79 G2OUT4  
V
DD1 221  
SS 222  
V
B1IN0 223  
B2IN7 224  
B2IN6 225  
B2IN5 226  
B2IN4 227  
B2IN3 228  
B2IN2 229  
B2IN1 230  
B2IN0 231  
R1OSD1 232  
R1OSD0 233  
78  
77  
V
V
SS  
DD1  
76 G2OUT3  
75 G2OUT2  
74 G2OUT1  
73 G2OUT0  
72 B1OUT9  
71 B1OUT8  
70 B1OUT7  
69 B1OUT6  
68 B1OUT5  
V
DD2 234  
67  
66  
65  
64  
63  
62  
61  
V
V
SS  
V
SS  
235  
236  
237  
238  
239  
240  
DD2  
G1OSD1  
G1OSD0  
B1OSD1  
B1OSD0  
YM1  
B1OUT4  
B1OUT3  
B1OUT2  
B1OUT1  
B1OUT0  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60  
3 –  
CXD3511AQ  
Pin Description  
Input pin  
processing for  
open status  
Pin  
Symbol  
No.  
I/O  
Description  
1
2
3
4
5
6
7
8
9
YS1  
I
OSD YS input (port 1)  
L
R2OSD1  
R2OSD0  
G2OSD1  
G2OSD0  
VDD2  
I
OSD Red data input (port 2)  
OSD Red data input (port 2)  
OSD Green data input (port 2)  
OSD Green data input (port 2)  
I/O power supply  
L
I
I
I
VSS  
GND  
B2OSD1  
B2OSD0  
I
OSD Blue data input (port 2)  
OSD Blue data input (port 2)  
OSD YM input (port 2)  
OSD YS input (port 2)  
Parallel I/F control signal input  
Parallel I/F clock input  
Parallel I/F data input  
Parallel I/F data input  
Parallel I/F data input  
Parallel I/F data input  
I/O power supply  
I
10 YM2  
I
11 YS2  
I
I
L
12 PCTL  
13 PCLK  
14 PDAT9  
15 PDAT8  
16 PDAT7  
17 PDAT6  
H
I
I
I
I
I
18  
VDD2  
I
19 VSS  
GND  
H
20 PDAT5  
21 PDAT4  
22 PDAT3  
23 PDAT2  
24 PDAT1  
Parallel I/F data input  
Parallel I/F data input  
Parallel I/F data input  
Parallel I/F data input  
Parallel I/F data input  
Internal operation power supply  
Parallel I/F data input  
External clear (Low: reset)  
External clear (Low: reset)  
External clear (Low: reset)  
GND  
I
I
I
I
25  
VDD1  
I
26 PDAT0  
27 XCLR1  
28 XCLR2  
29 XCLR3  
30 VSS  
I
I
H
I
H
I
31 HDIN  
32 VDIN  
33 VSS  
Horizontal sync signal input  
Vertical sync signal input  
GND  
I
I
34 VSS  
GND  
35 CLKC  
Clock input (CMOS input)  
Internal operation power supply  
Internal operation power supply  
4 –  
36  
37  
VDD1  
VDD1  
CXD3511AQ  
Input pin  
processing for  
open status  
Pin  
No.  
Symbol  
I/O  
Description  
38 CLKP  
39 CLKN  
I
I
Clock input (small-amplitude differential input, positive polarity)  
Clock input (small-amplitude differential input, negative polarity)  
I/O power supply  
L
40  
41 CLKSEL1  
42 VDD1  
VDD2  
I
Input clock selection. (High: CLKC, Low: CLKP, CLKN)  
Internal operation power supply  
43 VSS  
GND  
Internal clock path selection.  
(High: no frequency division, Low: frequency division)  
44 CLKSEL2  
I
L
45 PLLDIV  
46 VSS  
I
Internal PLL setting. (High: 55MHz or less, Low: 55MHz or more)  
GND  
L
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
47 CLKOUT  
48 VSS  
Internal clock output (inverted output)  
GND  
49 B2OUT0  
50 B2OUT1  
51 B2OUT2  
52 B2OUT3  
53 B2OUT4  
Blue data output (port 2)  
Blue data output (port 2)  
Blue data output (port 2)  
Blue data output (port 2)  
Blue data output (port 2)  
I/O power supply  
54  
VDD2  
55 VSS  
GND  
56 B2OUT5  
57 B2OUT6  
58 B2OUT7  
59 B2OUT8  
60 B2OUT9  
61 B1OUT0  
62 B1OUT1  
63 B1OUT2  
64 B1OUT3  
65 B1OUT4  
Blue data output (port 2)  
Blue data output (port 2)  
Blue data output (port 2)  
Blue data output (port 2)  
Blue data output (port 2)  
Blue data output (port 1)  
Blue data output (port 1)  
Blue data output (port 1)  
Blue data output (port 1)  
Blue data output (port 1)  
I/O power supply  
66  
VDD2  
67 VSS  
GND  
68 B1OUT5  
69 B1OUT6  
70 B1OUT7  
71 B1OUT8  
72 B1OUT9  
73 G2OUT0  
74 G2OUT1  
Blue data output (port 1)  
Blue data output (port 1)  
Blue data output (port 1)  
Blue data output (port 1)  
Blue data output (port 1)  
Green data output (port 2)  
Green data output (port 2)  
5 –  
CXD3511AQ  
Input pin  
processing for  
open status  
Pin  
No.  
Symbol  
I/O  
Description  
75 G2OUT2  
76 G2OUT3  
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
Green data output (port 2)  
Green data output (port 2)  
77  
VDD1  
Internal operation power supply  
GND  
78 VSS  
79 G2OUT4  
80 G2OUT5  
81 G2OUT6  
82 G2OUT7  
83 G2OUT8  
Green data output (port 2)  
Green data output (port 2)  
Green data output (port 2)  
Green data output (port 2)  
Green data output (port 2)  
I/O power supply  
84  
VDD2  
85 G2OUT9  
86 G1OUT0  
87 G1OUT1  
88 G1OUT2  
Green data output (port 2)  
Green data output (port 1)  
Green data output (port 1)  
Green data output (port 1)  
Internal operation power supply  
GND  
89  
VDD1  
90 VSS  
91 G1OUT3  
92 G1OUT4  
93 G1OUT5  
94 G1OUT6  
95 G1OUT7  
96 G1OUT8  
97 G1OUT9  
98 R2OUT0  
99 R2OUT1  
100 VDD2  
Green data output (port 1)  
Green data output (port 1)  
Green data output (port 1)  
Green data output (port 1)  
Green data output (port 1)  
Green data output (port 1)  
Green data output (port 1)  
Red data output (port 2)  
Red data output (port 2)  
I/O power supply  
101 VDD1  
Internal operation power supply  
GND  
102 VSS  
103 R2OUT2  
104 R2OUT3  
105 R2OUT4  
106 R2OUT5  
107 R2OUT6  
108 R2OUT7  
109 R2OUT8  
110 R2OUT9  
111 R1OUT0  
Red data output (port 2)  
Red data output (port 2)  
Red data output (port 2)  
Red data output (port 2)  
Red data output (port 2)  
Red data output (port 2)  
Red data output (port 2)  
Red data output (port 2)  
Red data output (port 1)  
6 –  
CXD3511AQ  
Input pin  
processing for  
open status  
Pin  
No.  
Symbol  
I/O  
Description  
112 R1OUT1  
113 R1OUT2  
114 VDD2  
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
Red data output (port 1)  
Red data output (port 1)  
I/O power supply  
115 VSS  
GND  
116 R1OUT3  
117 R1OUT4  
118 R1OUT5  
119 R1OUT6  
120 R1OUT7  
121 R1OUT8  
122 R1OUT9  
123 VSTR  
124 VCKR  
125 ENBR  
126 VDD2  
Red data output (port 1)  
Red data output (port 1)  
Red data output (port 1)  
Red data output (port 1)  
Red data output (port 1)  
Red data output (port 1)  
Red data output (port 1)  
Vertical display start timing pulse output  
Vertical display transfer clock output  
Gate enable pulse output  
I/O power supply  
127 VSS  
GND  
128 DCK2  
129 DCK2X  
130 VSS  
DCK2 pulse output  
DCK2X pulse output  
GND  
131 DCK1X  
132 DCK1  
133 VSS  
DCK1X pulse output  
DCK1 pulse output  
GND  
134 HCK1  
135 HCK2  
136 RGT  
Horizontal display transfer clock output 1  
Horizontal display transfer clock output 2  
I/O Horizontal scan direction switching signal I/O  
Horizontal scan direction switching signal output (reversed  
polarity of RGT)  
137 XRGT  
O
138 VDD2  
139 VSS  
O
I/O power supply  
GND  
140 HST  
141 BLK  
142 ENBL  
143 VCKL  
144 VDD2  
145 VDD1  
146 VSTL  
147 DWN  
Horizontal display start timing pulse output  
BLK pulse output  
O
O
Gate enable pulse output  
Vertical display transfer clock output  
I/O power supply  
O
O
Internal operation power supply  
Vertical display start timing pulse output  
I/O Vertical scan direction switching signal I/O  
7 –  
CXD3511AQ  
Input pin  
Pin  
No.  
processing for  
open status  
Symbol  
I/O  
I
Description  
Scan direction control method switching  
(Low: internal register, High: external)  
148 CTRL  
L
149 PCG  
150 VSS  
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
I
Collective precharge timing pulse output  
GND  
151 PST  
Dot sequential precharge start timing pulse output  
Parallel output 3  
152 PO3  
153 PO2  
154 PO1  
155 HD2  
156 VDD1  
157 FRP  
158 XFRP  
159 SHST  
160 DENB  
161 PRG  
162 VDD1  
163 VSS  
Parallel output 2  
Parallel output 1  
Horizontal auxiliary pulse output 2  
Internal operation power supply  
AC drive inversion timing pulse output  
AC drive inversion timing pulse output (reversed polarity of FRP)  
SHST pulse output  
DENB pulse output  
2-step precharge timing pulse output  
Internal operation power supply  
GND  
164 PO4  
165 CLP  
Parallel output 4  
CLP pulse output  
166 PO5  
167 HD1  
168 TEST1  
169 TEST2  
170 TEST3  
171 TEST4  
172 TEST5  
173 TEST6  
174 VDD2  
175 VSS  
Parallel output 5  
Horizontal auxiliary pulse output 1  
Test pin (Connect to GND.)  
Test pin (Connect to GND.)  
Test pin (Connect to VDD1.)  
Test pin (Connect to VDD1.)  
Test pin (Connect to VDD1.)  
Test pin (Connect to VDD1.)  
I/O power supply  
GND  
176 R1IN7  
177 R1IN6  
178 R1IN5  
179 R1IN4  
180 R1IN3  
181 R1IN2  
182 R1IN1  
183 R1IN0  
184 R2IN7  
Red data input (port 1)  
Red data input (port 1)  
Red data input (port 1)  
Red data input (port 1)  
Red data input (port 1)  
Red data input (port 1)  
Red data input (port 1)  
Red data input (port 1)  
Red data input (port 2)  
I
I
I
I
I
I
I
I
8 –  
CXD3511AQ  
Input pin  
processing for  
open status  
Pin  
No.  
Symbol  
I/O  
Description  
185 R2IN6  
186 VDD2  
I
Red data input (port 2)  
I/O power supply  
187 VSS  
GND  
188 R2IN5  
189 R2IN4  
190 R2IN3  
191 R2IN2  
192 R2IN1  
193 R2IN0  
194 G1IN7  
195 G1IN6  
196 G1IN5  
197 VDD1  
I
Red data input (port 2)  
Red data input (port 2)  
Red data input (port 2)  
Red data input (port 2)  
Red data input (port 2)  
Red data input (port 2)  
Green data input (port 1)  
Green data input (port 1)  
Green data input (port 1)  
I
I
I
I
I
I
I
I
Internal operation power supply  
GND  
198 VSS  
199 G1IN4  
200 G1IN3  
201 G1IN2  
202 G1IN1  
203 G1IN0  
204 G2IN7  
205 G2IN6  
206 G2IN5  
207 G2IN4  
208 G2IN3  
209 VDD1  
I
I
Green data input (port 1)  
Green data input (port 1)  
Green data input (port 1)  
Green data input (port 1)  
Green data input (port 1)  
Green data input (port 2)  
Green data input (port 2)  
Green data input (port 2)  
Green data input (port 2)  
Green data input (port 2)  
Internal operation power supply  
GND  
I
I
I
I
I
I
I
I
I
210 VSS  
211 G2IN2  
212 G2IN1  
213 G2IN0  
214 B1IN7  
215 B1IN6  
216 B1IN5  
217 B1IN4  
218 B1IN3  
219 B1IN2  
220 B1IN1  
221 VDD1  
Green data input (port 2)  
Green data input (port 2)  
Green data input (port 2)  
Blue data input (port 1)  
Blue data input (port 1)  
Blue data input (port 1)  
Blue data input (port 1)  
Blue data input (port 1)  
Blue data input (port 1)  
Blue data input (port 1)  
Internal operation power supply  
I
I
I
I
I
I
I
I
I
9 –  
CXD3511AQ  
Input pin  
processing for  
open status  
Pin  
No.  
Symbol  
I/O  
Description  
222 VSS  
GND  
L
223 B1IN0  
224 B2IN7  
225 B2IN6  
226 B2IN5  
227 B2IN4  
228 B2IN3  
229 B2IN2  
230 B2IN1  
231 B2IN0  
232 R1OSD1  
233 R1OSD0  
234 VDD2  
I
I
Blue data input (port 1)  
Blue data input (port 2)  
Blue data input (port 2)  
Blue data input (port 2)  
Blue data input (port 2)  
Blue data input (port 2)  
Blue data input (port 2)  
Blue data input (port 2)  
Blue data input (port 2)  
I
I
I
I
I
I
I
I
OSD red data input (port 1)  
OSD red data input (port 1)  
I/O power supply  
I
I
235 VSS  
GND  
236 G1OSD1  
237 G1OSD0  
238 B1OSD1  
239 B1OSD0  
240 YM1  
OSD green data input (port 1)  
OSD green data input (port 1)  
OSD blue data input (port 1)  
OSD blue data input (port 1)  
OSD YM input (port 1)  
I
I
I
I
H: Pull-up, L: Pull-down  
10 –  
CXD3511AQ  
Electrical Characteristics  
DC Characteristics  
(Topr = 20 to +75°C, VSS = 0V)  
Item  
Symbol  
VDD1  
VDD2  
VIH1  
Applicable pins  
Conditions  
Min.  
2.3  
Typ.  
2.5  
Max.  
2.7  
Unit  
Supply  
voltage  
3.0  
3.3  
3.6  
2.0  
VDD2 + 0.3  
0.8  
Input  
voltage 1  
1
CMOS input cell  
VIL1  
0.3  
VIH2  
0.8VDD2  
0.3  
VDD2 + 0.3  
0.2VDD2  
2.281  
VDD2  
Input  
voltage 2  
HDIN, VDIN, PCTL,  
PCLK, PDAT0 to PDAT9 trigger input cell  
CMOS Schmitt  
VIL2  
V
2
VC  
1.718  
1.868  
VSS  
2.0  
Input  
voltage 3  
Small-amplitude  
CLKP, CLKN  
VIH3  
VIL3  
VOH  
VOL  
VC + 0.4  
VC 0.4  
differential input  
2.131  
VDD2  
VDD2 0.5  
VSS  
Output  
voltage  
All output pins  
0.2  
Current  
consumption  
3
PD  
CLKP = 200MHz  
2600  
3120  
mW  
1
Input pins other than those indicated in items Input voltage 2 and Input voltage 3.  
VIH3 > VC (max.) and VIL3 < VC (min.).  
Tj [°C] Toprmax [°C] + θja [°C/W] × PD [W].  
2
3
(Tj = 125 [°C], Toprmax = 75 [°C], θja = 16 [°C/W], when mounted on a 4-layer substrate)  
AC Characteristics  
(Topr = 20 to +75°C, VDD1 = 2.5 ± 0.2V, VDD2 = 3.3 ± 0.3V, VSS = 0V)  
Item  
Symbol  
Applicable pins  
Conditions  
Min.  
5
Typ.  
Max. Unit  
Clock input period  
CLKP, CLKN, CLKC  
Input setup time  
Input hold time  
tis  
2.5  
1.5  
2.0  
RGB input, OSD input,  
HDIN, VDIN  
tih  
Output rise/fall  
delay time  
ns  
4
tor/tof  
CL = 20pF  
4.0  
8.0  
Output rise/fall  
delay time  
CLKOUT  
tor/tof  
CL = 50pF  
CL = 20pF  
2.5  
4.5  
8.5  
5.0  
HCK1, HCK2, DCK1,  
DCK1X, DCK2, DCK2X  
Cross-point time  
difference  
t  
5.0  
HCK1  
HCK2  
HCK1 duty  
HCK2 duty  
th/(th + tl)  
tl/(th + tl)  
CL = 20pF  
CL = 20pF  
PLLDIV = L  
48  
48  
55  
50  
50  
52  
%
52  
Phase compensation  
PLL operating  
frequency  
100  
MHz  
55  
PLLDIV = H  
27.5  
4
Output pins other than CLKOUT, PO1 to PO5, RGT, XRGT and DWN.  
11 –  
CXD3511AQ  
Power-on and Initialization of Internal Circuit  
As for this IC, two systems of supply voltage should be turned on simultaneously. The initialization of the  
internal circuit should be also performed by maintaining the system clear pin at low during the specified time  
after setting the supply voltage in the range of recommended operating conditions and stabilizing as shown in  
the figure below. Keep in mind that the internal circuit may not be initialized correctly if system clear  
cancellation is performed before the supply voltage is set in the range of the recommended operating  
conditions.  
V
DD1, VDD2  
V
DD1, VDD2  
Vss  
V
DD2  
XCLR1, XCLR2,  
XCLR3  
Vss  
TR  
TR > 200ns  
12 –  
CXD3511AQ  
Timing Definition  
V
IH3, VDD2  
VC, 50%  
VC  
CLKP, CLKC  
V
IL3, VSS  
IH3  
V
CLKN  
V
IL3  
V
IH3, VDD2  
CLKP, CLKC  
VC, 50%  
50%  
1/2 frequency-  
divided inputs  
V
IL3, VSS  
IH3  
V
CLKN  
VIL3  
V
DD2  
RGB input, OSD input,  
HDIN, VDIN  
VSS  
tis  
tih  
V
IH3, VDD2  
VC, 50%  
VC  
VC, 50%  
VC  
CLKP, CLKC  
V
IL3, VSS  
IH3  
V
CLKN  
V
IL3  
V
IH3, VDD2  
CLKP, CLKC  
VC, 50%  
VC  
VC, 50%  
VC  
1/2 frequency-  
divided inputs  
V
IL3, VSS  
IH3  
V
CLKN  
VIL3  
V
DD2  
CLKOUT  
50%  
50%  
VSS  
tor  
tof  
tor  
V
DD2  
SS  
50%  
50%  
Outputs other than CLKOUT  
Outputs other than CLKOUT  
V
V
DD2  
SS  
V
tof  
V
DD2  
HCK1, DCK1, DCK2  
50%  
50%  
VSS  
VDD2  
50%  
50%  
HCK2, DCK1X, DCK2X  
VSS  
t  
t  
V
DD2  
SS  
HCK1, HCK2  
50%  
50%  
50%  
V
th  
tl  
13 –  
CXD3511AQ  
Parallel I/F Block AC Characteristics (Topr = 20 to +75°C, VDD1 = 2.5 ± 0.2V, VDD2 = 3.3 ± 0.3V, VSS = 0V)  
Item  
Symbol  
tcs  
Min.  
Typ.  
Max.  
5
PCTL setup time with respect to rise of PCLK  
PCTL hold time with respect to rise of PCLK  
PDAT[9:0] setup time with respect to rise of PCLK  
PDAT[9:0] hold time with respect to rise of PCLK  
PCLK pulse width  
8T  
8T  
4T  
4T  
4T  
tch  
tds  
tdh  
tw  
5
T: Master clock (CLKP, CLKN, CLKC) period [ns]  
Timing Definition  
tcs  
tch  
V
DD2  
PCTL  
PCLK  
50%  
50%  
V
V
SS  
tw  
tw  
DD2  
50%  
50%  
50%  
V
V
SS  
tds  
tdh  
DD2  
PDAT[9:0]  
50%  
V
SS  
14 –  
CXD3511AQ  
Description of Operation  
1. Description of Input Pins  
(a) System clear pins (XCLR1, XCLR2 and XCLR3)  
All internal circuits are initialized by setting XCLR1 (Pin 27) low. In addition, the internal PLL is initialized by  
setting XCLR2 (Pin 28) low, and RGB output is initialized (preset) by setting XCLR3 (Pin 29) low.  
Initialization should be performed when power is turned on. There are no particular restrictions on the  
initialization order.  
(b) Sync signal input pins (HDIN and VDIN)  
Horizontal and vertical separate sync signals are input to HDIN (Pin 31) and VDIN (Pin 32), respectively. The  
CXD3511AQ supports only non-interlace sync signals with a dot clock of 200MHz or less.  
(c) Master clock input pins (CLKP/CLKN and CLKC)  
Phase comparison is performed by an external circuit and a clock synchronized to the sync signal is input.The  
master clock input pins have two systems consisting of CLKP/CLKN (Pins 38 and 39) for small-amplitude  
differential input (center level: 2.0V, amplitude: ±0.4V), and CLKC (Pin 35) for CMOS level input. In addition, be  
sure to make the number of dot clocks in 1H as even number.  
Note that if there is an odd number of dot clocks, the internal phase compensation PLL will not operate  
properly.  
(d) Clock selection pins (CLKSEL1 and CLKSEL2)  
The master clock input pins can input either the system dot clock or the 1/2 frequency-divided clock. The  
internal clock path is selected according to CLKSEL1 (Pin 41) and CLKSEL2 (Pin 44).  
Setting  
Symbol  
Function  
L
H
CLKP/CLKN input  
Dot clock input  
CLKC input  
1/2 frequency-divided clock input  
CLKSEL1 Input clock selection  
CLKSEL2 Clock input pin selection  
(e) PLL setting pin (PLLDIV)  
PLLDIV (Pin 45) sets the divider setting of the internal phase compensation PLL circuit. Set PLLDIV low when  
the internal clock frequency is 55 to 100MHz, or high when 27.5 to 55MHz. In addition, note that the frequency  
of the clock input to the CXD3511AQ must be within the phase compensation PLL operating range, even during  
free running.  
15 –  
CXD3511AQ  
(f) RGB signal input pins (R1IN, R2IN, G1IN, G2IN, B1IN and B2IN)  
These pins input RGB signals that have been demultiplexed to 1:2. The Red signal is input to R1IN (Pins 176  
to 183) and R2IN (Pins 184, 185 and 188 to 193), the Green signal to G1IN (Pins 194 to 196 and 199 to 203)  
and G2IN (Pins 204 to 208 and 211 to 213), and the Blue signal to B1IN (Pins 214 to 220 and 223) and B2IN  
(Pins 224 to 231).  
(g) OSD signal input pins (R1OSD, R2OSD, G1OSD, G2OSD, B1OSD, B2OSD,YM1,YM2,YS1 and YS2)  
These pins input OSD signals that have been demultiplexed to 1:2. The Red signal is input to R1OSD (Pins  
232 and 233) and R2OSD (Pins 2 and 3), the Green signal to G1OSD (Pins 236 and 237) and G2OSD (Pins  
4 and 5), and the Blue signal to B1OSD (Pins 238 and 239) and B2OSD (Pins 8 and 9). In addition, the YM  
signal is input to YM1 (Pin 240) and YM2 (Pin 10), and the YS signal to YS1 (Pin 1) and YS2 (Pin 11).  
16 –  
CXD3511AQ  
2. RGB Signal and OSD Signal Pipeline Delay  
The RGB signal I/O pipeline delay is 72 dot clocks. In addition, the OSD, YM and YS signal pipeline delay is 56  
dot clocks. Note that the phase relationship between each clock and the RGB signals is as shown in the  
figures below. This relationship is the same for the OSD, YM and YS signals.  
(1) CLKPOL = L  
HDIN input (negative polarity)  
Dot clock  
1/2 frequency-divided clock  
R1, G1, B1IN  
R2, G2, B2IN  
N – 2  
N
N + 2 N + 4 N + 6 N + 8 N + 10 N + 12 N + 14 N + 16 N + 18  
N – 1 N + 1 N + 3 N + 5 N + 7 N + 9 N + 11 N + 13 N + 15 N + 17 N + 19  
CLKOUT  
R1, G1, B1OUT  
R2, G2, B2OUT  
N – 74 N – 72 N – 70 N – 68 N – 66 N – 64 N – 62 N – 60 N – 58 N – 56 N – 54  
N – 73 N – 71 N – 69 N – 67 N – 65 N – 63 N – 61 N – 59 N – 57 N – 55 N – 53  
(2) CLKPOL = H  
HDIN input (negative polarity)  
Dot clock  
1/2 frequency-divided clock  
R1, G1, B1IN  
N 2  
N
N + 2 N + 4 N + 6 N + 8 N + 10 N + 12 N + 14 N + 16 N + 18  
R2, G2, B2IN  
N 1 N + 1 N + 3 N + 5 N + 7 N + 9 N + 11 N + 13 N + 15 N + 17 N + 19  
CLKOUT  
R1, G1, B1OUT  
R2, G2, B2OUT  
N 74 N 72 N 70 N 68 N 66 N 64 N 62 N 60 N 58 N 56 N 54  
N 73 N 71 N 69 N 67 N 65 N 63 N 61 N 59 N 57 N 55 N 53  
17 –  
CXD3511AQ  
3. Description of DSD Block Signal Processing Functions  
The DSD block signal processing flow is shown below.  
Data path  
switch  
R, G, B IN  
Pre gain  
Pre bright  
User gain  
User bright  
Sub gain  
YS, YM, R, G, B OSD  
OSD  
Black  
frame  
Pattern  
generator  
Gamma  
correction  
Color shading  
correction  
Sub bright  
Mute 1  
Selectable  
delay line  
Ghost  
cancel  
Cycle  
offset  
R, G, B OUT  
Mute 2  
Limiter  
Post gain  
Post bright  
The various signal processing functions are described below. Note that the coefficients used for each  
arithmetic operation are set through the parallel I/F block. See the individual descriptions of each parallel I/F  
block item for a detailed description of the parallel I/F block.  
(a) Data path switch block  
This block can switch the path of the data input to ports 1 and 2. The setting is as follows.  
Select signal: 1 = Path switched, 0 = Path not switched (Set independently for R, G and B)  
Select signal (R, G, B_DAT_SW)  
8
Input (port 1)  
8
Selector  
Output (port 1)  
Output (port 2)  
8
Input (port 2)  
8
Selector  
18 –  
CXD3511AQ  
(b) Pre gain block  
This block performs calculation processing independently for ports 1 and 2. The settings are as follows.  
Coefficient: 8 bits  
Gain setting: 0 to 1.9921875 (= 255/128) times, variable in 256 steps  
(Set independently for R, G and B ports 1 and 2)  
Calculation is performed using the 8-bit input and an 8-bit coefficient, and the upper 10 bits c[15:6] of the  
operation results are output. Next, the c[6] value is checked and rounding is performed to 9 bits. The MSB of  
the rounded 9 bits is checked, clipping is performed, and the lower 8 bits are output.  
Coefficient  
8
b[7:0]  
Rounding  
and  
clipping  
8
10  
8
Input  
a[7:0]  
Output  
a × b  
c[15:6]  
(c) Pre bright block  
This block performs addition and subtraction processing independently for ports 1 and 2. The settings are as  
follows.  
Coefficient: 5 bits with code, MSB = code bit  
Bright setting: 16 to +15 graduation, variable with an accuracy of 1 bit  
(Set independently for R, G and B ports 1 and 2)  
Calculation is performed using the 8-bit input and a 5-bit coefficient with code. The coefficient MSB is the code  
bit. Addition is performed when b[4] = 0, and subtraction when b[4] = 1. However, when performing subtraction,  
set the two's complement in the lower bits of the coefficient. When the operation results overflow or underflow,  
clipping is performed.  
Coefficient  
5
b[4:0]  
Addition/subtraction  
8
8
Input  
a[7:0]  
Output  
and  
clipping  
(d) User gain block  
This block performs calculation processing independently for ports 1 and 2. The settings are as follows.  
Coefficient: 8 bits  
Gain setting: 0 to 7.96875 (= 255/32) times, variable in 256 steps  
(Settings shared by R, G and B)  
Calculation is performed using the 8-bit input and an 8-bit coefficient, and the upper 12 bits c[15:4] of the  
operation results are output. Next, the c[4] value is checked and rounding is performed to 11 bits. The MSB of  
the rounded 11 bits is checked, clipping is performed, and the lower 10 bits are output.  
Coefficient  
8
b[7:0]  
Rounding  
and  
clipping  
8
12  
10  
Input  
a[7:0]  
Output  
a × b  
c[15:4]  
19 –  
CXD3511AQ  
(e) User bright block  
This block performs addition and subtraction processing as the user control bright adjustment. The settings are  
as follows.  
Coefficient: 11 bits with code, MSB = code bit  
Bright setting: 1024 to +1023 graduation, variable with an accuracy of 1 bit  
(Settings shared by R, G and B)  
Calculation is performed using the 10-bit input and an 11-bit coefficient with code. The coefficient MSB is the  
code bit. Addition is performed when b[10] = 0, and subtraction when b[10] = 1. However, when performing  
subtraction, set the two's complement in the lower bits of the coefficient. When the operation results overflow  
or underflow, clipping is performed.  
Coefficient  
11  
b[10:0]  
Addition/subtraction  
10  
10  
Input  
a[9:0]  
Output  
and  
clipping  
(f) Sub gain block  
This block performs calculation processing as the white balance gain adjustment. The settings are as follows.  
Coefficient: 8 bits  
Gain setting: 0 to 3.984375 (255/64) times, variable in 256 steps  
(Set independently for R, G and B)  
Calculation is performed using the 10-bit input and an 8-bit coefficient, and the upper 13 bits c[17:5] of the  
operation results are output. Next, the c[5] value is checked and rounding is performed to 12 bits. The upper 2  
bits of the rounded 12 bits is checked, clipping is performed, and the lower 10 bits are output.  
Coefficient  
8
b[7:0]  
Rounding  
and  
clipping  
10  
13  
10  
Input  
a[9:0]  
Output  
a × b  
c[17:5]  
(g) Sub bright block  
This block performs addition and subtraction processing as the white balance bright adjustment. The settings  
are as follows.  
Coefficient: 11 bits with code, MSB = code bit  
Bright setting: 1024 to +1023 graduation, variable with an accuracy of 1 bit  
(Set independently for R, G and B)  
Calculation is performed using the 10-bit input and an 11-bit coefficient with code. The coefficient MSB is the  
code bit. Addition is performed when b[10] = 0, and subtraction when b[10] = 1. However, when performing  
subtraction, set the two's complement in the lower bits of the coefficient. When the operation results overflow  
or underflow, clipping is performed.  
Coefficient  
11  
b[10:0]  
Addition/subtraction  
10  
10  
Input  
a[9:0]  
Output  
and  
clipping  
20 –  
CXD3511AQ  
(h) Black frame block  
This block performs processing to fix the blanking period of the video signal to the desired level regardless of  
the front-end signal processing results.  
If the number of pixels calculated from the effective period of the video signal to be displayed is less than the  
number of pixels of the LCD panel on which the signal is to be displayed, the blanking period of the video  
signal is displayed in the excess pixels. At this time, the displayed blanking period can be fixed to the desired  
level regardless of the gain and bright adjustment or other picture quality adjustment results by processing with  
this block. The settings are as follows.  
FRM_ON: 1 = Black frame processing ON, 0 = OFF  
FRM_DAT: Black frame level setting  
FRM_H1, FRM_H2: Set the black frame horizontal display range in 1-dot units  
FRM_V1, FRM_V2: Set the black frame vertical display range in 1-line units  
(All settings shared by R, G and B)  
Here, the desired range of the video signal is replaced with 10-bit data (FRM_DAT) by switching the video  
signal (port 1 and port 2) and the coefficients using the pulse output from the pulse decoder.  
12  
Horizontal display range (FRM_H1)  
Internal HD  
Internal VD  
12  
11  
11  
Horizontal display range (FRM_H2)  
Vertical display range (FRM_V1)  
Vertical display range (FRM_V2)  
Pulse decoder  
Internal MCLK  
Processing ON/OFF  
(FRM_ON)  
10  
10  
Input (port 1)  
Output (port 1)  
Selector  
10  
Coefficient (FRM_DAT)  
10  
Input (port 2)  
Output (port 2)  
Selector  
10  
(i) Mute 1 block  
This block performs mute processing by replacing the video signal with data of the desired level. The settings  
are as follows.  
MUTE1_ON: 1 = Mute processing ON, 0 = OFF (Setting shared by R, G and B)  
R, G, B_MUTE1: RGB mute data (Set independently for R, G and B)  
Select signal (MUTE1_ON)  
10  
Input  
Selector  
Output  
10  
10  
Coefficient  
(R, G, B_MUTE1)  
21 –  
CXD3511AQ  
(j) Pattern generator block  
This block generates and outputs the set fixed pattern independently of the input signal. This function is valid  
when PG_ON = 1. When PG_R (G, B)_ON is "0", the signal level goes to 000h respectively for R, G and B.  
The raster display pattern is displayed in the effective area, and all other display patterns are displayed in the  
window area. Here, the effective area is set by PG_HST, PG_HSTP, PG_VST and PG_VSTP, and the window  
area is set by PG_HWST, PG_HWSTP, PG_VWST and PG_VWSTP.  
The display pattern signal level is set independently for R, G and B by PG_SIG1R (G, B)[9:0] and PG_SIG2R  
(G, B)[9:0]. Within the effective area, the pattern and non-pattern signal levels can be switched by PG_R (G,  
B)_SEL. At this time, the signal level outside the effective area goes to 000h. During horizontal ramp, horizontal  
stair, vertical ramp and vertical stair display, the PG_SIG1R (G, B)[9:0] and PG_SIG2R (G, B)[9:0] settings are  
invalid.  
The display patterns and signal levels are as follows.  
(1) Raster display  
When PG_PAT[2:0] = 0h, a raster is displayed.  
PG_R (G, B)_SEL  
PG_PAT[2:0]  
0
0h  
x
PG_STRP_SW  
PG_STAIR_SW  
PG_SIG2R (G, B)  
x
PG_R (G, B)_SEL  
PG_PAT[2:0]  
1
0h  
x
PG_STRP_SW  
PG_STAIR_SW  
PG_SIG1R (G, B)  
x
x: Don't care  
22 –  
CXD3511AQ  
(2) Window display  
When PG_PAT[2:0] = 1h, a window is displayed.  
PG_R (G, B)_SEL  
PG_PAT[2:0]  
0
1h  
x
PG_SIG2R (G, B)  
PG_STRP_SW  
PG_STAIR_SW  
PG_SIG1R (G, B)  
x
PG_R (G, B)_SEL  
PG_PAT[2:0]  
1
1h  
x
PG_SIG1R (G, B)  
PG_STRP_SW  
PG_STAIR_SW  
PG_SIG2R (G, B)  
x
x: Don't care  
23 –  
CXD3511AQ  
(3) Vertical stripe display  
When PG_PAT[2:0] = 2h and PG_STRP_SW = 0, vertical stripes are displayed.  
The stripe period is set by PG_STEP in 2-dot units. The stripe width is set by PG_WIDTH in 1-dot units.  
PG_R (G, B)_SEL  
PG_PAT[2:0]  
0
2h  
0
PG_SIG2R (G, B)  
PG_STRP_SW  
PG_STAIR_SW  
x
PG_SIG1R (G, B)  
PG_R (G, B)_SEL  
PG_PAT[2:0]  
1
2h  
0
PG_SIG1R (G, B)  
PG_STRP_SW  
PG_STAIR_SW  
x
PG_SIG2R (G, B)  
x: Don't care  
24 –  
CXD3511AQ  
(4) Diagonal stripes  
When PG_PAT[2:0] = 2h and PG_STRP_SW = 1, diagonal stripes are displayed.  
The stripe period is set by PG_STEP in 2-dot units. The stripe width is set by PG_WIDTH in 1-dot units.  
PG_R (G, B)_SEL  
PG_PAT[2:0]  
0
2h  
1
PG_SIG2R (G, B)  
PG_STRP_SW  
PG_STAIR_SW  
x
PG_SIG1R (G, B)  
PG_R (G, B)_SEL  
PG_PAT[2:0]  
1
2h  
1
PG_SIG1R (G, B)  
PG_STRP_SW  
PG_STAIR_SW  
x
PG_SIG2R (G, B)  
x: Don't care  
25 –  
CXD3511AQ  
(5) Horizontal stripes  
When PG_PAT[2:0] = 3h, horizontal stripes are displayed.  
The stripe period is set by PG_STEP in 2-dot units. The stripe width is set by PG_WIDTH in 1-dot units.  
PG_R (G, B)_SEL  
PG_PAT[2:0]  
0
3h  
x
PG_SIG2R (G, B)  
PG_STRP_SW  
PG_STAIR_SW  
x
PG_SIG1R (G, B)  
PG_R (G, B)_SEL  
PG_PAT[2:0]  
1
3h  
x
PG_SIG1R (G, B)  
PG_STRP_SW  
PG_STAIR_SW  
x
PG_SIG2R (G, B)  
x: Don't care  
26 –  
CXD3511AQ  
(6) Cross hatch  
When PG_PAT[2:0] = 4h, a cross hatch is displayed.  
The stripe period is set by PG_STEP in 2-dot units. The stripe width is set by PG_WIDTH in 1-dot units.  
PG_R (G, B)_SEL  
PG_PAT[2:0]  
0
4h  
x
PG_SIG2R (G, B)  
PG_STRP_SW  
PG_STAIR_SW  
x
PG_SIG1R (G, B)  
PG_R (G, B)_SEL  
PG_PAT[2:0]  
1
4h  
x
PG_SIG1R (G, B)  
PG_STRP_SW  
PG_STAIR_SW  
x
PG_SIG2R (G, B)  
x: Don't care  
27 –  
CXD3511AQ  
(7) Dots  
When PG_PAT[2:0] = 5h, a dot pattern is displayed.  
The dot period is set by PG_STEP in 2-dot units. The dot width is set by PG_WIDTH in 1-dot units.  
PG_R (G, B)_SEL  
PG_PAT[2:0]  
0
5h  
x
PG_SIG2R (G, B)  
PG_STRP_SW  
PG_STAIR_SW  
x
PG_SIG1R (G, B)  
PG_R (G, B)_SEL  
PG_PAT[2:0]  
1
5h  
x
PG_SIG1R (G, B)  
PG_STRP_SW  
PG_STAIR_SW  
x
PG_SIG2R (G, B)  
x: Don't care  
28 –  
CXD3511AQ  
(8) Horizontal ramp  
When PG_PAT[2:0] = 6h and PG_STAIR_SW = 0, a horizontal ramp is displayed.  
The signal level is incremented from 000h by one bit for each dot.  
PG_R (G, B)_SEL  
0
6h  
x
PG_SIG2R (G, B)  
PG_PAT[2:0]  
PG_STRP_SW  
PG_STAIR_SW  
0
PG_R (G, B)_SEL  
1
6h  
x
PG_SIG1R (G, B)  
PG_PAT[2:0]  
PG_STRP_SW  
PG_STAIR_SW  
0
x: Don't care  
29 –  
CXD3511AQ  
(9) Horizontal stair  
When PG_PAT[2:0] = 6h and PG_STAIR_SW = 1, a horizontal stair is displayed.  
The signal level is incremented from 000h by 64 bits for each 64 dots.  
PG_R (G, B)_SEL  
0
6h  
x
PG_SIG2R (G, B)  
PG_PAT[2:0]  
PG_STRP_SW  
PG_STAIR_SW  
1
PG_R (G, B)_SEL  
PG_PAT[2:0]  
1
6h  
x
PG_SIG1R (G, B)  
PG_STRP_SW  
PG_STAIR_SW  
1
x: Don't care  
30 –  
CXD3511AQ  
(10) Vertical ramp  
When PG_PAT[2:0] = 7h and PG_STAIR_SW = 0, a vertical ramp is displayed.  
The signal level is incremented from 000h by one bit for each line.  
PG_R (G, B)_SEL  
0
7h  
x
PG_SIG2R (G, B)  
PG_PAT[2:0]  
PG_STRP_SW  
PG_STAIR_SW  
0
PG_R (G, B)_SEL  
PG_PAT[2:0]  
1
7h  
x
PG_SIG1R (G, B)  
PG_STRP_SW  
PG_STAIR_SW  
0
x: Don't care  
31 –  
CXD3511AQ  
(11) Vertical stair  
When PG_PAT[2:0] = 7h and PG_STAIR_SW = 1, a vertical stair is displayed.  
The signal level is incremented from 000h by 64 bits for each 32 lines.  
PG_R (G, B)_SEL  
0
7h  
x
PG_SIG2R (G, B)  
PG_PAT[2:0]  
PG_STRP_SW  
PG_STAIR_SW  
1
1
7h  
x
PG_R (G, B)_SEL  
PG_PAT[2:0]  
PG_SIG1R (G, B)  
PG_STRP_SW  
PG_STAIR_SW  
1
x: Don't care  
32 –  
CXD3511AQ  
(k) OSD block  
This block performs video signal half-tone processing and OSD-MIX processing by inputting the 2-bit OSD  
signal for each color and the YS and YM signals. The half-tone processing setting is as follows.  
YM signal input: 1 = Half-tone processing ON, 0 = OFF  
Here, the video signal level is halved by shifting the input data by one bit to the LSB side when YM = 1. For  
example, when 0F0h is input, 078h is output.  
The selector selects one of four types of data with respect to the OSD signal value as shown in the table below.  
The selected data becomes the OSD signal gradual data. The selected gradual data can be set independently  
in 10 bits for R, G and B, so 4 graduation can be selected as desired from among 1024 graduation for each of  
R, G and B. Therefore, the desired 64 (= 2^6) colors can be selected from among the total 1.07374 billion (= 2^30)  
colors for R, G and B.  
OSD signal input  
Selected gradual data  
R, G, B_OSD_DAT1  
R, G, B_OSD_DAT2  
R, G, B_OSD_DAT3  
R, G, B_OSD_DAT4  
0h  
1h  
2h  
3h  
The OSD-MIX processing setting is as follows.  
YS signal input: 1 = OSD-MIX processing ON, 0 = OFF  
2
OSD signal  
10  
Gradual data (R, G, B_OSD_DAT1)  
10  
10  
Gradual data (R, G, B_OSD_DAT2)  
Selector  
10  
10  
Gradual data (R, G, B_OSD_DAT3)  
Gradual data (R, G, B_OSD_DAT4)  
YS signal  
YM signal  
10  
10  
10  
Input  
Output  
Half-tone processing  
OSD-MIX  
33 –  
CXD3511AQ  
(l) Gamma block  
This block performs gamma correction for the user- and white balance-adjusted signal. Gamma correction  
uses the LUT system, and the RAM size is 10 bits × 1024 words. The settings are as follows.  
GAM_ON: 1 = Normal operation, 0 = Standby mode  
GAM_SEL: 1 = Path passing through the RAM, 0 = Path not passing through the RAM  
(All settings shared by R, G and B)  
When operating the RAM, be sure to set GAM_ON = 1. Data cannot be written to or read from the RAM in  
standby mode. The RAM data is set through the parallel I/F block.  
Note that the RAM output is undetermined while data is being set in this RAM, and also during power-on.  
RAM ON/OFF  
(GAM_ON)  
Select signal  
(GAM_SEL)  
10  
10  
RAM  
Input  
10  
10 bits × 1024 words  
Selector  
Output  
34 –  
CXD3511AQ  
(m) Color shading correction  
This block corrects color shading by adding a correction signal to the video signal. Correction points are set at  
fixed intervals in the horizontal, vertical and gradual directions of the video signal. The correction data for these  
correction points is written in the RAM, and a correction curve is created by reading this data and performing  
interpolation operations. The settings are as follows.  
CSC_ON: 1 = Color shading correction processing ON, 0 = Processing OFF  
CSC_R (G, B)_RGT : 1 = Reflects the TG block RGT setting,  
0 = Reflects the inverse of the TG block RGT setting  
CSC_DWN: 1 = Reflects the TG block DWN setting,  
0 = Reflects the inverse of the TG block DWN setting  
CSC_HP: Sets the horizontal correction start position  
CSC_VP: Sets the vertical correction start position  
CSC_HNUM: Sets the number of horizontal correction points  
CSC_VNUM: Sets the number of vertical correction points  
CSC_HINT: Sets the horizontal correction interval  
CSC_VINT: Sets the vertical correction interval  
CSC_HOS: Sets the expansion of the horizontal correction area  
CSC_VOS: Sets the expansion of the vertical correction area  
CSC_GNUM: Sets the gradual correction points  
CSC_R (G, B) GP1 to 8 : Sets the gradual correction points  
CSC_R (G, B) GD1 to 8 : Sets the expansion of the correction data  
CSC_XH_ON: 1 = Cross hatch insertion ON, 0 = OFF  
CSC_XH_DAT: Sets the cross hatch display level  
: Set independently for R, G and B, Others: Settings shared by R, G and B  
The color shading correction data of the desired gradual level up to 8 screens (max.) can be set in RAM. The  
RAM size is 8 bits × 4096 words, so up to 4096 correction points can be set.The correction data is set as 8-bit  
data with code. Correction data can be set in the range of 128 to +127 graduation. The example shown on  
page 37 is for a 1024-dot × 768-line XGA video signal divided into 9 points at 128-dot intervals in the horizontal  
direction and 7 points at 128-line intervals in the vertical direction. The relationship between the correction  
point coordinates (m, n) and the RAM address is obtained as follows.  
RAM address = (m 1) + (n 1) × (Number of horizontal correction points)  
For the example in the figure below, this is as follows.  
(9 1) + (7 1) × 9 = 62  
Thus, the correction data must be set in the RAM from address 0 to address 62.  
35 –  
CXD3511AQ  
If correction is to be performed in the gradual direction as well, the RAM address is found based on the relationship  
between the coordinates (m, n) of the correction points and the number of gradual correction points using the  
formula below:  
RAM address = (m 1) + (n 1) × (number of horizontal correction points)  
+ (number of horizontal correction points) × (number of vertical correction points)  
× (number of gradual correction points 1)  
If the number of gradual correction points is eight, it is necessary to set correction data into RAM from Address  
0 to Address 503 as calculated below:  
(9 1) + (7 1) × 9 + 9 × 7 × 7 = 503  
Correction data in the gradual direction for the screen 2 and subsequent planes is set in order from Address 63.  
This IC supports up/down and/or right/left inversion of the LCD panel by controlling the direction in which  
correction data that has been set into RAM is read. Up/down and/or right/left inversion are set from DWN and  
RGT of the TG block.  
CSC_DWN and CSC_R (G, B)_RGT control the link with the TG block settings. It is therefore unnecessary to  
reset correction data. The table below gives an example of setting correction points.  
Correction gap  
Number of correction points  
Signal specification  
UXGA (1600 × 1200)  
SXGA (1280 × 1024)  
SXGA+ (1400 × 1050)  
Full-HD (1920 × 1080)  
XGA (1024 × 768)  
H
V
H
V
G
8
8
8
8
8
8
8
8
8
8
Total  
3800  
2688  
2856  
2560  
3312  
2280  
4080  
3000  
1768  
1536  
64  
80  
64  
64  
64  
80  
64  
80  
64  
64  
64  
80  
64  
64  
64  
80  
64  
80  
64  
64  
25  
21  
21  
20  
23  
19  
30  
25  
17  
16  
19  
16  
17  
16  
18  
15  
17  
15  
13  
12  
Example of Setting Correction Points  
36 –  
CXD3511AQ  
This IC has two ways it can handle interpolation in the horizontal and vertical directions: by dividing the screen  
into a uniform grid and setting data for points at the intersections or by setting data for points in the center of  
each area.  
(1) When setting data for intersection points (pixels) on the screen  
The correction area is set for the entire screen. An interpolation operation uses 4 values nearby intermediate  
points to perform calculations. The correction start position is set using CSC_HP and CSC_VP. Be sure to set  
the start position for the effective period of the video signal.  
HDIN  
Correction start position  
Number of correction points  
1
2
3
4
5
6
7
8
9
1
2
3
(m, n)  
4
5
6
: Correction data that has been set in RAM  
: Interpolation operation results for the vertical  
direction  
: Interpolation operation results for the horizontal  
direction  
7
Correction interval (128 dots)  
1024 dots  
(2) When setting the correction point to the center of the areas dividing the screen  
The correction area is set to inside the screen. At this time, be sure to set the correction start position so it lies  
inside the screen. When the correction point is set to the center of the areas dividing the screen, it is  
necessary to virtually perform correction outside the correction area for which correction data is set. It is  
therefore assumed that the same data as at the edge of the correction area applies to outside the interpolation  
area, and linear interpolation is performed.  
Use CSC_HOS and CSC_VOS to set correction areas that are to be expanded.  
HDIN  
Correction start position  
: Correction data that has been set in RAM  
: Data assumed to lie in invalid period  
: Area to be virtually corrected  
37 –  
CXD3511AQ  
The number of correction points to be used by this IC for correction in the gradual direction can be set using  
CSC_GNUM. The number of correction points can be varied from 1 to 8 and settings are available for each  
RGB signal. This means that the gradual level for which correction is to be performed can be independently  
and freely set for each RGB signal using CSC_R (G, B) GP1 to 8. An interpolation operation uses 2 values  
nearby intermediate points to perform linear interpolation.  
If the number of correction points is 1, no interpolation operation is performed in the gradual direction. The  
results of interpolation for one screen are added to the video signal regardless of the gradual level of the video  
signal being input. Correction data for one screen is entered into RAM beginning from Address 0.  
When two or more correction points are used, interpolation in the gradual direction is performed according to the  
gradual level of the video signal being input. At this time, set data into RAM for the number of screens equal to  
"the number of correction points", beginning from Address 0. In the example shown in the figure below, correction  
data is assigned when there are 5 correction points. In addition to the 5 correction points, data for Screen 1  
(Correction Point 1) is assigned to 3FFh. Data for the Screen 5 (Correction Point 5) is assigned to 000h.  
Data for Screen 1  
(Correction Point 1)  
3FFh  
Screen 1 (Correction Point 1)  
300h  
Screen 2 (Correction Point 2)  
Screen 3 (Correction Point 3)  
200h  
Screen 4 (Correction Point 4)  
Screen 5 (Correction Point 5)  
100h  
Data for Screen 5  
(Correction Point 5)  
000h  
: Correction data that has been set in RAM  
: Interpolation operation results for the gradual direction  
Example of Settings for Five Correction Points  
Furthermore, with this IC, correction data can be extended from 8 bits with code to 9 bits with code. This  
setting is made using CSC_R (G, B) GD1 to 8.This setting can be made separately for each correction point in  
the gradual direction as well as independently for each RGB signal.  
38 –  
CXD3511AQ  
(n) Selectable delay line block  
This block supports signal shifting in 1-dot units, performs signal port switching linked with right/left inversion  
and signal processing that supports dot/line inversion.  
This block is comprised of five selectors: dot shift selector, right/left inversion selector, dot/line selector, up/  
down inversion pre-selector, and up/down inversion post-selector.  
The delay line size is 1200 words.  
The data paths for this block are shown in the figure below. Port switching during right/left inversion depends  
on the Cond1 value, and port switching during up/down inversion (when dot/line inversion support is ON)  
depends on the Cond2 value.  
Cond1 = (RGT_SEL_ON) NAND [(RGT) Ex-OR (DLY_R (G, B)_RGT)]  
Cond2 = (DWN) Ex-NOR (DLY_DWN)  
Note) RGT and DWN are TG block settings.  
Output port 1  
Output port 2  
Input port 1  
Input port 2  
Delay line  
Dot shift  
selector  
Right/left  
inversion  
selector  
Dot/line  
selector  
Up/down  
inversion  
pre-selector  
Up/down  
inversion  
post-selector  
HP[0]  
Cond1  
DLY_ON  
Cond2  
Cond2  
Solid lines: 1  
Dotted lines: 0  
39 –  
CXD3511AQ  
(1) 1-dot shift  
When HP[0] = 0, the output data is delayed by one dot compared to when HP[0] = 1.  
clk  
1.0 1.2 1.4 1.6 1.8 1.10 1.12 1.14 1.16 1.18  
port1 in  
1.1 1.3 1.5 1.7 1.9 1.11 1.13 1.15 1.17 1.19  
port2 in  
1.1 1.3 1.5 1.7 1.9 1.11 1.13 1.15  
port1 out  
1.0 1.2 1.4 1.6 1.8 1.10 1.12 1.14 1.16  
port2 out  
(2) Right/left inversion  
When Cond1 = 0, signal port switching is performed for the output data.  
clk  
1.0 1.2 1.4 1.6 1.8 1.10 1.12 1.14 1.16 1.18  
port1 in  
1.1 1.3 1.5 1.7 1.9 1.11 1.13 1.15 1.17 1.19  
port2 in  
IN2  
IN1  
1.1 1.3 1.5 1.7 1.9 1.11 1.13 1.15 1.17  
1.0 1.2 1.4 1.6 1.8 1.10 1.12 1.14 1.16  
port1 out  
port2 out  
40 –  
CXD3511AQ  
(3) Dot/line inversion support  
When DLY_ON = 1, signal processing that supports dot/line inverted drive is performed. The output data is  
output as shown in the figures below according to the Cond1 and Cond2 values. D and the dotted lines in the  
figures indicate that the signal is delayed by 1H.  
clk  
Cond1 Cond2  
1
1
1.0 1.2 1.4 1.6 1.8 1.10 1.12 1.14 1.16 1.18  
1.1 1.3 1.5 1.7 1.9 1.11 1.13 1.15 1.17 1.19  
0.0 0.2 0.4 0.6 0.8 0.10 0.12 0.14 0.16  
1.1 1.3 1.5 1.7 1.9 1.11 1.13 1.15 1.17  
port1 in  
port2 in  
D1  
port1 out  
port2 out  
IN2  
clk  
port1 in  
Cond1 Cond2  
0
1
1.0 1.2 1.4 1.6 1.8 1.10 1.12 1.14 1.16 1.18  
1.1 1.3 1.5 1.7 1.9 1.11 1.13 1.15 1.17 1.19  
0.1 0.3 0.5 0.7 0.9 0.11 0.13 0.15 0.17  
1.0 1.2 1.4 1.6 1.8 1.10 1.12 1.14 1.16  
port2 in  
D2  
port1 out  
port2 out  
IN1  
clk  
port1 in  
Cond1 Cond2  
1
0
1.0 1.2 1.4 1.6 1.8 1.10 1.12 1.14 1.16 1.18  
1.1 1.3 1.5 1.7 1.9 1.11 1.13 1.15 1.17 1.19  
1.0 1.2 1.4 1.6 1.8 1.10 1.12 1.14 1.16  
0.1 0.3 0.5 0.7 0.9 0.11 0.13 0.15 0.17  
port2 in  
IN1  
D2  
port1 out  
port2 out  
clk  
port1 in  
Cond1 Cond2  
0
0
1.0 1.2 1.4 1.6 1.8 1.10 1.12 1.14 1.16 1.18  
1.1 1.3 1.5 1.7 1.9 1.11 1.13 1.15 1.17 1.19  
1.1 1.3 1.5 1.7 1.9 1.11 1.13 1.15 1.17  
port2 in  
IN2  
D1  
port1 out  
port2 out  
0.0 0.2 0.4 0.6 0.8 0.10 0.12 0.14 0.16  
41 –  
CXD3511AQ  
(o) Mute 2 block  
This block performs mute processing by replacing the video signal with data of the desired level. The settings  
are as follows.  
MUTE2_ON: 1 = Mute processing ON, 0 = OFF (Setting shared by R, G and B)  
R, G, B_MUTE2: RGB mute data (Set independently for R, G and B)  
Select data (MUTE2_ON)  
10  
Input  
Selector  
Output  
10  
10  
Coefficient  
(R, G, B_MUTE2)  
(p) Limiter block  
This block performs limiter processing so that the output signal does not exceed a certain range. The settings  
are as follows.  
L_LIM_DAT: Low side limiter level  
When input data L_LIM_DAT, the output is clipped to L_LIM_DAT.  
H_LIM_DAT: High side limiter level  
When H_LIM_DAT input data, the output is clipped to H_LIM_DAT.  
(Both settings shared by R, G and B)  
Set data so that the relationship L_LIM_DAT < H_LIM_DAT is constantly maintained. When both coefficient  
values are 000h, limiter processing is not performed.  
10  
Input  
10  
10  
10  
Limiter  
Coefficient (H_LIM_DAT)  
Coefficient (L_LIM_DAT)  
Output  
(q) Post gain block  
This block performs calculation processing independently for ports 1 and 2. The settings are as follows.  
Coefficient: 8 bits  
Gain setting: 0 to 1.9921875 (= 255/128) times, variable in 256 steps  
(Set independently for R, G and B ports 1 and 2)  
Calculation is performed using the 10-bit input and an 8-bit coefficient, and the upper 12 bits c[17:6] of the  
operation results are output. Next, the c[6] value is checked and rounding is performed to 11 bits. The MSB of  
the rounded 11 bits is checked, clipping is performed, and the lower 10 bits are output.  
Coefficient  
8
b[7:0]  
Rounding  
and  
clipping  
10  
12  
10  
Input  
a[9:0]  
Output  
a × b  
c[17:6]  
42 –  
CXD3511AQ  
(r) Post bright block  
This block performs addition and subtraction processing independently for ports 1 and 2. The settings are as  
follows.  
Coefficient: 7 bits with code, MSB = code bit  
Bright setting: 64 to +63 graduation, variable with an accuracy of 1 bit  
(Set independently for R, G and B ports 1 and 2)  
Calculation is performed using the 10-bit input and a 7-bit coefficient with code. The coefficient MSB is the  
code bit. Addition is performed when b[6] = 0, and subtraction when b[6] = 1. However, when performing  
subtraction, set the two's complement in the lower bits of the coefficient. When the operation results overflow  
or underflow, clipping is performed.  
Coefficient  
7
b[6:0]  
Addition/subtraction  
10  
10  
Input  
a[9:0]  
Output  
and  
clipping  
(s) Ghost cancel  
This block uses signal processing to correct ghosting generated internally within the LCD panel.  
GC_ON: 1 = Ghost cancel processing ON; 0 = OFF (Settings shared by R, G and B)  
GC_MODE: 1 = 24-dot period processing ON; 0 = 12-dot period processing (Settings shared by R, G and B)  
R (G, B)_GC_LIM_DAT: Threshould value setting (set independently for R, G and B)  
R (G, B)_GC_ATT: 8-bit gain data (Set independently for R, G and B)  
The difference between the video signal prior to 12 or 24 dots and the video signal of dots for which processing  
is to be performed is found. Attenuation is performed based on this difference and added to the video signal to  
correct ghosting. In addition, settings can be made so that a limiter is used to ensure processing is performed  
only when the difference in the video signals is of a set level or higher.  
Processing  
Level selection  
Coefficient  
Coefficient  
ON/OFF  
10  
Shift  
Register  
Arithmetic  
unit  
Limiter  
Attenuator  
Input  
12 levels or 24 levels  
+
Clip  
processing  
Output  
43 –  
CXD3511AQ  
(t) Cycle offset block  
This block performs addition and subtraction processing independently for ports 1 and 2. Arithmetic  
coefficients are selected sequentially using the counter output value as the select signal. Therefore, a cyclic  
offset relative to the video signal can be attached. The settings are as follows.  
OFFSET_ON: 1 = Offset processing ON, 0 = OFF (Setting shared by R, G and B)  
OFFSET_MODE: 0h = 6-dot period, 1h = 12-dot period, 2h = 24-dot period (Setting shared by R, G  
and B)  
R, G, B_OFFSET1 to R, G, B_OFFSET24: 5-bit offset data with code  
16 to +15 graduation, variable with an accuracy of 1 bit  
(Set independently for R, G and B)  
The coefficients selected according to the counter operating period are as shown in the table below. In all  
cases, the coefficients are assigned in ascending order from the smallest number. The coefficient MSB is the  
code bit. Addition is performed when MSB = 0, and subtraction when MSB = 1. However, when performing  
subtraction, set the two's complement in the lower bits of the coefficient. When the operation results overflow  
or underflow, clipping is performed.  
Coefficient number output from selector  
Period  
Port 2 side  
2, 4, 6  
Port 1 side  
1, 3, 5  
6 dots  
1, 3, 5, 7, 9, 11  
2, 4, 6, 8, 10, 12  
12 dots  
1, 3, 5, 7, 9, 11, 13, 1, 4, 6, 8, 10, 12, 14,  
15, 17, 19, 21, 23 16, 18, 20, 22, 24  
24 dots  
The counter reset timing is delayed by 8 dot clocks from the front edge of the HDIN input.  
HDIN input (negative polarity)  
Dot clock  
1/2 frequency-divided clock  
R1, G1, B1OUT  
R2, G2, B2OUT  
9
11  
12  
1
2
3
4
5
6
7
8
10  
8 clocks  
4
Internal HD  
Internal MCLK  
5 × 24  
Counter  
Selector  
5
2
Coefficient (R, G, B_OFFSET1 to R, G, B_OFFSET24)  
OFFSET_MODE  
5
OFFSET_ON  
Input (port 1)  
Addition/subtraction  
10  
10  
10  
and  
clipping  
Output (port 1)  
Output (port 2)  
Addition/subtraction  
10  
Input (port 2)  
and  
clipping  
44 –  
CXD3511AQ  
4.Timing Generator (TG) Block  
This block generates the timing pulses required to drive Sony LCD panels. Of the output pulses, the required  
pulses differ according to the LCD panel type, so be sure to also check the specifications of the panel used.  
The output timing pulses are all set by the parallel I/F. For a detailed description, see the description of the  
parallel I/F TG block.  
The TG block diagram is shown below.  
HDIN  
HSYNC Detect  
PLL Counter  
HP Counter  
HRS  
HST, PST, HCK1, HCK2,  
DCK1, DCK1X, DCK2,  
DCK2X, ENBR, ENBL,  
DENB, PCG, PRG,  
SHST, HD2  
H Pulse 1  
Generator  
H Pulse 2  
Generator  
CLP, HD1  
INT_VD  
INT_HD  
VSTR, VSTL, VCKR,  
VCKL, FRP, XFRP,  
BLK  
VSYNC Detect  
VP Counter  
V Pulse Generator  
VDIN  
CTRL  
Control Register  
RGT, DWN  
Parallel I/F  
XRGT, PO1, 2, 3, 4, 5  
Timing Generator Block Diagram  
45 –  
CXD3511AQ  
5. Parallel I/F Block  
Register data settings in this IC are performed by parallel data. As shown in the Timing Chart below, the parallel  
I/F comprises a total 12-bit wide bus consisting of control signal PCTL (Pin 12), clock signal PCLK (Pin 13) and  
10-bit wide data signal PDAT[9:0] (Pins 14 to 17, 20 to 24 and 26).  
The data signal is input in the order of main address, sub address and data. When setting data in this IC,  
divide the data into 19 blocks as shown in the table on the next page. Next, the sub address specifies the initial  
address of the data to be written in the block designated by the main address. The data is set sequentially from  
the data at the address designated by the sub address. The address of each data set thereafter is  
automatically incremented by +1 from the address designated by the sub address, so further address setting  
is unnecessary. This makes it possible to set only the necessary data from the desired address of the desired  
block.  
(1) Timing chart  
PCTL (Pin 12)  
PCTL (Pin 13)  
PDAT[9:0]  
(Pins 14 to 17, 20 to 24 and 26)  
Main  
Sub  
Address Address  
Data  
46 –  
CXD3511AQ  
(2) Main address table  
This IC has the RAM size of color shading correction block is 4096 words. One address is divided into four  
main addresses and mapped.  
Main address  
000h  
Set block  
TG  
001h  
DSD1  
002h  
DSD2  
003h  
Red Gamma  
Green Gamma  
Blue Gamma  
004h  
005h  
006h  
Red CSC (000h to 3FFh)  
Red CSC (400h to 7FFh)  
Red CSC (800h to BFFh)  
Red CSC (C00h to FFFh)  
Green CSC (000h to 3FFh)  
Green CSC (400h to 7FFh)  
Green CSC (800h to BFFh)  
Green CSC (C00h to FFFh)  
Blue CSC (000h to 3FFh)  
Blue CSC (400h to 7FFh)  
Blue CSC (800h to BFFh)  
Blue CSC (C00h to FFFh)  
Pattern Generator  
007h  
008h  
009h  
00Ah  
00Bh  
00Ch  
00Dh  
00Eh  
00Fh  
010h  
011h  
012h  
47 –  
CXD3511AQ  
48 –  
CXD3511AQ  
49 –  
CXD3511AQ  
The detailed setting contents are described below.  
(a) Clock settings  
(1) CLKPOL (sub address: 000h)  
This sets the internal clock polarity.  
Setting value: 1 = Inverted, 0 = Not inverted  
The clock flow from the clock input pins to the PLL block is shown below.  
CLKP  
1/2  
CLKN  
To PLL Block  
CLKC  
CLKSEL1  
CLKSEL2  
CLKPOL  
(2) CLKOUT (sub address: 02Ch)  
This sets the Pin 47 clock output limit.  
Setting value: 1 = Inverted clock is output, 0 = Low is output  
(b) SYNC polarity settings  
(1) POLDET (sub address: 000h)  
This sets the sync polarity auto discrimination function ON/OFF.  
Setting value: 1 = Auto discrimination function ON, 0 = Auto discrimination function OFF  
When POLDET = 1, the HPOL and VPOL settings below are invalid. When using this function, the HDIN sync  
portion must be 1/2 or less of 1H, and the VDIN sync portion must come before the rise position of the VSTL/  
R pulse.  
HDIN (Negative)  
N/2 or less  
N
VDIN (Negative)  
Must come before VSTL/R  
VSTL/R  
(2) HPOL and VPOL (sub address: 001h)  
These set the sync signal polarity when POLDET = 0.  
Setting value: 1 = Positive polarity, 0 = Negative polarity  
The internal operation of this IC is with the input sync signal fixed to positive polarity. Therefore, these HPOL  
and VPOL must be set in accordance with the polarity of the sync signal input from HDIN and VDIN.  
Set HPOL and VPOL to "1" when the input sync signal is positive polarity, or to "0" when negative polarity.  
50 –  
CXD3511AQ  
(c) Dots per 1H and lines per 1F settings  
(1) HR (sub address: 000h)  
This sets the PLL counter reset ON/OFF.  
Setting value: 1 = Reset enabled, 0 = Reset disabled  
When HR = 0, the internal frequency divider is used, and the HD1 pulse output should be used as the return  
pulse. The number of dot clocks per 1H is set by PLLP[11:1] below.  
(2) PLLP[11:1] (sub addresses: 004h and 005h)  
This sets the internal PLL counter reset period in 11 bits. Setting is possible in 2-dot units. When the number of  
dot clocks per 1H is N, set the "(N 2)/2" value.  
When HR = 0, free-running occurs at the above N. When HR = 1, if the next HDIN is not input before the  
internal PLL counter counts up to 2047, free-running mode is established and free-running occurs at N.  
When HDIN is input, free-running is canceled and normal operation is established.  
(3) VFRRN[10:2] (sub address: 004h)  
This sets the number of lines in 9 bits during vertical free running. Setting is possible in 4-line units. To have  
operation run freely at M lines, set the "(M 4)/4" value. If the next VDIN is not input before the internal vertical  
line counter counts up to 2047, free-running mode is established. When VDIN is input, free-running is canceled  
and normal operation is established.  
(d) Scan direction settings  
RGT and DWN (sub address: 000h)  
These settings switch the scan directions of the LCD panel.  
Setting value: 1 = Forward scan, 0 = Reverse scan  
When CTRL (Pin 148) is low, RGT (Pin 136) and DWN (Pin 147) function as output pins, and the data set in  
the respective registers is reflected. When CTRL is high, this setting is ignored, RGT and DWN function as  
input pins, and are reflected to internal operation.  
(e) Register parallel output settings  
PO1, PO2, PO3, PO4 and PO5 (sub address: 000h)  
These set the register setting parallel output.  
Setting value: 1 = High is output, 0 = Low is output  
The set data is reflected to the output pins PO1 (Pin 154), PO2 (Pin 153), PO3 (Pin 152), PO4 (Pin 164) and  
PO5 (Pin 166) of the same name.  
51 –  
CXD3511AQ  
(f) Horizontal display position and horizontal direction pulse settings  
(1) HP[11:0] (sub addresses: 006h and 007h)  
HP[11:1] sets the horizontal pulse position for the LCD panel in 11 bits. The position can be set in 2-dot units  
using the internal pulse INT_HD generated from the front edge of HDIN as the reference.The HP setting range  
is from "0 to (N 2)".  
If the HP value is set to the number of frequency divisions N or higher, the HP setting is ignored and "(N 2)"  
is used as the setting value.  
The HST, PST, HCK1, HCK2, DCK1, DCK1X, DCK2, DCK2X, ENBL, ENBR, VSTL, VSTR, VCKL, VCKR, FRP,  
XFRP, PCG, PRG, BLK and HD2 horizontal timing pulses are linked according to the HP setting.  
The internal reference pulse INT_HD rises at the 5th clock from the front edge of the HDIN input, and all the  
pulses are synchronized using this as the reference. Increasing HP shifts the output positions of the linked  
pulses toward the rear of the time series. The example below shows the shortest output position from HDIN  
when HP is set to 000h. (Note that the output position changes according to the settings in (2) below.)  
HP[0] can shift the video in 1-dot units. See 3. Description of DSD Block Signal Processing Functions, (n)  
Selectable delay line block, (1) 1-dot shift for a detailed description.  
Internal CLK  
HDIN  
INT_HD  
HD1  
HD2  
(2) CLPU[10:1], CLPD[10:1], PRGU[10:1], PRGD[10:1], HD1U[10:1], HD1D[10:1], SHSTU[10:1],  
SHSTD[10:1], DENU[10:1], DEND[10:1], PCGU[10:1], PCGD[10:1], ENB1U[10:1], ENB1D[10:1],  
ENB2U[10:1], ENB2D[10:1], HD2U[10:1], HD2D[10:1]  
(sub addresses: 009h to 013h, 01Eh to 023h and 028h to 029h)  
These set the horizontal timing pulse output positions in 10 bits. The respective rise and fall positions can be  
set in 2-dot units. Settings ending in "U" set the rise position, and settings ending in "D" set the fall position.  
Horizontal pulses are divided into the following two types.  
(A) CLP and HD1 Pulses synchronized to the PLL counter  
Set the "(rise position/fall position 10)/2" value.  
(B) PRG, SHST, DEN, PCG, ENBL, ENBR and HD2 Pulses synchronized to the HP counter  
Set the "(rise position/fall position HP setting value 16)/2" value.  
An outline of each type is shown below. When U and D are set to the same value, "1" is output.  
HDIN  
0
0
PLL counter  
HP counter  
0
0
HP[11:1]  
U
D
(A)  
(B)  
U
D
(3) HD1OE, HD2OE, CLPOE, PRGOE, SHSTOE, DENOE and PCGOE (sub addresses: 02Ch and 02Dh)  
These set the output limit of HD1, HD2, CLP, PRG, SHST, DEN and PCG pulses, respectively.  
Setting value: 1 = Pulse is output, 0 = Output is fixed to "0"  
52 –  
CXD3511AQ  
(g) Vertical display position setting  
VP[9:0] (sub address: 008h)  
This sets the vertical display start position in 10 bits. The position can be set in 1-line units using the front edge  
of VDIN as the reference. The VSTL/VSTR, VCKL/VCKR, FRP and XFRP pulse phases change by linking with  
this setting.  
Minimum  
adjustment  
Tvp  
width: 1H  
VDIN  
HDIN  
VSTL  
VCKL  
Tvp minimum and maximum setting values  
Min.  
000h  
6H  
Max.  
3FFh  
VP[9:0]  
Tvp  
1029H  
53 –  
CXD3511AQ  
(h) HST and PST pulse settings  
(1) HSTM (sub address: 002h)  
This sets the pulse width for horizontal display start timing pulse HST.  
Setting value: 1 = Twice the HCK period width, 0 = HCK period width  
Set the width according to the LCD panel specifications.  
(2) PSTM (sub address: 002h)  
This sets the pulse width for dot sequential precharge start timing pulse PST.  
Setting value: 1 = Twice the HCK period width, 0 = HCK period width  
Set the width according to the LCD panel specifications.  
HSTM, PSTM = 0  
HSTM, PSTM = 1  
HST, PST  
HCK1  
HST, PST  
HCK1  
(3) HSTFIX and HSTPOL (sub addresses: 001h and 002h)  
These set the HST and PST pulse output polarities. The polarity changes as follows according to the  
combination of linked/not linked with control signal RGT. This setting is shared by HST and PST.  
HSTFIX  
HSTPOL  
RGT  
Output polarity  
Positive  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
Negative  
Negative  
Positive  
Negative  
Negative  
Positive  
Positive  
54 –  
CXD3511AQ  
(4) HSTPC[7:0], HSTPF[5:0], PSTPC[7:0] and PSTPF[5:0] (sub addresses: 015h to 018h)  
These set the HST and PST pulse phases. Reset is applied when the internal HP counter reaches "0", and the  
HST and PST pulse phases within 1H can be set at the HCK1 and HCK2 period, respectively, by HSTPC and  
PSTPC.  
HSTPF and PSTPF can set the HST and PST pulse phase relative to HCK1 and HCK2 in 1-dot units.  
Do not set HSTPC and PSTPC to 00h, as the pulses may not be output correctly in this case.  
The HSTPF and PSTPF values can be set up to "(HCKC × 2 2)". If higher values are set, the pulses are not  
output. Set the "(phase difference from HCK pulse)" value.  
The figures below show the timings for HSTPC: 04h and HSTPF: 04h, respectively. These timings are the  
same for the PST pulse.  
HSYNC  
0
HP counter  
HP[11:0]  
HCK1  
0
1
2
3
4
5
6
7
HST  
Setting prohibited  
HSTPF[5:0]  
MCLK  
HCK1  
HST  
HSTPF: 04h  
(5) HSTOE and PSTOE (sub address: 02Dh)  
These set the output limit of HST and PST pulses, respectively.  
Setting value: 1 = Pulse is output, 0 = Output is fixed to "0"  
55 –  
CXD3511AQ  
(i) HCK1 and HCK2 pulse settings  
(1) HCKC[5:0] (sub address: 019h)  
This sets the HCK1 and HCK2 period (LCD panel sampling period). Settings which result in an odd number for  
Tckw in the figure below are prohibited, so be sure to set a value that results in an even number. Set the  
"(Tckw 1)" value according to the LCD panel specifications. When this setting is changed, the HST and PST  
pulse phases also change, so first set HCKC to the correct value and then make the HST and PST settings.  
Example setting values are shown in the table below.  
LCD panel  
SVGA, WXGA  
XGA, SXGA  
UXGA  
Tckw  
6 clk  
HCKC setting  
05h  
0Bh  
17h  
12 clk  
24 clk  
MCLK  
HCK1  
Tckw  
1 clk  
(2) HCKFIX and HCKPOL (sub addresses: 001h and 002h)  
These set the HCK pulse output polarity.The polarity relative to the HST pulse changes as follows according to  
the combination of linked/not linked with control signal RGT.  
HCKFIX  
HCKPOL  
RGT  
Output polarity  
Positive  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
Negative  
Negative  
Positive  
Negative  
Negative  
Positive  
Positive  
Positive  
Negative  
HST  
HST  
HCK1  
HCK1  
HSTPF[7:0] = 00h  
(3) HCK1OE and HCK2OE (sub address: 02Dh)  
These set the output limit of HCK1 and HCK2 pulses, respectively.  
Setting value: 1 = Pulse is output, 0 = Output is fixed to "0"  
56 –  
CXD3511AQ  
(j) DCK1, DCK1X, DCK2 and DCK2X pulse settings  
(1) DCK1F[5:0], DCK1W[5:0], DCK2F[5:0] and DCK2W[5:0] (sub addresses: 01Ah to 01Dh)  
These set the DCK1, DCK1X, DCK2 and DCK2X pulse phases and widths. DCK1F sets the DCK1 and  
DCK1X pulse phases relative to HCK1 and HCK2 in 1-dot units, and DCK2F sets the DCK2 and DCK2X pulse  
phases relative to HCK1 and HCK2 in 1-dot units. Set the "Tdck1 (2) f" value.  
The DCKFINV, DCKFIX and RGT settings differ according to whether the phase is synchronized with the rising  
edge of HCK1 or HCK2.  
The DCK1 and DCK1X pulse width and the DCK2 and DCK2X pulse width can be set in 2-dot units by  
DCK1W and DCK2W, respectively. Set the "(Tdck1 (2) W 2)/2" value.  
HCK1  
HCK2  
Tdck1w  
Tdck1f  
DCK1  
DCK1X  
Tdck2w  
Tdck2f  
DCK2  
DCK2X  
(2) DCKPOL (sub address: 001h)  
This setting switches the DCK1 and DCK1X, DCK2 and DCK2X output polarities. Switching this setting, inverts  
the polarities each pair of DCK1 and DCK1X, DCK2 and DCK2X at once.  
57 –  
CXD3511AQ  
(3) DCKFINV and DCKFIX (sub address: 002h)  
This setting switches the DCK1 and DCK1X, DCK2 and DCK2X output phases relative to HCK1 and HCK2.  
The phase changes as follows according to the combination of linked/not linked with right/left inversion control  
signal RGT.  
DCKFIX  
DCKFINV  
RGT  
Output phase  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
A
B
B
A
B
B
A
A
A
B
HCK1  
HCK2  
HCK1  
HCK2  
DCK1  
DCK2  
DCK1  
DCK2  
(4) DCKOE (sub address: 02Dh)  
This sets the output limit of DCK1 and DCK2 pulses.  
Setting value: 1 = DCK1 and DCK2 pulses are output, 0 = Output is fixed to "0"  
(5) DCKXOE (sub address: 02Dh)  
This sets the output limit of DCK1X and DCK2X pulses.  
Setting value: 1 = DCK1X and DCK2X pulses are output, 0 = Output is fixed to "0"  
58 –  
CXD3511AQ  
(k) LCD panel sample-and-hold position setting  
SHP[5:0] (sub address: 014h)  
This sets the horizontal transfer start pulse and clock pulse phases relative to the video signal to the LCD  
panel. The phase can be set in 64 positions with 6 bits. Incrementing SHP by +1 shifts the HST, PST, HCK1,  
HCK2, DCK1, DCK1X, DCK2 and DCK2X pulses forward by 1 dot (half the internal clock period). The LCD  
panel sample-and-hold position can be set by shifting the above pulse phases forward or backward relative to the  
video signal. At this time, the phases between the HST, PST, HCK1, HCK2, DCK1, DCK1X, DCK2 and DCK2X  
pulses do not change. The figure below shows an example of HCK1 during 12-dot simultaneous sampling.  
This setting eliminates the need to set the sample-and-hold position with a Sony sample-and-hold driver IC,  
and makes it possible to adjust the phases of the video signal to the LCD panel and the horizontal transfer  
clock without changing the position of the video signal on the screen.  
Video signal to LCD panel  
HCK1  
SHP increased  
Internal CLK  
SHP decreased  
59 –  
CXD3511AQ  
(l) VST and VCK pulse settings  
(1) VST1P[11:2] and VST2P[11:2] (sub addresses: 026h to 027h)  
These set the VSTL and VSTR pulse rise and fall positions within 1H in 10 bits.The positions can be set in 4-dot  
units using the internal HP counter "0" position as the reference. Set the "(Tvstp 4)/4" value.  
See the FRVC1LNK, RGVLNK and RGT settings hereafter to determine which of the VST1P or VST2P  
settings is reflected to VSTL or VSTR.  
HDIN  
HP counter  
0
Tvstp  
VST  
VCK  
Tvckp  
(2) VCK1P[10:1] and VCK2P[10:1] (sub addresses: 024h to 025h)  
These set the VCKL and VCKR, FRP and XFRP inversion positions within 1H in 10 bits. The positions can be  
set in 2-dot units using the internal HP counter "0" position as the reference. Set the "(Tvckp 2)/2" value.  
See the FRVC1LNK, RGVLNK and RGT settings hereafter to determine which of the VCK1P, VCK2P or FRPP  
settings is reflected to VCKL or VCKR.  
(3) VSTFIX and VCKFIX (sub address: 002h), VSTPOL and VCKPOL (sub address: 001h)  
These set the VST and VCK pulse output polarities. The VSTL and VSTR pulse polarities and the VCKL and  
VCKR pulse polarities relative to the VSTL and VSTR pulses change as follows according to the combination  
of linked/not linked with control signal DWN.  
FIX  
POL  
0
DWN  
Output polarity  
Positive  
0
0
1
0
1
0
1
0
1
0
0
0
1
1
1
1
0
Negative  
Negative  
Positive  
1
1
0
Negative  
Negative  
Positive  
0
1
1
Positive  
: VST or VCK  
(4) V1OE (sub address: 02Dh)  
This sets the output limit of VSTL, VCKL and ENBL pulses.  
Setting value: 1 = VSTL, VCKL and ENBL pulses are output, 0 = Output is fixed to "0"  
(5) V2OE (sub address: 02Dh)  
This sets the output limit of VSTR, VCKR and ENBR pulses.  
Setting value: 1 = VSTR, VCKR and ENBR pulses are output, 0 = Output is fixed to "0"  
60 –  
CXD3511AQ  
(m) FRP and XFRP pulse settings  
(1) FRPM[1:0] (sub address: 002h)  
This sets the period for switching the LCD AC conversion signal FRP pulse. 1F/1H, 2F/1H, 1F and 2F inversion  
can be set as shown in the figure below. Normally use FRP1, 0: 11.  
1H  
FRP1, 0: 11  
(1F/1H inversion)  
FRP1, 0: 01  
(2F/1H inversion)  
FRP1, 0: 10  
(1F inversion)  
FRP1, 0: 00  
(2F inversion)  
1F  
(2) FRPP[10:1] (sub address: 00Fh)  
This sets the FRP and XFRP inversion positions within 1H in 10 bits. The positions can be set in 2-dot units  
using the internal HP counter "0" position as the reference. Set the "(FRP inversion position HP counter  
"0" position 2)/2" value.  
XFRP is output as the polarity inverted FRP pulse.  
(3) FRPOE and XFRPOE (sub address: 02Ch)  
These set the output limit of FRP and XFRP pulses, respectively.  
Setting value: 1 = Pulse is output, 0 = Output is fixed to "0"  
61 –  
CXD3511AQ  
(n) VCK and FRP transition point shared setting and V block pulse right/left inversion link setting  
FRVC1LNK and RGVLNK (sub address: 003h)  
These set the VCKL and VCKR transition points  
Setting value: 1 = FRP and VCK transition points are shared,  
0 = FRP and VCK transition points are independent  
When FRVC1LNK = 1, the VCK inversion timing is forcibly synchronized with the FRP inversion timing. At this  
time, which of VCKL or VCKR is linked with the FRP transition point is as follows.  
When FRVC1LNK = 0, the VCKL and VCKR transition points are determined by VCK1P[10:1] or VCK2P[10:1]  
according to the RGT setting. When RGVLNK = 1, the V block pulses, VSTL, VCKL and ENBL are switched  
with VSTR, VCKR and ENBR, respectively, linked with right/left inversion control signal RGT. When RGVLNK =  
0, the V block pulses are fixed regardless of the RGT setting. See the following page for a detailed description.  
FRVC1LNK RGVLNK  
RGT  
Output waveform  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
A
A
B
A
C
C
D
C
VCKL  
VCKR  
FRP  
VCK1P  
A
B
C
D
VCK2P  
FRPP  
VCKL  
VCKR  
FRP  
VCK2P  
VCK1P  
FRPP  
VCKL  
VCKR  
FRP  
VCK2P  
FRPP  
VCKL  
VCKR  
FRP  
VCK2P  
FRPP  
62 –  
CXD3511AQ  
(o) V scanner pulse scan direction link setting  
RGVLNK (sub address: 003h)  
This sets whether to link the V block pulses, VSTL, VSTR, VCKL, VCKR, ENBL and ENBR with the right/left  
inversion control signal RGT.  
Setting value: 1 = Linked with RGT, 0 = Independent of RGT  
When RGVLNK = 1, rise and fall positions of VSTL and VSTR, ENBL and ENBR pulses and inversion position  
of VCKL and VCKR pulses are switched respectively by linking with RGT. When RGVLNK = 0, VSTL, VCKL  
and ENBL are set by VST1P, VCK1P, ENB1U and ENB1D, respectively, and VSTR, VCKR and ENBR are set  
by VST2P, VCK2P, ENB2U and ENB2D, respectively, independent of the RGT setting.  
RGVLNK  
RGT  
Output waveform  
0
0
1
1
0
1
0
1
A
A
B
A
VSTL  
VSTR  
VCKL  
VCKR  
ENBL  
ENBR  
VST1P  
VST2P  
VCK1P  
A
VCK2P  
ENB1D  
ENB1U  
ENB2D  
ENB2U  
VSTL  
VSTR  
VCKL  
VCKR  
ENBL  
ENBR  
VST2P  
VST1P  
VCK2P  
B
VCK1P  
ENB2D  
ENB2U  
ENB1D  
ENB1U  
63 –  
CXD3511AQ  
(p) BLK pulse settings  
(1) BLKON (sub address: 001h)  
This sets the black frame write pulse BLK ON/OFF.  
Setting value: 1 = Pulse is output, 0 = DC is output  
When BLKON = 1, BLK is output as a single pulse in 1V.  
(2) BLKPOL (sub address: 001h)  
This sets the black frame write pulse BLK polarity.  
Setting value: 1 = Positive polarity, 0 = Negative polarity  
Set BLKPOL = 1 for a Sony SVGA panel, and BLKPOL = 0 for an XGA panel.  
VST  
BLKON: 1, BLKPOL: 1  
BLKON: 0, BLKPOL: 1  
BLKON: 1, BLKPOL: 0  
BLKON: 0, BLKPOL: 0  
BLK  
BLK  
BLK  
BLK  
(3) SLXBLK (sub address: 003h)  
This sets the precharge waveform top/bottom black frame display mode.  
Setting value: 1 = XGA type, 0 = Other than XGA type  
Set SLXBLK = 1 only when using top/bottom black frame display mode on a Sony XGA type LCD panel. Set  
SLXBLK = 0 in all other cases.  
VST  
VCK  
SLXBLK: 0  
BLK  
PRG  
PCG  
VST  
VCK  
BLK  
SLXBLK: 1  
PRG  
PCG  
64 –  
CXD3511AQ  
(4) BLKU[10:1] and BLKD[10:1] (sub addresses: 02Ah to 02Bh)  
These set the BLK pulse rise and fall positions within 1H in 10 bits. The positions can be set in 2-dot units  
using the internal HP counter "0" position as the reference. Set the "(BLK rise/fall position HP counter "0"  
position 2)/2" value.  
(5) BLKOE (sub address: 02Dh)  
This is the output limit of BLK pulse.  
Setting value: 1 = Pulse is output, 0 = Output is fixed to "0"  
65 –  
CXD3511AQ  
66 –  
CXD3511AQ  
67 –  
CXD3511AQ  
The detailed setting contents are described below.  
(a) R_DAT_SW, G_DAT_SW and B_DAT_SW (sub addresses: 000h, 004h and 008h)  
These select the data path switch block data path.  
Setting value: 1 = Data path is switched, 0 = Data path is not switched  
(b) R1_PRE_GAIN[7:0], R2_PRE_GAIN[7:0], G1_PRE_GAIN[7:0], G2_PRE_GAIN[7:0],  
B1_PRE_GAIN[7:0] and B2_PRE_GAIN[7:0] (sub addresses: 000h, 002h, 004h, 006h, 008h and  
00Ah)  
These set the pre gain block arithmetic coefficients in 8 bits.  
(c) R1_PRE_BRT[4:0], R2_PRE_BRT[4:0], G1_PRE_BRT[4:0], G2_PRE_BRT[4:0], B1_PRE_BRT[4:0]  
and B2_PRE_BRT[4:0] (sub addresses: 001h, 003h, 005h, 007h, 009h and 00Bh)  
These set the pre bright block arithmetic coefficients in 5 bits with code.  
(d) USER_GAIN[7:0] (sub address: 00Ch)  
This sets the user gain block arithmetic coefficients in 8 bits.  
(e) USER_BRT[10:0] (sub addresses: 00Ch and 00Dh)  
This sets the user bright block arithmetic coefficients in 11 bits with code.  
(f) R_SUB_GAIN[7:0], G_SUB_GAIN[7:0] and B_SUB_GAIN[7:0] (sub addresses: 00Eh, 010h and  
012h)  
These set the R, G and B sub gain block arithmetic coefficients in 8 bits.  
(g) R_SUB_BRT[10:0], G_SUB_BRT[10:0] and B_SUB_BRT[10:0] (sub addresses: 00Eh to 013h)  
These set the R, G and B sub bright block arithmetic coefficients in 11 bits with code.  
(h) MUTE1_ON (sub address: 00Bh)  
This selects mute 1 block processing ON/OFF.  
Setting value: 1 = Mute processing ON, 0 = OFF  
(i) R_MUTE1[9:0], G_MUTE1[9:0] and B_MUTE1[9:0] (sub addresses: 014h to 016h)  
These set the mute 1 block data in 10 bits.  
68 –  
CXD3511AQ  
(j) R_OSD_DAT1 to 4[9:0], G_OSD_DAT1 to 4[9:0] and B_OSD_DAT1 to 4[9:0] (sub addresses: 014h  
to 022h)  
These set the OSD block decode data in 10 bits.  
(k) GAM_SEL (sub address: 00Bh)  
This selects the gamma block data path.  
Setting value: 1 = Path passing through the RAM, 0 = Path not passing through the RAM  
(l) GAM_ON (sub address: 00Bh)  
This sets the gamma block RAM operating mode.  
Setting value: 1 = Normal operation, 0 = Standby mode  
Note that in standby mode, data cannot be written to or read from the RAM. Also, previously set data is held  
even when the RAM is set to standby mode.  
(m) L_LIM_DAT[9:0] and H_LIM_DAT[9:0] (sub addresses: 026h and 027h)  
These set the limiter block limit value data in 10 bits.  
Be sure to maintain the relationship L_LIM_DAT < H_LIM_DAT. Note that when both coefficients are set to  
000h, limiter processing is not performed.  
(n) MUTE2_ON (sub address: 028h)  
This selects the mute 2 block processing ON/OFF.  
Setting value: 1 = Mute processing ON, 0 = OFF  
(o) R_MUTE2[9:0], G_MUTE2[9:0] and B_MUTE2[9:0] (sub addresses: 023h to 025h)  
These set the mute 2 block data in 10 bits.  
(p) R1_POST_GAIN[7:0], R2_POST_GAIN[7:0], G1_POST_GAIN[7:0], G2_POST_GAIN[7:0],  
B1_POST_GAIN[7:0] and B2_POST_GAIN[7:0] (sub addresses: 028h, 02Ah, 02Ch, 02Eh, 030h and  
032h)  
These set the post gain block arithmetic coefficients in 8 bits.  
(q) R1_POST_BRT[6:0], R2_POST_BRT[6:0], G1_POST_BRT[6:0], G2_POST_BRT[6:0],  
B1_POST_BRT[6:0] and B2_POST_BRT[6:0] (sub addresses: 029h, 02Bh, 02Dh, 02Fh, 031h and  
033h)  
These set the post bright block arithmetic coefficients in 7 bits with code.  
69 –  
CXD3511AQ  
70 –  
CXD3511AQ  
71 –  
CXD3511AQ  
72 –  
CXD3511AQ  
73 –  
CXD3511AQ  
The detailed setting contents are described below.  
(a) FRM_ON (sub address: 005h)  
This sets the processing ON/OFF for the black frame block.  
Setting value: 1 = Black frame processing ON, 0 = Black frame processing OFF  
(b) FRM_DAT[9:0] (sub address: 000h)  
This sets the data for the black frame processing block in 10 bits.  
(c) FRM_H1[11:0] and FRM_H2[11:0] (sub addresses: 001h, 002h and 005h)  
These set the horizontal black frame display range for the black frame block in 12 bits. The range can be set in  
1-dot units. Set the "display range" value.  
HDIN  
FRM_H1  
FRM_H2  
Black frame display range  
Black frame display range  
(d) FRM_V1[10:0] and FRM_V2[10:0] (sub addresses: 003h to 005h)  
These set the vertical black frame display range for the black frame block in 11 bits. The range can be set in  
1-line units. Set the "display range 2" value.  
VDIN  
FRM_V1  
FRM_V2  
Black frame display range  
Black frame display range  
(e) CSC_ON (sub address: 006h)  
This sets the processing ON/OFF for the color shading correction block.  
Setting value: 1 = ON, 0 = OFF  
(f) CSC_R_RGT, CSC_G_RGT and CSC_B_RGT (sub address: 006h)  
These set the right/left inversion for the color shading correction block.  
Setting value: 1 = Reflects the TG block RGT setting, 0 = Reflects the inverse of TG block RGT setting  
(g) CSC_DWN (sub address: 006h)  
This sets the up/down inversion for the color shading correction block.  
Setting value: 1 = Reflects the TG block DWN setting, 0 = Reflects the inverse of TG block DWN setting  
74 –  
CXD3511AQ  
(h) CSC_HP[9:1] (sub address: 007h)  
This sets the horizontal correction start position for the color shading correction block in 9 bits. The position  
can be set in 2-dot units. The setting range is 020h to 1FEh. Set the "correction start position + 1" value.  
(i) CSC_VP[7:0] (sub address: 008h)  
This sets the vertical correction start position for the color shading correction block in 8 bits. The position can  
be set in 1-line units. The setting range is 00h to FEh. Set the "correction start position 4" value.  
(j) CSC_HNUM[5:0] and CSC_VNUM[5:0] (sub addresses: 009h and 00Ah)  
These set the number of horizontal and vertical correction points for the color shading correction block in 6 bits  
in the range of 2 to 64 points. Set the "number of correction points 1" value.The size of the RAM for setting the  
correction data is 4096 words, so set the number of correction points as follows.  
Number of horizontal correction points × Number of vertical correction points  
× Number of gradual correction points 4096  
(k) CSC_HINT[7:2] and CSC_VINT[7:2] (sub addresses: 00Bh and 00Ch)  
These set the correction interval for the horizontal and vertical directions of the color shading correction block  
in 6 bits. This setting has a setting range from 32 to 256 dots (lines) and can be set in 4-dot (-line) units.  
Set the "correction interval/4 1" value.  
HDIN  
Number of  
correction points  
CSC_HNUM  
Correction start position  
CSC_HP  
1
2
3
4
5
6
7
8
9
1
2
3
4
5
6
Color shading correction range  
7
Correction interval  
CSC_VINT  
75 –  
CXD3511AQ  
(l) CSC_HOS[7:2] and CSC_VOS[7:2] (sub addresses: 00Dh and 00Eh)  
These set the range for which virtual corrections are to be made. The same data as at the edge of the  
correction area for color shading correction is assumed for outside the correction area. It is possible to  
independently set values from 0 to 256 dots (lines) for the horizontal and vertical directions in 4-dot (-line)  
units.  
HDIN  
Virtual correction range  
Correction start position  
CSC_HOS  
CSC_HP  
Color shading correction range  
: Area actually corrected  
: Area virtually corrected  
(m) CSC_GNUM [2:0] (sub address: 006h)  
This sets the number of correction points in the gradual direction for color shading correction. It is possible to set  
1 to 8 points. Set the "number of correction points 1" value.  
(n) CSC_RGP1 to 8[9:1], CSC_GGP1 to 8[9:1] and CSC_BGP1 to 8[9:1] (sub addresses: 00Fh to 026h)  
These set the correction points for color shading correction in the gradual direction in 2-gradual units  
independently for each R, G and B signal. Registers are set in order of lowest number beginning from 3FFh.  
Always keep this order in mind when setting data.  
3FFh  
300h  
200h  
100h  
000h  
Same data as Correction Point 1  
CSC_R (G, B) GP1  
CSC_R (G, B) GP2  
CSC_R (G, B) GP3  
CSC_R (G, B) GP4  
CSC_R (G, B) GP5  
CSC_R (G, B) GP6  
CSC_R (G, B) GP7  
CSC_R (G, B) GP8  
Same data as Correction Point 8  
76 –  
CXD3511AQ  
(o) CSC_RGD1 to 8, CSC_GGD1 to 8 and CSC_BGD1 to 8 (sub addresses: 00Fh to 026h)  
These set to expand data set in RAM for color shading correction by ± 8bits by shifting data 1 bit in the MSB  
direction. This setting can be made independently for correction points in the gradual direction for each R, G  
and B signal.  
Setting value: 1 = Expand by ±8 bits; 0 = Not expanded  
(p) CSC_XH (sub address: 006h)  
This sets the cross hatch display ON/OFF used during color shading correction.  
Setting value: 1 = Display; 0 = Not displayed  
(q) CSC_XH_DAT (sub address: 027h)  
This sets the display level (gradual level) of the cross hatch pattern used for color shading correction in 2-gradual  
units, 9 bits.  
(r) GC_ON (sub address: 02Bh)  
This sets the ghost cancel block processing ON/OFF.  
Setting value: 1 = Ghost cancel ON, 0 = Ghost cancel OFF  
(s) GC_MODE (sub address: 02Bh)  
This sets the signal processing period of ghost cancel block.  
Setting value: 1 = 24-dot period, 0 = 12-dot period  
(t) R_GC_LMT_DAT[9:0], G_GC_LMT_DAT[9:0] and B_GC_LIM_DAT[9:0] (sub addresses: 028h to 02Ah)  
These set the limiter data of the R, G and B ghost cancel block in 10 bits.  
(u) R_GC_ATT[7:0], G_GC_ATT[7:0] and B_GC_ATT[7:0] (sub addresses: 02Bh to 02Dh)  
These set the multiplier arithmetic coefficient of the R, G and B ghost cancel block in 8 bits.  
(v) RGT_SEL_ON, DLY_ON, DLY_DWN, DLY_R_RGT, DLY_G_RGT and DLY_B_RGT (sub address: 02Eh)  
These are the selectable delay line block settings.  
RGT_SEL_ON: This sets ON/OFF for port switching linked with right/left inversion.  
Setting value: 1 = ON, 0 = OFF  
DLY_ON: This sets the dot/line inverted drive support ON/OFF.  
Setting value: 1 = ON, 0 = OFF  
DLY_DWN: This sets the up/down inversion for the selectable delay line block.  
Setting value: 1 = Reflects the TG block DWN setting,  
0 = Reflects the inverse of the TG block DWN setting  
DLY_R_RGT, DLY_G_RGT and DLY_B_RGT: These set the right/left inversion for the selectable delay line block.  
Setting value: 1 = Reflects the TG block RGT setting,  
0 = Reflects the inverse of the TG block RGT setting  
77 –  
CXD3511AQ  
(w) OFFSET_ON (sub address: 02Eh)  
This sets the processing ON/OFF for the cycle offset block.  
Setting value: 1 = offset processing ON, 0 = offset processing OFF  
(x) OFFSET_MODE[1:0] (sub address: 02Eh)  
This sets the counter period for the cycle offset block.  
Setting value: 0h = 6-dot period, 1h = 12-dot period, 2h = 24-dot period  
(y) R_OFFSET1 to 12[4:0], G_OFFSET1 to 12[4:0] and B_OFFSET1 to 12[4:0] (sub addresses: 02Fh to 052h)  
These set the offset data for the cycle offset block in 5 bits with code.  
78 –  
CXD3511AQ  
79 –  
CXD3511AQ  
The detailed setting contents are described below.  
(a) PG_ON (sub address: 000h)  
This sets the test signal output ON/OFF.  
Setting value: 1 = Test pattern output mode enabled, 0 = Normal signal output  
(b) PG_R (G, B)_ON (sub address: 000h)  
These set the test signal level setting ON/OFF.  
Setting value: 1 = Various settings enabled, 0 = Output fixed to "0"  
(c) PG_R (G, B)_SEL (sub address: 000h)  
These switch the pattern and non-pattern signal levels within the effective area.  
Setting value: 1 = Pattern signal level is PG_SIG1R (G, B), 0 = Pattern signal level is PG_SIG2R (G, B)  
(d) PG_PAT[2:0] (sub address: 000h)  
This switches the display pattern within the window area.  
Setting value: See the table below.  
0
1
2
3
4
5
6
7
Raster  
Window  
Vertical stripe/diagonal stripe  
Horizontal stripe  
Cross hatch  
Dot  
Horizontal ramp/horizontal stair  
Vertical ramp/vertical stair  
(e) PG_STRP_SW (sub address: 001h)  
(Valid only when PG_PAT[2:0] = 2h)  
This switches between vertical stripe and diagonal stripe.  
Setting value: 1 = Diagonal stripe, 0 = Vertical stripe  
(f) PG_STAIR_SW (sub address: 001h)  
(Valid only when PG_PAT[2:0] = 6h or 7h)  
This switches between ramp and stair.  
Setting value: 1 = Stair, 0 = Ramp  
(g) PG_HST[11:1] (sub addresses: 001h and 002h)  
PG_HSTP[11:1] (sub addresses: 001h and 003h)  
These set the horizontal effective area in 11 bits. The area can be set in 2-dot units using the front edge of the  
HDIN input as the reference. Set the "(set point 66)/2" value.  
80 –  
CXD3511AQ  
(h) PG_HWST[11:1] (sub addresses: 001h and 004h)  
PG_HWSTP[11:1] (sub addresses: 001h and 005h)  
These set the horizontal window area in 11 bits. The area can be set in 2-dot units using the front edge of the  
HDIN input as the reference. Set the "(set point 68)/2" value.  
(i) PG_VST[10:0] (sub addresses: 001h and 006h)  
PG_VSTP[10:0] (sub addresses: 001h and 007h)  
These set the vertical effective area in 11 bits. The area can be set in 1-line units using the front edge of the  
VDIN input as the reference. Set the "set point 3" value.  
(j) PG_VWST[10:0] (sub addresses: 001h and 008h)  
PG_VWSTP[10:0] (sub addresses: 001h and 009h)  
These set the vertical window area in 11 bits. The area can be set in 1-line units using the front edge of the  
VDIN input as the reference. Set the "set point 4" value.  
HDIN  
PG_HST PG_HWST  
PG_VST  
PG_HWSTP  
PG_HSTP  
Effective area  
PG_VWST  
Window area  
PG_VWSTP  
PG_VSTP  
(k) PG_STEP[9:1] (sub address: 00Ah)  
(Valid for PG_PAT[2:0] = 2h, 3h, 4h, and 5h)  
This sets the vertical stripe, diagonal stripe, horizontal stripe, cross hatch and dot period in 9 bits. The period  
can be set in 2-dot units. Set the "(period 2)/2" value.  
(l) PG_WIDTH[9:0] (sub address: 00Bh)  
(Valid for PG_PAT[2:0] = 2h, 3h, 4h, and 5h)  
This sets the vertical stripe, diagonal stripe, horizontal stripe, cross hatch and dot line width in 10 bits. The  
width can be set in 1-dot units. Set the "width" value.  
(m) PG_SIG1R (G, B)[9:0] and PG_SIG2R (G, B)[9:0] (sub addresses: 00Ch to 011h)  
These set the output signal level inside and outside the pattern area within the effective area in 10 bits. The  
level can be set with an accuracy of 1 bit.  
81 –  
CXD3511AQ  
Notes on Handling  
The power supply and GND patterns have a large effect on undesired radiation on the substrate and  
interference to analog circuits, etc. General precautions are as follows.  
Make the GND pattern as wide as possible. Using a multi-layer substrate and a solid ground is  
recommended.  
Connect each power supply pin to GND via a ceramic chip capacitor of 0.1µF or more located as close  
to each pin as possible.  
Do not use this IC under conditions other than the recommended operating conditions.  
Absolute maximum rating values should not be exceeded even momentarily. Exceeding ratings may damage  
the device, leading to eventual breakdown.  
This IC has a MOS structure which is easily damaged by static electricity, so thorough measures should be  
taken to prevent electrostatic discharge.  
Since this IC utilizes a MOS structure, it may latch up due to excessive noise or power surge greater than the  
maximum rating of the I/O pins, interface with two power supplies of another circuit, or the order in which  
power is supplied to circuits. Make a thorough study of measures against the possibility of latch up before  
use.  
When the initialization of this IC is performed at power-on, system clear cancellation is performed after the  
supply voltage is set in the range of the recommended operating conditions and stabilized. Keep in mind that  
the internal circuit may not be initialized correctly if system clear cancellation is performed before the supply  
voltage is set in the range of the recommended operating conditions.  
When designing the substrate, take sufficient care for the surrounding temperature and heat radiation, and  
make sure the IC junction temperature does not exceed the maximum value.  
Be sure to make the number of dot clocks input to the CXD3511AQ in 1H an even number. Note that if there is  
an odd number of dot clocks, the internal phase compensation PLL will not operate properly.  
Be sure to make a thorough evaluation of any items not listed in this data sheet.  
82 –  
CXD3511AQ  
Application Circuit  
CTRL  
From A/D converter  
Auxiliary pulse  
To S/H driver  
To LCD panel  
To LCD panel  
To D/A converter  
+2.5V  
+3.3V  
10µ  
0.1µ  
0.1µ  
0.1µ  
0.1µ  
0.1µ  
0.1µ  
10µ  
180 179 178 177 176 175 174 173 172 171 170 169 168 167 166 165 164 163 162 161 160 159 158 157 156 155 154 153 152 151 150 149 148 147 146 145 144 143 142 141 140 139 138 137 136 135 134 133 132 131 130 129 128 127 126 125 124 123 122 121  
0.1µ  
181 R1IN2  
182 R1IN1  
183 R1IN0  
184 R2IN7  
185 R2IN6  
120  
R1OUT7  
R1OUT6 119  
R1OUT5 118  
R1OUT4 117  
R1OUT3 116  
0.1µ  
186  
187  
V
DD2  
SS  
V
SS 115  
V
VDD2 114  
0.1µ  
188 R2IN5  
189 R2IN4  
190 R2IN3  
191 R2IN2  
192 R2IN1  
193 R2IN0  
194 G1IN7  
195 G1IN6  
196 G1IN5  
R1OUT2 113  
R1OUT1 112  
R1OUT0 111  
R2OUT9 110  
R2OUT8 109  
R2OUT7 108  
R2OUT6 107  
R2OUT5 106  
R2OUT4 105  
R2OUT3 104  
R2OUT2 103  
0.1µ  
197  
198  
V
DD1  
SS  
V
199 G1IN4  
200 G1IN3  
201 G1IN2  
202 G1IN1  
203 G1IN0  
204 G2IN7  
205 G2IN6  
206 G2IN5  
207 G2IN4  
208 G2IN3  
VSS 102  
V
DD1 101  
DD2 100  
0.1µ  
V
R2OUT1 99  
R2OUT0 98  
G1OUT9 97  
G1OUT8 96  
G1OUT7 95  
G1OUT6 94  
G1OUT5 93  
G1OUT4 92  
G1OUT3 91  
0.1µ  
209  
210  
V
DD1  
SS  
V
211 G2IN2  
212 G2IN1  
213 G2IN0  
214 B1IN7  
215 B1IN6  
216 B1IN5  
217 B1IN4  
218 B1IN3  
219 B1IN2  
220 B1IN1  
V
SS 90  
0.1µ  
0.1µ  
VDD1 89  
G1OUT2 88  
G1OUT1 87  
G1OUT0 86  
G2OUT9 85  
VDD2 84  
G2OUT8 83  
G2OUT7 82  
G2OUT6 81  
G2OUT5 80  
G2OUT4 79  
0.1µ  
221  
222  
V
DD1  
SS  
V
223 B1IN0  
224 B2IN7  
225 B2IN6  
226 B2IN5  
227 B2IN4  
228 B2IN3  
229 B2IN2  
230 B2IN1  
231 B2IN0  
232 R1OSD1  
233 R1OSD0  
V
SS 78  
0.1µ  
VDD1 77  
G2OUT3 76  
G2OUT2 75  
G2OUT1 74  
G2OUT0 73  
B1OUT9 72  
B1OUT8 71  
B1OUT7 70  
B1OUT6 69  
B1OUT5 68  
0.1µ  
234  
235  
V
DD2  
SS  
V
SS 67  
V
VDD2 66  
0.1µ  
236 G1OSD1  
237 G1OSD0  
238 B1OSD1  
239 B1OSD0  
240 YM1  
B1OUT4 65  
B1OUT3 64  
B1OUT2 63  
B1OUT1 62  
B1OUT0  
61  
1
2
3
4
5
6
7
8
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60  
10µ  
10µ  
0.1µ  
0.1µ  
0.1µ  
0.1µ  
0.1µ  
0.1µ  
0.1µ  
GND  
OSD input  
Parallel data input  
To D/A converter  
CLKOUT  
+3.3V  
CLKN  
CLKP  
CLKC  
HDIN1  
VDIN1  
10k  
1µ  
10k  
10k  
1µ  
+3.3V  
1µ  
GND  
GND  
Application circuits shown are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for  
any problems arising out of the use of these circuits or for any infringement of third party patent and other right due to same.  
83 –  
CXD3511AQ  
Package Outline  
Unit: mm  
240PIN QFP (PLASTIC)  
34.6 ± 0.2  
32.0 ± 0.1  
121  
4.1 MAX  
+ 0.10  
0.40 – 0.15  
180  
0.10  
181  
120  
A
240  
61  
1
60  
+ 0.05  
0.22 – 0.03  
+ 0.05  
0.145 – 0.03  
0.5  
0.08  
M
0.25  
0˚ to 8˚  
PACKAGE STRUCTURE  
DETAIL A  
EPOXY RESIN  
PACKAGE MATERIAL  
LEAD TREATMENT  
LEAD MATERIAL  
SOLDER PLATING  
QFP-240P-L022  
QFP240-P-3232  
SONY CODE  
EIAJ CODE  
COPPER ALLOY  
7.6g  
JEDEC CODE  
PACKAGE MASS  
LEAD SPECIFICATIONS  
ITEM  
LEAD MATERIAL  
LEAD TREATMENT  
SPEC.  
COPPER ALLOY  
Sn-Bi  
Sony Corporation  
84 –  

相关型号:

CXD3511AQ

Digital Signal Driver/Timing Generator
SONY

CXD3511Q

Digital Signal Driver/Timing Generator
SONY

CXD3513

Interface and Driver IC for LCD
SONY

CXD3513GG

Interface and Driver IC for LCD
SONY

CXD3519

Reference Voltage and Driver IC for LCD
SONY

CXD3519TQ

Reference Voltage and Driver IC for LCD
SONY

CXD3521GG

Interface and Driver IC for LCD
SONY

CXD3526GG

Digital Signal Driver/Timing Generator
SONY

CXD3531R

Digital Signal Driver/Timing Generator
ETC

CXD3536R

Digital Signal Driver/Timing Generator
SONY

CXD3605R

Timing Generator for Frame Readout CCD Image Sensor
SONY

CXD3606R

Timing Generator for Frame Readout CCD Image Sensor
SONY