CXD1856R [SONY]

MPEG1 Decoder; MPEG1解码器
CXD1856R
型号: CXD1856R
厂家: SONY CORPORATION    SONY CORPORATION
描述:

MPEG1 Decoder
MPEG1解码器

解码器 消费电路 商用集成电路
文件: 总31页 (文件大小:407K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
CXD1856Q/R  
MPEG1 Decoder  
Description  
120 pin QFP (Plastic)  
120 pin LQFP (Plastic)  
The CXD1856Q/R is a single-chip MPEG1 decoder  
with a built-in CD-ROM decoder which allows  
decoding of MPEG1 system, video and audio layers.  
A built-in CD-ROM decoder enables direct connection  
with a CD-DSP. Combining this chip with a control  
microcomputer and 4-Mbit DRAM, etc. allows  
configuration of a MPEG1 decoding system for video  
CD players, etc.  
Features  
Supply voltage: 3.3 ± 0.3V  
Structure  
Silicon gate CMOS IC  
Input and output voltages: LVTTL compatible  
5V can be applied as the input voltage (excluding  
some pins)  
Allows decoding of MPEG1 system, video and  
audio layers  
Applications  
Video CD players, MPEG1 decoder boards, etc.  
Built-in CD-ROM decoder allows direct connection  
with a CD-DSP  
CD-ROM decoded output can be transferred to  
and stored in an external DRAM  
RGB and YCbCr video data output allowed  
Built-in video sync generator  
Audio data output can support various DAC  
Supports various special playback modes  
Video CD PAL high resolution still picture can be  
decoded with a single 4-Mbit DRAM  
8-bit parallel and 4-line serial host interfaces  
CD-DA through operation allowed  
Block Diagram  
MPEG  
System  
Decoder  
MPEG  
Audio  
Audio  
I/F  
CD-DSP  
I/F  
CD-ROM  
Decoder  
Decoder  
MPEG  
Video  
Decoder  
To each circuit block  
Video Postprocessor  
Host  
interface  
DRAM  
Controler  
Video  
I/F  
&
Sync Generator  
Sony reserves the right to change products and specifications without prior notice. This information does not convey any license by  
any implication or otherwise under any patents or other right. Application circuits shown, if any, are typical examples illustrating the  
operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits.  
– 1 –  
E97815-PS  
CXD1856Q/R  
1. Pin Configuration  
100  
120 119 118 117 116 115 114 113 112 111  
109 108  
107  
106 105 104 103 102 101  
99 98  
96 95 94 93 92 91  
97  
110  
VSS  
XTL0O  
XTL0I  
VDD  
1
2
3
4
5
6
7
8
9
90 VDD  
89 DCLK  
88 B/Cb7  
87 B/Cb6  
86 B/Cb5  
85 B/Cb4  
HA2  
HA3  
84  
B/Cb3  
HD0  
HD1  
83 B/Cb2  
82  
81  
B/Cb1  
B/Cb0  
HD2  
HD3 10  
HD4 11  
HD5 12  
80 G/Y7  
79 G/Y6  
78 G/Y5  
77 G/Y4  
76 G/Y3  
75 VSS  
13  
HD6  
VDD 14  
VSS 15  
HD7 16  
MA3 17  
MA4 18  
74 VDD  
73 G/Y2  
19  
72  
G/Y1  
MA2  
MA5 20  
MA1 21  
VSS 22  
71 G/Y0  
70 R/Cr7  
69 R/Cr6  
68 R/Cr5  
67 R/Cr4  
66 R/Cr3  
MA6 23  
MA0 24  
CKEY 25  
DTVLD 26  
VSS 27  
65  
R/Cr2  
64 R/Cr1  
63 R/Cr0  
62 XVOE  
61 VSS  
VSS 28  
VSS 29  
VSS 30  
31  
32 33  
34  
35  
36 37 38 39 40  
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60  
– 2 –  
CXD1856Q/R  
2. Pin Description  
Pin No.  
Symbol  
I/O  
Description  
VDD  
+3.3V power supply  
Connect to ground.  
VSS  
2
3
XTL0O  
O
I
Video decoder master clock. Input the clock to XTL0I or connect an  
oscillator between XTL0I and XTL0O. The recommended frequencies are  
27MHz, 28.6363MHz (NTSC 8fsc) and 35.4686MHz (PAL 8fsc).  
XTL0I  
When the host interface operates in parallel mode, these pins are the  
register address inputs. In serial mode, HA0 is the serial data input, and  
HA1 to HA3 should be fixed to low level.  
5, 6, 119,  
120  
HA0 to HA3  
I
When the host interface operates in parallel mode, these pins are the  
register data I/Os. In serial mode, HD0 is the serial data output, and HD1  
to HD7 should be fixed to low level.  
7 to 13,  
16  
HD0 to HD7  
MA0 to MA8  
I/O  
O
17 to 21,  
23, 24,  
32, 33  
DRAM address signal outputs. Connect to the DRAM address pins so that  
the numbers match.  
34  
35  
XRAS  
O
O
Row address strobe signal output. Connect to the DRAM RAS signal pin.  
DRAM write enable signal output. Connect to the DRAM WE signal pin.  
XMWE  
Used when connecting 8 Mbits of DRAM. Connect to the upper word  
(256K to 512K-1) DRAM CAS signal pin (for both the upper and lower  
bytes) when the DRAM configuration is 256 Kwords × 16 bits × 2, and to  
the MA9 pin (for two DRAMs) when the DRAM configuration is 512 Kwords  
× 8 bits × 2.  
XCAS2/  
MA9  
36  
37  
O
O
DRAM column address strobe signal output. Connect to the lower word  
(0 to 256K-1) DRAM CAS signal pin (for both the upper and lower bytes)  
when the DRAM configuration is 256Kwords × 16 bits × 2, and to all  
DRAM CAS signal pins in all other cases.  
XCAS0  
38 to 43, MD0 to  
46 to 55 MD15  
DRAM data signal I/Os. Connect to the DRAM data pins so that the  
numbers match.  
I/O  
I
OSD enable signal. The enabled polarity is changed by the register  
settings.  
56  
OSDEN  
OSDB,  
OSD data inputs. When the signal input to the OSDEN pin is enabled, the  
color registered in the color table which is specified by these three inputs  
(3 bits) is output as the image data.  
57 to 59 OSDG,  
OSDR  
I
I
Video output enable signal. Image data output and DCLK output are  
enabled when this pin is low, and disabled when this pin is high (high  
impedance). Note that the output control register must be set to output  
enable for output to be enabled.  
62  
XVOE  
R/Cr0 to  
R/Cr7  
63 to 70  
Image data outputs. The output data format (RGB, YCbCr, etc.) and the  
correspondence between the pins and output data can be changed by  
setting the registers.  
71 to 73, G/Y0 to  
76 to 88 G/Y7  
O
B/Cb0 to  
81 to 88  
B/Cb7  
Dot clock (DCLK) signal. The DCLK frequency is normally 13.5MHz.  
DCLK can be input from this pin, or frequency divided from the clock input  
and output from this pin.  
89  
DCLK  
I/O  
– 3 –  
CXD1856Q/R  
Pin No.  
92  
Symbol  
HSYNC  
I/O  
I/O  
Description  
Horizontal sync signal. When using the built-in sync generator, the dot  
clock (DCLK) is frequency divided and output. When not using the sync  
generator, this pin is an input.  
Vertical sync signal. When using the built-in sync generator, the dot clock  
(DCLK) is frequency divided and output. When not using the built-in sync  
generator, this pin is an input.  
93  
94  
VSYNC  
I/O  
I/O  
Field identification signal (FID) and horizontal sync phase reference signal  
(FHREF). The signal to be used is set in the register. When set to FID, this  
pin is an output if using the built-in sync generator, and an input if not  
using the built-in sync generator. High corresponds to odd fields. When set  
to FHREF, this pin outputs the signal obtained by frequency dividing XTL0.  
When XTL0 is 8fsc, this signal is equivalent to the HSYNC cycle, and can  
be used for phase comparison with the HSYNC signal.  
FID/FHREF  
Composite blanking signal (CBLNK) and fsc signal. The signal to be used  
is set in the register. When set to CBLNK, this pin is an output if using the  
built-in sync generator, and an input if not using the built-in sync generator.  
When set to fsc, this pin outputs the signal obtained by frequency dividing  
XTL0. The frequency division ratio can be selected from 1/8 or 1/16.  
CBLNK/  
FSC  
95  
I/O  
Composite sync signal obtained by frequency dividing DCLK. This pin  
cannot be input.  
96  
97  
98  
CSYNC  
XSGRST  
CLK0O  
O
I
Sync generator reset signal input. The built-in sync generator is initialized  
by setting this pin low.  
Output for clock obtained by frequency dividing XTL0. The frequency  
division ratio can be selected from 1, 1/2, 1/4 or 1/8.  
O
99  
DOUT  
DATO  
LRCO  
BCKO  
O
O
O
O
Audio digital output.  
100  
101  
102  
Audio serial data output to DAC.  
L/R clock output to DAC.  
Bit clock output to DAC.  
Audio interface clock input. Input 256fs (11.2896MHz), 384fs  
(16.9344MHz), 512fs (22.5792MHz), or 768fs (33.8688MHz), etc.  
103  
FSXI  
I
Master clock for CD-ROM and audio decoders. Input the clock to XTL2I or  
connect an oscillator between XTL2I and XTL2O. The recommended  
frequency is 45MHz. Note that this clock is for the internal circuits, and the  
input and output are not synchronized.  
106  
107  
109  
XTL2O  
XTL2I  
C2PO  
O
I
C2 pointer input from CD-DSP. Indicates that the DATI input contains an  
error.  
I
110  
111  
112  
113  
114  
LRCI  
DATI  
BCKI  
DOIN  
XHCS  
I
I
I
I
I
LR clock input from CD-DSP. Indicates the L or R channel of DATI.  
Serial data input from CD-DSP.  
Bit clock input from CD-DSP. This clock strobes the DATI input.  
Digital data input from CD-DSP.  
Chip select signal input during register access.  
Wait signal output during register access. Host interface operates in  
parallel mode and the wait signal is output by the register switching during  
DRAM access.  
115  
XHDT  
I/O  
This pin functions as an open drain, and should therefore be pulled up. It  
should be pulled up when the host interface operates in serial mode as well.  
– 4 –  
CXD1856Q/R  
Pin No.  
116  
Symbol  
HRW  
I/O  
I
Description  
R/W signal input when the host interface operates in parallel mode. Serial  
clock input in serial mode.  
Interrupt request signal output. This pin functions as an open drain, and  
should therefore be pulled up.  
117  
118  
XHIRQ  
XRST  
O
I
Hardware reset signal input. All operation is initialized by setting this pin  
low.  
Chroma key signal. While the color specified as the key is output, this pin  
becomes low.  
When not used, leave this pin open.  
25  
26  
CKEY  
O
O
Video data judgement signal.  
While the image data within the frame memory is output, this pin becomes  
high; during the border color output or blanking, low.  
When not used, leave this pin open.  
DTVLD  
– 5 –  
CXD1856Q/R  
3. Electrical Characteristics  
3-1. Absolute Maximum Ratings  
(Ta = 25°C, VSS = 0V)  
Item  
Symbol  
VDD  
VI  
Rating  
–0.5 to +4.6  
–0.5 to VDD + 0.5  
–0.5 to +5.5  
–0.5 to VDD + 0.5  
–0.5 to +5.5  
–0.5 to +5.5  
1.0  
Unit Remarks  
V
Supply voltage  
Input pin voltage  
Input pin voltage  
Output pin voltage  
Output pin voltage  
I/O pin voltage  
1
V
2
VI  
V
3
VO  
V
4
VO  
V
VI/O  
V
Allowable power dissipation PD  
Operating temperature Topr  
W
°C  
°C  
–20 to +75  
Storage temperature  
Tstg  
–55 to +150  
1
XTL0I and XTL2I pins  
2
Input pins other than those in 1 above.  
3
4
XTL0O and XTL2O pins  
Output pins other than those in 3 above.  
3-2. Recommended Operating Conditions  
(Ta = –20 to +75°C, VSS = 0V)  
Item  
Symbol  
Min.  
3.0  
2.2  
2.2  
0
Typ.  
3.3  
Unit Remarks  
V
Max.  
3.6  
VDD  
5.0  
0.8  
50  
Supply voltage  
VDD  
1
High level input voltage VIH  
High level input voltage VIH  
Low level input voltage VIL  
V
2
V
V
Input rise time  
Input fall time  
Tr  
Tf  
0
ns  
ns  
°C  
0
50  
Operating temperature Topr  
–20  
75  
1
XTL0I and XTL2I pins  
2
I/O pins and input pins other than those in 1 above.  
– 6 –  
CXD1856Q/R  
3-3. DC Characteristics  
(Ta = –20 to +75°C, VSS = 0V, VDD = 3.3 ± 0.3V)  
Item  
Symbol Measurement conditions  
Min.  
Typ.  
Max.  
100  
Unit Remarks  
mA  
Average operating  
supply current  
IDD  
1
Input leak current  
II  
VI = 0 to 5.0V  
IOH = –2mA  
IOH = –100µA  
IOL = 4mA  
–40  
VDD – 0.8  
40  
µA  
2
High level output voltage VOH  
High level output voltage VOH  
Low level output voltage VOL  
Low level output voltage VOL  
V
2
VDD – 0.4  
V
2
0.4  
V
2
IOL = 100µA  
0.04  
V
VO = 0 to 5.0V,  
output disabled status  
2
Output leak current  
IOZ  
–40  
40  
µA  
3
Feedback resistance  
Logic threshold value  
RFB  
VI = 0V or VI = VDD  
250k  
1M  
VDD/2  
2.5M  
4
LVth  
V
5
High level output voltage VOH  
IOH = –12mA  
IOL = 12mA  
VDD/2  
V
5
Low level output voltage VOL  
VDD/2  
V
1
Input pins other than XTL0I and XTL2I  
2
3
4
5
I/O pins and output pins other than XTL0O and XTL2O  
Oscillators (between XTL0I and XTL0O, and between XTL2I and XTL2O)  
XTL0I and XTL2I pins  
XTL0O and XTL2O pins  
3-4. Clock Signal AC Characteristics  
tCX0  
tCX2  
tWLX0  
tWLX2  
XTL0I  
XTL2I  
tWHX0  
tWHX2  
Item  
Symbol  
fX0  
Min.  
Typ.  
Max.  
60  
Unit Remarks  
1
XTL0I frequency  
XTL0I cycle  
MHz  
1
33.3  
10  
ns  
t
t
t
CX0  
XTL0I high level interval  
XTL0I low level interval  
XTL2I frequency  
XTL2I cycle  
ns  
ns  
WHX0  
WLX0  
10  
2
44.7  
45.1584  
22.2  
45.4  
MHz  
fX2  
2
ns  
t
t
t
CX2  
XTL2I high level interval  
XTL2I low level interval  
1
8
ns  
ns  
WHX2  
WLX2  
8
When using in combination with the XTL0O pin as an oscillator, the maximum oscillation frequency is 50MHz.  
When using in combination with the XTL2O pin as an oscillator, the maximum oscillation frequency is 50MHz.  
2
– 7 –  
CXD1856Q/R  
3-5. Host Interface AC Characteristics  
3-5-1. Serial Mode (write, read)  
XHCS  
tSCS  
tWLSK  
tCSK  
tHCS  
HRW  
(SCK)  
tWHSK  
tSSI  
tHSI  
HA0  
(SI)  
tOHSQ  
tLZSQ  
tDSQ  
tHZSQ  
HD0  
(SQ)  
Item  
Symbol  
fSK  
Min.  
Max.  
2
Unit Remarks  
Serial clock frequency  
Serial clock cycle  
MHz  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
500  
100  
100  
0
15  
40  
15  
t
t
t
t
t
t
t
t
t
t
t
CSK  
Serial clock high level interval  
Serial clock low level interval  
Chip select setup time  
WHSK  
WLSK  
SCS  
Chip select hold time  
500  
30  
30  
0
HCS  
Serial input setup time  
SSI  
Serial input hold time  
HSI  
Serial output enable time  
Serial output determination time  
Serial output hold time  
LZSQ  
DSQ  
OHSQ  
HZSQ  
5
Serial output disable time  
0
– 8 –  
CXD1856Q/R  
3-5-2. Parallel Mode, Register Write  
HA0 to 3  
tSA  
tHA  
tWWL1  
tWCSH  
XHCS  
tSW  
HRW  
tSD1  
tHD1  
input  
HD0 to 7  
Item  
Address setup time  
Address hold time  
Symbol  
Min.  
20  
20  
20  
70  
0
Max.  
Unit Remarks  
ns  
ns  
ns  
t
t
t
t
t
t
t
SA  
HA  
Chip disable time  
WCSH  
WWL1  
SW  
2
Write pulse width  
ns  
Write command setup time  
HD input setup time  
HD input hold time  
ns  
1
25  
25  
ns  
SD1  
1
ns  
HD1  
1
Specified for the edge of XHCS or HRW, whichever is earlier.  
The data bus does not enter the read mode even when HRW rises ealier than XHCS.  
Interval during which both XHCS and HRW are low.  
2
<Notes on Operating Timing>  
Pay attention to the timing shown below for the CXD1856Q/R parallel mode write.  
XHCS  
HRW  
1. XHCS is enable after determining HRW.  
2. It is recommended that XHCS rises firstly and then HRW rises, through the rising order is not so much  
considered.  
– 9 –  
CXD1856Q/R  
3-5-3. Parallel Mode, Register Read  
HA0 to 8  
tWCSH  
tWRD1  
XHCS  
(CS)  
tSR  
tHR  
XHRW  
(WR)  
tDQ2  
tHZQ1  
tDQ1  
tLZQ1  
valid output  
HD0 to 7  
Item  
Chip disable time  
Symbol  
Min.  
Max.  
Unit Remarks  
20  
70  
10  
10  
0
ns  
ns  
ns  
ns  
t
t
t
t
t
t
t
t
WCSH  
WRD1  
SR  
Read pulse width  
Read setup time  
Read hold time  
HR  
1
HD output enable time (for CE)  
HD output determination time (for CE)  
HD output determination time (for HA)  
HD output disable time (for CE)  
ns  
LZQ1  
DQ1  
2
0
60  
60  
15  
ns  
2
ns  
DQ2  
ns  
HZQ1  
1
HD output is enabled when both conditions are met.  
HD output is determined when all conditions are met.  
2
– 10 –  
CXD1856Q/R  
3-6. Interface for CD Signal Processing LSI  
BCKFEDG = 0  
tBCKI  
tBCKI  
BCKI  
DATI  
tSBC1  
tHBC1  
LRCI, C2PO  
tHBC2  
tSBC2  
BCKFEDG = 1  
tBCKI  
tBCKI  
BCKI  
DATI  
tSBC1  
tHBC1  
LRCI, C2PO  
tHBC2  
tSBC2  
Item  
Symbol  
Min.  
Max.  
5.7  
Unit Remarks  
BCKI frequency  
BCKI pulse width  
MHz  
ns  
fBCKI  
87  
20  
20  
20  
20  
t
t
t
t
t
BCKI  
DATI setting time (for BCKI)  
DATI hold time (for BCKI)  
ns  
SBC1  
HBC1  
SBC2  
HBC2  
ns  
LRCI, C2PO setting time (for BCKI)  
LRCI, C2PO hold time (for BCKI)  
ns  
ns  
– 11 –  
CXD1856Q/R  
3-7. Image Data Output, Video Sync Signal Output AC Characteristics  
tCDCK  
tWLDCK  
DCLK  
tWHDCK  
tHPD  
R/Cr0 to 7  
G/Y0 to 7  
B/Cb0 to 7  
tDPD  
tDHSY  
tDHSY  
tDVSY  
tDCSY  
tDCBL  
tDFID  
HSYNC  
VSYNC  
CSYNC  
CBLNK  
tDVSY  
tDCSY  
tDCBL  
tDFID  
FID  
tDCKY  
CKEY  
tDDVLD  
DTVLD  
Item  
Symbol  
Min.  
0
Typ.  
13.5  
74.1  
37  
37  
Max.  
Unit Remarks  
1
DCLK frequency  
DCLK cycle  
MHz  
fDCK  
1
ns  
t
t
t
t
t
t
t
t
t
t
t
t
CDCK  
WHDCK  
WLDCK  
DPD  
1
DCLK high level interval  
DCLK low level interval  
Image data output determination time  
Image data output hold time  
HSYNC output delay time  
VSYNC output delay time  
CSYNC output delay time  
CBLNK output delay time  
FID output delay time  
ns  
1
ns  
1,  
1,  
1
2
2
15  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
HPD  
30  
30  
30  
30  
30  
47  
48  
DHSY  
DVSY  
DCSY  
DCBL  
DFID  
1
1
1
1
CKEY output delay time  
DTVLD output delay time  
1
DCKY  
DDVLD  
When both inputting and outputting DCLK. For output, a load of 75pF is connected to DCLK.  
2
The chart shows the case where the pixel data output is synchronized to the fall of DCLK, but is also the  
same when synchronized to the rise of DCLK.  
– 12 –  
CXD1856Q/R  
3-8. Video Sync Signal Input AC Characteristics  
DCLK  
tHHSY  
tHVSY  
tHCBL  
tHFID  
tSHSY  
tSVSY  
tSCBL  
tSFID  
tHHSY  
tHVSY  
tHCBL  
tHFID  
tSHSY  
tSVSY  
tSCBL  
tSFID  
HSYNC  
VSYNC  
CBLNK  
FID  
Item  
Symbol  
Min.  
5
Max.  
Unit Remarks  
1
HSYNC hold time  
HSYNC setup time  
VSYNC hold time  
VSYNC setup time  
CBLNK hold time  
CBLNK setup time  
FID hold time  
ns  
t
t
t
t
t
t
t
t
HHSY  
SHSY  
HVSY  
SVSY  
HCBL  
SCBL  
HFID  
1
5
ns  
1
5
ns  
1
5
ns  
1
5
ns  
1
5
ns  
1
5
ns  
1
FID setup time  
1
5
ns  
SFID  
When both inputting and outputting DCLK. For output, a load of 75pF is connected to DCLK.  
– 13 –  
CXD1856Q/R  
3-9. fsc System Signal Output, DCLK Output AC Characteristics  
tCX0  
XTL0O  
FSC  
tCFSC  
tDFSC  
tDFHR  
tDDCK  
tWHFSC  
tWLFSC  
FHREF  
tCDCK  
tWHDCK  
DCLK  
tWLDCK  
Item  
Symbol  
fFSC  
Min.  
Typ.  
Max.  
Unit Remarks  
1
FSC frequency  
FSC cycle  
1/(i × tCX0)  
i × tCX0  
i × tCX0/2  
i × tCX0/2  
1
t
t
t
t
t
CFSC  
1
FSC high level interval  
FSC low level interval  
FSC output delay time  
WHFSC  
WLFSC  
DFSC  
1
15  
15  
ns  
ns  
2
FHREF output delay time  
DCLK frequency  
DFHR  
fDCK  
1/(j × tCX0)  
j × tCX0  
j × tCX0/2  
j × tCX0/2  
2
DCLK cycle  
t
t
t
t
CDCK  
2
DCLK high level interval  
DCLK low level interval  
DCLK output delay time  
WHDCK  
WLDCK  
DDCK  
2
15  
ns  
1
The frequency division ratio i can be selected from 8 or 16.  
The frequency division ratio j can be selected from 2 or 4.  
2
– 14 –  
CXD1856Q/R  
3-10. Audio Interface  
tBCKO  
tBCKO  
BCKO  
DATO  
LRCO  
tDDAT  
tDLRC  
Item  
Symbol  
Min.  
Max.  
3.1  
Unit Remarks  
BCKO frequency  
BCKO pulse width  
MHz  
ns  
fBCKO  
160  
t
t
t
BCKO  
DDAT  
DLRC  
DATO delay time (for BCKO)  
LRCO delay time (for BCKO)  
40  
ns  
40  
ns  
– 15 –  
CXD1856Q/R  
3-11. DRAM Interface AC Characteristics  
3-11-1. Write Cycle  
tRP  
XRAS  
XCAS0 to 3  
XMWE  
tPC  
tRCD  
tCAS  
tCP  
tRSH  
tWCS  
tASC  
tDS  
tWCH  
tASR  
tRAH  
tCAH  
tDH  
MA0 to 9  
MD0 to 15  
Item  
Symbol  
Min.  
Typ.  
2 × tv  
2 × tv  
tv  
Max.  
Unit Remarks  
2
RAS precharge time  
ns  
t
RP  
2
RAS to CAS delay time  
RAS hold time  
ns  
t
t
t
t
t
t
t
t
t
t
t
t
t
RCD  
RSH  
PC  
2
ns  
2
Fast page mode cycle time  
CAS pulse width  
ns  
2 × tv  
tv  
2
ns  
CAS  
CP  
2
CAS precharge time  
ns  
tv  
Write command setup time  
Write command hold time  
Row address setup time  
Row address hold time  
Column address setup time  
Column address hold time  
Write data setup time  
Write data hold time  
ns  
ns  
WCS  
WCH  
ASR  
RAH  
ASC  
CAH  
DS  
tv  
2 × tv  
tv  
2
ns  
2
ns  
tv  
2
ns  
tv  
2
ns  
tv  
ns  
ns  
tv  
DH  
tv  
1
tv is the basic clock cycle for the DRAM interface circuit.  
Same as the DRAM interface read cycle.  
2
– 16 –  
CXD1856Q/R  
3-11-2. Read Cycle  
XRAS  
tRP  
tPC  
tRCD  
tCAS  
tCP  
tRSH  
XCAS0 to 3  
XMWE  
tRCS  
tRCH  
tASR  
tRAH  
tASC  
tCAH  
tMDS  
MA0 to 9  
tMDH  
MD0 to 15  
Item  
Symbol  
Min.  
Typ.  
4 × tv  
tv  
Max.  
Unit Remarks  
Read command setup time  
Read command hold time  
Read data setup time  
Read data hold time  
ns  
ns  
ns  
ns  
t
t
t
t
RCS  
RCH  
MDS  
MDH  
2
8
1
tv is the basic clock cycle for the DRAM interface circuit.  
See the DRAM interface write cycle for items which appear in the timing chart but not in the table.  
2
– 17 –  
CXD1856Q/R  
4. Description of Functions  
4-1. Host Interface Function  
The CXD1856Q/R operation is controlled by writing and reading registers. Write and read can also be  
performed to an external DRAM via the registers. See the separately issued Register Manual for the  
relationship between the registers and operation.  
The host interface operates while XHCS is low and does not operate while XHCS is high.  
The host interface operating mode can be set to 4-line serial or 8-bit parallel. The operating mode is selected  
automatically at the end of the initial access after the hardware has been reset. (See the figure below.)  
Registers are not accessed correctly until this selection has been determined, or in other words until the end  
of the initial access after the hardware has been reset. Also, the HA3 to HA0 inputs should all be fixed low  
during the operating mode selection access.  
XHCS  
HRW  
XHCS  
HRW  
Access judged as parallel mode  
XHCS  
HRW  
8 rises  
Access judged as serial mode  
The serial mode signal format is as follows.  
XHCS  
HRW  
(SCK)  
HA0  
(SI)  
bit0  
bit0  
bit1  
bit1  
bit2  
bit2  
bit3  
bit4  
bit4  
bit5  
bit5  
bit6  
bit6  
bit7  
bit7  
bit8  
bit8  
bit9  
byte0  
byte1  
HD0  
(SO)  
bit3  
bit9  
1) In serial mode, input data is fetched in sync with the rise of HRW (SCK). Output data is synchronized with  
the fall of HRW.  
2) The initial byte (byte0) of the input after XHCS changes to low is a command. This command determines  
the subsequent byte processing. See the following page for a description of commands and processing.  
3) Input data is processed in one byte units. Therefore, when the final data consists of a number of bits which  
is less than one byte, this deficient data is not processed. Be sure to input data with a number of bits which  
is an integer multiple of 8. Also, the 0x20, 0x60, 0xA0 and 0xE0 commands process data in two byte units,  
so data which is an even multiple of 8 should be input when using these commands.  
– 18 –  
CXD1856Q/R  
Successive  
odd-numbered even-numbered  
input bytes  
Successive  
Command write  
bit7 ··· bit0 read  
first Auto  
bit inc.  
2nd input byte 3rd input byte 4th input byte  
input bytes  
Register No.  
+U/L byte select  
Register No.  
+U/L byte select  
Register No. LSB  
+U/L byte select first  
00000000 write  
00010000 read  
Register data  
don’t care  
Register data  
No  
No  
Register No.  
+U/L byte select  
Register No.  
+U/L byte select  
Register No. LSB  
+U/L byte select first  
don’t care  
Register data Register data Register data  
Register data LSB  
00100000 write Register No.  
00110000 read Register No.  
01100000 write Register No.  
01110000 read Register No.  
No  
(Lower byte)  
(Upper byte)  
(Lower byte)  
(Upper byte)  
first  
LSB  
first  
don’t care  
don’t care  
don’t care  
don’t care  
No  
Register data Register data Register data  
Register data LSB  
Yes  
Yes  
No  
(Lower byte)  
(Upper byte)  
(Lower byte)  
(Upper byte)  
first  
LSB  
first  
don’t care  
don’t care  
don’t care  
don’t care  
Register No.  
10000000 write  
Register No.  
+U/L byte select  
Register No. MSB  
+U/L byte select first  
Register data  
don’t care  
Register data  
don’t care  
+U/L byte select  
Register No.  
10010000 read  
Register No.  
+U/L byte select  
Register No. MSB  
+U/L byte select first  
No  
+U/L byte select  
Register data Register data Register data  
Register data MSB  
10100000 write Register No.  
10110000 read Register No.  
11100000 write Register No.  
11110000 read Register No.  
Description of Commands  
No  
(Upper byte)  
(Lower byte)  
(Upper byte)  
(Lower byte)  
first  
MSB  
first  
don’t care  
don’t care  
don’t care  
don’t care  
No  
Register data Register data Register data  
Register data MSB  
Yes  
Yes  
(Upper byte)  
(Lower byte)  
(Upper byte)  
(Lower byte)  
first  
MSB  
first  
don’t care  
don’t care  
don’t care  
don’t care  
1) The "write read" column indicates whether that command writes data to or reads data from the registers.  
2) Bytes marked with "Register No. + U/L byte select" specify the register to be accessed as well as whether  
to access the upper or lower bytes of the register. The upper 7 bits specify the register No., and the  
lowermost bit specifies the upper or lower bytes. When the lowermost bit is "0", the lower bytes are  
selected, when "1", the upper bytes are selected.  
3) Bytes marked with "Register No." specify the register to be accessed. The upper 7 bits specify the register  
No., and the lowermost bit can be either "0" or "1".  
4) The "Auto inc." column indicates the presence of the register No. auto increment function. For commands  
without this function, the most recently input register No. is valid. For example, in case of the command  
0x00, the register data input by the odd bytes is written to the register specified by the previous byte's input.  
For the command 0x20, all subsequent data is written sequentially to the register specified by the 2nd input  
byte.  
5) For commands with the register No. auto increment function, the register specified by the 2nd input byte is  
accessed first, and then access shifts to the register No. incremented by one each time the data for one  
register (2 bytes) is read or written. For example, when using the command 0x60, if 0x08 is specified by the  
2nd input byte, the 3rd and 4th input bytes are written to register 0x08, and the 5th and 6th input bytes are  
written to register 0x09.  
6) Bytes marked with "register data" are the data to be written to the registers during write commands.  
– 19 –  
CXD1856Q/R  
7) When executing read commands, register data output starts from the 3rd output byte (bit 16). All earlier  
output data is invalid data. Access shifts to a new register each time the output for one register (2 bytes) is  
finished. For example, in case of the command 0x10, the byte data specified by the 2nd input byte is output  
to the 3rd output byte, the other byte data in the same register is output to the 4th byte, and the byte data  
specified by the 4th input byte is output to the 5th output byte.  
8) The "first bit" column indicates whether LSB first or MSB first processing is performed for input or output of  
the 2nd and subsequent bytes. This specification does not apply to the 1st byte (command). Commands  
are normally LSB first. If LSB first is specified, processing is performed in the order where the initial bit in  
each byte is LSB and the final bit is MSB. This order is reversed for MSB first. Note that for registers, bit 15  
noted in the Register Manual is MSB and bit 0 is LSB.  
4-2. DRAM Interface Function  
The applicable DRAMs are speed version 70 devices (RAS access time (Trac) of 70ns or less) with the fast  
page mode function.  
When the total capacity of the external DRAM is 4 Mbits, use a 2CAS type DRAM with a configuration of 256  
Kwords × 16 bits. When the total capacity is 8 Mbits, use two 2CAS type DRAMs with a configuration of 256  
Kwords × 16 bits or 512 Kwords × 8 bits.  
Refresh is performed automatically using RAS-only-refresh. External control is not necessary.  
The DRAM is divided into the image frame memory, audio bit stream buffer, video bit stream buffer, user  
data and on-memory register areas.  
The user data area can be used freely by the user, and CD-ROM decoded output can also be transferred to  
this area. This area can be used to store video CD PSD, etc.  
The desired DRAM areas can be accessed from the control microcomputer via the registers.  
4-3. CD-ROM Decoder Function  
CD signal processor LSI interface  
The CD-ROM decoder has a CD signal processor LSI (CD-DSP) interface which directly interfaces the serial  
data output from the CD-DSP. This interface supports a wide variety of input formats to enable connection  
with general CD-DSP.  
CD-ROM data decoding (supports CD-ROM XA format mode2, form1 and form2)  
CD-ROM data input from the CD-DSP supports CD-ROM XA format (mode2, form1 and form2).  
Input CD-ROM data is decoded by the CD-ROM decoder block. Also, the CD-DA signal input from the CD-  
DSP can be output directly from the audio interface.  
The CD-ROM decoder has the following decoding and data transfer operating modes. The real-time  
correction and write-only modes facilitate the loading of video CD PSD to the external DRAM, etc.  
1) Auto transfer mode  
The MPEG pack data within one sector of the video CD is automatically transferred to the system  
decoder, where the audio stream sector or video stream sector can be decoded. This mode transfers  
2324 bytes counted from the initial byte of user data within one sector to the system decoder.  
2) Real-time correction mode  
This mode executes error detection and correction processing for mode2, form1 sectors. The 2048 bytes  
of user data within the error processed sector are transferred to the user area of the external DRAM. The  
4 bytes of header information within the sector can also be loaded in the on-memory register within the  
DRAM.  
3) Write-only mode  
This mode transfers the 2340 bytes of header, subheader and user data within one sector to the user area  
of the external DRAM. When a form1 sector is input, error detection and correction processing is  
performed and then the data is transferred to the buffer memory. When a form2 sector is input, the data is  
transferred as is.  
– 20 –  
CXD1856Q/R  
CD-DSP Input Signal Formats  
1) 32-bit slot, MSB first, BCKMOD1, 0 = 00, LSBFST = 0  
LRCI  
BCKI  
Lch  
Rch  
0
15 16  
31  
MSB  
LSB MSB  
LSB  
D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
DATI  
C2PO  
Upper  
Lower  
Upper  
Lower  
2) 32-bit slot, LSB first, BCKMOD1, 0 = 00, LSBFST = 1  
LRCI  
BCKI  
Lch  
Rch  
0
15 16  
31  
LSB  
MSB LSB  
MSB  
D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14 D15 D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14 D15  
DATI  
C2PO  
Upper  
Lower  
Upper  
Lower  
3) 48-bit slot, MSB first, BCKMOD1, 0 = 01, LSBFST = 0  
LRCI  
BCKI  
Lch  
Rch  
0
23 24  
LSB  
47  
MSB  
MSB  
LSB  
DATI  
D15 D14D13D12 D11D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
D15 D14D13 D12D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
C2PO  
Upper  
Lower  
Upper  
Lower  
– 21 –  
CXD1856Q/R  
4) 48-bit slot, LSB first, BCKMOD1, 0 = 01, LSBFST = 1  
LRCI  
BCKI  
Lch  
Rch  
0
23 24  
MSB  
47  
LSB  
LSB  
MSB  
DATI  
D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10D11D12 D13D14 D15  
D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10D11 D12D13 D14D15  
C2PO  
Upper  
Lower  
Upper  
Lower  
5) 64-bit slot, MSB first, BCKMOD1, 0 = 10, LSBFST = 0  
LRCI  
BCKI  
Lch  
Rch  
0
31 32  
LSB  
63  
MSB  
MSB  
LSB  
DATI  
don't care  
Upper  
don't care  
Upper  
15 1413 12 11 10  
9
8
7
6
5
4
3
2
1
0
15 14 13 1211 10  
9
8
7
6
5
4
3
2
1
0
C2PO  
Lower  
Lower  
6) 64-bit slot, LSB first, BCKMOD1, 0 = 10, LSBFST = 1  
LRCI  
BCKI  
Lch  
Rch  
0
31 32  
63  
LSB  
MSB  
LSB  
MSB  
DATI  
don't care  
Upper  
don't care  
Upper  
0
1
2
3
4
5
6
7
8
9
1011 12 13 14 15  
0 1 2 3 4 5 6 7 8 9 10 11 1213 14 15  
C2PO  
Lower  
Lower  
– 22 –  
CXD1856Q/R  
4-4. System Decoder Function  
The MPEG1 system layer (ISO/IEC 11172-1) is decoded, the audio and video bit streams are separated, and  
each bit stream is transferred to the respective bit stream buffer.  
The MPEG1 bit stream input can be selected from either the built-in CD-ROM decoder or the host interface.  
The system decoder has a 128-word (256-byte) FIFO for the bit stream input.  
Audio and video sync playback are controlled according to the time stamp within the bit stream.  
4-5. Video Decoder Function  
The MPEG1 video layer (ISO/IEC 11172-2) is decoded. This function supports the range where  
constrained_parameter_flag = "1" and video CD high resolution still picture.  
Video CD high resolution still picture (NTSC, PAL) can be decoded with a single external 4-Mbit DRAM.  
Special decoding functions are as follows. Slow playback, fast forward and other modes can be realized by  
combining these functions.  
I-Play: Only I-Pictures are decoded.  
Still (Pause): Decoding is paused.  
1 Frame Play: Only one frame (picture) is decoded.  
IP-Play: Only I and P-Pictures are decoded.  
IPB-Play: Alternate frames of continuous B-Pictures and all I and P-Pictures are decoded.  
This function supports digest play.  
The various information in the bit stream is loaded to the on-memory register area within the external DRAM.  
4-6. Video Post Processor and Sync Generator Functions  
The image data output format can be selected from 24-bit RGB, 24-bit YCbCr and 16-bit YCbCr. See the  
following page.  
Fade in and fade out are allowed.  
Image enlargement and reduction are allowed.  
The CXD1856Q/R contains an OSD color table and selector, and OSD display is achieved by inputting the  
OSD character signal.  
The video sync signal can be generated using the built-in sync generator. Image data can also be output in  
sync with an externally input video sync signal.  
– 23 –  
CXD1856Q/R  
DCLK  
HSYNC  
R0 to 7  
G0 to 7  
B0 to 7  
R (n)  
G (n)  
B (n)  
R (n + 1)  
G (n + 1)  
B (n + 1)  
R (0)  
G (0)  
B (0)  
R (1)  
G (1)  
B (1)  
R (2)  
G (2)  
B (2)  
R (3)  
G (3)  
B (3)  
24-bit RGB output format  
DCLK  
HSYNC  
Y0 to 7  
Y (n)  
Cb (n)  
Cr (n)  
Y (n + 1)  
Cb (n + 1)  
Cr (n + 1)  
Y (0)  
Cb (0)  
Cr (0)  
Y (1)  
Cb (1)  
Cr (1)  
Y (2)  
Cb (2)  
Cr (2)  
Y (3)  
Cb (3)  
Cr (3)  
Cb0 to 7  
Cr0 to 7  
24-bit YCbCr output format  
DCLK  
HSYNC  
Y0 to 7  
C0 to 7  
Y (n)  
Y (n + 1)  
Cr (n)  
Y (0)  
Y (1)  
Y (2)  
Y (3)  
Cb (n)  
Cb (0)  
Cr (0)  
Cb (2)  
Cr (2)  
16-bit YCbCr output format  
Note)  
The subscript (i) indicates the data for pixel i.  
The above timing charts show the timing when the pixel data output is synchronized with the fall of DCLK.  
The pixel data output can also be synchronized with the rise of DCLK.  
– 24 –  
CXD1856Q/R  
4-7. Audio Decoder Function  
MPEG audio stream decoding is performed for MPEG1 standard (ISO/IEC 11172-3) layer 1 and layer 2.  
Monaural, dual, stereo and joint stereo decoding modes are supported.  
All MPEG1 standard sampling frequencies (32kHz, 44.1kHz, 48kHz) are supported.  
All MPEG1 standard bit rates are supported.  
Layer 1: 32Kbps (monaural/stereo) to 448Kbps (monaural/stereo)  
Layer 2: 32Kbps (monaural) to 384Kbps (stereo)  
The audio decoder's audio interface output port is equipped with a PCM audio output which outputs decoded  
audio data in bit serial format and a digital audio interface output (digital out). The audio interface is set by  
setting the internal registers.  
1) LRCK and BCK generation  
The LR clock and bit clock can be generated by frequency dividing the clock input from external pins XTLI  
or FSXI. The generated clocks are output from the BCKO and LRCO pins, respectively. LRCO and BCKO  
can be output in the desired polarity. Also, the number of slots per sample supports the three types of 32,  
48 and 64 bit clocks/LRCK.  
2) PCM audio output format  
The PCM audio output format can be set to any of the following combinations to allow connection with a  
wide range of 1-bit D/A converters.  
16-bit word length, MSB first or LSB first, frontward truncation or rearward truncation  
18-bit word length, MSB first or LSB first, frontward truncation or rearward truncation  
20-bit word length, MSB first or LSB first, frontward truncation or rearward truncation  
24-bit word length, MSB first or LSB first, frontward truncation or rearward truncation  
3) Digital out format  
The digital out output format supports the type2, form1 format for consumer use. The output word length  
can be selected from 16, 18, 20 or 24 bits.  
4) Decoded channel assignment  
Channels 1 and 0 of the audio sample obtained by decoding the MPEG audio stream can be assigned to  
the L and R channel outputs in any combination.  
5) Audio mute  
The audio output contains a zero-cross mute circuit. Zero-cross detection is performed for 44 sample  
sections (approximately 0.1ms when fs = 44.1kHz), and if zero-cross is not detected, the output is forcibly  
muted.  
6) Attenuator  
The audio output contains an attenuator circuit. Attenuation of –12dB can be obtained by setting the  
internal register.  
7) CD-DA output mode  
When playing back a CD-DA disc, the data input from the CD-DSP can be output directly from the PCM  
audio output (DATO) and the digital audio interface output port (DOUT). Output ports LRCO and BCKO can  
also select and output the clock inputs LRCI and BCKI from the CD-DSP.  
– 25 –  
CXD1856Q/R  
PCM Audio Output Formats  
1) 64-bit slot, frontward truncation, LSB first, OSLT1, 0 = 10, OTRUNK = 1, OLSBFST = 1  
LRCO  
BCKO  
Lch  
Rch  
0
31 32  
63  
LSB  
MSB  
LSB  
MSB  
DATO  
0
1
2
2
3
3
4
4
5
5
6
6
7
7
8
8
9
9
10 11 12 13 14 15 16 1718 19 20 21 22 23  
0
1
2
2
3
3
4
4
5
5
6
6
7
7
8
8
9
9
1011 12 13 14 15 16 17 18 1920 21 22 23  
DAL1, 0 = 11  
DAL1, 0 = 10  
DAL1, 0 = 01  
DAL1, 0 = 00  
0
1
10 11 12 13 14 15 16 1718 19  
0
1
1011 12 13 14 15 16 17 18 19  
0
0
1
1
2
2
3
3
4
4
5
5
6
6
7
7
8
8
9
9
10 11 12 13 14 15 16 17  
0
0
1
1
2
2
3
3
4
4
5
5
6
6
7
7
8
8
9
9
1011 12 13 14 15 16 17  
10 11 12 13 14 15  
1011 12 13 14 15  
2) 64-bit slot, rearward truncation, LSB first, OSLT1, 0 = 10, OTRUNK = 0, OLSBFST = 1  
LRCO  
BCKO  
Lch  
Rch  
0
31 32  
MSB  
63  
LSB  
LSB  
MSB  
DATO  
0
1
2
3
4
0
5
1
6
7
8
9
1011 12 13 14 15 16 17 18 1920 21 22 23  
0
1
2
3
4
0
5
1
6
7
8
9
10 11 1213 14 15 16 17 18 19 20 2122 23  
DAL1, 0 = 11  
DAL1, 0 = 10  
DAL1, 0 = 01  
DAL1, 0 = 00  
2
0
3
1
4
2
5
3
6
4
7
5
8
6
9
7
10 11 12 13 14 1516 17 18 19  
2
0
3
1
4
2
5
3
6
4
7
5
8
6
9
7
10 11 12 13 14 15 16 1718 19  
8
6
9
7
10 11 1213 14 15 16 17  
8
6
9
7
10 11 12 13 14 1516 17  
0
1
2
3
4
5
8
9
1011 12 13 14 15  
0
1
2
3
4
5
8 9 10 11 1213 14 15  
LSB/MSB first setting  
Data word length setting  
DAL1, 0 = 11: 24 bits  
DAL1, 0 = 10: 20 bits  
DAL1, 0 = 01: 18 bits  
DAL1, 0 = 00: 16 bits  
OLSBF = 1: set to LSB first  
OLSBF = 0: set to MSB first  
– 26 –  
CXD1856Q/R  
3) 48-bit slot, frontward truncation, LSB first, OSLT1, 0 = 01, OTRUNK = 1, OLSBFST = 1  
LRCO  
BCKO  
Lch  
Rch  
0
23 24  
47  
LSB  
MSB LSB  
MSB  
DATO  
D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10D11D12D13D14D15D16D17D18D19D20D21D22D23 D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10D11D12D13D14D15D16D17D18D19D20D21D22D23  
DAL1, 0 = 11  
D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10D11D12D13D14D15D16D17D18D19  
D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10D11D12D13D14D15D16D17D18D19  
DAL1, 0 = 10  
D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10D11D12D13D14D15D16D17  
D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10D11D12D13D14D15D16D17  
DAL1, 0 = 01  
DAL1, 0 = 00  
D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10D11D12D13D14D15  
D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10D11D12D13D14D15  
4) 48-bit slot, rearward truncation, LSB first, OSLT1, 0 = 01, OTRUNK = 0, OLSBFST = 1  
LRCO  
BCKO  
Lch  
Rch  
0
23 24  
47  
LSB  
MSB LSB  
MSB  
DATO  
D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10D11D12D13D14D15D16D17D18D19D20D21D22D23 D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10D11D12D13D14D15D16D17D18D19D20D21D22D23  
DAL1, 0 = 11  
D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10D11D12D13D14D15D16D17D18D19  
D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10D11D12D13D14D15D16D17D18D19  
DAL1, 0 = 10  
D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10D11D12D13D14D15D16D17  
D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10D11D12D13D14D15D16D17  
DAL1, 0 = 01  
DAL1, 0 = 00  
D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10D11D12D13D14D15  
D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10D11D12D13D14D15  
LSB/MSB first setting  
Data word length setting  
OLSBF = 1: set to LSB first  
OLSBF = 0: set to MSB first  
DAL1, 0 = 11: 24 bits  
DAL1, 0 = 10: 20 bits  
DAL1, 0 = 01: 18 bits  
DAL1, 0 = 00: 16 bits  
– 27 –  
CXD1856Q/R  
5) 32-bit slot, LSB first, OSLT1, 0 = 00, OLSBFST = 1  
LRCO  
BCKO  
Lch  
Rch  
0
15 16  
31  
LSB  
MSB LSB  
MSB  
D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14 D15 D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14 D15  
DATO  
6) 32-bit slot, MSB first, OSLT1, 0 = 00, OLSBFST = 0  
LRCO  
BCKO  
Lch  
Rch  
0
15 16  
31  
MSB  
LSB MSB  
LSB  
D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
DATO  
LSB/MSB first setting  
Data word length: 16 bits  
OLSBF = 1: set to LSB first  
OLSBF = 0: set to MSB first  
– 28 –  
CXD1856Q/R  
Digital Audio Interface Output Formats  
1) 24 bits/word  
Parity  
Channel status  
User data  
Validity flag  
0
3
4
27 28 29 30 31  
Sync  
preamble  
LSB  
MSB  
V
U
C P  
2) 20 bits/word  
0
3
4
7
8
27 28 29 30 31  
Sync  
preamble  
(0) data  
LSB  
MSB  
V
U
C P  
3) 18 bits/word  
0
3
4
9
10  
27 28 29 30 31  
Sync  
preamble  
LSB  
MSB  
V
U
C P  
(0) data  
4) 16 bits/word  
0
3
4
11 12  
27 28 29 30 31  
Sync  
preamble  
(0) data  
LSB  
MSB  
V
U
C P  
Data word length setting  
DOL1, 0 = 11: 24 bits  
DOL1, 0 = 10: 20 bits  
DOL1, 0 = 01: 18 bits  
DOL1, 0 = 00: 16 bits  
– 29 –  
CXD1856Q/R  
Package Outline  
Unit: mm  
120PIN QFP (PLASTIC)  
31.2 ± 0.2  
28.0 ± 0.2  
+ 0.1  
0.15 – 0.05  
0.1  
90  
61  
91  
60  
A
120  
31  
0.15 ± 0.1  
1
30  
0.35 ± 0.1  
3.45 ± 0.25  
0.8  
0.16  
M
0.15 ± 0.1  
0° to 10°  
DETAIL A  
PACKAGE STRUCTURE  
EPOXY RESIN  
PACKAGE MATERIAL  
LEAD TREATMENT  
LEAD MATERIAL  
SOLDER PLATING  
COPPER / 42 ALLOY  
4.9g  
SONY CODE  
EIAJ CODE  
QFP-120P-L01  
QFP120-P-2828-A  
JEDEC CODE  
PACKAGE WEIGHT  
120PIN QFP (PLASTIC)  
31.20 ± 0.20  
28.00 ± 0.20  
0.15 ± 0.05  
0.10  
90  
61  
91  
60  
A
120  
31  
1
30  
0.80  
0.35 ± 0.10  
3.5 ± 0.2  
0.16  
M
0.15 ± 0.10  
0° to 10°  
DETAIL A  
PACKAGE STRUCTURE  
PACKAGE MATERIAL  
EPOXY RESIN  
SONY CODE  
QFP-120P-L022  
QFP120-P-2828  
LEAD TREATMENT  
LEAD MATERIAL  
PACKAGE MASS  
SOLDER PLATING  
42 ALLOY  
EIAJ CODE  
JEDEC CODE  
4.9 g  
– 30 –  
CXD1856Q/R  
Package Outline  
Unit: mm  
120PIN LQFP (PLASTIC)  
18.0 ± 0.2  
16.0 ± 0.1  
1.7 MAX  
1.4 ± 0.1  
S
90  
61  
0.1  
S
91  
60  
B
A
120  
31  
1
30  
M
0.5  
0.22 ± 0.05  
0.1  
S
0.1 ± 0.05  
0.22 ± 0.05  
(0.2)  
0.25  
0° to 10°  
DETAIL  
A
DETAIL  
B
PACKAGE STRUCTURE  
EPOXY RESIN  
PACKAGE MATERIAL  
LEAD TREATMENT  
LEAD MATERIAL  
SOLDER PLATING  
SONY CODE  
EIAJ CODE  
LQFP-120P-L01  
LQFP120-P-1616  
COPPER ALLOY  
0.8g  
JEDEC CODE  
PACKAGE MASS  
– 31 –  

相关型号:

CXD1910AQ

Digital Video Encoder
SONY

CXD1913AQ

Digital Video Encoder
SONY

CXD1913Q

Color Encoder Circuit
ETC

CXD1914Q

Digital Video Encoder
SONY

CXD1915R

Digital Video Encoder
SONY

CXD1916R

Digital Video Encoder
SONY

CXD1922Q

MPEG-2 Video Encoder
SONY

CXD1930Q

MPEG Video Decoder
SONY

CXD1944R

IEEE1394 3-port 200Mbps Cable Transceiver/Arbiter
SONY

CXD1945R

Transceiver
ETC

CXD1947Q

IEEE1394 LINK Layer / PCI Bridge LSI
SONY

CXD1948R

IEEE1394 Link Layer LSI for DVB and DSS
SONY