CXA3266Q [SONY]

PLL IC for LCD Monitor/Projector; PLL IC为液晶显示器/投影仪
CXA3266Q
型号: CXA3266Q
厂家: SONY CORPORATION    SONY CORPORATION
描述:

PLL IC for LCD Monitor/Projector
PLL IC为液晶显示器/投影仪

显示器 CD
文件: 总60页 (文件大小:762K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
CXA3266Q  
PLL IC for LCD Monitor/Projector  
Description  
48 pin QFP (Plastic)  
The CXA3266Q is a PLL IC for LCD monitors/  
projectors with built-in phase detector, charge pump,  
VCO and counter.  
The various internal settings are performed by  
serial data via a 3-line bus.  
Applicable LCD monitor/projector resolution are  
NTSC, PAL, VGA, SVGA, XGA, SXGA and UXGA  
etc.  
The CXA3266Q is the same package as the  
previous CXA3106Q and CXA3106AQ. They have  
the same pin configuration excluding Pin 38.  
Functions  
Phase detector enable  
UNLOCK output  
Output TTL disable function  
Power saving function (2 steps)  
Features  
Supply voltage: 5 ± 0.25V single power supply  
Package: 48-pin QFP  
Power consumption: 328mW  
Sync input frequency: 10 to 120kHz  
Clock output signal frequency: 10 to 203MHz  
Clock delay: 8/32 to 48/32 CLK  
Sync delay: 8/32 to 48/32 CLK  
I/O level: TTL, PECL (complementary)  
Low clock jitter  
Applications  
CRT displays  
LCD projectors  
LCD monitors  
Multi-media  
Digital TV  
1/2 clock output  
TTL output high level control function  
Pin Configuration (Top View)  
35  
32 31  
30 29 28 27 26 25  
36  
34 33  
IOGND  
VOCLP  
PLLVCC  
PLLGND  
VCOVCC  
VCOGND  
VCOHGND  
IREF  
DSYNC  
CLK  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
24  
23  
22  
21  
20  
CLKN  
CLK/2  
CLK/2N  
19 DGND  
DVCC  
18  
17  
16  
15  
14  
13  
UNLOCK  
DIVOUT  
SEROUT  
CS  
RC2  
RC1  
IRGND  
IRVCC  
TLOAD  
9
10 11 12  
1
2
3
4
5
6
7
8
Sony reserves the right to change products and specifications without prior notice. This information does not convey any license by  
any implication or otherwise under any patents or other right. Application circuits shown, if any, are typical examples illustrating the  
operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits.  
– 1 –  
E99426-PS  
CXA3266Q  
Absolute Maximum Ratings (Ta = 25°C)  
Supply voltage  
IOVCC, DVCC, TTLVCC, PECLVCC, PLLVCC,  
VCOVCC, IRVCC,  
–0.5 to +7.0  
–0.5 to +0.5  
V
V
IOGND, DGND, TTLGND, VCOHGND, PLLGND,  
VCOGND, IRGND  
Input voltage  
VCOH, VCOL, SYNCH, SYNCL, VCO, HOLD,  
SYNC, SENABLE, SCLK, SDATA, TLOAD, CS, VOCLP IOGND – 0.5 to IOVCC + 0.5 V  
RC2  
IRGND – 0.5 to IRVCC + 0.5 V  
Output current  
SEROUT, DIVOUT, UNLOCK, CLK/2N, CLK/2,  
CLKN, CLK, DSYNC, CLK/2L, CLK/2H, CLKL,  
CLKH, DSYNCH, DSYNCL, VBB  
IREF, RC1  
–30 to +30  
–2 to +2  
mA  
mA  
°C  
Storage temperature Tstg  
Allowable power dissipation  
PD  
–65 to +150  
860  
mW  
Recommended Operating Conditions  
Min.  
4.75  
Typ.  
Max.  
5.25  
• Supply voltage  
IOVCC, DVCC, TTLVCC, PECLVCC,  
PLLVCC, VCOVCC, IRVCC  
IOGND, DGND, TTLGND, VCOHGND,  
PLLGND, VCOGND, IRGND  
DIN (PECL) 1 H level  
5.00  
0
V
V
–0.05  
0.05  
• Digital input  
IOVCC – 1.1  
DIN (PECL) 1 L level  
DIN (TTL) 2 H level  
IOVCC – 1.5  
V
V
2.0  
DIN (TTL) 2 L level  
0.8  
V
VOCLP (clamp voltage)  
TTLGND + 2.4  
TTLVCC  
V
• SYNC, SYNCH, SYNCL input jitter  
• Operating ambient temperature  
Ta  
ns  
–20  
+75  
°C  
1
VCOH, VCOL, SYNCH, SYNCL  
2
VCO, HOLD, SYNC, SENABLE, SCLK, SDATA, TLOAD, CS  
– 2 –  
CXA3266Q  
– 3 –  
CXA3266Q  
Pin No.  
1
Symbol  
IOVCC  
Description  
Reference voltage level  
Digital power supply  
Digital GND  
5V  
2
IOGND  
VCOH  
0V  
3
External VCO input  
PECL  
PECL  
TTL  
4
VCOL  
External inverted VCO input  
External VCO input  
5
VCO  
6
HOLD  
Phase detector disable signal input  
Sync input  
TTL  
7
SYNCH  
SYNCL  
SYNC  
PECL  
PECL  
TTL  
8
Inverted sync input  
9
Sync input  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
SENABLE  
SCLK  
Control signal (enable)  
Control signal (clock)  
Control signal (data)  
Programmable counter test input  
Chip select  
TTL  
TTL  
SDATA  
TLOAD  
CS  
TTL  
TTL  
TTL  
SEROUT  
DIVOUT  
UNLOCK  
DVCC  
Register read output  
Programmable counter test output  
Unlock signal output  
Digital power supply  
Digital GND  
TTL  
TTL  
TTL  
5V  
DGND  
CLK/2N  
CLK/2  
0V  
Inverted 1/2 clock output  
1/2 clock output  
TTL  
TTL  
CLKN  
Inverted clock output  
Clock output  
TTL  
CLK  
TTL  
DSYNC  
TTLGND  
TTLVCC  
IOGND  
PECLVCC  
CLK/2L  
CLK/2H  
CLKL  
Delay sync signal output  
TTL output GND  
TTL  
0V  
TTL output power supply  
Digital GND  
5V  
0V  
PECL output power supply  
Inverted 1/2 clock output  
1/2 clock output  
5V  
PECL  
PECL  
PECL  
PECL  
PECL  
PECL  
PECLVCC – 1.7V  
5V  
Inverted clock output  
Clock output  
CLKH  
DSYNCL  
DSYNCH  
VBB  
Delay sync signal output  
Inverted delay sync signal output  
PECL reference voltage  
PECL output power supply  
Digital GND  
PECLVCC  
IOGND  
VOCLP  
PLLVCC  
PLLGND  
VCOVCC  
VCOGND  
VCOHGND  
IREF  
0V  
TTL high level clamp  
PLL circuit analog power supply  
PLL circuit analog GND  
VCO circuit analog power supply  
VCO circuit analog GND  
VCO SUB analog GND  
Charge pump current preparation  
External pin for LPF  
External pin for LPF  
IREF analog GND  
Clamp voltage  
5V  
0V  
5V  
0V  
0V  
1.2V  
2.0 to 4.4V  
2.1V  
0V  
RC2  
RC1  
IRGND  
IRVCC  
IREF analog power supply  
5V  
– 4 –  
CXA3266Q  
Pin Description and I/O Pin Equivalent Circuit  
Pin  
No.  
Reference  
voltage level  
Symbol  
I/O  
Equivalent circuit  
Description  
Digital power supply.  
Ground this pin to the ground pattern  
with a 0.1µF ceramic chip capacitor as  
close to the pin as possible.  
1
IOVCC  
5V  
2
IOGND  
DVCC  
0V  
5V  
0V  
0V  
Digital GND.  
18  
19  
25  
Digital power supply.  
Digital GND.  
DGND  
TTLGND  
TTL output GND.  
TTL output power supply.  
Ground this pin to the ground pattern  
with a 0.1µF ceramic chip capacitor as  
close to the pin as possible.  
26  
27  
28  
TTLVCC  
IOGND  
5V  
0V  
5V  
Digital GND.  
PECL output power supply.  
Ground this pin to the ground pattern  
with a 0.1µF ceramic chip capacitor as  
close to the pin as possible.  
PECLVCC  
PECL output power supply.  
Ground this pin to the ground pattern  
with a 0.1µF ceramic chip capacitor as  
close to the pin as possible.  
36  
37  
39  
40  
41  
PECLVCC  
IOGND  
5V  
0V  
5V  
0V  
5V  
Digital GND.  
PLL circuit analog power supply.  
Ground this pin to the ground pattern  
with a 0.1µF ceramic chip capacitor as  
close to the pin as possible.  
PLLVCC  
PLLGND  
VCOVCC  
PLL circuit analog GND.  
VCO circuit analog power supply.  
Ground this pin to the ground pattern  
with a 0.1µF ceramic chip capacitor as  
close to the pin as possible.  
42  
43  
47  
VCOGND  
VCOHGND  
IRGND  
0V  
0V  
0V  
VCO circuit analog GND.  
VCO SUB analog GND.  
IREF analog GND.  
IREF analog power supply.  
Ground this pin to the ground pattern  
with a 0.1µF ceramic chip capacitor as  
close to the pin as possible.  
48  
IRVCC  
5V  
– 5 –  
CXA3266Q  
Pin  
No.  
Reference  
voltage level  
Symbol  
VCOH  
I/O  
I
Equivalent circuit  
Description  
External VCO input.  
Programmable counter test input  
(switchable by a control register).  
When using the VCO PECL input,  
open the Pin 5 VCO TTL input.  
3
PECL  
PECL  
External inverted VCO input.  
When open, this pin goes to the PECL  
threshold voltage (IOVcc – 1.3V).  
Only the Pin 3 VCOH input with VCOL  
input open can be also operated but  
complementary input is recommended  
in order to realize stable high-speed  
operation.  
IOVCC  
4
VCOL  
I
I
I
14k  
500  
14k  
3
4
7
8
Sync input.  
500  
When using the SYNCH PECL input,  
open the Pin 9 SYNC TTL input.  
The sync signal can be switched  
between positive/negative polarity by  
an internal register.  
7
8
SYNCH  
SYNCL  
PECL  
PECL  
IOGND  
Inverted sync input.  
When open, this pin goes to the PECL  
threshold voltage (IOVcc – 1.3V).  
Only the Pin 7 SYNCH input with  
SYNCL input open can be also  
operated but complementary  
input is recommended in order to  
realize stable high-speed operation.  
– 6 –  
CXA3266Q  
Pin  
No.  
Reference  
voltage level  
Symbol  
VCO  
I/O  
I
Equivalent circuit  
Description  
External VCO input.  
Programmable counter test input  
(controlled by a control register).  
When using the VCO TTL input, open  
the Pin 3 VCOH and Pin 4 VCOL  
PECL inputs.  
5
6
9
TTL  
TTL  
TTL  
Phase detector disable signal.  
Active high. When this pin is high, the  
phase detector output is held. This pin  
goes to high level when open.  
HOLD  
SYNC  
I
I
(See the HOLD Timing Chart.)  
Sync input.  
When using the SYNC TTL input,  
open the Pin 7 SYNCH and Pin 8  
SYNCL PECL inputs.  
The sync signal can be switched  
between positive/negative polarity by  
an internal register.  
IOVCC  
40k  
192  
Control signal (enable) for setting the  
internal registers.  
When SENABLE is low, registers can  
be written; when high, registers can be  
read.  
5
6
9
10  
11  
12  
13  
10  
SENABLE  
I
TTL  
(See the Control Register Table and  
Control Timing Chart.)  
1.5V  
Control signal (clock) for setting the  
internal registers.  
IOGND  
When SENABLE is low, SDATA is  
loaded to the registers at the rising  
edge of SCLK.  
When SENABLE is high, the register  
contents are output from SEROUT at  
the falling edge of SCLK.  
11  
SCLK  
I
TTL  
(See the Control Register Table and  
Control Timing Chart.)  
Control signal (data) for setting the  
internal registers.  
(See the Control Register Table and  
Control Timing Chart.)  
12  
13  
SDATA  
TLOAD  
I
I
TTL  
TTL  
Programmable counter test input.  
This pin is normally open status and  
high. Register contents can be loaded  
immediately to programmable counter  
by setting TLOAD low during the  
programmable counter test mode.  
– 7 –  
CXA3266Q  
Pin  
No.  
Reference  
voltage level  
Symbol  
I/O  
Equivalent circuit  
Description  
IOVCC  
40k  
192  
Chip select.  
When low, all circuits including the  
register circuit are set to the power  
saving mode.  
14  
CS  
I
TTL  
14  
When high, all circuits are set to  
operating mode.  
IOGND  
TTLVCC  
TTL output high level clamp.  
The TTL high level voltage is clamped  
at the almost same value with the  
voltage applied to this pin.  
When this pin is open, TTL output  
high level is approximately 2.7V by  
dividing the internal resistor.  
3k  
Clamp  
voltage  
38  
VOCLP  
I
38  
3.5k  
TTLGND  
– 8 –  
CXA3266Q  
Pin  
No.  
Reference  
voltage level  
Symbol  
I/O  
O
Equivalent circuit  
Description  
Register read output.  
When SENABLE is high, the register  
contents are output from SEROUT at  
the falling edge of SCLK.  
15  
SEROUT  
TTL  
(See the Control Register Timing  
Chart.)  
TTL output can be turned ON/OFF  
(high impedance) by a control register.  
Programmable counter test output.  
(See the I/O Timing Chart.)  
TTL output can be turned ON/OFF  
(high impedance) by a control register.  
16  
20  
21  
22  
23  
DIVOUT  
CLK/2N  
CLK/2  
CLKN  
O
O
O
O
O
TTL  
TTL  
TTL  
TTL  
TTL  
Inverted 1/2 clock output.  
(See the I/O Timing Chart.)  
TTL output can be turned ON/OFF  
(high impedance) by a control register.  
IOVCC  
TTLVCC  
100k  
15 22  
16 23  
1/2 clock output.  
(See the I/O Timing Chart.)  
TTL output can be turned ON/OFF  
(high impedance) by a control register.  
20  
21  
24  
TTLGND  
Inverted clock output.  
(See the I/O Timing Chart.)  
TTL output can be turned ON/OFF  
(high impedance) by a control register.  
IOGND  
Clock output.  
(See the I/O Timing Chart.)  
TTL output can be turned ON/OFF  
(high impedance) by a control register.  
CLK  
Delay sync signal output.  
(See the I/O Timing Chart.)  
TTL output can be turned ON/OFF  
(high impedance) and switched  
between positive/negative polarity by  
a control register.  
24  
DSYNC  
O
TTL  
Unlock signal output.  
This pin is an open collector output,  
and pulls in the current when a phase  
difference occurs. The UNLOCK  
sensitivity can be adjusted by  
connecting a capacitor and resistors  
to this output appropriately.  
TTLVCC  
17  
UNLOCK  
O
TTL  
17  
(See the UNLOCK Timing Chart.)  
TTL output can be turned ON/OFF  
(high impedance) by a control register.  
TTLGND  
IOGND  
– 9 –  
CXA3266Q  
Pin  
No.  
Reference  
voltage level  
Symbol  
CLK/2L  
I/O  
O
Equivalent circuit  
Description  
Inverted 1/2 clock output.  
(See the I/O Timing Chart.)  
This pin requires an external pull-  
down resistor.  
29  
30  
31  
32  
33  
34  
PECL  
PECL  
PECL  
PECL  
PECL  
PECL  
When not used, connect to PECLVCC  
without connecting a pull-down  
resistor.  
1/2 clock output.  
(See the I/O Timing Chart.)  
This pin requires an external pull-  
down resistor.  
When not used, connect to PECLVCC  
without connecting a pull-down  
resistor.  
CLK/2H  
O
O
O
O
O
Inverted clock output.  
(See the I/O Timing Chart.)  
This pin requires an external pull-  
down resistor.  
When not used, connect to PECLVCC  
without connecting a pull-down  
resistor.  
IOVCC  
PECLVCC  
CLKL  
Clock output.  
30 32 34  
33  
(See the I/O Timing Chart.)  
This pin requires an external pull-  
down resistor.  
When not used, connect to PECLVCC  
without connecting a pull-down  
resistor.  
29 31  
CLKH  
IOGND  
Delay sync signal output.  
(See the I/O Timing Chart.)  
This pin requires an external pull-  
down resistor.  
When not used, connect to PECLVCC  
without connecting a pull-down  
resistor.  
DSYNCL  
DSYNCH  
Inverted delay sync signal output.  
(See the I/O Timing Chart.)  
This pin requires an external pull-  
down resistor.  
When not used, connect to PECLVCC  
without connecting a pull-down  
resistor.  
– 10 –  
CXA3266Q  
Pin  
No.  
Reference  
voltage level  
Symbol  
I/O  
Equivalent circuit  
Description  
PECLVCC  
PECL reference voltage.  
When used, ground this pin to the  
ground pattern with a 0.1µF ceramic  
chip capacitor as close to the pin as  
possible.  
PECLVCC  
–1.7V  
35  
VBB  
O
35  
IOGND  
IRVCC  
Charge pump current preparation.  
Connect to GND via an external  
resistor (3.0k).  
Ground this pin to the ground pattern  
with a 0.1µF ceramic chip capacitor  
as close to the pin as possible.  
44  
IREF  
1.2V  
44  
IRGND  
IOGND  
External pin for LPF.  
See the Recommended Operating  
Circuit for the external circuits. Note  
that external resistors and capacitors  
should be metal film resistors and  
temperature compensation capacitors  
which are relatively unaffected by  
temperature change.  
IRVCC  
2.0  
to  
4.4V  
RC2  
RC1  
45  
46  
46  
45  
External pin for LPF.  
See the Recommended Operating  
Circuit for the external circuits.  
IRGND  
IOGND  
2.1V  
– 11 –  
CXA3266Q  
– 12 –  
CXA3266Q  
Electrical Characteristics  
(Ta = 25°C, VCC = 5V, GND = 0V)  
Item  
Symbol  
Conditions  
Min.  
Typ.  
Max.  
Unit  
Current consumption (excluding output current)  
Current consumption 1  
Current consumption 2  
Current consumption 3  
Digital input  
ICC1  
ICC2  
ICC3  
CS = H, Synth Power = 1  
CS = H, Synth Power = 0  
CS = L  
51.0  
9.0  
65.5  
13.0  
1.5  
79.0  
16.0  
1.8  
mA  
mA  
mA  
1.2  
Digital high level input  
voltage (PECL)  
IOVCC  
–1.15  
VIH1  
VIL1  
VIO  
V
V
Digital low level input  
voltage (PECL)  
IOVCC  
–1.5  
VCOL, SYNCL input open  
voltage (PECL)  
IOVCC  
–1.3  
V
Digital high level input  
current (PECL)  
IIH1  
IIL1  
VIH = IOVCC – 0.8V  
VIL = IOVCC – 1.6V  
–100  
–200  
2.0  
100  
0
µA  
µA  
V
Digital low level input  
current (PECL)  
Digital high level input  
voltage (TTL)  
VIH2  
VIL2  
IIH2  
IIL2  
Digital low level input  
voltage (TTL)  
0.8  
–5  
0
V
Digital high level input  
current (TTL)  
VIH = 3.5V  
VIL = 0.2V  
–10  
–20  
µA  
µA  
Digital low level input  
current (TTL)  
HOLD characteristics  
RC1 input pin leak current Ileak  
1.00  
nA  
ns  
ns  
HOLD signal set-up time  
HOLD signal hold time  
Digital output  
Ths  
Thh  
20  
20  
Digital high level output  
voltage (PECL)  
PECLVCC  
–1.6  
VOH1  
VOL1  
VBB  
VOH2  
VOL2  
RL = 330Ω  
RL = 330Ω  
RL = 330Ω  
CL = 10pF  
CL = 10pF  
V
V
V
V
V
Digital low level output  
voltage (PECL)  
PECLVCC  
–1.8  
PECL output reference  
voltage  
PECLVCC  
–1.7  
Digital high level output  
voltage (TTL)  
2.4  
Digital low level output  
voltage (TTL)  
0.5  
– 13 –  
CXA3266Q  
Item  
Symbol  
Iunlock  
Fin  
Conditions  
Min.  
–30  
10  
Typ.  
Max.  
120  
Unit  
mA  
UNLOCK output  
UNLOCK output current  
SYNC input  
SYNC input frequency range  
DSYNC output  
kHz  
DSYNC output coarse  
delay time setting  
resolution (upper)  
Rdsync1  
Td1  
2
6
bit  
CLK  
bit  
DSYNC output coarse  
delay time (upper)  
2
5
DSYNC output fine delay  
time setting resolution  
(lower)  
Rdsync2  
DSYNC output fine delay  
time (lower)  
Td2  
Td9  
8/32  
4
48/32  
5
CLK  
CLK  
DSYNC output DIVOUT  
output delay time  
VCO characteristics  
DIV output frequency  
operation range 1  
FVCO1  
FVCO2  
FVCO3  
FVCO4  
DIV = 1/1  
40  
20  
10  
5
203  
100  
50  
MHz  
MHz  
MHz  
MHz  
DIV output frequency  
operation range 2  
DIV = 1/2  
DIV = 1/4  
DIV = 1/8  
DIV output frequency  
operation range 3  
DIV output frequency  
operation range 4  
25  
VCO lock range  
VCO gain 1  
VCO gain 2  
VCO gain 3  
VCO gain 4  
Vlock  
KVCO1  
KVCO2  
KVCO3  
KVCO4  
2.0  
300  
150  
75  
4.4  
700  
350  
175  
87.5  
V
DIV = 1/1  
DIV = 1/2  
DIV = 1/4  
DIV = 1/8  
480  
240  
120  
60  
Mrad/sv  
Mrad/sv  
Mrad/sv  
Mrad/sv  
37.5  
C.Pump Bit = 00,  
IREF = 3.0kΩ  
Charge pump current 1  
Charge pump current 2  
Charge pump current 3  
Kpd1  
Kpd2  
Kpd3  
62.5  
125  
250  
500  
100  
200  
400  
137.5  
275  
µA  
µA  
C.Pump Bit = 01,  
IREF = 3.0kΩ  
C.Pump Bit = 10,  
IREF = 3.0kΩ  
550  
µA  
µA  
bit  
C.Pump Bit = 11,  
IREF = 3.0kΩ  
Change pump current 4  
VCO counter bits  
Kpd4  
Rdiv2  
800  
12  
1100  
– 14 –  
CXA3266Q  
Item  
Symbol  
Conditions  
Min.  
Typ.  
Max.  
Unit  
CLK (CLK, CLK/2) output  
CLK output (PECL)  
frequency range 1  
Fclk1PECL DIV = 1/1  
Fclk2PECL DIV = 1/2  
Fclk3PECL DIV = 1/4  
Fclk4PECL DIV = 1/8  
40  
20  
10  
5
203  
100  
50  
MHz  
MHz  
MHz  
MHz  
ns  
CLK output (PECL)  
frequency range 2  
CLK output (PECL)  
frequency range 3  
CLK output (PECL)  
frequency range 4  
25  
CLK, CLK/2 output (PECL)  
rise time  
10% to 90%,  
RL = 330Ω  
TrPECL  
TfPECL  
1.0  
1.0  
40  
20  
10  
5
2.0  
2.0  
3.0  
3.0  
100  
100  
50  
CLK, CLK/2 output (PECL)  
fall time  
10% to 90%,  
RL = 330Ω  
ns  
CLK output (TTL)  
frequency range 1  
Fclk1TTL DIV = 1/1  
Fclk2TTL DIV = 1/2  
Fclk3TTL DIV = 1/4  
Fclk4TTL DIV = 1/8  
MHz  
MHz  
MHz  
MHz  
ns  
CLK output (TTL)  
frequency range 2  
CLK output (TTL)  
frequency range 3  
CLK output (TTL)  
frequency range 4  
25  
CLK, CLK/2 output (TTL)  
rise time  
10% to 90%,  
CL = 10pF  
TrTTL  
TfTTL  
Dclk2  
0.8  
0.8  
40  
1.1  
1.1  
50  
1.6  
1.6  
60  
CLK, CLK/2 output (TTL)  
fall time  
10% to 90%,  
CL = 10pF  
ns  
CLK output (PECL, TTL)  
duty  
CL = 10pF  
CL = 10pF  
%
SYNC input (PECL) and  
CLK output (PECL) delay  
offset  
Td3  
Td4  
Td5  
Td8  
1.0  
1.0  
0.3  
1.8  
1.6  
2.0  
0.7  
2.5  
2.2  
3.0  
1.1  
3.2  
ns  
ns  
ns  
ns  
CLK output (PECL) and  
DSYNC output (PECL)  
phase difference  
CL = 10pF  
CL = 10pF  
CL = 10pF  
CLK output (PECL) and  
CLK/2 output (PECL)  
phase difference  
DSYNC, CLK, CLK/2  
output (PECL) and TTL  
output phase difference  
– 15 –  
CXA3266Q  
Item  
Symbol  
Tj1p-p  
Tj2p-p  
Tj3p-p  
Tj4p-p  
Tj5p-p  
Conditions  
Min.  
1.8  
1.2  
1.0  
0.9  
0.7  
0.5  
Typ.  
2.5  
1.5  
1.4  
1.3  
1.0  
0.8  
Max.  
4.0  
1.9  
1.7  
1.6  
1.4  
Unit  
CLK (CLK, CLK/2) output  
triggered at SYNC  
Fsync = 15.73kHz  
Fclk = 12.27MHz  
N = 780  
CLK vs. SYNC output jitter  
(NTSC)  
ns  
ns  
ns  
ns  
ns  
triggered at SYNC  
Fsync = 31.47kHz  
Fclk = 25.18MHz  
N = 800  
CLK vs. SYNC output jitter  
(VGA)  
triggered at SYNC  
Fsync = 48.08kHz  
Fclk = 50.00MHz  
N = 1040  
CLK vs. SYNC output jitter  
(SVGA)  
triggered at SYNC  
Fsync = 56.48kHz  
Fclk = 75.00MHz  
N = 1328  
CLK vs. SYNC output jitter  
(XGA)  
triggered at SYNC  
Fsync = 80kHz  
Fclk = 136.00MHz  
N = 1700  
CLK vs. SYNC output jitter  
(SXGA)  
triggered at SYNC  
Fsync = 93.75kHz  
Fclk = 202.50MHz  
N = 2160  
CLK vs. SYNC output jitter  
(UXGA)  
Tj6p-p  
Tj7p-p  
1.0  
0.1  
12  
ns  
ns  
CLK vs. DSYNC output jitter  
Control registers  
triggered at DSYNC  
SCLK frequency  
SCLK  
TENS  
TENH  
TDS  
in write/read mode  
in write mode  
in write mode  
in write mode  
in read mode  
in read mode  
in read mode  
MHz  
ns  
SENABLE set-up time  
SENABLE hold time  
SDATA set-up time  
SDATA hold time  
3
0
3
0
3
0
ns  
ns  
TDH  
ns  
SENABLE set-up time  
SENABLE hold time  
TNENS  
TNENH  
ns  
ns  
– 16 –  
CXA3266Q  
Description of Block Diagram  
Sync Input  
Sync signals in the range of 10 to 120kHz can be input. Input supports both positive and negative polarity.  
PECL input can also be a single input.  
When SYNC is positive polarity, the clock is regenerated in synchronization with the rising edge of the sync signal.  
When SYNC is negative polarity, the clock is regenerated in synchronization with the falling edge of the sync signal.  
VCO oscillation stops when there is no sync input.  
0
1
Register: SYNC POL  
SYNC input polarity  
Negative  
Positive  
Phase Detector  
The phase detector operates at the sync input frequency of 10 to 120kHz. The PD input polarity should be  
set to the default PD POL = 1. Phase comparison is performed at the edges.  
The input circuit of the phase detector does not contain a hysteresis circuit, so the waveform must be shaped  
at the front end of the CXA3266Q when inputting a noisy signal.  
The phase detector HOLD signal is supplied by TTL. (See the HOLD Timing Chart.)  
The PLL UNLOCK signal is output by an open collector.  
(See the UNLOCK Timing Chart.)  
Charge Pump  
The gain (I, I/2, I/4, I/8) can be varied by changing the charge pump current using 2 bits of control register.  
0
0
0
1
Register: C.Pump bit 1  
Register: C.Pump bit 0  
Charge pump current  
1
0
1
1
400µA  
800µA  
100µA  
200µA  
LPF  
This is a loop filter comprised of the external capacitors and resistor.  
Be sure to use metal film resistors with little temperature variation and a temperature-compensated capacitor.  
In particular, the 0.068µF capacitor should be equivalent to high dielectric constant series capacitor type B or  
better. (electrostatic capacitance change ratio ±10%: T = –25 to +85°C)  
VCO  
The VCO oscillator frequency covers from 40 to 203MHz.  
VCO Rear-end Counter  
The VCO output is frequency divided to 1/1, 1/2, 1/4 or 1/8 by switching 2 bits of control register.  
The operating range can be expanded to 5 to 203MHz by combining the counter with a VCO frequency divider.  
0
0
Register: DIV 1, 2, 4, 8 bit 1  
Register: DIV 1, 2, 4, 8 bit 0  
Counter frequency divisions  
0
1
1
0
1
1
1/2  
1/4  
1/8  
1/1  
– 17 –  
CXA3266Q  
Feedback Programmable Counter  
This counter can be set as desired from 256 to 4096 using 12 bits.  
Frequency divisions = (m + 1) × 8 + n, n: 3 bits (VCO DIV bits 0 to 2), m: 9 bits (VCO DIV bits 3 to 11)  
When the register value is changed, the new setting is actually loaded to the counter when the counter value  
becomes "all 0".  
Clock Output  
When SYNC input is positive polarity, the clock is regenerated in synchronization with the rising edge of the  
sync signal.  
The clock output delay time can be changed in the range of 8/32 to 48/32 CLK using 6 bits of control register.  
(See the I/O Timing Chart.)  
Output is TTL and PECL (complementary), and supports both positive and negative polarity. Clock TTL  
output can also be turned off independently.  
0
1
Register: Clock Enable  
Clock output status  
OFF  
ON  
1/2 Clock Output  
Reset is performed at the delay sync timing and the clock output is frequency divided by 1/2. (See the I/O  
Timing Chart.)  
Both odd and even output are TTL and PECL output. TTL output can also be turned off independently.  
0
1
Register: Clock Enable  
Clock output status  
OFF  
ON  
Delay Sync Output  
The front edge of the delay sync pulse is latched by the pulse obtained by frequency dividing the CLK  
regenerated by the PLL, so there is almost no jitter with respect to CLK. This front edge can be used as the  
reset signal for the system timing circuit.  
The rear edge of the delay sync pulse is latched by the CLK regenerated by the PLL. This relationship is  
undefined for one clock as shown in the Timing Chart.  
The delay sync output delay time can be varied in two stages. First, the delay time can be varied in the range  
of 8/32 to 48/32 CLK using 6 bits of control register, and then in the range of 2 to 5 CLK using 2 bits of  
control register. In other words, the total delay time is ((8/32 to 48/32) + (2 to 5)) CLK. (See the I/O Timing  
Chart.)  
DSYNC output is TTL and PECL (complementary), and supports both positive and negative polarity. Clock  
TTL output can also be turned off.  
0
1
Register: Clock Enable  
Clock output status  
OFF  
ON  
Lower delay line  
FINE DELAY bits 0 to 5  
000111  
001000  
· · · · · · · · · · · ·  
· · · · · · · · · · · ·  
101111  
Delay time  
9/32CLK  
48/32CLK  
8/32CLK  
Upper delay line  
COARSE DELAY bits 0 to 1  
00  
01  
10  
11  
Delay time  
3CLK  
4CLK  
5CLK  
2CLK  
0
1
Register: DSYNC POL  
DSYNC output polarity  
Negative  
Positive  
– 18 –  
CXA3266Q  
Programmable Counter TTL Output Switching  
Output (PECL, TTL) from DSYNC output is possible by switching of control register.  
1
0
Register: DSYNC By-pass  
Output status from DSYNC  
DSYNC output  
DIVOUT output  
Delay Sync Output Width (DSYNC By-pass = 0)  
Delay sync output pulse width can be varied to 1, 2, 4, or 8CLK by switching 2 bits of control register.  
01  
10  
11  
00  
Register: DSYNC WIDTH  
DSYNC width  
2CLK  
4CLK  
8CLK  
1CLK  
Delay Sync Output Delay (DSYNC By-pass = 0)  
DIVOUT output delay from delay sync output can be varied to 4 or 5CLK by switching of control register.  
1
0
Register: DSYNC DELAY  
Delay time  
5CLK  
4CLK  
DSYNC Output Switching during HOLD  
By switching with a control register, DSYNC output during HOLD period is controlled. Its output status is  
different according to DSYNC By-pass, DSYNC POL and HOLD signals of the register. The output for each  
setting is shown below.  
Output from  
DSYNC (Pin 24) and  
DSYNCH (Pin 34)  
Register  
DSYNC POL  
Register  
DSYNC Hold DSYNC By-pass  
Register  
Pin 6 HOLD  
H
L
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
H
DIVOUT  
L
H
L
DIVOUT  
H
H
L
DSYNC  
L
H
L
DSYNC  
DIVOUT  
DIVOUT  
DIVOUT  
DIVOUT  
DSYNC  
DSYNC  
DSYNC  
DSYNC  
H
L
H
L
H
L
H
L
– 19 –  
CXA3266Q  
Control Circuit (3-bit address, 8-bit data)  
The timing and input methods are described hereafter.  
Feedback programmable counter control  
VCO rear-end counter control  
Fine delay line control  
REGISTER1, 2 12bit VCODIV Bit0 to 11  
REGISTER3  
REGISTER4  
REGISTER4  
REGISTER5  
2bit DIV1, 2, 4, 8 Bit0, Bit1  
6bit FINE DELAY Bit0 to 5  
2bit COARSE DELAY Bit0, Bit1  
2bit C.Pump Bit0, Bit1  
1bit PD POL  
Coarse delay line control  
Charge pump current DAC control  
Phase detector input positive/negative polarity control REGISTER5  
Delay sync output width control  
REGISTER5  
REGISTER5  
REGISTER6  
REGISTER6  
REGISTER6  
REGISTER6  
REGISTER6  
REGISTER6  
REGISTER6  
REGISTER6  
REGISTER7  
REGISTER7  
REGISTER7  
REGISTER7  
REGISTER7  
REGISTER7  
2bit DSYNC WIDTH  
1bit DSYNC DELAY  
1bit SYNC POL  
Delay sync output delay control  
Sync input positive/negative polarity control  
Delay sync output positive/negative polarity control  
Clock TTL output OFF function  
1bit DSYNC POL  
1bit CLK Enable  
Inverted clock TTL output OFF function  
1/2 clock TTL output OFF function  
1bit NCLK Enable  
1bit CLK/2 Enable  
1bit NCLK/2 Enable  
1bit DSYNC Enable  
1bit UNLOCK Enable  
1bit VCO By-pass  
1bit Synth power  
Inverted 1/2 clock TTL output OFF function  
Delay sync TTL output OFF function  
UNLOCK output OFF function  
Programmable counter input switching  
Power save with register contents held  
Register read function power ON/OFF  
Programmable counter TTL output OFF function  
Programmable counter TTL output switching  
Delay sync output hold function  
1bit Read out power  
1bit DIVOUT Enable  
1bit DSYNC By-pass  
1bit DSYNC Hold  
Power Save  
The CXA3266Q realizes 2-step power saving (all OFF, control registers only ON). This is controlled by a  
control register and the chip selector.  
Step 1: Chip selector control  
L
H
CS  
Power saving status  
All OFF  
Power ON  
Step 2: Control register control  
0
1
Register: Synth power  
Power saving status  
Control registers only ON  
Power ON  
Readout Circuit (during test mode)  
The control register contents can be read by serial data from SEROUT.  
(See the Control Register Timing Chart.)  
Register: Read out power  
Readout status  
1
0
Function OFF  
Function ON  
– 20 –  
CXA3266Q  
Programmable Counter Output (during test mode)  
The programmable counter output is TTL output from the DIVOUT pin.  
(See the I/O Timing Chart.)  
This output is normally not used.  
Register: DIVOUT Enable  
DIVOUT output status  
1
0
ON  
OFF  
TLOAD input (during test mode)  
This control signal forcibly loads the control register contents to the programmable counter.  
This signal is normally not used.  
TLOAD  
L
H
Forced load control status  
Function OFF  
Function ON  
VCO input (during test mode)  
This is the programmable counter test signal input pin.  
This pin can be switched internally by the MUX circuit.  
TTL and PECL input are possible.  
This pin is normally not used.  
Register: VCO By-pass  
Input status  
0
1
Internal VCO External input  
– 21 –  
CXA3266Q  
Control Register Timing  
1) Write mode  
Many functions of the CXA3266Q can be controlled via a program. Characteristics are changed by setting the  
internal control register values via a serial interface comprised of three pins: SENABLE (Pin 10), SCLK (Pin  
11) and SDATA (Pin 12). The write timing diagram is shown below.  
Input the 8-bit data and 3-bit register address MSB first to the SDATA pin. Some registers are not 8 bits, but  
the data is input aligned with the LSB side in these cases. (See the Register Table.)  
SENABLE is the enable signal and is active low. SCLK is the transfer clock signal, and data is loaded to the  
IC at the rising edge. When SENABLE rises, SCLK must be high. (Registers are set at the rising edge of  
SENABLE.) When SENABLE falls, SCLK may be either high or low.  
SENABLE  
8bit  
3bit  
SDATA  
SCLK  
DATA  
ADDRESS  
Enlarged  
Enlarged  
TENS  
TENH  
SENABLE  
SDATA  
SCLK  
TDS TDH  
For example, when inputting a 16-bit signal, the initial 5 bits are invalid and the latter 11 bits are valid. This is  
to say that the latter 11 bits are loaded to the register.  
SENABLE  
5bit  
8bit  
3bit  
SDATA  
SCLK  
Invalid DATA  
DATA  
address  
– 22 –  
CXA3266Q  
The settings of the frequency divider (2 bits, DIV1, 2, 4, 8) and programmable counter (12 bits, VCODIV) at  
the rear end of the VCO are transferred in the order shown below. (The data will be set when the three  
registers are transferred.)  
First DIVREG2, CENFREREG and DIVREG1 are set, and then the data is transferred independently at the  
timings shown below.  
DIVREG2 (upper 4 bits of VCODIV)  
CENFREREG (2 bits of DIV1, 2, 4, 8)  
DIVREG1 (lower 8 bits of VCODIV)  
All three of the above registers must be changed even when changing only (2 bits of DIV1, 2, 4, 8). This is  
the same when changing only (12 bits of VCODIV).  
SENABLE  
SDATA  
SCLK  
DIVREG2  
CENFREREG  
DIVREG1  
– 23 –  
CXA3266Q  
2) Read mode  
Data can be transferred from the shift register to the data register only when SENABLE is high.  
Binary data can be read from the data register by inputting SCLK when SENABLE is high. Data is loaded  
from the data register to the SCAN PATH circuit each time one clock is input to SCLK, and is output  
sequentially from the register read no. 1 data (VCODIV bit 7) through the SEROUT pin. When the 42nd  
SCLK clock pulse is input, the register read no. 42 data (VCO By-pass) is output. Then, when the 43rd clock  
pulse is input to SCLK, the output returns to the register read no. 1 data (VCODIV bit 7) and the data output  
is repeated. Also, the data output from the SCAN PATH circuit is automatically reloaded even when the shift  
register data is changed during data output.  
Note) Since all registers do not have 8 bits, only the valid bits of each register are loaded to the SCAN PATH  
circuit. (See the Control Register Table for the actual register read no.)  
SCLK  
CLK  
NEN  
I/P SHIFT REGISTER, 11 BITS  
8 BIT DATA 3 BIT ADDRESS  
7 DATA REGISTERS (42 LATCHES).  
REGISTERS ARE DIFFERENT LENGTHS  
UP TO 8 BIT  
TR  
SENABLE  
EN  
SEROUT  
CLK  
SCAN PATH, 1 ELEMENT PER REGISTER BIT  
Block Diagram during Read Mode  
TNENS  
TNENH  
SENA  
READ NO. 1  
READ NO. 2  
2
READ NO. N  
SEROUT  
1
N
SCLK  
Timing Chart during Read Mode  
– 24 –  
CXA3266Q  
– 25 –  
CXA3266Q  
– 26 –  
CXA3266Q  
– 27 –  
CXA3266Q  
– 28 –  
CXA3266Q  
2. HOLD timing  
SYNC input  
(SYNC POL = 1)  
SYNC input  
(SYNC POL = 0)  
DIVOUT output  
(TTL)  
Thh Ths  
Thh Ths  
Thold  
HOLD input  
(TTL)  
The phase comparison output is held and fixed VCO output frequency is output.  
CLK output  
HOLD signal set-up time (Ths) is a time from the rising edge of HOLD signal to the falling edge of DIVOUT.  
Or, when SYNC POL = 1, it is a time from the falling edge of HOLD signal to the rising edge of SYNC; when  
SYNC POL = 0, it is the time from the falling edge of HOLD signal to the falling edge of SYNC.  
HOLD signal hold time (Thh) is the time from the falling edge of DIVOUT to falling edge of HOLD signal. Or,  
when SYNC POL = 1, it is the time from the rising edge of SYNC to the rising edge of HOLD signal; when  
SYNC POL = 0, it is the time from the falling edge of SYNC to the rising edge of HOLD signal.  
When the HOLD input is held, the CLK frequency fluctuation can be calculated as follows.  
V  
+Q –Q  
I
C
SW  
f  
VCO  
Ileak  
SW  
I
C · V = Q = Ileak · Thold  
C:  
Loop filter capacitance  
Voltage variation due to leak current  
V:  
Ileak: Internal amplifier leak current  
Thold: Hold time  
V = Ileak · Thold/C  
f = V · KVCO = Ileak · Thold/C · KVCO  
For example, assuming f = 100MHz, Ileak = 1nA, Thold = 1ms, C = 0.068µF, and KVCO = 2π · 75MHz, then:  
V = 1 × 10–9 · 1 × 10–3/(0.068 × 10–6) = 15 × 10–6 [V]  
f = 1 × 10–9 · 1 × 10–3/(0.068 × 10–6) · 75 × 106 = 1125 [Hz]  
– 29 –  
CXA3266Q  
3. Relationship between SYNC input and DSYNC output during HOLD  
DSYNC  
internal signal  
SYNC  
internal signal  
J
Q
Q
DIVOUTN  
internal signal  
K
CK  
CLK  
When the above SYNC internal and DIVOUTN internal signals are input, the DSYNC internal signal is output  
as shown in the table below.  
1. DSYNC = L when SYNC = L and DIVOUTN = L.  
2. DSYNC = H or L (unchanged with the previous data) when SYNC = H and DIVOUTN = L.  
3. DSYNC = H when DIVOUTN = H (SYNC = H or L)  
SYNC  
DIVOUTN  
J
L
H
L
L
L
L
K
L
Q
L
Q
L
DSYNC  
L
L
(1)  
(2)  
(3)  
(4)  
(5)  
(6)  
L
L
L
H
L
L
H
L
L
H
L
H
H
L
H
H
L
L
H
H
L
H
L
H
H
H
H
( ) is unchanged with the previous data.  
SYNC  
internal signal  
DIVOUTN  
internal signal  
DSYNC  
internal signal  
(1)  
(5)  
(6)  
(4) (2)  
(3)  
– 30 –  
CXA3266Q  
During HOLD, the output from DSYNC can be controlled by register DSYNC hold. Its output status differs  
according to the DSYNC polarity or DSYNC By-pass switching. The below diagrams show the relationship with  
DSYNC output for each SYNC input.  
(DSYNC POL = 1 for all of CASE1 to CASE3.)  
CASE1  
HSYNC  
(SYNC POL = 1)  
HOLD input  
(1) During DSYNC  
HOLD ON  
(DSYNC Hold = 1)  
DSYNC By-pass = 1  
DSYNC By-pass = 0  
(2) During DSYNC  
HOLD OFF  
(DSYNC Hold = 0)  
DSYNC By-pass = 1  
DSYNC By-pass = 0  
CASE2  
HSYNC  
(SYNC POL = 1)  
HOLD input  
(1) During DSYNC  
HOLD ON  
(DSYNC Hold = 1)  
DSYNC By-pass = 1  
DSYNC By-pass = 0  
(2) During DSYNC  
HOLD OFF  
(DSYNC Hold = 0)  
DSYNC By-pass = 1  
DSYNC By-pass = 0  
– 31 –  
CXA3266Q  
CASE3  
HSYNC  
(SYNC POL = 1)  
HOLD input  
(1) During DSYNC  
HOLD ON  
(DSYNC Hold = 1)  
DSYNC By-pass = 1  
DSYNC By-pass = 0  
(2) During DSYNC  
HOLD OFF  
(DSYNC Hold = 0)  
DSYNC By-pass = 1  
DSYNC By-pass = 0  
– 32 –  
CXA3266Q  
4. UNLOCK timing  
Inside the IC Outside the IC  
VCC  
I2  
R2  
C
R1  
I1  
UNLOCK  
S2  
S1  
unlock  
detect  
Signal from phase  
comparator  
The unlock detect output is an open collector. When unlock detect output S1 goes high, the current I1 is pulled in.  
The UNLOCK sensitivity can be adjusted by connecting external resistors (R1, R2) and a capacitor (C) to this output  
pin appropriately and changing these values. Operation during three modes is described below.  
CASE 1: When there is no phase difference, that is to say, when the PLL is locked.  
The S1 signal is low and the S2 signal is high.  
The UNLOCK output remains low.  
S1  
S2  
threshold  
level  
UNLOCK  
CASE 2: When there is a phase difference, that is to say, when the S1 signal goes high and low as shown in  
the figure below, the fall slew rate of the S2 signal is determined by the current I1 flowing into that  
open collector. Therefore, increasing the resistance R1 causes the S2 signal fall slew rate to  
become slower. Also, since the S2 signal rise slew rate is determined by the current I2, reducing  
the resistance R2 causes the S2 signal rise slew rate to become faster. If this integrated S2 signal  
does not fall below the threshold level of the next inverter, the UNLOCK signal stays low, and the  
PLL is said to be locked.  
S1  
S2  
threshold  
level  
UNLOCK  
CASE 3: However, even if a phase difference exists as shown above, if the resistance R1 is reduced, the  
current I1 flowing into the open collector increases, and the S2 signal fall slew rate becomes faster.  
Also, if the resistance R2 is increased, the S2 signal rise slew rate becomes slower. If this  
integrated S2 signal falls below the threshold level of the next inverter, the UNLOCK signal goes  
from low to high, and the PLL is said to be unlocked.  
S1  
threshold  
level  
S2  
UNLOCK  
– 33 –  
CXA3266Q  
Charge Pump and Loop Filter Settings  
The CXA3266Q's charge pump is a constant-current output type as shown below.  
When a constant-current output charge pump circuit is used inside the PLL,  
the phase detector output acts as a current source, and the dimension of its  
transmittance KPD is A/rad. Also, when considering the VCO input as a  
voltage, the LPF transmittance dimension must be expressed in ohms (=  
V/A).  
VCC  
S1  
S2  
To LPF  
Therefore, the PLL transmittance when a constant-current output charge  
pump circuit is used is as follows.  
LPF  
VCO  
PD  
ω
ω
0
θr  
r
KPD  
(A/rad)  
F (S)  
()  
KVCO  
(rad/sV)  
1/S  
+
θo  
N
counter  
1/N  
1/S  
ω /N  
0
The PLL closed loop transmittance is obtained by the following formula.  
θo/N  
θr  
KPD · F (S) · KVCO · 1/N · 1/S  
1 + KPD · F (S) · KVCO · 1/N · 1/S  
=
... (1)  
Here, KPD, F (S), and KVCO are:  
KPD: Phase comparator gain (A/rad)  
F (S): Loop filter transmittance ()  
KVCO: VCO gain  
(rad/sV)  
1 The reason for the 1/S inside the phase detector is as follows.  
t
θo (t)/N = o ω0 (t)/Ndt + θo (t = 0)/N ... (a)  
If θo (t = 0) = 0,  
t
θo (t)/N =  
o ω0 (t)/Ndt ... (b)  
Performing Laplace conversion:  
1
s
θo (S)/N =  
W0 (S)/N ... (c)  
– 34 –  
CXA3266Q  
The loop filter F (s) is described below.  
The loop filter smoothes the output pulse from the phase comparator and inputs it as the DC component to the  
VCO. In addition to this, however, the loop filter also plays an important element in determining the PLL  
response characteristics.  
Typical examples of loop filters include lag filters, lag-lead filters, active filters, etc. However, the CXA3266Q's  
LPF is a current input type active filter as shown below, so the following calculations show an actual example  
of deriving the PLL closed loop transmittance when using this type of filter and then using this transmittance to  
create a formula for setting the filter constants.  
Current input type active filter  
C
R
ii  
Vo  
–A  
–1  
–Vo  
The filter transmittance is as follows.  
The Bode diagram for formula (2) is as follows.  
VO  
A
1
SC  
+ VO = (R +  
)
1
τ
1 + SRC  
A
1 + A  
F (S) =  
=
·
SC  
log w  
1 + Sτ  
SC  
A
1 + A  
·
log w  
τ = RC  
0
Here, assuming A > 1, then:  
–45deg  
1 + Sτ  
SC  
...........................  
F (S) =  
(2)  
–90  
Next, substituting (2) into (1) and obtaining the overall closed loop transmittance for the PLL:  
KPD · KVCO · τ  
KPD · KVCO  
NC  
· S +  
NC  
θo/N  
θr  
...  
=
=
(3)  
KPD · KVCO · τ  
KPD · KVCO  
S2 +  
· S +  
NC  
NC  
2ζωnS + ωn2  
S2 + 2ζωnS + ωn2  
............................................  
(4)  
(5)  
(6)  
KPD · KVCO  
......................................................  
ωn =  
NC  
1
2
.................................................................  
– 35 –  
ζ =  
ωnτ  
CXA3266Q  
Here, ωn and ζ are as follows.  
ωn characteristic angular frequency:  
The oscillatory angular frequency when PLL oscillation is assumed to have been maintained by the loop filter  
and individual loop gains is called the characteristic angular frequency: ωn.  
ζ damping factor:  
This is the PLL transient response characteristic, and serves as a measure of the PLL stability. It is  
determined by the loop gain and the loop filter.  
A capacitor C2 is added to the actual loop filter.  
This added capacitor C2 is used to reduce the R noise, and a value of around 1/10 to 1/1000 of C1 should be  
selected as necessary.  
Current input type active filter with added capacitor C2  
C2  
C1  
R
ii  
Vo  
–A  
–1  
–Vo  
The filter transmittance is as follows.  
The Bode diagram for formula (7) is as follows.  
1 + C1 · R · S  
F (S) =  
S ((C1 + C2) + C1 · C2 · R · S)  
1
1
1 + τ1 · S  
S (C1 + C2) (1 + τ2 · S)  
..................  
=
(7)  
τ1  
τ2  
log w  
τ1 = C1 · R  
C1 · C2 · R  
τ2 =  
C1 + C2  
log w  
0
–45deg  
Here, assuming C2 = C1/100, then:  
C1 · C1/100 · R  
τ2 =  
–90  
C1 + C1/100  
1
101  
=
=
C1 · R  
1
101  
τ1  
– 36 –  
CXA3266Q  
Next, the various parameters inside an actual CXA3266Q are obtained.  
The CXA3266Q's charge pump output block and the LPF circuit are as follows.  
C2  
R1 C1  
46  
45  
CXA3266Q  
To VCO  
VCC  
333  
100µA  
or 200µA  
or 400µA  
or 800µA  
S1  
S2  
100µA  
or 200µA  
or 400µA  
or 800µA  
20k  
100  
First, KPD is as follows.  
KPD = 100µ/2π or 200µ/2π or 400µ/2π or 800µ/2 π (A/rad)  
Typical KVCO characteristics curves for the CXA3266Q's internal VCO are as follows.  
250  
VCO DIV = 1/1  
200  
150  
VCO DIV = 1/2  
100  
50  
0
VCO DIV = 1/4  
VCO DIV = 1/8  
2
3
4
VCO input voltage [V]  
Therefore, KVCO is as follows.  
KVCO = 2π · 75M or 2π · 37.5M or 2π · 18.75M or 2π · 9.375M (rad/sV)  
– 37 –  
CXA3266Q  
ωn and ζ calculated for various types of computer signals are shown below.  
Here, the various parameters are as follows.  
FSYNC: Input H sync frequency  
FCLK: Output clock frequency  
KPD × 2π: Phase comparator gain × 2π (KPD × 2π = +100 or 200 or 400 or 800)  
KVCO/2π: VCO gain  
(when VCO DIV = 1/1, KVCO/2π = 75)  
(when VCO DIV = 1/2, KVCO/2π = 75/2)  
(when VCO DIV = 1/4, KVCO/2π = 75/4)  
(when VCO DIV = 1/8, KVCO/2π = 75/8)  
N: Counter value  
C1: Loop filter capacitance value  
R1: Loop filter resistance value  
KPD C.Pump  
× 2π setting  
DIV1, 2, 4, 8  
setting setting  
N
KVCO/2π  
C1 R1  
ωn  
µF kkHzrad kHz  
fn  
ζ
MODE Resolution HSYNC FCLK  
kHz  
MHz µA Bit1 Bit0 M/(S × V) Bit1 Bit0  
NTSC  
NTSC  
NTSC  
PAL  
15.73 12.27 400  
15.73 18.41 400  
15.73 24.55 800  
15.63 14.69 400  
15.63 22.03 800  
15.63 29.38 400  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
1
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
75/8  
75/8  
75/8  
75/8  
75/8  
75/4  
75/8  
75/8  
75/4  
75/4  
75/4  
75/4  
75/4  
75/4  
75/2  
75/2  
75/2  
75/2  
75/2  
75/2  
75/2  
75/2  
75/1  
75/1  
75/1  
75/1  
75/1  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
0
1
1
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
780 0.068 3.0 8.41 1.34 0.86  
1170 0.068 3.0 6.87 1.09 0.70  
1560 0.068 3.0 8.41 1.34 0.86  
940 0.068 3.0 7.66 1.22 0.78  
1410 0.068 3.0 8.84 1.41 0.90  
1880 0.068 3.0 7.66 1.22 0.78  
848 0.068 3.0 8.06 1.28 0.82  
800 0.068 3.0 8.30 1.32 0.85  
864 0.068 3.0 11.30 1.80 1.15  
832 0.068 3.0 11.51 1.83 1.17  
1024 0.068 3.0 10.38 1.65 1.06  
1056 0.068 3.0 10.22 1.63 1.04  
1056 0.068 3.0 10.22 1.63 1.04  
1040 0.068 3.0 10.30 1.64 1.05  
1048 0.068 3.0 14.51 2.31 1.48  
1152 0.068 3.0 13.84 2.20 1.41  
1344 0.068 3.0 12.81 2.04 1.31  
1328 0.068 3.0 12.89 2.05 1.31  
1312 0.068 3.0 12.97 2.06 1.32  
1328 0.068 3.0 12.89 2.05 1.31  
1376 0.068 3.0 12.66 2.02 1.29  
1696 0.068 3.0 11.40 1.82 1.16  
1688 0.068 3.0 16.17 2.57 1.65  
1688 0.068 3.0 16.17 2.57 1.65  
1722 0.068 3.0 16.01 2.55 1.63  
2160 0.068 3.0 20.21 3.22 2.06  
2160 0.068 3.0 20.21 3.22 2.06  
PAL  
PAL  
PC-98 640 × 400 24.82 21.05 400  
VGA 640 × 480 31.47 25.18 400  
MAC 640 × 480 35.00 30.24 400  
VESA 640 × 480 37.86 31.50 400  
SVGA 800 × 600 35.16 36.00 400  
SVGA 800 × 600 37.88 40.00 400  
SVGA 800 × 600 46.88 49.51 400  
SVGA 800 × 600 48.08 50.00 400  
SVGA 800 × 600 53.67 56.25 400  
MAC 832 × 624 49.72 57.28 400  
XGA 1024 × 768 48.36 65.00 400  
XGA 1024 × 768 56.48 75.01 400  
XGA 1024 × 768 60.02 78.75 400  
MAC 1024 × 768 60.24 80.00 400  
XGA 1024 × 768 68.68 94.50 400  
SXGA 1280 × 1024 46.43 78.75 400  
SXGA 1280 × 1024 63.98 108.00 400  
SXGA 1280 × 1024 79.98 135.01 400  
SXGA 1280 × 1024 91.15 156.96 400  
UXGA 1600 × 1200 81.23 175.46 800  
UXGA 1600 × 1200 93.72 202.44 800  
– 38 –  
CXA3266Q  
CLK Jitter Evaluation Method  
The regenerated CLK is obtained by applying Hsync to the CXA3266Q. Apply this CLK to a digital oscilloscope  
and observe the CLK waveform using Hsync as the trigger.  
trigger  
Digital  
Oscillo-  
scope  
Hsync  
H
CLK  
Pulse  
Generator  
CXA3266Q  
ch1  
Back  
Active  
Video  
Front  
Porch  
Sync Porch  
Computer signal  
Hsync  
15 to 25% of Tsync  
Tsync = 1/fsync  
CLK  
Enlarged  
Enlarged  
Enlarged  
Enlarged  
Trigger  
CLK  
Tjp-p  
The CLK jitter is measured at peak to peak in the long-term write mode of the digital oscilloscope as shown in  
the figure. The CLK jitter size varies according to the difference in the relative position with respect to Hsync.  
Therefore, when the observation point is changed, the CLK jitter at that point is observed.  
The figure below shows an typical example of the CLK jitter for the CXA3266Q.  
The CLK jitter increases slightly at the rising edge of Hsync (in the case of positive polarity), and then settles  
down thereafter. However, this is not a problem as the active pixels start after about 20% of the H cycle has  
passed from the rising edge of Hsync.  
0
1/4 · Tsync  
2/4 · Tsync  
3/4 · Tsync  
Tsync  
Observation points  
– 39 –  
CXA3266Q  
Example of Representative Characteristics  
KVCO characteristics  
KVCO temperature characteristics  
250  
250  
200  
Ta = +75°C  
Ta = +25°C  
Ta = –25°C  
DIV = 1/1  
200  
150  
150  
100  
50  
DIV = 1/2  
100  
DIV = 1/4  
50  
DIV = 1/8  
0
0
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
VCO control voltage [V]  
VCO control voltage [V]  
Fine delay Td2 vs. Fine delay bit  
48  
40  
32  
24  
16  
8
Ta = +75°C  
Ta = +25°C  
Ta = –25°C  
8
16  
24  
32  
40  
48  
Fine delay bit  
Jitter peak-peak vs. Output frequency  
2.5  
NTSC, DIV = 1/8, CP = 10, 11  
VGA, DIV = 1/8, 1/4, CP = 10  
SVGA, DIV = 1/4, CP = 10  
XGA, DIV = 1/2, CP = 10  
SXGA, DIV = 1/1, CP = 10  
UXGA, DIV = 1/1, CP = 11  
2.0  
1.5  
1.0  
0.5  
0
0
20  
40  
60  
80 100 120 140 160 180 200 220  
Output frequency [MHz]  
– 40 –  
CXA3266Q  
Notes on Operation  
Be sure not to separate the analog and digital power supplies, and the analog and digital GND.  
The ground pattern should be as wide as possible. Using a multi-layer substrate with a mat ground is  
recommended.  
Ground the power supply pins of the IC with a 0.1µF or larger ceramic chip capacitor as close to each pin as  
possible.  
Be sure to accurately match the I/O characteristic impedance in order to ensure sufficient performance during  
high-speed operation.  
Design the set so that the loop filter (external) is located at the minimum distance. (See the CXA3266Q  
PWB.)  
The voltage applied to VOCLP pin must be supplied from the stabilized power supplies (3-pin regulator etc.)  
because of the construction of internal circuit.  
– 41 –  
CXA3266Q  
(1) Recommended PECL I/O circuit  
The peripheral circuits mainly use PECL for digital input and output. Of course, PECL and TTL can also be  
mixed. In this case, disable the TTL outputs with the control registers.  
PECL level output pins  
330Ω  
GND  
35  
32  
36  
34  
33  
31  
30  
29  
28  
27  
26  
25  
37 IOGND  
DSYNC 24  
VOCLP  
PLLVCC  
38  
39  
CLK 23  
CLKN 22  
40 PLLGND  
CLK/2  
21  
VCOVCC  
VCOGND  
VCOHGND  
IREF  
41  
42  
43  
44  
45  
CLK/2N 20  
DGND  
DVCC  
19  
18  
VCC  
100kΩ  
100pF  
2
3.0kΩ  
100Ω  
UNLOCK output  
0.068µF  
3
UNLOCK 17  
DIVOUT 16  
10nF  
GND  
RC2  
680pF  
46 RC1  
SEROUT  
CS 14  
TLOAD  
15  
3.0kΩ  
4
IRGND  
47  
48  
Loop Filter  
IRVCC  
13  
1
2
3
4
5
6
7
8
9
10  
11  
12  
GND  
VCC (+5.0V)  
Control  
Register  
Notes)  
1 Unless otherwise specified, all capacitors are 0.1µF.  
2 Vary the external resistor and capacitor values of the  
UNLOCK output as necessary.  
SYNCH, SYNCL: PECL level  
complementary input  
HOLD  
3 This external resistor (3.0k) should be a metal film  
resistor in consideration of temperature characteristics.  
4 The loop filter's capacitors and resistor should also be  
temperature compensated.  
– 42 –  
CXA3266Q  
(2) Recommended TTL I/O circuit  
The peripheral circuits mainly use TTL for digital input and output. Of course, PECL and TTL can also be  
mixed.  
35  
32  
36  
34  
33  
31  
30  
29  
28  
27  
26  
25  
TTL level output pins  
37 IOGND  
DSYNC 24  
VOCLP  
PLLVCC  
38  
39  
CLK 23  
CLKN 22  
40 PLLGND  
CLK/2  
21  
VCOVCC  
VCOGND  
VCOHGND  
IREF  
41  
42  
43  
44  
45  
CLK/2N 20  
DGND  
DVCC  
19  
18  
VCC  
100kΩ  
100pF  
2
3.0kΩ  
100Ω  
UNLOCK output  
0.068µF  
3
UNLOCK 17  
DIVOUT 16  
10nF  
GND  
RC2  
680pF  
46 RC1  
SEROUT  
CS 14  
TLOAD  
15  
3.0kΩ  
IRGND  
4
47  
48  
Loop Filter  
IRVCC  
13  
1
2
3
4
5
6
7
8
9
10  
11  
12  
GND  
VCC (+5.0V)  
Control  
Notes)  
1 Unless otherwise specified, all capacitors are 0.1µF.  
2 Vary the external resistor and capacitor values of the  
UNLOCK output as necessary.  
Register  
HOLD  
SYNC: TTL level input  
3 This external resistor (3.0k) should be a metal film  
resistor in consideration of temperature characteristics.  
4 The loop filter's capacitors and resistor should also be  
temperature compensated.  
– 43 –  
CXA3266Q  
Connecting the CXA3266Q with Sony ADC (Demultiplex Mode)  
When connecting the PLL output to A/D converters with built-in demultiplex function such as the  
CXA3246Q/CXA3276Q/CXA3256R/CXA3286R (Sony), a simple system can be configured by connecting the  
CLK (PECL) and CLKN (PECL) outputs of the CXA3266Q to the CLK (PECL) and CLKN (PECL) inputs of  
each A/D converter, respectively, and the 1/2 CLK (PECL) and 1/2 CLKN (PECL) outputs of the CXA3266Q  
to the RESETN (PECL) and RESET (PECL) inputs of each A/D converter, respectively (when the PLL  
counter value N is an even number).  
Wiring Diagram  
8
R
G
B
VIN  
ADC  
CLK (PECL)  
TTL  
8
CXA3246Q  
CXA3276Q  
CXA3256R  
CXA3286R  
CLKN (PECL)  
RESETN (PECL)  
RESET (PECL)  
TTL  
8
VIN  
ADC  
CLK (PECL)  
TTL  
8
CXA3246Q  
CXA3276Q  
CXA3256R  
CXA3286R  
CLKN (PECL)  
RESETN (PECL)  
RESET (PECL)  
TTL  
8
VIN  
ADC  
CXA3246Q  
CXA3276Q  
CXA3256R  
CXA3286R  
CLK (PECL)  
TTL  
8
CLKN (PECL)  
RESETN (PECL)  
RESET (PECL)  
TTL  
• CXA3246Q 8-bit 120MSPS ADC  
• CXA3276Q 8-bit 160MSPS ADC  
• CXA3256R  
• CXA3286R  
8-bit 120MSPS ADC  
8-bit 160MSPS ADC  
PLL  
CXA3266Q  
– 44 –  
CXA3266Q  
CXA3266Q and Sony ADC (Demultiplex Mode) Timing: 120MHz specification  
The CXA3266Q and CXA3246Q/CXA3256R timings are shown below.  
Here, the important timings are as follows.  
(The clock cycle is labeled as T.)  
For the A/D converters  
Clock input vs. reset input  
The set-up time is T–1.1ns and the hold time is 0.3ns, satisfying the A/D converter specifications.  
For the CMOS LOGIC at the rear end of the A/D converters  
A/D converter data output vs. 1/2 clock output timing  
The set-up time is T–4.5ns and the hold time is T–3.5ns. (These timings also include combinations of  
three A/D converters from different lots, and are defined for all operating temperatures and all operating  
supply voltages. See the CXA3246Q/CXA3256R data sheets for a detailed description.)  
For the CMOS LOGIC at the rear end of the A/D converters  
DSYNC signal from CXA3266Q vs. A/D converter 1/2 clock output  
The set-up time is T–3.2ns and the hold time is T–4.2ns.  
CXA3266Q  
T
CLK (PECL)  
out  
2.8 to 6.2ns  
DSYNC (TTL)  
out  
0.3 to 1.1ns  
1/2CLK (PECL)  
out  
See the CXA3246Q and  
CXA3256R data sheets.  
CXA3246Q  
CXA3256R  
Tsetup min. Thold min.  
T–4.5ns T–3.5ns  
Tsetup min.  
T–3.2ns  
Thold min.  
T–4.2ns  
3.0 to 7.0ns  
1/2CLK (TTL)  
out  
DATA (TTL)  
out  
– 45 –  
CXA3266Q  
CXA3266Q and Sony ADC (Demultiplex Mode) Timing: 160MHz specification  
The CXA3266Q and CXA3276Q/CXA3286R timings are shown below.  
Here, the important timings are as follows.  
(The clock cycle is labeled as T.)  
For the A/D converters  
Clock input vs. reset input  
The set-up time is T–1.1ns and the hold time is 0.3ns, satisfying the A/D converter specifications.  
For the CMOS LOGIC at the rear end of the A/D converters  
A/D converter data output vs. 1/2 clock output timing  
The set-up time is T–4.0ns and the hold time is T–3.0ns. (These timings also include combinations of  
three A/D converters from different lots, and are defined for all operating temperatures and all operating  
supply voltages. See the CXA3276Q/CXA3286R data sheets for a detailed description.)  
For the CMOS LOGIC at the rear end of the A/D converters  
DSYNC signal from CXA3266Q vs. 1/2 clock output of A/D converter  
The set-up time is T–3.2ns and the hold time is T–3.7ns.  
CXA3266Q  
T
CLK (PECL)  
out  
2.8 to 6.2ns  
DSYNC (TTL)  
out  
0.3 to 1.1ns  
1/2CLK (PECL)  
out  
See the CXA3276Q and  
CXA3286R data sheets.  
CXA3276Q  
CXA3286R  
Tsetup min. Thold min.  
Tsetup min.  
T–3.2ns  
Thold min.  
T–3.7ns  
T–4.0ns  
T–3.0ns  
3.0 to 6.5ns  
1/2CLK (TTL)  
out  
DATA (TTL)  
out  
– 46 –  
CXA3266Q  
Connecting the CXA3266Q with Sony ADC (Straight Mode)  
When connecting the PLL output to A/D converters such as the CXA3246Q/CXA3276Q/CXA3256R/CXA3286R  
(Sony), a simple system can be configured as shown below.  
Wiring Diagram  
8
R
G
B
VIN  
CLK (PECL)  
TTL  
CLKN (PECL)  
ADC  
CXA3246Q  
CXA3276Q  
CXA3256R  
CXA3286R  
8
VIN  
CLK (PECL)  
TTL  
CLKN (PECL)  
ADC  
CXA3246Q  
CXA3276Q  
CXA3256R  
CXA3286R  
8
VIN  
CLK (PECL)  
TTL  
CLKN (PECL)  
ADC  
CXA3246Q  
CXA3276Q  
CXA3256R  
CXA3286R  
• CXA3246Q 8-bit 120MSPS ADC  
• CXA3276Q 8-bit 160MSPS ADC  
• CXA3256R  
• CXA3286R  
8-bit 120MSPS ADC  
8-bit 160MSPS ADC  
PLL  
CXA3266Q  
– 47 –  
CXA3266Q  
CXA3266Q and Sony ADC (Straight Mode) Timing: 100MHz specification  
The CXA3266Q and CXA3246Q/CXA3256R timings are shown below.  
Here, the important timings are as follows.  
(The clock cycle is labeled as T.)  
For the CMOS LOGIC at the rear end of the A/D converters  
A/D converter data output vs. clock output from CXA3266Q  
The set-up time is T–5.7ns and the hold time is 0.3ns. (These timings also include combinations of three  
A/D converters from different lots, and are defined for all operating temperatures and all operating supply  
voltages. See the CXA3246Q/CXA3256R data sheets for a detailed description.)  
For the CMOS LOGIC at the rear end of the A/D converters  
DSYNC signal from CXA3266Q vs. A/D converter clock output  
The set-up time is T–3.0ns and the hold time is T–1.0ns.  
CXA3266Q  
T
CLK (PECL)  
out  
1.8 to 3.2ns  
CLK (TTL)  
out  
1.0 to 3.0ns  
DSYNC (TTL)  
out  
Thold min.  
1.0ns  
Tsetup min.  
T–3.0ns  
CXA3246Q  
CXA3256R  
Tsetup min.  
T–5.7ns  
Thold min.  
0.3ns  
3.5ns min.  
7.5ns max.  
DATA (TTL)  
out  
– 48 –  
CXA3266Q  
CXA3266Q and Sony ADC (Straight Mode) Timing: 100MHz specification  
The CXA3266Q and CXA3276Q/CXA3286R timings are shown below.  
Here, the important timings are as follows.  
(The clock cycle is labeled as T.)  
For the CMOS LOGIC at the rear end of the A/D converters  
A/D converter data output vs. clock output from CXA3266Q  
The set-up time is T–5.2ns and the hold time is 0.3ns. (These timings also include combinations of three  
A/D converters from different lots, and are defined for all operating temperatures and all operating supply  
voltages. See the CXA3276Q/CXA3286R data sheets for a detailed description.)  
For the CMOS LOGIC at the rear end of the A/D converters  
DSYNC signal from CXA3266Q vs. A/D converter clock output  
The set-up time is T–3.0ns and the hold time is T–1.0ns.  
CXA3266Q  
T
CLK (PECL)  
out  
1.8 to 3.2ns  
CLK (TTL)  
out  
1.0 to 3.0ns  
DSYNC (TTL)  
out  
Thold min.  
1.0ns  
Tsetup min.  
T–3.0ns  
CXA3276Q  
CXA3286R  
Tsetup min.  
T–5.2ns  
Thold min.  
0.3ns  
3.5ns min.  
7.0ns max.  
DATA (TTL)  
out  
– 49 –  
CXA3266Q  
CXA3266Q-PWB (CXA3266Q Evaluation Board)  
The CXA3266Q-PWB is an evaluation board for the CXA3266Q PLL-IC. This board makes it possible to easily  
evaluate the CXA3266Q's performance using the supplied control program (Note: IBM PC/AT, MS-DOS 5.0 or  
newer US mode specifications).  
Features  
Two input level (TTL and PECL) SYNC input  
Two output level (TTL and PECL) CLK, CLK2 and DSYNC output  
Supply voltage: +5.0V  
Absolute Maximum Ratings (Ta = 25°C)  
Supply voltage  
VCC  
–0.5 to +7.0  
V
Recommended Operating Conditions  
Supply voltage  
Digital input  
VCC  
4.75 to 5.25  
0
V
GND  
(PECL)  
V
DIN (High)  
DIN (Low)  
DIN (High)  
DIN (Low)  
VCC – 1.1  
VCC – 1.5  
V (Min.)  
V (Max.)  
(TTL)  
GND + 2.0 V (Min.)  
GND + 0.8 V (Max.)  
Operating ambient temperature  
Ta  
–20 to +75  
°C  
Block Diagram  
Loop Filter  
VCO input  
(PECL/TTL)  
DSYNC output  
(PECL/TTL)  
CLK output  
(PECL/TTL)  
CXA3266Q  
48pin QFP  
SYNC input  
(PECL/TTL)  
CLK/2 output  
(PECL/TTL)  
VBB (PECL)  
SEROUT (TTL)  
DIVOUT (TTL)  
UNLOCK (TTL)  
3
CONTROL BUS (TTL)  
SENABLE, SCLK, SDATA  
– 50 –  
CXA3266Q  
Setting Methods and Notes on Operation  
Input pins  
This PWB supports TTL single and PECL complementary input.  
Input pins: SYNC: TTL level input, 10 to 120kHz  
SYNCL: PECL low level input, 10 to 120kHz  
SYNCH: PECL high level input, 10 to 120kHz  
VCO:  
TTL level input. This is a test pin and is therefore normally not used.  
VCOL: PECL low level input. This is a test pin and is therefore normally not used.  
VCOH: PECL high level input. This is a test pin and is therefore normally not used.  
Output pins  
This PWB supports TTL single and PECL complementary output.  
DSYNCH,  
DSYNCL: PECL level complementary delay SYNC outputs. The output range is 10 to 120kHz.  
DSYNC:  
TTL level delay SYNC output. The output range is 10 to 120kHz.  
CLKH,  
CLKL:  
PECL level complementary CLK outputs. The output range is 10 to 203MHz.  
TTL level complementary CLK outputs. The output range is 10 to 100MHz.  
PECL level complementary 1/2 CLK outputs. The output range is 5 to 100MHz.  
CLK,  
CLKN:  
CLK/2H,  
CLK/2L:  
CLK/2,  
CLK/2N:  
TTL level complementary CLK outputs. The output range is 5 to 100MHz.  
Outputs the PECL amplitude threshold voltage.  
VBB:  
SEROUT: TTL level control register serial data output.  
DIVOUT: TTL level internal programmable counter test output.  
UNLOCK: TTL level UNLOCK output. This pin requires external circuits such as appropriate capacitors and  
resistors.  
See the IC specifications for a detailed description.  
PECL outputs (VBB, DSYNCH, DSYNCL, CLKH, CLKL, CLK/2H, CLK/2L) are output constantly, but TTL  
outputs (DSYNC, CLK, CLKN, CLK/2, CLK/2N, SEROUT, DIVOUT, UNLOCK) are controlled by the respective  
control registers. Therefore, the enable/disable settings should be made in accordance with the application.  
See the following pages for the setting method.  
– 51 –  
CXA3266Q  
Jumper Wire Settings  
S1, S2: These enable/disable HOLD (Pin 6). HOLD is active high, so the jumper wire should be connected to  
S2 (HOLD = low) for normal use. When using HOLD, connect the jumper wire to S1 (HOLD = high).  
(For the initial setting, the jumper wire is connected to S2.)  
S3, S4: These enable/disable TLOAD (Pin 13). Connect the jumper wire to S4 (TLOAD = high) for normal use.  
When using TLOAD, connect the jumper wire to S3 (TLOAD = low). (For the initial setting, the jumper  
wire is connected to S4.)  
S5, S6: These enable/disable CS (Pin 14). Connect the jumper wire to S6 (CS = high) for normal use. When  
using Power Save, connect the jumper wire to S5 (CS = low). (For the initial setting, the jumper wire is  
connected to S6.)  
Supplied Program  
This PWB has a control program that facilitates evaluation of the CXA3266Q. Operation methods and precautions  
are as follows.  
1) Compatible personal computers  
Use an IBM PC/AT or compatible machine equipped with a 25-pin D-SUB parallel port (printer port). Also,  
operating systems which support the program are MS-DOS 5.0 or newer and MS-Windows 3.1 or newer.  
(When using Windows, start the program from the DOS window.)  
2) Connection of the supplied cable  
Connect the supplied cable to the parallel port of the personal computer and the DBUS1 connector of the  
CXA3266Q-PWB.  
D-SUB 25-pin parallel connector pin arrangement  
1
13  
Pin 2 : SCLK  
Pin 3 : SDATA  
Pin 4 : SENABLE  
Pin 11 : SERIN  
Pin 19 : GND  
14  
25  
3) Connect the power cable and supply power to the CXA3266Q-PWB.  
4) Start the program  
A) Boot the personal computer and then shift to the directory containing the program.  
B) Set MS-DOS to US mode. US Return or Enter  
C) Input the program name. CXA3266Q Return or Enter Move to the program screen.  
– 52 –  
CXA3266Q  
5) Description of program screen  
A) Setting of each function  
When the program is started, the following initial screen is displayed.  
A3266 PLL REGISTERS  
Divisor 1672  
Divider 2  
Coarse Delay 00  
Polarity  
Fine Delay  
Charge Pump 00  
0
Power  
SYNC DSYNC  
PD  
0
SCAN SYNTH  
VCO Bypass  
ON  
0
0
ON  
ON  
O/P Enable  
DIVOUT  
ON  
UNLOCK  
ON  
DSYNC  
ON  
CLK2  
ON  
NCLK2  
ON  
CLK1  
ON  
NCLK1  
ON  
DSYNC Functions  
DELAY  
ON  
WIDTH  
00  
HOLD  
ON  
BYPASS  
ON  
Use arrow keys to select data bit. Press ENTER to toggle and load data.  
Use Pg Up and Pg Dn to increment/decrement divisor and fine delay registers.  
Press a to abort, s to scan registers MIXED SIGNAL SYSTEMS AUG 1998  
– 53 –  
CXA3266Q  
Divisor  
This is used to input the frequency division ratio of the program counter. The value can be changed as  
desired from 9 to 4111 by moving the cursor to the position of the number and pressing the Return or Enter  
key. (Note: The operating range of the CXA3266Q is from 256 to 4096.) The value can also be incremented  
or decremented by one step by pressing the Page Up or Page Down key, respectively.  
The internal VCO has an oscillator frequency of 40 to 203MHz, so the output frequency and Divider (VCO  
frequency divider) setting range are as follows.  
40  
Divider = 1  
203  
1/1  
1/2  
1/4  
1/8  
20  
Divider = 2  
50  
100  
Divider = 4  
10  
Divider = 8  
25  
5
50  
100  
O/P frequency [MHz]  
150  
200  
Divider  
This sets the VCO output frequency division ratio to 1/1, 1/2, 1/4 or 1/8. The frequency division ratio changes  
repeatedly in the order of 1/1 1/2 1/4 1/8 1/1 each time the cursor is moved to the position of the  
number and the Return or Enter key is pressed.  
Coarse Delay  
This is the DSYNC upper delay time setting. The value can be changed by moving the cursor to the position  
of the number and pressing the Return or Enter key. The delay time variable range settings are "00" (2 CLK),  
"01" (3 CLK), "10" (4 CLK) or "11" (5 CLK).  
Fine Delay  
This is the DSYNC lower delay time setting. The value can be changed by moving the cursor to the position  
of the number and pressing the Return or Enter key. The value can also be incremented or decremented by  
one step by pressing the Page Up or Page Down key, respectively. The delay time can be varied from 1/32  
CLK to 64/32 CLK by setting "0" to "63", respectively.  
Charge Pump  
This is the charge pump circuit KI setting. The value can be changed by moving the cursor to the position of the  
number and pressing the Return or Enter key. KI can be set to "00" (approximately 100µA), "01" (approximately  
200µA), "10" (approximately 400µA) or "11" (approximately 800µA).  
Polarity  
These are the SYNC, DSYNC and PD (Phase Detector) polarity inversion settings, and should be set as  
necessary such as when inverting the SYNC input and DSYNC output waveforms. The setting value "1" is  
positive polarity, and "0" is negative polarity. These should normally all be set to "1". (Fix PD to "1" other than  
during test mode.)  
– 54 –  
CXA3266Q  
Power  
SCAN:  
This is the control register read setting. When this is ON, the control register serial data is  
output from SEROUT (Pin 15). This should normally be set to OFF.  
SYNTH:  
This is the enable/disable setting for this IC. This should normally be set to ON.  
VCO By-pass: This is set to OFF when testing the program counter. This should normally be set to ON.  
O/P Enable  
These are the enable/disable settings for each TTL output (DIVOUT, UNLOCK, DSYNC, CLK2, NCLK2,  
CLK1 and NCLK1). Set to ON when performing evaluation using TTL output.  
DSYNC Functions  
DELAY:  
WIDTH:  
When DIVOUT is output from DSYNC output, its delay is set. 4 CLK for OFF; 5 CLK for ON.  
When DIVOUT is output from DSYNC output, its pulse width is changed. Their settings are  
1 CLK for "00", 2 CLK for "01", 4 CLK for "10", and 8 CLK for "11".  
HOLD:  
DSYNC output status is set during HOLD. Output OFF status for OFF (H or L fixed according  
to DSYNC POL polarity); DSYNC or DIVOUT are output for ON.  
BYPASS:  
DSYNC/DIVOUT output switching from DSYNC output is performed. DSYNC is output for ON;  
DIVOUT for OFF.  
– 55 –  
CXA3266Q  
B) Description of readout mode  
This program has a function (readout mode) that reads the contents written to the control registers from the  
CXA3266Q SEROUT (Pin 15) and displays these contents on the screen. This function is described below.  
1) Set SCAN to ON at the function setting screen.  
2) Press the S key.  
The following screen appears.  
SCAN RESULT, CXA3266 PLL REGISTERS  
Register 1 DIVREG1  
Register 2 DIVREG2  
Register 3 CENFREREG  
Register 4 DELAYREG  
Register 5 CPREG  
00111000  
0101  
01  
00100000  
100110  
11111111  
111111  
Register 6 TTLPOLREG  
Register 7 TESTPOWREG  
Press r to return to PLL REGISTERS MENU.  
Press a to abort  
MIXED SIGNAL SYSTEMS AUG 1998  
This screen conforms to the Control Register Table listed in the CXA3266Q data sheet.  
3) Press the R key to return to the original function setting screen.  
C) Quit the program  
Press the A key to quit the program.  
– 56 –  
CXA3266Q  
Substrate Pattern (parts surface)  
Substrate Pattern (solder surface)  
– 57 –  
CXA3266Q  
VCC  
GND  
VCO  
VCOL  
VCOH  
C21  
33µ  
+
BNC3  
BNC2  
BNC1  
PR10  
VBB  
R1  
R8  
CXA3266Q PWB  
BNC4  
SYNCH  
PR8  
DSYNCL  
PR9  
DSYNCH  
R3  
R2  
R9  
R10  
S1  
S2  
BNC5  
SYNCL  
PR6  
CLKL  
PR7  
CLKH  
R7  
R4  
IC1  
R14  
R11  
BNC6  
PR1  
CLK/2L  
PR5  
CLK/2H  
SYNC  
R6  
R5  
R13  
R12  
PR2  
SEROUT  
PR3  
DIVOUT  
PR4  
UNLOCK  
PR11  
CLK/2N  
PR12  
CLK/2  
PR13  
CLKN  
PR14  
CLK  
PR15  
DSYNC  
Silk Screen (parts surface)  
2 1 C  
9 1 C  
0 2 C  
0 1 C  
8 C  
1 1 C  
7 C  
9 C  
Silk Screen (solder surface)  
– 58 –  
CXA3266Q  
D N G O I  
P L C O V  
C C V L L P  
D N G L L P  
C C V O C V  
D N G O C V  
D N G H O C V  
F E R I  
C N Y S D  
K L C  
N K L C  
2 / K L C  
N 2 / K L C  
D N G D  
C C V D  
K C O L N U  
T U O V I D  
T U O R E S  
S C  
2 C R  
1 C R  
D N G R I  
C C V R I  
D A O L T  
r e t s i g e R l o r t n o C  
– 59 –  
CXA3266Q  
Package Outline  
Unit: mm  
48PIN QFP (PLASTIC)  
15.3 ± 0.4  
+ 0.1  
0.15 – 0.05  
+ 0.4  
12.0 – 0.1  
0.15  
36  
25  
24  
37  
+ 0.2  
0.1 – 0.1  
48  
13  
1
12  
+ 0.15  
0.3 – 0.1  
0.8  
0.24  
M
+ 0.35  
2.2 – 0.15  
PACKAGE STRUCTURE  
EPOXY RESIN  
PACKAGE MATERIAL  
LEAD TREATMENT  
LEAD MATERIAL  
SOLDER / PALLADIUM  
PLATING  
SONY CODE  
EIAJ CODE  
QFP-48P-L04  
QFP048-P-1212  
42/COPPER ALLOY  
0.7g  
JEDEC CODE  
PACKAGE MASS  
NOTE : PALLADIUM PLATING  
This product uses S-PdPPF (Sony Spec.-Palladium Pre-Plated Lead Frame).  
– 60 –  

相关型号:

CXA3268AR

Driver/Timing Generator for Color LCD Panels
SONY

CXA3271AGE

Fingerprint Sensor
ETC

CXA3271GE

Fingerprint Sensor
SONY

CXA3272R

CXA3272R
SONY

CXA3275Q

PLL/OSC/MIX IC for Digital Tuner
SONY

CXA3276Q

8-bit 160MSPS Flash A/D Converter
SONY

CXA3286

8-bit 160MSPS Flash A/D Converter
SONY

CXA3286R

8-bit 160MSPS Flash A/D Converter
SONY

CXA3299TN

Wideband Pre-amplifier
SONY

CXA3304N

IF IC for ETC
SONY

CXA3309ER

Analog Signal Processor TX-IF IC for W-CDMA Cellular Phones
ETC

CXA3314ER

6GHz PLL
SONY