CXA3268AR [SONY]

Driver/Timing Generator for Color LCD Panels; 驱动器/时序发生器彩色LCD面板
CXA3268AR
型号: CXA3268AR
厂家: SONY CORPORATION    SONY CORPORATION
描述:

Driver/Timing Generator for Color LCD Panels
驱动器/时序发生器彩色LCD面板

驱动器 消费电路 商用集成电路 ISM频段 CD
文件: 总42页 (文件大小:431K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
CXA3268AR  
Driver/Timing Generator for Color LCD Panels  
Description  
72 pin LQFP (Plastic)  
The CXA3268AR is an IC designed to drive the color  
LCD panels ACX300, ACX301, ACX302 and ACX703.  
This IC greatly reduces the number of peripheral  
circuits and parts by incorporating a RGB driver and  
timing generator for video signals onto a single chip.  
This chip has a built-in serial interface circuit and  
electronic attenuators which allow various settings to  
be performed by microcomputer control, etc.  
Features  
Digital input pin voltage  
VIND (other than Pins 5, 10, 14, 15 and 16)  
VSS – 0.3 to VDD + 0.3 V  
VSS – 0.3 to +5.5  
Common input pin voltage  
VINAD (Pins 14, 15 and 16)  
Color LCD panel ACX300, ACX301, ACX302 and  
ACX703 driver  
Supports NTSC and PAL systems  
Supports 16:9 wide display (letter box and pulse  
elimination display)  
Supports Y/color difference and RGB inputs  
Supports OSD input (digital input)  
Power saving function  
VIND (Pins 5, 10)  
V
GND, VSS – 0.3 to +5.5 V  
Operating temperature  
Topr  
Storage temperature  
Tstg  
Allowable power dissipation  
PD (Ta 25°C)  
–15 to +75  
–55 to +150  
737  
°C  
°C  
Serial interface circuit  
Electronic attenuators (D/A converter)  
Trap and LPF (f0, fc variable)  
COMMON and PSIG output circuits  
Sharpness function  
mW  
2-point γ correction circuit  
Operating conditions  
Supply voltage  
VCC1 – GND1  
R, G, B signal delay time adjustment circuit  
D/A output pin (0 to 3V, 8 level output)  
Output polarity inversion circuit  
Supports AC drive for LCD panel during no signal  
2.7 to 3.6  
V
V
V
V
VCC2 – GND2  
VCC3 – GND3  
VDD – Vss  
11.0 to 14.0  
11.0 to 14.0  
2.7 to 3.6  
Applications  
Input voltage  
SIG.C voltage  
VSIG.C  
Compact LCD monitors, etc.  
5.0 to 6.5  
V
Absolute Maximum Ratings (Ta = 25°C)  
Supply voltage VCC1  
1
RGB input signal voltage (Pins 70, 71 and 72)  
6
V
V
V
V
VRGB  
0 to 0.7 (0.5 typ.) Vp-p  
VCC2  
VCC3  
VDD  
15  
15  
5.5  
2
Y input signal voltage (Pin 71)  
VY  
0 to 0.5 (0.35 typ.) Vp-p  
2
R-Y input voltage (Pin 72)  
Analog input pin voltage  
VINA (Pins 57, 58 and 59)  
VR-Y  
0 to 0.49 (0.245 typ.) Vp-p  
2
B-Y input voltage (Pin 70)  
GND – 0.3 to VCC1 + 0.3 V  
VB-Y  
0 to 0.622 (0.311 typ.) Vp-p  
VINA (Pins 3, 69)  
VINA (Pin 30)  
VINA (Pin 71)  
VCC1  
1.5 to VCC2 – 4  
0.9  
V
V
Vp-p  
Vp-p  
1 During RGB input  
2 During Y/color difference input  
VINA (Pins 70, 72)  
0.8  
Sony reserves the right to change products and specifications without prior notice. This information does not convey any license by  
any implication or otherwise under any patents or other right. Application circuits shown, if any, are typical examples illustrating the  
operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits.  
– 1 –  
E99529B98-PS  
CXA3268AR  
Block Diagram  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
Vss Vss  
GND3  
+12.0V  
+12.0V  
PSIG-  
BRT  
Buf  
55 +3.0V  
36  
35  
34  
VDD  
TST11  
OSD B  
G OUT  
PSIG-  
BRIGHT  
S/H  
OSD RGB  
CONTRAST  
TRAP  
Buf  
Buf  
Buf  
Buf  
56  
57  
LPF  
FILTER  
G DC DET  
R OUT  
USER-BRIGHT  
GAMMA  
POL SW  
S/H  
GEN  
CONT  
U-BRT  
FILTER  
BIAS  
γ 1 γ 2  
WHITLIM  
SUB-CONT R  
SUB-CONT B  
OSD R 58  
OSD G 59  
NC 60  
33 R DC DET  
32 B OUT  
LPF  
R
CLAMP  
G
B
BLK-LIM  
31 B DC DET  
30 SIG.C  
BLKLIM  
MODE  
PIC-G  
SUB-BRIGHT  
HCK1 61  
HCK2 62  
Vcc1 63  
HST 64  
EN 65  
SUB-BRT R  
SUB-BRT B  
HCK  
GEN  
CLAMP  
G
R
B
29 GND2  
SIG.C  
GND2  
POL SW  
MATRIX  
28 TST2  
27 HDO  
26 VDO  
25 XCLR  
24 RPD  
23 Vss  
+3.0V  
COM-DC  
HDO GEN  
PLL  
COUNTER  
HCOUNTER  
HPULSE  
GEN  
PICTURE DL1 DL1  
VDO GEN  
PULSE  
ELM  
HUE  
VCK 66  
VST 67  
RGT 68  
PIC-F  
V CONTROL  
V POSITION  
HUE  
COLOR  
PHASE  
COMPARATOR  
CLAMP  
CLP  
Vss  
HSYNC DET  
H SKEW DET  
V COUNTER  
FIL IN  
B/B-Y  
G/Y  
CKI  
CKO  
VDD  
VDD  
69  
70  
71  
72  
22  
21  
20  
19  
V SEP  
MODE  
CK  
CONTROL  
MCK  
CLK  
+3.0V  
DA REF  
R/R-Y  
+3.0V  
H.FILTER SYNC SEP  
Vss  
S/P CONV  
REGISTER DAC  
Buf  
6
Buf  
7
GND1  
9
Vss  
18  
1
2
3
4
5
8
10  
11  
12  
13  
14  
15  
16  
17  
– 2 –  
CXA3268AR  
Pin Description  
Pin  
Input pin for  
open status  
Symbol  
No.  
I/O  
Description  
1
VSS  
O
I
Digital 3.0V GND  
2
FIL OUT  
SYNC IN  
SYNC OUT  
CSYNC/HD  
DA OUT  
REF  
H filter output (for using internal sync separation)  
Sync separation circuit input (for using internal sync separation)  
Sync separation circuit output (for using internal sync separation)  
CSYNC/horizontal sync signal input  
DAC output  
3
4
O
I
5
6
O
O
O
I
7
Level shifter circuit REF voltage output for LCD panel  
Trap f0 adjusting resistor connection  
Analog 3.0V GND  
8
F ADJ  
GND1  
VD  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
Vertical sync signal input  
L
DWN  
O
O
I
Up/down inversion switching signal output  
16:9 wide display switching pulse output  
Test (Leave this pin open.)  
WIDE  
TST1  
SCK  
Serial clock input  
SEN  
I
Serial load input  
SDAT  
R INJECT  
VSS  
I
Serial data input  
O
O
I
Serial block current controlling resistor connection  
Digital 3.0V GND  
VDD  
Digital 3.0V power supply  
VDD  
Digital 3.0V power supply  
CKO  
Oscillation cell output  
CKI  
Oscillation cell input  
VSS  
O
I
Digital 3.0V GND  
RPD  
Phase comparator output  
XCLR  
VDO  
Power-on reset capacitor connection (timing generator block)  
VDO pulse output  
H
O
O
I
HDO  
HDO pulse output  
TST2  
Test (Connect to GND.)  
GND2  
SIG.C  
B DC DET  
B OUT  
R DC DET  
R OUT  
G DC DET  
G OUT  
VCC2  
Analog 12.0V GND  
R, G, B and PSIG output DC voltage adjustment  
B signal DC voltage feedback circuit capacitor connection  
B signal output  
O
O
O
O
O
O
R signal DC voltage feedback circuit capacitor connection  
R signal output  
G signal DC voltage feedback circuit capacitor connection  
G signal output  
Analog 12.0V power supply  
– 3 –  
CXA3268AR  
Pin  
No.  
Input pin for  
open status  
Symbol  
I/O  
Description  
38  
39  
40  
41  
42  
43  
44  
PSIG DC DET  
PSIG OUT  
TST3  
O
O
PSIG signal DC voltage feedback circuit capacitor connection  
PSIG output  
O
Test (Leave this pin open.)  
VCC3  
Analog 12.0V COM (CS) power supply  
Common pad voltage for LCD panel output (CS)  
Analog 12.0V COM (CS) GND  
COM  
GND3  
TST4  
Test (Leave this pin open.)  
LCD panel power supply on/off (Leave this pin open when not using  
this function.)  
45  
POF  
O
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
NC  
TST5  
TST6  
TST7  
TST8  
TST9  
TST10  
VSS  
I
Test (Connect to GND.)  
Test (Connect to GND.)  
Test (Leave this pin open.)  
Test (Leave this pin open.)  
Test (Leave this pin open.)  
Test (Leave this pin open.)  
Digital 3.0V GND  
VSS  
Digital 3.0V GND  
VDD  
Digital 3.0V power supply  
Test (Connect to GND.)  
OSD B input  
TST11  
OSD B  
OSD R  
OSD G  
NC  
I
OSD R input  
I
OSD G input  
HCK1  
HCK2  
VCC1  
HST  
O
O
O
O
O
O
O
I
H clock pulse 1 output  
H clock pulse 2 output  
Analog 3.0V power supply  
H start pulse output  
EN  
EN pulse output  
VCK  
V clock pulse output  
VST  
V start pulse output  
RGT  
FIL IN  
B/B-Y  
G/Y  
Right/left inversion switching signal output  
H filter input (for using internal sync separation)  
B/B-Y signal input  
I
I
G/Y signal input  
R/R-Y  
I
R/R-Y signal input  
DWN: DOWN SCAN and UP SCAN, RGT: RIGHT SCAN and LEFT SCAN  
H: pull-up processing, L: pull-down processing  
– 4 –  
CXA3268AR  
Analog Block Pin Description  
Pin  
No.  
Pin  
voltage  
Symbol  
Equivalent circuit  
Description  
VCC1  
23k  
Amplifies and outputs the sync  
portion of the video signal input  
to FIL IN (Pin 69).  
2
2
3
4
6
7
FIL OUT  
2.15V  
1.1V  
200  
GND1  
VCC1  
Sync separation circuit input.  
Inputs the FIL OUT (Pin 2)  
output signal via a capacitor.  
SYNC IN  
SYNC OUT  
DA OUT  
REF  
200  
3
GND1  
VCC1  
Sync separation output.  
Positive polarity output in open  
collector format.  
4
GND1  
VCC1  
DA output.  
Outputs the serial data  
converted to DC voltage. The  
current driving capacity is  
±1.0mA (max.).  
50  
6
50  
GND1  
VCC1  
REF output.  
Outputs the serial data  
converted to DC voltage. The  
current driving capacity (sink)  
is ±1.5mA (max.).  
7
51k  
GND1  
– 5 –  
CXA3268AR  
Pin  
No.  
Pin  
voltage  
Symbol  
Equivalent circuit  
Description  
Connect a resistor between this  
pin and GND1 to control the  
internal LPF and trap  
VCC1  
frequencies.  
Connect a 33kresistor  
(tolerance ±2%, temperature  
characteristics ±200ppm or less).  
This pin is easily affected by  
external noise, so make the  
connection between the pin and  
external resistor, and between  
the GND side of the external  
resistor and the GND1 pin as  
close as possible.  
6.5k  
1.1V  
8
9
F ADJ  
8
10  
GND1  
Analog 3.0V GND.  
GND1  
VCC1  
14  
15  
16  
14  
15  
16  
SCK  
SEN  
SDAT  
Serial clock, serial load and  
serial data inputs for serial  
communication.  
200  
GND1  
VCC1  
Connect a resistor for setting  
the injector current of the IIL  
logic circuit. Connect a 15kΩ  
resistor between this pin and  
GND1. Use a resistor with a  
deviation of ±2% and  
17  
29  
30  
R INJECT  
0.7V  
200  
17  
temperature characteristics of  
±200ppm or less.  
GND1  
Analog 12.0V GND.  
(for the RGB and PSIG output  
circuits)  
GND2  
VCC2  
R, G, B and PSIG output DC  
voltage setting.  
Preset  
VCC2/2  
140k  
Connect a 0.01µF capacitor  
between this pin and GND1.  
When using a SIG.C of other  
than VCC2/2, input the SIG.C  
voltage from an external  
source.  
SIG.C  
200  
Variable  
range:  
5.0 to 6.5V  
30  
10p  
140k  
GND1  
– 6 –  
CXA3268AR  
Pin  
No.  
Pin  
voltage  
Symbol  
Equivalent circuit  
Description  
VCC2  
VCC1  
Smoothing capacitor connection  
for the feedback circuit of R, G,  
B and PSIG output DC level  
control.  
Connect a low-leakage  
capacitor.  
31  
33  
35  
38  
B DC DET  
R DC DET  
G DC DET  
PSIG DC DET  
31  
33  
35  
38  
1.8V  
200  
GND1  
VCC2  
R, G, B and PSIG signal  
outputs.  
The DC level is controlled to  
match the SIG.C pin voltage.  
Low output in power saving  
mode.  
32  
34  
36  
39  
B OUT  
R OUT  
G OUT  
PSIG OUT  
32  
34  
36  
39  
VCC2/2  
(SIG.C =  
preset)  
10  
166k  
10  
VCC2/2V output when preset.  
GND2  
Analog 12.0V power supply.  
(for the RGB and PSIG output  
circuits)  
37  
41  
VCC2  
12.0V  
12.0V  
Analog 12.0V power supply.  
(for COM (CS) output)  
VCC3  
VCC3  
COMMON voltage output.  
The output voltage is controlled  
by serial communication.  
200  
42  
43  
COM  
42  
90k  
GND3  
Analog 12.0V GND.  
(for COM (CS) output)  
GND3  
VCC1  
OSD pulse inputs.  
When one of these input pins  
exceeds the Vth1 level, all of  
the outputs go to black limiter  
level; when an input pin  
exceeds the Vth2 level, only the  
corresponding output goes to  
white limiter level.  
Vth1 =  
VCC1 × 1/3  
57  
58  
59  
OSD B  
OSD R  
OSD G  
57  
58  
59  
50k  
50k  
Vth2 =  
VCC1 × 2/3  
GND1  
– 7 –  
CXA3268AR  
Pin  
voltage  
Pin  
No.  
Equivalent circuit  
Description  
Symbol  
VCC1  
63  
Analog 3.0V power supply.  
VCC1  
69  
H filter input.  
Input the video signal via a  
capacitor.  
200  
69  
FIL IN  
1.2V  
GND1  
VDD1  
In Y/color difference input  
mode, input the Y signal to  
Pin 71, the B-Y signal to Pin 70,  
and the R-Y signal to Pin 72.  
In RGB input mode, input the  
B signal to Pin 70, the G signal  
to Pin 71 and the R signal to  
Pin 72.  
G/Y 1.8V  
R/R-Y,  
B/B-Y,  
RGB:  
1.8V  
70  
71  
72  
70  
71  
72  
B/B-Y  
G/Y  
R/R-Y  
200  
Y/color  
difference:  
2.0V  
Pedestal clamp these pins with  
external coupling capacitors.  
GND1  
– 8 –  
CXA3268AR  
Digital Block Pin Description  
Pin  
No.  
Pin  
voltage  
Symbol  
Equivalent circuit  
Description  
1
18  
23  
53  
54  
VSS  
Digital 3.0V GND.  
19  
20  
55  
Digital 3.0V power supply.  
VDD  
Composite sync/horizontal sync  
signal input, and serial clock,  
serial load and serial data inputs  
for serial communication.  
5
CSYNC/HD  
SCK  
SEN  
15  
5
14  
15  
16  
14 16  
SDAT  
VSS  
10  
10  
VD  
Vertical sync signal input.  
VSS  
21  
22  
24  
CKO  
CKI  
Oscillation circuit output.  
Oscillation circuit input.  
Phase comparator output.  
RPD  
VDD  
25  
XCLR  
Digital block system reset.  
25  
VSS  
DWN  
WIDE  
VDO  
HDO  
POF  
HCK1  
HCK2  
HST  
EN  
11  
12  
26  
27  
45  
61  
62  
64  
65  
66  
67  
68  
VDD  
62  
64  
27  
45  
61  
66  
67  
11  
12  
26  
Digital block outputs.  
65 68  
VSS  
VCK  
VST  
RGT  
– 9 –  
CXA3268AR  
Test Pin Description  
Pin  
Pin  
voltage  
Symbol  
No.  
Equivalent circuit  
Description  
13  
40  
44  
49  
50  
51  
52  
TST1  
TST3  
TST4  
TST7  
TST8  
TST9  
TST10  
Test.  
Leave these pins open.  
28  
47  
48  
56  
TST2  
TST5  
TST6  
TST11  
Test.  
Connect to GND.  
– 10 –  
CXA3268AR  
Setting Conditions for Measuring Electrical Characteristics  
Use the Electrical Characteristics Measurement Circuit on page 22 when measuring electrical characteristics.  
For measurement, the digital block must be initialized and power saving must be canceled by performing  
Settings 1 and 2 below. In addition, the serial data must be set to the initial settings shown in the table below.  
Setting 1. Horizontal AFC adjustment  
Input a signal and adjust the VCO using V22 so that WL and WH of the TP24 output waveform are the same.  
Setting 2. Canceling power saving mode  
The power-on default is power saving mode, so clear (set all "0") serial data PS0, PS1, PS2, PS4 and SYNC GEN.  
Horizontal sync  
signal  
WS  
WS  
RPD (Pin 24)  
WL  
WH  
WL  
WH  
WL = WH  
Fig. 1. Horizontal AFC adjustment  
Serial data initial settings  
MSB  
ADDRESS  
LSB  
MSB  
D7  
DATA  
D4 D3  
LSB  
D0  
D15 D14 D13 D12 D11 D10 D9 D8  
D6  
D5  
D2  
D1  
(01000110/LSB)  
(10001010/LSB)  
(10001010/LSB)  
(00111111/LSB)  
(10011111/LSB)  
(10011111/LSB)  
(11111111/LSB)  
(11111111/LSB)  
(1011111/LSB)  
(10000000/LSB)  
(00000000/LSB)  
(10000000/LSB)  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
USER-BRIGHT  
SUB-BRIGHT R  
SUB-BRIGHT B  
CONTRAST  
SUB-CONTRAST R  
SUB-CONTRAST B  
γ-2  
γ-1  
0
0
PSIG-BRIGHT  
COM-DC  
COLOR  
HUE  
WHITE-LIMITER  
(00/LSB)  
BLACK-LIMITER (11111/LSB)  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
0
1
1
1
1
0
0
0
1
1
0
0
1
0
1
0
FILTER (00/LSB)  
REF (000/LSB)  
LPF (000/LSB)  
PICTURE-F0  
PICTURE-GAIN (00000/LSB)  
0
(00/LSB)  
0
0
0
0
0
0
MODE (1)  
DA (000/LSB)  
SYNC GEN PS 4  
PS 2 PS 1 PS 0  
0
(0)  
(0)  
(0)  
(0)  
(0)  
SLSYP (1) SLEXVD (0) SLDWN (0) SLRGT (0) SLSH2 (1) SLSH1 (1) SLWD (0) SLPL (0)  
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
1
1
0
0
1
0
1
0
0
0
0
0
SLFL (0) SLFR (0) SL4096 (0) SLCLP2 (0) SLCLP1 (0) SLVDP (0) SLHDP (0)  
0
0
0
SLTST4 (0) SLTST3 (0) SLSH0 (1) SLTST2 (0) SLTST1 (0) SLTST0 (0)  
0
0
H-POSITION (10000)  
HD-POSITION (00000)  
Note) If there is the possibility that data may be set at other than the above-noted addresses, set these data to "0".  
– 11 –  
CXA3268AR  
Electrical Characteristics — DC Characteristics  
Analog Block  
Unless otherwise specified, Ta = 25°C, VCC1 = VDD =3.0V, VCC2/VCC3 = 12.0V,  
SW4 = off for the current consumption measurement, see page 11 for the DAC.  
Item  
Symbol  
Measurement conditions  
Min. Typ. Max. Unit  
Current consumption 1  
(Y/color difference input)  
I1  
Measure the inflow current to Pin 63.  
27.0 37.0 mA  
Current consumption 2  
(Y/color difference input)  
I2  
I3  
Measure the inflow current to Pin 37.  
Measure the inflow current to Pin 41.  
3.8 5.0 mA  
0.90 1.3 mA  
Current consumption 3  
(Y/color difference input)  
Current consumption 1 (RGB input)  
Current consumption 2 (RGB input)  
Current consumption 3 (RGB input)  
Current consumption 1 (PS0 = 1)  
Current consumption 2 (PS0 = 1)  
Current consumption 3 (PS0 = 1)  
Current consumption 1 (PS2 = 1)  
Current consumption 1 (PS4 = 1)  
IRGB1 Measure the inflow current to Pin 63.  
IRGB2 Measure the inflow current to Pin 37.  
IRGB3 Measure the inflow current to Pin 41.  
IPS01 Measure the inflow current to Pin 63.  
IPS02 Measure the inflow current to Pin 37.  
IPS03 Measure the inflow current to Pin 41.  
IPS21 Measure the inflow current to Pin 63.  
IPS41 Measure the inflow current to Pin 63.  
23.0 30.0 mA  
3.8 5.0 mA  
0.90 1.3 mA  
7.5 10.0 mA  
0.18 0.35 mA  
1.00 µA  
26.5 36.5 mA  
26.5 36.5 mA  
7.0 9.5 mA  
0.18 0.35 mA  
1.00 µA  
Current consumption 1 (SYNC GEN = 1) ISG1  
Current consumption 2 (SYNC GEN = 1) ISG2  
Current consumption 3 (SYNC GEN = 1) ISG3  
Measure the inflow current to Pin 63.  
Measure the inflow current to Pin 37.  
Measure the inflow current to Pin 41.  
During no input  
FIL OUT pin voltage  
SYNC IN pin voltage  
SYNC OUT pin voltage  
F ADJ pin voltage  
V2  
1.8 2.1 2.4  
1.8 1.1 1.4  
0.2 0.4  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V3  
During no input  
V4  
During no input  
V8  
0.8 1.1 1.4  
0.4 0.7 1.0  
5.8 6.0 6.2  
1.5 1.8 2.1  
1.5 1.8 2.1  
1.5 1.8 2.1  
1.5 1.8 2.1  
0.9 1.2 1.5  
1.7 2.0 2.3  
1.5 1.8 2.1  
1.5 1.8 2.1  
1.7 2.0 2.3  
1.5 1.8 2.1  
0.3  
R INJECT pin voltage  
SIG.C pin voltage  
V17  
V30  
V31  
V33  
V35  
V38  
V69  
V70  
V70  
V71  
V70  
V70  
V7  
B DC DET pin voltage  
R DC DET pin voltage  
G DC DET pin voltage  
PSIG DC DET pin voltage  
FIL IN pin voltage  
B/B-Y pin voltage 1  
During Y/color difference input  
During RGB input  
B/B-Y pin voltage 2  
G/Y pin voltage  
R/R-Y pin voltage 1  
R/R-Y pin voltage 2  
REF pin voltage (power saving mode)  
During Y/color difference input  
During RGB input  
I7 = 1.5mA  
V57  
V58  
V59  
OSD input resistance  
80 100 120 kΩ  
– 12 –  
CXA3268AR  
Digital Block (including some analog block)  
(Ta = –15 to +75°C, VDD = VCC1 = 3.7 to 3.6V)  
Measurement  
conditions  
Applicable  
pins  
Item  
Symbol  
Min.  
Typ.  
Max.  
Unit  
High level input voltage  
Low level input voltage  
VIH  
VIL  
VDD × 0.7  
V
V
1
VDD × 0.3  
High level threshold voltage VT  
+1  
2.6  
V
2
3
Low level threshold voltage VT–1  
0.6  
0.4  
V
Hysteresis voltage  
VT+1 – VT  
1
2
V
Schmitt buffer  
High level threshold voltage VT  
+2  
2.6  
V
Low level threshold voltage VT–2  
0.6  
0.2  
V
Hysteresis voltage  
VT+2 – VT  
V
High level input current  
Low level input current  
High level input current  
Low level input current  
High level input current  
Low level input current  
High level input current  
Low level input current  
Low level output voltage  
High level output voltage  
Low level output voltage  
High level output voltage  
Low level output voltage  
High level output voltage  
Low level output voltage  
High level output voltage  
Output leak current  
| IIH1 |  
| IIL1 |  
| IIH2 |  
| IIL2 |  
| IIH3 |  
| IIL3 |  
| IIH4 |  
| IIL4 |  
VOL1  
VOH1  
VOL2  
VOH2  
VOL3  
VOH3  
VOL4  
VOH4  
| IOZ |  
VI = VDD  
1.0  
1.0  
3.0  
100  
100  
3.0  
1.0  
2.0  
0.3  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
V
4
VI = 0V  
VI = VDD  
5
VI = 0V  
10  
10  
40  
40  
VI = VDD  
6
VI = 0V  
VI = VDD  
7
VI = 0V  
IOL = 1mA  
IOH = –0.25mA  
IOL = 2mA  
IOH = –0.5mA  
IOL = 4mA  
IOH = –1mA  
IOL = 1.5mA  
IOH = –1.25mA  
High impedance status  
8
2.6  
2.6  
V
0.3  
0.3  
0.4  
1.0  
V
9
V
V
10  
2.6  
V
V
11  
12  
VDD – 0.5  
V
µA  
1
XCLR (Pin 25), CKI (Pin 22)  
2
CSYNC/HD (Pin 5), VD (Pin 10)  
3
SCK (Pin 14), SEN (Pin 15), SDAT (Pin 16)  
CSYNC/HD (Pin 5), CKI (Pin 22)  
XCLR (Pin 25)  
4
5
6
VD (Pin 10)  
7
SCK (Pin 14), SEN (Pin 15), SDAT (Pin 16)  
8
DWN (Pin 11), WIDE (Pin 12), VCK (Pin 66), VST (Pin 67), RGT (Pin 68)  
9
RPD (Pin 24), VDO (Pin 26), HDO (Pin 27), POF (Pin 45), HST (Pin 64), EN (Pin 65)  
HCK1 (Pin 61), HCK2 (Pin 62)  
10  
11  
CKO (Pin 21). However, when measuring the output pin (CKO), the input level of the input pin (CKI) should  
be 0V or VDD.  
RPD (Pin 24)  
12  
– 13 –  
CXA3268AR  
Electrical Characteristics  
AC Characteristics  
Unless otherwise specified, Settings 1 and 2, the serial data initial settings, and the following setting conditions  
are required.  
Ta = 25°C, VCC1 = 3.0V, VCC2 = VCC3 = 12V, GND1/2/3 = 0V, VSS = 0V, SW2 = ON, SW4 = ON,  
SW32/34/36 = OFF, no video input, SG1 input to TP5  
Note: Serial data values in the table are HEX notation.  
Serial data  
setting (HEX)  
Item  
Symbol  
Measurement conditions  
Min. Typ. Max. Unit  
Maximum gain  
between input and  
output  
Input SG2 (50mVp-p) to TP71 and  
measure the output amplitude at TP36.  
GMAX  
CONT FFh  
29  
32 34  
dB  
Y/color difference  
Maximum gain  
between input and  
output  
Input SG2 (50mVp-p) to TP71 and  
measure the output amplitude at TP36.  
CONT FFh  
MODE 00h  
31  
26 29  
25 30  
dB  
dB  
GRGBMAX  
RGB  
Assume the output amplitude at TP36 when  
SG2 (0.5Vp-p) is input to TP71 as GMIN.  
gcon = GMAX – GMIN  
Amount of contrast  
attenuation  
Gcon  
CONT 00h  
Assume the inverted output amplitude at  
TP36 when SG2 (0.35Vp-p) is input to TP71  
CONT 2Fh as Vinv, and the non-inverted output  
amplitude as Vninv.  
Inverted and  
non-inverted gain  
difference  
GINV  
±0.3 dB  
ginv = 20 log (Vninv/Vinv)  
Input SG2 (0.35Vp-p) to TP71 (TP70, TP72),  
measure the non-inverted output amplitude  
at TP32, TP34 and TP36, and obtain the  
maximum and minimum difference between  
these values.  
GRGB1  
GRGB2  
CONT 2Fh  
0.6  
dB  
0.6  
Gain difference  
between R, G and  
B
MODE 00h  
CONT 2Fh  
Set CONT = 26h, input SG2 (0.35Vp-p) to  
TP71, and assume the non-inverted output  
amplitude at TP32 and TP34 when SUB-  
CONT R/B = 9Ah, 00h and FFh as V1, V2  
and V3, respectively.  
SUB-CONT  
–5.5  
GSC1  
GSC2  
–4.5  
dB  
00h  
Sub-contrast  
variable amount  
SUB-CONT  
2.0  
0.8  
2.7  
Gsc1 = 20 log (V3/V1)  
Gsc2 = 20 log (V2/V1)  
FFh  
SUB-BRT  
R, B 00h  
Set U-BRT = 1Ah and measure the non-  
inverted level at TP32 and TP34 relative to  
the non-inverted black level at TP36 when  
SUB-BRT R/B = FFh and 00h.  
–1.5 –1.0  
1.2  
VSB1  
VSB2  
Sub-bright  
variable amount  
V
V
SUB-BRT  
R, B FFh  
Set U-BRT = FFh, measure the inverted and  
non-inverted black limit level at TP36 when  
BLK-LIM = 00h and 1Fh, and assume the  
difference from the output DC voltage as  
VBL1 and VBL2, respectively.  
BLK-LIM  
00h  
VBL1  
VBL2  
±1.6 ±2.1 ±2.7  
±4.7 ±5.1 ±5.4  
Black limiter  
variable amount  
BLK-LIM  
1Fh  
– 14 –  
CXA3268AR  
Serial data  
setting (HEX)  
Item  
Symbol  
Measurement conditions  
Min. Typ. Max. Unit  
Set CONT = FFh, input SG2 (0.35Vp-p) to  
TP71, measure the inverted and non-inverted  
white limit level when WHITE-LIM = 00h and  
03h, and assume the difference from the  
output DC voltage as VWL1 and VWL2,  
respectively.  
WHITE-LIM  
VWL1  
±1.2  
±0.6  
±0.6 ±0  
±1.2 ±1.8  
00h  
White limiter  
variable amount  
V
WHITE-LIM  
VWL2  
03h  
Measure the non-inverted black level at  
TP32, TP34 and TP36, and obtain the  
maximum and minimum difference between  
these values.  
Black level  
difference between  
R, G and B  
mV  
VB  
300  
Measure the output DC level (average  
voltage) at TP32, TP34, TP36 and TP39.  
RGB and PSIG  
output DC voltage  
5.8 6.0 6.2  
±200  
V
Vc  
Measure the output average voltage  
difference at TP32, TP34 and TP39 relative  
to the output average voltage at TP36.  
DC voltage  
difference between  
RGB and PSIG  
mV  
Vc  
PSIG-BRT  
01h  
Measure the inverted and non-inverted black  
level when PSIG-BRT = 01h and 7Fh and  
assume the difference from the average DC  
voltage Vc as VPB1 and VPB2, respectively.  
VPB1  
VPB2  
UB1  
UB2  
±0.7  
PSIG-BRT  
variable amount  
V
V
PSIG-BRT  
7Fh  
±4.2  
U-BRT  
00h  
Measure the inverted and non-inverted black  
level at TP36 when U-BRT = 00h and 7Ah  
and assume the difference from the average  
voltage as UB1 and UB2, respectively.  
±0.8 ±1.5  
±4.5 ±4.9  
USER-BRT  
variable amount  
U-BRT  
7Ah  
Set BLK-LIM = 00h and measure the  
difference between the inverted and non-  
inverted black level at TP36 and TP39.  
Level difference  
between PSIG-BLK VBB  
and BLK-LIM  
SLWD  
1
350 mV  
deg  
Set U-BRT = 23h, CONT = 80h, COLOR =  
40h, and assume the amplitude at TP32  
when SG4 (56mVp-p) is input to TP72 as V1.  
Similarly, assume the amplitude at TP34  
when SG4 (100mVp-p) is input to TP70 as V2.  
θ = tan – 1 (V1/V2). Assume the θ when HUE  
= 00h, 80h and FFh as θa, θb and θc,  
respectively.  
θ1  
HUE 00h  
HUE FFh  
–25  
–20  
Hue  
variable amount  
deg  
θ2  
20 25  
θ1 = θa – θb, θ2 = θc – θb  
Set CONT = 2Fh, input SG3 to TP71, and  
measure the TP36 amplitude at f0 relative to  
the TP36 amplitude at 100kHz when PIC-G  
= 01h and 1Fh. f0 at PIC-f0 = 00h, 01h, 02h  
and 03h is 2MHz, 2.2MHz, 2.6MHz and  
2.9MHz, respectively.  
PIC-G  
01h  
GP1  
Picture  
variable amount  
GP2  
–1.5  
0
1.5  
dB  
PIC-G  
1Fh  
10 12  
Input SG4 (50mVp-p) to TP70 and TP72,  
and assume the output amplitude at TP32  
and TP34 when COLOR = 00h, 80h and FFh  
as V1, V2 and V3, respectively.  
GC1 = 20 log (V1/V2)  
COLOR  
00h  
GC1  
–30 –20  
Color  
variable amount  
dB  
COLOR  
FFh  
GC2  
5.0 6.0  
GC2 = 20 log (V3/V2)  
– 15 –  
CXA3268AR  
Serial data  
setting (HEX)  
Item  
Symbol  
Measurement conditions  
Min. Typ. Max. Unit  
0.85 1.00 1.15  
Assume the TP34 output when SG4 (0.1Vp-p)  
is input to TP72 as RR, the TP32 amplitude  
when SG4 (0.1Vp-p) is input to TP70 as BB,  
the TP34 amplitude when SG5 (0.1Vp-p) is  
input to TP72 as RG, and the TP32 amplitude  
when SG5 (0.1Vp-p) is input to TP70 as BG.  
B-Y/R-Y = RR/BB,  
B-Y/  
R-Y  
CONT 63h  
Matrix amplitude  
ratio  
G-Y/  
R-Y  
0.41 0.51 0.61  
0.15 0.19 0.23  
COLOR  
6Fh  
G-Y/  
B-Y  
G-Y/R-Y = RG/RR,  
G-Y/B-Y = BG/BB  
LPF 01h  
MODE 00h  
Input SG3 to TP71 and measure the  
frequency which results in –3dB relative to  
the TP36 amplitude at 100kHz when LPF =  
01h and 07h.  
2.0 2.5  
MHz  
fc1  
fc2  
LPF characteristics  
LPF 07h  
MODE 00h  
5.0 6.4  
Set U-BRT = 30h, CONT = DFh, input SG7  
(13.5MHz) to TP70, TP71 and TP72, and  
measure the amount by which the output is  
attenuated when FILTER = 01h relative to  
FILTER = 00h. Similarly, input SG7 (14.5MHz)  
to TP70, TP71 and TP72, and measure the  
amount by which the output is attenuated  
when FILTER = 02h relative to FILTER = 00h.  
fo1  
fo2  
MODE 00h  
MODE 00h  
–27  
–27  
–20  
–20  
Trap  
characteristics  
dB  
Set SW32, SW34 and SW36 = ON, input SG3  
to TP70, TP71 and TP72, and measure the  
frequency which results in –3dB relative to the  
TP32, TP34 and TP36 amplitude at 100kHz.  
Frequency  
response  
f RGB  
MODE 00h  
MHz  
V
5.5  
1.50  
2.20  
0.3  
VREF1 REF 00h  
VREF2 REF 07h  
1.20 1.35  
1.90 2.05  
Measure the REF pin  
Output current  
REF adjustment  
range  
output voltage when  
1.5mA, sink only  
REF = 00h and 07h.  
Output current  
1.0mA  
VDA1  
VDA2  
DA 00h  
DA 07h  
Measure the DA output  
voltage when DA = 00h  
and 07h.  
DA adjustment  
range  
V
Output current  
–1.0mA  
2.7  
Internal DAC  
differential  
non-linearity error  
Measure under the measurement conditions  
for each adjustment range.  
–1.5  
SDL  
SL  
1.5  
2.0  
LSB  
LSB  
Internal DAC  
non-linearity error  
Measure under the measurement conditions  
for each adjustment range.  
–2.0  
Input SG2 (0.35mVp-p) to TP71 and measure  
the amplitude at TP32, TP34 and TP36.  
Assume the output amplitude when GAMMA1  
= FFh as V1, when GAMMA1 = 3Fh as V2,  
and when GAMMA1 = GAMMA2 = 3Fh as V3.  
∆γ1 = 20 log (V1/V2)  
∆γ1  
14 16  
12  
Gamma  
characteristics  
CONT 41h  
dB  
dB  
∆γ2  
12 14 16  
15.0 17.0  
∆γ2 = 20 log (V3/V2)  
Input SG6 to TP69 and measure the output  
amplitude at TP2.  
H FIL gain  
Ghfil  
– 16 –  
CXA3268AR  
Serial data  
setting (HEX)  
Item  
Symbol  
COMDC  
Measurement conditions  
Min. Typ. Max. Unit  
Measure the COM output DC voltage when  
COM-DC = 00h and FFh, and measure the  
difference from the COM output DC voltage  
when COM-DC = 80h.  
COMMON control  
range  
±1.0  
V
±1.3  
Gradually increase the SYNC IN outflow  
current and measure the current at which  
SYNC OUT switches to high.  
SYNC IN  
sensitivity current  
I SYNC  
VOsync  
20 31  
µA  
V
SYNC OUT on  
voltage  
Measure the SYNC OUT pin voltage during  
SYNC IN no input.  
0.2 0.4  
Input SG4 to TP57, TP58 and TP59,  
gradually raise the high level from 0V, and  
assume the high level voltage at which the  
output level goes to BLK-LIM level as  
Vth1OSD, and the high level voltage at  
which the output level goes to WHITE-LIM  
level as Vth2OSD.  
Vth1  
OSD  
1.2  
0.8 1.0  
OSD threshold  
value  
V
Vth2  
OSD  
1.8 2.0 2.2  
Set SW32, SW34 and SW36 = ON,  
input SG4 (0.35Vp-p) to TP71, and measure  
the propagation delay time of the non-  
inverted output rise and fall at TP32, TP34  
and TP36 from TP71.  
Propagation delay  
time between input  
and output  
70 120 170  
80 130 180  
tLH1  
tHL1  
ns  
ns  
Y/color difference 1  
Set SW32, SW34 and SW36 = ON,  
input SG4 (0.35Vp-p) to TP70, TP71 and  
TP72, and measure the propagation delay  
time of the non-inverted output rise and fall  
at TP32, TP34 and TP36 from TP70, TP71  
and TP72.  
70 110  
60 110  
tLH2  
tHL2  
160  
160  
Propagation delay  
time between input  
and output  
MODE  
00h  
RGB input  
Set SW32, SW34 and SW36 = ON,  
input SG4 (0.35Vp-p) to TP71, and measure  
the propagation delay time of the non-  
inverted output rise and fall at TP32, TP34  
and TP36 from TP71.  
Propagation delay  
time between input  
and output  
tLH3  
tHL3  
tLH4  
tHL4  
270 330 390  
270 330 390  
90 130 170  
PIC-G  
01h  
ns  
ns  
Y/color difference 2  
Set SW32, SW34 and SW36 = ON,  
Propagation delay  
time between OSD  
input and output  
input SG4 (3Vp-p) to TP57, TP58 and TP59,  
and measure the propagation delay time of  
the non-inverted rise and fall at TP70, TP71  
and TP72 from TP57, TP58 and TP59.  
210  
170  
250  
Propagation delay  
time between H FIL  
and FIL OUT  
Input SG6 to TP69 and measure the  
propagation delay time of the rise and fall at  
TP2 from TP69.  
tLH7  
tHL7  
500 700 900  
100 300 500  
ns  
ns  
Propagation delay  
time between  
SYNC IN and  
SYNC OUT  
140 200 260  
40 100 160  
tLH8  
tHL8  
Set SW2 = OFF, input SG8 to TP3, and  
measure the propagation delay time of the  
rise and fall at TP4 from TP3.  
– 17 –  
CXA3268AR  
Serial data  
setting (HEX)  
Item  
Symbol  
ts0  
Measurement conditions  
Min. Typ. Max. Unit  
SEN setup time, activated by the rising edge  
of SCK. (See Fig. 4.)  
150  
Data setup time  
ns  
SDAT setup time, activated by the rising  
edge of SCK. (See Fig. 4.)  
ts1  
150  
SEN hold time, activated by the rising edge  
of SCK. (See Fig. 4.)  
th0  
150  
Data hold time  
ns  
SDAT hold time, activated by the rising edge  
of SCK. (See Fig. 4.)  
th1  
150  
tw1L  
tw1H  
tw2  
SCK pulse width. (See Fig. 4.)  
SCK pulse width. (See Fig. 4.)  
SEN pulse width. (See Fig. 4.)  
210  
210  
1
ns  
ns  
µs  
Minimum pulse  
width  
Measure the transition time of each output.  
30pF load: RPD, VDO, HDO and POF  
output pins  
40pF load: EN and HST output pins  
120pF load: HCK1 and HCK2 output pins  
(See Fig. 2.)  
30  
30  
tTLH  
tTHL  
ns  
ns  
Output transition  
time  
Measure the transition time of each output.  
40pF load: DWN, WIDE, VCK, VST and  
RGT output pins  
50  
50  
tTLH  
tTHL  
(See Fig. 2.)  
Measure HCK1/HCK2.  
120pF load  
(See Fig. 3.)  
Cross-point time  
difference  
T  
10 ns  
Measure the HCK1/HCK2 duty.  
120pF load  
HCK duty  
DTYHC  
47 50 53  
%
– 18 –  
CXA3268AR  
Electrical Characteristic Measurement Method Diagrams  
T  
90%  
50%  
10%  
tTLH  
tTHL  
T  
Fig. 2. Output transition time  
measurement conditions  
Fig. 3. Cross-point time difference  
measurement conditions  
SDTA  
SCK  
SEN  
D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
D15  
ts1  
th1  
50%  
tw1H  
tw1L  
50%  
ts0  
th0  
tw2  
Fig. 4. Serial transfer block measurement conditions  
– 19 –  
CXA3268AR  
SG No.  
SG1  
Waveform  
Horizontal sync signal  
(CSYNC)  
4.7µs  
3.0Vp-p  
1H  
Amplitude variable  
SG2  
1H  
Horizontal sync signal  
Sine wave video signal; frequency and amplitude variable  
0.1Vp-p  
0.1Vp-p  
SG3  
1H  
High level variable  
25µs  
10µs  
0V  
SG4  
Horizontal sync signal  
3V  
10µs  
Low level variable  
SG5  
25µs  
Horizontal sync signal  
– 20 –  
CXA3268AR  
SG No.  
SG6  
Waveform  
Horizontal sync signal  
(CSYNC)  
50mVp-p  
4.7µs  
1H  
Sine wave video signal  
0.1Vp-p  
SG7  
1H  
Horizontal sync signal  
(CSYNC)  
4.7ns  
0.15Vp-p  
SG8  
1H  
– 21 –  
CXA3268AR  
Electrical Characteristics Measurement Circuit  
TP39  
400P  
+12V  
A
SW39  
+12V  
A
47µ  
1µ  
TP42  
TP45  
0.1µ  
10  
54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37  
+3V  
47µ  
1µ  
A
10  
55 VDD  
36  
TP36  
G OUT  
0.1µ  
47µ  
0.01µ  
TP57  
56 TST11  
57  
G DC DET 35  
300P  
SW36  
SW34  
SW32  
10  
0.1µ  
34  
OSD B  
58 OSD R  
TP34  
R OUT  
R DC DET 33  
TP58  
TP59  
300P  
300P  
10  
0.1µ  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
OSD G  
NC  
B OUT  
B DC DET  
SIG.C  
GND2  
TST2  
HDO  
TP32  
0.01µ  
+12V  
A
TP61  
TP62  
HCK1  
HCK2  
Vcc1  
HST  
TP30  
1µ  
47µ  
TP27  
TP26  
TP64  
TP65  
TP66  
TP67  
TP68  
TP69  
TP70  
TP71  
TP72  
EN  
VDO  
0.1µ  
VCK  
VST  
XCLR  
RPD  
TP24  
1k  
RGT  
FIL IN  
B/B-Y  
Vss  
1µ  
CKI  
0.01µ  
0.01µ  
0.01µ  
CKO  
3.3µ 1000p 33k  
VDD 20  
VDD 19  
G/Y  
10k  
30p  
2
10k  
R/R-Y  
3.3µ  
+3V  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18  
V22 0.01µ 6800p  
1µ  
1
A
1
33k  
15k  
TP2  
47µ  
0.01µ  
SW2  
1k  
TP3  
TP5 TP6 TP7  
TP14  
TP16  
TP15  
TP11 TP12  
SW4  
TP4  
1 Resistance value tolerance: ±2%, temperature coefficient: ±200ppm or less  
Locate this resistor as close to the IC pin as possible to reduce the effects of external signals.  
2 Varicap diode: 1T369 (SONY)  
– 22 –  
CXA3268AR  
Description of Operation  
1) RGB and Y/color difference signal processing block  
Signal processing is comprised of picture, hue, matrix, LPF/trap, contrast, OSD, sample-and-hold, γ correction,  
bright, sub-bright, sub-contrast and output circuits  
Input signal mode switching  
The input mode (RGB input, Y/color difference input) can be switched by the serial communication settings.  
(During internal sync separation signal input)  
During RGB input: The G signal is input to Pins 71 and 69, the B signal to Pin 70, and the R-Y signal to  
Pin 72.  
During Y/color difference input: The Y signal is input to Pins 71 and 69, the B-Y signal to Pin 70, and the  
R-Y signal to Pin 72.  
(During external sync signal input)  
During RGB input: The G signal is input to Pin 71, the B signal to Pin 70, the R signal to Pin 72,  
CSYNC/HD to Pin 5, and VD to Pin 10.  
During Y/color difference input: The Y signal is input to Pin 71, the B-Y signal to Pin 70, the R-Y signal to  
Pin 72, CSYNC/HD to Pin 5, and VD to Pin 10.  
NTSC/PAL switching  
The input system (NTSC/PAL) can be switched by the serial communication settings.  
Picture circuit  
This performs aperture correction for the Y signal. The center frequency to be corrected and the correction  
amount are controlled by serial communication. In addition, when not using the picture circuit, it can be turned  
off by serial communication.  
Hue circuit  
This is the hue adjustment circuit for the color difference signal. It is controlled by serial communication.  
Matrix circuit  
This circuit converts Y, R-Y and B-Y signals into RGB signals.  
LPF circuit  
This is the band limitation filter for the RGB signal. It is used to eliminate the noise component generated at  
the front end of this IC. The cut-off frequency can be controlled by serial communication. In addition, when  
not using the LPF, it can be turned off by serial communication.  
Trap circuit  
This is used to eliminate the DSP clock and RGB decoder carrier leak generated at the front end of this IC.  
The center frequency can be switched between 13.5MHz and 14.3MHz by serial communication. In addition,  
when not using the trap, it can be turned off by serial communication.  
Contrast adjustment circuit  
This adjusts the white-black amplitude to set the input RGB signal to the appropriate output level.  
OSD  
This inputs the OSD pulses. There are two input threshold values: Vth1 (VCC1 × 1/3) and Vth2 (VCC1 × 2/3).  
When an input exceeds Vth1, the corresponding output falls to the level specified by BLACK-LIMITE. When  
an input exceeds Vth2, the corresponding output rises to the level specified by WHITE-LIMITER. Also, when  
one of the RGB inputs exceeds Vth1, any signal outputs not exceeding Vth1 also fall to the level specified by  
BLACK-LIMITER.  
– 23 –  
CXA3268AR  
Sample-and-hold circuit  
This circuit performs time axis correction for the RGB output signals in order to support the RGB simultaneous  
sampling systems of LCD panels.  
HCK1  
R
G
B
S/H1  
S/H4  
S/H4  
S/H4  
R
G
B
A
S/H2  
A'  
B
S/H3  
SH3  
B'  
C
C'  
SH1  
SH2  
SH4  
RGT = H (normal)  
SHS1  
SHS2  
A'  
SHS3  
A
SHS4  
C'  
SHS5  
C
SHS6  
B'  
SH1  
B
SH1: R signal SH pulse  
SH2: G signal SH pulse  
SH3: B signal SH pulse  
SH4: RGB signal SH pulse  
SH2 Through Through Through Through Through Through  
SH3  
SH4  
A
C
C'  
B'  
C
B
B'  
A'  
B
A
A'  
C'  
SHS1,2,3,4,5,6: Serial data settings  
RGT = L (right/left inversion)  
SHS1  
SHS2  
A'  
SHS3  
SHS4  
C'  
SHS5  
SHS6  
B'  
SH1  
SH2  
B
A
A
C
C
B
C'  
B'  
A'  
SH3 Through Through Through Through Through Through  
SH4 B' A' C'  
C
B
A
The sample-and-hold circuit performs sample-and-hold by receiving the SH1 to SH4 pulses from the TG  
block. Since LCD panels perform color coding using an RGB delta arrangement, each horizontal line must be  
compensated by 1.5 dots. This relationship is reversed during right/left inversion. This compensation and  
other timing is also generated by the digital block. The sample-and-hold timing changes according to the  
phase relationship with the HCK pulse, so the timing should be set to the SHS1, 2 or 6 position in  
accordance with the actual board.  
γ correction  
In order to support the characteristics of LCD panels, the I/O characteristics are as shown in Fig. 1. The γ1  
gain transition point A voltage changes as shown in Fig. 2 by adjusting the serial bus register γ1, and the γ2  
gain transition point B voltage changes as shown in Fig. 3 by adjusting γ2.  
B"  
Output  
Output  
Output  
B'  
A'  
B
B
B
A
A
A
Input  
Input  
Input  
Fig. 1  
Fig. 2  
Fig. 3  
– 24 –  
CXA3268AR  
Bright circuit  
This is used to adjust the black-black amplitude of polarity-inverted RGB output signals. It is not interlinked  
with the γ transition points.  
White balance adjustment circuit  
This is used to adjust the white balance. The black level is adjusted by SUB-BRIGHT, and the black-white  
amplitude is adjusted by SUB-CONTRAST.  
Output circuit  
RGB output (Pins 70, 71, and 72) signals are inverted each horizontal line by the FRP pulse (internal pulse)  
supplied from the TG block as shown in the figure below. Feedback is applied so that the center voltage  
(SIG.C) of the output signal matches the reference voltage (VCC2 + GND2)/2 (or the voltage input to SIG.C  
(Pin 30)). In addition, the white level output is clipped at the limiter operation point that is set by the serial  
communication WHITE-LIMITER, and the black level output is clipped at the limiter operation point that is set  
by the serial communication BLACK-LIMITER.  
The output PSIG signal level is normally adjusted by PSIG-BRIGHT, but during 16:9 display the level is  
specified by BLACK-LIMITER during V blanking. In addition, the RGB output also simultaneously goes to  
BLACK-LIMITER level output.  
RGB IN  
1H inverted signal  
(internal)  
16:9 display signal  
(internal)  
BLACK-LIMITER  
Set by BLACK-LIMITER  
PSIG OUT  
SIG.C  
Set by PSIG-BRIGHT  
BLACK-LIMITER  
BLACK-LIMITER  
WHITE-LIMITER  
SIG.C  
RGB OUT  
WHITE-LIMITER  
BLACK-LIMITER  
Set by BLACK-LIMITER  
– 25 –  
CXA3268AR  
2) Common voltage generation circuit block  
The common voltage circuit generates and supplies the common pad voltage to the LCD panel. The voltage  
is offset by serial communication using the SIG.C voltage as the reference and then output.  
3) DAC output circuit  
There are two DAC output circuit systems. The DA OUT output circuit outputs DC 3.0V at equal divisions.  
The REF output circuit generates and supplies the REF voltage for the panel level shifter circuit to the LCD  
panel. Both circuits are controlled by serial communication.  
4) Sync system  
H FIL  
This amplifies the sync signal of the input video signal and eliminates the noise with an internal LPF. The sync  
signal is clamped at the input, so be sure to input via a capacitor.  
SYNC SEP  
This inputs the FIL OUT (Pin 2) output and performs sync separation. The signal is output from SYNC OUT  
(Pin 4) as a positive polarity pulse.  
5) Power saving circuit (PS circuit)  
A power saving system can be realized together with the LCD panel by independently controlling (serial  
communication) the operation of each output block. This system is also effective for improving picture  
quality during power-on/off.  
The serial data PS0, PS1, PS2, PS4 and SYNC GEN must be set in order to use this IC. For details of  
the setting methods, see the "Description of Serial Control Operation" and "Power Supply and Power  
Saving Sequence" items.  
– 26 –  
CXA3268AR  
6) TG block  
PLL and AFC circuits  
A PLL circuit can be comprised by connecting a PLL circuit phase comparator and frequency division counter  
and external VCO and LPF circuits.  
The PLL error detection signal is generated using the phase comparison output of the entire bottom of the  
horizontal sync signal and the internal frequency division counter as the RPD output. RPD output is  
converted to DC error voltage with the lag-lead filter, and then it changes the capacitance of the varicap  
diode to stabilize the oscillation frequency.  
The PLL of this system is adjusted by setting the reverse bias voltage of the varicap diode so that the point at  
which RPD changes is at the center of the horizontal sync signal window as shown in the figure below.  
Horizontal sync signal  
WS  
WS  
RPD (Pin 24)  
WL  
WH  
WL  
WH  
WL = WH  
H-Position  
This adjusts the horizontal display position. Set this function so that the picture center matches the center of  
the LCD panel.  
Right/left (RGT) and/or up/down inversion (DWN)  
The video display direction can be switched. The horizontal direction can be switched between right scan and  
left scan, and the vertical direction between down scan and up scan. Set the display direction in accordance  
with the LCD panel mounting position.  
Wide mode  
16:9 quasi-WIDE display can be achieved by converting the aspect ratio through pulse elimination processing.  
During wide mode, vertical pulse elimination scanning is performed for both NTSC and PAL display and the  
video signal is compressed to achieve a 16:9 aspect ratio. In addition, in areas outside the display area, the  
black level set by BLACK-LIMITER (serial communication data) is wide-masked as the black signal within the  
limited vertical blanking period.  
This function achieves a quasi-display by simply pulse eliminating the video signal, so some video information  
is lost.  
Pulse elimination display  
Black display  
28 LINES  
Black display area  
228 LINES  
Display area  
Display area  
172 LINES  
28 LINES  
Black display area  
4:3 display  
16:9 display  
AC driving of LCD panels during no signal  
The output signal runs freely so that the LCD panel is AC driven even when there is no sync signal from the  
FIL IN (Pin 69) pin or from the CSYNC/HD (Pin 5) and VD (Pin 10) pins. During this time, the sync separation  
circuit stops and the auxiliary counter is used to generate the free running output pulses after detecting that  
there is no vertical sync signal for approximately 3 fields (no signal state).  
– 27 –  
CXA3268AR  
Description of Serial Control Operation  
1) Control method  
Control data consists of 16 bits of data which is loaded one bit at a time at the rising edge of SCK. This loading  
operation starts from the falling edge of SEN and is completed at the next rising edge.  
Digital block control data is established by the vertical sync signal, so if data is transferred multiple times for  
the same item, the data immediately before the vertical sync signal is valid. Analog (electronic attenuator)  
block control data becomes valid each time the SEN signal is input.  
In addition, if 16 bits of more of SCK are not input while SEN is low, the transferred data is not loaded to the  
inside of the IC and is ignored. If 16 bits or more of SCK are input, the 16 bits of data before the rising edge of  
the SEN pulse are valid data.  
SDAT  
SCK  
SEN  
A7 A6 A5 A4 A3 A2 A1 A0 D7 D6 D5 D4 D3 D2 D1 D0  
Serial transfer timing  
A: ADDRESS  
D: DATA  
2) Serial data map  
The serial data map is as follows. Values inside parentheses are the default values.  
MSB  
ADDRESS  
LSB  
MSB  
DATA  
LSB  
D0  
D15 D14 D13 D12 D11 D10 D9 D8  
D7  
D6  
D5  
D4 D3  
D2  
D1  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
USER-BRIGHT  
SUB-BRIGHT R  
SUB-BRIGHT B  
CONTRAST  
(10000000/LSB)  
(10000000/LSB)  
(10000000/LSB)  
(10000000/LSB)  
SUB-CONTRAST R (10000000/LSB)  
SUB-CONTRAST B (10000000/LSB)  
γ-2  
γ-1  
(00000000/LSB)  
(00000000/LSB)  
(1000000/LSB)  
(10000000/LSB)  
(10000000/LSB)  
(10000000/LSB)  
(0)  
(0)  
PSIG-BRIGHT  
COM-DC  
COLOR  
HUE  
WHITE-LIMITER  
(00/LSB)  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
0
1
1
1
1
0
0
0
1
1
0
0
1
0
1
0
BLACK-LIMITER (10000/LSB)  
FILTER (00/LSB)  
REF (011/LSB)  
LPF (000/LSB)  
PICTURE-F0  
PICTURE-GAIN (00000/LSB)  
(0)  
(00/LSB)  
(0)  
(0)  
(0)  
(0)  
(0)  
(0)  
MODE (0)  
DA (000/LSB)  
SYNC GEN PS 4  
PS 2 PS 1 PS 0  
(0)  
(1)  
(1)  
(1)  
(1)  
(1)  
SLSYP (0) SLEXVD (0) SLDWN (0) SLRGT (0) SLSH2 (0) SLSH1 (0) SLWD (0) SLPL (0)  
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
1
1
0
0
1
0
1
0
(0)  
(0)  
(0)  
(0)  
SLFL (0) SLFR (0) SL4096 (0) SLCLP2 (0) SLCLP1 (0) SLVDP (0) SLHDP (0)  
(0)  
(0)  
(0)  
SLTST4 (0) SLTST3 (0) SLSH0 (0) SLTST2 (0) SLTST1 (0) SLTST0 (0)  
(0)  
(0)  
H-POSITION (10000/LSB)  
HD-POSITION (00000/LSB)  
Note) If there is the possibility that data may be set at other than the above-noted addresses, set these data to "0".  
– 28 –  
CXA3268AR  
3) Description of control data  
USER-BRIGHT  
This adjusts the brightness of the RGB output signals. Adjustment from LSB MSB increases the amplitude  
(black-black).  
SUB-BRIGHT R/B  
This adjusts the brightness of the R and B output signals using the G output signal as the reference.  
Adjustment from LSB MSB increases the amplitude (black-black).  
CONTRAST  
This adjusts the contrast of the RGB output signals. Adjustment from LSB MSB increases the amplitude  
(black-white).  
SUB-CONTRAST R/B  
This adjusts the contrast of the R and B output signals using the G output signal as the reference.  
Adjustment from LSB MSB increases the amplitude (black-black).  
γ-2  
This sets the white side γ point level of the RGB output signals. Adjustment from MSB LSB lowers the γ point.  
When not adjusting γ-2, set γ-2: 11111111 (LSB). Set the γ-2 point to the white side of the γ-1 point.  
γ-1  
This sets the black side γ point level of the RGB output signals. Adjustment from MSB LSB lowers the γ point.  
When not adjusting γ-1, set γ-1: 11111111 (LSB). Set the γ-1 point to the black side of the γ-2 point.  
PSIG-BRIGHT  
This adjusts the bright level of the PSIG output signal. Adjustment from LSB MSB increases the amplitude  
(peak to peak).  
Note: Do not set PSIG-BRIGHT: 0000000 (LSB), as this setting turns off the internal PSIG circuit.  
COM-DC  
This adjusts the COMMON output voltage. Adjustment from LSB MSB increases the output voltage.  
COLOR  
This adjusts the color gain during Y/color difference input. Adjustment from LSB MSB increases the gain.  
HUE  
This adjusts the phase during Y/color difference input. Adjustment from LSB MSB advances the phase.  
WHITE-LIMITER  
This adjusts the white side limiter level of the RGB output signals. See the AC Characteristics for the output  
level.  
BLACK-LIMITER  
This adjusts the black side limiter level of the RGB output signals. Adjustment from LSB MSB lowers the  
limiter level.  
– 29 –  
CXA3268AR  
LPF  
This switches the frequency response of the low-pass filter. Set the fc/–3dB frequency relative to the amplitude  
100kHz reference. See the AC Characteristics for the output level.  
fc (RGB input/no load/typ.)  
LPF OFF  
2.0MHz  
D0  
0
D2  
0
D1  
0
0
1
0
1
0
2.7MHz  
0
1
1
3.4MHz  
0
0
0
3.9MHz  
1
0
1
4.9MHz  
1
1
0
5.7MHz  
1
1
1
6.4MHz  
1
REF  
This adjusts the REF output voltage. Adjustment from LSB MSB raises the output voltage level. See the  
AC Characteristics for the output level.  
FILTER  
This sets the trap (f0) center frequency. See the AC Characteristics for the output level.  
D7  
0
D6 Center frequency (f0)  
0
1
0
1
TRAP OFF  
13.5MHz  
14.3MHz  
0
1
1
PICTURE-F0  
This sets the picture center frequency (f0) during Y/color difference input. See the AC Characteristics for the  
output level.  
D1  
0
D0 Center frequency (f0)  
0
1
0
1
2.0MHz (typ.)  
2.2MHz (typ.)  
2.6MHz (typ.)  
2.9MHz (typ.)  
0
1
1
PICTURE-VOLUME  
This adjusts the picture gain during Y/color difference input. Adjustment from LSB MSB raises the gain.  
When not using the picture function (OFF), set PICTURE-VOLUME: 00000 (LSB).  
– 30 –  
CXA3268AR  
DA  
This adjusts the DA output voltage. See the AC Characteristics for the output level.  
MODE  
This switches the input signal.  
Input signal  
RGB input  
D3  
0
1
Y/color difference input  
SYNC GEN  
This sync generator mode stops all output pulses other than the HDO and VDO output pulses. The PS0,  
PS1, PS2 and PS4 settings have priority over the SYNC GEN setting. Normally set to "0".  
Mode (SYNC GEN)  
D5  
0
Normal operation  
All output pulses and corresponding output blocks other than the HDO and VDO output pulses are  
stopped.  
1
PS0, PS1, PS2, PS4  
These perform the power saving settings for each input and output block. Be sure to use these settings as  
described in "Power Supply and Power Saving Sequence". The power-on default for this IC is power saving  
mode, so the settings should be canceled by serial communication after power-on.  
Mode (PS0, PS1, PS2, PS4)  
D0, 1, 2, 4  
0
1
Normal operation  
The respective outputs and corresponding output blocks are stopped.  
– 31 –  
CXA3268AR  
Power Supply and Power Saving Sequence  
When using this IC, the power supply sequences described below must be followed during power-on/off to  
ensure reliability as a LCD driving system. Thoroughly study the function specifications of each control method  
(1), (2) and (3) before use.  
Control timing (1)  
Use this timing when not using the power saving (PS) function regardless of picture quality during power-  
on/off.  
Control timing (2)  
Use this timing when using the power saving (PS) function regardless of picture quality during power-on/off.  
Note that in this case an external switch is necessary.  
Control timing (3)  
Use this timing when using the power saving (PS) function and placing priority on picture quality during  
power-on/off. Note that in this case an external switch is necessary.  
Control timing (1)  
(1) IC power-on (3V, 12V), LCD power-on (HVDD, VVDD)  
(2) A settings: after the IC and LCD power supplies have risen  
(3) IC power-off (3V, 12V), LCD power-off (HVDD, VVDD): optional  
The LCD power supply (HVDD, VVDD) rise timing should adequately satisfy the panel specifications.  
Serial data settings other than PS should be made during the control period from the rise of the IC 3V  
power supply to (2).  
Default  
LCD display  
Power-off  
Default  
LCD display  
Power-off  
Status  
Power-on PS OFF  
Power-on PS OFF  
LCD power supply  
IC 12V  
Supply voltage  
&
output signal  
IC 3V  
SYNC GEN circuit  
PS4 circuit  
2
2
PS2 circuit  
PS1 circuit  
PS0 circuit  
1
1
IC power-on  
LCD power-on PS0 0  
PS1 0  
A
IC power-off  
LCD power-off  
IC power-on  
LCD power-on PS0 0  
PS1 0  
A
IC power-off  
LCD power-off  
Operation  
Power-on/off  
&
PS settings  
(serial data)  
PS2 0  
PS4 0 (1)  
PS2 0  
PS4 0 (1)  
SYNC GEN  
SYNC GEN  
0  
0  
Fig. 1  
1 During IC power-on (default status), the PS mode is activated  
(the PS0, PS1, PS2, PS4 and SYNC GEN data are all set to "1").  
Therefore, the PS settings should be canceled via serial  
communication in accordance with the sequence specifications.  
2 When inputting the sync signal from an external source, set serial  
data PS4 = 1.  
Power supply  
VCC/VDD  
HVDD/  
VVDD  
CXA3268AR  
LCD  
Signal  
Fig. 2. System block diagram  
– 32 –  
CXA3268AR  
Control timing (2)  
(1) IC power-on (3V, 12V), LCD power-on (HVDD, VVDD)  
(2) A settings: after the IC and LCD power supplies have risen  
(3) B settings: optional  
(4) IC power-off (3V, 12V), LCD power-off (HVDD, VVDD): optional  
It is possible to skip from step (2) to step (4) without making the B settings (dotted lines in the figure).  
The LCD power supply (HVDD, VVDD) rise timing should adequately satisfy the panel specifications.  
Serial data settings other than PS should be made during the control period from the rise of the IC 3V  
power supply to (2).  
PS (Default) LCD display  
Power-on PS OFF  
PS  
LCD display  
PS  
Status  
PS ON  
PS OFF  
PS ON Power-off  
Supply voltage  
&
output signal  
LCD power supply  
IC 12V  
IC 3V  
SYNC GEN circuit  
PS4 circuit  
2
2
PS2 circuit  
PS1 circuit  
PS0 circuit  
1
IC power-on  
LCD power-on PS0 0  
PS1 0  
A
B
A
B
IC power-off  
LCD power-off  
Operation  
PS0 1  
PS1 1  
PS2 1  
PS0 0  
PS1 0  
PS2 0  
PS0 1  
PS1 1  
PS2 1  
Power-on/off  
&
PS settings  
(serial data)  
PS2 0  
PS4 0 (1) PS4 1  
PS4 0 (1) PS4 1  
SYNC GEN  
SYNC GEN  
1  
SYNC GEN  
SYNC GEN  
0  
0  
1  
Fig. 1  
1 During IC power-on (default status), the PS mode is activated  
(the PS0, PS1, PS2, PS4 and SYNC GEN data are all set to "1").  
Therefore, the PS settings should be canceled via serial  
communication in accordance with the sequence specifications.  
2 When inputting the sync signal from an external source, set serial  
data PS4 = 1.  
VCC/VDD  
Power supply  
3V output  
POF pin  
HVDD/  
VVDD  
CXA3268AR  
SW  
LCD  
Signal  
Fig. 2. System block diagram  
– 33 –  
CXA3268AR  
Control timing (3)  
(1) IC power-on (3V)  
(2) IC power-on (12V), LCD power-on (HVDD, VVDD): after the IC power supply (3V) has completely risen  
(3) A settings: after the IC (12V) and LCD power supplies have risen  
(4) B settings: after the PLL has stabilized (stable RPD waveform) and the panel I/O power supply conditions  
have been satisfied.  
(5) C settings: optional  
(6) D settings: after COM/CS, RGB and PSIG have fallen  
(7) E settings: 100ms or more after the D settings  
(8) IC power-off (12V), LCD power-off (HVDD, VVDD): after the HVDD and VVDD pin voltages have fallen  
(9) IC power-off (3V): after the IC power supply (12V) has completely fallen  
Serial data settings other than PS should be made during the control period from the rise of the IC 3V  
power supply to (3).  
The LCD power supply (HVDD, VVDD) rise timing should adequately satisfy the panel specifications.  
PS (Default) LCD display  
Power-on PS OFF  
PS  
LCD display  
PS OFF  
PS  
PS ON  
PS ON  
Power-off  
LCD power supply  
IC 12V  
Status  
IC 3V  
Supply voltage  
&
output signal  
SYNC GEN circuit  
PS4 circuit  
2
2
PS2 circuit  
PS1 circuit  
PS0 circuit  
1
3
4
IC power-on  
A
C
A
C
IC power-off  
LCD power-on PS0 0  
PS0 1  
PS1 0  
PS2 0  
PS4 0 (1)  
SYNC GEN  
PS0 0  
PS1 0  
PS2 0  
PS4 0  
SYNC GEN  
PS0 1  
PS1 0  
PS2 0  
PS4 0 (1)  
SYNC GEN  
LCD power-off  
PS1 0  
PS2 0  
PS4 0  
SYNC GEN  
Operation  
Power-on/off  
&
PS settings  
(serial data)  
1  
0  
1  
0  
B
D
E
B
D
E
PS0 0  
PS1 0  
PS2 0  
PS4 0 (1)  
SYNC GEN  
0  
PS0 1  
PS1 1  
PS2 0  
PS0 1  
PS1 1  
PS2 1  
PS0 0  
PS1 0  
PS2 0  
PS0 1  
PS1 1  
PS2 0  
PS0 1  
PS1 1  
PS2 1  
PS4 1  
SYNC GEN  
1  
PS4 0 (1) PS4 1  
SYNC GEN SYNC GEN SYNC GEN SYNC GEN  
PS4 0 (1) PS4 0 (1)  
0  
1  
0  
0  
Fig. 1  
1 During IC power-on (default status), the PS mode is activated  
VCC/VDD  
Power supply  
(the PS0, PS1, PS2, PS4 and SYNC GEN data are all set to "1").  
Therefore, the PS settings should be canceled via serial  
communication in accordance with the sequence specifications.  
2 When inputting the sync signal from an external source, set serial  
data PS4 = 1.  
3 When raising the power supplies, first raise the IC 3V power  
supply, then raise the IC 12V and LCD power supplies.  
4 When lowering the power supplies, first lower the LCD and IC  
12V power supplies, then lower the IC 3V power supply.  
3V output  
POF pin  
HVDD/  
VVDD  
CXA3268AR  
SW  
LCD  
Signal  
Fig. 2. System block diagram  
– 34 –  
CXA3268AR  
SLPL  
This switches the display system.  
D0  
0
Display system  
NTSC  
1
PAL  
SLWD  
This switches the display aspect.  
D1 Supported aspect  
0
1
4:3 display  
16:9 display  
SLSH0, SLSH1, SLSH2  
These switch the sample-and-hold timing.  
SLSH2 SLSH1 SLSH0  
Sample-and-hold position  
SHS1  
D3  
D2  
D3  
0
0
0
0
0
1
SHS2  
0
1
0
SHS3  
0
1
1
SHS4  
1
0
0
SHS5  
1
0
1
SHS6  
1
1
0
Through (sample-and-hold off)  
Through (sample-and-hold off)  
1
1
1
SLRGT  
This is the right/left inversion function. This switches the horizontal scan direction of the LCD panel.  
D4  
0
Scan mode  
Normal display (right scan)  
1
Right/left inverted display (left scan)  
SLDWN  
This is the up/down inversion function. This switches the vertical scan direction of the LCD panel.  
D5  
0
Scan mode  
Normal display (down scan)  
Up/down inverted display (up scan)  
1
– 35 –  
CXA3268AR  
SLEXVD  
This switches the external vertical sync signal (VD/Pin 10) input. This is used when not performing sync  
separation with the internal sync separation circuit during external separate sync (VD, HD/Pins 10 and 5)  
input. Set to "0" during external CSYNC/Pin 5 input.  
D6  
0
Mode  
Other than during external vertical sync signal input  
External vertical sync signal input  
1
SLSYP  
This switches the input sync polarity. When using the Pin 4 (SYNC OUT) output as the sync signal (when  
using the internal sync separation signals), set this to "0".  
D7  
0
Input polarity  
Positive polarity  
Negative polarity  
1
SLHDP, SLVDP  
These switch the HDO output and VDO output polarity.  
D1 Output polarity (VDO)  
D0 Output polarity (HDO)  
0
1
Positive polarity  
Negative polarity  
0
1
Positive polarity  
Negative polarity  
SLCP1, SLCP2  
These switch the clamp position.  
D3  
0
D2  
0
Clamp position  
A (Back porch position/when using the internal sync separation signals)  
B (Sync position/when using the internal sync separation signals)  
C (Back porch position/during external sync signal input)  
D (Sync position/during external sync signal input)  
0
1
1
0
1
1
2.35µs  
2.35µs  
SYNC  
RPD  
2µs  
A
2.9µs  
2µs  
1.3µs  
B
C
XCLP  
2µs  
3.6µs  
2µs  
1µs  
D
Note) When clamp is performed at back porch and sync position, set back porch and sync period of Pins 69,  
70, 71 and 72 input signals at pedestal level.  
– 36 –  
CXA3268AR  
SL4096  
This function inverts the output signal polarity every 4096 fields. This further inverts the polarity of the RGB  
output that is inverted every 1H for 4096 fields. Normally set to 1H inversion.  
D4  
0
Mode  
1H inversion  
1H inversion + 4096 field inversion  
1
SLFR  
This function inverts the output signal polarity every field. Normally set to 1H inversion.  
D5  
0
Mode  
1H inversion  
1 field inversion  
1
SLFL  
This function is used to stop output signal polarity inversion. Normally set to polarity inversion.  
D6  
0
Mode  
Polarity inversion  
1
Polarity inversion stopped  
SLTST0, 1, 2, 3, 4  
These are the test functions. Set to normal mode.  
D0, 1, 2, 3, 4  
Mode  
Normal mode  
Test mode  
0
1
HP1, 2, 3, 4, 5  
These set the H position. The horizontal display position is switched by adjusting the HST pulse position using  
the input horizontal sync signal as the reference. Adjustment is possible in 1 bit = 2fH increments. (1fH = 1 dot)  
Horizontal sync signal  
HP: 11111 (LSB)  
HP: 10000 (LSB)  
HST  
HP: 00000 (LSB)  
15 steps  
(30fH)  
16 steps  
(32fH)  
– 37 –  
CXA3268AR  
HDP1, 2, 3, 4, 5  
These set the HDO output pulse position. The HDO pulse output position is switched using the input horizontal  
sync signal as the reference. Adjustment is possible in 1 bit = 4fH increments. (1fH = 1 dot)  
Horizontal sync signal  
HDP: 00000 (LSB)  
HDO  
HDP: 11111 (LSB)  
31 steps  
(124fH)  
– 38 –  
CXA3268AR  
Application Circuit (RGB input/Y/color difference input, during internal sync separation signal input)  
+12V  
22k  
IN  
OUT  
To LCD Panel  
22k  
+12V  
Buff  
Sample PSIG buffer circuit  
+12V  
47µ  
47µ  
1µ  
0.68µ  
10  
47µ  
1µ  
54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37  
+3V  
10  
55 VDD  
36  
G OUT  
G DC DET 35  
0.68µ  
0.01µ  
47µ  
56  
TST11  
10  
57 OSD B  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
R OUT  
R DC DET  
B OUT  
B DC DET  
SIG.C  
GND2  
TST2  
To LCD Panel  
0.68µ  
3
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
OSD R  
OSD G  
NC  
10  
0.68µ  
HCK1  
HCK2  
Vcc1  
HST  
0.01µ  
HDO  
To LCD Panel  
EN  
VDO  
0.1µ  
VCK  
XCLR  
RPD  
VST  
RGT  
Vss  
1µ  
FIL IN  
B/B-Y  
CKI  
0.01µ  
0.01µ  
0.01µ  
1k  
B/B-Y  
CKO  
3.3µ 1000p 33k  
G/Y  
G/Y  
VDD  
+12V  
10k  
30p  
2
R/R-Y  
10k  
VDD  
R/R-Y  
3.3µ  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18  
47k  
0.01µ 6800p  
+3V  
1
1
1µ  
0.01µ  
1k  
33k  
15k  
47µ  
0.01µ  
+3V  
270  
To LCD Panel  
To Serial Controller  
47µ  
1µ  
1 Resistance value tolerance: ±2%, temperature coefficient: ±200ppm or less  
Locate this resistor as close to the IC pin as possible to reduce the effects of external signals.  
2 Varicap diode: 1T369 (SONY)  
3 Connect to GND when not using OSD input.  
Application circuits shown are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for  
any problems arising out of the use of these circuits or for any infringement of third party patent and other right due to same.  
– 39 –  
CXA3268AR  
Application Circuit (RGB input/Y/color difference input, during external sync signal input)  
+12V  
22k  
IN  
OUT  
To LCD Panel  
22k  
+12V  
Buff  
Sample PSIG buffer circuit  
+12V  
47µ  
47µ  
1µ  
0.68µ  
10  
47µ  
1µ  
54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37  
+3V  
10  
55 VDD  
36  
G OUT  
G DC DET 35  
0.68µ  
0.01µ  
47µ  
56  
TST11  
10  
57 OSD B  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
To LCD Panel  
R OUT  
R DC DET  
B OUT  
B DC DET  
SIG.C  
GND2  
TST2  
0.68µ  
3
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
OSD R  
OSD G  
NC  
10  
0.68µ  
HCK1  
HCK2  
Vcc1  
HST  
0.01µ  
HDO  
To LCD Panel  
EN  
VDO  
0.1µ  
VCK  
XCLR  
RPD  
VST  
RGT  
Vss  
FIL IN  
B/B-Y  
CKI  
0.01µ  
0.01µ  
0.01µ  
1k  
B/B-Y  
CKO  
3.3µ 1000p 33k  
G/Y  
G/Y  
VDD  
+12V  
10k  
30p  
2
R/R-Y  
10k  
VDD  
R/R-Y  
3.3µ  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18  
47k  
0.01µ 6800p  
+3V  
0.01µ  
1
1
100k  
33k  
15k  
47µ  
0.01µ  
+3V  
To LCD Panel  
To Serial Controller  
4
47µ  
1µ  
CSYNC/HD  
VD  
1 Resistance value tolerance: ±2%, temperature coefficient: ±200ppm or less  
Locate this resistor as close to the IC pin as possible to reduce the effects of external signals.  
2 Varicap diode: 1T369 (SONY)  
3 Connect to GND when not using OSD input.  
4 During CSYNC input, input to Pin 5 only (leave Pin 10 open). During separate sync (HD, VD) input, input to Pins 5 and 10.  
Application circuits shown are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for  
any problems arising out of the use of these circuits or for any infringement of third party patent and other right due to same.  
– 40 –  
CXA3268AR  
Notes on Operation  
(1) This IC contains digital circuits, so the set board pattern must be designed in consideration of undesired  
radiation, interference to analog circuits, etc. Care should also be taken for the following items when  
designing the pattern.  
The digital and analog IC power supplies should be separated, but the GND and VSS should not be  
separated and should use a plain GND (VSS) pattern in order to reduce impedance as much as possible.  
The power supplies should also use a plain pattern.  
Use ceramic capacitors for the by-pass capacitors between the power supplies and GND, and connect  
these capacitors as close to the pins as possible.  
The resistor connected to Pin 8 should be connected as close to the pin as possible, and the wiring from  
the pin to GND should be as short as possible. Also, do not pass other signal lines close to this pin or the  
connected resistor.  
The resistor connected to Pin 17 should be located as close to the pin as possible. Also, do not pass  
other signal lines close to this pin.  
The capacitors connected to Pins 7 and 42 should be located as close to the LCD panel as possible.  
The PLL block (LPF/VCO) should be compact and located near the IC.  
(2) The R/R-Y (Pin 72), G/Y (Pin 71), B/B-Y (Pin 70) and FIL IN (Pin 69) pin input signals are clamped at the  
inputs using the capacitors connected to each pin, so these signals should be input at sufficiently low  
impedance.  
(Input at an impedance of 1k(max.) or less.)  
(3) The smoothing capacitor of the DC level control feedback circuit in the capacitor block connected to the  
RGB output pins should have a leak current with a small absolute value and variance. Also, when using the  
pulse elimination (PAL display, WIDE display) function, the picture quality should be thoroughly evaluated  
before deciding the capacitance value of the capacitor.  
(4) A thorough study of whether the capacitor connected to the COM output pin satisfies the LCD panel  
specifications should be made before deciding the capacitance value.  
(5) If this IC is used in connection with a circuit other than an LCD, it may cause that circuit to malfunction  
depending on the order in which power is supplied to the circuits. Thoroughly study the consequences of  
using this IC with other circuits before deciding on its use.  
(6) Since this IC utilizes a C-MOS structure, it may latch up due to excessive noise or power surge greater than  
the maximum rating of the I/O pins, or due to interface with the power supply of another circuit, or due to  
the order in which power is supplied to circuits. Be sure to take measures against the possibility of latch up.  
(7) Be sure to observe the power supply and power saving sequence specifications specified for this IC.  
(8) Do not apply a voltage higher than VDD or lower than VSS to I/O pins.  
(9) Do not use this IC under operating conditions other than those given.  
(10) Absolute maximum rating values should not be exceeded even momentarily. Exceeding ratings may  
damage the device, leading to eventual breakdown.  
(11) This IC has a MOS structure which is easily damaged by static electricity, so thorough measures should  
be taken to prevent electrostatic discharge.  
(12) Always connect the VSS, GND1 and GND2/3 pins to the lowest potential applied to this IC; do not leave  
these pins open. The voltages applied to the power supply pins should be as follows.  
VSS = GND1 = GND2/3 VDD = VCC1 VCC2 = VCC3.  
– 41 –  
CXA3268AR  
Package Outline  
Unit: mm  
72PIN LQFP (PLASTIC)  
12.0 ± 0.3  
10.0 ± 0.2  
14.5 ± 0.2  
0.65 ± 0.2  
54  
39  
55  
38  
72  
19  
1
18  
0.5  
A
0.2 ± 0.08  
0.15 ± 0.05  
0.1  
0.08  
M
0.1 ± 0.1  
0° to 10°  
DETAIL A  
PACKAGE STRUCTURE  
EPOXY RESIN  
PACKAGE MATERIAL  
LEAD TREATMENT  
LEAD MATERIAL  
SOLDER PLATING  
42 ALLOY  
SONY CODE  
EIAJ CODE  
LQFP-72P-L111  
P-LQFP72-10X10-0.5  
JEDEC CODE  
PACKAGE MASS  
0.3g  
– 42 –  

相关型号:

CXA3271AGE

Fingerprint Sensor
ETC

CXA3271GE

Fingerprint Sensor
SONY

CXA3272R

CXA3272R
SONY

CXA3275Q

PLL/OSC/MIX IC for Digital Tuner
SONY

CXA3276Q

8-bit 160MSPS Flash A/D Converter
SONY

CXA3286

8-bit 160MSPS Flash A/D Converter
SONY

CXA3286R

8-bit 160MSPS Flash A/D Converter
SONY

CXA3299TN

Wideband Pre-amplifier
SONY

CXA3304N

IF IC for ETC
SONY

CXA3309ER

Analog Signal Processor TX-IF IC for W-CDMA Cellular Phones
ETC

CXA3314ER

6GHz PLL
SONY

CXA3328EN

Analog Signal Processor RX-IF IC for W-CDMA Cellular Phones
SONY