LAN8700I-AEZG [SMSC]

LAN Controller, 1 Channel(s), 12.5MBps, CMOS, 6 X 6 MM, 0.90 MM HEIGHT, ROHS COMPLIANT, QFN-36;
LAN8700I-AEZG
型号: LAN8700I-AEZG
厂家: SMSC CORPORATION    SMSC CORPORATION
描述:

LAN Controller, 1 Channel(s), 12.5MBps, CMOS, 6 X 6 MM, 0.90 MM HEIGHT, ROHS COMPLIANT, QFN-36

时钟 局域网 数据传输 外围集成电路
文件: 总73页 (文件大小:648K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LAN8700/LAN8700I  
±15kV ESD Protected  
MII/RMII Fast-Ethernet PHY  
with HP Auto-MDIX &  
SMSC flexPWRTM in a  
Small Footprint  
Datasheet  
PRODUCT FEATURES  
„
„
Single-Chip Ethernet Physical Layer Transceiver  
(PHY)  
„
„
Vendor Specific register functions  
Low profile 36-pin QFN green, lead-free package (6 x  
6 x 0.9mm height)  
Performs HP Auto-MDIX in accordance with IEEE  
802.3ab specification  
„
„
„
4 LED status indicators  
„
„
„
Cable length greater than 150meters  
Automatic Polarity Correction  
Comprehensive SMSC flexPWRTM Technology  
Commercial Operating Temperature 0° C to 70° C  
Industrial Operating Temperature -40° C to 85° C  
version available (LAN8700I)  
Flexible Power Management Architecture  
Applications  
Set Top Boxes  
„
„
LVCMOS Variable I/O voltage range: +1.6V to +3.6V  
„
„
„
„
„
„
„
„
„
„
„
„
„
„
„
„
„
„
„
„
Integrated 3.3V to 1.8V regulator for optional single  
supply operation.  
Network Printers and Servers  
LAN on Motherboard  
Regulator can be disabled if 1.8V system supply is  
available.  
10/100 PCMCIA/CardBus Applications  
Embedded Telecom Applications  
Video Record/Playback Systems  
Cable Modems/Routers  
DSL Modems/Routers  
Digital Video Recorders  
Personal Video Recorders  
IP and Video Phones  
Wireless Access Points  
Digital Televisions  
„
„
ESD Protection levels of ±8kV HBM without external  
protection devices  
ESD protection levels of IEC61000-4-2, ±8kV contact  
mode, and ±15kV for air discharge mode per NTS  
Test Facility  
„
Latch-Up Performance Exceeds 150mA per  
EIA/JESD 78, Class II  
„
„
„
Energy Detect power-down mode  
Low Current consumption power down mode  
Low operating current consumption:  
39mA typical in 10BASE-T and  
79mA typical in 100BASE-TX mode  
Digital Media Adaptors/Servers  
POS Terminals  
„
„
Supports Auto-negotiation and Parallel Detection  
Automotive Networking  
Gaming Consoles  
Supports the Media Independent Interface (MII) and  
Reduced Media Independent Interface (RMII)  
Security Systems  
„
Compliant with IEEE 802.3-2005 standards  
POE Applications  
MII Pins tolerant to 3.6V  
Access control  
„
„
„
IEEE 802.3-2005 compliant register functions  
Integrated DSP with Adaptive Equalizer  
Baseline Wander (BLW) Correction  
ORDER NUMBERS:  
LAN8700-AEZG FOR 36-PIN, QFN PACKAGE (LEAD-FREE ROHS COMPLIANT)  
LAN8700I-AEZG FOR (INDUSTRIAL TEMP) 36-PIN, QFN PACKAGE (LEAD-FREE ROHS COMPLIANT)  
SMSC LAN8700/LAN8700I  
DATASHEET  
Revision 0.9 (08-17-06)  
TM  
±15kV ESD Protected MII/RMII Fast-Ethernet PHY with HP Auto-MDIX & SMSC flexPWR in a Small Footprint  
Datasheet  
80 ARKAY DRIVE, HAUPPAUGE, NY 11788 (631) 435-6000, FAX (631) 273-3123  
Copyright © 2006 SMSC or its subsidiaries. All rights reserved.  
Circuit diagrams and other information relating to SMSC products are included as a means of illustrating typical applications. Consequently, complete information sufficient for  
construction purposes is not necessarily given. Although the information has been checked and is believed to be accurate, no responsibility is assumed for inaccuracies. SMSC  
reserves the right to make changes to specifications and product descriptions at any time without notice. Contact your local SMSC sales office to obtain the latest specifications  
before placing your product order. The provision of this information does not convey to the purchaser of the described semiconductor devices any licenses under any patent  
rights or other intellectual property rights of SMSC or others. All sales are expressly conditional on your agreement to the terms and conditions of the most recently dated  
version of SMSC's standard Terms of Sale Agreement dated before the date of your order (the "Terms of Sale Agreement"). The product may contain design defects or errors  
known as anomalies which may cause the product's functions to deviate from published specifications. Anomaly sheets are available upon request. SMSC products are not  
designed, intended, authorized or warranted for use in any life support or other application where product failure could cause or contribute to personal injury or severe property  
damage. Any and all such uses without prior written approval of an Officer of SMSC and further testing and/or modification will be fully at the risk of the customer. Copies of  
this document or other SMSC literature, as well as the Terms of Sale Agreement, may be obtained by visiting SMSC’s website at http://www.smsc.com. SMSC is a registered  
trademark of Standard Microsystems Corporation (“SMSC”). Product names and company names are the trademarks of their respective holders.  
SMSC DISCLAIMS AND EXCLUDES ANY AND ALL WARRANTIES, INCLUDING WITHOUT LIMITATION ANY AND ALL IMPLIED WARRANTIES OF MERCHANTABILITY,  
FITNESS FOR A PARTICULAR PURPOSE, TITLE, AND AGAINST INFRINGEMENT AND THE LIKE, AND ANY AND ALL WARRANTIES ARISING FROM ANY COURSE  
OF DEALING OR USAGE OF TRADE. IN NO EVENT SHALL SMSC BE LIABLE FOR ANY DIRECT, INCIDENTAL, INDIRECT, SPECIAL, PUNITIVE, OR CONSEQUENTIAL  
DAMAGES; OR FOR LOST DATA, PROFITS, SAVINGS OR REVENUES OF ANY KIND; REGARDLESS OF THE FORM OF ACTION, WHETHER BASED ON CONTRACT;  
TORT; NEGLIGENCE OF SMSC OR OTHERS; STRICT LIABILITY; BREACH OF WARRANTY; OR OTHERWISE; WHETHER OR NOT ANY REMEDY OF BUYER IS HELD  
TO HAVE FAILED OF ITS ESSENTIAL PURPOSE, AND WHETHER OR NOT SMSC HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.  
Revision 0.9 (08-17-06)  
2
SMSC LAN8700/LAN8700I  
DATASHEET  
TM  
±15kV ESD Protected MII/RMII Fast-Ethernet PHY with HP Auto-MDIX & SMSC flexPWR in a Small Footprint  
Datasheet  
Table of Contents  
Chapter 1 General Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
1.1  
Architectural Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Chapter 2 Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
2.1  
Package Pin-out Diagram and Signal Table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Chapter 3 Pin Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
3.1  
I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Chapter 4 Architecture Details. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
4.1  
4.2  
Top Level Functional Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
100Base-TX Transmit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
4.2.1  
4.2.2  
4.2.3  
4.2.4  
4.2.5  
4.2.6  
100M Transmit Data Across the MII/RMII Interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
4B/5B Encoding. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Scrambling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
NRZI and MLT3 Encoding. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
100M Transmit Driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
100M Phase Lock Loop (PLL). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
4.3  
100Base-TX Receive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
4.3.1  
4.3.2  
4.3.3  
4.3.4  
4.3.5  
4.3.6  
4.3.7  
4.3.8  
4.3.9  
100M Receive Input. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Equalizer, Baseline Wander Correction and Clock and Data Recovery . . . . . . . . . . . . . 21  
NRZI and MLT-3 Decoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Descrambling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Alignment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
5B/4B Decoding. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Receive Data Valid Signal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Receiver Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
100M Receive Data Across the MII/RMII Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
4.4  
4.5  
10Base-T Transmit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
4.4.1  
4.4.2  
4.4.3  
10M Transmit Data Across the MII/RMII Interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Manchester Encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
10M Transmit Drivers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
10Base-T Receive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
4.5.1  
4.5.2  
4.5.3  
4.5.4  
10M Receive Input and Squelch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Manchester Decoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
10M Receive Data Across the MII/RMII Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Jabber Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
4.6  
4.7  
MAC Interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
4.6.1  
4.6.2  
4.6.3  
MII . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
RMII. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
MII vs. RMII Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Auto-negotiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
4.7.1  
4.7.2  
4.7.3  
4.7.4  
Parallel Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Re-starting Auto-negotiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Disabling Auto-negotiation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Half vs. Full Duplex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
4.8  
4.9  
HP Auto-MDIX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Internal +1.8V Regulator Disable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
4.9.1  
4.9.2  
Disable the Internal +1.8V Regulator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Enable the Internal +1.8V Regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
4.10 nINT/TX_ER/TXD4 Strapping. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
SMSC LAN8700/LAN8700I  
3
Revision 0.9 (08-17-06)  
DATASHEET  
TM  
±15kV ESD Protected MII/RMII Fast-Ethernet PHY with HP Auto-MDIX & SMSC flexPWR in a Small Footprint  
Datasheet  
4.11 PHY Address Strapping and LED Output Polarity Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
4.12 Variable Voltage I/O . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
4.12.1 Boot Strapping Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
4.12.2 I/O Voltage Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
4.13 PHY Management Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
4.13.1 Serial Management Interface (SMI). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Chapter 5 Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
5.1  
5.2  
5.3  
5.4  
SMI Register Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
SMI Register Format. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Interrupt Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
Miscellaneous Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
5.4.1  
5.4.2  
5.4.3  
5.4.4  
5.4.5  
5.4.6  
5.4.7  
5.4.8  
5.4.9  
Carrier Sense . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
Collision Detect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
Isolate Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
Link Integrity Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
Power-Down modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
LED Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
Loopback Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
Configuration Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
Chapter 6 AC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
6.1  
6.2  
Serial Management Interface (SMI) Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
MII 10/100Base-TX/RX Timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
6.2.1  
6.2.2  
MII 100Base-T TX/RX Timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
MII 10Base-T TX/RX Timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
6.3  
RMII 10/100Base-TX/RX Timings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
6.3.1  
6.3.2  
RMII 100Base-T TX/RX Timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
RMII 10Base-T TX/RX Timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
6.4  
6.5  
REF_CLK Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
Reset Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
Chapter 7 DC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
7.1  
DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
7.1.1  
7.1.2  
7.1.3  
7.1.4  
Maximum Guaranteed Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
Operating Conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64  
Power Consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64  
DC Characteristics - Input and Output Buffers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66  
Chapter 8 Application Notes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70  
8.1  
8.2  
8.3  
8.4  
8.5  
Application Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70  
Magnetics Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71  
Application Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71  
Reference Designs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71  
Evaluation board. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71  
Chapter 9 Package Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
Revision 0.9 (08-17-06)  
4
SMSC LAN8700/LAN8700I  
DATASHEET  
TM  
±15kV ESD Protected MII/RMII Fast-Ethernet PHY with HP Auto-MDIX & SMSC flexPWR in a Small Footprint  
Datasheet  
List of Figures  
Figure 1.1 LAN8700/LAN8700I System Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Figure 1.2 LAN8700/LAN8700I Architectural Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Figure 2.1 Package Pinout (Top View) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Figure 4.1 100Base-TX Data Path . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Figure 4.2 Receive Data Path . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Figure 4.3 Relationship Between Received Data and Specific MII Signals . . . . . . . . . . . . . . . . . . . . . . 22  
Figure 4.4 Direct Cable Connection vs. Cross-over Cable Connection. . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Figure 4.5 PHY Address Strapping on LED’s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Figure 4.6 MDIO Timing and Frame Structure - READ Cycle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Figure 4.7 MDIO Timing and Frame Structure - WRITE Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Figure 6.1 SMI Timing Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
Figure 6.2 100M MII Receive Timing Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
Figure 6.3 100M MII Transmit Timing Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
Figure 6.4 10M MII Receive Timing Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
Figure 6.5 10M MII Transmit Timing Diagrams. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
Figure 6.6 100M RMII Receive Timing Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
Figure 6.7 100M RMII Transmit Timing Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
Figure 6.8 10M RMII Receive Timing Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
Figure 6.9 10M RMII Transmit Timing Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
Figure 6.10 Reset Timing Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
Figure 8.1 Simplified Application Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70  
Figure 9.1 36-Pin QFN Package Outline, 6 x 6 x 0.90 mm Body (Lead-Free) . . . . . . . . . . . . . . . . . . . . 73  
SMSC LAN8700/LAN8700I  
5
Revision 0.9 (08-17-06)  
DATASHEET  
TM  
±15kV ESD Protected MII/RMII Fast-Ethernet PHY with HP Auto-MDIX & SMSC flexPWR in a Small Footprint  
Datasheet  
List of Tables  
Table 2.1 LAN8700/LAN8700I 36-PIN QFN Pinout. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Table 3.1 MII Signals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Table 3.2 LED Signals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Table 3.3 Management Signals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Table 3.4 Boot Strap Configuration Inputs (Note 3.1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Table 3.5 General Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Table 3.6 10/100 Line Interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Table 3.7 Analog References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Table 3.8 Power Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Table 4.1 4B/5B Code Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Table 4.2 MII/RMII Signal Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Table 4.3 Boot Strapping Configuration Resistors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Table 5.1 Control Register: Register 0 (Basic) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Table 5.2 Status Register: Register 1 (Basic) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Table 5.3 PHY ID 1 Register: Register 2 (Extended) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Table 5.4 PHY ID 2 Register: Register 3 (Extended) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Table 5.5 Auto-Negotiation Advertisement: Register 4 (Extended). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Table 5.6 Auto-Negotiation Link Partner Base Page Ability Register: Register 5 (Extended). . . . . . . . . 35  
Table 5.7 Auto-Negotiation Expansion Register: Register 6 (Extended). . . . . . . . . . . . . . . . . . . . . . . . . 35  
Table 5.8 Auto-Negotiation Link Partner Next Page Transmit Register: Register 7 (Extended) . . . . . . . 35  
Table 5.9 Register 8 (Extended) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Table 5.10 Register 9 (Extended) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Table 5.11 Register 10 (Extended) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Table 5.12 Register 11 (Extended) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Table 5.13 Register 12 (Extended) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Table 5.14 Register 13 (Extended) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Table 5.15 Register 14 (Extended) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Table 5.16 Register 15 (Extended) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Table 5.17 Silicon Revision Register 16: Vendor-Specific. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Table 5.18 Mode Control/ Status Register 17: Vendor-Specific . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Table 5.19 Special Modes Register 18: Vendor-Specific . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Table 5.20 Reserved Register 19: Vendor-Specific. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Table 5.21 Register 24: Vendor-Specific. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Table 5.22 Register 25: Vendor-Specific. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Table 5.23 Register 26: Vendor-Specific. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Table 5.24 Special Control/Status Indications Register 27: Vendor-Specific . . . . . . . . . . . . . . . . . . . . . . 38  
Table 5.25 Special Internal Testability Control Register 28: Vendor-Specific . . . . . . . . . . . . . . . . . . . . . . 38  
Table 5.26 Interrupt Source Flags Register 29: Vendor-Specific . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Table 5.27 Interrupt Mask Register 30: Vendor-Specific. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Table 5.28 PHY Special Control/Status Register 31: Vendor-Specific . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Table 5.29 SMI Register Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Table 5.30 Register 0 - Basic Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Table 5.31 Register 1 - Basic Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Table 5.32 Register 2 - PHY Identifier 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Table 5.33 Register 3 - PHY Identifier 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Table 5.34 Register 4 - Auto Negotiation Advertisement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Table 5.35 Register 5 - Auto Negotiation Link Partner Ability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
Table 5.36 Register 6 - Auto Negotiation Expansion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Table 5.37 Register 16 - Silicon Revision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Table 5.38 Register 17 - Mode Control/Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Table 5.39 Register 18 - Special Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
Table 5.40 Register 27 - Special Control/Status Indications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
Revision 0.9 (08-17-06)  
6
SMSC LAN8700/LAN8700I  
DATASHEET  
TM  
±15kV ESD Protected MII/RMII Fast-Ethernet PHY with HP Auto-MDIX & SMSC flexPWR in a Small Footprint  
Datasheet  
Table 5.41 Register 28 - Special Internal Testability Controls. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
Table 5.42 Register 29 - Interrupt Source Flags . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Table 5.43 Register 30 - Interrupt Mask . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Table 5.44 Register 31 - PHY Special Control/Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Table 5.45 MODE[2:0] Bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
Table 6.1 SMI Timing Values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
Table 6.2 100M MII Receive Timing Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
Table 6.3 100M MII Transmit Timing Values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
Table 6.4 10M MII Receive Timing Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
Table 6.5 10M MII Transmit Timing Values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
Table 6.6 100M RMII Receive Timing Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
Table 6.7 100M RMII Transmit Timing Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
Table 6.8 10M RMII Receive Timing Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
Table 6.9 10M RMII Transmit Timing Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
Table 6.10 REF_CLK Timing Values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
Table 6.11 Reset Timing Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
Table 7.1 Maximum Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
Table 7.2 ESD and LATCH-UP Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
Table 7.3 Recommended Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64  
Table 7.4 Power Consumption Device Only . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
Table 7.5 MII Bus Interface Signals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66  
Table 7.6 LAN Interface Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
Table 7.7 LED Signals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
Table 7.8 Configuration Inputs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
Table 7.9 General Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68  
Table 7.10 Analog References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68  
Table 7.11 Internal Pull-Up / Pull-Down Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68  
Table 7.12 100Base-TX Transceiver Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
Table 7.13 10BASE-T Transceiver Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
Table 9.1 36-Pin QFN Package Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
SMSC LAN8700/LAN8700I  
7
Revision 0.9 (08-17-06)  
DATASHEET  
TM  
±15kV ESD Protected MII/RMII Fast-Ethernet PHY with HP Auto-MDIX & SMSC flexPWR in a Small Footprint  
Datasheet  
Chapter 1 General Description  
The SMSC LAN8700/LAN8700I is a low-power, industrial temperature (LAN8700I), variable I/O  
voltage, analog interface IC with HP Auto-MDIX for high-performance embedded Ethernet applications.  
The LAN8700/LAN8700I can be configured to operate on a single 3.3V supply utilizing an integrated  
3.3V to 1.8V linear regulator. An option is available to disable the linear regulator to optimize system  
designs that have a 1.8V power plane available.  
1.1  
Architectural Overview  
The LAN8700/LAN8700I consists of an encoder/decoder, scrambler/descrambler, wave-shaping  
transmitter, output driver, twisted-pair receiver with adaptive equalizer and baseline wander (BLW)  
correction, and clock and data recovery functions. The LAN8700/LAN8700I can be configured to  
support either the Media Independent Interface (MII) or the Reduced Media Independent Interface  
(RMII).  
The LAN8700/LAN8700I is compliant with IEEE 802.3-2005 standards (MII Pins tolerant to 3.6V) and  
supports both IEEE 802.3-2005 compliant and vendor-specific register functions. It contains a full-  
duplex 10-BASE-T/100BASE-TX transceiver and supports 10-Mbps (10BASE-T) operation on  
Category 3 and Category 5 unshielded twisted-pair cable, and 100-Mbps (100BASE-TX) operation on  
Category 5 unshielded twisted-pair cable.  
10/100  
Magnetics  
Ethernet  
Media  
Access  
Controller  
(MAC)  
SMSC  
LAN8700/  
LAN8700I  
LEDS/GPIO  
MII /RMII  
or SOC  
25 MHz (MII) or 50MHz (RMIII)  
Crystal or External Clock  
Figure 1.1 LAN8700/LAN8700I System Block Diagram  
Hubs and switches with multiple integrated MACs and external PHYs can have a large pin count due  
to the high number of pins needed for each MII interface. An increasing pin count causes increasing  
cost.  
The RMII interface is intended for use on Switch based ASICs or other embedded solutions requiring  
minimal pincount for ethernet connectivity. RMII requires only 6 pins for each MAC to PHY interface  
plus one common reference clock. The MII requires 16 pins for each MAC to PHY interface.  
The SMSC LAN8700/LAN8700I is capable of running in RMII mode. Please contact your SMSC sales  
representative for the latest RMII specification.  
The LAN8700/LAN8700I referenced throughout this document applies to both the commercial  
temperature and industrial temperature components. The LAN8700I refers to only the industrial  
temperature component.  
Revision 0.9 (08-17-06)  
8
SMSC LAN8700/LAN8700I  
DATASHEET  
TM  
±15kV ESD Protected MII/RMII Fast-Ethernet PHY with HP Auto-MDIX & SMSC flexPWR in a Small Footprint  
Datasheet  
MODE0  
HP Auto-MDIX  
Auto-  
Negotiation  
10M Tx  
Logic  
10M  
Transmitter  
MODE1  
MODE2  
MODE Control  
SMI  
TXP / TXN  
RXP / RXN  
Transmit Section  
Management  
Control  
nRST  
MII  
100M Tx  
Logic  
100M  
Transmitter  
MDIX  
Control  
TXD[0..3]  
TX_EN  
TX_ER  
TX_CLK  
XTAL1  
XTAL2  
PLL  
100M Rx  
Logic  
DSP System:  
Analog-to-  
Digital  
Clock  
Data Recovery  
Equalizer  
nINT  
Interrupt  
Generator  
RXD[0..3]  
RX_DV  
RX_ER  
RX_CLK  
PHY  
Address  
Latches  
100M PLL  
Receive Section  
PHYAD[0..4]  
SPEED100  
LINK  
ACTIVITY  
FDUPLEX  
10M Rx  
Logic  
Squelch &  
Filters  
CRS  
COL/CRS_DV  
LED Circuitry  
MDC  
MDIO  
10M PLL  
Central  
Bias  
Figure 1.2 LAN8700/LAN8700I Architectural Overview  
SMSC LAN8700/LAN8700I  
9
Revision 0.9 (08-17-06)  
DATASHEET  
TM  
±15kV ESD Protected MII/RMII Fast-Ethernet PHY with HP Auto-MDIX & SMSC flexPWR in a Small Footprint  
Datasheet  
Chapter 2 Pin Configuration  
2.1  
Package Pin-out Diagram and Signal Table  
nINT/TX_ER/TXD4  
MDC  
1
2
3
4
5
6
7
8
9
27  
26  
25  
24  
23  
22  
21  
20  
19  
TXD3  
TXD2  
CRS/PHYAD4  
MDIO  
VDDIO  
LAN8700/LAN8700I  
MII/RMII Ethernet PHY  
TXD1  
nRST  
TXD0  
36 Pin QFN  
TX_EN  
TX_CLK  
RX_ER/RXD4  
RX_CLK/REGOFF  
RX_DV  
VDD33  
GND FLAG  
VDD_CORE  
SPEED100/PHYAD0  
Figure 2.1 Package Pinout (Top View)  
Revision 0.9 (08-17-06)  
SMSC LAN8700/LAN8700I  
DATA1S0HEET  
TM  
±15kV ESD Protected MII/RMII Fast-Ethernet PHY with HP Auto-MDIX & SMSC flexPWR in a Small Footprint  
Datasheet  
Table 2.1 LAN8700/LAN8700I 36-PIN QFN Pinout  
PIN NO.  
PIN NAME  
PIN NO.  
PIN NAME  
1
2
nINT/TX_ER/TXD4  
MDC  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
RX_DV  
RX_CLK/REGOFF  
RX_ER/RXD4  
TXCLK  
3
CRS/PHYAD4  
MDIO  
4
5
nRST  
TXD0  
6
TX_EN  
TXD1  
7
VDD33  
VDDIO  
8
VDD_CORE  
SPEED100/PHYAD0  
LINK/PHYAD1  
ACTIVITY/PHYAD2  
FDUPLEX/PHYAD3  
XTAL2  
TXD2  
9
TXD3  
10  
11  
12  
13  
14  
15  
16  
17  
18  
TXN  
TXP  
VDDA3.3  
RXN  
CLKIN/XTAL1  
RXD3/nINTSEL  
RXD2/MODE2  
RXD1/MODE1  
RXD0/MODE0  
RXP  
VDDA3.3  
EXRES1  
VDDA3.3  
COL/RMII/CRS_DV  
SMSC LAN8700/LAN8700I  
11  
Revision 0.9 (08-17-06)  
DATASHEET  
TM  
±15kV ESD Protected MII/RMII Fast-Ethernet PHY with HP Auto-MDIX & SMSC flexPWR in a Small Footprint  
Datasheet  
Chapter 3 Pin Description  
This chapter describes the signals on each pin. When a lower case “n” is used at the beginning of the  
signal name, it indicates that the signal is active low. For example, nRST indicates that the reset signal  
is active low.  
3.1  
I/O Signals  
I
Input. Digital LVCMOS levels.  
Output. Digital LVCMOS levels.  
O
I/O Input or Output. Digital LVCMOS levels.  
Note: The digital signals are not 5V tolerant.They are variable voltage from +1.6V to +3.6V.  
AI  
Input. Analog levels.  
AO Output. Analog levels.  
Table 3.1 MII Signals  
SIGNAL NAME  
TYPE  
DESCRIPTION  
TXD0  
I
I
I
Transmit Data 0: Bit 0 of the 4 data bits that are accepted by  
the PHY for transmission.  
TXD1  
TXD2  
Transmit Data 1: Bit 1 of the 4 data bits that are accepted by  
the PHY for transmission.  
Transmit Data 2: Bit 2 of the 4 data bits that are accepted by  
the PHY for transmission  
Note:  
This signal should be grounded in RMII Mode.  
TXD3  
I
Transmit Data 3: Bit 3 of the 4 data bits that are accepted by  
the PHY for transmission.  
Note:  
This signal should be grounded in RMII Mode  
nINT/  
TX_ER/  
TXD4  
I/O  
MII Transmit Error: When driven high, the 4B/5B encode  
process substitutes the Transmit Error code-group (/H/) for the  
encoded data word. This input is ignored in 10Base-T operation.  
MII Transmit Data 4: In Symbol Interface (5B Decoding) mode,  
this signal becomes the MII Transmit Data 4 line, the MSB of the  
5-bit symbol code-group.  
Notes:  
„ This signal is not used in RMII Mode.  
„ This signal is mux’d with nINT  
„ See Section 4.10, "nINT/TX_ER/TXD4 Strapping," on page 30  
for additional information on configuration/strapping options.  
TX_EN  
I
Transmit Enable: Indicates that valid data is presented on the  
TXD[3:0] signals, for transmission. In RMII Mode, only TXD[1:0]  
have valid data.  
TX_CLK  
O
Transmit Clock: 25MHz in 100Base-TX mode. 2.5MHz in  
10Base-T mode.  
Note:  
This signal is not used in RMII Mode  
Revision 0.9 (08-17-06)  
SMSC LAN8700/LAN8700I  
DATA1S2HEET  
TM  
±15kV ESD Protected MII/RMII Fast-Ethernet PHY with HP Auto-MDIX & SMSC flexPWR in a Small Footprint  
Datasheet  
Table 3.1 MII Signals (continued)  
SIGNAL NAME  
TYPE  
DESCRIPTION  
RXD0/  
MODE0  
I/O  
Receive Data 0: Bit 0 of the 4 data bits that are sent by the PHY  
in the receive path.  
PHY Operating Mode Bit 0: set the default MODE of the PHY.  
Note:  
See Section 5.4.9.2, "Mode Bus – MODE[2:0]," on  
page 51, for the MODE options  
RXD1/  
MODE1  
I/O  
I/O  
Receive Data 1: Bit 1 of the 4 data bits that are sent by the PHY  
in the receive path.  
PHY Operating Mode Bit 1: set the default MODE of the PHY.  
Note:  
See Section 5.4.9.2, "Mode Bus – MODE[2:0]," on  
page 51, for the MODE options.  
RXD2/  
MODE2  
Receive Data 2: Bit 2 of the 4 data bits that are sent by the PHY  
in the receive path.  
PHY Operating Mode Bit 2: set the default MODE of the PHY.  
Notes:  
„ RXD2 is not used in RMII Mode.  
„ See Section 5.4.9.2, "Mode Bus – MODE[2:0]," on page 51, for  
the MODE options.  
RXD3/  
nINTSEL  
I/O  
Receive Data 3: Bit 3 of the 4 data bits that are sent by the PHY  
in the receive path.  
nINTSEL: On power-up or external reset, the mode of the  
nINT/TXER/TXD4 pin is selected.  
„ When RXD3/nINTSEL is floated or pulled to VDDIO, nINT is  
selected for operation on pin nINT/TXER/TXD4 (default).  
„ When RXD3/nINTSEL is pulled low to VSS through a resistor,  
(see Table 4.3, “Boot Strapping Configuration Resistors,” on  
page 32), TXER/TXD4 is selected for operation on pin  
nINT/TXER/TXD4.  
Notes:  
„ RXD3 is not used in RMII Mode  
„ If the nINT/TXER/TXD4 pin is configured for nINT mode,  
then a pull-up resistor is needed to VDDIO on the  
nINT/TXER/TXD4 pin. see Table 4.3, “Boot Strapping  
Configuration Resistors,” on page 32.  
„ See Section 4.10, "nINT/TX_ER/TXD4 Strapping," on page 30  
for additional information on configuration/strapping options.  
RX_ER/  
RXD4/  
O
Receive Error: Asserted to indicate that an error was detected  
somewhere in the frame presently being transferred from the  
PHY.  
MII Receive Data 4: In Symbol Interface (5B Decoding) mode,  
this signal is the MII Receive Data 4 signal, the MSB of the  
received 5-bit symbol code-group. Unless configured in this  
mode, the pin functions as RX_ER.  
Note:  
The RX_ER signal is optional in RMII Mode.  
RX_DV  
O
Receive Data Valid: Indicates that recovered and decoded data  
nibbles are being presented on RXD[3:0].  
Note:  
This signal is not used in RMII Mode.  
SMSC LAN8700/LAN8700I  
Revision 0.9 (08-17-06)  
DATA1S3HEET  
TM  
±15kV ESD Protected MII/RMII Fast-Ethernet PHY with HP Auto-MDIX & SMSC flexPWR in a Small Footprint  
Datasheet  
Table 3.1 MII Signals (continued)  
SIGNAL NAME  
TYPE  
DESCRIPTION  
RX_CLK/  
REGOFF  
O
Receive Clock: 25MHz in 100Base-TX mode. 2.5MHz in  
10Base-T mode.  
Note:  
This signal is not used in RMII Mode  
Regulator Off: Pulled to VDDIO through a resistor (see  
Table 4.3, “Boot Strapping Configuration Resistors,” on page 32)  
at VDDIO and VDD power up event, will latch the internal 1.8v  
regulator off.  
COL/  
RMII/  
I/O  
MII Collision Detect: Asserted to indicate detection of collision  
condition.  
CRS_DV  
RMII CRS_DV (Carrier Sense/Receive Data Valid) Asserted to  
indicate when the receive medium is non-idle. When a 10BT  
packet is received, CRS_DV is asserted, but RXD[1:0] is held  
low until the SFD byte (10101011) is received. In 10BT, half-  
duplex mode, transmitted data is not looped back onto the  
receive data pins, per the RMII standard.  
RMII – MII/RMII mode selection is latched on the rising edge of  
the internal reset (nreset) based on the following strapping:  
„ Float this pin for MII mode or pull-high with an external resistor  
to VDDIO (see Table 4.3, “Boot Strapping Configuration  
Resistors,” on page 32) to set the device in RMII mode.  
„ See Section 4.6.3, "MII vs. RMII Configuration," on page 26 for  
more details.  
CRS/  
O
Carrier Sense: Indicates detection of carrier.  
PHYAD4  
Note:  
This signal is mux’d with PHYAD4  
Table 3.2 LED Signals  
SIGNAL NAME  
TYPE  
DESCRIPTION  
SPEED100/  
PHYAD0  
I/O  
LED1 – SPEED100 indication. Active indicates that the selected  
speed is 100Mbps. Inactive indicates that the selected speed is  
10Mbps.  
Note:  
This signal is mux’d with PHYAD0  
LINK/  
PHYAD1  
I/O  
I/O  
I/O  
LED2 – LINK ON indication. Active indicates that the Link  
(100Base-TX or 10Base-T) is on.  
Note:  
This signal is mux’d with PHYAD1  
ACTIVITY/  
PHYAD2  
LED3 – ACTIVITY indication. Active indicates that there is  
Carrier sense (CRS) from the active PMD.  
Note:  
This signal is mux’d with PHYAD2  
FDUPLEX/  
PHYAD3  
LED4 – DUPLEX indication. Active indicates that the PHY is in  
full-duplex mode.  
Note:  
This signal is mux’d with PHYAD3  
Revision 0.9 (08-17-06)  
SMSC LAN8700/LAN8700I  
DATA1S4HEET  
TM  
±15kV ESD Protected MII/RMII Fast-Ethernet PHY with HP Auto-MDIX & SMSC flexPWR in a Small Footprint  
Datasheet  
Table 3.3 Management Signals  
SIGNAL NAME  
TYPE  
DESCRIPTION  
MDIO  
I/O  
Management Data Input/OUTPUT: Serial management data  
input/output.  
MDC  
I
Management Clock: Serial management clock.  
Table 3.4 Boot Strap Configuration Inputs (Note 3.1)  
SIGNAL NAME  
TYPE  
DESCRIPTION  
CRS/  
PHYAD4  
I/O  
PHY Address Bit 4: set the default address of the PHY. This  
signal is mux’d with CRS  
Note:  
PHY Address Bit 3: set the default address of the PHY.  
Note: This signal is mux’d with FDUPLEX  
PHY Address Bit 2: set the default address of the PHY.  
Note: This signal is mux’d with ACTIVITY  
PHY Address Bit 1: set the default address of the PHY.  
Note: This signal is mux’d with LINK  
PHY Address Bit 0: set the default address of the PHY.  
Note: This signal is mux’d with SPEED100  
This signal is mux’d with CRS  
FDUPLEX/  
PHYAD3  
I/O  
I/O  
I/O  
I/O  
I/O  
ACTIVITY/  
PHYAD2  
LINK/  
PHYAD1  
SPEED100/  
PHYAD0  
RXD2/  
MODE2  
PHY Operating Mode Bit 2: set the default MODE of the PHY.  
See Section 5.4.9.2, "Mode Bus – MODE[2:0]," on page 51, for  
the MODE options.  
Note:  
This signal is mux’d with RXD2  
RXD1/  
MODE1  
I/O  
I/O  
I/O  
PHY Operating Mode Bit 1: set the default MODE of the PHY.  
See Section 5.4.9.2, "Mode Bus – MODE[2:0]," on page 51, for  
the MODE options.  
Note:  
This signal is mux’d with RXD1  
RXD0/  
MODE0  
PHY Operating Mode Bit 0: set the default MODE of the PHY.  
See Section 5.4.9.2, "Mode Bus – MODE[2:0]," on page 51, for  
the MODE options.  
Note:  
This signal is mux’d with RXD0  
RX_CLK/  
REGOFF  
Internal Regulator off: disable the internal +1.8v regulator.  
This signal is mux’d with RX_CLK.  
„ Float to enable the internal +1.8v regulator.  
„ Pull up with a resistor (see Table 4.3, “Boot Strapping  
Configuration Resistors,” on page 32) to VDDIO to disable the  
internal regulator.  
COL/  
RMII/  
CRS_DV  
I/O  
Digital Communication Mode: set the digital communications  
mode of the PHY to RMII or MII. This signal is muxed with the  
Collision signal (MII mode) and Carrier Sense/ receive Data Valid  
(RMII mode)  
„ Float for MII mode.  
„ Pull up with a resistor to VDDIO for RMII mode (see Table 4.3,  
“Boot Strapping Configuration Resistors,” on page 32) .  
SMSC LAN8700/LAN8700I  
Revision 0.9 (08-17-06)  
DATA1S5HEET  
TM  
±15kV ESD Protected MII/RMII Fast-Ethernet PHY with HP Auto-MDIX & SMSC flexPWR in a Small Footprint  
Datasheet  
Table 3.4 Boot Strap Configuration Inputs (Note 3.1)  
SIGNAL NAME  
TYPE  
DESCRIPTION  
RXD3/  
nINTSEL  
I/O  
nINT pin mode select: set the mode of pin 1.  
„ Default, left floating pin 1 is nINT, active low interrupt output.  
Notes:For nINT mode, tie nINT/TXD4/TXER to VDDIO with a  
resistor (see Table 4.3, “Boot Strapping Configuration Resistors,”  
on page 32).  
„ Pulled to VSS by a resistor, (see Table 4.3, “Boot Strapping  
Configuration Resistors,” on page 32) pin 1 is TX_ER/TXD4,  
Transmit Error or Transmit data 4 (5B mode).  
Notes:For TXD4/TXER mode, do not tie nINT/TXD4/TXER to  
VDDIO or Ground.  
Note 3.1 On nRST transition high, the PHY latches the state of the configuration pins in this table.  
Table 3.5 General Signals  
SIGNAL NAME  
TYPE  
DESCRIPTION  
nINT/  
TX_ER/  
TXD4  
I/O  
LAN Interrupt – Active Low output. Place an external resistor  
(see Table 4.3, “Boot Strapping Configuration Resistors,” on  
page 32) pull-up to VCC 3.3V.  
Notes:  
„ This signal is mux’d with TXER/TXD4  
„ See Section 4.10, "nINT/TX_ER/TXD4 Strapping," on page 30  
for additional details on Strapping options.  
nRST  
I
External Reset – input of the system reset. This signal is active  
LOW.  
CLKIN/  
XTAL1  
I/O  
Clock Input – 25 Mhz or 50 MHz external clock or crystal input.  
In MII mode, this signal is the 25 MHz reference input clock  
In RMII mode, this signal is the 50 MHz reference input clock  
which is typically also driven to the RMII compliant Ethernet MAC  
clock input.  
Note:  
See Section 4.10, "nINT/TX_ER/TXD4 Strapping," on  
page 30 for additional details on Strapping options.  
XTAL2  
O
Clock Output – 25 MHz crystal output.  
Note:  
Float this pin if using an external clock being driven  
through CLKIN/XTAL1  
Revision 0.9 (08-17-06)  
SMSC LAN8700/LAN8700I  
DATA1S6HEET  
TM  
±15kV ESD Protected MII/RMII Fast-Ethernet PHY with HP Auto-MDIX & SMSC flexPWR in a Small Footprint  
Datasheet  
Table 3.6 10/100 Line Interface  
SIGNAL NAME  
TYPE  
DESCRIPTION  
TXP  
AO  
Transmit Data Positive: 100Base-TX or 10Base-T differential  
transmit outputs to magnetics.  
TXN  
RXP  
RXN  
AO  
AI  
Transmit Data Negative: 100Base-TX or 10Base-T differential  
transmit outputs to magnetics.  
Receive Data Positive: 100Base-TX or 10Base-T differential  
receive inputs from magnetics.  
AI  
Receive Data Negative: 100Base-TX or 10Base-T differential  
receive inputs from magnetics.  
Table 3.7 Analog References  
TYPE  
AI  
SIGNAL NAME  
DESCRIPTION  
EXRES1  
Connects to reference resistor of value 12.4K-Ohm, 1%  
connected as described in the Analog Layout Guidelines.  
Table 3.8 Power Signals  
SIGNAL NAME  
TYPE  
DESCRIPTION  
+1.6V to +3.6V Variable I/O Pad Power  
VDDIO  
POWER  
VDD33  
VDDA3.3  
POWER  
POWER  
POWER  
+3.3V Core Regulator Input.  
+3.3V Analog Power  
VDD_CORE  
+1.8V (Core voltage) - 1.8V regulator output for digital circuitry  
on chip. Place a 0.1uF capacitor near this pin and connect the  
capacitor from this pin to ground. In parallel, place a 4.7uF +/-  
20% low ESR capacitor near this pin and connect the capacitor  
from this pin to ground. X5R or X7R ceramic capacitors are  
recommended since they exhibit an ESR lower than 0.1ohm at  
frequencies greater than 10kHz.  
Exposed Ground Flag. The flag must be connected to the  
ground plane with an array of vias as described in the Analog  
Layout Guidelines  
VSS  
POWER  
SMSC LAN8700/LAN8700I  
Revision 0.9 (08-17-06)  
DATA1S7HEET  
TM  
±15kV ESD Protected MII/RMII Fast-Ethernet PHY with HP Auto-MDIX & SMSC flexPWR in a Small Footprint  
Datasheet  
Chapter 4 Architecture Details  
4.1  
Top Level Functional Architecture  
Functionally, the PHY can be divided into the following sections:  
„
„
„
„
„
100Base-TX transmit and receive  
10Base-T transmit and receive  
MII or RMII interface to the controller  
Auto-negotiation to automatically determine the best speed and duplex possible  
Management Control to read status registers and write control registers  
TX_CLK  
(for M II only)  
100M  
PLL  
MAC  
Ext Ref_CLK (for RMII only)  
MII 25 M hz by 4 bits  
4B/5B  
Encoder  
Scram bler  
and PISO  
25MHz  
by 4 bits  
25M Hz by  
5 bits  
or  
MII  
RM II 50Mhz by 2 bits  
125 Mbps Serial  
NRZI  
Converter  
MLT-3  
Converter  
Tx  
Driver  
NRZI  
M LT-3  
MLT-3  
Magnetics  
MLT-3  
MLT-3  
RJ45  
CAT-5  
Figure 4.1 100Base-TX Data Path  
4.2  
100Base-TX Transmit  
The data path of the 100Base-TX is shown in Figure 4.1. Each major block is explained below.  
4.2.1  
100M Transmit Data Across the MII/RMII Interface  
For MII, the MAC controller drives the transmit data onto the TXD bus and asserts TX_EN to indicate  
valid data. The data is latched by the PHY’s MII block on the rising edge of TX_CLK. The data is in  
the form of 4-bit wide 25MHz data.  
The MAC controller drives the transmit data onto the TXD bus and asserts TX_EN to indicate valid  
data. The data is latched by the PHY’s MII block on the rising edge of REF_CLK. The data is in the  
form of 2-bit wide 50MHz data.  
4.2.2  
4B/5B Encoding  
The transmit data passes from the MII block to the 4B/5B encoder. This block encodes the data from  
4-bit nibbles to 5-bit symbols (known as “code-groups”) according to Table 4.1. Each 4-bit data-nibble  
is mapped to 16 of the 32 possible code-groups. The remaining 16 code-groups are either used for  
control information or are not valid.  
Revision 0.9 (08-17-06)  
SMSC LAN8700/LAN8700I  
DATA1S8HEET  
 
TM  
±15kV ESD Protected MII/RMII Fast-Ethernet PHY with HP Auto-MDIX & SMSC flexPWR in a Small Footprint  
Datasheet  
The first 16 code-groups are referred to by the hexadecimal values of their corresponding data nibbles,  
0 through F. The remaining code-groups are given letter designations with slashes on either side. For  
example, an IDLE code-group is /I/, a transmit error code-group is /H/, etc.  
The encoding process may be bypassed by clearing bit 6 of register 31. When the encoding is  
th  
bypassed the 5 transmit data bit is equivalent to TX_ER.  
Note that encoding can be bypassed only when the MAC interface is configured to operate in MII  
mode.  
Table 4.1 4B/5B Code Table  
CODE  
GROUP  
RECEIVER  
INTERPRETATION  
TRANSMITTER  
INTERPRETATION  
SYM  
11110  
01001  
10100  
10101  
01010  
01011  
01110  
01111  
10010  
10011  
10110  
10111  
11010  
11011  
11100  
11101  
11111  
11000  
0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F
I
0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
DATA  
0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
DATA  
IDLE  
Sent after /T/R until TX_EN  
Sent for rising TX_EN  
J
First nibble of SSD, translated to “0101”  
following IDLE, else RX_ER  
10001  
01101  
K
T
Second nibble of SSD, translated to  
“0101” following J, else RX_ER  
Sent for rising TX_EN  
Sent for falling TX_EN  
First nibble of ESD, causes de-assertion  
of CRS if followed by /R/, else assertion  
of RX_ER  
00111  
R
Second nibble of ESD, causes  
deassertion of CRS if following /T/, else  
assertion of RX_ER  
Sent for falling TX_EN  
00100  
00110  
11001  
H
V
V
Transmit Error Symbol  
Sent for rising TX_ER  
INVALID  
INVALID, RX_ER if during RX_DV  
INVALID, RX_ER if during RX_DV  
INVALID  
SMSC LAN8700/LAN8700I  
Revision 0.9 (08-17-06)  
DATA1S9HEET  
TM  
±15kV ESD Protected MII/RMII Fast-Ethernet PHY with HP Auto-MDIX & SMSC flexPWR in a Small Footprint  
Datasheet  
Table 4.1 4B/5B Code Table (continued)  
CODE  
GROUP  
RECEIVER  
INTERPRETATION  
TRANSMITTER  
INTERPRETATION  
SYM  
00000  
00001  
00010  
00011  
00101  
01000  
01100  
10000  
V
V
V
V
V
V
V
V
INVALID, RX_ER if during RX_DV  
INVALID, RX_ER if during RX_DV  
INVALID, RX_ER if during RX_DV  
INVALID, RX_ER if during RX_DV  
INVALID, RX_ER if during RX_DV  
INVALID, RX_ER if during RX_DV  
INVALID, RX_ER if during RX_DV  
INVALID, RX_ER if during RX_DV  
INVALID  
INVALID  
INVALID  
INVALID  
INVALID  
INVALID  
INVALID  
INVALID  
4.2.3  
Scrambling  
Repeated data patterns (especially the IDLE code-group) can have power spectral densities with large  
narrow-band peaks. Scrambling the data helps eliminate these peaks and spread the signal power  
more uniformly over the entire channel bandwidth. This uniform spectral density is required by FCC  
regulations to prevent excessive EMI from being radiated by the physical wiring.  
The seed for the scrambler is generated from the PHY address, PHYAD[4:0], ensuring that in multiple-  
PHY applications, such as repeaters or switches, each PHY will have its own scrambler sequence.  
The scrambler also performs the Parallel In Serial Out conversion (PISO) of the data.  
4.2.4  
4.2.5  
NRZI and MLT3 Encoding  
The scrambler block passes the 5-bit wide parallel data to the NRZI converter where it becomes a  
serial 125MHz NRZI data stream. The NRZI is encoded to MLT-3. MLT3 is a tri-level code where a  
change in the logic level represents a code bit “1” and the logic output remaining at the same level  
represents a code bit “0”.  
100M Transmit Driver  
The MLT3 data is then passed to the analog transmitter, which drives the differential MLT-3 signal, on  
outputs TXP and TXN, to the twisted pair media across a 1:1 ratio isolation transformer. The 10Base-  
T and 100Base-TX signals pass through the same transformer so that common “magnetics” can be  
used for both. The transmitter drives into the 100Ω impedance of the CAT-5 cable. Cable termination  
and impedance matching require external components.  
4.2.6  
100M Phase Lock Loop (PLL)  
The 100M PLL locks onto reference clock and generates the 125MHz clock used to drive the 125 MHz  
logic and the 100Base-Tx Transmitter.  
Revision 0.9 (08-17-06)  
SMSC LAN8700/LAN8700I  
DATA2S0HEET  
TM  
±15kV ESD Protected MII/RMII Fast-Ethernet PHY with HP Auto-MDIX & SMSC flexPWR in a Small Footprint  
Datasheet  
RX_CLK  
(for MII only)  
100M  
PLL  
MAC  
Ext Ref_CLK (for RMII only)  
MII 25Mhz by 4 bits  
25MHz  
by 4 bits  
4B/5B  
Decoder  
Descrambler  
and SIPO  
25MHz by  
5 bits  
or  
MII/RMII  
RMII 50Mhz by 2 bits  
125 Mbps Serial  
MLT-3  
DSP: Timing  
recovery, Equalizer  
and BLW Correction  
MLT-3  
Converter  
NRZI  
Converter  
NRZI  
A/D  
Converter  
MLT-3  
MLT-3  
MLT-3  
Magnetics  
RJ45  
CAT-5  
6 bit Data  
Figure 4.2 Receive Data Path  
4.3  
100Base-TX Receive  
The receive data path is shown in Figure 4.2. Detailed descriptions are given below.  
4.3.1  
100M Receive Input  
The MLT-3 from the cable is fed into the PHY (on inputs RXP and RXN) via a 1:1 ratio transformer.  
The ADC samples the incoming differential signal at a rate of 125M samples per second. Using a 64-  
level quanitizer it generates 6 digital bits to represent each sample. The DSP adjusts the gain of the  
ADC according to the observed signal levels such that the full dynamic range of the ADC can be used.  
4.3.2  
Equalizer, Baseline Wander Correction and Clock and Data Recovery  
The 6 bits from the ADC are fed into the DSP block. The equalizer in the DSP section compensates  
for phase and amplitude distortion caused by the physical channel consisting of magnetics, connectors,  
and CAT- 5 cable. The equalizer can restore the signal for any good-quality CAT-5 cable between 1m  
and 150m.  
If the DC content of the signal is such that the low-frequency components fall below the low frequency  
pole of the isolation transformer, then the droop characteristics of the transformer will become  
significant and Baseline Wander (BLW) on the received signal will result. To prevent corruption of the  
received data, the PHY corrects for BLW and can receive the ANSI X3.263-1995 FDDI TP-PMD  
defined “killer packet” with no bit errors.  
The 100M PLL generates multiple phases of the 125MHz clock. A multiplexer, controlled by the timing  
unit of the DSP, selects the optimum phase for sampling the data. This is used as the received  
recovered clock. This clock is used to extract the serial data from the received signal.  
4.3.3  
NRZI and MLT-3 Decoding  
The DSP generates the MLT-3 recovered levels that are fed to the MLT-3 converter. The MLT-3 is then  
converted to an NRZI data stream.  
SMSC LAN8700/LAN8700I  
Revision 0.9 (08-17-06)  
DATA2S1HEET  
 
TM  
±15kV ESD Protected MII/RMII Fast-Ethernet PHY with HP Auto-MDIX & SMSC flexPWR in a Small Footprint  
Datasheet  
4.3.4  
Descrambling  
The descrambler performs an inverse function to the scrambler in the transmitter and also performs  
the Serial In Parallel Out (SIPO) conversion of the data.  
During reception of IDLE (/I/) symbols. the descrambler synchronizes its descrambler key to the  
incoming stream. Once synchronization is achieved, the descrambler locks on this key and is able to  
descramble incoming data.  
Special logic in the descrambler ensures synchronization with the remote PHY by searching for IDLE  
symbols within a window of 4000 bytes (40us). This window ensures that a maximum packet size of  
1514 bytes, allowed by the IEEE 802.3 standard, can be received with no interference. If no IDLE-  
symbols are detected within this time-period, receive operation is aborted and the descrambler re-starts  
the synchronization process.  
The descrambler can be bypassed by setting bit 0 of register 31.  
4.3.5  
4.3.6  
Alignment  
The de-scrambled signal is then aligned into 5-bit code-groups by recognizing the /J/K/ Start-of-Stream  
Delimiter (SSD) pair at the start of a packet. Once the code-word alignment is determined, it is stored  
and utilized until the next start of frame.  
5B/4B Decoding  
The 5-bit code-groups are translated into 4-bit data nibbles according to the 4B/5B table. The  
translated data is presented on the RXD[3:0] signal lines. The SSD, /J/K/, is translated to “0101 0101”  
as the first 2 nibbles of the MAC preamble. Reception of the SSD causes the PHY to assert the RX_DV  
signal, indicating that valid data is available on the RXD bus. Successive valid code-groups are  
translated to data nibbles. Reception of either the End of Stream Delimiter (ESD) consisting of the /T/R/  
symbols, or at least two /I/ symbols causes the PHY to de-assert carrier sense and RX_DV.  
These symbols are not translated into data.  
The decoding process may be bypassed by clearing bit 6 of register 31. When the decoding is  
th  
bypassed the 5 receive data bit is driven out on RX_ER/RXD4. Decoding may be bypassed only  
when the MAC interface is in MII mode.  
4.3.7  
Receive Data Valid Signal  
The Receive Data Valid signal (RX_DV) indicates that recovered and decoded nibbles are being  
presented on the RXD[3:0] outputs synchronous to RX_CLK. RX_DV becomes active after the /J/K/  
delimiter has been recognized and RXD is aligned to nibble boundaries. It remains active until either  
the /T/R/ delimiter is recognized or link test indicates failure or SIGDET becomes false.  
RX_DV is asserted when the first nibble of translated /J/K/ is ready for transfer over the Media  
Independent Interface (MII mode).  
J
K
5
5
5
D
Idle  
data data data data  
T
R
CLEAR-TEXT  
RX_CLK  
RX_DV  
5
5
5
5
5
D
data data data data  
RXD  
Figure 4.3 Relationship Between Received Data and Specific MII Signals  
Revision 0.9 (08-17-06)  
SMSC LAN8700/LAN8700I  
DATA2S2HEET  
TM  
±15kV ESD Protected MII/RMII Fast-Ethernet PHY with HP Auto-MDIX & SMSC flexPWR in a Small Footprint  
Datasheet  
4.3.8  
Receiver Errors  
During a frame, unexpected code-groups are considered receive errors. Expected code groups are the  
DATA set (0 through F), and the /T/R/ (ESD) symbol pair. When a receive error occurs, the RX_ER  
signal is asserted and arbitrary data is driven onto the RXD[3:0] lines. Should an error be detected  
during the time that the /J/K/ delimiter is being decoded (bad SSD error), RX_ER is asserted true and  
the value ‘1110’ is driven onto the RXD[3:0] lines. Note that the Valid Data signal is not yet asserted  
when the bad SSD error occurs.  
4.3.9  
100M Receive Data Across the MII/RMII Interface  
In MII mode, the 4-bit data nibbles are sent to the MII block. These data nibbles are clocked to the  
controller at a rate of 25MHz. The controller samples the data on the rising edge of RX_CLK. To ensure  
that the setup and hold requirements are met, the nibbles are clocked out of the PHY on the falling  
edge of RX_CLK. RX_CLK is the 25MHz output clock for the MII bus. It is recovered from the received  
data to clock the RXD bus. If there is no received signal, it is derived from the system reference clock  
(CLKIN).  
When tracking the received data, RX_CLK has a maximum jitter of 0.8ns (provided that the jitter of the  
input clock, CLKIN, is below 100ps).  
In RMII mode, the 2-bit data nibbles are sent to the RMII block. These data nibbles are clocked to the  
controller at a rate of 50MHz. The controller samples the data on the rising edge of CLKIN/XTAL1  
(REF_CLK). To ensure that the setup and hold requirements are met, the nibbles are clocked out of  
the PHY on the falling edge of CLKIN/XTAL1 (REF_CLK).  
4.4  
10Base-T Transmit  
Data to be transmitted comes from the MAC layer controller. The 10Base-T transmitter receives 4-bit  
nibbles from the MII at a rate of 2.5MHz and converts them to a 10Mbps serial data stream. The data  
stream is then Manchester-encoded and sent to the analog transmitter, which drives a signal onto the  
twisted pair via the external magnetics.  
The 10M transmitter uses the following blocks:  
„
„
„
„
MII (digital)  
TX 10M (digital)  
10M Transmitter (analog)  
10M PLL (analog)  
4.4.1  
10M Transmit Data Across the MII/RMII Interface  
The MAC controller drives the transmit data onto the TXD BUS. For MII, when the controller has driven  
TX_EN high to indicate valid data, the data is latched by the MII block on the rising edge of TX_CLK.  
The data is in the form of 4-bit wide 2.5MHz data.  
In order to comply with legacy 10Base-T MAC/Controllers, in Half-duplex mode the PHY loops back  
the transmitted data, on the receive path. This does not confuse the MAC/Controller since the COL  
signal is not asserted during this time. The PHY also supports the SQE (Heartbeat) signal. See Section  
5.4.2, "Collision Detect," on page 49, for more details.  
For RMII, TXD[1:0] shall transition synchronously with respect to REF_CLK. When TX_EN is asserted,  
TXD[1:0] are accepted for transmission by the LAN8700/LAN8700I. TXD[1:0] shall be “00” to indicate  
idle when TX_EN is deasserted. Values of TXD[1:0] other than “00” when TX_EN is deasserted are  
reserved for out-of-band signalling (to be defined). Values other than “00” on TXD[1:0] while TX_EN is  
deasserted shall be ignored by the LAN8700/LAN8700I.TXD[1:0] shall provide valid data for each  
REF_CLK period while TX_EN is asserted.  
SMSC LAN8700/LAN8700I  
Revision 0.9 (08-17-06)  
DATA2S3HEET  
TM  
±15kV ESD Protected MII/RMII Fast-Ethernet PHY with HP Auto-MDIX & SMSC flexPWR in a Small Footprint  
Datasheet  
4.4.2  
Manchester Encoding  
The 4-bit wide data is sent to the TX10M block. The nibbles are converted to a 10Mbps serial NRZI  
data stream. The 10M PLL locks onto the external clock or internal oscillator and produces a 20MHz  
clock. This is used to Manchester encode the NRZ data stream. When no data is being transmitted  
(TX_EN is low), the TX10M block outputs Normal Link Pulses (NLPs) to maintain communications with  
the remote link partner.  
4.4.3  
10M Transmit Drivers  
The Manchester encoded data is sent to the analog transmitter where it is shaped and filtered before  
being driven out as a differential signal across the TXP and TXN outputs.  
4.5  
10Base-T Receive  
The 10Base-T receiver gets the Manchester- encoded analog signal from the cable via the magnetics.  
It recovers the receive clock from the signal and uses this clock to recover the NRZI data stream. This  
10M serial data is converted to 4-bit data nibbles which are passed to the controller across the MII at  
a rate of 2.5MHz.  
This 10M receiver uses the following blocks:  
„
„
„
„
Filter and SQUELCH (analog)  
10M PLL (analog)  
RX 10M (digital)  
MII (digital)  
4.5.1  
4.5.2  
10M Receive Input and Squelch  
The Manchester signal from the cable is fed into the PHY (on inputs RXP and RXN) via 1:1 ratio  
magnetics. It is first filtered to reduce any out-of-band noise. It then passes through a SQUELCH  
circuit. The SQUELCH is a set of amplitude and timing comparators that normally reject differential  
voltage levels below 300mV and detect and recognize differential voltages above 585mV.  
Manchester Decoding  
The output of the SQUELCH goes to the RX10M block where it is validated as Manchester encoded  
data. The polarity of the signal is also checked. If the polarity is reversed (local RXP is connected to  
RXN of the remote partner and vice versa), then this is identified and corrected. The reversed condition  
is indicated by the flag “XPOL“, bit 4 in register 27. The 10M PLL is locked onto the received  
Manchester signal and from this, generates the received 20MHz clock. Using this clock, the  
Manchester encoded data is extracted and converted to a 10MHz NRZI data stream. It is then  
converted from serial to 4-bit wide parallel data.  
The RX10M block also detects valid 10Base-T IDLE signals - Normal Link Pulses (NLPs) - to maintain  
the link.  
4.5.3  
10M Receive Data Across the MII/RMII Interface  
For MII, the 4 bit data nibbles are sent to the MII block. In MII mode, these data nibbles are valid on  
the rising edge of the 2.5 MHz RX_CLK.  
For RMII, the 2bit data nibbles are sent to the RMII block. In RMII mode, these data nibbles are valid  
on the rising edge of the RMII REF_CLK.  
Revision 0.9 (08-17-06)  
SMSC LAN8700/LAN8700I  
DATA2S4HEET  
TM  
±15kV ESD Protected MII/RMII Fast-Ethernet PHY with HP Auto-MDIX & SMSC flexPWR in a Small Footprint  
Datasheet  
4.5.4  
Jabber Detection  
Jabber is a condition in which a station transmits for a period of time longer than the maximum  
permissible packet length, usually due to a fault condition, that results in holding the TX_EN input for  
a long period. Special logic is used to detect the jabber state and abort the transmission to the line,  
within 45ms. Once TX_EN is deasserted, the logic resets the jabber condition.  
As shown in Table 5.31, bit 1.1 indicates that a jabber condition was detected.  
4.6  
MAC Interface  
The MII/RMII block is responsible for the communication with the controller. Special sets of hand-shake  
signals are used to indicate that valid received/transmitted data is present on the 4 bit receive/transmit  
bus.  
The device must be configured in MII or RMII mode. This is done by specific pin strapping  
configurations.  
See Section 4.6.3, "MII vs. RMII Configuration," on page 26 for information on pin strapping and how  
the pins are mapped differently.  
4.6.1  
MII  
The MII includes 16 interface signals:  
„
„
„
„
„
„
„
„
„
„
transmit data - TXD[3:0]  
transmit strobe - TX_EN  
transmit clock - TX_CLK  
transmit error - TX_ER/TXD4  
receive data - RXD[3:0]  
receive strobe - RX_DV  
receive clock - RX_CLK  
receive error - RX_ER/RXD4  
collision indication - COL  
carrier sense - CRS  
In MII mode, on the transmit path, the PHY drives the transmit clock, TX_CLK, to the controller. The  
controller synchronizes the transmit data to the rising edge of TX_CLK. The controller drives TX_EN  
high to indicate valid transmit data. The controller drives TX_ER high when a transmit error is detected.  
On the receive path, the PHY drives both the receive data, RXD[3:0], and the RX_CLK signal. The  
controller clocks in the receive data on the rising edge of RX_CLK when the PHY drives RX_DV high.  
The PHY drives RX_ER high when a receive error is detected.  
4.6.2  
RMII  
The SMSC LAN8700/LAN8700I supports the low pin count Reduced Media Independent Interface  
(RMII) intended for use between Ethernet PHYs and Switch ASICs. Under IEEE 802.3, an MII  
comprised of 16 pins for data and control is defined. In devices incorporating many MACs or PHY  
interfaces such as switches, the number of pins can add significant cost as the port counts increase.  
The management interface (MDIO/MDC) is identical to MII. The RMII interface has the following  
characteristics:  
„
„
„
It is capable of supporting 10Mb/s and 100Mb/s data rates  
A single clock reference is sourced from the MAC to PHY (or from an external source)  
It provides independent 2 bit wide (di-bit) transmit and receive data paths  
SMSC LAN8700/LAN8700I  
Revision 0.9 (08-17-06)  
DATA2S5HEET  
TM  
±15kV ESD Protected MII/RMII Fast-Ethernet PHY with HP Auto-MDIX & SMSC flexPWR in a Small Footprint  
Datasheet  
„
It uses LVCMOS signal levels, compatible with common digital CMOS ASIC processes  
The RMII includes 6 interface signals with one of the signals being optional:  
„
„
„
„
„
„
transmit data - TXD[1:0]  
transmit strobe - TX_EN  
receive data - RXD[1:0]  
receive error - RX_ER (Optional)  
carrier sense - CRS_DV  
Reference Clock - CLKIN/XTAL1 (RMII references usually define this signal as REF_CLK)  
4.6.2.1  
Reference Clock  
The Reference Clock - CLKIN, is a continuous clock that provides the timing reference for CRS_DV,  
RXD[1:0], TX_EN, TXD[1:0], and RX_ER. The Reference Clock is sourced by the MAC or an external  
source. Switch implementations may choose to provide REF_CLK as an input or an output depending  
on whether they provide a REF_CLK output or rely on an external clock distribution device.  
The “Reference Clock” frequency must be 50 MHz +/- 50 ppm with a duty cycle between 35% and  
65% inclusive. The SMSC LAN8700/LAN8700I uses the “Reference Clock” as the network clock such  
that no buffering is required on the transmit data path. The SMSC LAN8700/LAN8700I will recover the  
clock from the incoming data stream, the receiver will account for differences between the local  
REF_CLK and the recovered clock through use of sufficient elasticity buffering. The elasticity buffer  
does not affect the Inter-Packet Gap (IPG) for received IPGs of 36 bits or greater. To tolerate the clock  
variations specified here for Ethernet MTUs, the elasticity buffer shall tolerate a minimum of +/-10 bits.  
4.6.2.2  
CRS_DV - Carrier Sense/Receive Data Valid  
The CRS_DV is asserted by the LAN8700/LAN8700I when the receive medium is non-idle. CRS_DV  
is asserted asynchronously on detection of carrier due to the criteria relevant to the operating mode.  
That is, in 10BASE-T mode, when squelch is passed or in 100BASE-X mode when 2 non-contiguous  
zeroes in 10 bits are detected, carrier is said to be detected.  
Loss of carrier shall result in the deassertion of CRS_DV synchronous to the cycle of REF_CLK which  
presents the first di-bit of a nibble onto RXD[1:0] (i.e. CRS_DV is deasserted only on nibble  
boundaries). If the LAN8700/LAN8700I has additional bits to be presented on RXD[1:0] following the  
initial deassertion of CRS_DV, then the LAN8700/LAN8700I shall assert CRS_DV on cycles of  
REF_CLK which present the second di-bit of each nibble and de-assert CRS_DV on cycles of  
REF_CLK which present the first di-bit of a nibble. The result is: Starting on nibble boundaries  
CRS_DV toggles at 25 MHz in 100Mb/s mode and 2.5 MHz in 10Mb/s mode when CRS ends before  
RX_DV (i.e. the FIFO still has bits to transfer when the carrier event ends.) Therefore, the MAC can  
accurately recover RX_DV and CRS.  
During a false carrier event, CRS_DV shall remain asserted for the duration of carrier activity. The data  
on RXD[1:0] is considered valid once CRS_DV is asserted. However, since the assertion of CRS_DV  
is asynchronous relative to REF_CLK, the data on RXD[1:0] shall be “00” until proper receive signal  
decoding takes place.  
4.6.3  
MII vs. RMII Configuration  
The LAN8700/LAN8700I must be configured to support the MII or RMII bus for connectivity to the  
MAC. This configuration is done through the GPO0/MII pin.  
MII or RMII mode selection is latched on the rising edge of the internal reset (nreset) based on the  
strapping of the GPO0/MII pin. To select MII mode, float the GPO0/MII pin. To select RMII mode, pull-  
high with an external resistor (see Table 4.3, “Boot Strapping Configuration Resistors,” on page 32) to  
VDDIO.  
Revision 0.9 (08-17-06)  
SMSC LAN8700/LAN8700I  
DATA2S6HEET  
TM  
±15kV ESD Protected MII/RMII Fast-Ethernet PHY with HP Auto-MDIX & SMSC flexPWR in a Small Footprint  
Datasheet  
Most of the MII and RMII pins are multiplexed. Table 4.2, "MII/RMII Signal Mapping", shown below,  
describes the relationship of the related device pins to what pins are used in MII and RMII mode.  
Table 4.2 MII/RMII Signal Mapping  
SIGNAL NAME  
MII MODE  
RMII MODE  
TXD0  
TXD1  
TXD0  
TXD1  
TXD0  
TXD1  
TX_EN  
TX_EN  
TX_EN  
RX_ER/  
RXD4  
RX_ER/  
RXD4/  
RX_ER  
Note 4.2  
COL/RMII/CRS_DV  
RXD0  
COL  
RXD0  
RXD1  
TXD2  
TXD3  
CRS_DV  
RXD0  
RXD1  
RXD1  
TXD2  
Note 4.1  
Note 4.1  
TXD3  
TX_ER/  
TXD4  
TX_ER/  
TXD4  
CRS  
RX_DV  
RXD2  
CRS  
RX_DV  
RXD2  
RXD3  
RXD3/  
nINTSEL  
TX_CLK  
RX_CLK  
TX_CLK  
RX_CLK  
CLKIN/XTAL1  
CLKIN/XTAL1  
REF_CLK  
Note 4.1 In RMII mode, this pin needs to tied to VSS.  
Note 4.2 The RX_ER signal is optional on the RMII bus. This signal is required by the PHY, but it  
is optional for the MAC. The MAC can choose to ignore or not use this signal.  
4.7  
Auto-negotiation  
The purpose of the Auto-negotiation function is to automatically configure the PHY to the optimum link  
parameters based on the capabilities of its link partner. Auto-negotiation is a mechanism for  
exchanging configuration information between two link-partners and automatically selecting the highest  
performance mode of operation supported by both sides. Auto-negotiation is fully defined in clause 28  
of the IEEE 802.3 specification.  
Once auto-negotiation has completed, information about the resolved link can be passed back to the  
controller via the Serial Management Interface (SMI). The results of the negotiation process are  
reflected in the Speed Indication bits in register 31, as well as the Link Partner Ability Register  
(Register 5).  
The auto-negotiation protocol is a purely physical layer activity and proceeds independently of the MAC  
controller.  
SMSC LAN8700/LAN8700I  
Revision 0.9 (08-17-06)  
DATA2S7HEET  
 
 
 
TM  
±15kV ESD Protected MII/RMII Fast-Ethernet PHY with HP Auto-MDIX & SMSC flexPWR in a Small Footprint  
Datasheet  
The advertised capabilities of the PHY are stored in register 4 of the SMI registers. The default  
advertised by the PHY is determined by user-defined on-chip signal options.  
The following blocks are activated during an Auto-negotiation session:  
„
„
„
„
„
„
„
Auto-negotiation (digital)  
100M ADC (analog)  
100M PLL (analog)  
100M equalizer/BLW/clock recovery (DSP)  
10M SQUELCH (analog)  
10M PLL (analog)  
10M Transmitter (analog)  
When enabled, auto-negotiation is started by the occurrence of one of the following events:  
„
„
„
„
„
Hardware reset  
Software reset  
Power-down reset  
Link status down  
Setting register 0, bit 9 high (auto-negotiation restart)  
On detection of one of these events, the PHY begins auto-negotiation by transmitting bursts of Fast  
Link Pulses (FLP). These are bursts of link pulses from the 10M transmitter. They are shaped as  
Normal Link Pulses and can pass uncorrupted down CAT-3 or CAT-5 cable. A Fast Link Pulse Burst  
consists of up to 33 pulses. The 17 odd-numbered pulses, which are always present, frame the FLP  
burst. The 16 even-numbered pulses, which may be present or absent, contain the data word being  
transmitted. Presence of a data pulse represents a “1”, while absence represents a “0”.  
The data transmitted by an FLP burst is known as a “Link Code Word.” These are defined fully in IEEE  
802.3 clause 28. In summary, the PHY advertises 802.3 compliance in its selector field (the first 5 bits  
of the Link Code Word). It advertises its technology ability according to the bits set in register 4 of the  
SMI registers.  
There are 4 possible matches of the technology abilities. In the order of priority these are:  
„
„
„
„
100M Full Duplex (Highest priority)  
100M Half Duplex  
10M Full Duplex  
10M Half Duplex  
If the full capabilities of the PHY are advertised (100M, Full Duplex), and if the link partner is capable  
of 10M and 100M, then auto-negotiation selects 100M as the highest performance mode. If the link  
partner is capable of Half and Full duplex modes, then auto-negotiation selects Full Duplex as the  
highest performance operation.  
Once a capability match has been determined, the link code words are repeated with the acknowledge  
bit set. Any difference in the main content of the link code words at this time will cause auto-negotiation  
to re-start. Auto-negotiation will also re-start if not all of the required FLP bursts are received.  
The capabilities advertised during auto-negotiation by the PHY are initially determined by the logic  
levels latched on the MODE[2:0] bus after reset completes. This bus can also be used to disable auto-  
negotiation on power-up.  
Writing register 4 bits [8:5] allows software control of the capabilities advertised by the PHY. Writing  
register 4 does not automatically re-start auto-negotiation. Register 0, bit 9 must be set before the new  
Revision 0.9 (08-17-06)  
SMSC LAN8700/LAN8700I  
DATA2S8HEET  
TM  
±15kV ESD Protected MII/RMII Fast-Ethernet PHY with HP Auto-MDIX & SMSC flexPWR in a Small Footprint  
Datasheet  
abilities will be advertised. Auto-negotiation can also be disabled via software by clearing register 0,  
bit 12.  
The LAN8700/LAN8700I does not support “Next Page” capability.  
4.7.1  
Parallel Detection  
If the LAN8700/LAN8700I is connected to a device lacking the ability to auto-negotiate (i.e. no FLPs  
are detected), it is able to determine the speed of the link based on either 100M MLT-3 symbols or  
10M Normal Link Pulses. In this case the link is presumed to be Half Duplex per the IEEE standard.  
This ability is known as “Parallel Detection.” This feature ensures interoperability with legacy link  
partners. If a link is formed via parallel detection, then bit 0 in register 6 is cleared to indicate that the  
Link Partner is not capable of auto-negotiation. The controller has access to this information via the  
management interface. If a fault occurs during parallel detection, bit 4 of register 6 is set.  
Register 5 is used to store the Link Partner Ability information, which is coded in the received FLPs.  
If the Link Partner is not auto-negotiation capable, then register 5 is updated after completion of parallel  
detection to reflect the speed capability of the Link Partner.  
4.7.2  
Re-starting Auto-negotiation  
Auto-negotiation can be re-started at any time by setting register 0, bit 9. Auto-negotiation will also re-  
start if the link is broken at any time. A broken link is caused by signal loss. This may occur because  
of a cable break, or because of an interruption in the signal transmitted by the Link Partner. Auto-  
negotiation resumes in an attempt to determine the new link configuration.  
If the management entity re-starts Auto-negotiation by writing to bit 9 of the control register, the  
LAN8700/LAN8700I will respond by stopping all transmission/receiving operations. Once the  
break_link_timer is done, in the Auto-negotiation state-machine (approximately 1200ms) the auto-  
negotiation will re-start. The Link Partner will have also dropped the link due to lack of a received  
signal, so it too will resume auto-negotiation.  
4.7.3  
4.7.4  
Disabling Auto-negotiation  
Auto-negotiation can be disabled by setting register 0, bit 12 to zero. The device will then force its  
speed of operation to reflect the information in register 0, bit 13 (speed) and register 0, bit 8 (duplex).  
The speed and duplex bits in register 0 should be ignored when auto-negotiation is enabled.  
Half vs. Full Duplex  
Half Duplex operation relies on the CSMA/CD (Carrier Sense Multiple Access / Collision Detect)  
protocol to handle network traffic and collisions. In this mode, the carrier sense signal, CRS, responds  
to both transmit and receive activity. In this mode, If data is received while the PHY is transmitting,  
a collision results.  
In Full Duplex mode, the PHY is able to transmit and receive data simultaneously. In this mode, CRS  
responds only to receive activity. The CSMA/CD protocol does not apply and collision detection is  
disabled.  
4.8  
HP Auto-MDIX  
HP Auto-MDIX facilitates the use of CAT-3 (10 Base-T) or CAT-5 (100 Base-T) media UTP interconnect  
cable without consideration of interface wiring scheme. If a user plugs in either a direct connect LAN  
cable, or a cross-over patch cable, as shown in Figure 4.4 on page 30, the SMSC LAN8700/LAN8700I  
Auto-MDIX PHY is capable of configuring the TXP/TXN and RXP/RXN pins for correct transceiver  
operation.  
The internal logic of the device detects the TX and RX pins of the connecting device. Since the RX  
and TX line pairs are interchangeable, special PCB design considerations are needed to accommodate  
the symmetrical magnetics and termination of an Auto-MDIX design.  
SMSC LAN8700/LAN8700I  
Revision 0.9 (08-17-06)  
DATA2S9HEET  
TM  
±15kV ESD Protected MII/RMII Fast-Ethernet PHY with HP Auto-MDIX & SMSC flexPWR in a Small Footprint  
Datasheet  
The Auto-MDIX function can be disabled through an internal register.  
Figure 4.4 Direct Cable Connection vs. Cross-over Cable Connection.  
4.9  
Internal +1.8V Regulator Disable  
TM  
Part of the SMSC flexPWR  
technology is the ability to disable the internal +1.8v regulator. This  
further increases the power savings as a more efficient external switching regulator can provide the  
necessary +1.8v to the internal PHY circuitry.  
4.9.1  
Disable the Internal +1.8V Regulator  
To disable the +1.8v internal regulator, a pullup strapping resistor (see Table 4.3, “Boot Strapping  
Configuration Resistors,” on page 32) is attached from RXCLK/REGOFF to VDDIO. When a reset  
event occurs, the PHY will sample the RXCLK/REGOFF pin to determine if the internal regulator  
should turn on. If the pin is pulled up to VDDIO, then the internal regulator is off, and the system needs  
to supply +1.8v +/- 10% to the VDD_CORE pin.  
A 4.7uF low ESR and 0.1uF capacitor must be added to VDD_CORE and placed close to the PHY.  
This capacitance provides decoupling of the external power supply noise and ensures stability of the  
internal regulator.  
4.9.2  
Enable the Internal +1.8V Regulator  
By default the internal regulator is enabled. The RXCLK/REGOFF pin has an internal pull-down to  
strap the regulator on for normal operation.  
A 4.7uF low ESR and 0.1uF capacitor must be added to VDD_CORE and placed close to the PHY.  
This capacitance provides decoupling of the external power supply noise and ensures stability of the  
internal regulator.  
4.10 nINT/TX_ER/TXD4 Strapping  
The nINT, TX_ER, and TXD4 functions share a common pin. There are two functional modes for this  
pin, the TX_ER/TXD4 mode and nINT (interrupt) mode. The RXD3/nINTSEL pin is used to select one  
of these two functional modes.  
Revision 0.9 (08-17-06)  
SMSC LAN8700/LAN8700I  
DATA3S0HEET  
TM  
±15kV ESD Protected MII/RMII Fast-Ethernet PHY with HP Auto-MDIX & SMSC flexPWR in a Small Footprint  
Datasheet  
The RXD3/nINTSEL pin is latched on the rising edge of the nRST. The system designer must float the  
RXD3 pin to put the nINT/TX_ER/TXD4 pin into nINT mode or pull-low to VSS with an external resistor  
(see Table 4.3, “Boot Strapping Configuration Resistors,” on page 32) to set the device in TX_ER/TXD4  
mode. The default setting is to float the pin high for nINT mode.  
4.11 PHY Address Strapping and LED Output Polarity Selection  
The PHY ADDRESS bits are latched on the rising edge of the internal reset (nRESET). The 5-bit  
address word[0:4] is input on the PHYAD[0:4] pins. The default setting is all high 5'b1_1111.  
The address lines are strapped as defined in the diagram below. The LED outputs will automatically  
change polarity based on the presence of an external pull-down resistor. If the LED pin is pulled high  
(by an internal 100K pull-up resistor) to select a logical high PHY address, then the LED output will  
be active low. If the LED pin is pulled low (by an external pull-down resistor (see Table 4.3, “Boot  
Strapping Configuration Resistors,” on page 32) to select a logical low PHY address, the LED output  
will then be an active high output.  
To set the PHY address on the LED pins without LEDs or on the GPO1 or CRS pin, float the pin to  
set the address high or pull-down the pin with an external resistor (see Table 4.3, “Boot Strapping  
Configuration Resistors,” on page 32) to GND to set the address low. See Figure 4.5, "PHY Address  
Strapping on LED’s":  
Phy Address = 1  
Phy Address = 0  
LED output= activelow  
LEDoutput=activehigh  
VDD  
LED1-LED4  
~10Kohms  
~270ohms  
~270ohms  
LED1-LED4  
Figure 4.5 PHY Address Strapping on LED’s  
4.12 Variable Voltage I/O  
The Digital I/O pins on the LAN8700/LAN8700I are variable voltage to take advantage of low power  
savings from shrinking technologies. These pins can operate from a low I/O voltage of +1.8V-10% up  
to +3.3V+10%. Due to this low voltage feature addition, the system designer needs to take  
consideration as for two aspects of their design. Boot strapping configuration and I/O voltage stability.  
4.12.1  
Boot Strapping Configuration  
Due to a lower I/O voltage, a lower strapping resistor needs to be used to ensure the strapped  
configuration is latched into the PHY device at power-on reset.  
SMSC LAN8700/LAN8700I  
Revision 0.9 (08-17-06)  
DATA3S1HEET  
 
TM  
±15kV ESD Protected MII/RMII Fast-Ethernet PHY with HP Auto-MDIX & SMSC flexPWR in a Small Footprint  
Datasheet  
.
Table 4.3 Boot Strapping Configuration Resistors  
I/O voltage  
3.0 to 3.6  
2.0 to 3.0  
1.6 to 2.0  
Pull-up/Pull-down Resistor  
10k ohm resistor  
7.5k ohm resistor  
5k ohm resistor  
4.12.2  
I/O Voltage Stability  
The I/O voltage the System Designer applies on VDDIO needs to maintain its value with a tolerance  
of +/- 10%. Varying the voltage up or down, after the PHY has completed power-on reset can cause  
errors in the PHY operation.  
4.13 PHY Management Control  
The Management Control module includes 3 blocks:  
„
„
„
Serial Management Interface (SMI)  
Management Registers Set  
Interrupt  
4.13.1  
Serial Management Interface (SMI)  
The Serial Management Interface is used to control the LAN8700/LAN8700I and obtain its status. This  
interface supports registers 0 through 6 as required by Clause 22 of the 802.3 standard, as well as  
“vendor-specific” registers 16 to 31 allowed by the specification. Non-supported registers (7 to 15) will  
be read as hexadecimal “FFFF”.  
At the system level there are 2 signals, MDIO and MDC where MDIO is bi-directional open-drain and  
MDC is the clock.  
A special feature (enabled by register 17 bit 3) forces the PHY to disregard the PHY-Address in the  
SMI packet causing the PHY to respond to any address. This feature is useful in multi-PHY  
applications and in production testing, where the same register can be written in all the PHYs using a  
single write transaction.  
The MDC signal is an aperiodic clock provided by the station management controller (SMC). The MDIO  
signal receives serial data (commands) from the controller SMC, and sends serial data (status) to the  
SMC. The minimum time between edges of the MDC is 160 ns. There is no maximum time between  
edges.  
The minimum cycle time (time between two consecutive rising or two consecutive falling edges) is 400  
ns. These modest timing requirements allow this interface to be easily driven by the I/O port of a  
microcontroller.  
The data on the MDIO line is latched on the rising edge of the MDC. The frame structure and timing  
of the data is shown in Figure 4.6 and Figure 4.7.  
The timing relationships of the MDIO signals are further described in Section 6.1, "Serial Management  
Interface (SMI) Timing," on page 53.  
Revision 0.9 (08-17-06)  
SMSC LAN8700/LAN8700I  
DATA3S2HEET  
 
TM  
±15kV ESD Protected MII/RMII Fast-Ethernet PHY with HP Auto-MDIX & SMSC flexPWR in a Small Footprint  
Datasheet  
Read Cycle  
MDC  
...  
...  
D1  
D15 D14  
D0  
32 1's  
0
1
1
0
A4 A3 A2 A1 A0 R4 R3 R2 R1 R0  
MDI0  
Start of  
Frame  
OP  
Code  
Turn  
Around  
Preamble  
PHY Address  
Register Address  
Data  
Data To Phy  
Data From Phy  
Figure 4.6 MDIO Timing and Frame Structure - READ Cycle  
Write Cycle  
MDC  
...  
D15 D14  
D1  
D0  
32 1's  
0
1
0
1
A4 A3 A2 A1 A0 R4 R3 R2 R1 R0  
PHY Address Register Address  
...  
MDIO  
Start of  
Frame  
OP  
Code  
Turn  
Around  
Preamble  
Data  
Data To Phy  
Figure 4.7 MDIO Timing and Frame Structure - WRITE Cycle  
SMSC LAN8700/LAN8700I  
Revision 0.9 (08-17-06)  
DATA3S3HEET  
Chapter 5 Registers  
Table 5.1 Control Register: Register 0 (Basic)  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Rese  
t
Loopbac  
k
Speed  
Select  
A/N  
Enable  
Power  
Down  
Isolat  
e
Restart A/N  
Duplex  
Mode  
Collision  
Test  
Reserved  
Table 5.2 Status Register: Register 1 (Basic)  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
100Bas  
e-T4  
100Base-  
100Base-  
TX  
Half  
Duplex  
10Base-  
T
Full  
10Base-  
T
Half  
Reserved  
A/N  
Complet  
e
Remot  
e
Fault  
A/N  
Abilit  
y
Link  
Statu  
s
Jabbe  
r
Detect Capabilit  
y
Extende  
d
TX  
Full  
Duplex  
Duplex  
Duplex  
Table 5.3 PHY ID 1 Register: Register 2 (Extended)  
10  
15  
15  
14  
13  
12  
11  
9
8
7
6
5
4
3
2
1
0
PHY ID Number (Bits 3-18 of the Organizationally Unique Identifier - OUI)  
Table 5.4 PHY ID 2 Register: Register 3 (Extended)  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
PHY ID Number (Bits 19-24 of the Organizationally Unique  
Identifier - OUI)  
Manufacturer Model Number  
Manufacturer Revision Number  
Table 5.5 Auto-Negotiation Advertisement: Register 4 (Extended)  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Next  
Page  
Reserve  
d
Remot  
e
Reserve  
d
Symmetric  
Pause  
Asymmetri  
c
100Base-  
T4  
100Base-  
TX  
100Base-  
TX  
10Base-  
T
10Base-  
T
IEEE 802.3 Selector  
Field  
Fault  
Operation  
Pause  
Operation  
Full  
Duplex  
Full  
Duplex  
Table 5.6 Auto-Negotiation Link Partner Base Page Ability Register: Register 5 (Extended)  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Next  
Page  
Acknowled  
ge  
Remot  
e
Reserved  
Paus  
e
100Base-  
T4  
100Base-TX  
Full Duplex  
100Base-  
TX  
10Base-T  
Full  
10Base-  
T
IEEE 802.3 Selector Field  
Fault  
Duplex  
Table 5.7 Auto-Negotiation Expansion Register: Register 6 (Extended)  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Reserved  
Parallel  
Detect  
Fault  
Link  
Partner  
Next Page  
Able  
Next Page  
Able  
Page  
Received  
Link  
Partner  
A/N Able  
Table 5.8 Auto-Negotiation Link Partner Next Page Transmit Register: Register 7 (Extended)  
12 11 10  
15  
14  
13  
9
8
7
6
5
4
3
2
1
0
Reserved  
Note: Next Page capability is not supported.  
Table 5.9 Register 8 (Extended)  
15  
15  
15  
15  
15  
15  
14  
14  
14  
14  
14  
14  
13  
13  
13  
13  
13  
13  
12  
12  
12  
12  
12  
12  
11  
11  
11  
11  
11  
11  
10  
10  
10  
10  
10  
10  
9
8
7
6
5
5
5
5
5
5
4
4
4
4
4
4
3
3
3
3
3
3
2
2
2
2
2
2
1
1
1
1
1
1
0
0
0
0
0
0
IEEE Reserved  
Table 5.10 Register 9 (Extended)  
9
8
7
6
IEEE Reserved  
Table 5.11 Register 10 (Extended)  
9
8
7
6
IEEE Reserved  
Table 5.12 Register 11 (Extended)  
9
8
7
6
IEEE Reserved  
Table 5.13 Register 12 (Extended)  
9
8
7
6
IEEE Reserved  
Table 5.14 Register 13 (Extended)  
9
8
7
6
IEEE Reserved  
Table 5.15 Register 14 (Extended)  
15  
15  
15  
15  
14  
14  
14  
14  
13  
13  
13  
12  
12  
12  
11  
11  
11  
10  
10  
9
8
7
6
5
5
4
4
4
3
3
3
2
2
2
1
1
1
0
0
0
0
IEEE Reserved  
Table 5.16 Register 15 (Extended)  
9
8
7
6
IEEE Reserved  
Table 5.17 Silicon Revision Register 16: Vendor-Specific  
10  
9
8
7
6
5
Reserved  
Silicon Revision  
Reserved  
Table 5.18 Mode Control/ Status Register 17: Vendor-Specific  
13  
Reserv FASTR EDPWRDO  
12  
11  
10  
9
8
7
6
5
4
3
2
1
Reserv  
ed  
LOWSQ  
EN  
MDPRE  
BP  
FARLOOPB  
ACK  
FASTE  
ST  
Reserve  
d
REFCLK  
EN  
PHYAD  
BP  
Forc  
e
ENERGY  
ON  
Reserv  
ed  
ed IP WN  
Goo  
d
Link  
Stat  
us  
Table 5.19 Special Modes Register 18: Vendor-Specific  
15  
14  
13  
CLKSELFREQ  
12  
DSPBP  
11  
10  
9
8
7
6
5
4
3
2
1
0
MIIMODE  
SQBP  
Reserved  
PLLBP  
ADCBP  
MODE  
PHYAD  
Table 5.20 Reserved Register 19: Vendor-Specific  
15  
15  
15  
15  
14  
14  
14  
14  
13  
13  
13  
13  
12  
12  
12  
12  
11  
11  
11  
11  
10  
10  
10  
10  
9
8
7
6
5
5
5
5
4
4
4
4
3
3
3
3
2
2
2
2
1
1
1
1
0
0
0
0
Reserved  
Table 5.21 Register 24: Vendor-Specific  
9
8
7
6
Reserved  
Table 5.22 Register 25: Vendor-Specific  
9
8
7
6
Reserved  
Table 5.23 Register 26: Vendor-Specific  
9
8
7
6
Reserved  
Table 5.24 Special Control/Status Indications Register 27: Vendor-Specific  
15  
AMDIXCTRL  
14  
13  
CH_SELECT  
12  
11  
10  
9
8
7
6
5
Reserved  
SWRST_FAST  
SQEOFF  
VCOOFF_LP  
Reserved  
Table 5.25 Special Internal Testability Control Register 28: Vendor-Specific  
11 10  
15  
14  
13  
12  
9
8
7
6
5
4
3
2
1
0
Reserved  
Table 5.26 Interrupt Source Flags Register 29: Vendor-Specific  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Reserved  
INT7  
INT6  
INT5  
INT4  
INT3  
INT2  
INT1  
Reserved  
Table 5.27 Interrupt Mask Register 30: Vendor-Specific  
15  
14  
13  
12  
Reserved  
11  
10  
9
8
7
6
5
4
3
Mask Bits  
Table 5.28 PHY Special Control/Status Register 31: Vendor-Specific  
11 10  
15  
14  
13  
12  
9
8
7
6
5
4
3
2
1
0
Reserved Reserved Special Autodone Reserved GPO2 GPO1 GPO0 Enable Reserved  
4B5B  
Speed Indication  
Reserved Scramble  
Disable  
TM  
±15kV ESD Protected MII/RMII Fast-Ethernet PHY with HP Auto-MDIX & SMSC flexPWR in a Small Footprint  
Datasheet  
5.1  
SMI Register Mapping  
The following registers are supported (register numbers are in decimal):  
Table 5.29 SMI Register Mapping  
Group  
REGISTER #  
DESCRIPTION  
Basic Control Register  
0
Basic  
1
Basic Status Register  
Basic  
2
PHY Identifier 1  
Extended  
3
PHY Identifier 2  
Extended  
4
Auto-Negotiation Advertisement Register  
Auto-Negotiation Link Partner Ability Register  
Auto-Negotiation Expansion Register  
Silicon Revision Register  
Mode Control/Status Register  
Special Modes  
Extended  
5
Extended  
6
Extended  
16  
17  
18  
20  
21  
22  
23  
27  
28  
29  
30  
31  
Vendor-specific  
Vendor-specific  
Vendor-specific  
Vendor-specific  
Vendor-specific  
Vendor-specific  
Vendor-specific  
Vendor-specific  
Vendor-specific  
Vendor-specific  
Vendor-specific  
Vendor-specific  
Reserved  
Reserved  
Reserved  
Reserved  
Control / Status Indication Register  
Special internal testability controls  
Interrupt Source Register  
Interrupt Mask Register  
PHY Special Control/Status Register  
5.2  
SMI Register Format  
The mode key is as follows:  
„
„
„
„
„
„
„
RW = read/write,  
SC = self clearing,  
WO = write only,  
RO = read only,  
LH = latch high, clear on read of register,  
LL = latch low, clear on read of register,  
NASR = Not Affected by Software Reset  
Revision 0.9 (08-17-06)  
SMSC LAN8700/LAN8700I  
DATA4S0HEET  
TM  
±15kV ESD Protected MII/RMII Fast-Ethernet PHY with HP Auto-MDIX & SMSC flexPWR in a Small Footprint  
Datasheet  
Table 5.30 Register 0 - Basic Control  
ADDRESS  
NAME  
DESCRIPTION  
MODE  
DEFAULT  
0.15  
Reset  
1 = software reset. Bit is self-clearing. For best results,  
when setting this bit do not set other bits in this  
register.  
RW/  
SC  
0
0.14  
0.13  
Loopback  
1 = loopback mode,  
0 = normal operation  
RW  
RW  
0
Speed Select  
1 = 100Mbps,  
0 = 10Mbps.  
Ignored if Auto Negotiation is enabled (0.12 = 1).  
Set by  
MODE[2:0]  
bus  
0.12  
Auto-  
Negotiation  
Enable  
1 = enable auto-negotiate process  
(overrides 0.13 and 0.8)  
0 = disable auto-negotiate process  
RW  
Set by  
MODE[2:0]  
bus  
0.11  
0.10  
Power Down  
1 = General power down mode,  
0 = normal operation  
RW  
RW  
0
Isolate  
1 = electrical isolation of PHY from MII  
0 = normal operation  
Set by  
MODE[2:0]  
bus  
0.9  
0.8  
Restart Auto-  
Negotiate  
1 = restart auto-negotiate process  
RW/  
SC  
0
0 = normal operation. Bit is self-clearing.  
Duplex Mode  
1 = Full duplex,  
0 = Half duplex.  
Ignored if Auto Negotiation is enabled (0.12 = 1).  
RW  
Set by  
MODE[2:0]  
bus  
0.7  
Collision Test  
Reserved  
1 = enable COL test,  
0 = disable COL test  
RW  
RO  
0
0.6:0  
0
Table 5.31 Register 1 - Basic Status  
DESCRIPTION  
ADDRESS  
NAME  
MODE  
DEFAULT  
1.15  
100Base-T4  
1 = T4 able,  
0 = no T4 ability  
RO  
0
1.14  
1.13  
1.12  
1.11  
100Base-TX Full  
Duplex  
1 = TX with full duplex,  
RO  
RO  
RO  
RO  
1
1
1
1
0 = no TX full duplex ability  
100Base-TX Half  
Duplex  
1 = TX with half duplex,  
0 = no TX half duplex ability  
10Base-T Full  
Duplex  
1 = 10Mbps with full duplex  
0 = no 10Mbps with full duplex ability  
10Base-T Half  
Duplex  
1 = 10Mbps with half duplex  
0 = no 10Mbps with half duplex ability  
1.10:6  
1.5  
Reserved  
Auto-Negotiate  
Complete  
1 = auto-negotiate process completed  
RO  
0
0
0 = auto-negotiate process not completed  
1.4  
Remote Fault  
1 = remote fault condition detected  
0 = no remote fault  
RO/  
LH  
SMSC LAN8700/LAN8700I  
Revision 0.9 (08-17-06)  
DATA4S1HEET  
TM  
±15kV ESD Protected MII/RMII Fast-Ethernet PHY with HP Auto-MDIX & SMSC flexPWR in a Small Footprint  
Datasheet  
Table 5.31 Register 1 - Basic Status (continued)  
ADDRESS  
NAME  
DESCRIPTION  
MODE  
DEFAULT  
1.3  
Auto-Negotiate  
Ability  
1 = able to perform auto-negotiation function  
0 = unable to perform auto-negotiation function  
RO  
1
1.2  
1.1  
1.0  
Link Status  
1 = link is up,  
RO/  
LL  
0
0
1
0 = link is down  
Jabber Detect  
1 = jabber condition detected  
0 = no jabber condition detected  
RO/  
LH  
Extended  
Capabilities  
1 = supports extended capabilities registers  
0 = does not support extended capabilities registers  
RO  
Table 5.32 Register 2 - PHY Identifier 1  
DESCRIPTION  
ADDRESS  
NAME  
MODE DEFAULT  
RW 0007h  
2.15:0  
PHY ID Number  
Assigned to the 3rd through 18th bits of the  
Organizationally Unique Identifier (OUI), respectively.  
OUI=00800Fh  
Table 5.33 Register 3 - PHY Identifier 2  
DESCRIPTION  
ADDRESS  
NAME  
MODE DEFAULT  
3.15:10  
3.9:4  
PHY ID Number  
Model Number  
Assigned to the 19th through 24th bits of the OUI.  
Six-bit manufacturer’s model number.  
RW  
RW  
RW  
30h  
0Bh  
1h  
3.3:0  
Revision Number  
Four-bit manufacturer’s revision number.  
Table 5.34 Register 4 - Auto Negotiation Advertisement  
DESCRIPTION  
ADDRESS  
NAME  
MODE  
DEFAULT  
4.15  
Next Page  
1 = next page capable,  
RO  
0
0 = no next page ability  
This Phy does not support next page ability.  
4.14  
4.13  
Reserved  
RO  
0
0
Remote Fault  
1 = remote fault detected,  
0 = no remote fault  
RW  
4.12  
Reserved  
4.11:10  
Pause Operation  
00 = No PAUSE  
R/W  
RO  
00  
0
01 = Asymmetric PAUSE toward link partner  
10 = Symmetric PAUSE  
11 = Both Symmetric PAUSE and Asymmetric  
PAUSE toward local device  
4.9  
100Base-T4  
1 = T4 able,  
0 = no T4 ability  
This Phy does not support 100Base-T4.  
Revision 0.9 (08-17-06)  
SMSC LAN8700/LAN8700I  
DATA4S2HEET  
TM  
±15kV ESD Protected MII/RMII Fast-Ethernet PHY with HP Auto-MDIX & SMSC flexPWR in a Small Footprint  
Datasheet  
Table 5.34 Register 4 - Auto Negotiation Advertisement (continued)  
NAME DESCRIPTION MODE  
ADDRESS  
DEFAULT  
4.8  
100Base-TX Full  
Duplex  
1 = TX with full duplex,  
0 = no TX full duplex ability  
RW  
Set by  
MODE[2:0]  
bus  
4.7  
4.6  
100Base-TX  
1 = TX able,  
RW  
RW  
1
0 = no TX ability  
10Base-T Full  
Duplex  
1 = 10Mbps with full duplex  
0 = no 10Mbps with full duplex ability  
Set by  
MODE[2:0]  
bus  
4.5  
10Base-T  
1 = 10Mbps able,  
RW  
RW  
Set by  
MODE[2:0]  
bus  
0 = no 10Mbps ability  
4.4:0  
Selector Field  
[00001] = IEEE 802.3  
00001  
Table 5.35 Register 5 - Auto Negotiation Link Partner Ability  
NAME DESCRIPTION  
ADDRESS  
MODE DEFAULT  
5.15  
Next Page  
1 = “Next Page” capable,  
RO  
0
0 = no “Next Page” ability  
This Phy does not support next page ability.  
5.14  
5.13  
Acknowledge  
Remote Fault  
1 = link code word received from partner  
0 = link code word not yet received  
RO  
RO  
0
0
1 = remote fault detected,  
0 = no remote fault  
5.12:11  
5.10  
Reserved  
RO  
RO  
0
0
Pause Operation  
1 = Pause Operation is supported by remote MAC,  
0 = Pause Operation is not supported by remote MAC  
5.9  
100Base-T4  
1 = T4 able,  
RO  
0
0 = no T4 ability.  
This Phy does not support T4 ability.  
5.8  
5.7  
100Base-TX Full  
Duplex  
1 = TX with full duplex,  
RO  
RO  
RO  
RO  
RO  
0
0 = no TX full duplex ability  
100Base-TX  
1 = TX able,  
0 = no TX ability  
0
5.6  
10Base-T Full  
Duplex  
1 = 10Mbps with full duplex  
0 = no 10Mbps with full duplex ability  
0
0
5.5  
10Base-T  
1 = 10Mbps able,  
0 = no 10Mbps ability  
5.4:0  
Selector Field  
[00001] = IEEE 802.3  
00001  
SMSC LAN8700/LAN8700I  
Revision 0.9 (08-17-06)  
DATA4S3HEET  
TM  
±15kV ESD Protected MII/RMII Fast-Ethernet PHY with HP Auto-MDIX & SMSC flexPWR in a Small Footprint  
Datasheet  
Table 5.36 Register 6 - Auto Negotiation Expansion  
ADDRESS  
NAME  
DESCRIPTION  
MODE DEFAULT  
6.15:5  
6.4  
Reserved  
RO  
0
0
Parallel Detection  
Fault  
1 = fault detected by parallel detection logic  
0 = no fault detected by parallel detection logic  
RO/  
LH  
6.3  
6.2  
6.1  
6.0  
Link Partner Next  
Page Able  
1 = link partner has next page ability  
RO  
0
0
0
0
0 = link partner does not have next page ability  
Next Page Able  
1 = local device has next page ability  
0 = local device does not have next page ability  
RO  
Page Received  
1 = new page received  
0 = new page not yet received  
RO/  
LH  
Link Partner Auto- 1 = link partner has auto-negotiation ability  
Negotiation Able  
RO  
0 = link partner does not have auto-negotiation ability  
Table 5.37 Register 16 - Silicon Revision  
DESCRIPTION  
ADDRESS  
NAME  
MODE DEFAULT  
16.15:10  
16.9:6  
Reserved  
Silicon Revision  
Reserved  
RO  
RO  
RO  
0
0001  
0
Four-bit silicon revision identifier.  
16.5:0  
Table 5.38 Register 17 - Mode Control/Status  
ADDRESS  
NAME  
DESCRIPTION  
MODE DEFAULT  
17.15  
17.14  
Reserved  
FASTRIP  
Write as 0; ignore on read.  
RW  
0
0
10Base-T fast mode:  
0 = normal operation  
1 = Reserved  
RW,  
NASR  
Must be left at 0  
17.13  
EDPWRDOWN  
Enable the Energy Detect Power-Down mode:  
0 = Energy Detect Power-Down is disabled  
1 = Energy Detect Power-Down is enabled  
RW  
0
17.12  
17.11  
Reserved  
Write as 0, ignore on read  
RW  
RW  
0
0
LOWSQEN  
The Low_Squelch signal is equal to LOWSQEN AND  
EDPWRDOWN.  
Low_Squelch = 1 implies a lower threshold  
(more sensitive).  
Low_Squelch = 0 implies a higher threshold  
(less sensitive).  
17.10  
MDPREBP  
Management Data Preamble Bypass:  
0 – detect SMI packets with Preamble  
1 – detect SMI packets without preamble  
RW  
0
Revision 0.9 (08-17-06)  
SMSC LAN8700/LAN8700I  
DATA4S4HEET  
TM  
±15kV ESD Protected MII/RMII Fast-Ethernet PHY with HP Auto-MDIX & SMSC flexPWR in a Small Footprint  
Datasheet  
Table 5.38 Register 17 - Mode Control/Status (continued)  
ADDRESS  
NAME  
DESCRIPTION  
MODE DEFAULT  
17.9  
FARLOOPBACK  
Force the module to the FAR Loop Back mode, i.e. all  
the received packets are sent back simultaneously (in  
100Base-TX only). This bit is only active in RMII  
mode. In this mode the user needs to supply a 50MHz  
clock to the PHY. This mode works even if MII Isolate  
(0.10) is set.  
RW  
0
17.8  
FASTEST  
Auto-Negotiation Test Mode  
0 = normal operation  
1 = activates test mode  
RW  
0
17.7:5  
17.4  
Reserved  
Write as 0, ignore on read.  
REFCLKEN  
1= Enables special filtering using a 50 MHz Clock in  
10Base-T mode.  
RW  
RW  
RW  
0
0
0
17.3  
17.2  
PHYADBP  
1 = PHY disregards PHY address in SMI access  
write.  
Force  
Good Link Status  
0 = normal operation;  
1 = force 100TX- link active;  
Note:  
This bit should be set only during lab testing  
17.1  
17.0  
ENERGYON  
Reserved  
ENERGYON – indicates whether energy is detected  
on the line (see Section 5.4.5.2, "Energy Detect  
Power-Down," on page 50); it goes to “0” if no valid  
energy is detected within 256ms. Reset to “1” by  
hardware reset, unaffected by SW reset.  
RO  
RW  
1
0
Write as “0”. Ignore on read.  
Table 5.39 Register 18 - Special Modes  
DESCRIPTION  
ADDRESS  
NAME  
MODE DEFAULT  
18.15:14  
MIIMODE  
MII Mode: set the mode of the MII:  
0 – MII interface.  
1 – RMII interface  
RW,  
NASR  
18.13  
CLKSELFREQ  
Clock In Selected Frequency. Set the requested input  
clock frequency. This bit drives signal that goes to  
external logic of the Phy and select the desired  
frequency of the input clock:  
RO,  
NASR  
0 – the clock frequency is 25MHz  
1 – Reserved  
18.12  
18.11  
18.10  
18.9  
DSPBP  
SQBP  
DSP Bypass mode. Used only in special lab tests.  
SQUELCH Bypass mode.  
RW,  
NASR  
0
0
RW,  
NASR  
Reserved  
PLLBP  
RW,  
NASR  
PLL Bypass mode.  
ADC Bypass mode.  
RW,  
NASR  
18.8  
ADCBP  
RW,  
NASR  
SMSC LAN8700/LAN8700I  
Revision 0.9 (08-17-06)  
DATA4S5HEET  
TM  
±15kV ESD Protected MII/RMII Fast-Ethernet PHY with HP Auto-MDIX & SMSC flexPWR in a Small Footprint  
Datasheet  
Table 5.39 Register 18 - Special Modes (continued)  
ADDRESS  
NAME  
DESCRIPTION  
MODE DEFAULT  
18.7:5  
MODE  
PHY Mode of operation. Refer to Section 5.4.9.2,  
"Mode Bus – MODE[2:0]," on page 51 for more  
details.  
RW,  
NASR  
18.4:0  
PHYAD  
PHY Address.  
RW,  
NASR  
PHYAD  
The PHY Address is used for the SMI address and for  
the initialization of the Cipher (Scrambler) key. Refer  
to Section 5.4.9.1, "Physical Address Bus -  
PHYAD[4:0]," on page 51 for more details.  
Table 5.40 Register 27 - Special Control/Status Indications  
NAME DESCRIPTION  
ADDRESS  
MODE DEFAULT  
27.15  
AMDIXCTRL  
HP Auto-MDIX control  
RW  
0
0 - Auto-MDIX enable  
1 - Auto-MDIX disabled (use 27.13 to control channel)  
27.14  
27.13  
Reserved  
Reserved  
RW  
RW  
0
0
CH_SELECT  
Manual Channel Select  
0 - MDI -TX transmits RX receives  
1 - MDIX -TX receives RX transmits  
27.12  
27:11  
SWRST_FAST  
SQEOFF  
1 = Accelerates SW reset counter from 256 ms to 10  
us for production testing.  
RW  
0
0
Disable the SQE test (Heartbeat):  
0 - SQE test is enabled.  
1 - SQE test is disabled.  
RW,  
NASR  
27:10  
VCOOFF_LP  
Forces the Receive PLL 10M to lock on the reference  
clock at all times:  
RW,  
NASR  
0
0 - Receive PLL 10M can lock on reference or line as  
needed (normal operation)  
1 - Receive PLL 10M is locked on the reference clock.  
In this mode 10M data packets cannot be received.  
27.9  
27.8  
27.7  
27.6  
27.5  
27.4  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
XPOL  
Write as 0. Ignore on read.  
Write as 0. Ignore on read.  
Write as 0. Ignore on read  
Write as 0. Ignore on read.  
Write as 0. Ignore on read.  
RW  
RW  
RW  
RW  
RW  
RO  
0
0
0
0
Polarity state of the 10Base-T:  
0 - Normal polarity  
1 - Reversed polarity  
0
27.3:0  
AUTONEGS  
Auto-negotiation “ARB” State-machine state  
RO  
1011b  
Table 5.41 Register 28 - Special Internal Testability Controls  
ADDRESS  
NAME  
Reserved  
DESCRIPTION  
MODE DEFAULT  
RW N/A  
SMSC LAN8700/LAN8700I  
28.15:0  
Do not write to this register. Ignore on read.  
Revision 0.9 (08-17-06)  
DATA4S6HEET  
TM  
±15kV ESD Protected MII/RMII Fast-Ethernet PHY with HP Auto-MDIX & SMSC flexPWR in a Small Footprint  
Datasheet  
Table 5.42 Register 29 - Interrupt Source Flags  
ADDRESS  
NAME  
DESCRIPTION  
MODE DEFAULT  
29.15:8  
Reserved  
Ignore on read.  
RO/  
LH  
0
0
0
0
0
0
0
0
0
29.7  
29.6  
29.5  
29.4  
29.3  
29.2  
29.1  
29.0  
INT7  
INT6  
1 = ENERGYON generated  
0 = not source of interrupt  
RO/  
LH  
1 = Auto-Negotiation complete  
0 = not source of interrupt  
RO/  
LH  
INT5  
1 = Remote Fault Detected  
0 = not source of interrupt  
RO/  
LH  
INT4  
1 = Link Down (link status negated)  
0 = not source of interrupt  
RO/  
LH  
INT3  
1 = Auto-Negotiation LP Acknowledge  
0 = not source of interrupt  
RO/  
LH  
INT2  
1 = Parallel Detection Fault  
0 = not source of interrupt  
RO/  
LH  
INT1  
1 = Auto-Negotiation Page Received  
0 = not source of interrupt  
RO/  
LH  
Reserved  
Ignore on read.  
RO/  
LH  
Table 5.43 Register 30 - Interrupt Mask  
ADDRESS  
NAME  
DESCRIPTION  
MODE DEFAULT  
30.15:8  
30.7:0  
Reserved  
Mask Bits  
Write as 0; ignore on read.  
RO  
0
0
1 = interrupt source is enabled  
0 = interrupt source is masked  
RW  
Table 5.44 Register 31 - PHY Special Control/Status  
ADDRESS  
NAME  
DESCRIPTION  
MODE DEFAULT  
31.15  
31.14  
31.13  
31.12  
Reserved  
Reserved  
Special  
Do not write to this register. Ignore on read.  
RW  
0
Must be set to 0  
RW  
RO  
0
0
Autodone  
Auto-negotiation done indication:  
0 = Auto-negotiation is not done or disabled (or not  
active)  
1 = Auto-negotiation is done  
SMSC LAN8700/LAN8700I  
Revision 0.9 (08-17-06)  
DATA4S7HEET  
TM  
±15kV ESD Protected MII/RMII Fast-Ethernet PHY with HP Auto-MDIX & SMSC flexPWR in a Small Footprint  
Datasheet  
Table 5.44 Register 31 - PHY Special Control/Status (continued)  
NAME DESCRIPTION  
ADDRESS  
MODE DEFAULT  
31.11  
MII_CLK_SEL  
MII Mode:  
RW  
RMII/MII  
mode  
depnd’t  
0 = MII Clock of 25MHz. (Default)  
1 = Can be written in MII mode to set the interface  
speed to 50MHz.  
RMII Mode:  
0 = Invalid (Do not clear this bit if in RMII mode)  
1 = RMII Clock of 50 MHz (Default)  
Note:  
Defaults low (0) always in MII mode and high  
always in RMII mode.  
31.10  
Reserved  
GPO[2:0]  
Reserved  
RW  
RW  
0
0
31.9:7  
General Purpose Output connected to signals  
GPO[2:0]  
31.6  
Enable 4B5B  
0 = Bypass encoder/decoder.  
1 = enable 4B5B encoding/decoding.  
MAC Interface must be configured in MII mode.  
RW  
1
31.5  
Reserved  
Write as 0, ignore on Read.  
RW  
RO  
0
31.4:2  
Speed Indication  
HCDSPEED value:  
000  
[001]=10Mbps Half-duplex  
[101]=10Mbps Full-duplex  
[010]=100Base-TX Half-duplex  
[110]=100Base-TX Full-duplex  
31.1  
31.0  
Reserved  
Write as 0; ignore on Read  
RW  
RW  
0
0
Scramble Disable  
0 = enable data scrambling  
1 = disable data scrambling,  
5.3  
Interrupt Management  
The Management interface supports an interrupt capability that is not a part of the IEEE 802.3  
specification. It generates an active low interrupt signal on the nINT output whenever certain events  
are detected. Reading the Interrupt Source register (Register 29) shows the source of the interrupt,  
and clears the interrupt output signal. The Interrupt Mask register (Register 30) enables for each  
source to set (LOW) the nINT, by asserting the corresponding mask bit. The Mask bit does not mask  
the source bit in register 29. At reset, all bits are masked (negated). The nINT is an asynchronous  
output.  
INTERRUPT SOURCE  
SOURCE/MASK REG BIT #  
ENERGYON activated  
7
6
5
4
3
2
1
Auto-Negotiate Complete  
Remote Fault Detected  
Link Status negated (not asserted)  
Auto-Negotiation LP Acknowledge  
Parallel Detection Fault  
Auto-Negotiation Page Received  
Revision 0.9 (08-17-06)  
SMSC LAN8700/LAN8700I  
DATA4S8HEET  
TM  
±15kV ESD Protected MII/RMII Fast-Ethernet PHY with HP Auto-MDIX & SMSC flexPWR in a Small Footprint  
Datasheet  
5.4  
Miscellaneous Functions  
5.4.1  
Carrier Sense  
The carrier sense is output on CRS. CRS is a signal defined by the MII specification in the IEEE 802.3u  
standard. The PHY asserts CRS based only on receive activity whenever the PHY is either in repeater  
mode or full-duplex mode. Otherwise the PHY asserts CRS based on either transmit or receive activity.  
The carrier sense logic uses the encoded, unscrambled data to determine carrier activity status. It  
activates carrier sense with the detection of 2 non-contiguous zeros within any 10 bit span. Carrier  
sense terminates if a span of 10 consecutive ones is detected before a /J/K/ Start-of Stream Delimiter  
pair. If an SSD pair is detected, carrier sense is asserted until either /T/R/ End–of-Stream Delimiter  
pair or a pair of IDLE symbols is detected. Carrier is negated after the /T/ symbol or the first IDLE. If  
/T/ is not followed by /R/, then carrier is maintained. Carrier is treated similarly for IDLE followed by  
some non-IDLE symbol.  
5.4.2  
Collision Detect  
A collision is the occurrence of simultaneous transmit and receive operations. The COL output is  
asserted to indicate that a collision has been detected. COL remains active for the duration of the  
collision. COL is changed asynchronously to both RX_CLK and TX_CLK. The COL output becomes  
inactive during full duplex mode.  
COL may be tested by setting register 0, bit 7 high. This enables the collision test. COL will be asserted  
within 512 bit times of TX_EN rising and will be de-asserted within 4 bit times of TX_EN falling.  
In 10M mode, COL pulses for approximately 10 bit times (1us), 2us after each transmitted packet (de-  
assertion of TX_EN). This is the Signal Quality Error (SQE) signal and indicates that the transmission  
was successful. The user can disable this pulse by setting bit 11 in register 27.  
5.4.3  
5.4.4  
Isolate Mode  
The PHY data paths may be electrically isolated from the MII by setting register 0, bit 10 to a logic  
one. In isolation mode, the PHY does not respond to the TXD, TX_EN and TX_ER inputs. The PHY  
still responds to management transactions.  
Isolation provides a means for multiple PHYs to be connected to the same MII without contention  
occurring. The PHY is not isolated on power-up (bit 0:10 = 0).  
Link Integrity Test  
The LAN8700/LAN8700I performs the link integrity test as outlined in the IEEE 802.3u (Clause 24-15)  
Link Monitor state diagram. The link status is multiplexed with the 10Mbps link status to form the  
reportable link status bit in Serial Management Register 1, and is driven to the LINK LED.  
The DSP indicates a valid MLT-3 waveform present on the RXP and RXN signals as defined by the  
ANSI X3.263 TP-PMD standard, to the Link Monitor state-machine, using internal signal called  
DATA_VALID. When DATA_VALID is asserted the control logic moves into a Link-Ready state, and  
waits for an enable from the Auto Negotiation block. When received, the Link-Up state is entered, and  
the Transmit and Receive logic blocks become active. Should Auto Negotiation be disabled, the link  
integrity logic moves immediately to the Link-Up state, when the DATA_VALID is asserted.  
Note that to allow the line to stabilize, the link integrity logic will wait a minimum of 330 μsec from the  
time DATA_VALID is asserted until the Link-Ready state is entered. Should the DATA_VALID input be  
negated at any time, this logic will immediately negate the Link signal and enter the Link-Down state.  
When the 10/100 digital block is in 10Base-T mode, the link status is from the 10Base-T receiver logic.  
SMSC LAN8700/LAN8700I  
Revision 0.9 (08-17-06)  
DATA4S9HEET  
TM  
±15kV ESD Protected MII/RMII Fast-Ethernet PHY with HP Auto-MDIX & SMSC flexPWR in a Small Footprint  
Datasheet  
5.4.5  
Power-Down modes  
There are 2 power-down modes for the Phy:  
5.4.5.1  
General Power-Down  
This power-down is controlled by register 0, bit 11. In this mode the entire PHY, except the  
management interface, is powered-down and stays in that condition as long as bit 0.11 is HIGH. When  
bit 0.11 is cleared, the PHY powers up and is automatically reset.  
5.4.5.2  
Energy Detect Power-Down  
This power-down mode is activated by setting bit 17.13 to 1. In this mode when no energy is present  
on the line the PHY is powered down, except for the management interface, the SQUELCH circuit and  
the ENERGYON logic. The ENERGYON logic is used to detect the presence of valid energy from  
100Base-TX, 10Base-T, or Auto-negotiation signals  
In this mode, when the ENERGYON signal is low, the PHY is powered-down, and nothing is  
transmitted. When energy is received - link pulses or packets - the ENERGYON signal goes high, and  
the PHY powers-up. It automatically resets itself into the state it had prior to power-down, and asserts  
the nINT interrupt if the ENERGYON interrupt is enabled. The first and possibly the second packet  
to activate ENERGYON may be lost.  
When 17.13 is low, energy detect power-down is disabled.  
5.4.6  
Reset  
The PHY has 3 reset sources:  
Hardware reset (HWRST): connected to the nRST input, and to the internal POR signal.  
If the nRST input is driven by an external source, it should be held LOW for at least 100 us to ensure  
that the Phy is properly reset.  
The Phy has an internal Power-On-Reset (POR) signal which is asserted for 21ms following a VDD33  
(+3.3V) and VDDCORE (+1.8V) power-up. This internal POR is internally “OR”-ed with the nRST input.  
During a Hardware reset, either external or POR, an external clock must be supplied to the CLKIN  
signal.  
Software (SW) reset: Activated by writing register 0, bit 15 high. This signal is self- clearing. After the  
register-write, internal logic extends the reset by 256µs to allow PLL-stabilization before releasing the  
logic from reset.  
The IEEE 802.3u standard, clause 22 (22.2.4.1.1) states that the reset process should be completed  
within 0.5s from the setting of this bit.  
Power-Down reset: Automatically activated when the PHY comes out of power-down mode. The  
internal power-down reset is extended by 256µs after exiting the power-down mode to allow the PLLs  
to stabilize before the logic is released from reset.  
These 3 reset sources are combined together in the digital block to create the internal “general reset”,  
SYSRST, which is an asynchronous reset and is active HIGH. This SYSRST directly drives the PCS,  
DSP and MII blocks. It is also input to the Central Bias block in order to generate a short reset for the  
PLLs.  
The SMI mechanism and registers are reset only by the Hardware and Software resets. During Power-  
Down, the SMI registers are not reset. Note that some SMI register bits are not cleared by Software  
reset – these are marked “NASR” in the register tables.  
For the first 16us after coming out of reset, the MII will run at 2.5 MHz. After that it will switch to 25  
MHz if auto-negotiation is enabled.  
Revision 0.9 (08-17-06)  
SMSC LAN8700/LAN8700I  
DATA5S0HEET  
 
TM  
±15kV ESD Protected MII/RMII Fast-Ethernet PHY with HP Auto-MDIX & SMSC flexPWR in a Small Footprint  
Datasheet  
5.4.7  
LED Description  
The PHY provides four LED signals. These provide a convenient means to determine the mode of  
operation of the Phy. All LED signals are either active high or active low.  
The four LED signals can be either active-high or active-low. Polarity depends upon the Phy address  
latched in on reset. The LAN8700/LAN8700I senses each Phy address bit and changes the polarity of  
the LED signal accordingly. If the address bit is set as level “1”, the LED polarity will be set to an active-  
low. If the address bit is set as level “0”, the LED polarity will be set to an active-high.  
The ACTIVITY LED output is driven active when CRS is active (high). When CRS becomes inactive,  
the Activity LED output is extended by 128ms.  
The LINK LED output is driven active whenever the PHY detects a valid link. The use of the 10Mbps  
or 100Mbps link test status is determined by the condition of the internally determined speed selection.  
The SPEED100 LED output is driven active when the operating speed is 100Mbit/s or during Auto-  
negotiation. This LED will go inactive when the operating speed is 10Mbit/s or during line isolation  
(register 31 bit 5).  
The Full-Duplex LED output is driven active low when the link is operating in Full-Duplex mode.  
5.4.8  
Loopback Operation  
The 10/100 digital has two independent loop-back modes: Internal loopback and far loopback.  
5.4.8.1  
Internal Loopback  
The internal loopback mode is enabled by setting bit register 0 bit 14 to logic one. In this mode, the  
scrambled transmit data (output of the scrambler) is looped into the receive logic (input of the  
descrambler). The COL signal will be inactive in this mode, unless collision test (bit 0.7) is active.  
In this mode, during transmission (TX_EN is HIGH), nothing is transmitted to the line and the  
transmitters are powered down.  
5.4.9  
Configuration Signals  
The PHY has 11 configuration signals whose inputs should be driven continuously, either by external  
logic or external pull-up/pull-down resistors.  
5.4.9.1  
Physical Address Bus - PHYAD[4:0]  
The PHYAD[4:0] signals are driven high or low to give each PHY a unique address. This address is  
latched into an internal register at end of hardware reset. In a multi-PHY application (such as a  
repeater), the controller is able to manage each PHY via the unique address. Each PHY checks each  
management data frame for a matching address in the relevant bits. When a match is recognized, the  
PHY responds to that particular frame. The PHY address is also used to seed the scrambler. In a multi-  
PHY application, this ensures that the scramblers are out of synchronization and disperses the  
electromagnetic radiation across the frequency spectrum.  
5.4.9.2  
Mode Bus – MODE[2:0]  
The MODE[2:0] bus controls the configuration of the 10/100 digital block.  
SMSC LAN8700/LAN8700I  
Revision 0.9 (08-17-06)  
DATA5S1HEET  
TM  
±15kV ESD Protected MII/RMII Fast-Ethernet PHY with HP Auto-MDIX & SMSC flexPWR in a Small Footprint  
Datasheet  
Table 5.45 MODE[2:0] Bus  
DEFAULT REGISTER BIT VALUES  
MODE[2:0]  
MODE DEFINITIONS  
REGISTER 0  
[13,12,10,8]  
REGISTER 4  
[8,7,6,5]  
000  
001  
010  
10Base-T Half Duplex. Auto-negotiation disabled.  
10Base-T Full Duplex. Auto-negotiation disabled.  
0000  
0001  
1000  
N/A  
N/A  
N/A  
100Base-TX Half Duplex. Auto-negotiation  
disabled.  
CRS is active during Transmit & Receive.  
011  
100  
100Base-TX Full Duplex. Auto-negotiation disabled.  
CRS is active during Receive.  
1001  
1100  
N/A  
100Base-TX Half Duplex is advertised. Auto-  
negotiation enabled.  
CRS is active during Transmit & Receive.  
0100  
101  
Repeater mode. Auto-negotiation enabled.  
100Base-TX Half Duplex is advertised.  
CRS is active during Receive.  
1100  
0100  
110  
111  
Power Down mode. In this mode the PHY wake-up  
in Power-Down mode.  
N/A  
N/A  
All capable. Auto-negotiation enabled.  
X10X  
1111  
Revision 0.9 (08-17-06)  
SMSC LAN8700/LAN8700I  
DATA5S2HEET  
TM  
±15kV ESD Protected MII/RMII Fast-Ethernet PHY with HP Auto-MDIX & SMSC flexPWR in a Small Footprint  
Datasheet  
Chapter 6 AC Electrical Characteristics  
The timing diagrams and limits in this section define the requirements placed on the external signals  
of the Phy.  
6.1  
Serial Management Interface (SMI) Timing  
The Serial Management Interface is used for status and control as described in Section 4.13.  
MDC  
T1.1  
T1.2  
Valid Data  
MDIO  
(Read from PHY)  
T1.3  
T1.4  
Valid Data  
MDIO  
(Write to PHY)  
Figure 6.1 SMI Timing Diagram  
Table 6.1 SMI Timing Values  
PARAMETER  
DESCRIPTION  
MIN  
TYP  
MAX  
UNITS  
NOTES  
T1.1  
T1.2  
MDC minimum cycle time  
400  
0
ns  
ns  
MDC to MDIO (Read from PHY)  
delay  
300  
T1.3  
T1.4  
MDIO (Write to PHY) to MDC setup  
MDIO (Write to PHY) to MDC hold  
10  
10  
ns  
ns  
SMSC LAN8700/LAN8700I  
Revision 0.9 (08-17-06)  
DATA5S3HEET  
TM  
±15kV ESD Protected MII/RMII Fast-Ethernet PHY with HP Auto-MDIX & SMSC flexPWR in a Small Footprint  
Datasheet  
6.2  
MII 10/100Base-TX/RX Timings  
6.2.1  
MII 100Base-T TX/RX Timings  
6.2.1.1  
100M MII Receive Timing  
RX_CLK  
RXD[3:0]  
RX_DV  
RX_ER  
Valid Data  
T2.1  
T2.2  
Figure 6.2 100M MII Receive Timing Diagram  
Table 6.2 100M MII Receive Timing Values  
PARAMETER  
DESCRIPTION  
MIN  
TYP  
MAX  
UNITS  
NOTES  
T2.1  
T2.2  
Receive signals setup to RX_CLK  
rising  
10  
ns  
Receive signals hold from  
RX_CLK rising  
10  
ns  
RX_CLK frequency  
RX_CLK Duty-Cycle  
25  
40  
MHz  
%
Revision 0.9 (08-17-06)  
SMSC LAN8700/LAN8700I  
DATA5S4HEET  
TM  
±15kV ESD Protected MII/RMII Fast-Ethernet PHY with HP Auto-MDIX & SMSC flexPWR in a Small Footprint  
Datasheet  
6.2.1.2  
100M MII Transmit Timing  
TX_CLK  
TXD[3:0]  
TX_EN  
TX_ER  
Valid Data  
T3.1  
T3.2  
Figure 6.3 100M MII Transmit Timing Diagram  
Table 6.3 100M MII Transmit Timing Values  
PARAMETER  
DESCRIPTION  
MIN  
TYP  
MAX  
UNITS  
NOTES  
T3.1  
T3.2  
Transmit signals setup to TX_CLK  
rising  
12  
ns  
Transmit signals hold after  
TX_CLK rising  
0
ns  
TX_CLK frequency  
TX_CLK Duty-Cycle  
25  
40  
MHz  
%
SMSC LAN8700/LAN8700I  
Revision 0.9 (08-17-06)  
DATA5S5HEET  
TM  
±15kV ESD Protected MII/RMII Fast-Ethernet PHY with HP Auto-MDIX & SMSC flexPWR in a Small Footprint  
Datasheet  
6.2.2  
MII 10Base-T TX/RX Timings  
6.2.2.1  
10M MII Receive Timing  
RX_CLK  
RXD[3:0]  
RX_DV  
RX_ER  
Valid Data  
T4.1  
T4.2  
Figure 6.4 10M MII Receive Timing Diagram  
Table 6.4 10M MII Receive Timing Values  
PARAMETER  
DESCRIPTION  
MIN  
TYP  
MAX  
UNITS  
NOTES  
T4.1  
T4.2  
Receive signals setup to RX_CLK  
rising  
10  
ns  
Receive signals hold from RX_CLK  
rising  
10  
10  
ns  
RX_CLK frequency  
RX_CLK Duty-Cycle  
25  
40  
MHz  
%
Receive signals setup to RX_CLK  
rising  
ns  
Revision 0.9 (08-17-06)  
SMSC LAN8700/LAN8700I  
DATA5S6HEET  
TM  
±15kV ESD Protected MII/RMII Fast-Ethernet PHY with HP Auto-MDIX & SMSC flexPWR in a Small Footprint  
Datasheet  
6.2.2.2  
10M MII Transmit Timing  
TX_CLK  
TXD[3:0]  
TX_EN  
Valid Data  
T5.1  
T5.2  
Figure 6.5 10M MII Transmit Timing Diagrams  
Table 6.5 10M MII Transmit Timing Values  
PARAMETER  
DESCRIPTION  
MIN  
TYP  
MAX  
UNITS  
NOTES  
T5.1  
T5.2  
Transmit signals setup to  
TX_CLK rising  
12  
ns  
Transmit signals hold after  
TX_CLK rising  
0
ns  
TX_CLK frequency  
TX_CLK Duty-Cycle  
2.5  
50  
MHz  
%
SMSC LAN8700/LAN8700I  
Revision 0.9 (08-17-06)  
DATA5S7HEET  
TM  
±15kV ESD Protected MII/RMII Fast-Ethernet PHY with HP Auto-MDIX & SMSC flexPWR in a Small Footprint  
Datasheet  
6.3  
RMII 10/100Base-TX/RX Timings  
6.3.1  
RMII 100Base-T TX/RX Timings  
6.3.1.1  
100M RMII Receive Timing  
REF_CLK  
RXD[1:0]  
CRS_DV  
Valid Data  
T6.1  
T6.2  
Figure 6.6 100M RMII Receive Timing Diagram  
Table 6.6 100M RMII Receive Timing Values  
PARAMETER  
DESCRIPTION  
MIN  
TYP  
MAX  
UNITS  
NOTES  
T6.1  
Rising edge of REF_CLK to  
receive signals output valid  
4
ns  
T6.2  
Rising edge of REF_CLK to  
receive signals output not valid  
2
ns  
REF_CLK frequency  
50  
MHz  
Revision 0.9 (08-17-06)  
SMSC LAN8700/LAN8700I  
DATA5S8HEET  
TM  
±15kV ESD Protected MII/RMII Fast-Ethernet PHY with HP Auto-MDIX & SMSC flexPWR in a Small Footprint  
Datasheet  
6.3.1.2  
100M RMII Transmit Timing  
REF_CLK  
TXD[1:0]  
TX_EN  
Valid Data  
T8.1  
T8.2  
Figure 6.7 100M RMII Transmit Timing Diagram  
Table 6.7 100M RMII Transmit Timing Values  
PARAMETER  
DESCRIPTION  
MIN  
TYP  
MAX  
UNITS  
NOTES  
T8.1  
Transmit signals setup to rising  
edge of REF_CLK  
4
ns  
T8.2  
Transmit signals hold after rising  
edge of REF_CLK  
2
ns  
REF_CLK frequency  
50  
MHz  
SMSC LAN8700/LAN8700I  
Revision 0.9 (08-17-06)  
DATA5S9HEET  
TM  
±15kV ESD Protected MII/RMII Fast-Ethernet PHY with HP Auto-MDIX & SMSC flexPWR in a Small Footprint  
Datasheet  
6.3.2  
RMII 10Base-T TX/RX Timings  
6.3.2.1  
10M RMII Receive Timing  
REF_CLK  
RXD[1:0]  
CRS_DV  
Valid Data  
T9.1  
T9.2  
Figure 6.8 10M RMII Receive Timing Diagram  
Table 6.8 10M RMII Receive Timing Values  
PARAMETER  
DESCRIPTION  
MIN  
TYP  
MAX  
UNITS  
NOTES  
T9.1  
Raising edge of REF_CLK to  
receive signals output valid  
4
ns  
T9.2  
Raising edge of REF_CLK to  
receive signals output not valid  
2
ns  
REF_CLK frequency  
50  
MHz  
Revision 0.9 (08-17-06)  
SMSC LAN8700/LAN8700I  
DATA6S0HEET  
TM  
±15kV ESD Protected MII/RMII Fast-Ethernet PHY with HP Auto-MDIX & SMSC flexPWR in a Small Footprint  
Datasheet  
6.3.2.2  
10M RMII Transmit Timing  
REF_CLK  
TXD[1:0]  
TX_EN  
Valid Data  
T10.1  
T10.2  
Figure 6.9 10M RMII Transmit Timing Diagram  
Table 6.9 10M RMII Transmit Timing Values  
PARAMETER  
DESCRIPTION  
MIN  
TYP  
MAX  
UNITS  
NOTES  
T10.1  
Transmit signals setup to  
REF_CLK rising  
4
ns  
T10.2  
Transmit signals hold after  
REF_CLK rising  
2
ns  
6.4  
REF_CLK Timing  
Table 6.10 REF_CLK Timing Values  
PARAMETER  
DESCRIPTION  
MIN  
TYP  
MAX  
UNITS  
MHz  
ppm  
%
NOTES  
REF_CLK frequency  
REF_CLK Frequency Drift  
REF_CLK Duty Cycle  
REF_CLK Jitter  
50  
+/- 50  
60  
40  
150  
psec  
p-p – not RMS  
SMSC LAN8700/LAN8700I  
Revision 0.9 (08-17-06)  
DATA6S1HEET  
TM  
±15kV ESD Protected MII/RMII Fast-Ethernet PHY with HP Auto-MDIX & SMSC flexPWR in a Small Footprint  
Datasheet  
6.5  
Reset Timing  
T6.1  
nRST  
T6.2  
T6.3  
Configuration signals  
T6.4  
Output drive  
Figure 6.10 Reset Timing Diagram  
Table 6.11 Reset Timing Values  
PARAMETER  
DESCRIPTION  
MIN  
TYP  
MAX  
UNITS  
NOTES  
T6.1  
T6.2  
Reset Pulse Width  
100  
200  
us  
ns  
Configuration input setup to  
nRST rising  
T6.3  
T6.4  
Configuration input hold after  
nRST rising  
400  
20  
ns  
ns  
Output Drive after nRST rising  
800  
20 clock cycles for  
25 MHz clock  
or  
40 clock cycles for  
50MHz clock  
Revision 0.9 (08-17-06)  
SMSC LAN8700/LAN8700I  
DATA6S2HEET  
TM  
±15kV ESD Protected MII/RMII Fast-Ethernet PHY with HP Auto-MDIX & SMSC flexPWR in a Small Footprint  
Datasheet  
Chapter 7 DC Electrical Characteristics  
7.1  
DC Characteristics  
7.1.1  
Maximum Guaranteed Ratings  
Stresses beyond those listed in may cause permanent damage to the device. Exposure to absolute  
maximum rating conditions for extended periods may affect device reliability.  
Table 7.1 Maximum Conditions  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
COMMENT  
VDD33,VDDIO Power pins to all other pins. -0.5  
+3.6  
+3.6  
V
Digital IO  
VSS  
To VSS ground  
-0.5  
V
Table 7.5, “MII Bus  
Interface Signals,” on  
page 66  
VSS to all other pins  
LAN8700-AEZG  
-0.5  
0
+4.0  
+70  
V
C
Operating  
Temperature  
Commercial temperature  
components.  
Operating  
LAN8700I-AEZG  
-40  
-55  
+85  
C
C
Industrial temperature  
components.  
Temperature  
Storage  
Temperature  
+150  
Table 7.2 ESD and LATCH-UP Performance  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
COMMENTS  
ESD PERFORMANCE  
All Pins  
All Pins  
All Pins  
Human Body Model  
+/-8  
kV  
kV  
kV  
IED61000-4-2 Contact Discharge  
IEC61000-4-2 Air-gap Discharge  
+/-8  
+/-15  
LATCH-UP PERFORMANCE  
150  
All Pins  
EIA/JESD 78, Class II  
mA  
7.1.1.1  
Human Body Model (HBM) Performance  
HBM testing verifies the ability to withstand the ESD strikes like those that occur during handling and  
manufacturing. The device must work normally after the stress has ended, meaning no latch-up on any  
pins. All pins on the LAN8700 provide +/- 8kV HBM protection.  
SMSC LAN8700/LAN8700I  
Revision 0.9 (08-17-06)  
DATA6S3HEET  
TM  
±15kV ESD Protected MII/RMII Fast-Ethernet PHY with HP Auto-MDIX & SMSC flexPWR in a Small Footprint  
Datasheet  
7.1.1.2  
IEC61000-4-2 Performance  
The IEC61000-4-2 ESD specification is an international standard that addresses system-level immunity  
to ESD strikes while the end equipment is operational. In contrast, the HBM ESD tests are performed  
at the device level with the device powered down.  
In addition to defining the ESD tests, IEC 61000-4-2 also categorizes the impact to equipment  
operation when the strike occurs (ESD Result Classification). The LAN8700 maintains an ESD Result  
Classification 1 or 2 when subjected to an IEC 61000-4-2 (level 4) ESD strike.  
Both air discharge and contact discharge test techniques for applying stress conditions are defined by  
the IEC61000-4-2 ESD document.  
7.1.1.2.1  
AIR DISCHARGE  
To perform this test, a charged electrode is moved close to the system being tested until a spark is  
generated. All pins of the LAN8700 can safely dissipate +/- 15kV air discharges per the IEC61000-4-  
2 specification without additional board level protection. This test is difficult to reproduce because the  
discharge is influenced by such factors as humidity, the speed of approach of the electrode, and  
construction of the test equipment.  
7.1.1.2.2  
CONTACT DISCHARGE  
The uncharged electrode first contacts the pin to prepare this test, and then the probe tip is energized.  
This yields more repeatable results, and is the preferred test method. All pins of the LAN8700 can  
safely dissipate +/- 8kV contact discharges per the IEC61000-4-2 specification without the need for  
additional board level protection.  
7.1.2  
Operating Conditions  
Table 7.3 Recommended Operating Conditions  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
3.6  
UNITS  
COMMENT  
VDD33  
VDD33 to VSS  
3.0  
0.0  
3.3  
V
Input Voltage on  
Digital Pins  
VDDIO  
+3.6V  
70  
V
V
C
C
Voltage on Analog I/O  
pins (RXP, RXN)  
0.0  
0
Ambient Temperature  
T LAN8700-AEZG  
For Commercial  
Temperature  
A
T LAN8700I-AEZG  
-40  
+85  
For Industrial Temperature  
A
7.1.3  
Power Consumption  
7.1.3.1  
Power Consumption Device Only  
Power measurements taken over the operating conditions specified. See Section 5.4.5 for a description  
of the power down modes.  
Revision 0.9 (08-17-06)  
SMSC LAN8700/LAN8700I  
DATA6S4HEET  
TM  
±15kV ESD Protected MII/RMII Fast-Ethernet PHY with HP Auto-MDIX & SMSC flexPWR in a Small Footprint  
Datasheet  
Table 7.4 Power Consumption Device Only  
3.3V  
POWER  
PINS(MA)  
1.8V  
POWER  
PINS(MA)  
VDDIO  
POWER  
PIN  
TOTAL  
CURRENT  
(MA)  
TOTAL  
POWER  
(MW)  
POWER PIN GROUP  
Max  
Typical  
Min  
35.6  
33.3  
31.3  
41.3  
37.4  
33.4  
4.7  
4.1  
1.3  
81.6  
74.8  
66  
269.28  
246.84  
100BASE-T /W TRAFFIC  
165.75  
Note 7.1  
Max  
15.6  
15.3  
22.3  
20.8  
1.1  
0.9  
39  
37  
128.7  
Typical  
122.1  
10BASE-T /W TRAFFIC  
Note 7.1  
Min  
Max  
14.9  
10.5  
9.9  
19.1  
3.3  
0.1  
0.5  
0.4  
0.3  
34.1  
13.85  
13.0  
83.88  
45.7  
42.9  
ENERGY DETECT POWER  
DOWN  
Typical  
Min  
2.7  
9.8  
2.3  
12.4  
37.02  
Note 7.1  
Max  
Typical  
Min  
0.21  
0.124  
0.038  
2.92  
2.6  
0.39  
0.345  
0.3  
3.52  
3.07  
2.44  
11.62  
10.131  
GENERAL POWER DOWN  
2.1  
4.4454  
Note 7.1  
TM  
Note 7.1 This is calculated with full SMSC flexPWR  
features activated: VDDIO = 1.8V and  
internal regulator disabled.  
Note 7.2 Current measurements do not include power applied to the magnetics or the optional  
external LEDs. Current measurements taken with VDDIO = +3.3V, unless otherwise  
indicated.  
SMSC LAN8700/LAN8700I  
Revision 0.9 (08-17-06)  
DATA6S5HEET  
 
TM  
±15kV ESD Protected MII/RMII Fast-Ethernet PHY with HP Auto-MDIX & SMSC flexPWR in a Small Footprint  
Datasheet  
7.1.4  
DC Characteristics - Input and Output Buffers  
Table 7.5 MII Bus Interface Signals  
NAME  
VIH  
VIL  
IOH  
IOL  
VOL  
VOH  
TXD0  
TXD1  
VDDIO – +0.4 V  
VDDIO – +0.4 V  
VDDIO – +0.4 V  
VDDIO – +0.4 V  
VDDIO – +0.4 V  
+0.5 V  
+0.5 V  
+0.5 V  
+0.5 V  
+0.5 V  
TXD2  
TXD3  
TX_EN  
TX_CLK  
-8 mA  
-8 mA  
-8 mA  
-8 mA  
-8 mA  
-8 mA  
-8 mA  
-8 mA  
-8 mA  
-8 mA  
+8 mA  
+8 mA  
+8 mA  
+8 mA  
+8 mA  
+8 mA  
+8 mA  
+8 mA  
+8 mA  
+8 mA  
+0.4 V  
+0.4 V  
+0.4 V  
+0.4 V  
+0.4 V  
+0.4 V  
+0.4 V  
+0.4 V  
+0.4 V  
+0.4 V  
VDDIO – +0.4 V  
VDDIO – +0.4 V  
VDDIO – +0.4 V  
VDDIO – +0.4 V  
VDDIO – +0.4 V  
VDDIO – +0.4 V  
VDDIO – +0.4 V  
VDDIO – +0.4 V  
VDDIO – +0.4 V  
VDDIO – +0.4 V  
RXD0/MODE0  
RXD1/MODE1  
RXD2/MODE2  
RXD3/nINTSEL  
RX_ER/RXD4  
RX_DV  
RX_CLK/REGOFF  
CRS/PHYAD4  
COL/RMII/CRS_DV  
MDC  
VDDIO – +0.4 V  
VDDIO – +0.4 V  
VDDIO – +0.4 V  
+0.5 V  
+0.5 V  
+0.5 V  
MDIO  
-8 mA  
-8 mA  
+8 mA  
+8 mA  
+0.4 V  
+0.4 V  
VDDIO – +0.4 V  
3.6V  
nINT/TX_ER/TXD4  
Revision 0.9 (08-17-06)  
SMSC LAN8700/LAN8700I  
DATA6S6HEET  
TM  
±15kV ESD Protected MII/RMII Fast-Ethernet PHY with HP Auto-MDIX & SMSC flexPWR in a Small Footprint  
Datasheet  
Table 7.6 LAN Interface Signals  
NAME  
VIH  
VIL  
IOH  
IOL  
VOL  
VOH  
TXP  
TXN  
RXP  
RXN  
See Table 7.12, “100Base-TX Transceiver Characteristics,” on page 69 and Table 7.13,  
“10BASE-T Transceiver Characteristics,” on page 69.  
Table 7.7 LED Signals  
NAME  
VIH  
VIL  
IOH  
IOL  
VOL  
VOH  
SPEED100/PHYAD0 VDDIO – +0.4 V  
+0.5 V  
+0.5 V  
+0.5 V  
+0.5 V  
-12 mA  
-12 mA  
-12 mA  
-12 mA  
+12 mA  
+12 mA  
+12 mA  
+12 mA  
+0.4 V  
+0.4 V  
+0.4 V  
+0.4 V  
VDDIO – +0.4 V  
VDDIO – +0.4 V  
VDDIO – +0.4 V  
VDDIO – +0.4 V  
LINK/PHYAD1  
ACTIVITY/PHYAD2  
FDUPLEX/PHYAD3  
VDDIO – +0.4 V  
VDDIO – +0.4 V  
VDDIO – +0.4 V  
Table 7.8 Configuration Inputs  
NAME  
VIH  
VIL  
IOH  
IOL  
VOL  
VOH  
SPEED100/PHYAD0 VDDIO – +0.4 V  
+0.5 V  
+0.5 V  
+0.5 V  
+0.5 V  
+0.5 V  
+0.5 V  
+0.5 V  
+0.5 V  
+0.5 V  
-12 mA  
-12 mA  
-12 mA  
-12 mA  
-8 mA  
+12 mA  
+12 mA  
+12 mA  
+12 mA  
+8 mA  
+0.4 V  
+0.4 V  
+0.4 V  
+0.4 V  
+0.4 V  
VDDIO – +0.4 V  
VDDIO – +0.4 V  
VDDIO – +0.4 V  
VDDIO – +0.4 V  
VDDIO – +0.4 V  
LINK/PHYAD1  
ACTIVITY/PHYAD2  
FDUPLEX/PHYAD3  
CRS/PHYAD4  
VDDIO – +0.4 V  
VDDIO – +0.4 V  
VDDIO – +0.4 V  
VDDIO – +0.4 V  
VDDIO – +0.4 V  
VDDIO – +0.4 V  
VDDIO – +0.4 V  
VDDIO – +0.4 V  
RXD0/MODE0  
RXD1/MODE1  
RXD2/MODE2  
RX_CLK/REGOFF  
COL/RMII/CRS_DV  
-8 mA  
+8 mA  
+0.4 V  
VDDIO – +0.4 V  
SMSC LAN8700/LAN8700I  
Revision 0.9 (08-17-06)  
DATA6S7HEET  
TM  
±15kV ESD Protected MII/RMII Fast-Ethernet PHY with HP Auto-MDIX & SMSC flexPWR in a Small Footprint  
Datasheet  
Table 7.9 General Signals  
NAME  
VIH  
VIL  
IOH  
IOL  
VOL  
VOH  
nINT/TX_ER/TXD4  
nRST  
-8 mA  
+8 mA  
+0.4 V  
VDDIO – +0.4 V  
VDDIO – +0.4 V  
+1.40 V  
+0.5 V  
+0.5 V  
CLKIN/XTAL1  
(Note 7.3)  
XTAL2  
NC  
-
-
Note 7.3 These levels apply when a 0-3.3V Clock is driven into CLKIN/XTAL1 and XTAL2 is floating.  
The maximum input voltage on XTAL1 is VDDIO + 0.4V.  
Table 7.10 Analog References  
NAME  
BUFFER TYPE  
VIH  
VIL  
IOH  
IOL  
VOL  
VOH  
EXRES1  
AI  
Table 7.11 Internal Pull-Up / Pull-Down Configurations  
PULL-UP OR PULL-DOWN  
NAME  
COL/RMII/CRS_DV  
CRS/PHYAD4  
RXD0/MODE0  
RXD1/MODE1  
RXD2/MODE2  
Pull-down  
Pull-up  
Pull-up  
Pull-up  
Pull-up  
SPEED100/PHYAD0  
LINK/PHYAD1  
ACTIVITY/PHYAD2  
FDUPLEX/PHYAD3  
nINT/TX_ER/TXD4  
nRST  
Pull-up  
Pull-up  
Pull-up  
Pull-up  
Pull-up  
Pull-up  
MDIO  
Pull-down  
Pull-down  
Pull-down  
Pull-down  
Pull-down  
Pull-down  
MDC  
RXD3/nINTSEL  
RX_DV  
RX_CLK/REGOFF  
RX_ER/RXD4  
Revision 0.9 (08-17-06)  
SMSC LAN8700/LAN8700I  
DATA6S8HEET  
 
TM  
±15kV ESD Protected MII/RMII Fast-Ethernet PHY with HP Auto-MDIX & SMSC flexPWR in a Small Footprint  
Datasheet  
Note: For VDDIO operation below +2.5V, SMSC recommends designs add external strapping  
resistors in addition the internal strapping resistors to ensure proper strapped operation.  
Table 7.12 100Base-TX Transceiver Characteristics  
PARAMETER  
SYMBOL  
MIN  
TYP  
MAX  
UNITS  
NOTES  
Peak Differential Output Voltage High  
Peak Differential Output Voltage Low  
Signal Amplitude Symmetry  
Signal Rise & Fall Time  
Rise & Fall Time Symmetry  
Duty Cycle Distortion  
V
950  
-950  
98  
3.0  
-
-
-
1050  
-1050  
102  
5.0  
mVpk  
mVpk  
%
Note 7.4  
Note 7.4  
Note 7.4  
Note 7.4  
Note 7.4  
Note 7.5  
PPH  
V
PPL  
V
-
SS  
T
-
nS  
RF  
T
-
0.5  
nS  
RFS  
D
35  
-
50  
-
65  
%
CD  
Overshoot & Undershoot  
Jitter  
V
5
%
OS  
1.4  
nS  
Note 7.6  
Note 7.4 Measured at the line side of the transformer, line replaced by 100Ω (+/- 1%) resistor.  
Note 7.5 Offset from 16 nS pulse width at 50% of pulse peak  
Note 7.6 Measured differentially.  
Table 7.13 10BASE-T Transceiver Characteristics  
PARAMETER  
SYMBOL  
MIN  
TYP  
MAX  
UNITS  
NOTES  
Transmitter Peak Differential Output Voltage  
Receiver Differential Squelch Threshold  
V
2.2  
2.5  
2.8  
V
Note 7.7  
OUT  
V
300  
420  
585  
mV  
DS  
Note 7.7 Min/max voltages guaranteed as measured with 100Ω resistive load.  
SMSC LAN8700/LAN8700I  
Revision 0.9 (08-17-06)  
DATA6S9HEET  
 
 
 
 
TM  
±15kV ESD Protected MII/RMII Fast-Ethernet PHY with HP Auto-MDIX & SMSC flexPWR in a Small Footprint  
Datasheet  
Chapter 8 Application Notes  
8.1  
Application Diagram  
MII/RMII  
VDD3.3  
MAC  
VDD3.3  
Voltage  
(Media Access Controller)  
Regulator  
Host System  
12.4k  
1%  
Integrated  
Magnetics and RJ45 Jack  
1
2
3
4
5
6
7
8
27  
26  
TXD3  
TXD2  
nINT/TX_ER/TXD4  
MDC  
1
2
VDDIO  
TXD1  
CRS/PHYAD4  
MDIO  
3
4
25  
24  
LAN8700/LAN8700I  
nRST  
TX_EN  
23  
22  
TXD0  
5
6
MII/RMII Ethernet PHY  
36 Pin QFN  
TX_CLK  
GND FLAG  
VDD33  
7
8
RX_ER/RXD4  
RX_CLK/REGOFF  
RX_DV  
21  
20  
19  
VDD_CORE  
SPEED100/PHYAD0  
9
VDDIO  
R1  
R2  
FullDuplex  
Activity  
Variable  
Voltage  
IO Regulator  
R3  
Link  
R4  
Speed100  
Figure 8.1 Simplified Application Diagram  
Revision 0.9 (08-17-06)  
SMSC LAN8700/LAN8700I  
DATA7S0HEET  
TM  
±15kV ESD Protected MII/RMII Fast-Ethernet PHY with HP Auto-MDIX & SMSC flexPWR in a Small Footprint  
Datasheet  
8.2  
8.3  
Magnetics Selection  
For a list of magnetics selected to operate with the SMSC LAN8700, please refer to the Application  
note “AN 8-13 Suggested Magnetics”.  
http://www.smsc.com/main/appnotes.html#Ethernet%20Products  
Application Notes  
Application examples are given in pdf format on the SMSC LAN8700 web site. The link to the web site  
is shown below.  
http://www.smsc.com/main/catalog/lan8700.html  
Please check the web site periodically for the latest updates.  
8.4  
Reference Designs  
The LAN8700 Reference designs are available on the SMSC LAN8700 web site link below.  
http://www.smsc.com/main/catalog/lan8700.html  
The reference designs are available in four variations:  
a. MII with +3.3V IO  
b. RMII with +3.3V IO  
c. MII with +1.8V IO  
d. RMII with +1.8V IO.  
8.5  
Evaluation board  
The EVB-LAN8700 is a a PHY Evaluation Board (EVB) that interfaces a MAC controller to the SMSC  
LAN8700 Ethernet PHY through an MII connector, and out to an RJ-45 Ethernet Jack through industrial  
temperature magnetics for 10/100 connectivity.  
Schematics(*.pdf and *.dsn), BOM (bill of materials), user guide, gerber files and Layout board file are  
all available on the EVB web site link below.  
http://www.smsc.com/main/catalog/evblan8700.html  
The EVB-LAN8700 is designed to plug into a user's test system using a 40 pin Media Independent  
Interface (MII) connector. The MII connector is an AMP 40 pin Right Angle through hole MII connector,  
PN AMP- 174218-2. The mating connector is PN AMP 174217-2.  
8.5.0.0.1  
FEATURES:  
„
„
„
„
„
„
„
„
Industrial temperature PHY and Magnetics  
8 pin SOIC for user configurable Magnetics  
On board LED indicators for Speed 100  
Full Duplex  
RJ-45 Connector LEDs for Link and Activity  
Interfaces Through 40-pin Connector as Defined in the MII Specification  
Powered by 5.0V from the 40-Pin MII Connector  
Standard RJ45 Connector with LED indicators for Link and Activity  
SMSC LAN8700/LAN8700I  
Revision 0.9 (08-17-06)  
DATA7S1HEET  
TM  
±15kV ESD Protected MII/RMII Fast-Ethernet PHY with HP Auto-MDIX & SMSC flexPWR in a Small Footprint  
Datasheet  
„
„
„
„
Includes Probe Points on All MII Data and Control Signals for Troubleshooting  
Includes 25MHz Crystal for Internal PHY Reference; RX_CLK is Supplied to the 40-Pin Connector  
Supports user configuration options including PHY address selection  
Integrated 3.3V Regulator  
8.5.0.0.2  
APPLICATIONS  
The EVB- LAN8700 simplifies the process of testing a 10/100 PHY. The LAN8700 device is installed  
on the board and all associated circuitry is included.  
„
„
„
„
„
Verify MAC to PHY interface  
Support testing of FPGA implementations of MAC  
Assist interoperability test of various networks  
Verify MII compliance  
Verify performance of HP AutoMDIX feature  
Revision 0.9 (08-17-06)  
SMSC LAN8700/LAN8700I  
DATA7S2HEET  
TM  
±15kV ESD Protected MII/RMII Fast-Ethernet PHY with HP Auto-MDIX & SMSC flexPWR in a Small Footprint  
Datasheet  
Chapter 9 Package Outline  
Figure 9.1 36-Pin QFN Package Outline, 6 x 6 x 0.90 mm Body (Lead-Free)  
Table 9.1 36-Pin QFN Package Parameters  
MIN  
NOMINAL  
MAX  
REMARKS  
A
A1  
A2  
A3  
D
0.80  
0
~
1.00  
0.05  
0.80  
Overall Package Height  
Standoff  
~
0.60  
~
Mold Thickness  
0.20 REF  
Copper Lead-frame Substrate  
X Overall Size  
5.85  
5.55  
3.55  
5.85  
5.55  
3.55  
0.35  
~
6.15  
5.95  
3.85  
6.15  
5.95  
3.85  
0.75  
D1  
D2  
E
~
X Mold Cap Size  
X exposed Pad Size  
Y Overall Size  
~
~
E1  
E2  
L
~
Y Mold Cap Size  
Y exposed Pad Size  
Terminal Length  
Terminal Pitch  
~
~
e
0.50 Basic  
b
0.18  
~
~
~
0.30  
0.08  
Terminal Width  
ccc  
Coplanarity  
Notes:  
1. Controlling Unit: millimeter.  
2. Dimension b applies to plated terminals and is measured between 0.15mm and 0.30mm from the  
terminal tip. Tolerance on the true position of the terminal is ± 0.05 mm at maximum material  
conditions (MMC).  
3. Details of terminal #1 identifier are optional but must be located within the zone indicated.  
4. Coplanarity zone applies to exposed pad and terminals.  
SMSC LAN8700/LAN8700I  
Revision 0.9 (08-17-06)  
DATA7S3HEET  

相关型号:

LAN8700IC-AEZG

±15kV ESD Protected MII/RMII 10/100 Ethernet Transceiver with HP Auto-MDIX Support and flexPWR® Technology in a Small Footprint
MICROCHIP

LAN8700IC-AEZG

LAN Controller, 4 Channel(s), 12.5MBps, CMOS, 6 X 6 MM, 0.90 MM HEIGHT, ROHS COMPLIANT, QFN-36
SMSC

LAN8700IC-AEZG-TR

LAN8700IC-AEZG-TR
MICROCHIP

LAN8700IC-AEZG-TR

LAN Controller, CMOS
SMSC

LAN8710

MII/RMII 10/100 Ethernet Transceiver with HP Auto-MDIX and flexPWR Technology in a Small Footprint
SMSC

LAN8710A

Small Footprint MII/RMII 10/100 Ethernet Transceiver with HP Auto-MDIX and flexPWR Technology
SMSC

LAN8710A-EZC

Small Footprint MII/RMII 10/100 Ethernet Transceiver with HP Auto-MDIX and flexPWR Technology
SMSC

LAN8710A-EZC

DATACOM, ETHERNET TRANSCEIVER, QCC32, 5 X 5 MM, 0.90 MM HEIGHT, ROHS COMPLIANT, QFN-32
MICROCHIP

LAN8710A-EZC-ABC

Ethernet Transceiver
MICROCHIP

LAN8710A-EZC-TR

Small Footprint MII/RMII 10/100 Ethernet Transceiver with HP Auto-MDIX and flexPWR Technology
SMSC

LAN8710A-EZC-TR

DATACOM, ETHERNET TRANSCEIVER, QCC32, 5 X 5 MM, 0.90 MM HEIGHT, ROHS COMPLIANT, QFN-32
MICROCHIP

LAN8710A-EZC-TR-ABC

DATACOM, ETHERNET TRANSCEIVER
MICROCHIP