LAN8710A [SMSC]

Small Footprint MII/RMII 10/100 Ethernet Transceiver with HP Auto-MDIX and flexPWR Technology; 小尺寸MII / RMII 10/100以太网收发器, HP Auto-MDIX的和flexPWR技术
LAN8710A
型号: LAN8710A
厂家: SMSC CORPORATION    SMSC CORPORATION
描述:

Small Footprint MII/RMII 10/100 Ethernet Transceiver with HP Auto-MDIX and flexPWR Technology
小尺寸MII / RMII 10/100以太网收发器, HP Auto-MDIX的和flexPWR技术

以太网 局域网(LAN)标准
文件: 总82页 (文件大小:1172K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LAN8710A/LAN8710Ai  
Small Footprint MII/RMII 10/100 Ethernet  
Transceiver with HP Auto-MDIX and  
flexPWR® Technology  
Datasheet  
PRODUCT FEATURES  
Highlights  
Key Benefits  
High-Performance 10/100 Ethernet Transceiver  
„
Single-Chip Ethernet Physical Layer Transceiver  
(PHY)  
„
Compliant with IEEE802.3/802.3u (Fast Ethernet)  
Compliant with ISO 802-3/IEEE 802.3 (10BASE-T)  
Loop-back modes  
„
Comprehensive flexPWR® Technology  
Flexible Power Management Architecture  
LVCMOS Variable I/O voltage range: +1.6V to +3.6V  
Integrated 1.2V regulator with disable feature  
Auto-negotiation  
Automatic polarity detection and correction  
Link status change wake-up detection  
Vendor specific register functions  
Supports both MII and the reduced pin count RMII  
interfaces  
„
„
HP Auto-MDIX support  
Small footprint 32-pin QFN lead-free RoHS compliant  
package (5 x 5 x 0.9mm height)  
„
Power and I/Os  
Various low power modes  
Integrated power-on reset circuit  
Two status LED outputs  
Latch-Up Performance Exceeds 150mA per EIA/JESD  
78, Class II  
May be used with a single 3.3V supply  
Target Applications  
„
„
„
„
„
„
„
„
„
„
„
„
„
„
„
Set-Top Boxes  
Networked Printers and Servers  
Test Instrumentation  
„
„
Additional Features  
LAN on Motherboard  
Ability to use a low cost 25Mhz crystal for reduced BOM  
Embedded Telecom Applications  
Video Record/Playback Systems  
Cable Modems/Routers  
DSL Modems/Routers  
Packaging  
32-pin QFN (5x5 mm) Lead-Free RoHS Compliant  
package with MII and RMII  
„
Environmental  
Extended commercial temperature range  
(0°C to +85°C)  
Industrial temperature range version available  
(-40°C to +85°C)  
Digital Video Recorders  
IP and Video Phones  
Wireless Access Points  
Digital Televisions  
Digital Media Adaptors/Servers  
Gaming Consoles  
POE Applications (Refer to SMSC Application Note 17.18)  
SMSC LAN8710A/LAN8710Ai  
Revision 1.4 (08-23-12)  
DATASHEET  
®
Small Footprint MII/RMII 10/100 Ethernet Transceiver with HP Auto-MDIX and flexPWR Technology  
Datasheet  
Order Numbers:  
LAN8710Ai-EZK for 32-pin QFN lead-free RoHS compliant package (-40 to +85°C temp)  
LAN8710Ai-EZK-TR for 32-pin QFN lead-free RoHS compliant package (-40 to +85°C temp)  
LAN8710A-EZC for 32-pin QFN lead-free RoHS compliant package (0 to +85°C temp)  
LAN8710A-EZC-TR for 32-pin QFN lead-free RoHS compliant package (0 to +85°C temp)  
TR indicates tape & reel option. Reel size is 4,000.  
This product meets the halogen maximum concentration values per IEC61249-2-21  
For RoHS compliance and environmental information, please visit www.smsc.com/rohs  
Please contact your SMSC sales representative for additional documentation related to this product  
such as application notes, anomaly sheets, and design guidelines.  
Copyright © 2012 SMSC or its subsidiaries. All rights reserved.  
Circuit diagrams and other information relating to SMSC products are included as a means of illustrating typical applications. Consequently, complete information sufficient for  
construction purposes is not necessarily given. Although the information has been checked and is believed to be accurate, no responsibility is assumed for inaccuracies. SMSC  
reserves the right to make changes to specifications and product descriptions at any time without notice. Contact your local SMSC sales office to obtain the latest specifications  
before placing your product order. The provision of this information does not convey to the purchaser of the described semiconductor devices any licenses under any patent  
rights or other intellectual property rights of SMSC or others. All sales are expressly conditional on your agreement to the terms and conditions of the most recently dated  
version of SMSC's standard Terms of Sale Agreement dated before the date of your order (the "Terms of Sale Agreement"). The product may contain design defects or errors  
known as anomalies which may cause the product's functions to deviate from published specifications. Anomaly sheets are available upon request. SMSC products are not  
designed, intended, authorized or warranted for use in any life support or other application where product failure could cause or contribute to personal injury or severe property  
damage. Any and all such uses without prior written approval of an Officer of SMSC and further testing and/or modification will be fully at the risk of the customer. Copies of  
this document or other SMSC literature, as well as the Terms of Sale Agreement, may be obtained by visiting SMSC’s website at http://www.smsc.com. SMSC is a registered  
trademark of Standard Microsystems Corporation (“SMSC”). Product names and company names are the trademarks of their respective holders.  
The Microchip name and logo, and the Microchip logo are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.  
SMSC DISCLAIMS AND EXCLUDES ANY AND ALL WARRANTIES, INCLUDING WITHOUT LIMITATION ANY AND ALL IMPLIED WARRANTIES OF MERCHANTABILITY,  
FITNESS FOR A PARTICULAR PURPOSE, TITLE, AND AGAINST INFRINGEMENT AND THE LIKE, AND ANY AND ALL WARRANTIES ARISING FROM ANY COURSE  
OF DEALING OR USAGE OF TRADE. IN NO EVENT SHALL SMSC BE LIABLE FOR ANY DIRECT, INCIDENTAL, INDIRECT, SPECIAL, PUNITIVE, OR CONSEQUENTIAL  
DAMAGES; OR FOR LOST DATA, PROFITS, SAVINGS OR REVENUES OF ANY KIND; REGARDLESS OF THE FORM OF ACTION, WHETHER BASED ON CONTRACT;  
TORT; NEGLIGENCE OF SMSC OR OTHERS; STRICT LIABILITY; BREACH OF WARRANTY; OR OTHERWISE; WHETHER OR NOT ANY REMEDY OF BUYER IS HELD  
TO HAVE FAILED OF ITS ESSENTIAL PURPOSE, AND WHETHER OR NOT SMSC HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.  
Revision 1.4 (08-23-12)  
2
SMSC LAN8710A/LAN8710Ai  
DATASHEET  
®
Small Footprint MII/RMII 10/100 Ethernet Transceiver with HP Auto-MDIX and flexPWR Technology  
Datasheet  
Table of Contents  
Chapter 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
1.1  
1.2  
General Terms and Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
General Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Chapter 2 Pin Description and Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
2.1  
2.2  
Pin Assignments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Buffer Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Chapter 3 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
3.1  
Transceiver. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
3.1.1  
3.1.2  
3.1.3  
3.1.4  
100BASE-TX Transmit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
100BASE-TX Receive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
10BASE-T Transmit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
10BASE-T Receive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
3.2  
Auto-negotiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
3.2.1  
3.2.2  
3.2.3  
3.2.4  
Parallel Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Restarting Auto-negotiation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Disabling Auto-negotiation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Half vs. Full Duplex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
3.3  
3.4  
HP Auto-MDIX Support. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
MAC Interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
3.4.1  
3.4.2  
3.4.3  
MII . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
RMII. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
MII vs. RMII Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
3.5  
3.6  
Serial Management Interface (SMI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Interrupt Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
3.6.1  
3.6.2  
Primary Interrupt System. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Alternate Interrupt System. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
3.7  
Configuration Straps. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
3.7.1  
3.7.2  
3.7.3  
3.7.4  
3.7.5  
PHYAD[2:0]: PHY Address Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
MODE[2:0]: Mode Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
RMIISEL: MII/RMII Mode Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
REGOFF: Internal +1.2V Regulator Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
nINTSEL: nINT/TXER/TXD4 Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
3.8  
Miscellaneous Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
3.8.1  
3.8.2  
3.8.3  
3.8.4  
3.8.5  
3.8.6  
3.8.7  
3.8.8  
3.8.9  
LEDs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Variable Voltage I/O . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Power-Down Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Isolate Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Resets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Carrier Sense . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Collision Detect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Link Integrity Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Loopback Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
3.9  
Application Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
3.9.1  
3.9.2  
3.9.3  
3.9.4  
3.9.5  
Simplified System Level Application Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
Power Supply Diagram (1.2V Supplied by Internal Regulator) . . . . . . . . . . . . . . . . . . . . 46  
Power Supply Diagram (1.2V Supplied by External Source). . . . . . . . . . . . . . . . . . . . . . 47  
Twisted-Pair Interface Diagram (Single Power Supply). . . . . . . . . . . . . . . . . . . . . . . . . . 48  
Twisted-Pair Interface Diagram (Dual Power Supplies) . . . . . . . . . . . . . . . . . . . . . . . . . 49  
SMSC LAN8710A/LAN8710Ai  
3
Revision 1.4 (08-23-12)  
DATASHEET  
®
Small Footprint MII/RMII 10/100 Ethernet Transceiver with HP Auto-MDIX and flexPWR Technology  
Datasheet  
Chapter 4 Register Descriptions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
4.1  
4.2  
Register Nomenclature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
Control and Status Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
4.2.1  
4.2.2  
4.2.3  
4.2.4  
4.2.5  
4.2.6  
4.2.7  
4.2.8  
4.2.9  
Basic Control Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
Basic Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
PHY Identifier 1 Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
PHY Identifier 2 Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
Auto Negotiation Advertisement Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
Auto Negotiation Link Partner Ability Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
Auto Negotiation Expansion Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
Mode Control/Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
Special Modes Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
4.2.10 Symbol Error Counter Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
4.2.11 Special Control/Status Indications Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
4.2.12 Interrupt Source Flag Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
4.2.13 Interrupt Mask Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64  
4.2.14 PHY Special Control/Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
Chapter 5 Operational Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66  
5.1  
5.2  
5.3  
5.4  
5.5  
Absolute Maximum Ratings*. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66  
Operating Conditions** . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
Power Consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
DC Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68  
AC Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70  
5.5.1  
5.5.2  
5.5.3  
5.5.4  
5.5.5  
5.5.6  
Equivalent Test Load. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70  
Power Sequence Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71  
Power-On nRST & Configuration Strap Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72  
MII Interface Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
RMII Interface Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
SMI Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76  
5.6  
Clock Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77  
Chapter 6 Package Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78  
Chapter 7 Datasheet Revision History. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81  
Revision 1.4 (08-23-12)  
4
SMSC LAN8710A/LAN8710Ai  
DATASHEET  
®
Small Footprint MII/RMII 10/100 Ethernet Transceiver with HP Auto-MDIX and flexPWR Technology  
Datasheet  
List of Figures  
Figure 1.1 System Block Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Figure 1.2 Architectural Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Figure 2.1 32-QFN Pin Assignments (TOP VIEW) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Figure 3.1 100BASE-TX Transmit Data Path . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Figure 3.2 100BASE-TX Receive Data Path. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Figure 3.3 Relationship Between Received Data and Specific MII Signals . . . . . . . . . . . . . . . . . . . . . . 24  
Figure 3.4 Direct Cable Connection vs. Cross-over Cable Connection . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Figure 3.5 MDIO Timing and Frame Structure - READ Cycle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Figure 3.6 MDIO Timing and Frame Structure - WRITE Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Figure 3.7 LED1/REGOFF Polarity Configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Figure 3.8 LED2/nINTSEL Polarity Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Figure 3.9 Near-end Loopback Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
Figure 3.10 Far Loopback Block Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
Figure 3.11 Connector Loopback Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Figure 3.12 Simplified System Level Application Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
Figure 3.13 Power Supply Diagram (1.2V Supplied by Internal Regulator) . . . . . . . . . . . . . . . . . . . . . . . 46  
Figure 3.14 Power Supply Diagram (1.2V Supplied by External Source) . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Figure 3.15 Twisted-Pair Interface Diagram (Single Power Supply). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
Figure 3.16 Twisted-Pair Interface Diagram (Dual Power Supplies). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
Figure 5.1 Output Equivalent Test Load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70  
Figure 5.2 Power Sequence Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71  
Figure 5.3 Power-On nRST & Configuration Strap Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72  
Figure 5.4 MII Receive Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
Figure 5.5 MII Transmit Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74  
Figure 5.6 RMII Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
Figure 5.7 SMI Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76  
Figure 6.1 32-QFN Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78  
Figure 6.2 Recommended PCB Land Pattern. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79  
Figure 6.3 Taping Dimensions and Part Orientation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79  
Figure 6.4 Reel Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80  
Figure 6.5 Tape Length and Part Quantity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80  
SMSC LAN8710A/LAN8710Ai  
5
Revision 1.4 (08-23-12)  
DATASHEET  
®
Small Footprint MII/RMII 10/100 Ethernet Transceiver with HP Auto-MDIX and flexPWR Technology  
Datasheet  
List of Tables  
Table 2.1 MII/RMII Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Table 2.2 LED Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Table 2.3 Serial Management Interface (SMI) Pins. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Table 2.4 Ethernet Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Table 2.5 Miscellaneous Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Table 2.6 Analog Reference Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Table 2.7 Power Pins. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Table 2.8 32-QFN Package Pin Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Table 2.9 Buffer Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Table 3.1 4B/5B Code Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Table 3.2 MII/RMII Signal Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Table 3.3 Interrupt Management Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Table 3.4 Alternative Interrupt System Management Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Table 3.5 Pin Names for Address Bits. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Table 3.6 MODE[2:0] Bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Table 3.7 Pin Names for Mode Bits. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Table 4.1 Register Bit Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
Table 4.2 SMI Register Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
Table 5.1 Device Only Current Consumption and Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
Table 5.2 Non-Variable I/O Buffer Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68  
Table 5.3 Variable I/O Buffer Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
Table 5.4 100BASE-TX Transceiver Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
Table 5.5 10BASE-T Transceiver Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70  
Table 5.6 Power Sequence Timing Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71  
Table 5.7 Power-On nRST & Configuration Strap Timing Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72  
Table 5.8 MII Receive Timing Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
Table 5.9 MII Transmit Timing Values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74  
Table 5.10 RMII Timing Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
Table 5.11 RMII CLKIN (REF_CLK) Timing Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76  
Table 5.12 SMI Timing Values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76  
Table 5.13 Crystal Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77  
Table 6.1 32-QFN Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78  
Table 7.1 Customer Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81  
Revision 1.4 (08-23-12)  
6
SMSC LAN8710A/LAN8710Ai  
DATASHEET  
®
Small Footprint MII/RMII 10/100 Ethernet Transceiver with HP Auto-MDIX and flexPWR Technology  
Datasheet  
Chapter 1 Introduction  
1.1  
General Terms and Conventions  
The following is list of the general terms used throughout this document:  
BYTE  
FIFO  
MAC  
MII  
8-bits  
First In First Out buffer; often used for elasticity buffer  
Media Access Controller  
Media Independent Interface  
RMIITM  
N/A  
Reduced Media Independent InterfaceTM  
Not Applicable  
X
Indicates that a logic state is “don’t care” or undefined.  
RESERVED  
Refers to a reserved bit field or address. Unless otherwise  
noted, reserved bits must always be zero for write  
operations. Unless otherwise noted, values are not  
guaranteed when reading reserved bits. Unless otherwise  
noted, do not read or write to reserved addresses.  
SMI  
Serial Management Interface  
1.2  
General Description  
The LAN8710A/LAN8710Ai is a low-power 10BASE-T/100BASE-TX physical layer (PHY) transceiver  
with variable I/O voltage that is compliant with the IEEE 802.3-2005 standards.  
The LAN8710A/LAN8710Ai supports communication with an Ethernet MAC via a standard MII (IEEE  
802.3u)/RMII interface. It contains a full-duplex 10-BASE-T/100BASE-TX transceiver and supports  
10Mbps (10BASE-T) and 100Mbps (100BASE-TX) operation. The LAN8710A/LAN8710Ai implements  
auto-negotiation to automatically determine the best possible speed and duplex mode of operation. HP  
Auto-MDIX support allows the use of direct connect or cross-over LAN cables.  
The LAN8710A/LAN8710Ai supports both IEEE 802.3-2005 compliant and vendor-specific register  
functions. However, no register access is required for operation. The initial configuration may be  
selected via the configuration pins as described in Section 3.7, "Configuration Straps," on page 36.  
Register-selectable configuration options may be used to further define the functionality of the  
transceiver.  
Per IEEE 802.3-2005 standards, all digital interface pins are tolerant to 3.6V. The device can be  
configured to operate on a single 3.3V supply utilizing an integrated 3.3V to 1.2V linear regulator. The  
linear regulator may be optionally disabled, allowing usage of a high efficiency external regulator for  
lower system power dissipation.  
The LAN8710A/LAN8710Ai is available in both extended commercial and industrial temperature range  
versions. A typical system application is shown in Figure 1.1.  
SMSC LAN8710A/LAN8710Ai  
7
Revision 1.4 (08-23-12)  
DATASHEET  
®
Small Footprint MII/RMII 10/100 Ethernet Transceiver with HP Auto-MDIX and flexPWR Technology  
Datasheet  
MII/  
RMII  
10/100  
Ethernet  
MAC  
LAN8710A/  
LAN8710Ai  
MDI  
Transformer  
RJ45  
Mode  
LED  
Crystal or  
Clock  
Oscillator  
Figure 1.1 System Block Diagram  
MODE[0:2]  
nRST  
Mode Control  
Reset Control  
HP Auto-MDIX  
Auto-  
Negotiation  
100M TX  
Logic  
100M  
Transmitter  
TXP/TXN  
RXP/RXN  
RMIISEL  
TXD[0:3]  
Transmitter  
10M TX  
Logic  
10M  
Transmitter  
SMI  
Management  
Control  
MDIX  
Control  
TXEN  
TXER  
XTAL1/CLKIN  
XTAL2  
TXCLK  
PLL  
RXD[0:3]  
100M RX  
Logic  
Analog-to-  
Digital  
DSP System:  
Clock  
Data Recovery  
Equalizer  
RXDV  
RXER  
Interrupt  
Generator  
nINT  
LED1  
LED2  
RXCLK  
CRS  
100M PLL  
LEDs  
Receiver  
COL/CRS_DV  
MDC  
10M RX  
Logic  
Squeltch  
& Filters  
RBIAS  
Central Bias  
10M PLL  
MDIO  
PHY Address  
Latches  
PHYAD[0:2]  
LAN8710A/LAN8710Ai  
Figure 1.2 Architectural Overview  
Revision 1.4 (08-23-12)  
8
SMSC LAN8710A/LAN8710Ai  
DATASHEET  
®
Small Footprint MII/RMII 10/100 Ethernet Transceiver with HP Auto-MDIX and flexPWR Technology  
Datasheet  
Chapter 2 Pin Description and Configuration  
25  
26  
27  
28  
29  
30  
31  
32  
16  
15  
14  
13  
12  
11  
10  
9
TXD3  
RXDV  
VDD1A  
TXN  
MDIO  
SMSC  
LAN8710A/LAN8710Ai  
COL/CRS_DV/MODE2  
CRS  
32 PIN QFN  
(TOP VIEW)  
RXER/RXD4/PHYAD0  
VDDIO  
VSS  
TXP  
RXN  
RXD0/MODE0  
RXD1/MODE1  
RXD2/RMIISEL  
RXP  
RBIAS  
NOTE: Exposed pad (VSS) on bottom of package must be connected to ground  
Figure 2.1 32-QFN Pin Assignments (TOP VIEW)  
Note: When a lower case “n” is used at the beginning of the signal name, it indicates that the signal  
is active low. For example, nRST indicates that the reset signal is active low.  
Note: The buffer type for each signal is indicated in the BUFFER TYPE column. A description of the  
buffer types is provided in Section 2.2.  
SMSC LAN8710A/LAN8710Ai  
9
Revision 1.4 (08-23-12)  
DATASHEET  
®
Small Footprint MII/RMII 10/100 Ethernet Transceiver with HP Auto-MDIX and flexPWR Technology  
Datasheet  
Table 2.1 MII/RMII Signals  
BUFFER  
NUM PINS  
NAME  
SYMBOL  
TYPE  
DESCRIPTION  
Transmit  
Data 0  
TXD0  
VIS  
The MAC transmits data to the transceiver using  
this signal in all modes.  
1
Transmit  
Data 1  
TXD1  
TXD2  
VIS  
VIS  
The MAC transmits data to the transceiver using  
this signal in all modes.  
1
1
Transmit  
Data 2  
(MII Mode)  
The MAC transmits data to the transceiver using  
this signal in MII Mode.  
Note:  
This signal must be grounded in RMII  
Mode.  
Transmit  
Data 3  
(MII Mode)  
TXD3  
nINT  
VIS  
The MAC transmits data to the transceiver using  
this signal in MII Mode.  
1
Note:  
This signal must be grounded in RMII  
Mode.  
Interrupt  
Output  
VO8  
Active low interrupt output. Place an external  
resistor pull-up to VDDIO.  
Note:  
Refer to Section 3.6, "Interrupt  
Management," on page 34 for additional  
details on device interrupts.  
Note:  
Refer to Section 3.8.1.2, "nINTSEL and  
LED2 Polarity Selection," on page 39 for  
details on how the nINTSEL  
configuration strap is used to determine  
the function of this pin.  
1
Transmit  
Error  
(MII Mode)  
TXER  
TXD4  
VIS  
(PU)  
When driven high, the 4B/5B encode process  
substitutes the Transmit Error code-group (/H/)  
for the encoded data word. This input is ignored  
in the 10BASE-T mode of operation.  
Transmit  
Data 4  
(MII Mode)  
VIS  
(PU)  
In Symbol Interface (5B Decoding) mode, this  
signal becomes the MII Transmit Data 4 line (the  
MSB of the 5-bit symbol code-group).  
Note:  
This signal is not used in RMII Mode.  
Transmit  
Enable  
TXEN  
VIS  
(PD)  
Indicates that valid transmission data is present  
on TXD[3:0]. In RMII Mode, only TXD[1:0]  
provide valid data.  
1
1
Transmit  
Clock  
(MII Mode)  
TXCLK  
VO8  
Used to latch data from the MAC into the  
transceiver.  
„ MII (100BASE-TX): 25MHz  
„ MII (10BASE-T): 2.5MHz  
Note:  
This signal is not used in RMII Mode.  
Revision 1.4 (08-23-12)  
10  
SMSC LAN8710A/LAN8710Ai  
DATASHEET  
®
Small Footprint MII/RMII 10/100 Ethernet Transceiver with HP Auto-MDIX and flexPWR Technology  
Datasheet  
Table 2.1 MII/RMII Signals (continued)  
BUFFER  
TYPE  
NUM PINS  
NAME  
SYMBOL  
DESCRIPTION  
Receive  
Data 0  
RXD0  
VO8  
Bit 0 of the 4 (2 in RMII Mode) data bits that are  
sent by the transceiver on the receive path.  
PHY  
Operating  
Mode 0  
Configuration  
Strap  
MODE0  
VIS  
(PU)  
Combined with MODE1 and MODE2, this  
configuration strap sets the default PHY mode.  
1
See Note 2.1 for more information on  
configuration straps.  
Note:  
Refer to Section 3.7.2, "MODE[2:0]:  
Mode Configuration," on page 36 for  
additional details.  
Receive  
Data 1  
RXD1  
VO8  
Bit 1 of the 4 (2 in RMII Mode) data bits that are  
sent by the transceiver on the receive path.  
PHY  
Operating  
Mode 1  
MODE1  
VIS  
(PU)  
Combined with MODE0 and MODE2, this  
configuration strap sets the default PHY mode.  
1
See Note 2.1 for more information on  
configuration straps.  
Configuration  
Strap  
Note:  
Refer to Section 3.7.2, "MODE[2:0]:  
Mode Configuration," on page 36 for  
additional details.  
Receive  
Data 2  
RXD2  
VO8  
Bit 2 of the 4 (in MII Mode) data bits that are sent  
by the transceiver on the receive path.  
(MII Mode)  
Note:  
This signal is not used in RMII Mode.  
MII/RMII  
Mode Select  
Configuration  
Strap  
RMIISEL  
VIS  
(PD)  
This configuration strap selects the MII or RMII  
mode of operation. When strapped low to VSS,  
MII Mode is selected. When strapped high to  
VDDIO RMII Mode is selected.  
1
See Note 2.1 for more information on  
configuration straps.  
Note:  
Refer to Section 3.7.3, "RMIISEL:  
MII/RMII Mode Configuration," on  
page 37 for additional details.  
Receive  
Data 3  
RXD3  
VO8  
Bit 3 of the 4 (in MII Mode) data bits that are sent  
by the transceiver on the receive path.  
(MII Mode)  
Note:  
This signal is not used in RMII Mode.  
PHY Address  
2
Configuration  
Strap  
PHYAD2  
VIS  
(PD)  
Combined with PHYAD0 and PHYAD1, this  
configuration strap sets the transceiver’s SMI  
address.  
1
See Note 2.1 for more information on  
configuration straps.  
Note:  
Refer to Section 3.7.1, "PHYAD[2:0]:  
PHY Address Configuration," on  
page 36 for additional information.  
SMSC LAN8710A/LAN8710Ai  
11  
Revision 1.4 (08-23-12)  
DATASHEET  
®
Small Footprint MII/RMII 10/100 Ethernet Transceiver with HP Auto-MDIX and flexPWR Technology  
Datasheet  
Table 2.1 MII/RMII Signals (continued)  
BUFFER  
TYPE  
NUM PINS  
NAME  
SYMBOL  
DESCRIPTION  
Receive Error  
RXER  
VO8  
VO8  
This signal is asserted to indicate that an error  
was detected somewhere in the frame presently  
being transferred from the transceiver.  
Note:  
This signal is optional in RMII Mode.  
Receive  
Data 4  
(MII Mode)  
RXD4  
In Symbol Interface (5B Decoding) mode, this  
signal is the MII Receive Data 4 signal, the MSB  
of the received 5-bit symbol code-group.  
Note:  
Unless configured to the Symbol  
Interface mode, this pin functions as  
RXER.  
1
PHY Address  
0
Configuration  
Strap  
PHYAD0  
VIS  
(PD)  
Combined with PHYAD1 and PHYAD2, this  
configuration strap sets the transceiver’s SMI  
address.  
See Note 2.1 for more information on  
configuration straps.  
Note:  
Refer to Section 3.7.1, "PHYAD[2:0]:  
PHY Address Configuration," on  
page 36 for additional information.  
Receive  
Clock  
(MII Mode)  
RXCLK  
VO8  
In MII mode, this pin is the receive clock output.  
„ MII (100BASE-TX): 25MHz  
„ MII (10BASE-T): 2.5MHz  
PHY Address  
1
Configuration  
PHYAD1  
VIS  
(PD)  
Combined with PHYAD0 and PHYAD2, this  
configuration strap sets the transceiver’s SMI  
address.  
1
Strap  
See Note 2.1 for more information on  
configuration straps.  
Note:  
Refer to Section 3.7.1, "PHYAD[2:0]:  
PHY Address Configuration," on  
page 36 for additional information.  
Receive Data  
Valid  
RXDV  
VO8  
Indicates that recovered and decoded data is  
available on the RXD pins.  
1
Revision 1.4 (08-23-12)  
12  
SMSC LAN8710A/LAN8710Ai  
DATASHEET  
®
Small Footprint MII/RMII 10/100 Ethernet Transceiver with HP Auto-MDIX and flexPWR Technology  
Datasheet  
Table 2.1 MII/RMII Signals (continued)  
BUFFER  
TYPE  
NUM PINS  
NAME  
SYMBOL  
DESCRIPTION  
Carrier Sense  
/ Receive  
Data Valid  
CRS_DV  
VO8  
This signal is asserted to indicate the receive  
medium is non-idle in RMII Mode. When a  
10BASE-T packet is received, CRS_DV is  
asserted, but RXD[1:0] is held low until the SFD  
byte (10101011) is received.  
(RMII Mode)  
Note:  
Per the RMII standard, transmitted data  
is not looped back onto the receive data  
pins in 10BASE-T half-duplex mode.  
Collision  
Detect  
COL  
VO8  
This signal is asserted to indicate detection of a  
collision condition in MII Mode.  
1
(MII Mode)  
PHY  
Operating  
Mode 2  
Configuration  
Strap  
MODE2  
VIS  
(PU)  
Combined with MODE0 and MODE1, this  
configuration strap sets the default PHY mode.  
See Note 2.1 for more information on  
configuration straps.  
Note:  
Refer to Section 3.7.2, "MODE[2:0]:  
Mode Configuration," on page 36 for  
additional details.  
Carrier Sense  
(MII Mode)  
CRS  
VO8  
(PD)  
This signal indicates detection of a carrier in MII  
Mode.  
1
Note 2.1 Configuration strap values are latched on power-on reset and system reset. Configuration  
straps are identified by an underlined symbol name. Signals that function as configuration  
straps must be augmented with an external resistor when connected to a load. Refer to  
Section 3.7, "Configuration Straps," on page 36 for additional information.  
Table 2.2 LED Pins  
BUFFER  
TYPE  
NUM PINS  
NAME  
SYMBOL  
DESCRIPTION  
LED 1  
LED1  
O12  
Link activity LED Indication. This pin is driven  
active when a valid link is detected and blinks  
when activity is detected.  
Note:  
Refer to Section 3.8.1, "LEDs," on  
page 39 for additional LED information.  
Regulator Off  
Configuration  
Strap  
REGOFF  
IS  
(PD)  
This configuration strap is used to disable the  
internal 1.2V regulator. When the regulator is  
disabled, external 1.2V must be supplied to  
VDDCR.  
„ When REGOFF is pulled high to VDD2A with  
an external resistor, the internal regulator is  
disabled.  
1
„ When REGOFF is floating or pulled low, the  
internal regulator is enabled (default).  
See Note 2.2 for more information on  
configuration straps.  
Note:  
Refer to Section 3.7.4, "REGOFF:  
Internal +1.2V Regulator Configuration,"  
on page 38 for additional details.  
SMSC LAN8710A/LAN8710Ai  
13  
Revision 1.4 (08-23-12)  
DATASHEET  
®
Small Footprint MII/RMII 10/100 Ethernet Transceiver with HP Auto-MDIX and flexPWR Technology  
Datasheet  
Table 2.2 LED Pins (continued)  
BUFFER  
NUM PINS  
NAME  
SYMBOL  
TYPE  
DESCRIPTION  
LED 2  
LED2  
O12  
Link Speed LED Indication. This pin is driven  
active when the operating speed is 100Mbps. It  
is inactive when the operating speed is 10Mbps  
or during line isolation.  
Note:  
Refer to Section 3.8.1, "LEDs," on  
page 39 for additional LED information.  
nINT/TXER/  
TXD4  
nINTSEL  
IS  
(PU)  
This configuration strap selects the mode of the  
nINT/TXER/TXD4 pin.  
Function  
Select  
Configuration  
Strap  
„ When nINTSEL is floated or pulled to VDD2A,  
nINT is selected for operation on the  
nINT/TXER/TXD4 pin (default).  
1
„ When nINTSEL is pulled low to VSS,  
TXER/TXD4 is selected for operation on the  
nINT/TXER/TXD4 pin.  
See Note 2.2 for more information on  
configuration straps.  
Note:  
Refer to See Section 3.8.1.2, "nINTSEL  
and LED2 Polarity Selection," on  
page 39 for additional information.  
Note 2.2 Configuration strap values are latched on power-on reset and system reset. Configuration  
straps are identified by an underlined symbol name. Signals that function as configuration  
straps must be augmented with an external resistor when connected to a load. Refer to  
Section 3.7, "Configuration Straps," on page 36 for additional information.  
Table 2.3 Serial Management Interface (SMI) Pins  
BUFFER  
NUM PINS  
NAME  
SYMBOL  
TYPE  
DESCRIPTION  
SMI Data  
Input/Output  
MDIO  
VIS/  
VOD8  
Serial Management Interface data input/output  
1
1
SMI Clock  
MDC  
VIS  
Serial Management Interface clock  
Table 2.4 Ethernet Pins  
BUFFER  
TYPE  
NUM PINS  
NAME  
SYMBOL  
DESCRIPTION  
Ethernet  
TX/RX  
Positive  
Channel 1  
TXP  
AIO  
Transmit/Receive Positive Channel 1  
1
Ethernet  
TX/RX  
Negative  
TXN  
AIO  
Transmit/Receive Negative Channel 1  
1
Channel 1  
Revision 1.4 (08-23-12)  
14  
SMSC LAN8710A/LAN8710Ai  
DATASHEET  
®
Small Footprint MII/RMII 10/100 Ethernet Transceiver with HP Auto-MDIX and flexPWR Technology  
Datasheet  
Table 2.4 Ethernet Pins (continued)  
BUFFER  
TYPE  
NUM PINS  
NAME  
SYMBOL  
DESCRIPTION  
Ethernet  
TX/RX  
Positive  
Channel 2  
RXP  
AIO  
Transmit/Receive Positive Channel 2  
1
Ethernet  
TX/RX  
Negative  
Channel 2  
RXN  
AIO  
Transmit/Receive Negative Channel 2  
1
Table 2.5 Miscellaneous Pins  
BUFFER  
NUM PINS  
NAME  
SYMBOL  
TYPE  
DESCRIPTION  
External  
Crystal  
Input  
XTAL1  
CLKIN  
ICLK  
External crystal input  
1
External  
ICLK  
Single-ended clock oscillator input.  
Clock Input  
Note:  
When using a single ended clock  
oscillator, XTAL2 should be left  
unconnected.  
External  
Crystal  
Output  
XTAL2  
nRST  
OCLK  
External crystal output  
1
1
External  
Reset  
VIS  
(PU)  
System reset. This signal is active low.  
Table 2.6 Analog Reference Pins  
BUFFER  
NUM PINS  
NAME  
SYMBOL  
TYPE  
DESCRIPTION  
External 1%  
Bias Resistor  
Input  
RBIAS  
AI  
This pin requires connection of a 12.1k ohm (1%)  
resistor to ground.  
Refer to the LAN8710A/LAN8710Ai reference  
schematic for connection information.  
1
Note:  
The nominal voltage is 1.2V and the  
resistor will dissipate approximately  
1mW of power.  
SMSC LAN8710A/LAN8710Ai  
15  
Revision 1.4 (08-23-12)  
DATASHEET  
®
Small Footprint MII/RMII 10/100 Ethernet Transceiver with HP Auto-MDIX and flexPWR Technology  
Datasheet  
Table 2.7 Power Pins  
BUFFER  
NUM PINS  
NAME  
SYMBOL  
TYPE  
DESCRIPTION  
+1.6V to  
+3.6V  
Variable I/O  
Power  
VDDIO  
P
+1.6V to +3.6V variable I/O power  
1
Refer to the LAN8710A/LAN8710Ai reference  
schematic for connection information.  
+1.2V Digital  
Core Power  
Supply  
VDDCR  
P
Supplied by the on-chip regulator unless  
configured for regulator off mode via the  
REGOFF configuration strap.  
Refer to the LAN8710A/LAN8710Ai reference  
schematic for connection information.  
1
1
Note:  
1 uF and 470 pF decoupling capacitors  
in parallel to ground should be used on  
this pin.  
+3.3V  
Channel 1  
Analog Port  
Power  
VDD1A  
VDD2A  
P
P
+3.3V Analog Port Power to Channel 1  
Refer to the LAN8710A/LAN8710Ai reference  
schematic for connection information.  
+3.3V  
Channel 2  
Analog Port  
Power  
+3.3V Analog Port Power to Channel 2 and the  
internal regulator.  
1
1
Refer to the LAN8710A/LAN8710Ai reference  
schematic for connection information.  
Ground  
VSS  
P
Common ground. This exposed pad must be  
connected to the ground plane with a via array.  
Revision 1.4 (08-23-12)  
16  
SMSC LAN8710A/LAN8710Ai  
DATASHEET  
®
Small Footprint MII/RMII 10/100 Ethernet Transceiver with HP Auto-MDIX and flexPWR Technology  
Datasheet  
2.1  
Pin Assignments  
Table 2.8 32-QFN Package Pin Assignments  
PIN NUM  
PIN NAME  
PIN NUM  
PIN NAME  
1
2
VDD2A  
LED2/nINTSEL  
LED1/REGOFF  
XTAL2  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
MDC  
nINT/TXER/TXD4  
nRST  
3
4
TXCLK  
TXEN  
5
XTAL1/CLKIN  
VDDCR  
6
TXD0  
7
RXCLK/PHYAD1  
RXD3/PHYAD2  
RXD2/RMIISEL  
RXD1/MODE1  
RXD0/MODE0  
VDDIO  
TXD1  
8
TXD2  
9
TXD3  
10  
11  
12  
13  
14  
15  
16  
RXDV  
VDD1A  
TXN  
RXER/RXD4/PHYAD0  
CRS  
TXP  
RXN  
COL/CRS_DV/MODE2  
MDIO  
RXP  
RBIAS  
SMSC LAN8710A/LAN8710Ai  
17  
Revision 1.4 (08-23-12)  
DATASHEET  
®
Small Footprint MII/RMII 10/100 Ethernet Transceiver with HP Auto-MDIX and flexPWR Technology  
Datasheet  
2.2  
Buffer Types  
Table 2.9 Buffer Types  
DESCRIPTION  
BUFFER TYPE  
IS  
O12  
VIS  
Schmitt-triggered input  
Output with 12mA sink and 12mA source  
Variable voltage Schmitt-triggered input  
VO8  
VOD8  
PU  
Variable voltage output with 8mA sink and 8mA source  
Variable voltage open-drain output with 8mA sink  
50uA (typical) internal pull-up. Unless otherwise noted in the pin description, internal pull-  
ups are always enabled.  
Note:  
Internal pull-up resistors prevent unconnected inputs from floating. Do not rely on  
internal resistors to drive signals external to the device. When connected to a load  
that must be pulled high, an external resistor must be added.  
PD  
50uA (typical) internal pull-down. Unless otherwise noted in the pin description, internal  
pull-downs are always enabled.  
Note:  
Internal pull-down resistors prevent unconnected inputs from floating. Do not rely  
on internal resistors to drive signals external to the device. When connected to a  
load that must be pulled low, an external resistor must be added.  
AI  
AIO  
ICLK  
OCLK  
P
Analog input  
Analog bi-directional  
Crystal oscillator input pin  
Crystal oscillator output pin  
Power pin  
Note: The digital signals are not 5V tolerant. Refer to Section 5.1, "Absolute Maximum Ratings*," on  
page 66 for additional buffer information.  
Note 2.3 Sink and source capabilities are dependant on the VDDIO voltage. Refer to Section 5.1,  
"Absolute Maximum Ratings*," on page 66 for additional information.  
Revision 1.4 (08-23-12)  
18  
SMSC LAN8710A/LAN8710Ai  
DATASHEET  
®
Small Footprint MII/RMII 10/100 Ethernet Transceiver with HP Auto-MDIX and flexPWR Technology  
Datasheet  
Chapter 3 Functional Description  
This chapter provides functional descriptions of the various device features. These features have been  
categorized into the following sections:  
„
„
„
„
„
„
„
„
„
Transceiver  
Auto-negotiation  
HP Auto-MDIX Support  
MAC Interface  
Serial Management Interface (SMI)  
Interrupt Management  
Configuration Straps  
Miscellaneous Functions  
Application Diagrams  
3.1  
Transceiver  
3.1.1  
100BASE-TX Transmit  
The 100BASE-TX transmit data path is shown in Figure 3.1. Each major block is explained in the  
following subsections.  
TX_CLK  
(for MII only)  
PLL  
MAC  
Ext Ref_CLK (for RMII only)  
MII 25 Mhz by 4 bits  
4B/5B  
Encoder  
Scrambler  
and PISO  
25MHz  
by 4 bits  
25MHz by  
5 bits  
or  
MII/RMII  
RMII 50Mhz by 2 bits  
NRZI  
Converter  
MLT-3  
Converter  
Tx  
Driver  
125 Mbps Serial  
NRZI  
MLT-3  
MLT-3  
MLT-3  
MLT-3  
Magnetics  
RJ45  
CAT-5  
Figure 3.1 100BASE-TX Transmit Data Path  
3.1.1.1  
100BASE-TX Transmit Data Across the MII/RMII Interface  
For MII, the MAC controller drives the transmit data onto the TXD bus and asserts TXEN to indicate  
valid data. The data is latched by the transceiver’s MII block on the rising edge of TXCLK. The data  
is in the form of 4-bit wide 25MHz data.  
SMSC LAN8710A/LAN8710Ai  
19  
Revision 1.4 (08-23-12)  
DATASHEET  
®
Small Footprint MII/RMII 10/100 Ethernet Transceiver with HP Auto-MDIX and flexPWR Technology  
Datasheet  
For RMII, the MAC controller drives the transmit data onto the TXD bus and asserts TXEN to indicate  
valid data. The data is latched by the transceiver’s RMII block on the rising edge of REF_CLK. The  
data is in the form of 2-bit wide 50MHz data.  
3.1.1.2  
4B/5B Encoding  
The transmit data passes from the MII/RMII block to the 4B/5B encoder. This block encodes the data  
from 4-bit nibbles to 5-bit symbols (known as “code-groups”) according to Table 3.1. Each 4-bit data-  
nibble is mapped to 16 of the 32 possible code-groups. The remaining 16 code-groups are either used  
for control information or are not valid.  
The first 16 code-groups are referred to by the hexadecimal values of their corresponding data nibbles,  
0 through F. The remaining code-groups are given letter designations with slashes on either side. For  
example, an IDLE code-group is /I/, a transmit error code-group is /H/, etc.  
Table 3.1 4B/5B Code Table  
CODE  
GROUP  
RECEIVER  
INTERPRETATION  
TRANSMITTER  
INTERPRETATION  
SYM  
11110  
01001  
10100  
10101  
01010  
01011  
01110  
01111  
10010  
10011  
10110  
10111  
11010  
11011  
11100  
11101  
11111  
11000  
0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F
I
0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
DATA  
0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
DATA  
IDLE  
Sent after /T/R until TXEN  
Sent for rising TXEN  
J
First nibble of SSD, translated to “0101”  
following IDLE, else RXER  
10001  
01101  
K
T
Second nibble of SSD, translated to  
“0101” following J, else RXER  
Sent for rising TXEN  
Sent for falling TXEN  
First nibble of ESD, causes de-assertion  
of CRS if followed by /R/, else assertion  
of RXER  
Revision 1.4 (08-23-12)  
20  
SMSC LAN8710A/LAN8710Ai  
DATASHEET  
®
Small Footprint MII/RMII 10/100 Ethernet Transceiver with HP Auto-MDIX and flexPWR Technology  
Datasheet  
Table 3.1 4B/5B Code Table (continued)  
CODE  
GROUP  
RECEIVER  
INTERPRETATION  
TRANSMITTER  
INTERPRETATION  
SYM  
00111  
R
Second nibble of ESD, causes  
deassertion of CRS if following /T/, else  
assertion of RXER  
Sent for falling TXEN  
00100  
00110  
11001  
00000  
00001  
00010  
00011  
00101  
01000  
01100  
10000  
H
V
V
V
V
V
V
V
V
V
V
Transmit Error Symbol  
Sent for rising TXER  
INVALID  
INVALID, RXER if during RXDV  
INVALID, RXER if during RXDV  
INVALID, RXER if during RXDV  
INVALID, RXER if during RXDV  
INVALID, RXER if during RXDV  
INVALID, RXER if during RXDV  
INVALID, RXER if during RXDV  
INVALID, RXER if during RXDV  
INVALID, RXER if during RXDV  
INVALID, RXER if during RXDV  
INVALID  
INVALID  
INVALID  
INVALID  
INVALID  
INVALID  
INVALID  
INVALID  
INVALID  
3.1.1.3  
Scrambling  
Repeated data patterns (especially the IDLE code-group) can have power spectral densities with large  
narrow-band peaks. Scrambling the data helps eliminate these peaks and spread the signal power  
more uniformly over the entire channel bandwidth. This uniform spectral density is required by FCC  
regulations to prevent excessive EMI from being radiated by the physical wiring.  
The seed for the scrambler is generated from the transceiver address, PHYAD, ensuring that in  
multiple-transceiver applications, such as repeaters or switches, each transceiver will have its own  
scrambler sequence.  
The scrambler also performs the Parallel In Serial Out conversion (PISO) of the data.  
3.1.1.4  
3.1.1.5  
NRZI and MLT-3 Encoding  
The scrambler block passes the 5-bit wide parallel data to the NRZI converter where it becomes a  
serial 125MHz NRZI data stream. The NRZI is encoded to MLT-3. MLT-3 is a tri-level code where a  
change in the logic level represents a code bit “1” and the logic output remaining at the same level  
represents a code bit “0”.  
100M Transmit Driver  
The MLT3 data is then passed to the analog transmitter, which drives the differential MLT-3 signal, on  
outputs TXP and TXN, to the twisted pair media across a 1:1 ratio isolation transformer. The 10BASE-  
T and 100BASE-TX signals pass through the same transformer so that common “magnetics” can be  
used for both. The transmitter drives into the 100Ω impedance of the CAT-5 cable. Cable termination  
and impedance matching require external components.  
SMSC LAN8710A/LAN8710Ai  
21  
Revision 1.4 (08-23-12)  
DATASHEET  
®
Small Footprint MII/RMII 10/100 Ethernet Transceiver with HP Auto-MDIX and flexPWR Technology  
Datasheet  
3.1.1.6  
100M Phase Lock Loop (PLL)  
The 100M PLL locks onto reference clock and generates the 125MHz clock used to drive the 125 MHz  
logic and the 100BASE-TX transmitter.  
3.1.2  
100BASE-TX Receive  
The 100BASE-TX receive data path is shown in Figure 3.2. Each major block is explained in the  
following subsections.  
RX_CLK  
(for MII only)  
PLL  
MAC  
Ext Ref_CLK (for RMII only)  
25MHz  
by 4 bits  
25MHz by  
5 bits  
MII 25Mhz by 4 bits  
or  
RMII 50Mhz by 2 bits  
4B/5B  
Decoder  
Descrambler  
and SIPO  
MII/RMII  
125 Mbps Serial  
DSP: Timing  
recovery, Equalizer  
and BLW Correction  
NRZI  
MLT-3  
NRZI  
Converter  
MLT-3  
Converter  
MLT-3  
MLT-3  
MLT-3  
A/D  
Converter  
Magnetics  
RJ45  
CAT-5  
6 bit Data  
Figure 3.2 100BASE-TX Receive Data Path  
100M Receive Input  
3.1.2.1  
3.1.2.2  
The MLT-3 from the cable is fed into the transceiver (on inputs RXP and RXN) via a 1:1 ratio  
transformer. The ADC samples the incoming differential signal at a rate of 125M samples per second.  
Using a 64-level quanitizer, it generates 6 digital bits to represent each sample. The DSP adjusts the  
gain of the ADC according to the observed signal levels such that the full dynamic range of the ADC  
can be used.  
Equalizer, Baseline Wander Correction and Clock and Data Recovery  
The 6 bits from the ADC are fed into the DSP block. The equalizer in the DSP section compensates  
for phase and amplitude distortion caused by the physical channel consisting of magnetics, connectors,  
and CAT- 5 cable. The equalizer can restore the signal for any good-quality CAT-5 cable between 1m  
and 150m.  
If the DC content of the signal is such that the low-frequency components fall below the low frequency  
pole of the isolation transformer, then the droop characteristics of the transformer will become  
significant and Baseline Wander (BLW) on the received signal will result. To prevent corruption of the  
received data, the transceiver corrects for BLW and can receive the ANSI X3.263-1995 FDDI TP-PMD  
defined “killer packet” with no bit errors.  
Revision 1.4 (08-23-12)  
22  
SMSC LAN8710A/LAN8710Ai  
DATASHEET  
®
Small Footprint MII/RMII 10/100 Ethernet Transceiver with HP Auto-MDIX and flexPWR Technology  
Datasheet  
The 100M PLL generates multiple phases of the 125MHz clock. A multiplexer, controlled by the timing  
unit of the DSP, selects the optimum phase for sampling the data. This is used as the received  
recovered clock. This clock is used to extract the serial data from the received signal.  
3.1.2.3  
3.1.2.4  
NRZI and MLT-3 Decoding  
The DSP generates the MLT-3 recovered levels that are fed to the MLT-3 converter. The MLT-3 is then  
converted to an NRZI data stream.  
Descrambling  
The descrambler performs an inverse function to the scrambler in the transmitter and also performs  
the Serial In Parallel Out (SIPO) conversion of the data.  
During reception of IDLE (/I/) symbols. the descrambler synchronizes its descrambler key to the  
incoming stream. Once synchronization is achieved, the descrambler locks on this key and is able to  
descramble incoming data.  
Special logic in the descrambler ensures synchronization with the remote transceiver by searching for  
IDLE symbols within a window of 4000 bytes (40us). This window ensures that a maximum packet size  
of 1514 bytes, allowed by the IEEE 802.3 standard, can be received with no interference. If no IDLE-  
symbols are detected within this time-period, receive operation is aborted and the descrambler re-starts  
the synchronization process.  
3.1.2.5  
3.1.2.6  
Alignment  
The de-scrambled signal is then aligned into 5-bit code-groups by recognizing the /J/K/ Start-of-Stream  
Delimiter (SSD) pair at the start of a packet. Once the code-word alignment is determined, it is stored  
and utilized until the next start of frame.  
5B/4B Decoding  
The 5-bit code-groups are translated into 4-bit data nibbles according to the 4B/5B table. The  
translated data is presented on the RXD[3:0] signal lines. The SSD, /J/K/, is translated to “0101 0101”  
as the first 2 nibbles of the MAC preamble. Reception of the SSD causes the transceiver to assert the  
receive data valid signal, indicating that valid data is available on the RXD bus. Successive valid code-  
groups are translated to data nibbles. Reception of either the End of Stream Delimiter (ESD) consisting  
of the /T/R/ symbols, or at least two /I/ symbols causes the transceiver to de-assert the carrier sense  
and receive data valid signals.  
Note: These symbols are not translated into data.  
3.1.2.7  
Receive Data Valid Signal  
The Receive Data Valid signal (RXDV) indicates that recovered and decoded nibbles are being  
presented on the RXD[3:0] outputs synchronous to RXCLK. RXDV becomes active after the /J/K/  
delimiter has been recognized and RXD is aligned to nibble boundaries. It remains active until either  
the /T/R/ delimiter is recognized or link test indicates failure or SIGDET becomes false.  
RXDV is asserted when the first nibble of translated /J/K/ is ready for transfer over the Media  
Independent Interface (MII mode).  
SMSC LAN8710A/LAN8710Ai  
23  
Revision 1.4 (08-23-12)  
DATASHEET  
®
Small Footprint MII/RMII 10/100 Ethernet Transceiver with HP Auto-MDIX and flexPWR Technology  
Datasheet  
J
K
5
5
5
D
Idle  
data data data data  
T
R
CLEAR-TEXT  
RX_CLK  
RX_DV  
5
Figure 3.3 Relationship Between Received Data and Specific MII Signals  
Receiver Errors  
5
5
5
5
D
data data data data  
RXD  
3.1.2.8  
3.1.2.9  
During a frame, unexpected code-groups are considered receive errors. Expected code groups are the  
DATA set (0 through F), and the /T/R/ (ESD) symbol pair. When a receive error occurs, the RXER  
signal is asserted and arbitrary data is driven onto the RXD[3:0] lines. Should an error be detected  
during the time that the /J/K/ delimiter is being decoded (bad SSD error), RXER is asserted true and  
the value ‘1110’ is driven onto the RXD[3:0] lines. Note that the Valid Data signal is not yet asserted  
when the bad SSD error occurs.  
100M Receive Data Across the MII/RMII Interface  
In MII mode, the 4-bit data nibbles are sent to the MII block. These data nibbles are clocked to the  
controller at a rate of 25MHz. The controller samples the data on the rising edge of RXCLK. To ensure  
that the setup and hold requirements are met, the nibbles are clocked out of the transceiver on the  
falling edge of RXCLK. RXCLK is the 25MHz output clock for the MII bus. It is recovered from the  
received data to clock the RXD bus. If there is no received signal, it is derived from the system  
reference clock (XTAL1/CLKIN).  
When tracking the received data, RXCLK has a maximum jitter of 0.8ns (provided that the jitter of the  
input clock, XTAL1/CLKIN, is below 100ps).  
In RMII mode, the 2-bit data nibbles are sent to the RMII block. These data nibbles are clocked to the  
controller at a rate of 50MHz. The controller samples the data on the rising edge of XTAL1/CLKIN  
(REF_CLK). To ensure that the setup and hold requirements are met, the nibbles are clocked out of  
the transceiver on the falling edge of XTAL1/CLKIN (REF_CLK).  
3.1.3  
10BASE-T Transmit  
Data to be transmitted comes from the MAC layer controller. The 10BASE-T transmitter receives 4-bit  
nibbles from the MII at a rate of 2.5MHz and converts them to a 10Mbps serial data stream. The data  
stream is then Manchester-encoded and sent to the analog transmitter, which drives a signal onto the  
twisted pair via the external magnetics.  
The 10M transmitter uses the following blocks:  
„
„
„
„
MII (digital)  
TX 10M (digital)  
10M Transmitter (analog)  
10M PLL (analog)  
3.1.3.1  
10M Transmit Data Across the MII/RMII Interface  
The MAC controller drives the transmit data onto the TXD bus. For MII, when the controller has driven  
TXEN high to indicate valid data, the data is latched by the MII block on the rising edge of TXCLK.  
The data is in the form of 4-bit wide 2.5MHz data. For RMII, TXD[1:0] shall transition synchronously  
with respect to REF_CLK. When TXEN is asserted, TXD[1:0] are accepted for transmission by the  
device. TXD[1:0] shall be “00” to indicate idle when TXEN is deasserted. Values of TXD[1:0] other than  
“00” when TXEN is deasserted are reserved for out-of-band signalling (to be defined). Values other  
Revision 1.4 (08-23-12)  
24  
SMSC LAN8710A/LAN8710Ai  
DATASHEET  
®
Small Footprint MII/RMII 10/100 Ethernet Transceiver with HP Auto-MDIX and flexPWR Technology  
Datasheet  
than “00” on TXD[1:0] while TXEN is deasserted shall be ignored by the device.TXD[1:0] shall provide  
valid data for each REF_CLK period while TXEN is asserted.  
In order to comply with legacy 10BASE-T MAC/Controllers, in half-duplex mode the transceiver loops  
back the transmitted data, on the receive path. This does not confuse the MAC/Controller since the  
COL signal is not asserted during this time. The transceiver also supports the SQE (Heartbeat) signal.  
See Section 3.8.7, "Collision Detect," on page 42, for more details.  
3.1.3.2  
Manchester Encoding  
The 4-bit wide data is sent to the 10M TX block. The nibbles are converted to a 10Mbps serial NRZI  
data stream. The 10M PLL locks onto the external clock or internal oscillator and produces a 20MHz  
clock. This is used to Manchester encode the NRZ data stream. When no data is being transmitted  
(TXEN is low), the 10M TX block outputs Normal Link Pulses (NLPs) to maintain communications with  
the remote link partner.  
3.1.3.3  
10M Transmit Drivers  
The Manchester encoded data is sent to the analog transmitter where it is shaped and filtered before  
being driven out as a differential signal across the TXP and TXN outputs.  
3.1.4  
10BASE-T Receive  
The 10BASE-T receiver gets the Manchester- encoded analog signal from the cable via the magnetics.  
It recovers the receive clock from the signal and uses this clock to recover the NRZI data stream. This  
10M serial data is converted to 4-bit data nibbles which are passed to the controller via MII at a rate  
of 2.5MHz.  
This 10M receiver uses the following blocks:  
„
„
„
„
Filter and SQUELCH (analog)  
10M PLL (analog)  
RX 10M (digital)  
MII (digital)  
3.1.4.1  
3.1.4.2  
10M Receive Input and Squelch  
The Manchester signal from the cable is fed into the transceiver (on inputs RXP and RXN) via 1:1 ratio  
magnetics. It is first filtered to reduce any out-of-band noise. It then passes through a SQUELCH  
circuit. The SQUELCH is a set of amplitude and timing comparators that normally reject differential  
voltage levels below 300mV and detect and recognize differential voltages above 585mV.  
Manchester Decoding  
The output of the SQUELCH goes to the 10M RX block where it is validated as Manchester encoded  
data. The polarity of the signal is also checked. If the polarity is reversed (local RXP is connected to  
RXN of the remote partner and vice versa), the condition is identified and corrected. The reversed  
condition is indicated by the XPOL bit of the Special Control/Status Indications Register. The 10M PLL  
is locked onto the received Manchester signal, from which the 20MHz cock is generated. Using this  
clock, the Manchester encoded data is extracted and converted to a 10MHz NRZI data stream. It is  
then converted from serial to 4-bit wide parallel data.  
The 10M RX block also detects valid 10Base-T IDLE signals - Normal Link Pulses (NLPs) - to maintain  
the link.  
SMSC LAN8710A/LAN8710Ai  
25  
Revision 1.4 (08-23-12)  
DATASHEET  
®
Small Footprint MII/RMII 10/100 Ethernet Transceiver with HP Auto-MDIX and flexPWR Technology  
Datasheet  
3.1.4.3  
10M Receive Data Across the MII/RMII Interface  
For MII, the 4-bit data nibbles are sent to the MII block. In MII mode, these data nibbles are valid on  
the rising edge of the 2.5 MHz RXCLK.  
For RMII, the 2-bit data nibbles are sent to the RMII block. In RMII mode, these data nibbles are valid  
on the rising edge of the RMII REF_CLK.  
3.1.4.4  
Jabber Detection  
Jabber is a condition in which a station transmits for a period of time longer than the maximum  
permissible packet length, usually due to a fault condition, which results in holding the TXEN input for  
a long period. Special logic is used to detect the jabber state and abort the transmission to the line  
within 45ms. Once TXEN is deasserted, the logic resets the jabber condition.  
As shown in Section 4.2.2, "Basic Status Register," on page 53, the Jabber Detect bit indicates that a  
jabber condition was detected.  
3.2  
Auto-negotiation  
The purpose of the auto-negotiation function is to automatically configure the transceiver to the  
optimum link parameters based on the capabilities of its link partner. Auto-negotiation is a mechanism  
for exchanging configuration information between two link-partners and automatically selecting the  
highest performance mode of operation supported by both sides. Auto-negotiation is fully defined in  
clause 28 of the IEEE 802.3 specification.  
Once auto-negotiation has completed, information about the resolved link can be passed back to the  
controller via the Serial Management Interface (SMI). The results of the negotiation process are  
reflected in the Speed Indication bits of the PHY Special Control/Status Register, as well as in the Auto  
Negotiation Link Partner Ability Register. The auto-negotiation protocol is a purely physical layer  
activity and proceeds independently of the MAC controller.  
The advertised capabilities of the transceiver are stored in the Auto Negotiation Advertisement  
Register. The default advertised by the transceiver is determined by user-defined on-chip signal  
options.  
The following blocks are activated during an Auto-negotiation session:  
„
„
„
„
„
„
„
Auto-negotiation (digital)  
100M ADC (analog)  
100M PLL (analog)  
100M equalizer/BLW/clock recovery (DSP)  
10M SQUELCH (analog)  
10M PLL (analog)  
10M Transmitter (analog)  
When enabled, auto-negotiation is started by the occurrence of one of the following events:  
„
„
„
„
„
Hardware reset  
Software reset  
Power-down reset  
Link status down  
Setting the Restart Auto-Negotiate bit of the Basic Control Register  
On detection of one of these events, the transceiver begins auto-negotiation by transmitting bursts of  
Fast Link Pulses (FLP), which are bursts of link pulses from the 10M transmitter. They are shaped as  
Normal Link Pulses and can pass uncorrupted down CAT-3 or CAT-5 cable. A Fast Link Pulse Burst  
Revision 1.4 (08-23-12)  
26  
SMSC LAN8710A/LAN8710Ai  
DATASHEET  
®
Small Footprint MII/RMII 10/100 Ethernet Transceiver with HP Auto-MDIX and flexPWR Technology  
Datasheet  
consists of up to 33 pulses. The 17 odd-numbered pulses, which are always present, frame the FLP  
burst. The 16 even-numbered pulses, which may be present or absent, contain the data word being  
transmitted. Presence of a data pulse represents a “1”, while absence represents a “0”.  
The data transmitted by an FLP burst is known as a “Link Code Word.” These are defined fully in IEEE  
802.3 clause 28. In summary, the transceiver advertises 802.3 compliance in its selector field (the first  
5 bits of the Link Code Word). It advertises its technology ability according to the bits set in the Auto  
Negotiation Advertisement Register.  
There are 4 possible matches of the technology abilities. In the order of priority these are:  
„
„
„
„
100M Full Duplex (Highest Priority)  
100M Half Duplex  
10M Full Duplex  
10M Half Duplex (Lowest Priority)  
If the full capabilities of the transceiver are advertised (100M, Full Duplex), and if the link partner is  
capable of 10M and 100M, then auto-negotiation selects 100M as the highest performance mode. If  
the link partner is capable of half and full duplex modes, then auto-negotiation selects full duplex as  
the highest performance operation.  
Once a capability match has been determined, the link code words are repeated with the acknowledge  
bit set. Any difference in the main content of the link code words at this time will cause auto-negotiation  
to re-start. Auto-negotiation will also re-start if not all of the required FLP bursts are received.  
The capabilities advertised during auto-negotiation by the transceiver are initially determined by the  
logic levels latched on the MODE[2:0] configuration straps after reset completes. These configuration  
straps can also be used to disable auto-negotiation on power-up. Refer to Section 3.7.2, "MODE[2:0]:  
Mode Configuration," on page 36 for additional information.  
Writing the bits 8 through 5 of the Auto Negotiation Advertisement Register allows software control of  
the capabilities advertised by the transceiver. Writing the Auto Negotiation Advertisement Register  
does not automatically re-start auto-negotiation. The Restart Auto-Negotiate bit of the Basic Control  
Register must be set before the new abilities will be advertised. Auto-negotiation can also be disabled  
via software by clearing the Auto-Negotiation Enable bit of the Basic Control Register.  
Note: The device does not support “Next Page” capability.  
3.2.1  
Parallel Detection  
If the LAN8710A/LAN8710Ai is connected to a device lacking the ability to auto-negotiate (i.e. no FLPs  
are detected), it is able to determine the speed of the link based on either 100M MLT-3 symbols or  
10M Normal Link Pulses. In this case the link is presumed to be half duplex per the IEEE standard.  
This ability is known as “Parallel Detection.” This feature ensures interoperability with legacy link  
partners. If a link is formed via parallel detection, then the Link Partner Auto-Negotiation Able bit of the  
Auto Negotiation Expansion Register is cleared to indicate that the Link Partner is not capable of auto-  
negotiation. The controller has access to this information via the management interface. If a fault  
occurs during parallel detection, the Parallel Detection Fault bit of Link Partner Auto-Negotiation Able  
is set.  
Auto Negotiation Link Partner Ability Register is used to store the link partner ability information, which  
is coded in the received FLPs. If the link partner is not auto-negotiation capable, then the Auto  
Negotiation Link Partner Ability Register is updated after completion of parallel detection to reflect the  
speed capability of the link partner.  
3.2.2  
Restarting Auto-negotiation  
Auto-negotiation can be restarted at any time by setting the Restart Auto-Negotiate bit of the Basic  
Control Register. Auto-negotiation will also restart if the link is broken at any time. A broken link is  
caused by signal loss. This may occur because of a cable break, or because of an interruption in the  
SMSC LAN8710A/LAN8710Ai  
27  
Revision 1.4 (08-23-12)  
DATASHEET  
®
Small Footprint MII/RMII 10/100 Ethernet Transceiver with HP Auto-MDIX and flexPWR Technology  
Datasheet  
signal transmitted by the link partner. Auto-negotiation resumes in an attempt to determine the new  
link configuration.  
If the management entity re-starts auto-negotiation by setting the Restart Auto-Negotiate bit of the  
Basic Control Register, the LAN8710A/LAN8710Ai will respond by stopping all transmission/receiving  
operations. Once the break_link_timer is completed in the Auto-negotiation state-machine  
(approximately 1200ms), auto-negotiation will re-start. In this case, the link partner will have also  
dropped the link due to lack of a received signal, so it too will resume auto-negotiation.  
3.2.3  
3.2.4  
Disabling Auto-negotiation  
Auto-negotiation can be disabled by setting the Auto-Negotiation Enable bit of the Basic Control  
Register to zero. The device will then force its speed of operation to reflect the information in the Basic  
Control Register (Speed Select bit and Duplex Mode bit). These bits should be ignored when auto-  
negotiation is enabled.  
Half vs. Full Duplex  
Half duplex operation relies on the CSMA/CD (Carrier Sense Multiple Access / Collision Detect)  
protocol to handle network traffic and collisions. In this mode, the carrier sense signal, CRS, responds  
to both transmit and receive activity. If data is received while the transceiver is transmitting, a collision  
results.  
In full duplex mode, the transceiver is able to transmit and receive data simultaneously. In this mode,  
CRS responds only to receive activity. The CSMA/CD protocol does not apply and collision detection  
is disabled.  
Revision 1.4 (08-23-12)  
28  
SMSC LAN8710A/LAN8710Ai  
DATASHEET  
®
Small Footprint MII/RMII 10/100 Ethernet Transceiver with HP Auto-MDIX and flexPWR Technology  
Datasheet  
3.3  
HP Auto-MDIX Support  
HP Auto-MDIX facilitates the use of CAT-3 (10BASE-T) or CAT-5 (100BASE-T) media UTP  
interconnect cable without consideration of interface wiring scheme. If a user plugs in either a direct  
connect LAN cable, or a cross-over patch cable, as shown in Figure 3.4, the device’s Auto-MDIX  
transceiver is capable of configuring the TXP/TXN and RXP/RXN pins for correct transceiver operation.  
The internal logic of the device detects the TX and RX pins of the connecting device. Since the RX  
and TX line pairs are interchangeable, special PCB design considerations are needed to accommodate  
the symmetrical magnetics and termination of an Auto-MDIX design.  
The Auto-MDIX function can be disabled via the AMDIXCTRL bit in the Special Control/Status  
Indications Register.  
RJ-45 8-pin straight-through  
for 10BASE-T/100BASE-TX  
signaling  
RJ-45 8-pin cross-over for  
10BASE-T/100BASE-TX  
signaling  
TXP  
TXN  
TXP  
TXP  
TXN  
TXP  
1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
1
1
2
3
4
5
6
7
8
TXN  
TXN  
2
3
4
5
6
7
8
RXP  
RXP  
RXP  
RXP  
Not Used  
Not Used  
RXN  
Not Used  
Not Used  
RXN  
Not Used  
Not Used  
RXN  
Not Used  
Not Used  
RXN  
Not Used  
Not Used  
Not Used  
Not Used  
Not Used  
Not Used  
Not Used  
Not Used  
Direct Connect Cable  
Cross-Over Cable  
Figure 3.4 Direct Cable Connection vs. Cross-over Cable Connection  
SMSC LAN8710A/LAN8710Ai  
29  
Revision 1.4 (08-23-12)  
DATASHEET  
®
Small Footprint MII/RMII 10/100 Ethernet Transceiver with HP Auto-MDIX and flexPWR Technology  
Datasheet  
3.4  
MAC Interface  
The MII/RMII block is responsible for communication with the MAC controller. Special sets of hand-  
shake signals are used to indicate that valid received/transmitted data is present on the 4 bit  
receive/transmit bus.  
The device must be configured in MII or RMII mode. This is done by specific pin strapping  
configurations. Refer to Section 3.4.3, "MII vs. RMII Configuration," on page 31 for information on pin  
strapping and how the pins are mapped differently.  
3.4.1  
MII  
The MII includes 16 interface signals:  
„
„
„
„
„
„
„
„
„
„
transmit data - TXD[3:0]  
transmit strobe - TXEN  
transmit clock - TXCLK  
transmit error - TXER/TXD4  
receive data - RXD[3:0]  
receive strobe - RXDV  
receive clock - RXCLK  
receive error - RXER/RXD4/PHYAD0  
collision indication - COL  
carrier sense - CRS  
In MII mode, on the transmit path, the transceiver drives the transmit clock, TXCLK, to the controller.  
The controller synchronizes the transmit data to the rising edge of TXCLK. The controller drives TXEN  
high to indicate valid transmit data. The controller drives TXER high when a transmit error is detected.  
On the receive path, the transceiver drives both the receive data, RXD[3:0], and the RXCLK signal.  
The controller clocks in the receive data on the rising edge of RXCLK when the transceiver drives  
RXDV high. The transceiver drives RXER high when a receive error is detected.  
3.4.2  
RMII  
The device supports the low pin count Reduced Media Independent Interface (RMII) intended for use  
between Ethernet transceivers and switch ASICs. Under IEEE 802.3, an MII comprised of 16 pins for  
data and control is defined. In devices incorporating many MACs or transceiver interfaces such as  
switches, the number of pins can add significant cost as the port counts increase. RMII reduces this  
pin count while retaining a management interface (MDIO/MDC) that is identical to MII.  
The RMII interface has the following characteristics:  
„
„
„
„
It is capable of supporting 10Mbps and 100Mbps data rates  
A single clock reference is used for both transmit and receive  
It provides independent 2-bit (di-bit) wide transmit and receive data paths  
It uses LVCMOS signal levels, compatible with common digital CMOS ASIC processes  
The RMII includes the following interface signals (1 optional):  
„
„
„
„
transmit data - TXD[1:0]  
transmit strobe - TXEN  
receive data - RXD[1:0]  
receive error - RXER (Optional)  
Revision 1.4 (08-23-12)  
30  
SMSC LAN8710A/LAN8710Ai  
DATASHEET  
®
Small Footprint MII/RMII 10/100 Ethernet Transceiver with HP Auto-MDIX and flexPWR Technology  
Datasheet  
„
„
carrier sense - CRS_DV  
Reference Clock - (RMII references usually define this signal as REF_CLK)  
3.4.2.1  
CRS_DV - Carrier Sense/Receive Data Valid  
The CRS_DV is asserted by the device when the receive medium is non-idle. CRS_DV is asserted  
asynchronously on detection of carrier due to the criteria relevant to the operating mode. In 10BASE-  
T mode when squelch is passed, or in 100BASE-X mode when 2 non-contiguous zeroes in 10 bits are  
detected, the carrier is said to be detected.  
Loss of carrier shall result in the deassertion of CRS_DV synchronous to the cycle of REF_CLK which  
presents the first di-bit of a nibble onto RXD[1:0] (i.e. CRS_DV is deasserted only on nibble  
boundaries). If the device has additional bits to be presented on RXD[1:0] following the initial  
deassertion of CRS_DV, then the device shall assert CRS_DV on cycles of REF_CLK which present  
the second di-bit of each nibble and de-assert CRS_DV on cycles of REF_CLK which present the first  
di-bit of a nibble. The result is, starting on nibble boundaries, CRS_DV toggles at 25 MHz in 100Mbps  
mode and 2.5 MHz in 10Mbps mode when CRS ends before RXDV (i.e. the FIFO still has bits to  
transfer when the carrier event ends). Therefore, the MAC can accurately recover RXDV and CRS.  
During a false carrier event, CRS_DV shall remain asserted for the duration of carrier activity. The data  
on RXD[1:0] is considered valid once CRS_DV is asserted. However, since the assertion of CRS_DV  
is asynchronous relative to REF_CLK, the data on RXD[1:0] shall be “00” until proper receive signal  
decoding takes place.  
3.4.2.2  
Reference Clock (REF_CLK)  
The RMII REF_CLK is a continuous clock that provides the timing reference for CRS_DV, RXD[1:0],  
TXEN, TXD[1:0] and RXER. The device uses REF_CLK as the network clock such that no buffering  
is required on the transmit data path. However, on the receive data path, the receiver recovers the  
clock from the incoming data stream, and the device uses elasticity buffering to accommodate for  
differences between the recovered clock and the local REF_CLK.  
3.4.3  
MII vs. RMII Configuration  
The device must be configured to support the MII or RMII bus for connectivity to the MAC. This  
configuration is done via the RMIISEL configuration strap. MII or RMII mode selection is configured  
based on the strapping of the RMIISEL configuration strap as described in Section 3.7.3, "RMIISEL:  
MII/RMII Mode Configuration," on page 37.  
Most of the MII and RMII pins are multiplexed. Table 3.2, "MII/RMII Signal Mapping" describes the  
relationship of the related device pins to the MII and RMII mode signal names.  
SMSC LAN8710A/LAN8710Ai  
31  
Revision 1.4 (08-23-12)  
DATASHEET  
®
Small Footprint MII/RMII 10/100 Ethernet Transceiver with HP Auto-MDIX and flexPWR Technology  
Datasheet  
Table 3.2 MII/RMII Signal Mapping  
PIN NAME  
MII MODE  
RMII MODE  
TXD0  
TXD1  
TXEN  
TXD0  
TXD1  
TXEN  
RXER  
TXD0  
TXD1  
TXEN  
RXER/  
RXER  
RXD4/PHYAD0  
Note 3.2  
COL/CRS_DV/MODE2  
RXD0/MODE0  
RXD1/MODE1  
TXD2  
COL  
RXD0  
RXD1  
TXD2  
TXD3  
CRS_DV  
RXD0  
RXD1  
Note 3.1  
Note 3.1  
TXD3  
nINT/TXER/TXD4  
TXER/  
TXD4  
CRS  
CRS  
RXDV  
RXDV  
RXD2/RMIISEL  
RXD3/PHYAD2  
TXCLK  
RXD2  
RXD3  
TXCLK  
RXCLK/PHYAD1  
XTAL1/CLKIN  
RXCLK  
XTAL1/CLKIN  
REF_CLK  
Note 3.1 In RMII mode, this pin needs to tied to VSS.  
Note 3.2 The RXER signal is optional on the RMII bus. This signal is required by the transceiver,  
but it is optional for the MAC. The MAC can choose to ignore or not use this signal.  
Revision 1.4 (08-23-12)  
32  
SMSC LAN8710A/LAN8710Ai  
DATASHEET  
®
Small Footprint MII/RMII 10/100 Ethernet Transceiver with HP Auto-MDIX and flexPWR Technology  
Datasheet  
3.5  
Serial Management Interface (SMI)  
The Serial Management Interface is used to control the device and obtain its status. This interface  
supports registers 0 through 6 as required by Clause 22 of the 802.3 standard, as well as “vendor-  
specific” registers 16 to 31 allowed by the specification. Non-supported registers (such as 7 to 15) will  
be read as hexadecimal “FFFF”. Device registers are detailed in Chapter 4, "Register Descriptions,"  
on page 50.  
At the system level, SMI provides 2 signals: MDIO and MDC. The MDC signal is an aperiodic clock  
provided by the station management controller (SMC). MDIO is a bi-directional data SMI input/output  
signal that receives serial data (commands) from the controller SMC and sends serial data (status) to  
the SMC. The minimum time between edges of the MDC is 160 ns. There is no maximum time  
between edges. The minimum cycle time (time between two consecutive rising or two consecutive  
falling edges) is 400 ns. These modest timing requirements allow this interface to be easily driven by  
the I/O port of a microcontroller.  
The data on the MDIO line is latched on the rising edge of the MDC. The frame structure and timing  
of the data is shown in Figure 3.5 and Figure 3.6. The timing relationships of the MDIO signals are  
further described in Section 5.5.6, "SMI Timing," on page 76.  
Read Cycle  
MDC  
...  
D1  
D15 D14  
D0  
32 1's  
0
1
1
0
A4 A3 A2 A1 A0 R4 R3 R2 R1 R0  
...  
MDIO  
Start of  
Frame  
OP  
Code  
Turn  
Around  
Preamble  
PHY Address  
Register Address  
Data  
Data To Phy  
Data From Phy  
Figure 3.5 MDIO Timing and Frame Structure - READ Cycle  
Write Cycle  
MDC  
...  
D15 D14  
D1  
D0  
32 1's  
0
1
0
1
A4 A3 A2 A1 A0 R4 R3 R2 R1 R0  
PHY Address Register Address  
...  
MDIO  
Start of  
Frame  
OP  
Code  
Turn  
Around  
Preamble  
Data  
Data To Phy  
Figure 3.6 MDIO Timing and Frame Structure - WRITE Cycle  
SMSC LAN8710A/LAN8710Ai  
33  
Revision 1.4 (08-23-12)  
DATASHEET  
®
Small Footprint MII/RMII 10/100 Ethernet Transceiver with HP Auto-MDIX and flexPWR Technology  
Datasheet  
3.6  
Interrupt Management  
The device management interface supports an interrupt capability that is not a part of the IEEE 802.3  
specification. This interrupt capability generates an active low asynchronous interrupt signal on the  
nINT output whenever certain events are detected as setup by the Interrupt Mask Register.  
The device’s interrupt system provides two modes, a Primary Interrupt mode and an Alternative  
interrupt mode. Both systems will assert the nINT pin low when the corresponding mask bit is set.  
These modes differ only in how they de-assert the nINT interrupt output. These modes are detailed in  
the following subsections.  
Note: The Primary interrupt mode is the default interrupt mode after a power-up or hard reset. The  
Alternative interrupt mode requires setup after a power-up or hard reset.  
3.6.1  
Primary Interrupt System  
The Primary interrupt system is the default interrupt mode (ALTINT bit of the Mode Control/Status  
Register is “0”). The Primary interrupt system is always selected after power-up or hard reset. In this  
mode, to set an interrupt, set the corresponding mask bit in the Interrupt Mask Register (see Table 3.3).  
Then when the event to assert nINT is true, the nINT output will be asserted. When the corresponding  
event to deassert nINT is true, then the nINT will be de-asserted.  
Table 3.3 Interrupt Management Table  
INTERRUPT SOURCE  
FLAG  
EVENT TO  
ASSERT nINT  
EVENT TO  
DE-ASSERT nINT  
MASK  
INTERRUPT SOURCE  
30.7  
29.7  
ENERGYON  
17.1  
ENERGYON  
Rising 17.1  
(Note 3.3)  
Falling 17.1 or  
Reading register 29  
30.6  
30.5  
29.6  
29.5  
Auto-Negotiation  
complete  
1.5  
1.4  
Auto-Negotiate  
Complete  
Rising 1.5  
Falling 1.5 or  
Reading register 29  
Remote Fault  
Detected  
Remote Fault  
Rising 1.4  
Falling 1.4, or  
Reading register 1 or  
Reading register 29  
30.4  
30.3  
30.2  
29.4  
29.3  
29.2  
Link Down  
1.2  
Link Status  
Falling 1.2  
Rising 5.14  
Rising 6.4  
Reading register 1 or  
Reading register 29  
Auto-Negotiation  
LP Acknowledge  
5.14  
6.4  
Acknowledge  
Falling 5.14 or  
Read register 29  
Parallel Detection  
Fault  
Parallel  
Detection Fault  
Falling 6.4 or  
Reading register 6, or  
Reading register 29  
or  
Re-Auto Negotiate or  
Link down  
30.1  
29.1  
Auto-Negotiation  
Page Received  
6.1  
Page Received  
Rising 6.1  
Falling of 6.1 or  
Reading register 6, or  
Reading register 29  
Re-Auto Negotiate, or  
Link Down.  
Note 3.3 If the mask bit is enabled and nINT has been de-asserted while ENERGYON is still high,  
nINT will assert for 256 ms, approximately one second after ENERGYON goes low when  
the Cable is unplugged. To prevent an unexpected assertion of nINT, the ENERGYON  
interrupt mask should always be cleared as part of the ENERGYON interrupt service  
routine.  
Revision 1.4 (08-23-12)  
34  
SMSC LAN8710A/LAN8710Ai  
DATASHEET  
®
Small Footprint MII/RMII 10/100 Ethernet Transceiver with HP Auto-MDIX and flexPWR Technology  
Datasheet  
Note: The ENERGYON bit in the Mode Control/Status Register is defaulted to a ‘1’ at the start of the  
signal acquisition process, therefore the INT7 bit in the Interrupt Mask Register will also read  
as a ‘1’ at power-up. If no signal is present, then both ENERGYON and INT7 will clear within  
a few milliseconds.  
3.6.2  
Alternate Interrupt System  
The Alternate interrupt system is enabled by setting the ALTINT bit of the Mode Control/Status Register  
to “1”. In this mode, to set an interrupt, set the corresponding bit of the in the Mask Register 30, (see  
Table 3.4). To Clear an interrupt, either clear the corresponding bit in the Interrupt Mask Register to  
deassert the nINT output, or clear the interrupt source, and write a ‘1’ to the corresponding Interrupt  
Source Flag. Writing a ‘1’ to the Interrupt Source Flag will cause the state machine to check the  
Interrupt Source to determine if the Interrupt Source Flag should clear or stay as a ‘1’. If the Condition  
to deassert is true, then the Interrupt Source Flag is cleared and nINT is also deasserted. If the  
Condition to deassert is false, then the Interrupt Source Flag remains set, and the nINT remains  
asserted.  
For example, setting the INT7 bit in the Interrupt Mask Register will enable the ENERGYON interrupt.  
After a cable is plugged in, the ENERGYON bit in the Mode Control/Status Register goes active and  
nINT will be asserted low. To de-assert the nINT interrupt output, either clear the ENERGYON bit in  
the Mode Control/Status Register by removing the cable and then writing a ‘1’ to the INT7 bit in the  
Interrupt Mask Register, OR clear the INT7 mask (bit 7 of the Interrupt Mask Register).  
Table 3.4 Alternative Interrupt System Management Table  
CONDITION  
TO  
DE-ASSERT  
BIT TO  
CLEAR  
nINT  
INTERRUPT SOURCE  
FLAG  
EVENT TO  
ASSERT nINT  
MASK  
INTERRUPT SOURCE  
30.7  
30.6  
29.7  
29.6  
ENERGYON  
17.1 ENERGYON  
Rising 17.1  
Rising 1.5  
17.1 low  
1.5 low  
29.7  
Auto-Negotiation  
complete  
1.5  
1.4  
1.2  
Auto-Negotiate  
Complete  
29.6  
29.5  
30.5  
29.5  
Remote Fault  
Detected  
Remote Fault  
Rising 1.4  
1.4 low  
30.4  
30.3  
29.4  
29.3  
Link Down  
Link Status  
Falling 1.2  
Rising 5.14  
1.2 high  
5.14 low  
29.4  
29.3  
Auto-Negotiation  
LP Acknowledge  
5.14 Acknowledge  
30.2  
30.1  
29.2  
29.1  
Parallel  
6.4  
6.1  
Parallel Detection  
Fault  
Rising 6.4  
Rising 6.1  
6.4 low  
6.1 low  
29.2  
29.1  
Detection Fault  
Auto-Negotiation  
Page Received  
Page Received  
Note: The ENERGYON bit in the Mode Control/Status Register is defaulted to a ‘1’ at the start of the  
signal acquisition process, therefore the INT7 bit in the Interrupt Mask Register will also read  
as a ‘1’ at power-up. If no signal is present, then both ENERGYON and INT7 will clear within  
a few milliseconds.  
SMSC LAN8710A/LAN8710Ai  
35  
Revision 1.4 (08-23-12)  
DATASHEET  
®
Small Footprint MII/RMII 10/100 Ethernet Transceiver with HP Auto-MDIX and flexPWR Technology  
Datasheet  
3.7  
Configuration Straps  
Configuration straps allow various features of the device to be automatically configured to user defined  
values. Configuration straps are latched upon Power-On Reset (POR) and pin reset (nRST).  
Configuration straps include internal resistors in order to prevent the signal from floating when  
unconnected. If a particular configuration strap is connected to a load, an external pull-up or pull-down  
resistor should be used to augment the internal resistor to ensure that it reaches the required voltage  
level prior to latching. The internal resistor can also be overridden by the addition of an external  
resistor.  
Note: The system designer must guarantee that configuration strap pins meet the timing  
requirements specified in Section 5.5.3, "Power-On nRST & Configuration Strap Timing," on  
page 72. If configuration strap pins are not at the correct voltage level prior to being latched,  
the device may capture incorrect strap values.  
Note: When externally pulling configuration straps high, the strap should be tied to VDDIO, except  
for REGOFF and nINTSEL which should be tied to VDD2A.  
3.7.1  
PHYAD[2:0]: PHY Address Configuration  
The PHYAD[2:0] configuration straps are driven high or low to give each PHY a unique address. This  
address is latched into an internal register at the end of a hardware reset (default = 000b). In a multi-  
transceiver application (such as a repeater), the controller is able to manage each transceiver via the  
unique address. Each transceiver checks each management data frame for a matching address in the  
relevant bits. When a match is recognized, the transceiver responds to that particular frame. The PHY  
address is also used to seed the scrambler. In a multi-transceiver application, this ensures that the  
scramblers are out of synchronization and disperses the electromagnetic radiation across the  
frequency spectrum.  
The device’s SMI address may be configured using hardware configuration to any value between 0  
and 7. The user can configure the PHY address using Software Configuration if an address greater  
than 7 is required. The PHY address can be written (after SMI communication at some address is  
established) using the PHYAD bits of the Special Modes Register. The PHYAD[2:0] configuration straps  
are multiplexed with other signals as shown in Table 3.5.  
Table 3.5 Pin Names for Address Bits  
ADDRESS BIT  
PIN NAME  
PHYAD[0]  
PHYAD[1]  
PHYAD[2]  
RXER/RXD4/PHYAD0  
RXCLK/PHYAD1  
RXD3/PHYAD2  
3.7.2  
MODE[2:0]: Mode Configuration  
The MODE[2:0] configuration straps control the configuration of the 10/100 digital block. When the  
nRST pin is deasserted, the register bit values are loaded according to the MODE[2:0] configuration  
straps. The 10/100 digital block is then configured by the register bit values. When a soft reset occurs  
via the Soft Reset bit of the Basic Control Register, the configuration of the 10/100 digital block is  
controlled by the register bit values and the MODE[2:0] configuration straps have no affect.  
The device’s mode may be configured using the hardware configuration straps as summarized in  
Table 3.6. The user may configure the transceiver mode by writing the SMI registers.  
Revision 1.4 (08-23-12)  
36  
SMSC LAN8710A/LAN8710Ai  
DATASHEET  
®
Small Footprint MII/RMII 10/100 Ethernet Transceiver with HP Auto-MDIX and flexPWR Technology  
Datasheet  
Table 3.6 MODE[2:0] Bus  
DEFAULT REGISTER BIT VALUES  
MODE[2:0]  
MODE DEFINITIONS  
REGISTER 0  
[13,12,10,8]  
REGISTER 4  
[8,7,6,5]  
000  
001  
010  
10Base-T Half Duplex. Auto-negotiation disabled.  
10Base-T Full Duplex. Auto-negotiation disabled.  
0000  
0001  
1000  
N/A  
N/A  
N/A  
100Base-TX Half Duplex. Auto-negotiation  
disabled.  
CRS is active during Transmit & Receive.  
011  
100  
100Base-TX Full Duplex. Auto-negotiation disabled.  
CRS is active during Receive.  
1001  
1100  
N/A  
100Base-TX Half Duplex is advertised. Auto-  
negotiation enabled.  
CRS is active during Transmit & Receive.  
0100  
101  
110  
Repeater mode. Auto-negotiation enabled.  
100Base-TX Half Duplex is advertised.  
CRS is active during Receive.  
1100  
N/A  
0100  
N/A  
Power Down mode. In this mode the transceiver will  
wake-up in Power-Down mode. The transceiver  
cannot be used when the MODE[2:0] bits are set to  
this mode. To exit this mode, the MODE bits in  
Register 18.7:5(see Section 4.2.9, "Special Modes  
Register," on page 60) must be configured to some  
other value and a soft reset must be issued.  
111  
All capable. Auto-negotiation enabled.  
X10X  
1111  
The MODE[2:0] hardware configuration pins are multiplexed with other signals as shown in Table 3.7.  
Table 3.7 Pin Names for Mode Bits  
MODE BIT  
PIN NAME  
MODE[0]  
MODE[1]  
MODE[2]  
RXD0/MODE0  
RXD1/MODE1  
COL/CRS_DV/MODE2  
3.7.3  
RMIISEL: MII/RMII Mode Configuration  
MII or RMII mode selection is latched on the rising edge of the internal reset (nRST) based on the  
strapping of the RMIISEL configuration strap. The default mode is MII (via the internal pull-down  
resistor). To select RMII mode, pull the RMIISEL configuration strap high with an external resistor to  
VDDIO.  
When the nRST pin is deasserted, the MIIMODE bit of the Special Modes Register is loaded according  
to the RMIISEL configuration strap. The mode is reflected in the MIIMODE bit of the Special Modes  
Register.  
Refer to Section 3.4, "MAC Interface," on page 30 for additional information on MII and RMII modes.  
SMSC LAN8710A/LAN8710Ai  
37  
Revision 1.4 (08-23-12)  
DATASHEET  
®
Small Footprint MII/RMII 10/100 Ethernet Transceiver with HP Auto-MDIX and flexPWR Technology  
Datasheet  
3.7.4  
REGOFF: Internal +1.2V Regulator Configuration  
The incorporation of flexPWR technology provides the ability to disable the internal +1.2V regulator.  
When the regulator is disabled, an external +1.2V must be supplied to the VDDCR pin. Disabling the  
internal +1.2V regulator makes it possible to reduce total system power, since an external switching  
regulator with greater efficiency (versus the internal linear regulator) can be used to provide +1.2V to  
the transceiver circuitry.  
Note: Because the REGOFF configuration strap shares functionality with the LED1 pin, proper  
consideration must also be given to the LED polarity. Refer to Section 3.8.1.1, "REGOFF and  
LED1 Polarity Selection," on page 39 for additional information on the relation between  
REGOFF and the LED1 polarity.  
3.7.4.1  
Disabling the Internal +1.2V Regulator  
To disable the +1.2V internal regulator, a pull-up strapping resistor should be connected from the  
REGOFF configuration strap to VDD2A. At power-on, after both VDDIO and VDD2A are within  
specification, the transceiver will sample REGOFF to determine whether the internal regulator should  
turn on. If the pin is sampled at a voltage greater than VIH, then the internal regulator is disabled and  
the system must supply +1.2V to the VDDCR pin. The VDDIO voltage must be at least 80% of the  
operating voltage level (1.44V when operating at 1.8V, 2.0V when operating at 2.5V, 2.64V when  
operating at 3.3V) before voltage is applied to VDDCR. As described in Section 3.7.4.2, when  
REGOFF is left floating or connected to VSS, the internal regulator is enabled and the system is not  
required to supply +1.2V to the VDDCR pin.  
3.7.4.2  
Enabling the Internal +1.2V Regulator  
The +1.2V for VDDCR is supplied by the on-chip regulator unless the transceiver is configured for the  
regulator off mode using the REGOFF configuration strap as described in Section 3.7.4.1. By default,  
the internal +1.2V regulator is enabled when REGOFF is floating (due to the internal pull-down  
resistor). During power-on, if REGOFF is sampled below VIL, then the internal +1.2V regulator will turn  
on and operate with power from the VDD2A pin.  
3.7.5  
nINTSEL: nINT/TXER/TXD4 Configuration  
The nINT, TXER, and TXD4 functions share a common pin. There are two functional modes for this  
pin, the TXER/TXD4 mode and nINT (interrupt) mode. The nINTSEL configuration strap is latched at  
POR and on the rising edge of the nRST. By default, nINTSEL is configured for nINT mode via the  
internal pull-up resistor.  
Note: Because the nINTSEL configuration strap shares functionality with the LED2 pin, proper  
consideration must also be given to the LED polarity. Refer to Section 3.8.1.2, "nINTSEL and  
LED2 Polarity Selection," on page 39 for additional information on the relation between  
nINTSEL and the LED2 polarity.  
Revision 1.4 (08-23-12)  
38  
SMSC LAN8710A/LAN8710Ai  
DATASHEET  
®
Small Footprint MII/RMII 10/100 Ethernet Transceiver with HP Auto-MDIX and flexPWR Technology  
Datasheet  
3.8  
Miscellaneous Functions  
3.8.1  
LEDs  
Two LED signals are provided as a convenient means to determine the transceiver's mode of  
operation. All LED signals are either active high or active low as described in Section 3.8.1.2,  
"nINTSEL and LED2 Polarity Selection" and Section 3.8.1.1, "REGOFF and LED1 Polarity Selection,"  
on page 39.  
The LED1 output is driven active whenever the device detects a valid link, and blinks when CRS is  
active (high) indicating activity.  
The LED2 output is driven active when the operating speed is 100Mbps. This LED will go inactive  
when the operating speed is 10Mbps or during line isolation.  
Note: When pulling the LED1 and LED2 pins high, they must be tied to VDD2A, NOT VDDIO.  
3.8.1.1  
REGOFF and LED1 Polarity Selection  
The REGOFF configuration strap is shared with the LED1 pin. The LED1 output will automatically  
change polarity based on the presence of an external pull-up resistor. If the LED1 pin is pulled high to  
VDD2A by an external pull-up resistor to select a logical high for REGOFF, then the LED1 output will  
be active low. If the LED1 pin is pulled low by the internal pull-down resistor to select a logical low for  
REGOFF, the LED1 output will then be an active high output. Figure 3.7 details the LED1 polarity for  
each REGOFF configuration.  
REGOFF = 1 (Regulator OFF)  
LED output = Active Low  
REGOFF = 0 (Regulator ON)  
LED output = Active High  
VDD2A  
LED1/REGOFF  
10K  
~270 ohms  
~270 ohms  
LED1/REGOFF  
Figure 3.7 LED1/REGOFF Polarity Configuration  
Note: Refer to Section 3.7.4, "REGOFF: Internal +1.2V Regulator Configuration," on page 38 for  
additional information on the REGOFF configuration strap.  
3.8.1.2  
nINTSEL and LED2 Polarity Selection  
The nINTSEL configuration strap is shared with the LED2 pin. The LED2 output will automatically  
change polarity based on the presence of an external pull-down resistor. If the LED2 pin is pulled high  
to VDD2A to select a logical high for nINTSEL, then the LED2 output will be active low. If the LED2  
SMSC LAN8710A/LAN8710Ai  
39  
Revision 1.4 (08-23-12)  
DATASHEET  
®
Small Footprint MII/RMII 10/100 Ethernet Transceiver with HP Auto-MDIX and flexPWR Technology  
Datasheet  
pin is pulled low by an external pull-down resistor to select a logical low for nINTSEL, the LED2 output  
will then be an active high output. Figure 3.8 details the LED2 polarity for each nINTSEL configuration.  
nINTSEL = 1  
nINTSEL = 0  
LED output = Active Low  
LED output = Active High  
VDD2A  
LED2/nINTSEL  
10K  
~270 ohms  
~270 ohms  
LED2/nINTSEL  
Figure 3.8 LED2/nINTSEL Polarity Configuration  
Note: Refer to Section 3.7.5, "nINTSEL: nINT/TXER/TXD4 Configuration," on page 38 for additional  
information on the nINTSEL configuration strap.  
3.8.2  
Variable Voltage I/O  
The device’s digital I/O pins are variable voltage, allowing them to take advantage of low power savings  
from shrinking technologies. These pins can operate from a low I/O voltage of +1.62V up to +3.6V.  
The applied I/O voltage must maintain its value with a tolerance of ± 10%. Varying the voltage up or  
down after the transceiver has completed power-on reset can cause errors in the transceiver operation.  
Refer to Chapter 5, "Operational Characteristics," on page 66 for additional information.  
Note: Input signals must not be driven high before power is applied to the device.  
3.8.3  
Power-Down Modes  
There are two device power-down modes: General Power-Down Mode and Energy Detect Power-  
Down Mode. These modes are described in the following subsections.  
3.8.3.1  
General Power-Down  
This power-down mode is controlled via the Power Down bit of the Basic Control Register. In this  
mode, the entire transceiver (except the management interface) is powered-down and remains in this  
mode as long as the Power Down bit is “1”. When the Power Down bit is cleared, the transceiver  
powers up and is automatically reset.  
3.8.3.2  
Energy Detect Power-Down  
This power-down mode is activated by setting the EDPWRDOWN bit of the Mode Control/Status  
Register. In this mode, when no energy is present on the line the transceiver is powered down (except  
for the management interface, the SQUELCH circuit, and the ENERGYON logic). The ENERGYON  
logic is used to detect the presence of valid energy from 100BASE-TX, 10BASE-T, or Auto-negotiation  
signals.  
In this mode, when the ENERGYON bit of the Mode Control/Status Register is low, the transceiver is  
powered-down and nothing is transmitted. When energy is received via link pulses or packets, the  
ENERGYON bit goes high and the transceiver powers-up. The device automatically resets into the  
Revision 1.4 (08-23-12)  
40  
SMSC LAN8710A/LAN8710Ai  
DATASHEET  
®
Small Footprint MII/RMII 10/100 Ethernet Transceiver with HP Auto-MDIX and flexPWR Technology  
Datasheet  
state prior to power-down and asserts the nINT interrupt if the ENERGYON interrupt is enabled in the  
Interrupt Mask Register. The first and possibly the second packet to activate ENERGYON may be lost.  
When the EDPWRDOWN bit of the Mode Control/Status Register is low, energy detect power-down is  
disabled.  
3.8.4  
3.8.5  
Isolate Mode  
The device data paths may be electrically isolated from the MII/RMII interface by setting the Isolate bit  
of the Basic Control Register to “1”. In isolation mode, the transceiver does not respond to the TXD,  
TXEN and TXER inputs, but does respond to management transactions.  
Isolation provides a means for multiple transceivers to be connected to the same MII/RMII interface  
without contention. By default, the transceiver is not isolated (on power-up (Isolate=0).  
Resets  
The device provides two forms of reset: Hardware and Software. The device registers are reset by  
both Hardware and Software resets. Select register bits, indicated as “NASR” in the register definitions,  
are not cleared by a Software reset. The registers are not reset by the power-down modes described  
in Section 3.8.3.  
Note: For the first 16us after coming out of reset, the MII/RMII interface will run at 2.5 MHz. After this  
time, it will switch to 25 MHz if auto-negotiation is enabled.  
3.8.5.1  
Hardware Reset  
A Hardware reset is asserted by driving the nRST input pin low. When driven, nRST should be held  
low for the minimum time detailed in Section 5.5.3, "Power-On nRST & Configuration Strap Timing,"  
on page 72 to ensure a proper transceiver reset. During a Hardware reset, an external clock must be  
supplied to the XTAL1/CLKIN signal.  
Note: A hardware reset (nRST assertion) is required following power-up. Refer to Section 5.5.3,  
"Power-On nRST & Configuration Strap Timing," on page 72 for additional information.  
3.8.5.2  
Software Reset  
A Software reset is activated by setting the Soft Reset bit of the Basic Control Register to “1”. All  
registers bits, except those indicated as “NASR” in the register definitions, are cleared by a Software  
reset. The Soft Reset bit is self-clearing. Per the IEEE 802.3u standard, clause 22 (22.2.4.1.1) the reset  
process will be completed within 0.5s from the setting of this bit.  
3.8.6  
Carrier Sense  
The carrier sense (CRS) is output on the CRS pin in MII mode, and the CRS_DV pin in RMII mode.  
CRS is a signal defined by the MII specification in the IEEE 802.3u standard. The device asserts CRS  
based only on receive activity whenever the transceiver is either in repeater mode or full-duplex mode.  
Otherwise the transceiver asserts CRS based on either transmit or receive activity.  
The carrier sense logic uses the encoded, unscrambled data to determine carrier activity status. It  
activates carrier sense with the detection of 2 non-contiguous zeros within any 10 bit span. Carrier  
sense terminates if a span of 10 consecutive ones is detected before a /J/K/ Start-of Stream Delimiter  
pair. If an SSD pair is detected, carrier sense is asserted until either /T/R/ End–of-Stream Delimiter  
pair or a pair of IDLE symbols is detected. Carrier is negated after the /T/ symbol or the first IDLE. If  
/T/ is not followed by /R/, then carrier is maintained. Carrier is treated similarly for IDLE followed by  
some non-IDLE symbol.  
SMSC LAN8710A/LAN8710Ai  
41  
Revision 1.4 (08-23-12)  
DATASHEET  
®
Small Footprint MII/RMII 10/100 Ethernet Transceiver with HP Auto-MDIX and flexPWR Technology  
Datasheet  
3.8.7  
Collision Detect  
A collision is the occurrence of simultaneous transmit and receive operations. The COL output is  
asserted to indicate that a collision has been detected. COL remains active for the duration of the  
collision. COL is changed asynchronously to both RXCLK and TXCLK. The COL output becomes  
inactive during full duplex mode.  
The COL may be tested by setting the Collision Test bit of the Basic Control Register to “1”. This  
enables the collision test. COL will be asserted within 512 bit times of TXEN rising and will be de-  
asserted within 4 bit times of TXEN falling.  
3.8.8  
Link Integrity Test  
The device performs the link integrity test as outlined in the IEEE 802.3u (Clause 24-15) Link Monitor  
state diagram. The link status is multiplexed with the 10Mbps link status to form the Link Status bit in  
the Basic Status Register and to drive the LINK LED (LED1).  
The DSP indicates a valid MLT-3 waveform present on the RXP and RXN signals as defined by the  
ANSI X3.263 TP-PMD standard, to the Link Monitor state-machine, using the internal DATA_VALID  
signal. When DATA_VALID is asserted, the control logic moves into a Link-Ready state and waits for  
an enable from the auto-negotiation block. When received, the Link-Up state is entered, and the  
Transmit and Receive logic blocks become active. Should auto-negotiation be disabled, the link  
integrity logic moves immediately to the Link-Up state when the DATA_VALID is asserted.  
To allow the line to stabilize, the link integrity logic will wait a minimum of 330 μsec from the time  
DATA_VALID is asserted until the Link-Ready state is entered. Should the DATA_VALID input be  
negated at any time, this logic will immediately negate the Link signal and enter the Link-Down state.  
When the 10/100 digital block is in 10BASE-T mode, the link status is derived from the 10BASE-T  
receiver logic.  
3.8.9  
Loopback Operation  
The device may be configured for near-end loopback and far loopback. These loopback modes are  
detailed in the following subsections.  
3.8.9.1  
Near-end Loopback  
Near-end loopback mode sends the digital transmit data back out the receive data signals for testing  
purposes, as indicated by the blue arrows in Figure 3.9. The near-end loopback mode is enabled by  
setting the Loopback bit of the Basic Control Register to “1”. A large percentage of the digital circuitry  
is operational in near-end loopback mode because data is routed through the PCS and PMA layers  
into the PMD sublayer before it is looped back. The COL signal will be inactive in this mode, unless  
Revision 1.4 (08-23-12)  
42  
SMSC LAN8710A/LAN8710Ai  
DATASHEET  
®
Small Footprint MII/RMII 10/100 Ethernet Transceiver with HP Auto-MDIX and flexPWR Technology  
Datasheet  
Collision Test is enabled in the Basic Control Register. The transmitters are powered down regardless  
of the state of TXEN.  
TXD  
RXD  
TX  
RX  
10/100  
Ethernet  
MAC  
X
X
CAT-5  
XFMR  
Digital  
Analog  
SMSC  
Ethernet Transceiver  
Figure 3.9 Near-end Loopback Block Diagram  
3.8.9.2  
Far Loopback  
Far loopback is a special test mode for MDI (analog) loopback as indicated by the blue arrows in  
Figure 3.11. The far loopback mode is enabled by setting the FARLOOPBACK bit of the Mode  
Control/Status Register to “1”. In this mode, data that is received from the link partner on the MDI is  
looped back out to the link partner. The digital interface signals on the local MAC interface are isolated.  
Note: This special test mode is only available when operating in RMII mode.  
Far-end system  
TXD  
TX  
RX  
10/100  
Ethernet  
MAC  
X
Link  
Partner  
CAT-5  
XFMR  
RXDX  
Digital  
Analog  
SMSC  
Ethernet Transceiver  
Figure 3.10 Far Loopback Block Diagram  
Connector Loopback  
3.8.9.3  
The device maintains reliable transmission over very short cables, and can be tested in a connector  
loopback as shown in Figure 3.11. An RJ45 loopback cable can be used to route the transmit signals  
SMSC LAN8710A/LAN8710Ai  
43  
Revision 1.4 (08-23-12)  
DATASHEET  
®
Small Footprint MII/RMII 10/100 Ethernet Transceiver with HP Auto-MDIX and flexPWR Technology  
Datasheet  
an the output of the transformer back to the receiver inputs, and this loopback will work at both 10 and  
100.  
1
2
TXD  
RXD  
TX  
RX  
10/100  
Ethernet  
MAC  
3
4
5
6
7
8
XFMR  
Digital  
Analog  
RJ45 Loopback Cable.  
Created by connecting pin 1 to pin 3  
and connecting pin 2 to pin 6.  
SMSC  
Ethernet Transceiver  
Figure 3.11 Connector Loopback Block Diagram  
3.9  
Application Diagrams  
This section provides typical application diagrams for the following:  
„
„
„
„
„
Simplified System Level Application Diagram  
Power Supply Diagram (1.2V Supplied by Internal Regulator)  
Power Supply Diagram (1.2V Supplied by External Source)  
Twisted-Pair Interface Diagram (Single Power Supply)  
Twisted-Pair Interface Diagram (Dual Power Supplies)  
Revision 1.4 (08-23-12)  
44  
SMSC LAN8710A/LAN8710Ai  
DATASHEET  
®
Small Footprint MII/RMII 10/100 Ethernet Transceiver with HP Auto-MDIX and flexPWR Technology  
Datasheet  
3.9.1  
Simplified System Level Application Diagram  
LAN8710A/LAN8710Ai  
10/100 PHY  
32-QFN  
MII  
MII  
MDIO  
MDC  
nINT  
Mag  
RJ45  
TXP  
TXN  
TXD[3:0]  
4
4
TXCLK  
TXER  
TXEN  
RXP  
RXN  
RXD[3:0]  
RXCLK  
RXDV  
XTAL1/CLKIN  
XTAL2  
25MHz  
LED[2:1]  
nRST  
2
Interface  
Figure 3.12 Simplified System Level Application Diagram  
SMSC LAN8710A/LAN8710Ai  
45  
Revision 1.4 (08-23-12)  
DATASHEET  
Small Footprint MII/RMII 10/100 Ethernet Transceiver with HP Auto-MDIX and flexPWR® Technology  
Datasheet  
3.9.2  
Power Supply Diagram (1.2V Supplied by Internal Regulator)  
LAN8710A/LAN8710Ai  
Power  
Supply  
3.3V  
32-QFN  
Ch.2 3.3V  
Core Logic  
Circuitry  
VDDCR  
VDDIO  
Internal  
Regulator  
VDD2A  
OUT  
IN  
1 uF  
470 pF  
CBYPASS  
VDDDIO  
Supply  
1.8 - 3.3V  
VDD1A  
RBIAS  
Ch.1 3.3V  
Circuitry  
CBYPASS  
CF  
CBYPASS  
LED1/  
REGOFF  
12.1k  
VSS  
~270 Ohm  
Figure 3.13 Power Supply Diagram (1.2V Supplied by Internal Regulator)  
Revision 1.4 (08-23-12)  
46  
SMSC LAN8710A/LAN8710Ai  
DATASHEET  
Small Footprint MII/RMII 10/100 Ethernet Transceiver with HP Auto-MDIX and flexPWR® Technology  
Datasheet  
3.9.3  
Power Supply Diagram (1.2V Supplied by External Source)  
LAN8710A/LAN8710Ai  
Power  
Supply  
3.3V  
32-QFN  
Ch.2 3.3V  
Core Logic  
Circuitry  
VDDCR  
Supply  
1.2V  
Internal  
Regulator  
(Disabled)  
VDDCR  
VDDIO  
VDD2A  
OUT  
IN  
1 uF  
470 pF  
CBYPASS  
VDDDIO  
Supply  
1.8 - 3.3V  
VDD1A  
RBIAS  
Ch.1 3.3V  
Circuitry  
CBYPASS  
CF  
CBYPASS  
LED1/  
REGOFF  
12.1k  
VSS  
~270 Ohm  
10k  
Figure 3.14 Power Supply Diagram (1.2V Supplied by External Source)  
SMSC LAN8710A/LAN8710Ai  
47  
Revision 1.4 (08-23-12)  
DATASHEET  
Small Footprint MII/RMII 10/100 Ethernet Transceiver with HP Auto-MDIX and flexPWR® Technology  
Datasheet  
3.9.4  
Twisted-Pair Interface Diagram (Single Power Supply)  
Ferrite  
bead  
LAN8710A/LAN8710Ai  
32-QFN  
Power  
Supply  
3.3V  
49.9 Ohm Resistors  
VDD2A  
VDD1A  
TXP  
CBYPASS  
CBYPASS  
Magnetics  
RJ45  
1
2
3
4
5
6
7
8
75  
75  
TXN  
RXP  
RXN  
1000 pF  
3 kV  
CBYPASS  
Figure 3.15 Twisted-Pair Interface Diagram (Single Power Supply)  
Revision 1.4 (08-23-12)  
48  
SMSC LAN8710A/LAN8710Ai  
DATASHEET  
Small Footprint MII/RMII 10/100 Ethernet Transceiver with HP Auto-MDIX and flexPWR® Technology  
Datasheet  
3.9.5  
Twisted-Pair Interface Diagram (Dual Power Supplies)  
LAN8710A/LAN8710Ai  
32-QFN  
Power  
Supply  
3.3V  
Power  
Supply  
2.5V - 3.3V  
49.9 Ohm Resistors  
VDD2A  
VDD1A  
TXP  
CBYPASS  
CBYPASS  
Magnetics  
RJ45  
1
2
3
4
5
6
7
8
75  
75  
TXN  
RXP  
RXN  
1000 pF  
3 kV  
CBYPASS  
Figure 3.16 Twisted-Pair Interface Diagram (Dual Power Supplies)  
SMSC LAN8710A/LAN8710Ai  
49  
Revision 1.4 (08-23-12)  
DATASHEET  
Small Footprint MII/RMII 10/100 Ethernet Transceiver with HP Auto-MDIX and flexPWR® Technology  
Datasheet  
Chapter 4 Register Descriptions  
This chapter describes the various control and status registers (CSR’s). All registers follow the IEEE  
802.3 (clause 22.2.4) management register set. All functionality and bit definitions comply with these  
standards. The IEEE 802.3 specified register index (in decimal) is included with each register definition,  
allowing for addressing of these registers via the Serial Management Interface (SMI) protocol.  
4.1  
Register Nomenclature  
Table 4.1 describes the register bit attribute notation used throughout this document.  
Table 4.1 Register Bit Types  
REGISTER BIT TYPE  
NOTATION  
REGISTER BIT DESCRIPTION  
R
W
Read: A register or bit with this attribute can be read.  
Read: A register or bit with this attribute can be written.  
Read only: Read only. Writes have no effect.  
RO  
WO  
WC  
WAC  
RC  
LL  
Write only: If a register or bit is write-only, reads will return unspecified data.  
Write One to Clear: writing a one clears the value. Writing a zero has no effect  
Write Anything to Clear: writing anything clears the value.  
Read to Clear: Contents is cleared after the read. Writes have no effect.  
Latch Low: Clear on read of register.  
LH  
Latch High: Clear on read of register.  
SC  
Self-Clearing: Contents are self-cleared after the being set. Writes of zero have no  
effect. Contents can be read.  
SS  
Self-Setting: Contents are self-setting after being cleared. Writes of one have no  
effect. Contents can be read.  
RO/LH  
Read Only, Latch High: Bits with this attribute will stay high until the bit is read. After  
it is read, the bit will either remain high if the high condition remains, or will go low if  
the high condition has been removed. If the bit has not been read, the bit will remain  
high regardless of a change to the high condition. This mode is used in some Ethernet  
PHY registers.  
NASR  
Not Affected by Software Reset. The state of NASR bits do not change on assertion  
of a software reset.  
RESERVED  
Reserved Field: Reserved fields must be written with zeros to ensure future  
compatibility. The value of reserved bits is not guaranteed on a read.  
Many of these register bit notations can be combined. Some examples of this are shown below:  
„
„
R/W: Can be written. Will return current setting on a read.  
R/WAC: Will return current setting on a read. Writing anything clears the bit.  
Revision 1.4 (08-23-12)  
50  
SMSC LAN8710A/LAN8710Ai  
DATASHEET  
Small Footprint MII/RMII 10/100 Ethernet Transceiver with HP Auto-MDIX and flexPWR® Technology  
Datasheet  
4.2  
Control and Status Registers  
Table 4.2 provides a list of supported registers. Register details, including bit definitions, are provided  
in the proceeding subsections.  
Table 4.2 SMI Register Map  
REGISTER INDEX  
(DECIMAL)  
REGISTER NAME  
Basic Control Register  
GROUP  
0
1
Basic  
Basic Status Register  
Basic  
2
PHY Identifier 1  
Extended  
3
PHY Identifier 2  
Extended  
4
Auto-Negotiation Advertisement Register  
Auto-Negotiation Link Partner Ability Register  
Auto-Negotiation Expansion Register  
Mode Control/Status Register  
Special Modes  
Extended  
5
Extended  
6
Extended  
17  
18  
26  
27  
29  
30  
31  
Vendor-specific  
Vendor-specific  
Vendor-specific  
Vendor-specific  
Vendor-specific  
Vendor-specific  
Vendor-specific  
Symbol Error Counter Register  
Control / Status Indication Register  
Interrupt Source Register  
Interrupt Mask Register  
PHY Special Control/Status Register  
SMSC LAN8710A/LAN8710Ai  
51  
Revision 1.4 (08-23-12)  
DATASHEET  
Small Footprint MII/RMII 10/100 Ethernet Transceiver with HP Auto-MDIX and flexPWR® Technology  
Datasheet  
4.2.1  
Basic Control Register  
Index (In Decimal):  
0
Size:  
16 bits  
BITS  
DESCRIPTION  
TYPE  
DEFAULT  
15  
Soft Reset  
R/W  
SC  
0b  
1 = software reset. Bit is self-clearing. When setting this bit do not set other  
bits in this register. The configuration (as described in Section 3.7.2,  
"MODE[2:0]: Mode Configuration," on page 36) is set from the register bit  
values, and not from the mode pins.  
14  
13  
Loopback  
R/W  
R/W  
0b  
0 = normal operation  
1 = loopback mode  
Speed Select  
0 = 10Mbps  
1 = 100Mbps  
Note 4.1  
Note:  
Ignored if Auto-negotiation is enabled (0.12 = 1).  
12  
11  
Auto-Negotiation Enable  
R/W  
R/W  
Note 4.1  
0b  
0 = disable auto-negotiate process  
1 = enable auto-negotiate process (overrides 0.13 and 0.8)  
Power Down  
0 = normal operation  
1 = General power down mode  
Note:  
The Auto-Negotiation Enable must be cleared before setting the  
Power Down.  
10  
9
Isolate  
R/W  
0b  
0b  
0 = normal operation  
1 = electrical isolation of PHY from the MII/RMII  
Restart Auto-Negotiate  
0 = normal operation  
1 = restart auto-negotiate process  
R/W  
SC  
Note:  
Bit is self-clearing.  
8
Duplex Mode  
0 = half duplex  
1 = full duplex  
R/W  
Note 4.1  
Note:  
Ignored if Auto-Negotiation is enabled (0.12 = 1).  
7
Collision Test  
R/W  
RO  
0b  
-
0 = disable COL test  
1 = enable COL test  
6:0  
RESERVED  
Note 4.1 The default value of this bit is determined by the MODE[2:0] configuration straps. Refer to  
Section 3.7.2, "MODE[2:0]: Mode Configuration," on page 36 for additional information.  
Revision 1.4 (08-23-12)  
52  
SMSC LAN8710A/LAN8710Ai  
DATASHEET  
Small Footprint MII/RMII 10/100 Ethernet Transceiver with HP Auto-MDIX and flexPWR® Technology  
Datasheet  
4.2.2  
Basic Status Register  
Index (In Decimal):  
1
Size:  
16 bits  
BITS  
DESCRIPTION  
TYPE  
DEFAULT  
15  
100BASE-T4  
0 = no T4 ability  
1 = T4 able  
RO  
0b  
14  
13  
12  
11  
10  
9
100BASE-TX Full Duplex  
0 = no TX full duplex ability  
1 = TX with full duplex  
RO  
RO  
RO  
RO  
RO  
RO  
RO  
1b  
1b  
1b  
1b  
0b  
0b  
0b  
100BASE-TX Half Duplex  
0 = no TX half duplex ability  
1 = TX with half duplex  
10BASE-T Full Duplex  
0 = no 10Mbps with full duplex ability  
1 = 10Mbps with full duplex  
10BASE-T Half Duplex  
0 = no 10Mbps with half duplex ability  
1 = 10Mbps with half duplex  
100BASE-T2 Full Duplex  
0 = PHY not able to perform full duplex 100BASE-T2  
1 = PHY able to perform full duplex 100BASE-T2  
100BASE-T2 Half Duplex  
0 = PHY not able to perform half duplex 100BASE-T2  
1 = PHY able to perform half duplex 100BASE-T2  
8
Extended Status  
0 = no extended status information in register 15  
1 = extended status information in register 15  
7:6  
5
RESERVED  
RO  
RO  
-
Auto-Negotiate Complete  
0 = auto-negotiate process not completed  
1 = auto-negotiate process completed  
0b  
4
3
2
1
0
Remote Fault  
RO/LH  
RO  
0b  
1b  
0b  
0b  
1b  
1 = remote fault condition detected  
0 = no remote fault  
Auto-Negotiate Ability  
0 = unable to perform auto-negotiation function  
1 = able to perform auto-negotiation function  
Link Status  
0 = link is down  
1 = link is up  
RO/LL  
RO/LH  
RO  
Jabber Detect  
0 = no jabber condition detected  
1 = jabber condition detected  
Extended Capabilities  
0 = does not support extended capabilities registers  
1 = supports extended capabilities registers  
SMSC LAN8710A/LAN8710Ai  
53  
Revision 1.4 (08-23-12)  
DATASHEET  
Small Footprint MII/RMII 10/100 Ethernet Transceiver with HP Auto-MDIX and flexPWR® Technology  
Datasheet  
4.2.3  
PHY Identifier 1 Register  
Index (In Decimal):  
2
Size:  
16 bits  
BITS  
DESCRIPTION  
TYPE  
DEFAULT  
15:0  
PHY ID Number  
R/W  
0007h  
Assigned to the 3rd through 18th bits of the Organizationally Unique  
Identifier (OUI), respectively.  
Revision 1.4 (08-23-12)  
54  
SMSC LAN8710A/LAN8710Ai  
DATASHEET  
Small Footprint MII/RMII 10/100 Ethernet Transceiver with HP Auto-MDIX and flexPWR® Technology  
Datasheet  
4.2.4  
PHY Identifier 2 Register  
Index (In Decimal):  
3
Size:  
16 bits  
BITS  
DESCRIPTION  
TYPE  
DEFAULT  
15:10  
PHY ID Number  
R/W  
110000b  
001111b  
Assigned to the 19th through 24th bits of the OUI.  
9:4  
3:0  
Model Number  
Six-bit manufacturer’s model number.  
R/W  
R/W  
Revision Number  
Four-bit manufacturer’s revision number.  
Note 4.2  
Note 4.2 The default value of this field will vary dependant on the silicon revision number.  
SMSC LAN8710A/LAN8710Ai  
55  
Revision 1.4 (08-23-12)  
DATASHEET  
Small Footprint MII/RMII 10/100 Ethernet Transceiver with HP Auto-MDIX and flexPWR® Technology  
Datasheet  
4.2.5  
Auto Negotiation Advertisement Register  
Index (In Decimal):  
4
Size:  
16 bits  
BITS  
DESCRIPTION  
TYPE  
DEFAULT  
15:14  
13  
RESERVED  
RO  
-
Remote Fault  
0 = no remote fault  
1 = remote fault detected  
R/W  
0b  
12  
RESERVED  
RO  
-
11:10  
Pause Operation  
00 = No PAUSE  
R/W  
00b  
01 = Symmetric PAUSE  
10 = Asymmetric PAUSE toward link partner  
11 = Advertise support for both Symmetric PAUSE and Asymmetric PAUSE  
toward local device  
Note:  
When both Symmetric PAUSE and Asymmetric PAUSE are set, the  
device will only be configured to, at most, one of the two settings  
upon auto-negotiation completion.  
9
8
RESERVED  
RO  
-
100BASE-TX Full Duplex  
0 = no TX full duplex ability  
1 = TX with full duplex  
R/W  
Note 4.3  
7
6
100BASE-TX  
0 = no TX ability  
1 = TX able  
R/W  
R/W  
R/W  
R/W  
1b  
10BASE-T Full Duplex  
0 = no 10Mbps with full duplex ability  
1 = 10Mbps with full duplex  
Note 4.3  
Note 4.3  
00001b  
5
10BASE-T  
0 = no 10Mbps ability  
1 = 10Mbps able  
4:0  
Selector Field  
00001 = IEEE 802.3  
Note 4.3 The default value of this bit is determined by the MODE[2:0] configuration straps. Refer to  
Section 3.7.2, "MODE[2:0]: Mode Configuration," on page 36 for additional information.  
Revision 1.4 (08-23-12)  
56  
SMSC LAN8710A/LAN8710Ai  
DATASHEET  
Small Footprint MII/RMII 10/100 Ethernet Transceiver with HP Auto-MDIX and flexPWR® Technology  
Datasheet  
4.2.6  
Auto Negotiation Link Partner Ability Register  
Index (In Decimal):  
5
Size:  
16 bits  
BITS  
DESCRIPTION  
TYPE  
DEFAULT  
15  
Next Page  
0 = no next page ability  
1 = next page capable  
RO  
0b  
Note:  
This device does not support next page ability.  
14  
13  
Acknowledge  
RO  
RO  
0b  
0b  
0 = link code word not yet received  
1 = link code word received from partner  
Remote Fault  
0 = no remote fault  
1 = remote fault detected  
12:11  
10  
RESERVED  
RO  
RO  
-
Pause Operation  
0 = No PAUSE supported by partner station  
1 = PAUSE supported by partner station  
0b  
9
100BASE-T4  
0 = no T4 ability  
1 = T4 able  
RO  
0b  
Note:  
This device does not support T4 ability.  
8
7
100BASE-TX Full Duplex  
0 = no TX full duplex ability  
1 = TX with full duplex  
RO  
RO  
RO  
RO  
RO  
0b  
0b  
100BASE-TX  
0 = no TX ability  
1 = TX able  
6
10BASE-T Full Duplex  
0 = no 10Mbps with full duplex ability  
1 = 10Mbps with full duplex  
0b  
5
10BASE-T  
0 = no 10Mbps ability  
1 = 10Mbps able  
0b  
4:0  
Selector Field  
00001 = IEEE 802.3  
00001b  
SMSC LAN8710A/LAN8710Ai  
57  
Revision 1.4 (08-23-12)  
DATASHEET  
Small Footprint MII/RMII 10/100 Ethernet Transceiver with HP Auto-MDIX and flexPWR® Technology  
Datasheet  
4.2.7  
Auto Negotiation Expansion Register  
Index (In Decimal):  
6
Size:  
16 bits  
BITS  
DESCRIPTION  
TYPE  
DEFAULT  
15:5  
4
RESERVED  
Parallel Detection Fault  
0 = no fault detected by parallel detection logic  
1 = fault detected by parallel detection logic  
RO  
-
RO/LH  
0b  
3
2
1
0
Link Partner Next Page Able  
RO  
RO  
0b  
0b  
0b  
0b  
0 = link partner does not have next page ability  
1 = link partner has next page ability  
Next Page Able  
0 = local device does not have next page ability  
1 = local device has next page ability  
Page Received  
0 = new page not yet received  
1 = new page received  
RO/LH  
RO  
Link Partner Auto-Negotiation Able  
0 = link partner does not have auto-negotiation ability  
1 = link partner has auto-negotiation ability  
Revision 1.4 (08-23-12)  
58  
SMSC LAN8710A/LAN8710Ai  
DATASHEET  
Small Footprint MII/RMII 10/100 Ethernet Transceiver with HP Auto-MDIX and flexPWR® Technology  
Datasheet  
4.2.8  
Mode Control/Status Register  
Index (In Decimal): 17  
Size:  
16 bits  
BITS  
DESCRIPTION  
TYPE  
DEFAULT  
15:14  
13  
RESERVED  
EDPWRDOWN  
Enable the Energy Detect Power-Down mode:  
0 = Energy Detect Power-Down is disabled  
1 = Energy Detect Power-Down is enabled  
RO  
-
R/W  
0b  
12:10  
9
RESERVED  
RO  
-
FARLOOPBACK  
R/W  
0b  
Enables far loopback mode (i.e., all the received packets are sent back  
simultaneously (in 100BASE-TX only)). This bit is only active in RMII mode.  
This mode works even if the Isolate bit (0.10) is set.  
0 = Far loopback mode is disabled  
1 = Far loopback mode is enabled  
Refer to Section 3.8.9.2, "Far Loopback," on page 43 for additional  
information.  
8:7  
6
RESERVED  
RO  
-
ALTINT  
Alternate Interrupt Mode:  
R/W  
0b  
0 = Primary interrupt system enabled (Default)  
1 = Alternate interrupt system enabled  
Refer to Section 3.6, "Interrupt Management," on page 34 for additional  
information.  
5:2  
1
RESERVED  
RO  
RO  
-
ENERGYON  
1b  
Indicates whether energy is detected. This bit transitions to “0” if no valid  
energy is detected within 256ms. It is reset to “1” by a hardware reset and  
is unaffected by a software reset. Refer to Section 3.8.3.2, "Energy Detect  
Power-Down," on page 40 for additional information.  
0
RESERVED  
R/W  
0b  
SMSC LAN8710A/LAN8710Ai  
59  
Revision 1.4 (08-23-12)  
DATASHEET  
Small Footprint MII/RMII 10/100 Ethernet Transceiver with HP Auto-MDIX and flexPWR® Technology  
Datasheet  
4.2.9  
Special Modes Register  
Index (In Decimal): 18  
Size:  
16 bits  
BITS  
DESCRIPTION  
TYPE  
DEFAULT  
15  
14  
RESERVED  
RO  
-
MIIMODE  
R/W  
NASR  
Note 4.4  
Reflects the mode of the digital interface:  
0 = MII Mode  
1 = RMII Mode  
Note:  
When writing to this register, the default value of this bit must  
always be written back.  
13:8  
7:5  
RESERVED  
RO  
-
MODE  
R/W  
NASR  
Note 4.5  
Transceiver mode of operation. Refer to Section 3.7.2, "MODE[2:0]: Mode  
Configuration," on page 36 for additional details.  
4:0  
PHYAD  
R/W  
NASR  
Note 4.6  
PHY Address. The PHY Address is used for the SMI address and for  
initialization of the Cipher (Scrambler) key. Refer to Section 3.7.1,  
"PHYAD[2:0]: PHY Address Configuration," on page 36 for additional details.  
Note 4.4 The default value of this field is determined by the RMIISEL configuration strap. Refer to  
Section 3.7.3, "RMIISEL: MII/RMII Mode Configuration," on page 37 for additional  
information.  
Note 4.5 The default value of this field is determined by the MODE[2:0] configuration straps. Refer  
to Section 3.7.2, "MODE[2:0]: Mode Configuration," on page 36 for additional information.  
Note 4.6 The default value of this field is determined by the PHYAD[2:0] configuration straps. Refer  
to Section 3.7.1, "PHYAD[2:0]: PHY Address Configuration," on page 36 for additional  
information.  
Revision 1.4 (08-23-12)  
60  
SMSC LAN8710A/LAN8710Ai  
DATASHEET  
Small Footprint MII/RMII 10/100 Ethernet Transceiver with HP Auto-MDIX and flexPWR® Technology  
Datasheet  
4.2.10  
Symbol Error Counter Register  
Index (In Decimal): 26  
Size:  
16 bits  
BITS  
DESCRIPTION  
TYPE  
DEFAULT  
15:0  
SYM_ERR_CNT  
RO  
0000h  
The symbol error counter increments whenever an invalid code symbol is  
received (including IDLE symbols) in 100BASE-TX mode. The counter is  
incremented only once per packet, even when the received packet contains  
more than one symbol error. This counter increments up to 65,536 (216) and  
rolls over to 0 after reaching the maximum value.  
Note:  
This register is cleared on reset, but is not cleared by reading the  
register. This register does not increment in 10BASE-T mode.  
SMSC LAN8710A/LAN8710Ai  
61  
Revision 1.4 (08-23-12)  
DATASHEET  
Small Footprint MII/RMII 10/100 Ethernet Transceiver with HP Auto-MDIX and flexPWR® Technology  
Datasheet  
4.2.11  
Special Control/Status Indications Register  
Index (In Decimal): 27  
Size:  
16 bits  
BITS  
DESCRIPTION  
TYPE  
DEFAULT  
15  
AMDIXCTRL  
R/W  
0b  
HP Auto-MDIX control:  
0 = Enable Auto-MDIX  
1 = Disable Auto-MDIX (use 27.13 to control channel)  
14  
13  
RESERVED  
RO  
-
CH_SELECT  
Manual channel select:  
0 = MDI (TX transmits, RX receives)  
1 = MDIX (TX receives, RX transmits)  
R/W  
0b  
12  
11  
RESERVED  
RO  
-
SQEOFF  
R/W  
NASR  
0b  
Disable the SQE test (Heartbeat):  
0 = SQE test is enabled  
1 = SQE test is disabled  
10:5  
4
RESERVED  
RO  
RO  
-
XPOL  
0b  
Polarity state of the 10BASE-T:  
0 = Normal polarity  
1 = Reversed polarity  
3:0  
RESERVED  
RO  
-
Revision 1.4 (08-23-12)  
62  
SMSC LAN8710A/LAN8710Ai  
DATASHEET  
Small Footprint MII/RMII 10/100 Ethernet Transceiver with HP Auto-MDIX and flexPWR® Technology  
Datasheet  
4.2.12  
Interrupt Source Flag Register  
Index (In Decimal): 29  
Size:  
16 bits  
BITS  
DESCRIPTION  
TYPE  
DEFAULT  
15:8  
7
RESERVED  
RO  
-
INT7  
RO/LH  
0b  
0 = not source of interrupt  
1 = ENERGYON generated  
6
5
4
3
2
1
0
INT6  
RO/LH  
RO/LH  
RO/LH  
RO/LH  
RO/LH  
RO/LH  
RO  
0b  
0b  
0b  
0b  
0b  
0b  
0b  
0 = not source of interrupt  
1 = Auto-Negotiation complete  
INT5  
0 = not source of interrupt  
1 = Remote Fault Detected  
INT4  
0 = not source of interrupt  
1 = Link Down (link status negated)  
INT3  
0 = not source of interrupt  
1 = Auto-Negotiation LP Acknowledge  
INT2  
0 = not source of interrupt  
1 = Parallel Detection Fault  
INT1  
0 = not source of interrupt  
1 = Auto-Negotiation Page Received  
RESERVED  
SMSC LAN8710A/LAN8710Ai  
63  
Revision 1.4 (08-23-12)  
DATASHEET  
Small Footprint MII/RMII 10/100 Ethernet Transceiver with HP Auto-MDIX and flexPWR® Technology  
Datasheet  
4.2.13  
Interrupt Mask Register  
Index (In Decimal): 30  
Size:  
16 bits  
BITS  
DESCRIPTION  
TYPE  
DEFAULT  
15:8  
7:1  
RESERVED  
RO  
-
Mask Bits  
0 = interrupt source is masked  
1 = interrupt source is enabled  
R/W  
0000000b  
Note:  
Refer to Section 4.2.12, "Interrupt Source Flag Register," on  
page 63 for details on the corresponding interrupt definitions.  
0
RESERVED  
RO  
-
Revision 1.4 (08-23-12)  
64  
SMSC LAN8710A/LAN8710Ai  
DATASHEET  
Small Footprint MII/RMII 10/100 Ethernet Transceiver with HP Auto-MDIX and flexPWR® Technology  
Datasheet  
4.2.14  
PHY Special Control/Status Register  
Index (In Decimal): 31  
Size:  
16 bits  
BITS  
DESCRIPTION  
TYPE  
DEFAULT  
15:13  
12  
RESERVED  
Autodone  
RO  
RO  
-
0b  
Auto-negotiation done indication:  
0 = Auto-negotiation is not done or disabled (or not active)  
1 = Auto-negotiation is done  
11:7  
6
RESERVED  
R/W  
R/W  
-
Enable 4B5B  
0 = bypass encoder/decoder  
1 = enable 4B5B encoding/decoding. MAC Interface must be configured in  
MII mode.  
1b  
5
RESERVED  
RO  
RO  
-
4:2  
Speed Indication  
HCDSPEED value:  
XXX  
001 = 10BASE-T half-duplex  
101 = 10BASE-T full-duplex  
010 = 100BASE-TX half-duplex  
110 = 100BASE-TX full-duplex  
1:0  
RESERVED  
RO  
-
SMSC LAN8710A/LAN8710Ai  
65  
Revision 1.4 (08-23-12)  
DATASHEET  
Small Footprint MII/RMII 10/100 Ethernet Transceiver with HP Auto-MDIX and flexPWR® Technology  
Datasheet  
Chapter 5 Operational Characteristics  
5.1  
Absolute Maximum Ratings*  
Supply Voltage (VDDIO, VDD1A, VDD2A) (Note 5.1) . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.5V to +3.6V  
Digital Core Supply Voltage (VDDCR) (Note 5.1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.5V to +1.5V  
Ethernet Magnetics Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.5V to +3.6V  
Positive voltage on signal pins, with respect to ground (Note 5.2) . . . . . . . . . . . . . . . . . . . . . . . . . . +6V  
Negative voltage on signal pins, with respect to ground (Note 5.3) . . . . . . . . . . . . . . . . . . . . . . . .-0.5V  
Positive voltage on XTAL1/CLKIN, with respect to ground . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +4.6V  
Positive voltage on XTAL2, with respect to ground . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +2.5V  
Ambient Operating Temperature in Still Air (TA). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Note 5.40  
Storage Temperature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .-55oC to +150oC  
Junction to Ambient (θJA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..48.3C/W  
Junction to Case (θJC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..10.6oC/W  
Lead Temperature Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Refer to JEDEC Spec. J-STD-020  
HBM ESD Performance per JEDEC JESD22-A114. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Class 3A  
IEC61000-4-2 Contact Discharge ESD Performance (Note 5.5) . . . . . . . . . . . . . . . . . . . . . . . . . .+/-8kV  
IEC61000-4-2 Air-Gap Discharge ESD Performance (Note 5.5) . . . . . . . . . . . . . . . . . . . . . . . . .+/-15kV  
Latch-up Performance per EIA/JESD 78 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..+/-150mA  
Note 5.1 When powering this device from laboratory or system power supplies, it is important that  
the absolute maximum ratings not be exceeded or device failure can result. Some power  
supplies exhibit voltage spikes on their outputs when AC power is switched on or off. In  
addition, voltage transients on the AC power line may appear on the DC output. If this  
possibility exists, it is suggested that a clamp circuit be used.  
Note 5.2 This rating does not apply to the following pins: XTAL1/CLKIN, XTAL2, RBIAS.  
Note 5.3 This rating does not apply to the following pins: RBIAS.  
Note 5.4 0oC to +85oC for extended commercial version, -40oC to +85oC for industrial version.  
Note 5.5 Performed by independent 3rd party test facility.  
*Stresses exceeding those listed in this section could cause permanent damage to the device. This is  
a stress rating only. Exposure to absolute maximum rating conditions for extended periods may affect  
device reliability. Functional operation of the device at any condition exceeding those indicated in  
Section 5.2, "Operating Conditions**", Section 5.1, "Absolute Maximum Ratings*", or any other  
applicable section of this specification is not implied. Note, device signals are NOT 5 volt tolerant  
unless specified otherwise.  
Revision 1.4 (08-23-12)  
66  
SMSC LAN8710A/LAN8710Ai  
DATASHEET  
Small Footprint MII/RMII 10/100 Ethernet Transceiver with HP Auto-MDIX and flexPWR® Technology  
Datasheet  
5.2  
Operating Conditions**  
Supply Voltage (VDDIO) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .+1.62V to +3.6V  
Analog Port Supply Voltage (VDD1A, VDD2A) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .+3.0V to +3.6V  
Digital Core Supply Voltage (VDDCR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .+1.14V to +1.26V  
Ethernet Magnetics Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .+2.25V to +3.6V  
Ambient Operating Temperature in Still Air (TA). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Note 5.4  
**Proper operation of the device is guaranteed only within the ranges specified in this section. After  
the device has completed power-up, VDDIO and the magnetics power supply must maintain their  
voltage level with +/-10%. Varying the voltage greater than +/-10% after the device has completed  
power-up can cause errors in device operation.  
Note: Do not drive input signals without power supplied to the device.  
5.3  
Power Consumption  
This section details the device power measurements taken over various operating conditions. Unless  
otherwise noted, all measurements were taken with power supplies at nominal values (VDDIO, VDD1A,  
VDD2A = 3.3V, VDDCR = 1.2V). See Section 3.8.3, "Power-Down Modes," on page 40 for a  
description of the power down modes.  
Table 5.1 Device Only Current Consumption and Power Dissipation  
VDDA3.3  
POWER  
PINS(mA)  
VDDCR  
POWER  
PIN(mA)  
VDDIO  
POWER  
PIN(mA)  
TOTAL  
CURRENT  
(mA)  
TOTAL  
POWER  
(mW)  
POWER PIN GROUP  
Max  
Typical  
Min  
28  
26  
23  
21  
18  
18  
5.2  
4.3  
2.4  
54  
48  
43  
176  
158  
100BASE-TX /W TRAFFIC  
10BASE-T /W TRAFFIC  
101  
Note 5.6  
Max  
Typical  
Min  
10.2  
9.4  
12.9  
11.4  
10.9  
0.98  
0.4  
24.1  
21.2  
20.4  
79.5  
70  
9.2  
0.3  
44  
Note 5.6  
Max  
Typical  
Min  
4.5  
4.3  
3.9  
3
0.3  
0.2  
0
7.8  
5.9  
5.2  
25  
ENERGY DETECT  
POWER DOWN  
1.4  
1.3  
19.5  
15.9  
Note 5.6  
Max  
Typical  
Min  
0.4  
0.3  
0.3  
2.6  
1.2  
1.1  
0.3  
0.2  
0
3.3  
1.7  
1.4  
10.9  
5.6  
GENERAL POWER DOWN  
2.4  
Note 5.6  
Note: The current at VDDCR is either supplied by the internal regulator from current entering at  
VDD2A, or from an external 1.2V supply when the internal regulator is disabled.  
SMSC LAN8710A/LAN8710Ai  
67  
Revision 1.4 (08-23-12)  
DATASHEET  
Small Footprint MII/RMII 10/100 Ethernet Transceiver with HP Auto-MDIX and flexPWR® Technology  
Datasheet  
Note: Current measurements do not include power applied to the magnetics or the optional external  
LEDs. The Ethernet component current is typically 41mA in 100BASE-TX mode and 100mA in  
10BASE-T mode, independent of the 2.5V or 3.3V supply rail of the transformer.  
Note 5.6 Calculated with full flexPWR features activated: VDDIO=1.8V & internal regulator disabled.  
5.4  
DC Specifications  
Table 5.2 details the non-variable I/O buffer characteristics. These buffer types do not support variable  
voltage operation. Table 5.3 details the variable voltage I/O buffer characteristics. Typical values are  
provided for 1.8V, 2.5V, and 3.3V VDDIO cases.  
Table 5.2 Non-Variable I/O Buffer Characteristics  
PARAMETER  
SYMBOL  
MIN  
TYP  
MAX  
UNITS  
NOTES  
IS Type Input Buffer  
Low Input Level  
VILI  
VIHI  
-0.3  
V
V
High Input Level  
3.6  
1.39  
1.79  
459  
Negative-Going Threshold  
Positive-Going Threshold  
Schmitt Trigger Hysteresis  
VILT  
VIHT  
VHYS  
1.01  
1.39  
336  
1.19  
1.59  
399  
V
Schmitt trigger  
Schmitt trigger  
V
mV  
(VIHT - VILT  
)
Input Leakage  
IIH  
-10  
10  
2
uA  
pF  
Note 5.7  
(VIN = VSS or VDDIO)  
Input Capacitance  
O12 Type Buffers  
CIN  
Low Output Level  
High Output Level  
VOL  
VOH  
0.4  
V
V
IOL = 12mA  
VDD2A - 0.4  
IOH = -12mA  
Note 5.8  
ICLK Type Buffer  
(XTAL1 Input)  
Low Input Level  
High Input Level  
VILI  
VIHI  
-0.3  
1.4  
0.35  
V
V
VDD2A + 0.4  
Note 5.7 This specification applies to all inputs and tri-stated bi-directional pins. Internal pull-down  
and pull-up resistors add +/- 50uA per-pin (typical).  
Note 5.8 XTAL1/CLKIN can optionally be driven from a 25MHz single-ended clock oscillator.  
Revision 1.4 (08-23-12)  
68  
SMSC LAN8710A/LAN8710Ai  
DATASHEET  
Small Footprint MII/RMII 10/100 Ethernet Transceiver with HP Auto-MDIX and flexPWR® Technology  
Datasheet  
Table 5.3 Variable I/O Buffer Characteristics  
1.8V 2.5V 3.3V  
TYP TYP TYP  
PARAMETER  
VIS Type Input Buffer  
Low Input Level  
SYMBOL  
MIN  
MAX  
UNITS  
NOTES  
VILI  
VIHI  
-0.3  
V
V
High Input Level  
3.6  
1.76  
1.90  
288  
Neg-Going Threshold  
Pos-Going Threshold  
VILT  
VIHT  
VHYS  
0.64  
0.81  
102  
0.83 1.15 1.41  
0.99 1.29 1.65  
V
Schmitt trigger  
Schmitt trigger  
V
Schmitt Trigger  
Hysteresis (VIHT - VILT  
158  
136  
138  
mV  
)
Input Leakage  
IIH  
-10  
10  
2
uA  
pF  
Note 5.9  
(VIN = VSS or VDDIO)  
Input Capacitance  
VO8 Type Buffers  
CIN  
Low Output Level  
VOL  
VOH  
0.4  
V
V
IOL = 8mA  
IOH = -8mA  
VDDIO - 0.4  
High Output Level  
VOD8 Type Buffer  
Low Output Level  
VOL  
0.4  
V
IOL = 8mA  
Note 5.9 This specification applies to all inputs and tri-stated bi-directional pins. Internal pull-down  
and pull-up resistors add +/- 50uA per-pin (typical).  
Table 5.4 100BASE-TX Transceiver Characteristics  
PARAMETER  
SYMBOL  
MIN  
TYP  
MAX  
UNITS  
NOTES  
Peak Differential Output Voltage High  
Peak Differential Output Voltage Low  
Signal Amplitude Symmetry  
Signal Rise and Fall Time  
Rise and Fall Symmetry  
Duty Cycle Distortion  
VPPH  
VPPL  
VSS  
950  
-950  
98  
3.0  
-
-
-
1050  
-1050  
102  
5.0  
mVpk  
mVpk  
%
Note 5.10  
Note 5.10  
Note 5.10  
Note 5.10  
Note 5.10  
Note 5.11  
-
TRF  
-
nS  
TRFS  
DCD  
VOS  
-
0.5  
nS  
35  
-
50  
-
65  
%
Overshoot and Undershoot  
Jitter  
5
%
1.4  
nS  
Note 5.12  
Note 5.10 Measured at line side of transformer, line replaced by 100Ω (+/- 1%) resistor.  
Note 5.11 Offset from 16nS pulse width at 50% of pulse peak.  
Note 5.12 Measured differentially.  
SMSC LAN8710A/LAN8710Ai  
69  
Revision 1.4 (08-23-12)  
DATASHEET  
Small Footprint MII/RMII 10/100 Ethernet Transceiver with HP Auto-MDIX and flexPWR® Technology  
Datasheet  
Table 5.5 10BASE-T Transceiver Characteristics  
PARAMETER  
SYMBOL  
MIN  
TYP  
MAX  
UNITS  
NOTES  
Transmitter Peak Differential Output Voltage  
Receiver Differential Squelch Threshold  
VOUT  
VDS  
2.2  
2.5  
2.8  
V
Note 5.13  
300  
420  
585  
mV  
Note 5.13 Min/max voltages guaranteed as measured with 100Ω resistive load.  
5.5  
AC Specifications  
This section details the various AC timing specifications of the device.  
Note: The MII/SMI timing adheres to the IEEE 802.3 specification. Refer to the IEEE 802.3  
specification for additional timing information.  
Note: The RMII timing adheres to the RMII Consortium RMII Specification R1.2.  
5.5.1  
Equivalent Test Load  
Output timing specifications assume a 25pF equivalent test load, unless otherwise noted, as illustrated  
in Figure 5.1 below.  
OUTPUT  
25 pF  
Figure 5.1 Output Equivalent Test Load  
Revision 1.4 (08-23-12)  
70  
SMSC LAN8710A/LAN8710Ai  
DATASHEET  
Small Footprint MII/RMII 10/100 Ethernet Transceiver with HP Auto-MDIX and flexPWR® Technology  
Datasheet  
5.5.2  
Power Sequence Timing  
This diagram illustrates the device power sequencing requirements. The VDDIO, VDD1A, VDD2A and  
magnetics power supplies can turn on in any order provided they all reach operational levels within  
the specified time period tpon. Device power supplies can turn off in any order provided they all reach  
0 volts within the specified time period poff  
.
tpon  
tpoff  
VDDIO  
Magnetics  
Power  
VDD1A,  
VDD2A  
Figure 5.2 Power Sequence Timing  
Table 5.6 Power Sequence Timing Values  
SYMBOL  
DESCRIPTION  
MIN  
TYP  
MAX  
UNITS  
tpon  
tpoff  
Power supply turn on time  
Power supply turn off time  
50  
mS  
mS  
500  
Note: When the internal regulator is disabled, a power-up sequencing relationship exists between  
VDDCR and the 3.3V power supply. For additional information refer to Section 3.7.4,  
"REGOFF: Internal +1.2V Regulator Configuration," on page 38.  
SMSC LAN8710A/LAN8710Ai  
71  
Revision 1.4 (08-23-12)  
DATASHEET  
Small Footprint MII/RMII 10/100 Ethernet Transceiver with HP Auto-MDIX and flexPWR® Technology  
Datasheet  
5.5.3  
Power-On nRST & Configuration Strap Timing  
This diagram illustrates the nRST reset and configuration strap timing requirements in relation to  
power-on. A hardware reset (nRST assertion) is required following power-up. For proper operation,  
nRST must be asserted for no less than trstia. The nRST pin can be asserted at any time, but must  
not be deasserted before tpurstd after all external power supplies have reached 80% of their nominal  
operating levels. In order for valid configuration strap values to be read at power-up, the tcss and tcsh  
timing constraints must be followed. Refer to Section 3.8.5, "Resets," on page 41 for additional  
information.  
All External  
Power Supplies  
80%  
tpurstd  
tpurstv  
trstia  
nRST  
tcss  
tcsh  
Configuration Strap  
Pins Input  
totaa  
todad  
Configuration Strap  
Pins Output Drive  
Figure 5.3 Power-On nRST & Configuration Strap Timing  
Table 5.7 Power-On nRST & Configuration Strap Timing Values  
SYMBOL  
DESCRIPTION  
MIN  
TYP  
MAX  
UNITS  
tpurstd  
tpurstv  
trstia  
tcss  
External power supplies at 80% to nRST deassertion  
External power supplies at 80% to nRST valid  
nRST input assertion time  
25  
0
mS  
nS  
μS  
nS  
nS  
nS  
nS  
100  
200  
1
Configuration strap pins setup to nRST deassertion  
Configuration strap pins hold after nRST deassertion  
Output tri-state after nRST assertion  
tcsh  
totaa  
todad  
50  
Output drive after nRST deassertion  
2
800  
(Note 5.14)  
Note: nRST deassertion must be monotonic.  
Note: Device configuration straps are latched as a result of nRST assertion. Refer to Section 3.7,  
"Configuration Straps," on page 36 for details. Configuration straps must only be pulled high or  
low and must not be driven as inputs.  
Note 5.14 20 clock cycles for 25MHz, or 40 clock cycles for 50MHz.  
Revision 1.4 (08-23-12)  
72  
SMSC LAN8710A/LAN8710Ai  
DATASHEET  
Small Footprint MII/RMII 10/100 Ethernet Transceiver with HP Auto-MDIX and flexPWR® Technology  
Datasheet  
5.5.4  
MII Interface Timing  
This section specifies the MII interface transmit and receive timing. Please refer to Section 3.4.1, "MII,"  
on page 30 for additional details.  
tclkp  
tclkh tclkl  
RXCLK  
tval  
tval  
thold  
RXD[3:0]  
RXDV  
thold  
tval  
Figure 5.4 MII Receive Timing  
Table 5.8 MII Receive Timing Values  
SYMBOL  
DESCRIPTION  
MIN  
MAX  
UNITS  
NOTES  
tclkp  
tclkh  
tclkl  
tval  
RXCLK period  
RXCLK high time  
Note 5.15  
tclkp*0.4  
tclkp*0.4  
ns  
ns  
ns  
ns  
tclkp*0.6  
tclkp*0.6  
28.0  
RXCLK low time  
RXD[3:0], RXDV output valid from rising edge of  
RXCLK  
Note 5.16  
Note 5.16  
thold  
RXD[3:0], RXDV output hold from rising edge of  
RXCLK  
10.0  
ns  
Note 5.15 40ns for 100BASE-TX operation, 400ns for 10BASE-T operation.  
Note 5.16 Timing was designed for system load between 10 pf and 25 pf.  
SMSC LAN8710A/LAN8710Ai  
73  
Revision 1.4 (08-23-12)  
DATASHEET  
Small Footprint MII/RMII 10/100 Ethernet Transceiver with HP Auto-MDIX and flexPWR® Technology  
Datasheet  
tclkp  
tclkh tclkl  
TXCLK  
tsu thold  
tsu thold  
thold  
TXD[3:0]  
TXEN  
thold  
tsu  
Figure 5.5 MII Transmit Timing  
Table 5.9 MII Transmit Timing Values  
SYMBOL  
DESCRIPTION  
MIN  
MAX  
UNITS  
NOTES  
tclkp  
tclkh  
tclkl  
tsu  
TXCLK period  
Note 5.17  
tclkp*0.4  
tclkp*0.4  
12.0  
ns  
ns  
ns  
ns  
TXCLK high time  
TXCLK low time  
tclkp*0.6  
tclkp*0.6  
TXD[3:0], TXEN setup time to rising edge of  
TXCLK  
Note 5.18  
Note 5.18  
thold  
TXD[3:0], TXEN hold time after rising edge of  
TXCLK  
0
ns  
Note 5.17 40ns for 100BASE-TX operation, 400ns for 10BASE-T operation.  
Note 5.18 Timing was designed for system load between 10 pf and 25 pf.  
Revision 1.4 (08-23-12)  
74  
SMSC LAN8710A/LAN8710Ai  
DATASHEET  
Small Footprint MII/RMII 10/100 Ethernet Transceiver with HP Auto-MDIX and flexPWR® Technology  
Datasheet  
5.5.5  
RMII Interface Timing  
tclkp  
tclkh tclkl  
CLKIN  
(REF_CLK)  
toval  
toval  
tohold  
RXD[1:0],  
RXER  
tohold  
toval  
CRS_DV  
TXD[1:0]  
TXEN  
tsu tihold  
tsu tihold  
tihold  
tihold  
tsu  
Figure 5.6 RMII Timing  
Table 5.10 RMII Timing Values  
SYMBOL  
DESCRIPTION  
MIN  
MAX  
UNITS  
NOTES  
tclkp  
tclkh  
tclkl  
CLKIN period  
20  
ns  
ns  
ns  
ns  
CLKIN high time  
CLKIN low time  
tclkp*0.35  
tclkp*0.35  
tclkp*0.65  
tclkp*0.65  
14.0  
toval  
RXD[1:0], RXER, CRS_DV output valid from  
rising edge of CLKIN  
Note 5.19  
Note 5.19  
Note 5.19  
Note 5.19  
tohold  
tsu  
RXD[1:0], RXER, CRS_DV output hold from  
rising edge of CLKIN  
3.0  
4.0  
1.5  
ns  
ns  
ns  
TXD[1:0], TXEN setup time to rising edge of  
CLKIN  
tihold  
TXD[1:0], TXEN input hold time after rising edge  
of CLKIN  
Note 5.19 Timing was designed for system load between 10 pf and 25 pf.  
SMSC LAN8710A/LAN8710Ai  
75  
Revision 1.4 (08-23-12)  
DATASHEET  
Small Footprint MII/RMII 10/100 Ethernet Transceiver with HP Auto-MDIX and flexPWR® Technology  
Datasheet  
5.5.5.1  
RMII CLKIN Requirements  
Table 5.11 RMII CLKIN (REF_CLK) Timing Values  
PARAMETER  
MIN  
TYP  
MAX  
UNITS  
NOTES  
CLKIN frequency  
50  
MHz  
ppm  
%
CLKIN Frequency Drift  
CLKIN Duty Cycle  
CLKIN Jitter  
± 50  
60  
40  
150  
psec  
p-p – not RMS  
5.5.6  
SMI Timing  
This section specifies the SMI timing of the device. Please refer to Section 3.5, "Serial Management  
Interface (SMI)," on page 33 for additional details.  
tclkp  
tclkh tclkl  
MDC  
tohold  
tval  
tohold  
MDIO  
(Data-Out)  
tsu tihold  
MDIO  
(Data-In)  
Figure 5.7 SMI Timing  
Table 5.12 SMI Timing Values  
SYMBOL  
DESCRIPTION  
MIN  
MAX  
UNITS  
NOTES  
tclkp  
tclkh  
tclkl  
MDC period  
400  
ns  
ns  
ns  
ns  
MDC high time  
MDC low time  
160 (80%)  
160 (80%)  
MDIO (read from PHY) output valid from rising  
edge of MDC  
300  
tval  
tohold  
tsu  
MDIO (read from PHY) output hold from rising  
edge of MDC  
0
ns  
ns  
ns  
MDIO (write to PHY) setup time to rising edge  
of MDC  
10  
10  
MDIO (write to PHY) input hold time after rising  
edge of MDC  
tihold  
Revision 1.4 (08-23-12)  
76  
SMSC LAN8710A/LAN8710Ai  
DATASHEET  
Small Footprint MII/RMII 10/100 Ethernet Transceiver with HP Auto-MDIX and flexPWR® Technology  
Datasheet  
5.6  
Clock Circuit  
The device can accept either a 25MHz crystal or a 25MHz single-ended clock oscillator (±50ppm)  
input. If the single-ended clock oscillator method is implemented, XTAL2 should be left unconnected  
and XTAL1/CLKIN should be driven with a nominal 0-3.3V clock signal. See Table 5.13 for the  
recommended crystal specifications.  
Table 5.13 Crystal Specifications  
PARAMETER  
SYMBOL  
MIN  
NOM  
AT, typ  
Fundamental Mode  
Parallel Resonant Mode  
MAX  
UNITS  
NOTES  
Crystal Cut  
Crystal Oscillation Mode  
Crystal Calibration Mode  
Frequency  
Ffund  
Ftol  
-
25.000  
-
MHz  
PPM  
PPM  
PPM  
PPM  
pF  
Frequency Tolerance @ 25oC  
Frequency Stability Over Temp  
Frequency Deviation Over Time  
Total Allowable PPM Budget  
Shunt Capacitance  
-
-
±50  
Note 5.20  
Note 5.20  
Note 5.21  
Note 5.22  
Ftemp  
Fage  
-
-
±50  
-
+/-3 to 5  
-
-
-
7 typ  
20 typ  
-
±50  
CO  
CL  
-
-
Load Capacitance  
-
-
-
pF  
Drive Level  
PW  
R1  
300  
uW  
Equivalent Series Resistance  
Operating Temperature Range  
XTAL1/CLKIN Pin Capacitance  
XTAL2 Pin Capacitance  
-
-
30  
+85  
-
Ohm  
oC  
Note 5.23  
-
-
-
3 typ  
3 typ  
pF  
Note 5.24  
Note 5.24  
-
pF  
Note 5.20 The maximum allowable values for Frequency Tolerance and Frequency Stability are  
application dependant. Since any particular application must meet the IEEE ±50 PPM Total  
PPM Budget, the combination of these two values must be approximately ±45 PPM  
(allowing for aging).  
Note 5.21 Frequency Deviation Over Time is also referred to as Aging.  
Note 5.22 The total deviation for the Transmitter Clock Frequency is specified by IEEE 802.3u as  
±100 PPM.  
Note 5.23 0oC for extended commercial version, -40oC for industrial version.  
Note 5.24 This number includes the pad, the bond wire and the lead frame. PCB capacitance is not  
included in this value. The XTAL1/CLKIN pin, XTAL2 pin and PCB capacitance values are  
required to accurately calculate the value of the two external load capacitors. The total load  
capacitance must be equivalent to what the crystal expects to see in the circuit so that the  
crystal oscillator will operate at 25.000 MHz.  
SMSC LAN8710A/LAN8710Ai  
77  
Revision 1.4 (08-23-12)  
DATASHEET  
Small Footprint MII/RMII 10/100 Ethernet Transceiver with HP Auto-MDIX and flexPWR® Technology  
Datasheet  
Chapter 6 Package Outline  
Figure 6.1 32-QFN Package  
Table 6.1 32-QFN Dimensions  
MIN  
NOMINAL  
MAX  
REMARKS  
A
A1  
A2  
D/E  
D1/E1  
D2/E2  
L
b
k
e
0.70  
0
-
4.90  
4.55  
3.20  
0.30  
0.18  
0.35  
0.85  
0.02  
0.65  
5.00  
4.75  
3.30  
0.40  
0.25  
0.45  
1.00  
0.05  
0.90  
5.10  
4.95  
3.40  
0.50  
0.30  
-
Overall Package Height  
Standoff  
Mold Cap Thickness  
X/Y Body Size  
X/Y Mold Cap Size  
X/Y Exposed Pad Size  
Terminal Length  
Terminal Width  
Terminal to Exposed Pad Clearance  
Terminal Pitch  
0.50 BSC  
Notes:  
1. All dimensions are in millimeters unless otherwise noted.  
2. Dimension “b” applies to plated terminals and is measured between 0.15 and 0.30 mm from the terminal tip.  
3. The pin 1 identifier may vary, but is always located within the zone indicated.  
Revision 1.4 (08-23-12)  
78  
SMSC LAN8710A/LAN8710Ai  
DATASHEET  
Small Footprint MII/RMII 10/100 Ethernet Transceiver with HP Auto-MDIX and flexPWR® Technology  
Datasheet  
Figure 6.2 Recommended PCB Land Pattern  
Figure 6.3 Taping Dimensions and Part Orientation  
SMSC LAN8710A/LAN8710Ai  
79  
Revision 1.4 (08-23-12)  
DATASHEET  
Small Footprint MII/RMII 10/100 Ethernet Transceiver with HP Auto-MDIX and flexPWR® Technology  
Datasheet  
Figure 6.4 Reel Dimensions  
Figure 6.5 Tape Length and Part Quantity  
Note: Standard reel size is 4,000 pieces per reel.  
Revision 1.4 (08-23-12)  
80  
SMSC LAN8710A/LAN8710Ai  
DATASHEET  
Small Footprint MII/RMII 10/100 Ethernet Transceiver with HP Auto-MDIX and flexPWR® Technology  
Datasheet  
Chapter 7 Datasheet Revision History  
Table 7.1 Customer Revision History  
SECTION/FIGURE/ENTRY  
REVISION LEVEL & DATE  
CORRECTION  
Rev. 1.4  
(08-23-12)  
Section 4.2.2, "Basic Status  
Register," on page 53  
Updated definitions of bits 10:8.  
Updated bit 11 definition.  
Section 4.2.11, "Special  
Control/Status Indications  
Register," on page 62  
Section 4.2.14, "PHY  
Special Control/Status  
Register," on page 65  
Updated bit 6 definition.  
Rev. 1.3  
(03-12-12)  
Company disclaimer on  
page 2  
Removed company address and phone numbers.  
Ordering information modified.  
Cover  
Cover  
Rev. 1.3  
(04-20-11)  
Added copper bond wire ordering codes to  
LAN8710 ordering codes  
Table 2.7, “Power Pins,” on  
page 16  
Updated VDDCR pin note to include requirement  
of 1uF and 470pF decoupling capacitors in parallel  
to ground on the VDDCR pin.  
Figure 3.13 Power Supply  
Diagram (1.2V Supplied by  
Internal Regulator) on  
Updated diagrams to include 1uF and 470pF  
decoupling capacitors on the VDDCR pin.  
page 46 and Figure 3.13  
Power Supply Diagram  
(1.2V Supplied by Internal  
Regulator) on page 46  
Table 4.2.9, “Special Modes  
Register,” on page 60  
Updated MIIMODE bit description and added note:  
“When writing to this register the default value of  
this bit must always be written back.”  
Section 3.7.3, "RMIISEL:  
MII/RMII Mode  
Configuration," on page 37  
Updated second paragraph to:  
“When the nRST pin is deasserted, the MIIMODE  
bit of the Special Modes Register is loaded  
according to the RMIISEL configuration strap. The  
mode is reflected in the MIIMODE bit of the Special  
Modes Register.”  
Section 3.8.9.2, "Far  
Loopback," on page 43  
Updated section to defeature information about  
register control of the MII/RMII mode.  
Rev. 1.2 (11-10-10)  
Section 5.5.5, "RMII  
Interface Timing," on  
page 75  
Updated diagrams and tables to include RXER.  
Figure 6.1 32-QFN Package  
on page 78 & Figure 6.2  
Recommended PCB Land  
Pattern on page 79  
Updated package drawings.  
Section 5.5.5, "RMII  
Interface Timing," on  
page 75  
Corrected signal names on RMII timing diagrams  
and tables.  
SMSC LAN8710A/LAN8710Ai  
81  
Revision 1.4 (08-23-12)  
DATASHEET  
Small Footprint MII/RMII 10/100 Ethernet Transceiver with HP Auto-MDIX and flexPWR® Technology  
Datasheet  
Table 7.1 Customer Revision History (continued)  
SECTION/FIGURE/ENTRY CORRECTION  
REVISION LEVEL & DATE  
Section 5.5.4, "MII Interface  
Timing," on page 73  
Corrected signal names on MII timing diagrams  
and tables. Updated Table 5.8 tval max to 28.0 ns.  
Updated Table 5.9 tsu and thold values to 12.0 ns  
and 0 ns, respectively.  
Table 5.7, “Power-On nRST  
& Configuration Strap  
Timing Values,” on page 72  
Updated todad description: “Output drive after  
nRST deassertion”  
Rev. 1.1 (04-09-10)  
Section 5.1, "Absolute  
Maximum Ratings*"  
Modified “HBM ESD Performance by adding “per  
JEDEC JESD22-A114” and changed “+/-5kV” to  
“Class 3A”  
Section 5.3, "Power  
Consumption," on page 67  
Corrected typo in the current consumption table  
row title: “100BASE-TX /W TRAFFIC”  
Section 5.3, "Power  
Consumption," on page 67  
Corrected typo in note regarding Ethernet  
component current:  
“The Ethernet component current is typically 41mA  
in 100BASE-TX mode and 100mA in 10BASE-T  
mode, independent of the 2.5V or 3.3V supply rail  
of the transformer.”  
Table 5.2, “Non-Variable I/O  
Buffer Characteristics,” on  
page 68  
Corrected O12 VOH minimum value to “VDD2A -  
0.4”  
Corrected ICLK VILI maximum value to “0.35”  
Corrected ICLK VIHI maximum value to “VDD2A +  
0.4”  
Section 5.2, "Operating  
Conditions**," on page 67  
Added note: “Do not drive input signals without  
power supplied to the device.”  
Section 5.1, "Absolute  
Maximum Ratings*," on  
page 66  
Corrected IEC61000-4-2 Contact Discharge ESD  
Performance to +/-8kV.  
Section 4.2.4, "PHY  
Identifier 2 Register," on  
page 55  
Corrected Model Number default value to  
“001111b”.  
Section 3.8.9.2, "Far  
Loopback," on page 43  
Added far loopback description.  
Section 4.2.8, "Mode  
Control/Status Register," on  
page 59  
Added FARLOOPBACK (bit 9) description.  
Table 5.9, “MII Transmit  
Timing Values,” on page 74  
Corrected tsu and thold minimum values to 10 ns.  
Rev. 1.0 (12-09-09)  
Rev. 1.0 (04-15-09)  
Document reworked for clarity and consistency with other SMSC documentation.  
Initial Release  
Revision 1.4 (08-23-12)  
82  
SMSC LAN8710A/LAN8710Ai  
DATASHEET  

相关型号:

LAN8710A-EZC

Small Footprint MII/RMII 10/100 Ethernet Transceiver with HP Auto-MDIX and flexPWR Technology
SMSC

LAN8710A-EZC

DATACOM, ETHERNET TRANSCEIVER, QCC32, 5 X 5 MM, 0.90 MM HEIGHT, ROHS COMPLIANT, QFN-32
MICROCHIP

LAN8710A-EZC-ABC

Ethernet Transceiver
MICROCHIP

LAN8710A-EZC-TR

Small Footprint MII/RMII 10/100 Ethernet Transceiver with HP Auto-MDIX and flexPWR Technology
SMSC

LAN8710A-EZC-TR

DATACOM, ETHERNET TRANSCEIVER, QCC32, 5 X 5 MM, 0.90 MM HEIGHT, ROHS COMPLIANT, QFN-32
MICROCHIP

LAN8710A-EZC-TR-ABC

DATACOM, ETHERNET TRANSCEIVER
MICROCHIP

LAN8710A-EZK

MII/RMII 10/100 Ethernet Transceiver with HP Auto-MDIX and flexPWR Technology in a Small Footprint
SMSC

LAN8710A-EZK-TR

MII/RMII 10/100 Ethernet Transceiver with HP Auto-MDIX and flexPWR Technology in a Small Footprint
SMSC

LAN8710A-EZK-TR

DATACOM, ETHERNET TRANSCEIVER, QCC32, 5 X 5 MM, 0.90 MM HEIGHT, ROHS COMPLIANT, QFN-32
MICROCHIP

LAN8710AI

Small Footprint MII/RMII 10/100 Ethernet Transceiver with HP Auto-MDIX and flexPWR Technology
SMSC

LAN8710AI-EZC

DATACOM, ETHERNET TRANSCEIVER, QCC32, 5 X 5 MM, 0.90 MM HEIGHT, ROHS COMPLIANT, QFN-32
MICROCHIP

LAN8710AI-EZC-TR

DATACOM, ETHERNET TRANSCEIVER, QCC32, 5 X 5 MM, 0.90 MM HEIGHT, ROHS COMPLIANT, QFN-32
MICROCHIP