LAN83C185_03 [SMSC]

High Performance Single Chip Low Power 10/100 Ethernet Physical Layer Transceiver; 高性能单芯片低功耗10/100以太网物理层收发器
LAN83C185_03
型号: LAN83C185_03
厂家: SMSC CORPORATION    SMSC CORPORATION
描述:

High Performance Single Chip Low Power 10/100 Ethernet Physical Layer Transceiver
高性能单芯片低功耗10/100以太网物理层收发器

以太网 局域网(LAN)标准
文件: 总65页 (文件大小:888K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LAN83C185  
High Performance Single Chip  
Low Power 10/100 Ethernet  
Physical Layer Transceiver (PHY)  
Datasheet  
Product Features  
Single Chip Ethernet Phy  
Comprehensive power management features  
General power-down mode  
Energy Detect power-down mode  
Low profile 64-pin TQFP package  
Single +3.3V supply with 5V tolerant I/O  
0.18 micron technology  
Low power consumption  
Operating Temperature 0° C to 70° C  
Internal +1.8V Regulator  
Fully compliant with IEEE 802.3/802.3u standards  
10BASE-T and 100BASE-TX support  
Supports Auto-negotiation and Parallel Detection  
Automatic Polarity Correction  
Integrated DSP with Adaptive Equalizer  
Baseline Wander (BLW) Correction  
Media Independent Interface (MII)  
802.3u compliant register functions  
Vendor Specific register functions  
Applications  
LAN on Motherboard  
10/100 PCMCIA/CardBus Applications  
Embedded Telecom Applications  
Video Record/Playback Systems  
Cable Modems And Set-Top Boxes  
Digital Televisions  
Wireless Access Points  
ORDERING INFORMATION  
Order Number(s):  
LAN83C185-JD for 64 pin TQFP package  
SMSC LAN83C185  
DATASHEET  
Rev. 0.6 (12-12-03)  
High Performance Single Chip Low Power 10/100 Ethernet Physical Layer Transceiver (PHY)  
Datasheet  
© STANDARD MICROSYSTEMS CORPORATION (SMSC) 2003  
80 Arkay Drive  
Hauppauge, NY 11788  
(631) 435-6000  
FAX (631) 273-3123  
Standard Microsystems and SMSC are registered trademarks of Standard Microsystems Corporation. Product names and company names are the  
trademarks of their respective holders. Circuit diagrams utilizing SMSC products are included as a means of illustrating typical applications; conse-  
quently complete information sufficient for construction purposes is not necessarily given. Although the information has been checked and is believed  
to be accurate, no responsibility is assumed for inaccuracies. SMSC reserves the right to make changes to specifications and product descriptions  
at any time without notice. Contact your local SMSC sales office to obtain the latest specifications before placing your product order. The provision of  
this information does not convey to the purchaser of the semiconductor devices described any licenses under the patent rights of SMSC or others.  
All sales are expressly conditional on your agreement to the terms and conditions of the most recently dated version of SMSC's standard Terms of  
Sale Agreement dated before the date of your order (the "Terms of Sale Agreement"). The product may contain design defects or errors known as  
anomalies which may cause the product's functions to deviate from published specifications. Anomaly sheets are available upon request. SMSC  
products are not designed, intended, authorized or warranted for use in any life support or other application where product failure could cause or  
contribute to personal injury or severe property damage. Any and all such uses without prior written approval of an Officer of SMSC and further testing  
and/or modification will be fully at the risk of the customer. Copies of this document or other SMSC literature, as well as the Terms of Sale Agreement,  
may be obtained by visiting SMSC’s website at http://www.smsc.com.  
SMSC DISCLAIMS AND EXCLUDES ANY AND ALL WARRANTIES, INCLUDING WITHOUT LIMITATION ANY AND ALL IMPLIED WARRANTIES  
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE, AND AGAINST INFRINGEMENT AND THE LIKE, AND ANY AND  
ALL WARRANTIES ARISING FROM ANY COURSE OF DEALING OR USAGE OF TRADE.  
IN NO EVENT SHALL SMSC BE LIABLE FOR ANY DIRECT, INCIDENTAL, INDIRECT, SPECIAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES,  
OR FOR LOST DATA, PROFITS, SAVINGS OR REVENUES OF ANY KIND; REGARDLESS OF THE FORM OF ACTION, WHETHER BASED ON  
CONTRACT, TORT, NEGLIGENCE OF SMSC OR OTHERS, STRICT LIABILITY, BREACH OF WARRANTY, OR OTHERWISE; WHETHER OR NOT  
ANY REMEDY IS HELD TO HAVE FAILED OF ITS ESSENTIAL PURPOSE; AND WHETHER OR NOT SMSC HAS BEEN ADVISED OF THE  
POSSIBILITY OF SUCH DAMAGES.  
Rev. 0.6 (12-12-03)  
ii  
SMSC LAN83C185  
DATASHEET  
High Performance Single Chip Low Power 10/100 Ethernet Physical Layer Transceiver (PHY)  
Datasheet  
Table of Contents  
Chapter 1 General Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
1.1  
Architectural Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Chapter 2 Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Chapter 3 Pin Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
3.1  
I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Chapter 4 Architecture Details. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
4.1  
4.2  
Top Level Functional Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
100Base-TX Transmit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
4.2.1  
4.2.2  
4.2.3  
4.2.4  
4.2.5  
4.2.6  
100M Transmit Data across the MII. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
4B/5B Encoding. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Scrambling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
NRZI and MLT3 Encoding. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
100M Transmit Driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
100M Phase Lock Loop (PLL). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
4.3  
100Base-TX Receive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
4.3.1  
4.3.2  
4.3.3  
4.3.4  
4.3.5  
4.3.6  
4.3.7  
4.3.8  
4.3.9  
100M Receive Input. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Equalizer, Baseline Wander Correction and Clock and Data Recovery . . . . . . . . . . . . . 14  
NRZI and MLT-3 Decoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Descrambling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Alignment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
5B/4B Decoding. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Receive Data Valid Signal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Receiver Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
100M Receive Data across the MII . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
4.4  
4.5  
10Base-T Transmit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
4.4.1  
4.4.2  
4.4.3  
10M Transmit Data across the MII. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Manchester Encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
10M Transmit Drivers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
10Base-T Receive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
4.5.1  
4.5.2  
4.5.3  
4.5.4  
10M Receive Input and Squelch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Manchester Decoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
10M Receive Data across the MII . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Jabber detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
4.6  
4.7  
MAC Interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
4.6.1 MII . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Auto-negotiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
4.7.1  
4.7.2  
4.7.3  
4.7.4  
Parallel Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Re-starting Auto-negotiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Disabling Auto-negotiation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Half vs. Full Duplex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
4.8  
PHY Management Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
4.8.1 Serial Management Interface (SMI). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Chapter 5 Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
5.1  
5.2  
5.3  
5.4  
SMI Register Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
SMI Register Format. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Management Interrupt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Miscellaneous Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
SMSC LAN83C185  
iii  
Rev. 0.6 (12-12-03)  
DATASHEET  
High Performance Single Chip Low Power 10/100 Ethernet Physical Layer Transceiver (PHY)  
Datasheet  
5.4.1  
5.4.2  
5.4.3  
5.4.4  
5.4.5  
5.4.6  
5.4.7  
5.4.8  
5.4.9  
Carrier Sense . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Collision Detect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Isolate Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Link integrity Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Power-Down modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
LED Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Loopback Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Configuration Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
5.5  
5.6  
Analog. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
5.5.1  
5.5.2  
5.5.3  
5.5.4  
5.5.5  
5.5.6  
5.5.7  
5.5.8  
5.5.9  
ADC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
100M PLL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
MT_100 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
10M Squelch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
10BT Filter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
10M PLL - Data Recovery Clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
PLL 10M - Transmit Clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
XMT_10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Central Bias. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
DSP Block. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
5.6.1  
5.6.2  
General Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
ADC Gray code converting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
Chapter 6 Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
6.1  
6.2  
Serial Management Interface (SMI) Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
100Base-TX Timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
6.2.1  
6.2.2  
100M MII Receive Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
100M MII Transmit Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
6.3  
10Base-T Timings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
6.3.1  
6.3.2  
10M MII Receive Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
10M MII Transmit Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
6.4  
6.5  
Reset Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
6.5.1  
6.5.2  
6.5.3  
Operating Conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
Power Consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
DC Characteristics - Input and Output Buffers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
Chapter 7 Package Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
Rev. 0.6 (12-12-03)  
iv  
SMSC LAN83C185  
DATASHEET  
High Performance Single Chip Low Power 10/100 Ethernet Physical Layer Transceiver (PHY)  
Datasheet  
List of Figures  
Figure 1.1 LAN83C185 Architectural Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Figure 2.1 Package Pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Figure 4.1 100Base-TX Data Path . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Figure 4.2 Receive Data Path . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Figure 4.3 Relationship Between Received Data and Some MII Signals . . . . . . . . . . . . . . . . . . . . . . . . 15  
Figure 4.4 MDIO Timing and Frame Structure - READ Cycle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Figure 4.5 MDIO Timing and Frame Structure - WRITE Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Figure 5.1 PHY Address Strapping on LEDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Figure 7.1 64 Pin TQFP Package Outline, 10X10X1.4 Body, 2 MM Footprint . . . . . . . . . . . . . . . . . . . . 57  
SMSC LAN83C185  
v
Rev. 0.6 (12-12-03)  
DATASHEET  
High Performance Single Chip Low Power 10/100 Ethernet Physical Layer Transceiver (PHY)  
Datasheet  
Rev. 0.6 (12-12-03)  
vi  
SMSC LAN83C185  
DATASHEET  
High Performance Single Chip Low Power 10/100 Ethernet Physical Layer Transceiver (PHY)  
Datasheet  
List of Tables  
Table 2.1 LAN83C185 64-PIN TQFP Pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Table 3.1 MII Signals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Table 3.2 LED Signals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Table 3.3 Management Signals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Table 3.4 Configuration Inputs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Table 3.5 General Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Table 3.6 10/100 Line Interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Table 3.7 Analog References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Table 3.8 Analog Test Bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Table 3.9 Power Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Table 4.1 4B/5B Code Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Table 5.1 Control Register: Register 0 (Basic) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Table 5.2 Status Register: Register 1 (Basic) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Table 5.3 PHY ID 1 Register: Register 2 (Extended) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Table 5.4 PHY ID 2 Register: Register 3 (Extended) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Table 5.5 Auto-Negotiation Advertisement: Register 4 (Extended). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Table 5.6 Auto-Negotiation Link Partner Base Page Ability Register: Register 5 (Extended). . . . . . . . . 24  
Table 5.7 Auto-Negotiation Expansion Register: Register 6 (Extended). . . . . . . . . . . . . . . . . . . . . . . . . 24  
Table 5.8 Auto-Negotiation Link Partner Next Page Transmit Register: Register 7 (Extended) . . . . . . . 24  
Table 5.9 Register 8 (Extended) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Table 5.10 Register 9 (Extended) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Table 5.11 Register 10 (Extended) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Table 5.12 Register 11 (Extended) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Table 5.13 Register 12 (Extended) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Table 5.14 Register 13 (Extended) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Table 5.15 Register 14 (Extended) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Table 5.16 Register 15 (Extended) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Table 5.17 Silicon Revision Register 16: Vendor-Specific. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Table 5.18 Mode Control/ Status Register 17: Vendor-Specific . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Table 5.19 Special Modes Register 18: Vendor-Specific . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Table 5.20 Reserved Register 19: Vendor-Specific. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Table 5.21 TSTCNTL Register 20: Vendor-Specific . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Table 5.22 TSTREAD2 Register 21: Vendor-Specific . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Table 5.23 TSTREAD1 Register 22: Vendor-Specific . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Table 5.24 TSTWRITE Register 23: Vendor-Specific . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Table 5.25 Register 24: Vendor-Specific. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Table 5.26 Register 25: Vendor-Specific. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Table 5.27 Register 26: Vendor-Specific. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Table 5.28 Special Control/Status Indications Register 27: Vendor-Specific . . . . . . . . . . . . . . . . . . . . . . 28  
Table 5.29 Special Internal Testability Control Register 28: Vendor-Specific . . . . . . . . . . . . . . . . . . . . . . 28  
Table 5.30 Interrupt Source Flags Register 29: Vendor-Specific . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Table 5.31 Interrupt Mask Register 30: Vendor-Specific. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Table 5.32 PHY Special Control/Status Register 31: Vendor-Specific . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Table 5.33 SMI Register Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Table 5.34 Register 0 - Basic Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Table 5.35 Register 1 - Basic Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Table 5.36 Register 2 - PHY Identifier 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Table 5.37 Register 3 - PHY Identifier 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Table 5.38 Register 4 - Auto Negotiation Advertisement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Table 5.39 Register 5 - Auto Negotiation Link Partner Ability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Table 5.40 Register 6 - Auto Negotiation Expansion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Table 5.41 Register 16 - Silicon Revision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Table 5.42 Register 17 - Mode Control/Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
SMSC LAN83C185  
vii  
Rev. 0.6 (12-12-03)  
DATASHEET  
High Performance Single Chip Low Power 10/100 Ethernet Physical Layer Transceiver (PHY)  
Datasheet  
Table 5.43 Register 18 - Special Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Table 5.44 Register 20 - TSTCNTL. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Table 5.45 Register 21 - TSTREAD1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Table 5.46 Register 22 - TSTREAD2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Table 5.47 Register 23 - TSTWRITE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Table 5.48 Register 27 - Special Control/Status Indications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Table 5.49 Register 28 - Special Internal Testability Controls. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Table 5.50 Register 29 - Interrupt Source Flags . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Table 5.51 Register 30 - Interrupt Mask . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Table 5.52 Register 31 - PHY Special Control/Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Table 5.53 MODE[2:0] Bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Table 6.1 Power Consumption Device Only . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
Table 6.2 Power Consumption Device and System Components. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
Table 6.3 MII BUS INTERFACE SIGNALS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
Table 6.4 LAN Interface Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
Table 6.5 LED Signals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
Table 6.6 Configuration Inputs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
Table 6.7 General Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
Table 6.8 Analog References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
Table 6.9 Internal Pull-Up / Pull-/Down Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
Table 6.10 100Base-TX Transceiver Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
Table 6.11 10BASE-T Transceiver Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
Table 7.1 64 Pin TQFP Package Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
Rev. 0.6 (12-12-03)  
SMSC LAN83C185  
DATAvSiiiHEET  
High Performance Single Chip Low Power 10/100 Ethernet Physical Layer Transceiver (PHY)  
Datasheet  
Chapter 1 General Description  
The SMSC LAN83C185 is a low-power, highly integrated analog interface IC for high-performance  
embedded Ethernet applications. The LAN83C185 requires only a single +3.3V supply.  
The LAN83C185 consists of an encoder/decoder, scrambler/descrambler, transmitter with wave-  
shaping and output driver, twisted-pair receiver with on-chip adaptive equalizer and baseline wander  
(BLW) correction, clock and data recovery, and Media Independent Interface (MII).  
The LAN83C185 is fully compliant with IEEE 802.3/ 802.3u standards and supports both 802.3u-  
compliant and vendor-specific register functions. It contains a full-duplex 10-BASET/100BASE-TX  
transceiver and supports 10-Mbps (10BASE-T) operation on Category 3 and Category 5 unshielded  
twisted-pair cable, and 100-Mbps (100BASE-TX) operation on Category 5 unshielded twisted-pair  
cable.  
1.1  
Architectural Overview  
Transmit Section  
1.8V  
Regulator  
MODE0  
10M Tx  
10M  
Auto-  
MODE1  
MODE2  
MODE Control  
Logic  
Transmitter  
Negotiation  
TXP / TXN  
Management  
SMI  
Control  
100M Tx  
Logic  
100M  
Transmitter  
nRESET  
Receive Section  
XTAL1  
XTAL2  
TXD[0..3]  
TX_EN  
PLL  
DSP System:  
Clock  
100M Rx  
Logic  
Analog-to-  
Digital  
TX_ER  
Interrupt  
Data Recovery  
Equalizer  
TX_CLK  
nINT  
Generator  
RXP / RXN  
RXD[0..3]  
RX_DV  
PHY  
100M PLL  
RX_ER  
Address  
Latches  
PHYAD[0..4]  
RX_CLK  
SPEED100  
LINKON  
10M Rx  
Logic  
Squelch &  
Filters  
CRS  
COL  
LED Circuitry  
GPO Circuitry  
ACTIVITY  
FDUPLEX  
MDC  
GPO0  
GPO1  
GPO2  
10M PLL  
MDIO  
Central  
Bias  
Figure 1.1 LAN83C185 Architectural Overview  
SMSC LAN83C185  
1
Rev. 0.6 (12-12-03)  
DATASHEET  
High Performance Single Chip Low Power 10/100 Ethernet Physical Layer Transceiver (PHY)  
Datasheet  
Rev. 0.6 (12-12-03)  
2
SMSC LAN83C185  
DATASHEET  
High Performance Single Chip Low Power 10/100 Ethernet Physical Layer Transceiver (PHY)  
Datasheet  
Chapter 2 Pin Configuration  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
1
2
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
CRS  
GPO0/MII  
GPO1/PHYAD4  
GPO2  
COL  
3
nINT  
4
MODE0  
TXD3  
TXD2  
VDD3  
TXD1  
TXD0  
VSS7  
TX_EN  
TX_CLK  
5
MODE1  
6
MODE2  
7
VSS1  
8
VDD1  
LAN83C185  
9
TEST0  
10  
11  
12  
13  
14  
15  
16  
TEST1  
CLK_FREQ  
REG_EN  
VREG  
TX_ER/TXD4  
VSS6  
VDD_CORE  
VSS2  
RX_ER/RXD4  
RX_CLK  
SPEED100/PHYAD0  
RX_DV  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
Figure 2.1 Package Pinout  
SMSC LAN83C185  
3
Rev. 0.6 (12-12-03)  
DATASHEET  
High Performance Single Chip Low Power 10/100 Ethernet Physical Layer Transceiver (PHY)  
Datasheet  
Table 2.1 LAN83C185 64-PIN TQFP Pinout  
PIN NO.  
PIN NAME  
PIN NO.  
PIN NAME  
1
GPO0/MII  
GPO1/PHYAD4  
GPO2  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
RX_DV  
RX_CLK  
RX_ER/RXD4  
VSS6  
2
3
4
MODE0  
5
MODE1  
TX_ER/TXD4  
TX_CLK  
TX_EN  
VSS7  
6
MODE2  
7
VSS1  
8
VDD1  
9
TEST0  
TXD0  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
TEST1  
TXD1  
CLK_FREQ  
REG_EN  
VREG  
VDD3  
TXD2  
TXD3  
VDD_CORE  
VSS2  
nINT  
COL  
SPEED100/PHYAD0  
LINKON/PHYAD1  
VDD2  
CRS  
AVSS1  
TXN  
ACTIVITY/PHYAD2  
FDUPLEX/PHYAD3  
VSS3  
TXP  
AVSS2  
AVDD1  
RXN  
XTAL2  
CLKIN/XTAL1  
VSS4  
RXP  
NC2  
nRST  
AVDD2  
AVSS3  
EXRES1  
AVSS4  
AVDD3  
AVSS5  
AVDD4  
NC1  
MDIO  
MDC  
VSS5  
RXD3  
RXD2  
RXD1  
RXD0  
Rev. 0.6 (12-12-03)  
4
SMSC LAN83C185  
DATASHEET  
High Performance Single Chip Low Power 10/100 Ethernet Physical Layer Transceiver (PHY)  
Datasheet  
Chapter 3 Pin Description  
This chapter describes in detail the functionality of each of the five main architectural blocks.  
The term “block” defines a stand-alone entity on the floor plan of the chip.  
3.1  
I/O Signals  
I
– Input. Digital TTL levels.  
O
– Output. Digital TTL levels.  
– Input. Analog levels.  
AI  
AO – Output. Analog levels.  
AI/O – Input or Output. Analog levels.  
Note: Reset as used in the signal descriptions is defined as nRST being active low.  
Configuration inputs are listed in parenthesis.  
Table 3.1 MII Signals  
PIN NO.  
SIGNAL NAME  
TYPE  
DESCRIPTION  
41  
TXD0  
TXD1  
TX_EN  
I
I
I
Transmit Data 0: Bit 0 of the 4 data bits that are accepted  
by the PHY for transmission.  
42  
39  
35  
Transmit Data 1: Bit 1 of the 4 data bits that are accepted  
by the PHY for transmission.  
Transmit Enable: Indicates that valid data is presented  
on the TXD[3:0] signals, for transmission.  
RX_ER  
(RXD4)  
O
O
Receive Error: Asserted to indicate that an error was  
detected somewhere in the frame presently being  
transferred from the PHY.  
In Symbol Interface (5B Decoding) mode, this signal is the  
MII Receive Data 4: the MSB of the received 5-bit symbol  
code-group.  
47  
32  
31  
44  
45  
COL  
O
O
O
I
MII Collision Detect: Asserted to indicate detection of  
collision condition.  
RXD0  
RXD1  
TXD2  
TXD3  
Receive Data 0: Bit 0 of the 4 data bits that are sent by  
the PHY in the receive path.  
Receive Data 1: Bit 1 of the 4 data bits that are sent by  
the PHY in the receive path.  
Transmit Data 2: Bit 2 of the 4 data bits that are accepted  
by the PHY for transmission.  
I
Transmit Data 3: Bit 3 of the 4 data bits that are accepted  
by the PHY for transmission.  
SMSC LAN83C185  
5
Rev. 0.6 (12-12-03)  
DATASHEET  
High Performance Single Chip Low Power 10/100 Ethernet Physical Layer Transceiver (PHY)  
Datasheet  
Table 3.1 MII Signals (continued)  
PIN NO.  
SIGNAL NAME  
TYPE  
DESCRIPTION  
37  
TX_ER  
(TXD4)  
I
I
MII Transmit Error: When driven high, the 4B/5B encode  
process substitutes the Transmit Error code-group (/H/)  
for the encoded data word. This input is ignored in  
10BaseT operation.  
In Symbol Interface (5B Decoding) mode, this signal  
becomes the MII Transmit Data 4: the MSB of the 5-bit  
symbol code-group.  
48  
33  
CRS  
O
O
Carrier Sense: Indicate detection of carrier.  
RX_DV  
Receive Data Valid: Indicates that recovered and  
decoded data nibbles are being presented on RXD[3:0].  
30  
29  
38  
34  
RXD2  
RXD3  
O
O
O
O
Receive Data 2: Bit 2 of the 4 data bits that sent by the  
PHY in the receive path.  
Receive Data 3: Bit 3 of the 4 data bits that sent by the  
PHY in the receive path.  
TX_CLK  
RX_CLK  
Transmit Clock: 25MHz in 100Base-TX mode. 2.5MHz in  
10Base-T mode.  
Receive Clock: 25MHz in 100Base-TX mode. 2.5MHz in  
10Base-T mode.  
Table 3.2 LED Signals  
TYPE  
PIN NO.  
SIGNAL NAME  
DESCRIPTION  
16  
SPEED100  
O
LED1 – SPEED100 indication. Active indicates that the  
selected speed is 100Mbps. Inactive indicates that the  
selected speed is 10Mbps.  
17  
19  
20  
LINKON  
O
O
O
LED2 – LINK ON indication. Active indicates that the Link  
(100Base-TX or 10Base-T) is on.  
ACTIVITY  
FDUPLEX  
LED3 – ACTIVITY indication. Active indicates that there  
is Carrier sense (CRS) from the active PMD.  
LED4 – DUPLEX indication. Active indicates that the PHY  
is in full-duplex mode.  
Table 3.3 Management Signals  
TYPE DESCRIPTION  
PIN NO.  
SIGNAL NAME  
26  
MDIO  
MDC  
IO  
Management Data Input/OUTPUT: Serial management  
data input/output.  
27  
I
Management Clock: Serial management clock.  
Rev. 0.6 (12-12-03)  
6
SMSC LAN83C185  
DATASHEET  
High Performance Single Chip Low Power 10/100 Ethernet Physical Layer Transceiver (PHY)  
Datasheet  
Table 3.4 Configuration Inputs  
PIN NO.  
SIGNAL NAME  
PHYAD4  
TYPE  
DESCRIPTION  
2
I
I
I
I
I
I
PHY Address Bit 4: set the default address of the PHY.  
PHY Address Bit 3: set the default address of the PHY.  
PHY Address Bit 2: set the default address of the PHY.  
PHY Address Bit 1: set the default address of the PHY.  
PHY Address Bit 0: set the default address of the PHY.  
20  
19  
17  
16  
6
PHYAD3  
PHYAD2  
PHYAD1  
PHYAD0  
MODE2  
PHY Operating Mode Bit 2: set the default MODE of the  
PHY. See Section 5.4.9.2, "Mode Bus – MODE[2:0]," on  
page 42 for the MODE options.  
5
4
MODE1  
MODE0  
I
I
PHY Operating Mode Bit 1: set the default MODE of the  
PHY. See Section 5.4.9.2, "Mode Bus – MODE[2:0]," on  
page 42 for the MODE options.  
PHY Operating Mode Bit 0: set the default MODE of the  
PHY. See Section 5.4.9.2, "Mode Bus – MODE[2:0]," on  
page 42 for the MODE options.  
10  
9
TEST1  
I
I
I
Test Mode Select 1: Must be left floating.  
Test Mode Select 0: Must be left floating.  
TEST0  
12  
REG_EN  
Internal +1.8V Regulator Enable:  
+3.3V – Enables internal regulator.  
0V – Disables internal regulator.  
Table 3.5 General Signals  
TYPE  
PIN NO.  
SIGNAL NAME  
DESCRIPTION  
46  
25  
nINT  
OD  
I
LAN Interrupt – Active Low output.  
nRST  
External Reset – input of the system reset. This signal is  
active LOW.  
23  
22  
11  
CLKIN/XTAL1  
XTAL2  
I
Clock Input – 25 MHz external clock or crystal input.  
Clock Output – 25 MHz crystal output.  
O
I
CLK_FREQ  
Clock Frequency – define the frequency of the input  
clock CLKIN  
0 – Clock frequency is 25 MHz.  
1 – Reserved.  
This input needs to be held low continuously, during and  
after reset. This pin should be pulled-down to VSS via a  
pull-down resistor.  
64  
3
NC1  
No Connect  
GPO2  
O
O
General Purpose Output 2 – General Purpose Output  
signal Driven by bits in registers 27 and 31.  
2
GPO1  
General Purpose Output 1 – General Purpose Output  
signal Driven by bits in registers 27 and 31.  
(Muxed with PHYAD4 signal)  
SMSC LAN83C185  
7
Rev. 0.6 (12-12-03)  
DATASHEET  
High Performance Single Chip Low Power 10/100 Ethernet Physical Layer Transceiver (PHY)  
Datasheet  
Table 3.5 General Signals (continued)  
PIN NO.  
SIGNAL NAME  
TYPE  
DESCRIPTION  
1
GPO0  
O
General Purpose Output 0 – General Purpose Output  
signal. Driven by bits in registers 27 and 31.  
(Muxed with MII Select) This pin should be pulled-down  
or left floating – Do Not Pull Up.  
Table 3.6 10/100 Line Interface  
TYPE  
PIN NO.  
SIGNAL NAME  
DESCRIPTION  
51  
TXP  
TXN  
RXP  
RXN  
AO  
AO  
AI  
Transmit Data: 100Base-TX or 10Base-T differential  
transmit outputs to magnetics.  
50  
55  
54  
Transmit Data: 100Base-TX or 10Base-T differential  
transmit outputs to magnetics.  
Receive Data: 100Base-TX or 10Base-T differential  
receive inputs from magnetics.  
AI  
Receive Data: 100Base-TX or 10Base-T differential  
receive inputs from magnetics.  
Table 3.7 Analog References  
TYPE  
PIN NO.  
SIGNAL NAME  
DESCRIPTION  
59  
EXRES1  
AI  
Connects to reference resistor of value 12.4K-Ohm, 1%  
connected as described in the Analog Layout Guidelines.  
Table 3.8 Analog Test Bus  
TYPE  
PIN NO.  
SIGNAL NAME  
DESCRIPTION  
DESCRIPTION  
56  
NC2  
AI/O  
No Connect  
Table 3.9 Power Signals  
TYPE  
PIN NO.  
SIGNAL NAME  
53  
57  
61  
63  
49  
52  
58  
AVDD1  
AVDD2  
AVDD3  
AVDD4  
AVSS1  
AVSS2  
AVSS3  
Power  
Power  
Power  
Power  
Power  
Power  
Power  
+3.3V Analog Power  
+3.3V Analog Power  
+3.3V Analog Power  
+3.3V Analog Power  
Analog Ground  
Analog Ground  
Analog Ground  
Rev. 0.6 (12-12-03)  
8
SMSC LAN83C185  
DATASHEET  
High Performance Single Chip Low Power 10/100 Ethernet Physical Layer Transceiver (PHY)  
Datasheet  
Table 3.9 Power Signals (continued)  
PIN NO.  
SIGNAL NAME  
TYPE  
DESCRIPTION  
60  
62  
13  
14  
AVSS4  
AVSS5  
VREG  
Power  
Power  
Power  
Power  
Analog Ground  
Analog Ground  
+3.3V Internal Regulator Input Voltage  
VDD_CORE  
+1.8V Ring (Core voltage) - required for capacitance  
connection.  
8
VDD1  
VDD2  
VDD3  
VSS1  
VSS2  
VSS3  
VSS4  
VSS5  
VSS6  
VSS7  
Power  
Power  
Power  
Power  
Power  
Power  
Power  
Power  
Power  
Power  
+3.3V Digital Power  
+3.3V Digital Power  
+3.3V Digital Power  
Digital Ground (GND)  
Digital Ground (GND)  
Digital Ground (GND)  
Digital Ground (GND)  
Digital Ground (GND)  
Digital Ground (GND)  
Digital Ground (GND)  
18  
43  
7
15  
21  
24  
28  
36  
40  
SMSC LAN83C185  
9
Rev. 0.6 (12-12-03)  
DATASHEET  
High Performance Single Chip Low Power 10/100 Ethernet Physical Layer Transceiver (PHY)  
Datasheet  
Rev. 0.6 (12-12-03)  
SMSC LAN83C185  
DATA1S0HEET  
High Performance Single Chip Low Power 10/100 Ethernet Physical Layer Transceiver (PHY)  
Datasheet  
Chapter 4 Architecture Details  
4.1  
Top Level Functional Architecture  
Functionally, the PHY can be divided into the following sections:  
100Base-TX transmit and receive  
10Base-T transmit and receive  
MII interface to the controller  
Auto-negotiation to automatically determine the best speed and duplex possible  
Management Control to read status registers and write control registers  
100M  
PLL  
TX_CLK  
(for MII)  
MAC  
4B/5B  
Scrambler  
and PISO  
25MHz  
25MHz by  
5 bits  
MII 25 MHz by 4 bits  
MII  
by 4 bits  
Encoder  
125 Mbps Serial  
NRZI  
MLT-3  
Tx  
Driver  
NRZI  
MLT-3  
MLT-3  
Magnetics  
Converter  
Converter  
MLT-3  
MLT-3  
RJ45  
CAT-5  
Figure 4.1 100Base-TX Data Path  
4.2  
100Base-TX Transmit  
The data path of the 100Base-TX is shown in Figure 4.1. Each major block is explained below.  
4.2.1  
100M Transmit Data across the MII  
The MAC controller drives the transmit data onto the TXD bus and asserts TX_EN to indicate valid  
data. The data is latched by the PHY’s MII block on the rising edge of TX_CLK. The data is in the  
form of 4-bit wide 25MHz data.  
4.2.2  
4B/5B Encoding  
The transmit data passes from the MII block to the 4B/5B encoder. This block encodes the data from  
4-bit nibbles to 5-bit symbols (known as “code-groups”) according to Table 4.1. Each 4-bit data-nibble  
is mapped to 16 of the 32 possible code-groups. The remaining 16 code-groups are either used for  
control information or are not valid.  
The first 16 code-groups are referred to by the hexadecimal values of their corresponding data nibbles,  
0 through F. The remaining code-groups are given letter designations with slashes on either side. For  
example, an IDLE code-group is /I/, a transmit error code-group is /H/, etc.  
SMSC LAN83C185  
Rev. 0.6 (12-12-03)  
DATAS11HEET  
High Performance Single Chip Low Power 10/100 Ethernet Physical Layer Transceiver (PHY)  
Datasheet  
The encoding process may be bypassed by clearing bit 6 of register 31. When the encoding is  
bypassed the 5th transmit data bit is equivalent to TX_ER.  
Note that encoding can be bypassed only when the MAC interface is configured to operate in MII  
mode.  
Table 4.1 4B/5B Code Table  
CODE  
RECEIVER  
TRANSMITTER  
GROUP  
SYM  
INTERPRETATION  
INTERPRETATION  
11110  
01001  
10100  
10101  
01010  
01011  
01110  
01111  
10010  
10011  
10110  
10111  
11010  
11011  
11100  
11101  
11111  
11000  
0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F
I
0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
DATA  
0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
DATA  
IDLE  
Sent after /T/R until TX_EN  
Sent for rising TX_EN  
J
First nibble of SSD, translated to “0101”  
following IDLE, else RX_ER  
10001  
01101  
K
T
Second nibble of SSD, translated to  
“0101” following J, else RX_ER  
Sent for rising TX_EN  
Sent for falling TX_EN  
First nibble of ESD, causes de-assertion  
of CRS if followed by /R/, else assertion  
of RX_ER  
00111  
R
Second nibble of ESD, causes  
deassertion of CRS if following /T/, else  
assertion of RX_ER  
Sent for falling TX_EN  
00100  
00110  
11001  
00000  
00001  
H
V
V
V
V
Transmit Error Symbol  
Sent for rising TX_ER  
INVALID  
INVALID, RX_ER if during RX_DV  
INVALID, RX_ER if during RX_DV  
INVALID, RX_ER if during RX_DV  
INVALID, RX_ER if during RX_DV  
INVALID  
INVALID  
INVALID  
Rev. 0.6 (12-12-03)  
SMSC LAN83C185  
DATA1S2HEET  
High Performance Single Chip Low Power 10/100 Ethernet Physical Layer Transceiver (PHY)  
Datasheet  
Table 4.1 4B/5B Code Table (continued)  
CODE  
RECEIVER  
TRANSMITTER  
GROUP  
SYM  
INTERPRETATION  
INTERPRETATION  
00010  
00011  
00101  
01000  
01100  
10000  
V
V
V
V
V
V
INVALID, RX_ER if during RX_DV  
INVALID, RX_ER if during RX_DV  
INVALID, RX_ER if during RX_DV  
INVALID, RX_ER if during RX_DV  
INVALID, RX_ER if during RX_DV  
INVALID, RX_ER if during RX_DV  
INVALID  
INVALID  
INVALID  
INVALID  
INVALID  
INVALID  
4.2.3  
Scrambling  
Repeated data patterns (especially the IDLE code-group) can have power spectral densities with large  
narrow-band peaks. Scrambling the data helps eliminate these peaks and spread the signal power  
more uniformly over the entire channel bandwidth. This uniform spectral density is required by FCC  
regulations to prevent excessive EMI from being radiated by the physical wiring.  
The seed for the scrambler is generated from the PHY address, PHYAD[4:0], ensuring that in multiple-  
PHY applications, such as repeaters or switches, each PHY will have its own scrambler sequence.  
The scrambler also performs the Parallel In Serial Out conversion (PISO) of the data.  
4.2.4  
4.2.5  
NRZI and MLT3 Encoding  
The scrambler block passes the 5-bit wide parallel data to the NRZI converter where it becomes a  
serial 125MHz NRZI data stream. The NRZI is encoded to MLT-3. MLT3 is a tri-level code where a  
change in the logic level represents a code bit “1” and the logic output remaining at the same level  
represents a code bit “0”.  
100M Transmit Driver  
The MLT3 data is then passed to the analog transmitter, which launches the differential MLT-3 signal,  
on outputs TXP and TXN, to the twisted pair media via a 1:1 ratio isolation transformer. The 10Base-  
T and 100Base-TX signals pass through the same transformer so that common “magnetics” can be  
used for both. The transmitter drives into the 100impedance of the CAT-5 cable. Cable termination  
and impedance matching require external components.  
4.2.6  
100M Phase Lock Loop (PLL)  
The 100M PLL locks onto reference clock and generates the 125MHz clock used to drive the 125 MHz  
logic and the 100Base-Tx Transmitter.  
SMSC LAN83C185  
Rev. 0.6 (12-12-03)  
DATA1S3HEET  
High Performance Single Chip Low Power 10/100 Ethernet Physical Layer Transceiver (PHY)  
Datasheet  
100M  
PLL  
RX_CLK  
MAC  
MII 25MHz by 4  
bits  
25MHz  
4B/5B  
Descrambler  
and SIPO  
25MHz by  
5 bits  
MII  
by 4 bits  
Decoder  
125 Mbps Serial  
DSP: Timing  
MLT-3  
Converter  
NRZI  
MLT-3  
recovery, Equalizer  
and BLW Correction  
NRZI  
Converter  
A/D  
MLT-3  
MLT-3  
MLT-3  
Magnetics  
RJ45  
CAT-5  
Converter  
6 bit Data  
Figure 4.2 Receive Data Path  
4.3  
100Base-TX Receive  
The receive data path is shown in Figure 4.2. Detailed descriptions are given below.  
4.3.1  
100M Receive Input  
The MLT-3 from the cable is fed into the PHY (on inputs RXP and RXN) via a 1:1 ratio transformer.  
The ADC samples the incoming differential signal at a rate of 125M samples per second. Using a 64-  
level quanitizer it generates 6 digital bits to represent each sample. The DSP adjusts the gain of the  
ADC according to the observed signal levels such that the full dynamic range of the ADC can be used.  
4.3.2  
Equalizer, Baseline Wander Correction and Clock and Data Recovery  
The 6 bits from the ADC are fed into the DSP block. The equalizer in the DSP section compensates  
for phase and amplitude distortion caused by the physical channel consisting of magnetics, connectors,  
and CAT- 5 cable. The equalizer can restore the signal for any good-quality CAT-5 cable between 1m  
and 150m.  
If the DC content of the signal is such that the low-frequency components fall below the low frequency  
pole of the isolation transformer, then the droop characteristics of the transformer will become  
significant and Baseline Wander (BLW) on the received signal will result. To prevent corruption of the  
received data, the PHY corrects for BLW and can receive the ANSI X3.263-1995 FDDI TP-PMD  
defined “killer packet” with no bit errors.  
The 100M PLL generates multiple phases of the 125MHz clock. A multiplexer, controlled by the timing  
unit of the DSP, selects the optimum phase for sampling the data. This is used as the received  
recovered clock. This clock is used to extract the serial data from the received signal.  
4.3.3  
NRZI and MLT-3 Decoding  
The DSP generates the MLT-3 recovered levels that are fed to the MLT-3 converter. The MLT-3 is then  
converted to an NRZI data stream.  
Rev. 0.6 (12-12-03)  
SMSC LAN83C185  
DATA1S4HEET  
High Performance Single Chip Low Power 10/100 Ethernet Physical Layer Transceiver (PHY)  
Datasheet  
4.3.4  
Descrambling  
The descrambler performs an inverse function to the scrambler in the transmitter and also performs  
the Serial In Parallel Out (SIPO) conversion of the data.  
During reception of IDLE (/I/) symbols. the descrambler synchronizes its descrambler key to the  
incoming stream. Once synchronization is achieved, the descrambler locks on this key and is able to  
descramble incoming data.  
Special logic in the descrambler ensures synchronization with the remote PHY by searching for IDLE  
symbols within a window of 4000 bytes (40us). This window ensures that a maximum packet size of  
1514 bytes, allowed by the IEEE 802.3 standard, can be received with no interference. If no IDLE-  
symbols are detected within this time-period, receive operation is aborted and the descrambler re-starts  
the synchronization process.  
The descrambler can be bypassed by setting bit 0 of register 31.  
4.3.5  
4.3.6  
Alignment  
The de-scrambled signal is then aligned into 5-bit code-groups by recognizing the /J/K/ Start-of-Stream  
Delimiter (SSD) pair at the start of a packet. Once the code-word alignment is determined, it is stored  
and utilized until the next start of frame.  
5B/4B Decoding  
The 5-bit code-groups are translated into 4-bit data nibbles according to the 4B/5B table. The  
translated data is presented on the RXD[3:0] signal lines. The SSD, /J/K/, is translated to “0101 0101”  
as the first 2 nibbles of the MAC preamble. Reception of the SSD causes the PHY to assert the RX_DV  
signal, indicating that valid data is available on the RXD bus. Successive valid code-groups are  
translated to data nibbles. Reception of either the End of Stream Delimiter (ESD) consisting of the /T/R/  
symbols, or at least two /I/ symbols causes the PHY to de-assert carrier sense and RX_DV.  
These symbols are not translated into data.  
The decoding process may be bypassed by clearing bit 6 of register 31. When the decoding is  
bypassed the 5th receive data bit is driven out on RX_ER/RXD4. Decoding may be bypassed only  
when the MAC interface is in MII mode.  
4.3.7  
Receive Data Valid Signal  
The Receive Data Valid signal (RX_DV) indicates that recovered and decoded nibbles are being  
presented on the RXD[3:0] outputs synchronous to RX_CLK. RX_DV becomes active after the /J/K/  
delimiter has been recognized and RXD is aligned to nibble boundaries. It remains active until either  
the /T/R/ delimiter is recognized or link test indicates failure or SIGDET becomes false.  
RX_DV is asserted when the first nibble of translated /J/K/ is ready for transfer over the Media  
Independent Interface (MII).  
J
K
5
5
5
D
Idle  
data data data data  
T
R
CLEAR-TEXT  
RX_CLK  
RX_DV  
5
5
5
5
5
D
data data data data  
RXD  
Figure 4.3 Relationship Between Received Data and Some MII Signals  
SMSC LAN83C185  
Rev. 0.6 (12-12-03)  
DATA1S5HEET  
High Performance Single Chip Low Power 10/100 Ethernet Physical Layer Transceiver (PHY)  
Datasheet  
4.3.8  
4.3.9  
Receiver Errors  
During a frame, unexpected code-groups are considered receive errors. Expected code groups are the  
DATA set (0 through F), and the /T/R/ (ESD) symbol pair. When a receive error occurs, the RX_ER  
signal is asserted and arbitrary data is driven onto the RXD[3:0] lines. Should an error be detected  
during the time that the /J/K/ delimiter is being decoded (bad SSD error), RX_ER is asserted true and  
the value ‘1110’ is driven onto the RXD[3:0] lines. Note that the Valid Data signal is not yet asserted  
when the bad SSD error occurs.  
100M Receive Data across the MII  
The 4-bit data nibbles are sent to the MII block. These data nibbles are clocked to the controller at a  
rate of 25MHz. The controller samples the data on the rising edge of RX_CLK. To ensure that the  
setup and hold requirements are met, the nibbles are clocked out of the PHY on the falling edge of  
RX_CLK. RX_CLK is the 25MHz output clock for the MII bus. It is recovered from the received data  
to clock the RXD bus. If there is no received signal, it is derived from the system reference clock  
(CLKIN).  
When tracking the received data, RX_CLK has a maximum jitter of 0.8ns (provided that the jitter of the  
input clock, CLKIN, is below 100ps).  
4.4  
10Base-T Transmit  
Data to be transmitted comes from the MAC layer controller. The 10Base-T transmitter receives 4-bit  
nibbles from the MII at a rate of 2.5MHz and converts them to a 10Mbps serial data stream. The data  
stream is then Manchester-encoded and sent to the analog transmitter, which drives a signal onto the  
twisted pair via the external magnetics.  
The 10M transmitter uses the following blocks:  
MII (digital)  
TX 10M (digital)  
10M Transmitter (analog)  
10M PLL (analog)  
4.4.1  
10M Transmit Data across the MII  
The MAC controller drives the transmit data onto the TXD BUS. When the controller has driven TX_EN  
high to indicate valid data, the data is latched by the MII block on the rising edge of TX_CLK. The data  
is in the form of 4-bit wide 2.5MHz data.  
In order to comply with legacy 10Base-T MAC/Controllers, in Half-duplex mode the PHY loops back  
the transmitted data, on the receive path. This does not confuse the MAC/Controller since the COL  
signal is not asserted during this time. The PHY also supports the SQE (Heartbeat) signal. See Section  
5.4.2, "Collision Detect," on page 39 for more details.  
4.4.2  
4.4.3  
Manchester Encoding  
The 4-bit wide data is sent to the TX10M block. The nibbles are converted to a 10Mbps serial NRZI  
data stream. The 10M PLL locks onto the external clock or internal oscillator and produces a 20MHz  
clock. This is used to Manchester encode the NRZ data stream. When no data is being transmitted  
(TX_EN is low, the TX10M block outputs Normal Link Pulses (NLPs) to maintain communications with  
the remote link partner.  
10M Transmit Drivers  
The Manchester encoded data is sent to the analog transmitter where it is shaped and filtered before  
being driven out as a differential signal across the TXP and TXN outputs.  
Rev. 0.6 (12-12-03)  
SMSC LAN83C185  
DATA1S6HEET  
High Performance Single Chip Low Power 10/100 Ethernet Physical Layer Transceiver (PHY)  
Datasheet  
4.5  
10Base-T Receive  
The 10Base-T receiver gets the Manchester- encoded analog signal from the cable via the magnetics.  
It recovers the receive clock from the signal and uses this clock to recover the NRZI data stream. This  
10M serial data is converted to 4-bit data nibbles which are passed to the controller across the MII at  
a rate of 2.5MHz.  
This 10M receiver uses the following blocks:  
Filter and SQUELCH (analog)  
10M PLL (analog)  
RX 10M (digital)  
MII (digital)  
4.5.1  
4.5.2  
10M Receive Input and Squelch  
The Manchester signal from the cable is fed into the PHY (on inputs RXP and RXN) via 1:1 ratio  
magnetics. It is first filtered to reduce any out-of-band noise. It then passes through a SQUELCH  
circuit. The SQUELCH is a set of amplitude and timing comparators that normally reject differential  
voltage levels below 300mV and detect and recognize differential voltages above 585mV.  
Manchester Decoding  
The output of the SQUELCH goes to the RX10M block where it is validated as Manchester encoded  
data. The polarity of the signal is also checked. If the polarity is reversed (local RXP is connected to  
RXN of the remote partner and vice versa), then this is identified and corrected. The reversed condition  
is indicated by the flag “XPOL“, bit 4 in register 27. The 10M PLL is locked onto the received  
Manchester signal and from this, generates the received 20MHz clock. Using this clock, the  
Manchester encoded data is extracted and converted to a 10MHz NRZI data stream. It is then  
converted from serial to 4-bit wide parallel data.  
The RX10M block also detects valid 10Base-T IDLE signals - Normal Link Pulses (NLPs) - to maintain  
the link.  
4.5.3  
4.5.4  
10M Receive Data across the MII  
The 4 bit data nibbles are sent to the MII block. In MII mode, these data nibbles are valid on the rising  
edge of the 2.5 MHz RX_CLK.  
Jabber detection  
Jabber is a condition in which a station transmits for a period of time longer than the maximum  
permissible packet length, usually due to a fault condition, that results in holding the TX_EN input for  
a long period. Special logic is used to detect the jabber state and abort the transmission to the line,  
within 45ms. Once TX_EN is deasserted, the logic resets the jabber condition.  
Bit 1.1 indicates that a jabber condition was detected.  
4.6  
MAC Interface  
The MII (Media Independent Interface) block is responsible for the communication with the controller.  
Special sets of hand-shake signals are used to indicate that valid received/transmitted data is present  
on the 4 bit receive/transmit bus.  
SMSC LAN83C185  
Rev. 0.6 (12-12-03)  
DATA1S7HEET  
High Performance Single Chip Low Power 10/100 Ethernet Physical Layer Transceiver (PHY)  
Datasheet  
4.6.1  
MII  
The MII includes 16 interface signals:  
transmit data - TXD[3:0]  
transmit strobe - TX_EN  
transmit clock - TX_CLK  
transmit error - TX_ER/TXD4  
receive data - RXD[3:0]  
receive strobe - RX_DV  
receive clock - RX_CLK  
receive error - RX_ER/RXD4  
collision indication - COL  
carrier sense - CRS  
In MII mode, on the transmit path, the PHY drives the transmit clock, TX_CLK, to the controller. The  
controller synchronizes the transmit data to the rising edge of TX_CLK. The controller drives TX_EN  
high to indicate valid transmit data. The controller drives TX_ER high when a transmit error is detected.  
On the receive path, the PHY drives both the receive data, RXD[3:0], and the RX_CLK signal. The  
controller clocks in the receive data on the rising edge of RX_CLK when the PHY drives RX_DV high.  
The PHY drives RX_ER high when a receive error is detected.  
4.7  
Auto-negotiation  
The purpose of the Auto-negotiation function is to automatically configure the PHY to the optimum link  
parameters based on the capabilities of its link partner. Auto-negotiation is a mechanism for  
exchanging configuration information between two link-partners and automatically selecting the highest  
performance mode of operation supported by both sides. Auto-negotiation is fully defined in clause 28  
of the IEEE 802.3 specification.  
Once auto-negotiation has completed, information about the resolved link can be passed back to the  
controller via the Serial Management Interface (SMI). The results of the negotiation process are  
reflected in the Speed Indication bits in register 31, as well as the Link Partner Ability Register  
(Register 5).  
The auto-negotiation protocol is a purely physical layer activity and proceeds independently of the MAC  
controller.  
The advertised capabilities of the PHY are stored in register 4 of the SMI registers. The default  
advertised by the PHY is determined by user-defined on-chip signal options.  
The following blocks are activated during an Auto-negotiation session:  
Auto-negotiation (digital)  
100M ADC (analog)  
100M PLL (analog)  
100M equalizer/BLW/clock recovery (DSP)  
10M SQUELCH (analog)  
10M PLL (analog)  
10M Transmitter (analog)  
When enabled, auto-negotiation is started by the occurrence of one of the following events:  
Hardware reset  
Software reset  
Rev. 0.6 (12-12-03)  
SMSC LAN83C185  
DATA1S8HEET  
High Performance Single Chip Low Power 10/100 Ethernet Physical Layer Transceiver (PHY)  
Datasheet  
Power-down reset  
Link status down  
Setting register 0, bit 9 high (auto-negotiation restart)  
On detection of one of these events, the PHY begins auto-negotiation by transmitting bursts of Fast  
Link Pulses (FLP). These are bursts of link pulses from the 10M transmitter. They are shaped as  
Normal Link Pulses and can pass uncorrupted down CAT-3 or CAT-5 cable. A Fast Link Pulse Burst  
consists of up to 33 pulses. The 17 odd-numbered pulses, which are always present, frame the FLP  
burst. The 16 even-numbered pulses, which may be present or absent, contain the data word being  
transmitted. Presence of a data pulse represents a “1”, while absence represents a “0”.  
The data transmitted by an FLP burst is known as a “Link Code Word.” These are defined fully in IEEE  
802.3 clause 28. In summary, the PHY advertises 802.3 compliance in its selector field (the first 5 bits  
of the Link Code Word). It advertises its technology ability according to the bits set in register 4 of the  
SMI registers.  
There are 4 possible matches of the technology abilities. In the order of priority these are:  
100M Full Duplex (Highest priority)  
100M Half Duplex  
10M Full Duplex  
10M Half Duplex  
If the full capabilities of the PHY are advertised (100M, Full Duplex), and if the link partner is capable  
of 10M and 100M, then auto-negotiation selects 100M as the highest performance mode. If the link  
partner is capable of Half and Full duplex modes, then auto-negotiation selects Full Duplex as the  
highest performance operation.  
Once a capability match has been determined, the link code words are repeated with the acknowledge  
bit set. Any difference in the main content of the link code words at this time will cause auto-negotiation  
to re-start. Auto-negotiation will also re-start if not all of the required FLP bursts are received.  
The capabilities advertised during auto-negotiation by the PHY are initially determined by the logic  
levels latched on the MODE[2:0] bus after reset completes. This bus can also be used to disable auto-  
negotiation on power-up.  
Writing register 4 bits [8:5] allows software control of the capabilities advertised by the PHY. Writing  
register 4 does not automatically re-start auto-negotiation. Register 0, bit 9 must be set before the new  
abilities will be advertised. Auto-negotiation can also be disabled via software by clearing register 0,  
bit 12.  
The LAN83C185 does not support “Next Page" capability.  
4.7.1  
Parallel Detection  
If the LAN83C185 is connected to a device lacking the ability to auto-negotiate (i.e. no FLPs are  
detected), it is able to determine the speed of the link based on either 100M MLT-3 symbols or 10M  
Normal Link Pulses. In this case the link is presumed to be Half Duplex per the IEEE standard. This  
ability is known as “Parallel Detection. This feature ensures interoperability with legacy link partners.  
If a link is formed via parallel detection, then bit 0 in register 6 is cleared to indicate that the Link  
Partner is not capable of auto-negotiation. The controller has access to this information via the  
management interface. If a fault occurs during parallel detection, bit 4 of register 6 is set.  
Register 5 is used to store the Link Partner Ability information, which is coded in the received FLPs.  
If the Link Partner is not auto-negotiation capable, then register 5 is updated after completion of parallel  
detection to reflect the speed capability of the Link Partner.  
SMSC LAN83C185  
Rev. 0.6 (12-12-03)  
DATA1S9HEET  
High Performance Single Chip Low Power 10/100 Ethernet Physical Layer Transceiver (PHY)  
Datasheet  
4.7.2  
Re-starting Auto-negotiation  
Auto-negotiation can be re-started at any time by setting register 0, bit 9. Auto-negotiation will also re-  
start if the link is broken at any time. A broken link is caused by signal loss. This may occur because  
of a cable break, or because of an interruption in the signal transmitted by the Link Partner. Auto-  
negotiation resumes in an attempt to determine the new link configuration.  
If the management entity re-starts Auto-negotiation by writing to bit 9 of the control register, the  
LAN83C185 will respond by stopping all transmission/receiving operations. Once the break_link_timer  
is done, in the Auto-negotiation state-machine (approximately 1200ms) the auto-negotiation will re-  
start. The Link Partner will have also dropped the link due to lack of a received signal, so it too will  
resume auto-negotiation.  
4.7.3  
4.7.4  
Disabling Auto-negotiation  
Auto-negotiation can be disabled by setting register 0, bit 12 to zero. The device will then force its  
speed of operation to reflect the information in register 0, bit 13 (speed) and register 0, bit 8 (duplex).  
The speed and duplex bits in register 0 should be ignored when auto-negotiation is enabled.  
Half vs. Full Duplex  
Half Duplex operation relies on the CSMA/CD (Carrier Sense Multiple Access / Collision Detect)  
protocol to handle network traffic and collisions. In this mode, the carrier sense signal, CRS, responds  
to both transmit and receive activity. In this mode, If data is received while the PHY is transmitting,  
a collision results.  
In Full Duplex mode, the PHY is able to transmit and receive data simultaneously. In this mode, CRS  
responds only to receive activity. The CSMA/CD protocol does not apply and collision detection is  
disabled.  
4.8  
PHY Management Control  
The Management Control module includes 3 blocks:  
Serial Management Interface (SMI)  
Management Registers Set  
Interrupt  
4.8.1  
Serial Management Interface (SMI)  
The Serial Management Interface is used to control the LAN83C185 and obtain its status. This  
interface supports registers 0 through 6 as required by Clause 22 of the 802.3 standard, as well as  
“vendor-specific” registers 16 to 31 allowed by the specification. Non-supported registers (7 to 15) will  
be read as hexadecimal “FFFF”.  
At the system level there are 2 signals, MDIO and MDC where MDIO is bi-directional open-drain and  
MDC is the clock.  
A special feature (enabled by register 17 bit 3) forces the PHY to disregard the PHY-Address in the  
SMI packet causing the PHY to respond to any address. This feature is useful in multi-PHY  
applications and in production testing, where the same register can be written in all the PHYs using a  
single write transaction.  
The MDC signal is an aperiodic clock provided by the station management controller (SMC). The MDIO  
signal receives serial data (commands) from the controller SMC, and sends serial data (status) to  
the SMC. The minimum time between edges of the MDC is 160 ns. There is no maximum time  
between edges.  
Rev. 0.6 (12-12-03)  
SMSC LAN83C185  
DATA2S0HEET  
High Performance Single Chip Low Power 10/100 Ethernet Physical Layer Transceiver (PHY)  
Datasheet  
The minimum cycle time (time between two consecutive rising or two consecutive falling edges) is 400  
ns. These modest timing requirements allow this interface to be easily driven by the I/O port of a  
microcontroller.  
The data on the MDIO line is latched on the rising edge of the MDC. The frame structure and timing  
of the data is shown in Figure 4.4 and Figure 4.5.  
The timing relationships of the MDIO signals are further described in Section 6.1, "Serial  
Management Interface (SMI) Timing," on page 47.  
Read Cycle  
MDC  
MDI0  
...  
...  
D1  
D15 D14  
D0  
32 1's  
0
1
1
0
A4 A3 A2 A1 A0 R4 R3 R2 R1 R0  
Start of  
Frame  
OP  
Code  
Turn  
Preamble  
PHY Address  
Register Address  
Data  
Around  
Data To Phy  
Data From Phy  
Figure 4.4 MDIO Timing and Frame Structure - READ Cycle  
Write Cycle  
MDC  
...  
...  
D15 D14  
D1  
D0  
32 1's  
0
1
0
1
A4 A3 A2 A1 A0 R4 R3 R2 R1 R0  
PHY Address Register Address  
MDIO  
Start of  
Frame  
OP  
Code  
Turn  
Preamble  
Data  
Around  
Data To Phy  
Figure 4.5 MDIO Timing and Frame Structure - WRITE Cycle  
SMSC LAN83C185  
Rev. 0.6 (12-12-03)  
DATA2S1HEET  
High Performance Single Chip Low Power 10/100 Ethernet Physical Layer Transceiver (PHY)  
Datasheet  
Rev. 0.6 (12-12-03)  
SMSC LAN83C185  
DATA2S2HEET  
Chapter 5 Registers  
Table 5.1 Control Register: Register 0 (Basic)  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Reset  
Loopback  
Speed Select  
A/N Enable  
Power Down  
Isolate  
Restart A/N  
Duplex Mode  
Collision Test  
Reserved  
Table 5.2 Status Register: Register 1 (Basic)  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
100Base-  
T4  
100Base-  
100Base-  
TX  
10Base-T  
Full  
10Base-T  
Half  
Reserved  
A/N  
Remote  
Fault  
A/N  
Link  
Jabber  
Detect  
Extended  
Capability  
TX  
Complete  
Ability  
Status  
Full Duplex  
Half  
Duplex  
Duplex  
Duplex  
Table 5.3 PHY ID 1 Register: Register 2 (Extended)  
15  
14  
13  
13  
12  
11  
10  
9
8
7
6
5
4
4
3
3
2
1
0
0
PHY ID Number (Bits 3-18 of the Organizationally Unique Identifier - OUI)  
Table 5.4 PHY ID 2 Register: Register 3 (Extended)  
15  
14  
12  
11  
10  
9
8
7
6
5
2
1
PHY ID Number (Bits 19-24 of the Organizationally Unique  
Identifier - OUI)  
Manufacturer Model Number  
Manufacturer Revision Number  
Table 5.5 Auto-Negotiation Advertisement: Register 4 (Extended)  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Next  
Reserved  
Remote  
Fault  
Reserved  
Symmetric  
Pause  
Asymmetric  
Pause  
100Base-T4  
100Base-TX  
Full Duplex  
100Base-  
TX  
10Base-T  
Full  
10Base-T  
IEEE 802.3 Selector Field  
Page  
Operation  
Operation  
Duplex  
Table 5.6 Auto-Negotiation Link Partner Base Page Ability Register: Register 5 (Extended)  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Next  
Acknowledge  
Remote  
Fault  
Reserved  
Pause  
100Base-T4  
100Base-TX  
Full Duplex  
100Base-TX  
10Base-T  
10Base-T  
IEEE 802.3 Selector Field  
Page  
Full Duplex  
Table 5.7 Auto-Negotiation Expansion Register: Register 6 (Extended)  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Reserved  
Parallel  
Detect  
Fault  
Link  
Partner  
Next Page  
Able  
Next Page  
Able  
Page  
Link  
Received  
Partner  
A/N Able  
Table 5.8 Auto-Negotiation Link Partner Next Page Transmit Register: Register 7 (Extended)  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Reserved  
Note: Next Page capability is not supported.  
Table 5.9 Register 8 (Extended)  
15  
15  
14  
14  
13  
13  
12  
12  
11  
11  
10  
10  
9
8
7
6
5
5
4
4
3
3
2
2
1
1
0
0
IEEE Reserved  
Table 5.10 Register 9 (Extended)  
9
8
7
6
IEEE Reserved  
Table 5.11 Register 10 (Extended)  
15  
15  
15  
15  
15  
15  
14  
14  
14  
14  
14  
14  
13  
13  
13  
13  
13  
13  
12  
12  
12  
12  
12  
12  
11  
11  
11  
11  
11  
11  
10  
10  
10  
10  
10  
10  
9
8
7
6
5
5
5
5
5
5
4
4
4
4
4
4
3
3
3
3
3
3
2
2
2
2
2
2
1
1
1
1
1
1
0
0
0
0
0
0
IEEE Reserved  
Table 5.12 Register 11 (Extended)  
9
8
7
6
IEEE Reserved  
Table 5.13 Register 12 (Extended)  
9
8
7
6
IEEE Reserved  
Table 5.14 Register 13 (Extended)  
9
8
7
6
IEEE Reserved  
Table 5.15 Register 14 (Extended)  
9
8
7
6
IEEE Reserved  
Table 5.16 Register 15 (Extended)  
9
8
7
6
IEEE Reserved  
Table 5.17 Silicon Revision Register 16: Vendor-Specific  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Reserved  
Silicon Revision  
Reserved  
Table 5.18 Mode Control/ Status Register 17: Vendor-Specific  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Reserved  
FASTRIP  
EDPWRDOWN  
Reserved  
LOWSQEN  
MDPREBP  
FARLOOPBACK  
FASTEST  
Reserved  
REFCLKEN  
PHYADBP  
Force  
Good  
Link  
ENERGYON  
Reserved  
Status  
Table 5.19 Special Modes Register 18: Vendor-Specific  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
2
2
1
0
MIIMODE  
CLKSELFREQ  
DSPBP  
SQBP  
Reserved  
PLLBP  
ADCBP  
MODE  
PHYAD  
Table 5.20 Reserved Register 19: Vendor-Specific  
15  
14  
13  
13  
12  
11  
11  
10  
9
8
7
6
5
4
4
3
1
1
0
Reserved  
Table 5.21 TSTCNTL Register 20: Vendor-Specific  
15  
14  
12  
10  
9
8
7
6
5
3
0
READ  
WRITE  
Reserved  
TEST  
READ ADDRESS  
WRITE ADDRESS  
MODE  
Table 5.22 TSTREAD2 Register 21: Vendor-Specific  
15  
15  
15  
15  
15  
15  
14  
14  
14  
14  
14  
14  
13  
13  
13  
13  
13  
13  
12  
12  
12  
12  
12  
12  
11  
11  
11  
11  
11  
11  
10  
9
8
7
6
5
4
4
4
4
4
4
3
3
3
3
3
3
2
2
2
2
2
2
1
1
1
1
1
1
0
0
0
0
0
0
READ_DATA  
Table 5.23 TSTREAD1 Register 22: Vendor-Specific  
10  
9
8
7
6
5
READ_DATA  
Table 5.24 TSTWRITE Register 23: Vendor-Specific  
10  
10  
10  
10  
9
8
7
6
5
5
5
5
WRITE_DATA  
Table 5.25 Register 24: Vendor-Specific  
9
8
7
6
Reserved  
Table 5.26 Register 25: Vendor-Specific  
9
8
7
6
Reserved  
Table 5.27 Register 26: Vendor-Specific  
9
8
7
6
Reserved  
Table 5.28 Special Control/Status Indications Register 27: Vendor-Specific  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Reserved  
SWRST_FAST  
SQEOFF  
VCOOFF_LP  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
XPOL  
AUTONEGS  
Table 5.29 Special Internal Testability Control Register 28: Vendor-Specific  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Reserved  
Table 5.30 Interrupt Source Flags Register 29: Vendor-Specific  
15  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Reserved  
INT7  
INT6  
INT5  
INT4  
INT3  
INT2  
INT1  
Reserved  
Table 5.31 Interrupt Mask Register 30: Vendor-Specific  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Reserved  
Mask Bits  
Table 5.32 PHY Special Control/Status Register 31: Vendor-Specific  
15  
Reserved  
14  
Reserved  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
Reserved  
0
Special  
Autodone  
Reserved  
GPO2  
GPO1  
GPO0  
Enable  
4B5B  
Reserved  
Speed Indication  
Scramble  
Disable  
High Performance Single Chip Low Power 10/100 Ethernet Physical Layer Transceiver (PHY)  
Datasheet  
5.1  
SMI Register Mapping  
The following registers are supported (register numbers are in decimal):  
Table 5.33 SMI Register Mapping  
REGISTER #  
DESCRIPTION  
Basic Control Register  
GROUP  
0
Basic  
1
Basic Status Register  
Basic  
2
PHY Identifier 1  
Extended  
Extended  
Extended  
Extended  
Extended  
3
PHY Identifier 2  
4
Auto-Negotiation Advertisement Register  
Auto-Negotiation Link Partner Ability Register  
Auto-Negotiation Expansion Register  
Silicon Revision Register  
5
6
16  
17  
18  
20  
21  
22  
23  
27  
28  
29  
30  
31  
Vendor-specific  
Vendor-specific  
Vendor-specific  
Vendor-specific  
Vendor-specific  
Vendor-specific  
Vendor-specific  
Vendor-specific  
Vendor-specific  
Vendor-specific  
Vendor-specific  
Vendor-specific  
Mode Control/Status Register  
Special Modes  
TSTCNTL – Testability/Configuration Control  
TSTREAD1 – Testability data Read for LSB  
TSTREAD2 – Testability data Read for MSB  
TSTWRITE – Testability/Configuration data Write  
Control / Status Indication Register  
Special internal testability controls  
Interrupt Source Register  
Interrupt Mask Register  
PHY Special Control/Status Register  
5.2  
SMI Register Format  
The mode key is as follows:  
RW = read/write,  
SC = self clearing,  
WO = write only,  
RO = read only,  
LH = latch high, clear on read of register,  
LL = latch low, clear on read of register,  
NASR = Not Affected by Software Reset  
SMSC LAN83C185  
Rev. 0.6 (12-12-03)  
DATA2S9HEET  
High Performance Single Chip Low Power 10/100 Ethernet Physical Layer Transceiver (PHY)  
Datasheet  
Table 5.34 Register 0 - Basic Control  
ADDRESS  
NAME  
Reset  
DESCRIPTION  
MODE  
DEFAULT  
0.15  
1 = software reset. Bit is self-clearing. For best results,  
when setting this bit do not set other bits in this  
register.  
RW/  
SC  
0
0.14  
0.13  
Loopback  
1 = loopback mode,  
0 = normal operation  
RW  
RW  
0
Speed Select  
1 = 100Mbps,  
Set by  
MODE[2:0]  
bus  
0 = 10Mbps.  
Ignored if Auto Negotiation is enabled (0.12 = 1).  
0.12  
Auto-  
1 = enable auto-negotiate process  
(overrides 0.13 and 0.8)  
RW  
Set by  
MODE[2:0]  
bus  
Negotiation  
Enable  
0 = disable auto-negotiate process  
0.11  
0.10  
Power Down  
1 = General power down mode,  
0 = normal operation  
RW  
RW  
0
Isolate  
1 = electrical isolation of PHY from MII  
0 = normal operation  
Set by  
MODE[2:0]  
bus  
0.9  
0.8  
Restart Auto-  
Negotiate  
1 = restart auto-negotiate process  
RW/  
SC  
0
0 = normal operation. Bit is self-clearing.  
Duplex Mode  
1 = Full duplex,  
RW  
Set by  
MODE[2:0]  
bus  
0 = Half duplex.  
Ignored if Auto Negotiation is enabled (0.12 = 1).  
0.7  
Collision Test  
Reserved  
1 = enable COL test,  
0 = disable COL test  
RW  
RO  
0
0.6:0  
0
Table 5.35 Register 1 - Basic Status  
DESCRIPTION  
ADDRESS  
NAME  
MODE  
DEFAULT  
1.15  
100Base-T4  
1 = T4 able,  
RO  
0
0 = no T4 ability  
1.14  
1.13  
1.12  
1.11  
100Base-TX Full  
Duplex  
1 = TX with full duplex,  
RO  
RO  
RO  
RO  
1
1
1
1
0 = no TX full duplex ability  
100Base-TX Half  
Duplex  
1 = TX with half duplex,  
0 = no TX half duplex ability  
10Base-T Full  
Duplex  
1 = 10Mbps with full duplex  
0 = no 10Mbps with full duplex ability  
10Base-T Half  
Duplex  
1 = 10Mbps with half duplex  
0 = no 10Mbps with half duplex ability  
1.10:6  
1.5  
Reserved  
Auto-Negotiate  
Complete  
1 = auto-negotiate process completed  
RO  
0
0
0 = auto-negotiate process not completed  
1.4  
Remote Fault  
1 = remote fault condition detected  
0 = no remote fault  
RO/  
LH  
Rev. 0.6 (12-12-03)  
SMSC LAN83C185  
DATA3S0HEET  
High Performance Single Chip Low Power 10/100 Ethernet Physical Layer Transceiver (PHY)  
Datasheet  
Table 5.35 Register 1 - Basic Status (continued)  
ADDRESS  
NAME  
DESCRIPTION  
MODE  
DEFAULT  
1.3  
Auto-Negotiate  
Ability  
1 = able to perform auto-negotiation function  
0 = unable to perform auto-negotiation function  
RO  
1
1.2  
1.1  
1.0  
Link Status  
1 = link is up,  
RO/  
LL  
0
0
1
0 = link is down  
Jabber Detect  
1 = jabber condition detected  
RO/  
LH  
0 = no jabber condition detected  
Extended  
1 = supports extended capabilities registers  
RO  
Capabilities  
0 = does not support extended capabilities registers  
Table 5.36 Register 2 - PHY Identifier 1  
DESCRIPTION  
ADDRESS  
NAME  
MODE DEFAULT  
RW 0007h  
2.15:0  
PHY ID Number  
Assigned to the 3rd through 18th bits of the  
Organizationally Unique Identifier (OUI), respectively.  
OUI=00800Fh  
Table 5.37 Register 3 - PHY Identifier 2  
DESCRIPTION  
ADDRESS  
NAME  
MODE DEFAULT  
th  
th  
3.15:10  
3.9:4  
PHY ID Number  
Model Number  
Revision Number  
Assigned to the 19 through 24 bits of the OUI.  
Six-bit manufacturer’s model number.  
RW  
RW  
RW  
30h  
0Ah  
1h  
3.3:0  
Four-bit manufacturer’s revision number.  
Table 5.38 Register 4 - Auto Negotiation Advertisement  
NAME DESCRIPTION  
ADDRESS  
MODE  
DEFAULT  
4.15  
Next Page  
1 = next page capable,  
RO  
0
0 = no next page ability  
This Phy does not support next page ability.  
4.14  
4.13  
Reserved  
RO  
RW  
0
0
Remote Fault  
1 = remote fault detected,  
0 = no remote fault  
4.12  
Reserved  
4.11:10  
Pause Operation  
00 = No PAUSE  
R/W  
RO  
00  
0
01 = Asymmetric PAUSE toward link partner  
10 = Symmetric PAUSE  
11 = Both Symmetric PAUSE and Asymmetric  
PAUSE toward local device  
4.9  
100Base-T4  
1 = T4 able,  
0 = no T4 ability  
This Phy does not support 100Base-T4.  
SMSC LAN83C185  
Rev. 0.6 (12-12-03)  
DATA3S1HEET  
High Performance Single Chip Low Power 10/100 Ethernet Physical Layer Transceiver (PHY)  
Datasheet  
Table 5.38 Register 4 - Auto Negotiation Advertisement (continued)  
ADDRESS  
NAME  
DESCRIPTION  
MODE  
DEFAULT  
4.8  
100Base-TX Full  
Duplex  
1 = TX with full duplex,  
RW  
Set by  
MODE[2:0]  
bus  
0 = no TX full duplex ability  
4.7  
4.6  
100Base-TX  
1 = TX able,  
RW  
RW  
1
0 = no TX ability  
10Base-T Full  
Duplex  
1 = 10Mbps with full duplex  
Set by  
MODE[2:0]  
bus  
0 = no 10Mbps with full duplex ability  
4.5  
10Base-T  
1 = 10Mbps able,  
RW  
RW  
Set by  
MODE[2:0]  
bus  
0 = no 10Mbps ability  
4.4:0  
Selector Field  
[00001] = IEEE 802.3  
00001  
Table 5.39 Register 5 - Auto Negotiation Link Partner Ability  
NAME DESCRIPTION  
Next Page  
ADDRESS  
MODE DEFAULT  
5.15  
1 = “Next Page” capable,  
RO  
0
0 = no “Next Page” ability  
This Phy does not support next page ability.  
5.14  
5.13  
Acknowledge  
Remote Fault  
1 = link code word received from partner  
0 = link code word not yet received  
RO  
RO  
0
0
1 = remote fault detected,  
0 = no remote fault  
5.12:11  
5.10  
Reserved  
RO  
RO  
0
0
Pause Operation  
1 = Pause Operation is supported by remote MAC,  
0 = Pause Operation is not supported by remote MAC  
5.9  
100Base-T4  
1 = T4 able,  
RO  
0
0 = no T4 ability.  
This Phy does not support T4 ability.  
5.8  
100Base-TX Full  
Duplex  
1 = TX with full duplex,  
RO  
RO  
RO  
RO  
RO  
0
0 = no TX full duplex ability  
5.7  
100Base-TX  
1 = TX able,  
0
0 = no TX ability  
5.6  
10Base-T Full  
Duplex  
1 = 10Mbps with full duplex  
0
0 = no 10Mbps with full duplex ability  
5.5  
10Base-T  
1 = 10Mbps able,  
0
0 = no 10Mbps ability  
5.4:0  
Selector Field  
[00001] = IEEE 802.3  
00001  
Rev. 0.6 (12-12-03)  
SMSC LAN83C185  
DATA3S2HEET  
High Performance Single Chip Low Power 10/100 Ethernet Physical Layer Transceiver (PHY)  
Datasheet  
Table 5.40 Register 6 - Auto Negotiation Expansion  
ADDRESS  
NAME  
Reserved  
DESCRIPTION  
MODE DEFAULT  
6.15:5  
6.4  
RO  
0
0
Parallel Detection  
Fault  
1 = fault detected by parallel detection logic  
0 = no fault detected by parallel detection logic  
RO/  
LH  
6.3  
6.2  
6.1  
6.0  
Link Partner Next  
Page Able  
1 = link partner has next page ability  
RO  
0
0
0
0
0 = link partner does not have next page ability  
Next Page Able  
1 = local device has next page ability  
RO  
0 = local device does not have next page ability  
Page Received  
1 = new page received  
RO/  
LH  
0 = new page not yet received  
Link Partner Auto- 1 = link partner has auto-negotiation ability  
RO  
Negotiation Able  
0 = link partner does not have auto-negotiation ability  
Table 5.41 Register 16 - Silicon Revision  
DESCRIPTION  
ADDRESS  
NAME  
MODE DEFAULT  
16.15:10  
16.9:6  
Reserved  
RO  
RO  
RO  
0
Silicon Revision  
Reserved  
Four-bit silicon revision identifier.  
0001  
0
16.5:0  
Table 5.42 Register 17 - Mode Control/Status  
ADDRESS  
NAME  
DESCRIPTION  
MODE DEFAULT  
17.15  
17.14  
Reserved  
FASTRIP  
Write as 0; ignore on read.  
RW  
0
0
10Base-T fast mode:  
0 = normal operation  
1 = Reserved  
RW,  
NASR  
Must be left at 0  
17.13  
EDPWRDOWN  
Enable the Energy Detect Power-Down mode:  
0 = Energy Detect Power-Down is disabled  
1 = Energy Detect Power-Down is enabled  
RW  
0
17.12  
17.11  
Reserved  
Write as 0, ignore on read  
RW  
RW  
0
0
LOWSQEN  
The Low_Squelch signal is equal to LOWSQEN AND  
EDPWRDOWN.  
Low_Squelch = 1 implies a lower threshold  
(more sensitive).  
Low_Squelch = 0 implies a higher threshold  
(less sensitive).  
17.10  
17.9  
MDPREBP  
Reserved  
Management Data Preamble Bypass:  
0 – detect SMI packets with Preamble  
1 – detect SMI packets without preamble  
RW  
RW  
0
0
Reserved  
Must be left at 0  
SMSC LAN83C185  
Rev. 0.6 (12-12-03)  
DATA3S3HEET  
High Performance Single Chip Low Power 10/100 Ethernet Physical Layer Transceiver (PHY)  
Datasheet  
Table 5.42 Register 17 - Mode Control/Status (continued)  
ADDRESS  
NAME  
FASTEST  
DESCRIPTION  
MODE DEFAULT  
17.8  
Auto-Negotiation Test Mode  
RW  
0
0 = normal operation  
1 = activates test mode  
17.7:5  
17.4  
Reserved  
Reserved  
Write as 0, ignore on read.  
Reserved  
RW  
RW  
RW  
0
0
0
Must be left at 0  
17.3  
17.2  
PHYADBP  
1 = PHY disregards PHY address in SMI access  
write.  
Force  
0 = normal operation;  
Good Link Status  
1 = force 100TX- link active;  
Note:  
This bit should be set only during lab testing  
17.1  
17.0  
ENERGYON  
Reserved  
ENERGYON – indicates whether energy is detected  
on the line (see Section 5.4.5.2, "Energy Detect  
Power-Down," on page 39); it goes to “0” if no valid  
energy is detected within 256ms. Reset to “1” by  
hardware reset, unaffected by SW reset.  
RO  
RW  
1
0
Write as “0”. Ignore on read.  
Table 5.43 Register 18 - Special Modes  
DESCRIPTION  
ADDRESS  
NAME  
MODE DEFAULT  
18.15:14  
MIIMODE  
MII Mode: set the mode of the MII:  
0 – MII interface.  
RW,  
NASR  
1 – Reserved  
18.13  
CLKSELFREQ  
Clock In Selected Frequency. Set the requested input  
clock frequency. This bit drives signal that goes to  
external logic of the Phy and select the desired  
frequency of the input clock:  
RO,  
NASR  
0 – the clock frequency is 25MHz  
1 – Reserved  
18.12  
18.11  
18.10  
18.9  
DSPBP  
SQBP  
DSP Bypass mode. Used only in special lab tests.  
SQUELCH Bypass mode.  
RW,  
0
0
NASR  
RW,  
NASR  
Reserved  
PLLBP  
ADCBP  
MODE  
RW,  
NASR  
PLL Bypass mode.  
ADC Bypass mode.  
RW,  
NASR  
18.8  
RW,  
NASR  
18.7:5  
PHY Mode of operation. Refer to Section 5.4.9.2,  
"Mode Bus – MODE[2:0]," on page 42 for more  
details.  
RW,  
NASR  
Rev. 0.6 (12-12-03)  
SMSC LAN83C185  
DATA3S4HEET  
High Performance Single Chip Low Power 10/100 Ethernet Physical Layer Transceiver (PHY)  
Datasheet  
Table 5.43 Register 18 - Special Modes (continued)  
ADDRESS  
NAME  
PHYAD  
DESCRIPTION  
MODE DEFAULT  
18.4:0  
PHY Address.  
RW,  
PHYAD  
The PHY Address is used for the SMI address and for  
the initialization of the Cipher (Scrambler) key. Refer  
to Section 5.4.9.1, "Physical Address Bus -  
NASR  
PHYAD[4:0]," on page 41 for more details.  
Table 5.44 Register 20 - TSTCNTL  
DESCRIPTION  
ADDRESS  
NAME  
READ  
MODE DEFAULT  
20.15  
When setting this bit to “1”, the content of the register  
that is selected by the READ ADDRESS will be  
latched to the TSTREAD1/2 registers. This bit is self-  
cleared.  
RW  
0
20.14  
WRITE  
When setting this bit to “1”, the register that is selected  
by the WRITE ADDRESS is going to be written with  
the data from the TSTWRITE register. This bit is self-  
cleared.  
RW  
0
20.13:11  
20.10  
Reserved  
TEST MODE  
Enable the Testability/Configuration mode:  
0 - Testability/Configuration mode disabled  
1 - Testability/Configuration mode enabled  
RW  
RW  
RW  
0
0
0
20.9:5  
20.4:0  
READ  
The address of the Testability/Configuration register  
that will be latched into the TSTREAD1 and  
TSTREAD2 registers  
ADDRESS  
WRITE  
The address of the Testability/Configuration register  
that will be written.  
ADDRESS  
Table 5.45 Register 21 - TSTREAD1  
DESCRIPTION  
ADDRESS  
NAME  
MODE DEFAULT  
RO  
21.15:0  
READ_DATA  
When reading registers with a size of less then 16  
bits, this register contain the register data, starting  
from bit 0.  
0
When reading registers with a size of more then 16  
bits, this register contain the less significant 16 bits of  
the register data.  
Table 5.46 Register 22 - TSTREAD2  
DESCRIPTION  
ADDRESS  
NAME  
MODE DEFAULT  
22.15:0  
READ_DATA  
When reading registers with a size of less then 16  
bits, this register clears to zeros.  
RO  
0
When reading registers with a size of more then 16  
bits, this register contains the most significant bits of  
th  
the register data, starting from the 16 bit.  
SMSC LAN83C185  
Rev. 0.6 (12-12-03)  
DATA3S5HEET  
High Performance Single Chip Low Power 10/100 Ethernet Physical Layer Transceiver (PHY)  
Datasheet  
Table 5.47 Register 23 - TSTWRITE  
ADDRESS  
NAME  
DESCRIPTION  
MODE DEFAULT  
RW  
23.15:0  
WRITE_DATA  
This field contains the data that will be written to a  
specific register on the “Programming” transaction.  
0
Table 5.48 Register 27 - Special Control/Status Indications  
ADDRESS  
NAME  
DESCRIPTION  
MODE DEFAULT  
27.15:13  
27.12  
Reserved  
RW  
RW  
0
0
SWRST_FAST  
1 = Accelerates SW reset counter from 256 ms to 10  
us for production testing.  
27:11  
27:10  
SQEOFF  
Disable the SQE test (Heartbeat):  
0 - SQE test is enabled.  
RW,  
0
0
NASR  
1 - SQE test is disabled.  
VCOOFF_LP  
Forces the Receive PLL 10M to lock on the reference  
clock at all times:  
RW,  
NASR  
0 - Receive PLL 10M can lock on reference or line as  
needed (normal operation)  
1 - Receive PLL 10M is locked on the reference clock.  
In this mode 10M data packets cannot be received.  
27.9  
27.8  
27.7  
27.6  
27.5  
27.4  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
XPOL  
Write as 0. Ignore on read.  
Write as 0. Ignore on read.  
Write as 0. Ignore on read  
Write as 0. Ignore on read.  
Write as 0. Ignore on read.  
RW  
RW  
RW  
RW  
RW  
RO  
0
0
0
0
Polarity state of the 10Base-T:  
0 - Normal polarity  
0
1 - Reversed polarity  
27.3:0  
AUTONEGS  
Auto-negotiation “ARB” State-machine state  
RO  
1011  
Table 5.49 Register 28 - Special Internal Testability Controls  
ADDRESS  
NAME  
Reserved  
DESCRIPTION  
MODE DEFAULT  
RW N/A  
28.15:0  
Do not write to this register. Ignore on read.  
Table 5.50 Register 29 - Interrupt Source Flags  
ADDRESS  
NAME  
Reserved  
DESCRIPTION  
MODE DEFAULT  
29.15:8  
Ignore on read.  
RO/  
LH  
0
29.7  
INT7  
1 = ENERGYON generated  
0 = not source of interrupt  
RO/  
LH  
0
Rev. 0.6 (12-12-03)  
SMSC LAN83C185  
DATA3S6HEET  
High Performance Single Chip Low Power 10/100 Ethernet Physical Layer Transceiver (PHY)  
Datasheet  
Table 5.50 Register 29 - Interrupt Source Flags (continued)  
ADDRESS  
NAME  
DESCRIPTION  
MODE DEFAULT  
29.6  
INT6  
INT5  
INT4  
INT3  
INT2  
INT1  
1 = Auto-Negotiation complete  
RO/  
LH  
0
0
0
0
0
0
0
0 = not source of interrupt  
29.5  
29.4  
29.3  
29.2  
29.1  
29.0  
1 = Remote Fault Detected  
0 = not source of interrupt  
RO/  
LH  
1 = Link Down (link status negated)  
0 = not source of interrupt  
RO/  
LH  
1 = Auto-Negotiation LP Acknowledge  
0 = not source of interrupt  
RO/  
LH  
1 = Parallel Detection Fault  
0 = not source of interrupt  
RO/  
LH  
1 = Auto-Negotiation Page Received  
0 = not source of interrupt  
RO/  
LH  
Reserved  
RO/  
LH  
Table 5.51 Register 30 - Interrupt Mask  
ADDRESS  
NAME  
DESCRIPTION  
MODE DEFAULT  
30.15:8  
30.7:0  
Reserved  
Mask Bits  
Write as 0; ignore on read.  
RO  
RW  
0
0
1 = interrupt source is enabled  
0 = interrupt source is masked  
Table 5.52 Register 31 - PHY Special Control/Status  
ADDRESS  
NAME  
DESCRIPTION  
MODE DEFAULT  
31.15  
31.14  
31.13  
31.12  
Reserved  
Reserved  
Special  
Do not write to this register. Ignore on read.  
RW  
0
Must be set to 0  
RW  
RO  
0
0
Autodone  
Auto-negotiation done indication:  
0 = Auto-negotiation is not done or disabled (or not  
active)  
1 = Auto-negotiation is done  
31.11:10  
31.9:7  
Reserved  
GPO[2:0]  
RW  
RW  
0
0
General Purpose Output connected to signals  
GPO[2:0]  
31.6  
31.5  
Enable 4B5B  
Reserved  
0 = Bypass encoder/decoder.  
RW  
RW  
1
0
1 = enable 4B5B encoding/decoding.  
MAC Interface must be configured in MII mode.  
Write as 0, ignore on Read.  
SMSC LAN83C185  
Rev. 0.6 (12-12-03)  
DATA3S7HEET  
High Performance Single Chip Low Power 10/100 Ethernet Physical Layer Transceiver (PHY)  
Datasheet  
Table 5.52 Register 31 - PHY Special Control/Status (continued)  
ADDRESS  
NAME  
DESCRIPTION  
MODE DEFAULT  
31.4:2  
Speed Indication  
HCDSPEED value:  
RO  
000  
[001]=10Mbps Half-duplex  
[101]=10Mbps Full-duplex  
[010]=100Base-TX Half-duplex  
[110]=100Base-TX Full-duplex  
31.1  
31.0  
Reserved  
Write as 0; ignore on Read  
RW  
RW  
0
0
Scramble Disable  
0 = enable data scrambling  
1 = disable data scrambling,  
5.3  
Management Interrupt  
The Management interface supports an interrupt capability that is not a part of the IEEE 802.3  
specification. It generates an active low interrupt signal on the nINT output whenever certain events  
are detected. Reading the Interrupt Source register (Register 29) shows the source of the interrupt,  
and clears the interrupt output signal. The Interrupt Mask register (Register 30) enables for each  
source to set (LOW) the nINT, by asserting the corresponding mask bit. The Mask bit does not mask  
the source bit in register 29. At reset, all bits are masked (negated). The nINT is an asynchronous  
output.  
INTERRUPT SOURCE  
ENERGYON activated  
SOURCE/MASK REG BIT #  
7
6
5
4
3
2
1
Auto-Negotiate Complete  
Remote Fault Detected  
Link Status negated (not asserted)  
Auto-Negotiation LP Acknowledge  
Parallel Detection Fault  
Auto-Negotiation Page Received  
5.4  
Miscellaneous Functions  
5.4.1  
Carrier Sense  
The carrier sense is output on CRS. CRS is a signal defined by the MII specification in the IEEE 802.3u  
standard. The PHY asserts CRS based only on receive activity whenever the PHY is either in repeater  
mode or full-duplex mode. Otherwise the PHY asserts CRS based on either transmit or receive activity.  
The carrier sense logic uses the encoded, unscrambled data to determine carrier activity status. It  
activates carrier sense with the detection of 2 non-contiguous zeros within any 10 bit span. Carrier  
sense terminates if a span of 10 consecutive ones is detected before a /J/K/ Start-of Stream Delimiter  
pair. If an SSD pair is detected, carrier sense is asserted until either /T/R/ End–of-Stream Delimiter  
pair or a pair of IDLE symbols is detected. Carrier is negated after the /T/ symbol or the first IDLE. If  
/T/ is not followed by /R/, then carrier is maintained. Carrier is treated similarly for IDLE followed by  
some non-IDLE symbol.  
Rev. 0.6 (12-12-03)  
SMSC LAN83C185  
DATA3S8HEET  
High Performance Single Chip Low Power 10/100 Ethernet Physical Layer Transceiver (PHY)  
Datasheet  
5.4.2  
Collision Detect  
A collision is the occurrence of simultaneous transmit and receive operations. The COL output is  
asserted to indicate that a collision has been detected. COL remains active for the duration of the  
collision. COL is changed asynchronously to both RX_CLK and TX_CLK. The COL output becomes  
inactive during full duplex mode.  
COL may be tested by setting register 0, bit 7 high. This enables the collision test. COL will be asserted  
within 512 bit times of TX_EN rising and will be de-asserted within 4 bit times of TX_EN falling.  
In 10M mode, COL pulses for approximately 10 bit times (1us), 2us after each transmitted packet (de-  
assertion of TX_EN). This is the Signal Quality Error (SQE) signal and indicates that the transmission  
was successful. The user can disable this pulse by setting bit 11 in register 27.  
5.4.3  
5.4.4  
Isolate Mode  
The PHY data paths may be electrically isolated from the MII by setting register 0, bit 10 to a logic  
one. In isolation mode, the PHY does not respond to the TXD, TX_EN and TX_ER inputs. The PHY  
still responds to management transactions.  
Isolation provides a means for multiple PHYs to be connected to the same MII without contention  
occurring. The PHY is not isolated on power-up (bit 0:10 = 0).  
Link integrity Test  
The LAN83C185 performs the link integrity test as outlined in the IEEE 802.3u (Clause 24-15) Link  
Monitor state diagram. The link status is multiplexed with the 10Mbps link status to form the reportable  
link status bit in Serial Management Register 1, and is driven to the LINKON LED.  
The DSP indicates a valid MLT-3 waveform present on the RXP and RXN signals as defined by the  
ANSI X3.263 TP-PMD standard, to the Link Monitor state-machine, using internal signal called  
DATA_VALID. When DATA_VALID is asserted the control logic moves into a Link-Ready state, and  
waits for an enable from the Auto Negotiation block. When received, the Link-Up state is entered, and  
the Transmit and Receive logic blocks become active. Should Auto Negotiation be disabled, the link  
integrity logic moves immediately to the Link-Up state, when the DATA_VALID is asserted.  
Note that to allow the line to stabilize, the link integrity logic will wait a minimum of 330 µsec from the  
time DATA_VALID is asserted until the Link-Ready state is entered. Should the DATA_VALID input be  
negated at any time, this logic will immediately negate the Link signal and enter the Link-Down state.  
When the 10/100 digital block is in 10Base-T mode, the link status is from the 10Base-T receiver logic.  
5.4.5  
Power-Down modes  
There are 2 power-down modes for the Phy:  
5.4.5.1  
General Power-Down  
This power-down is controlled by register 0, bit 11. In this mode the entire PHY, except the  
management interface, is powered-down and stays in that condition as long as bit 0.11 is HIGH. When  
bit 0.11 is cleared, the PHY powers up and is automatically reset.  
5.4.5.2  
Energy Detect Power-Down  
This power-down mode is activated by setting bit 17.13 to 1. In this mode when no energy is present  
on the line the PHY is powered down, except for the management interface, the SQUELCH circuit and  
the ENERGYON logic. The ENERGYON logic is used to detect the presence of valid energy from  
100Base-TX, 10Base-T, or Auto-negotiation signals  
In this mode, when the ENERGYON signal is low, the PHY is powered-down, and nothing is  
transmitted. When energy is received - link pulses or packets - the ENERGYON signal goes high, and  
SMSC LAN83C185  
Rev. 0.6 (12-12-03)  
DATA3S9HEET  
High Performance Single Chip Low Power 10/100 Ethernet Physical Layer Transceiver (PHY)  
Datasheet  
the PHY powers-up. It automatically resets itself into the state it had prior to power-down, and asserts  
the nINT interrupt if the ENERGYON interrupt is enabled. The first and possibly the second packet  
to activate ENERGYON may be lost.  
When 17.13 is low, energy detect power-down is disabled.  
5.4.6  
Reset  
The PHY has 3 reset sources:  
Hardware reset (HWRST): connected to the nRST input, and to the internal POR signal.  
If the nRST input is driven by an external source, it should be held LOW for at least 100 us to ensure  
that the Phy is properly reset.  
The Phy has an internal Power-On-Reset (POR) signal which is asserted for 21ms following a VDD  
(+3.3V) and VDDCORE (+1.8V) power-up. This internal POR can be bypassed only in certain  
production test modes. This internal POR is internally “OR”-ed with the nRST input.  
During a Hardware reset, either external or POR, an external clock must be supplied to the CLKIN  
signal.  
Software (SW) reset: Activated by writing register 0, bit 15 high. This signal is self- clearing. After the  
register-write, internal logic extends the reset by 256µs to allow PLL-stabilization before releasing the  
logic from reset.  
The IEEE 802.3u standard, clause 22 (22.2.4.1.1) states that the reset process should be completed  
within 0.5s from the setting of this bit.  
Power-Down reset: Automatically activated when the PHY comes out of power-down mode. The  
internal power-down reset is extended by 256µs after exiting the power-down mode to allow the PLLs  
to stabilize before the logic is released from reset.  
These 3 reset sources are combined together in the digital block to create the internal “general reset”,  
SYSRST, which is an asynchronous reset and is active HIGH. This SYSRST directly drives the PCS,  
DSP and MII blocks. It is also input to the Central Bias block in order to generate a short reset for the  
PLLs.  
The SMI mechanism and registers are reset only by the Hardware and Software resets. During Power-  
Down, the SMI registers are not reset. Note that some SMI register bits are not cleared by Software  
reset – these are marked “NASR” in the register tables.  
For the first 16us after coming out of reset, the MII will run at 2.5 MHz. After that it will switch to 25  
MHz if auto-negotiation is enabled.  
5.4.7  
LED Description  
The PHY provides four LED signals. These provide a convenient means to determine the mode of  
operation of the Phy. All LED signals are either active high or active low.  
Note: The four LED signals can be either active-high or active-low. Polarity depends upon the Phy  
address latched in on reset. The LAN83C185 senses each Phy address bit and changes the  
polarity of the LED signal accordingly. If the address bit is set as level “1”, the LED polarity will  
be set to an active-low. If the address bit is set as level “0”, the LED polarity will be set to an  
active-high.  
Rev. 0.6 (12-12-03)  
SMSC LAN83C185  
DATA4S0HEET  
High Performance Single Chip Low Power 10/100 Ethernet Physical Layer Transceiver (PHY)  
Datasheet  
Phy Address = 1  
Phy Address = 0  
LED output = active low  
LED output = active high  
VDD  
LED1-LED4  
~10K ohms  
~270 ohms  
~270 ohms  
LED1-LED4  
Figure 5.1 PHY Address Strapping on LEDS  
The ACTIVITY LED output is driven active when CRS is active (high). When CRS becomes inactive,  
the Activity LED output is extended by 128ms.  
The LINKON LED output is driven active whenever the PHY detects a valid link. The use of the  
10Mbps or 100Mbps link test status is determined by the condition of the internally determined speed  
selection.  
The SPEED100 LED output is driven active when the operating speed is 100Mbit/s or during Auto-  
negotiation. This LED will go inactive when the operating speed is 10Mbit/s or during line isolation  
(register 31 bit 5).  
The Full-Duplex LED output is driven active low when the link is operating in Full-Duplex mode.  
5.4.8  
Loopback Operation  
The 10/100 digital has two independent loop-back modes: Internal loopback and far loopback.  
5.4.8.1  
Internal Loopback  
The internal loopback mode is enabled by setting bit register 0 bit 14 to logic one. In this mode, the  
scrambled transmit data (output of the scrambler) is looped into the receive logic (input of the  
descrambler). The COL signal will be inactive in this mode, unless collision test (bit 0.7) is active.  
In this mode, during transmission (TX_EN is HIGH), nothing is transmitted to the line and the  
transmitters are powered down.  
5.4.9  
Configuration Signals  
The PHY has 11 configuration signals whose inputs should be driven continuously, either by external  
logic or external pull-up/pull-down resistors.  
5.4.9.1  
Physical Address Bus - PHYAD[4:0]  
The PHYAD[4:0] signals are driven high or low to give each PHY a unique address. This address is  
latched into an internal register at end of hardware reset. In a multi-PHY application (such as a  
repeater), the controller is able to manage each PHY via the unique address. Each PHY checks each  
management data frame for a matching address in the relevant bits. When a match is recognized, the  
PHY responds to that particular frame. The PHY address is also used to seed the scrambler. In a multi-  
PHY application, this ensures that the scramblers are out of synchronization and disperses the  
electromagnetic radiation across the frequency spectrum.  
SMSC LAN83C185  
Rev. 0.6 (12-12-03)  
DATA4S1HEET  
High Performance Single Chip Low Power 10/100 Ethernet Physical Layer Transceiver (PHY)  
Datasheet  
5.4.9.2  
Mode Bus – MODE[2:0]  
The MODE[2:0] bus controls the configuration of the 10/100 digital block.  
Table 5.53 MODE[2:0] Bus  
DEFAULT REGISTER BIT VALUES  
MODE[2:0]  
MODE DEFINITIONS  
REGISTER 0  
[13,12,10,8]  
REGISTER 4  
[8,7,6,5]  
000  
001  
010  
10Base-T Half Duplex. Auto-negotiation disabled.  
10Base-T Full Duplex. Auto-negotiation disabled.  
0000  
0001  
1000  
N/A  
N/A  
N/A  
100Base-TX Half Duplex. Auto-negotiation  
disabled.  
CRS is active during Transmit & Receive.  
011  
100  
100Base-TX Full Duplex. Auto-negotiation disabled.  
CRS is active during Receive.  
1001  
1100  
N/A  
100ase-TX Half Duplex is advertised. Auto-  
negotiation enabled.  
0100  
CRS is active during Transmit & Receive.  
101  
Repeater mode. Auto-negotiation enabled.  
100Base-TX Half Duplex is advertised.  
CRS is active during Receive.  
1100  
0100  
110  
111  
Power Down mode. In this mode the PHY wake-up  
in Power-Down mode.  
N/A  
N/A  
All capable. Auto-negotiation enabled.  
X10X  
1111  
5.5  
Analog  
The analog blocks of the chip are described in this section.  
5.5.1  
ADC  
The ADC is a 6 bit 125 MHz sample rate Analog to Digital Converter designed to serve as the analog  
front end of a digital 100Base-Tx receiver.  
5.5.1.1  
Functional Description  
The ADC has a full flash architecture for maximum speed and minimum latency. An internally  
generated 125MHz clock is used to time the sampling and processing.  
The ADC has a variable gain, which is controlled by the DSP block. This allows accurate A/D  
conversion over the entire range of input signal amplitudes, which is particularly important for lower  
amplitude signals (longer cables).  
INPUT COMMON MODE  
The differential input is applied to the RXP/N signals. For proper operation of the ADC the input  
common mode should match the internal differential reference common mode. To achieve this, the  
ADC generates the appropriate voltage and drives it via the VCOM signal.  
Rev. 0.6 (12-12-03)  
SMSC LAN83C185  
DATA4S2HEET  
High Performance Single Chip Low Power 10/100 Ethernet Physical Layer Transceiver (PHY)  
Datasheet  
5.5.1.2  
General Characteristics  
ITEM  
SPEC  
UNITS  
REMARK  
Full Scale Input voltage  
Input Common Mode  
3.0 Differential (peak-to-peak)  
1.6-2.0  
V
V
Gain dependent.  
5.5.2  
100M PLL  
Three main functions are included in the 100M PLL: a clock multiplier to generate a 125MHz clock, a  
phase interpolator to synchronize the receive clock to the receive data, and a transmit wave-shaping  
delay reference.  
5.5.2.1  
Functional Description  
The clock multiplier generates a multiple phase 125MHz from a 25MHz reference frequency.  
The phase interpolator uses a multiplexer to select the phase used as the receive clock, RX_CLK. The  
multiplexer is controlled by signals generated in the DSP Timing unit. The Timing unit estimates the  
frequency drift of the received data clock and, by incrementing, decrementing or maintaining the  
selected phase, it generates a clock that is synchronized to the received data stream.  
The 100M PLL also generates a fixed phase 125MHz clock, slaved to the VCO, that is used by the  
digital filter for accurate wave-shaping of the transmit output. It is also used as the transmitter clock of  
the PHY, TX_CLK. (This clock must be jitter-free thus cannot be the receive clock).  
5.5.3  
MT_100  
This block generates the differential outputs driven onto TXP/TXN in 100Base-TX mode.  
5.5.3.1  
Functional Description  
This block is a wave-shaped 100BASE-TX transmitter, with high impedance current outputs. The three  
level differential output (MLT-3) is shaped by differential current switches whose outputs are connected  
together. The low pass filtering (wave-shaping) of the current output is done by progressive switching  
of small current sources. The timing reference for the wave-shaping is the 125MHz fixed clock from  
the 100M PLL. The transmitter is designed to operate with a 1:1 transformer.  
5.5.4  
5.5.5  
5.5.6  
10M Squelch  
The squelch circuit consists of squelch comparators and data comparators, which operate according  
to the 802.3 standard in Section 14.3.1.3.2.  
10BT Filter  
The 10BASE-T Low Pass Filter is the front end of 10BASE-T signal path. It is designed to reject the  
high frequency noise from entering the squelch and data recovery blocks.  
10M PLL - Data Recovery Clock  
The data recovery Phase Locked Loop (PLL) is used for data recovery for the 10BASE-T mode of  
operation. The data recovery PLL is used to synchronize the phase of the 10BASE-T data and the  
20MHz VCO.  
SMSC LAN83C185  
Rev. 0.6 (12-12-03)  
DATA4S3HEET  
High Performance Single Chip Low Power 10/100 Ethernet Physical Layer Transceiver (PHY)  
Datasheet  
5.5.6.1  
Functional Description  
The Data recovery PLL has two modes of operation: Frequency Mode and Data Mode.  
In frequency mode, the VCO locks to the external reference clock.  
In Data mode, the VCO locks to the incoming data. When the PLL switches to Data mode, the VCO  
is held. It is released on an incoming data edge. This provides a minimum amount of phase error when  
the PLL switches from Frequency Mode to Data Mode.  
5.5.7  
PLL 10M - Transmit Clock  
The transmit Phase Locked Loop (PLL) is used to generate a precise delay for the 10BASE-T  
transmitter. It also provides a 20MHz clock for the transmit digital block.  
5.5.7.1  
Functional Description  
This PLL is used to provide a Transmit clock to the digital and create a delay for the 10BASE-T  
transmitter.  
The Transmit PLL operates continuously in a frequency mode of operation where it is locked to the  
input clock.  
5.5.8  
XMT_10  
This block generates the differential outputs driven onto TXP/TXN in 10Base-T mode.  
5.5.8.1  
Functional Description  
This block is a wave-shaped 10BASE-T transmitter, with high impedance current outputs. The low pass  
filtering (wave-shaping) of the current output is done by progressive switching of small current sources.  
The timing reference for the wave-shaping is the 10BASE-T transmit PLL. The transmitter is designed  
to operate with a 1:1 turn-ratio transformer.  
5.5.9  
Central Bias  
The Central Bias block generates a power-up reset signal, a PLL reset signal and the bias  
currents/voltages needed by other on-chip blocks.  
5.5.9.1  
Functional Description  
This block has three main functions: Reference bias current and voltage generator, power-up reset,  
and PLL reset.  
The bias generator generates accurate currents and voltages using an on-chip bandgap circuit and an  
external 12.4K 1% resistor.  
The power-up reset circuit generates a signal that stays high for 10 ms. This duration is controlled  
through the use of counters and a 25MHz internal clock. An analog power-up circuit is used to set the  
initial conditions and ensure proper startup of the circuit.  
The PLL reset signal is generated after the occurrence of an active nRST. The internal reset signal is  
asserted for the duration of four 25MHz clocks (160ns). It is then released. Releasing the PLL reset  
early ensures that the PLL locks to the reference clock before the system reset (nRST) is released.  
Rev. 0.6 (12-12-03)  
SMSC LAN83C185  
DATA4S4HEET  
High Performance Single Chip Low Power 10/100 Ethernet Physical Layer Transceiver (PHY)  
Datasheet  
5.6  
DSP Block  
5.6.1  
General Description  
The “DSP Block” includes the following modules:  
DSP Core (Equalizer, Timing and BLW correction), Testability / Configuration module (Testability /  
Configuration control), Testability / Configuration Registers (not including any SMI registers) and the  
Multiplexers (for the testability / configuration signals).  
The details of the DSP core are described in the DSP architecture specification. The Testability /  
Configuration features give access to the status and control of most of the internal registers in the DSP.  
The status and control mechanisms are described in the architecture specification.  
5.6.2  
ADC Gray code converting  
The LAN83C185 ADC generates a 6 bit “modified” Gray code. Normal Gray code outputs number in  
n
the range of 0 to 2 – 1. The 6-bit code generates numbers from 0 to 63 (decimal).  
The MLT3 analog input has a voltage range of –1V to +1V. It is necessary to translate this to -32 to  
+31 on the output of the ADC. Thus the Gray Code is modified by offsetting it by -32. This is translated  
to 2’s complement before being presented to the DSP.  
SMSC LAN83C185  
Rev. 0.6 (12-12-03)  
DATA4S5HEET  
High Performance Single Chip Low Power 10/100 Ethernet Physical Layer Transceiver (PHY)  
Datasheet  
Rev. 0.6 (12-12-03)  
SMSC LAN83C185  
DATA4S6HEET  
High Performance Single Chip Low Power 10/100 Ethernet Physical Layer Transceiver (PHY)  
Datasheet  
Chapter 6 Electrical Characteristics  
The timing diagrams and limits in this section define the requirements placed on the external signals  
of the Phy.  
6.1  
Serial Management Interface (SMI) Timing  
MDC  
T1.1  
MDIO  
T1.2  
(Write)  
Valid Data  
MDIO  
T1.3  
T1.4  
(Read)  
Valid Data  
PARAMETER  
DESCRIPTION  
MDC frequency  
MIN  
TYP  
MAX  
2.5  
300  
UNITS  
NOTES  
T1.1  
T1.2  
T1.3  
T1.4  
MHz  
ns  
MDC to MDIO (Write) delay  
MDIO (Read) to MDC setup  
MDIO (Read) to MDC hold  
0
10  
10  
ns  
ns  
SMSC LAN83C185  
Rev. 0.6 (12-12-03)  
DATA4S7HEET  
High Performance Single Chip Low Power 10/100 Ethernet Physical Layer Transceiver (PHY)  
Datasheet  
6.2  
100Base-TX Timings  
6.2.1  
100M MII Receive Timing  
RX_CLK  
RXD[3:0]  
RX_DV  
RX_ER  
Valid Data  
T2.1  
T2.2  
PARAMETER  
DESCRIPTION  
MIN  
TYP  
MAX  
UNITS  
NOTES  
T2.1  
Receive signals setup to RX_CLK  
rising  
10  
ns  
T2.2  
Receive signals hold from  
RX_CLK rising  
10  
ns  
RX_CLK frequency  
RX_CLK Duty-Cycle  
25  
40  
MHz  
%
6.2.2  
100M MII Transmit Timing  
TX_CLK  
TXD[3:0]  
TX_EN  
TX_ER  
Valid Data  
T3.1  
T3.2  
PARAMETER  
DESCRIPTION  
MIN  
12  
TYP  
MAX  
UNITS  
NOTES  
T3.1  
Transmit signals setup to TX_CLK  
rising  
ns  
T3.2  
Transmit signals hold after  
TX_CLK rising  
0
ns  
TX_CLK frequency  
TX_CLK Duty-Cycle  
25  
40  
MHz  
%
Rev. 0.6 (12-12-03)  
SMSC LAN83C185  
DATA4S8HEET  
High Performance Single Chip Low Power 10/100 Ethernet Physical Layer Transceiver (PHY)  
Datasheet  
6.3  
10Base-T Timings  
6.3.1  
10M MII Receive Timing  
RX_CLK  
RXD[3:0]  
RX_DV  
RX_ER  
Valid Data  
T4.1  
T4.2  
PARAMETER  
DESCRIPTION  
MIN  
TYP  
MAX  
UNITS  
ns  
NOTES  
T4.1  
Receive signals setup to RX_CLK  
rising  
10  
T4.2  
Receive signals hold from RX_CLK  
rising  
10  
ns  
RX_CLK frequency  
RX_CLK Duty-Cycle  
25  
40  
MHz  
%
Receive signals setup to RX_CLK  
rising  
10  
ns  
6.3.2  
10M MII Transmit Timing  
TX_CLK  
TXD[3:0]  
TX_EN  
Valid Data  
T5.1  
T5.2  
PARAMETER  
DESCRIPTION  
MIN  
12  
TYP  
MAX  
UNITS  
NOTES  
T5.1  
Transmit signals setup to  
TX_CLK rising  
ns  
T5.2  
Transmit signals hold after  
TX_CLK rising  
0
ns  
TX_CLK frequency  
TX_CLK Duty-Cycle  
2.5  
50  
MHz  
%
SMSC LAN83C185  
Rev. 0.6 (12-12-03)  
DATA4S9HEET  
High Performance Single Chip Low Power 10/100 Ethernet Physical Layer Transceiver (PHY)  
Datasheet  
6.4  
Reset Timing  
T6.1  
nRST  
T6.2  
T6.3  
Configuration  
signals  
T6.4  
Output drive  
PARAMETER  
DESCRIPTION  
Reset Pulse Width  
MIN  
TYP  
MAX  
UNITS  
NOTES  
T6.1  
T6.2  
100  
200  
us  
ns  
Configuration input setup to  
nRST rising  
T6.3  
T6.4  
Configuration input hold after  
nRST rising  
400  
20  
ns  
ns  
Output Drive after nRST rising  
800  
20 clock cycles for  
25 MHz clock  
6.5  
DC Characteristics  
6.5.1  
Operating Conditions  
Supply Voltage  
+3.3V +/- 10%  
0°C to 70°C  
Operating Temperature  
6.5.2  
Power Consumption  
6.5.2.1  
Power Consumption Device Only  
Power measurements taken under the following conditions:  
Temperature:  
Device VDD:  
+25° C  
+3.30 V  
Rev. 0.6 (12-12-03)  
SMSC LAN83C185  
DATA5S0HEET  
High Performance Single Chip Low Power 10/100 Ethernet Physical Layer Transceiver (PHY)  
Datasheet  
Table 6.1 Power Consumption Device Only  
REGULATOR  
DIGITAL POWER  
ANALOG POWER  
SUPPLY CURRENT  
Total  
Power  
(mW)  
Power  
(mW)  
Current  
(mA)  
Power  
(mW)  
Current  
(mA)  
Power  
(mW)  
Current  
(mA)  
Mode  
10BASE-T Operation  
10BASE-T /w traffic  
Idle  
88  
86  
48  
48  
25  
23  
22  
19  
19  
19  
7
7
6
6
6
59  
58  
18  
18  
7
6
6
5
5
5
2
2
1
1
1
Energy Detect Power Down  
AN General Power Down  
Non-AN Gen Power Down  
24  
24  
7
0.66  
0.20  
100BASE-TX Operation  
100BASE-TX /w traffic  
Idle  
235  
233  
48  
42  
40  
19  
19  
19  
13  
12  
6
129  
129  
24  
39  
39  
7
64  
64  
5
19  
19  
1
Energy Detect Power Down  
AN General Power Down  
Non-AN Gen Power Down  
48  
6
24  
7
5
1
25  
6
0.66  
0.20  
5
1
Notes:  
1. Each LED indicator in use adds approximately 4 mA to the Digital power supply.  
2. Digital Power pins on LAN83C185 are: VDD pins 8, 18, 43.  
3. Analog Power pins on LAN83C185 are: AVDD pins 53, 57, 61, 63.  
4. Regulator Supply pins on LAN83C185 are: VREG pin 13.  
SMSC LAN83C185  
Rev. 0.6 (12-12-03)  
DATA5S1HEET  
High Performance Single Chip Low Power 10/100 Ethernet Physical Layer Transceiver (PHY)  
Datasheet  
6.5.2.2  
Power Consumption Device and System Components  
Power measurements taken under the following conditions:  
Temperature:  
Device VDD:  
+25° C  
+3.30 V  
Table 6.2 Power Consumption Device and System Components  
REGULATOR  
SUPPLY CURRENT  
DIGITAL POWER  
ANALOG POWER  
Total  
Power  
(mW)  
Power  
(mW)  
Current  
(mA)  
Power  
(mW)  
Current  
(mA)  
Power  
(mW)  
Current  
(mA)  
Mode  
10BASE-T Operation  
10BASE-T /w traffic  
Idle  
543  
542  
114  
114  
90  
23  
22  
19  
19  
19  
7
7
6
6
6
514  
514  
90  
156  
156  
27  
6
6
5
5
5
2
2
1
1
1
Energy Detect Power Down  
AN General Power Down  
Non-AN Gen Power Down  
90  
27  
66  
20  
100BASE-TX Operation  
100BASE-TX /w traffic  
Idle  
439  
437  
115  
115  
89  
42  
40  
19  
19  
19  
13  
12  
6
333  
333  
91  
101  
101  
28  
64  
64  
5
19  
19  
1
Energy Detect Power Down  
AN General Power Down  
Non-AN Gen Power Down  
6
91  
28  
5
1
6
65  
20  
5
1
Notes:  
1. Each LED indicator in use adds approximately 4 mA to the Digital power supply.  
2. Digital Power pins on LAN83C185 are: VDD pins 8, 18, 43.  
3. Analog Power pins on LAN83C185 are: AVDD pins 53, 57, 61, 63.  
4. Regulator Supply pins on LAN83C185 are: VREG pin 13.  
Rev. 0.6 (12-12-03)  
SMSC LAN83C185  
DATA5S2HEET  
High Performance Single Chip Low Power 10/100 Ethernet Physical Layer Transceiver (PHY)  
Datasheet  
6.5.3  
DC Characteristics - Input and Output Buffers  
Table 6.3 MII BUS INTERFACE SIGNALS  
PIN NO.  
NAME  
BUFFER TYPE  
VIH  
VIL  
IOH  
IOL  
VOL  
VOH  
41  
42  
44  
45  
37  
39  
38  
TXD0  
TXD1  
INBUFD2  
INBUFD2  
INBUFD2  
INBUFD2  
INBUFD2  
INBUFD2  
BPL8H8  
+2.0 V  
+2.0 V  
+2.0 V  
+2.0 V  
+2.0 V  
+2.0 V  
+0.8 V  
+0.8 V  
+0.8 V  
+0.8 V  
+0.8 V  
+0.8 V  
TXD2  
TXD3  
TX_ER/TXD4  
TX_EN  
TX_CLK  
-8 mA  
-8 mA  
-8 mA  
-8 mA  
-8 mA  
-8 mA  
-8 mA  
-8 mA  
-8 mA  
-8 mA  
+8 mA  
+8 mA  
+8 mA  
+8 mA  
+8 mA  
+8 mA  
+8 mA  
+8 mA  
+8 mA  
+8 mA  
+0.4 V  
+0.4 V  
+0.4 V  
+0.4 V  
+0.4 V  
+0.4 V  
+0.4 V  
+0.4 V  
+0.4 V  
+0.4 V  
VDD –  
+0.4 V  
32  
31  
30  
29  
35  
33  
34  
48  
47  
RXD0  
RXD1  
BPL8H8  
BPL8H8  
BPL8H8  
BPL8H8  
BPL8H8  
BPL8H8  
BPL8H8  
BPL8H8  
BPL8H8  
VDD –  
+0.4 V  
VDD –  
+0.4 V  
RXD2  
VDD –  
+0.4 V  
RXD3  
VDD –  
+0.4 V  
RX_ER/RXD4  
RX_DV  
RX_CLK  
CRS  
VDD –  
+0.4 V  
VDD –  
+0.4 V  
VDD –  
+0.4 V  
VDD –  
+0.4 V  
COL  
VDD –  
+0.4 V  
27  
26  
MDC  
INBUFD2  
BPL8H8  
+2.0 V  
+0.8 V  
MDIO  
-8 mA  
+8 mA  
+0.4 V  
VDD –  
+0.4 V  
SMSC LAN83C185  
Rev. 0.6 (12-12-03)  
DATA5S3HEET  
High Performance Single Chip Low Power 10/100 Ethernet Physical Layer Transceiver (PHY)  
Datasheet  
Table 6.4 LAN Interface Signals  
BUFFER  
PIN NO.  
NAME  
TYPE  
VIH  
VIL  
IOH  
IOL  
VOL  
VOH  
51  
50  
55  
54  
TXP  
TXN  
RXP  
RXN  
AO  
AO  
AI  
See Table 6.10, “100Base-TX Transceiver Characteristics,” on  
page 56 and Table 6.11, “10BASE-T Transceiver Characteristics,” on  
page 56.  
AI  
Table 6.5 LED Signals  
PIN NO.  
NAME  
BUFFER TYPE  
VIH  
VIL  
IOH  
IOL  
VOL  
VOH  
16  
SPEED100  
BPL24H12  
+2.0 V  
+0.8 V  
-12 mA +24 mA  
-12 mA +24 mA  
-12 mA +24 mA  
-12 mA +24 mA  
+0.4 V  
VDD –  
+0.4 V  
17  
19  
20  
LINKON  
BPL24H12  
BPL24H12  
BPL24H12  
+2.0 V  
+2.0 V  
+2.0 V  
+0.8 V  
+0.8 V  
+0.8 V  
+0.4 V  
+0.4 V  
+0.4 V  
VDD –  
+0.4 V  
ACTIVITY  
FDUPLEX  
VDD –  
+0.4 V  
VDD –  
+0.4 V  
Table 6.6 Configuration Inputs  
PIN NO.  
NAME  
BUFFER TYPE  
VIH  
VIL  
IOH  
IOL  
VOL  
VOH  
16  
PHYAD0  
BPL24H12  
+2.0 V  
+0.8 V  
-12 mA +24 mA  
-12 mA +24 mA  
-12 mA +24 mA  
-12 mA +24 mA  
+0.4 V  
VDD –  
+0.4 V  
17  
19  
20  
2
PHYAD1  
PHYAD2  
PHYAD3  
PHYAD4  
BPL24H12  
BPL24H12  
BPL24H12  
BPL8H4  
+2.0 V  
+2.0 V  
+2.0 V  
+0.8 V  
+0.8 V  
+0.8 V  
+0.4 V  
+0.4 V  
+0.4 V  
+0.4 V  
VDD –  
+0.4 V  
VDD –  
+0.4 V  
VDD –  
+0.4 V  
-4 mA  
+8 mA  
VDD –  
+0.4 V  
4
5
MODE0  
MODE1  
MODE2  
TEST0  
INBUFD2  
INBUFD2  
INBUFD2  
INBUFD2  
INBUFD2  
INBUFD2  
+2.0 V  
+2.0 V  
+2.0 V  
+2.0 V  
+2.0 V  
+2.0 V  
+0.8 V  
+0.8 V  
+0.8 V  
+0.8 V  
+0.8 V  
+0.8 V  
6
9
10  
11  
TEST1  
CLK_FREQ  
Rev. 0.6 (12-12-03)  
SMSC LAN83C185  
DATA5S4HEET  
High Performance Single Chip Low Power 10/100 Ethernet Physical Layer Transceiver (PHY)  
Datasheet  
Table 6.6 Configuration Inputs (continued)  
PIN NO.  
NAME  
BUFFER TYPE  
VIH  
VIL  
IOH  
IOL  
VOL  
VOH  
12  
1
REG_EN  
MII  
APAD  
BPL8H4  
-4 mA  
+8 mA  
+0.4 V  
VDD –  
+0.4 V  
Table 6.7 General Signals  
PIN NO.  
NAME  
BUFFER TYPE  
VIH  
VIL  
IOH  
IOL  
VOL  
VOH  
1
GPO0  
BPL8H4  
-4 mA  
+8 mA  
+0.4 V  
VDD –  
+0.4 V  
2
3
GPO1  
GPO2  
nINT  
BPL8H4  
BPL8H4  
-4 mA  
-4 mA  
-4 mA  
+8 mA  
+8 mA  
+8 mA  
+0.4 V  
+0.4 V  
+0.4 V  
VDD –  
+0.4 V  
VDD –  
+0.4 V  
46  
BPL8H4 /  
VDD –  
+0.4 V  
OPEN DRAIN  
25  
23  
22  
64  
nRST  
CLKIN/XTAL1  
XTAL2  
DS1116  
OSCIN  
OSCOUT  
N/A  
NC1  
Table 6.8 Analog References  
PIN NO.  
NAME  
BUFFER TYPE  
VIH  
VIL  
IOH  
IOL  
VOL  
VOH  
59  
56  
EXRES1  
NC2  
AI  
AI/O  
Table 6.9 Internal Pull-Up / Pull-/Down Configurations  
PIN NO.  
NAME  
PULL-UP OR PULL-DOWN  
TYPE  
1
2
GPO0/MII  
GPO1/PHYAD4  
MODE0  
Pull-down  
Pull-up  
30 uA  
30 uA  
30 uA  
30 uA  
30 uA  
30 uA  
30 uA  
4
Pull-up  
5
MODE1  
Pull-up  
6
MODE2  
Pull-up  
9
TEST0  
Pull-down  
Pull-down  
10  
TEST1  
SMSC LAN83C185  
Rev. 0.6 (12-12-03)  
DATA5S5HEET  
High Performance Single Chip Low Power 10/100 Ethernet Physical Layer Transceiver (PHY)  
Datasheet  
Table 6.9 Internal Pull-Up / Pull-/Down Configurations (continued)  
PIN NO.  
NAME  
PULL-UP OR PULL-DOWN  
TYPE  
16  
17  
19  
20  
46  
SPEED100  
LINKON  
ACTIVITY  
FDUPLEX  
nINT  
Pull-up  
Pull-up  
Pull-up  
Pull-up  
Pull-up  
30 uA  
30 uA  
30 uA  
30 uA  
30 uA  
Table 6.10 100Base-TX Transceiver Characteristics  
PARAMETER  
SYMBOL  
MIN  
TYP  
MAX  
UNITS  
NOTES  
Peak Differential Output Voltage High  
Peak Differential Output Voltage Low  
Signal Amplitude Symmetry  
Signal Rise & Fall Time  
Rise & Fall Time Symmetry  
Duty Cycle Distortion  
V
950  
-950  
98  
3.0  
-
-
-
1050  
-1050  
102  
5.0  
mVpk  
mVpk  
%
Note 6.1  
Note 6.1  
Note 6.1  
Note 6.1  
Note 6.1  
Note 6.2  
PPH  
V
PPL  
V
-
SS  
T
-
nS  
RF  
T
-
0.5  
nS  
RFS  
D
35  
-
50  
-
65  
%
CD  
Overshoot & Undershoot  
Jitter  
V
5
%
OS  
1.4  
nS  
Note 6.3  
Note 6.1 Measured at the line side of the transformer, line replaced by 100(+/- 1%) resistor.  
Note 6.2 Offset from16 nS pulse width at 50% of pulse peak  
Note 6.3 Measured differentially.  
Table 6.11 10BASE-T Transceiver Characteristics  
PARAMETER  
SYMBOL  
MIN  
TYP  
MAX  
UNITS  
NOTES  
Transmitter Peak Differential Output Voltage  
Receiver Differential Squelch Threshold  
V
2.2  
2.5  
2.8  
V
Note 6.4  
OUT  
V
300  
420  
585  
mV  
DS  
Note 6.4 Min/max voltages guaranteed as measured with 100resistive load.  
Rev. 0.6 (12-12-03)  
SMSC LAN83C185  
DATA5S6HEET  
High Performance Single Chip Low Power 10/100 Ethernet Physical Layer Transceiver (PHY)  
Datasheet  
Chapter 7 Package Outline  
Figure 7.1 64 Pin TQFP Package Outline, 10X10X1.4 Body, 2 MM Footprint  
Table 7.1 64 Pin TQFP Package Parameters  
MIN  
NOMINAL  
MAX  
REMARKS  
A
A1  
A2  
D
D1  
E
E1  
H
L
~
~
~
~
~
~
~
~
~
1.60  
0.15  
1.45  
12.20  
10.20  
12.20  
10.20  
0.20  
0.75  
~
Overall Package Height  
Standoff  
0.05  
1.35  
11.80  
9.80  
11.80  
9.80  
0.09  
0.45  
~
Body Thickness  
X Span  
X body Size  
Y Span  
Y body Size  
Lead Frame Thickness  
Lead Foot Length  
Lead Length  
0.60  
1.00  
0.50 Basic  
L1  
e
Lead Pitch  
Lead Foot Angle  
Lead Width  
o
o
θ
0
~
0.22  
~
~
~
7
W
R
R2  
ccc  
0.17  
0.08  
0.08  
~
0.27  
~
0.20  
0.08  
Lead Shoulder Radius  
Lead Foot Radius  
Coplanarity  
Notes:  
1. Controlling Unit: millimeter.  
2. Tolerance on the true position of the leads is ± 0.04 mm maximum.  
3. Package body dimensions D1 and E1 do not include the mold protrusion.  
Maximum mold protrusion is 0.25 mm per side.  
4. Dimension for foot length L measured at the gauge plane 0.25 mm above the seating plane.  
5. Details of pin 1 identifier are optional but must be located within the zone indicated.  
SMSC LAN83C185  
Rev. 0.6 (12-12-03)  
DATA5S7HEET  

相关型号:

LAN8670

10BASE-T1S Ethernet PHY Transceiver Product Brief
MICROCHIP

LAN8671

10BASE-T1S Ethernet PHY Transceiver Product Brief
MICROCHIP

LAN8672

10BASE-T1S Ethernet PHY Transceiver Product Brief
MICROCHIP

LAN8700

【15kV ESD Protected MII/RMII Fast-Ethernet PHY with HP Auto-MDIX and SMSC flexPWR TM in a Small Footprint
SMSC

LAN8700-AEZG

【15kV ESD Protected MII/RMII Fast-Ethernet PHY with HP Auto-MDIX and SMSC flexPWR TM in a Small Footprint
SMSC

LAN8700C-AEZG

4 CHANNEL(S), 100M bps, LOCAL AREA NETWORK CONTROLLER, QCC36, 6 X 6 MM, 0.90 MM HEIGHT, ROHS COMPLIANT, QFN-36
MICROCHIP

LAN8700C-AEZG

LAN Controller, 4 Channel(s), 12.5MBps, CMOS, 6 X 6 MM, 0.90 MM HEIGHT, ROHS COMPLIANT, QFN-36
SMSC

LAN8700C-AEZG-TR

±15kV ESD Protected MII/RMII 10/100 Ethernet Transceiver with HP Auto-MDIX Support and flexPWR Technology in a Small Footprint
MICROCHIP

LAN8700C-AEZG-TR

LAN Controller, 4 Channel(s), 12.5MBps, CMOS, 6 X 6 MM, 0.90 MM HEIGHT, ROHS COMPLIANT, QFN-36
SMSC

LAN8700I-AEZG

LAN Controller, 1 Channel(s), 12.5MBps, CMOS, 6 X 6 MM, 0.90 MM HEIGHT, ROHS COMPLIANT, QFN-36
SMSC

LAN8700IC-AEZG

±15kV ESD Protected MII/RMII 10/100 Ethernet Transceiver with HP Auto-MDIX Support and flexPWR® Technology in a Small Footprint
MICROCHIP

LAN8700IC-AEZG

LAN Controller, 4 Channel(s), 12.5MBps, CMOS, 6 X 6 MM, 0.90 MM HEIGHT, ROHS COMPLIANT, QFN-36
SMSC