EMC1413 [SMSC]

Multiple Channel 1 Temperature Sensors with Beta Compensation; 多通道1温度传感器,带有beta补偿
EMC1413
型号: EMC1413
厂家: SMSC CORPORATION    SMSC CORPORATION
描述:

Multiple Channel 1 Temperature Sensors with Beta Compensation
多通道1温度传感器,带有beta补偿

传感器 温度传感器
文件: 总52页 (文件大小:897K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
EMC1413 / EMC1414  
Multiple Channel 1°C  
Temperature Sensors with  
Beta Compensation  
Datasheet  
PRODUCT FEATURES  
General Description  
Applications  
„
„
„
„
Notebook Computers  
Desktop Computers  
Industrial  
The EMC1413 / EMC1414 are high accuracy, low cost,  
System Management Bus (SMBus) temperature  
sensors. Advanced features such as Resistance Error  
Correction (REC), Beta Compensation (to support CPU  
diodes requiring the BJT/transistor model including  
45nm, 65nm and 90nm processors) and automatic  
diode type detection combine to provide a robust  
solution for complex environmental monitoring  
applications.  
Embedded applications  
Features  
„
Programmable SMBus address  
Support for diodes requiring the BJT/transistor model  
„
supports 45nm, 65nm, and 90nm CPU thermal diodes  
„
Automatically determines external diode type and  
optimal settings  
Resistance Error Correction  
The EMC1413 monitors three temperature channels and  
the EMC1414 monitors four temperature channels. It  
provides ±1°C accuracy for both external and internal  
diode temperatures.  
„
„
Up to 3 External Temperature Monitors  
±1°C max accuracy (20°C < TDIODE < 110°C)  
0.125°C resolution  
Supports up to 2.2nF diode filter capacitor  
Anti-parallel diodes for extra diode support (EMC1414  
only)  
Resistance Error Correction automatically eliminates the  
temperature error caused by series resistance allowing  
greater flexibility in routing thermal diodes. Beta  
Compensation eliminates temperature errors caused by  
low, variable beta transistors common in today's fine  
geometry processors. The automatic beta detection  
feature monitors each external diode/transistor and  
determines the optimum sensor settings for accurate  
temperature measurements regardless of processor  
technology. This frees the user from providing unique  
sensor configurations for each temperature monitoring  
application. These advanced features plus ±1°C  
measurement accuracy provide a low-cost, highly  
flexible and accurate solution for critical temperature  
monitoring applications.  
„
Internal Temperature Monitor  
±1°C accuracy  
0.125°C resolution  
„
„
„
3.3V Supply Voltage  
Programmable temperature limits for ALERT  
Available in these lead-free RoHS compliant  
packages  
10-pin 3mm x 3mm DFN  
10-pin MSOP  
SMSC EMC1413 / EMC1414  
DATASHEET  
Revision 1.41 (02-23-12)  
Multiple Channel 1°C Temperature Sensors with Beta Compensation  
Datasheet  
Ordering Information:  
SMBUS  
ADDRESS  
ORDERING NUMBER  
PACKAGE  
FEATURES  
EMC1413-1-AIZL-TR  
10-pin MSOP  
(lead-free RoHS compliant)  
Up to three temperature sensors, ALERT and  
THERM pins, fixed SMBus address  
1001_100(r/w)  
EMC1413-A-AIZL-TR  
EMC1413-A-AIA-TR  
EMC1413-3-AIZL-TR  
EMC1414-1-AIZL-TR  
EMC1414-A-AIZL-TR  
EMC1414-A-AIA-TR  
10-pin MSOP  
(lead-free RoHS compliant)  
Up to three temperature sensors, ALERT and  
THERM pins, programmable SMBus address  
Selectable via  
THERM pull-up  
10-pin DFN 3mm x 3mm  
(lead-free RoHS compliant)  
Up to three temperature sensors, ALERT and  
THERM pins, programmable SMBus address  
Selectable via  
THERM pull-up  
10-pin MSOP  
(lead-free RoHS compliant)  
Up to three temperature sensors, ALERT and  
THERM pins, programmable SMBus address  
0011_000(r/w)  
10-pin MSOP  
(lead-free RoHS compliant)  
Up to four temperature sensors, ALERT and  
THERM pins, fixed SMBus address  
1001_100(r/w)  
10-pin MSOP  
(lead-free RoHS compliant)  
Up to four temperature sensors, ALERT and  
THERM pins, programmable SMBus address  
Selectable via  
THERM pull-up  
10-pin DFN 3mm x 3mm  
(lead-free RoHS compliant)  
Up to four temperature sensors, ALERT and  
THERM pins, programmable SMBus address  
Selectable via  
THERM pull-up  
REEL SIZE IS 4,000 PIECES  
This product meets the halogen maximum concentration values per IEC61249-2-21  
For RoHS compliance and environmental information, please visit www.smsc.com/rohs  
80 ARKAY DRIVE, HAUPPAUGE, NY 11788 (631) 435-6000 or 1 (800) 443-SEMI  
Copyright © 2012 SMSC or its subsidiaries. All rights reserved.  
Circuit diagrams and other information relating to SMSC products are included as a means of illustrating typical applications. Consequently, complete information sufficient for  
construction purposes is not necessarily given. Although the information has been checked and is believed to be accurate, no responsibility is assumed for inaccuracies. SMSC  
reserves the right to make changes to specifications and product descriptions at any time without notice. Contact your local SMSC sales office to obtain the latest specifications  
before placing your product order. The provision of this information does not convey to the purchaser of the described semiconductor devices any licenses under any patent  
rights or other intellectual property rights of SMSC or others. All sales are expressly conditional on your agreement to the terms and conditions of the most recently dated  
version of SMSC's standard Terms of Sale Agreement dated before the date of your order (the "Terms of Sale Agreement"). The product may contain design defects or errors  
known as anomalies which may cause the product's functions to deviate from published specifications. Anomaly sheets are available upon request. SMSC products are not  
designed, intended, authorized or warranted for use in any life support or other application where product failure could cause or contribute to personal injury or severe property  
damage. Any and all such uses without prior written approval of an Officer of SMSC and further testing and/or modification will be fully at the risk of the customer. Copies of  
this document or other SMSC literature, as well as the Terms of Sale Agreement, may be obtained by visiting SMSC’s website at http://www.smsc.com. SMSC is a registered  
trademark of Standard Microsystems Corporation (“SMSC”). Product names and company names are the trademarks of their respective holders.  
SMSC DISCLAIMS AND EXCLUDES ANY AND ALL WARRANTIES, INCLUDING WITHOUT LIMITATION ANY AND ALL IMPLIED WARRANTIES OF MERCHANTABILITY,  
FITNESS FOR A PARTICULAR PURPOSE, TITLE, AND AGAINST INFRINGEMENT AND THE LIKE, AND ANY AND ALL WARRANTIES ARISING FROM ANY COURSE  
OF DEALING OR USAGE OF TRADE. IN NO EVENT SHALL SMSC BE LIABLE FOR ANY DIRECT, INCIDENTAL, INDIRECT, SPECIAL, PUNITIVE, OR CONSEQUENTIAL  
DAMAGES; OR FOR LOST DATA, PROFITS, SAVINGS OR REVENUES OF ANY KIND; REGARDLESS OF THE FORM OF ACTION, WHETHER BASED ON CONTRACT;  
TORT; NEGLIGENCE OF SMSC OR OTHERS; STRICT LIABILITY; BREACH OF WARRANTY; OR OTHERWISE; WHETHER OR NOT ANY REMEDY OF BUYER IS HELD  
TO HAVE FAILED OF ITS ESSENTIAL PURPOSE, AND WHETHER OR NOT SMSC HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.  
Revision 1.41 (02-23-12)  
2
SMSC EMC1413 / EMC1414  
DATASHEET  
Multiple Channel 1°C Temperature Sensors with Beta Compensation  
Datasheet  
Table of Contents  
Chapter 1 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Chapter 2 Delta . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
2.1  
Functional Delta from EMC1413 / EMC1414 rev A to rev B. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Chapter 3 Pin Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Chapter 4 Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
4.1  
4.2  
4.3  
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
SMBus Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Chapter 5 System Management Bus Interface Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
5.1  
Communications Protocol. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
5.1.1  
5.1.2  
5.1.3  
5.1.4  
5.1.5  
5.1.6  
5.1.7  
5.1.8  
SMBus Start Bit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
SMBus Address and RD / WR Bit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
THERM Pin Considerations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
SMBus Data Bytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
SMBus ACK and NACK Bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
SMBus Stop Bit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
SMBus Timeout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
2
SMBus and I C Compatibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
5.2  
5.3  
SMBus Protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
5.2.1  
5.2.2  
5.2.3  
5.2.4  
Write Byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Read Byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Send Byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Receive Byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Alert Response Address. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Chapter 6 Product Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
6.1  
Modes of Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
6.1.1  
6.1.2  
Conversion Rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Dynamic Averaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
6.2  
6.3  
THERM Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
ALERT Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
6.3.1  
6.3.2  
ALERT Pin Interrupt Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
ALERT Pin Comparator Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
6.4  
Temperature Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
6.4.1  
6.4.2  
6.4.3  
Beta Compensation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Resistance Error Correction (REC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Programmable External Diode Ideality Factor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
6.5  
6.6  
6.7  
6.8  
6.9  
Diode Faults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Consecutive Alerts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Digital Filter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Temperature Measurement Results and Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Anti-parallel Diode Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
6.10 External Diode Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Chapter 7 Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
7.1  
Data Read Interlock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
SMSC EMC1413 / EMC1414  
3
Revision 1.41 (02-23-12)  
DATASHEET  
Multiple Channel 1°C Temperature Sensors with Beta Compensation  
Datasheet  
7.2  
7.3  
7.4  
7.5  
7.6  
7.7  
7.8  
7.9  
Temperature Data Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Configuration Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Conversion Rate Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Limit Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Scratchpad Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
One Shot Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Therm Limit Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
7.10 External Diode Fault Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
7.11 Channel Mask Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
7.12 Consecutive ALERT Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
7.13 Beta Configuration Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
7.14 External Diode Ideality Factor Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
7.15 High Limit Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
7.16 Low Limit Status Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
7.17 Therm Limit Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
7.18 Filter Control Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
7.19 Product ID Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
7.20 SMSC ID Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
7.21 Revision Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
Chapter 8 Typical Operating Curves. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Chapter 9 Package Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
9.1  
Package Markings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
Chapter 10 Document Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
Revision 1.41 (02-23-12)  
4
SMSC EMC1413 / EMC1414  
DATASHEET  
Multiple Channel 1°C Temperature Sensors with Beta Compensation  
Datasheet  
List of Figures  
Figure 1.1 EMC1413 / EMC1414 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Figure 3.1 EMC1413 / 1414 Pin Diagram, MSOP-10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Figure 3.2 EMC1413 / EMC1414 Pin Diagram, DFN-10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Figure 5.1 SMBus Timing Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Figure 5.2 Isolating THERM Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Figure 6.1 System Diagram for EMC1414 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Figure 6.2 System Diagram for EMC1413 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Figure 6.3 Temperature Filter Step Response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Figure 6.4 Temperature Filter Impulse Response. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Figure 6.5 Diode Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Figure 9.1 10-Pin MSOP / TSSOP Package. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
Figure 9.2 10-Pin DFN Package Drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Figure 9.3 10-Pin DFN Package Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
Figure 9.4 10 Pin DFN PCB Footprint. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
Figure 9.5 EMC1414-A 10-Pin DFN Package Markings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
Figure 9.6 EMC1414 10-Pin MSOP Package Markings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
Figure 9.7 EMC1413-A 10-Pin DFN Package Markings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
Figure 9.8 EMC1413 10-Pin MSOP Package Markings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
SMSC EMC1413 / EMC1414  
5
Revision 1.41 (02-23-12)  
DATASHEET  
Multiple Channel 1°C Temperature Sensors with Beta Compensation  
Datasheet  
List of Tables  
Table 3.1 EMC1413 / EMC1414 Pin Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Table 3.2 Pin Types. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Table 4.1 Absolute Maximum Ratings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Table 4.2 Electrical Specifications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Table 4.3 SMBus Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Table 5.1 SMBus Address Decode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Table 5.2 Protocol Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Table 5.3 Write Byte Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Table 5.4 Read Byte Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Table 5.5 Send Byte Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Table 5.6 Receive Byte Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Table 5.7 Alert Response Address Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Table 6.1 Supply Current vs. Conversion Rate for EMC1413 / EMC1414 . . . . . . . . . . . . . . . . . . . . . . . 20  
Table 6.2 Temperature Data Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Table 7.1 Register Set in Hexadecimal Order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Table 7.2 Temperature Data Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Table 7.3 Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Table 7.4 Configuration Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Table 7.5 Conversion Rate Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Table 7.6 Conversion Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Table 7.7 Temperature Limit Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Table 7.8 Scratchpad Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Table 7.9 One Shot Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Table 7.10 Therm Limit Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Table 7.11 External Diode Fault Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Table 7.12 Channel Mask Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Table 7.13 Consecutive ALERT Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Table 7.14 Consecutive Alert / Therm Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Table 7.15 Beta Configuration Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Table 7.16 CPU Beta Values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Table 7.17 Ideality Configuration Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Table 7.18 Ideality Factor Look-Up Table (Diode Model) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Table 7.19 Substrate Diode Ideality Factor Look-Up Table (BJT Model) . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Table 7.20 High Limit Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Table 7.21 Low Limit Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Table 7.22 Therm Limit Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Table 7.23 Filter Configuration Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Table 7.24 FILTER Decode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Table 7.25 Product ID Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Table 7.26 Manufacturer ID Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Table 7.27 Revision Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
Table 10.1 Customer Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
Revision 1.41 (02-23-12)  
6
SMSC EMC1413 / EMC1414  
DATASHEET  
Multiple Channel 1°C Temperature Sensors with Beta Compensation  
Datasheet  
Chapter 1 Block Diagram  
VDD  
EMC1413/ EMC1414  
* EMC1414 only  
Conversion Rate Register  
Switching  
Current  
Low Limit Registers  
High Limit Registers  
THERM Limit Register  
SMCLK  
DP1  
DN1  
Analog  
Mux  
SMDATA  
External Temperature  
Register(s)  
DP2 / DN3*  
ΔΣ ADC  
DN2 / DP3*  
Anti-parallel  
Diodes  
THERM Hysteresis Register  
Internal  
Temperature Register  
Internal Temp  
Diode  
Interupt Masking  
Configuration Register  
ALERT  
SMBus Address Decode  
THERM / ADDR  
Status Registers  
GND  
Figure 1.1 EMC1413 / EMC1414 Block Diagram  
Chapter 2 Delta  
2.1  
Functional Delta from EMC1413 / EMC1414 rev A to rev B  
1. Updated revision number to 04h.  
SMSC EMC1413 / EMC1414  
7
Revision 1.41 (02-23-12)  
DATASHEET  
Multiple Channel 1°C Temperature Sensors with Beta Compensation  
Datasheet  
Chapter 3 Pin Description  
EMC1413  
EMC1414  
VDD  
DP1  
DN1  
DP2  
DN2  
1
2
3
4
5
10  
9
SMCLK  
VDD  
DP1  
1
2
3
4
5
10  
9
SMCLK  
SMDATA  
ALERT  
SMDATA  
ALERT  
8
DN1  
8
7
THERM / ADDR  
GND  
DP2 / DN3  
DN2 / DP3  
7
THERM / ADDR  
GND  
6
6
Figure 3.1 EMC1413 / 1414 Pin Diagram, MSOP-10  
EMC1413  
EMC1414  
VDD  
1
10 SMCLK  
VDD  
DP1  
1
2
3
4
5
10 SMCLK  
DP1  
DN1  
DP2  
DN2  
2
3
4
5
9
8
7
6
SMDATA  
ALERT  
9
8
7
6
SMDATA  
ALERT  
Exposed  
pad  
Exposed  
pad  
DN1  
THERM / ADDR  
GND  
DP2 / DN3  
DN2 / DP3  
THERM / ADDR  
GND  
Figure 3.2 EMC1413 / EMC1414 Pin Diagram, DFN-10  
Table 3.1 EMC1413 / EMC1414 Pin Description  
PIN NUMBER  
NAME  
FUNCTION  
TYPE  
1
2
3
VDD  
DP1  
DN1  
Power supply  
Power  
AIO  
External diode 1 positive (anode) connection  
External diode 1 negative (cathode) connection  
AIO  
External diode 2 positive (anode) connection /  
External Diode 3 negative (cathode) connection  
for anti-parallel diodes (EMC1414 only)  
4
DP2 / DN3  
AIO  
External diode 2 negative (cathode) connection /  
External Diode 3 positive (anode) connection for  
anti-parallel diodes (EMC1414 only)  
5
6
DN2 / DP3  
GND  
AIO  
Ground  
Power  
Revision 1.41 (02-23-12)  
8
SMSC EMC1413 / EMC1414  
DATASHEET  
Multiple Channel 1°C Temperature Sensors with Beta Compensation  
Datasheet  
Table 3.1 EMC1413 / EMC1414 Pin Description (continued)  
PIN NUMBER  
NAME  
FUNCTION  
TYPE  
THERM - Critical THERM output signal - requires  
pull-up resistor  
OD (5V)  
7
THERM / ADDR  
ADDR - Selects SMBus address based on pull-  
up resistor  
OD (5V)  
OD (5V)  
Active low digital ALERT output signal - requires  
pull-up resist  
8
ALERT  
SMBus Data input/output - requires pull-up  
resistor  
9
10  
SMDATA  
SMCLK  
DIOD (5V)  
SMBus Clock input - requires pull-up resistor  
DI (5V)  
-
Not internally connected, but recommend  
grounding.  
Bottom Pad  
Exposed Pad  
APPLICATION NOTE: For the 5V tolerant pins that have a pull-up resistor (SMCLK, SMDATA, THERM, and  
ALERT), the voltage difference between VDD and the pull-up voltage must never exceed  
3.6V.  
The pin types are described Table 3.2.  
Table 3.2 Pin Types  
PIN TYPE  
DESCRIPTION  
Power  
AIO  
This pin is used to supply power or ground to the device.  
Analog Input / Output -This pin is used as an I/O for analog signals.  
Digital Input - This pin is used as a digital input. This pin is 5V tolerant.  
DI  
DIOD  
Digital Input / Open Drain Output - This pin is used as a digital I/O. When it is used as  
an output, it is open drain and requires a pull-up resistor. This pin is 5V tolerant.  
OD  
Open Drain Digital Output - This pin is used as a digital output. It is open drain and  
requires a pull-up resistor. This pin is 5V tolerant.  
SMSC EMC1413 / EMC1414  
9
Revision 1.41 (02-23-12)  
DATASHEET  
Multiple Channel 1°C Temperature Sensors with Beta Compensation  
Datasheet  
Chapter 4 Electrical Specifications  
4.1  
Absolute Maximum Ratings  
Table 4.1 Absolute Maximum Ratings  
DESCRIPTION  
RATING  
UNIT  
Supply Voltage (VDD  
)
-0.3 to 4.0  
-0.3 to 5.5  
V
V
Voltage on 5V tolerant pins (V5VT_pin  
)
Voltage on 5V tolerant pins (|V5VT_pin - VDD|) (see Note 4.1)  
Voltage on any other pin to Ground  
Operating Temperature Range  
0 to 3.6  
V
-0.3 to VDD +0.3  
-40 to +125  
V
°C  
°C  
Storage Temperature Range  
-55 to +150  
Lead Temperature Range  
Refer to JEDEC Spec. J-STD-020  
Package Thermal Characteristics for MSOP-10  
Thermal Resistance (θj-a  
)
132.2  
°C/W  
Package Thermal Characteristics for DFN-10  
Thermal Resistance (θj-a  
)
77.1  
°C/W  
V
ESD Rating, All pins HBM  
2000  
Note: Stresses at or above those listed could cause permanent damage to the device. This is a stress  
rating only and functional operation of the device at any other condition above those indicated  
in the operation sections of this specification is not implied.  
Note 4.1 For the 5V tolerant pins that have a pull-up resistor (SMCLK, SMDATA, THERM, and  
ALERT), the pull-up voltage must not exceed 3.6V when the device is unpowered.  
Revision 1.41 (02-23-12)  
SMSC EMC1413 / EMC1414  
DATA1S0HEET  
Multiple Channel 1°C Temperature Sensors with Beta Compensation  
Datasheet  
4.2  
Electrical Specifications  
Table 4.2 Electrical Specifications  
VDD = 3.0V to 3.6V, TA = -40°C to 125°C, all typical values at TA = 27°C unless otherwise noted.  
CHARACTERISTIC  
SYMBOL  
MIN  
TYP  
MAX  
UNITS  
CONDITIONS  
DC Power  
Supply Voltage  
Supply Current  
VDD  
IDD  
3.0  
3.3  
3.6  
V
430  
850  
µA  
1 conversion / sec, dynamic  
averaging disabled  
930  
1120  
170  
1200  
230  
µA  
µA  
µA  
4 conversions / sec, dynamic  
averaging enabled  
> 16 conversions / sec, dynamic  
averaging enabled  
Standby Supply Current  
IDD  
Device in Standby mode, no SMBus  
communications, ALERT and  
THERM pins not asserted.  
Internal Temperature Monitor  
Temperature Accuracy  
Temperature Resolution  
Temperature Accuracy  
±0.25  
±1  
±2  
°C  
°C  
°C  
-5°C < TA < 100°C  
-40°C < TA < 125°C  
0.125  
External Temperature Monitor  
±0.25  
±1  
±2  
°C  
+20°C < TDIODE < +110°C  
0°C < TA < 100°C  
±0.5  
0.125  
150  
°C  
°C  
ms  
-40°C < TDIODE < 127°C  
Temperature Resolution  
Conversion Time all  
Channels  
tCONV  
default settings  
Capacitive Filter  
CFILTER  
2.2  
2.7  
nF  
Connected across external diode  
ALERT and THERM pins  
V
Output Low Voltage  
Leakage Current  
VOL  
0.4  
ISINK = 8mA  
ILEAK  
±5  
µA  
ALERT and THERM pins  
Device powered or unpowered  
TA < 85°C  
pull-up voltage < 3.6V  
SMSC EMC1413 / EMC1414  
Revision 1.41 (02-23-12)  
DATA1S1HEET  
Multiple Channel 1°C Temperature Sensors with Beta Compensation  
Datasheet  
4.3  
SMBus Electrical Characteristics  
Table 4.3 SMBus Electrical Specifications  
VDD = 3.0V to 3.6V, TA = -40°C to 125°C, all typical values are at TA = 27°C unless otherwise noted.  
CHARACTERISTIC  
SYMBOL  
MIN  
TYP  
MAX  
UNITS  
CONDITIONS  
SMBus Interface  
Input High Voltage  
Input Low Voltage  
Leakage Current  
VIH  
2.0  
VDD  
0.8  
±5  
V
5V Tolerant  
5V Tolerant  
VIL  
-0.3  
V
ILEAK  
µA  
Powered or unpowered  
TA < 85°C  
Hysteresis  
420  
mV  
pF  
Input Capacitance  
CIN  
5
Output Low Sink Current IOL  
8.2  
10  
15  
SMBus Timing  
400  
mA  
SMDATA = 0.4V  
Clock Frequency  
fSMB  
kHz  
ns  
Spike Suppression  
tSP  
50  
Bus Free Time Stop to  
Start  
tBUF  
1.3  
µs  
Hold Time: Start  
Setup Time: Start  
Setup Time: Stop  
Data Hold Time  
tHD:STA  
tSU:STA  
tSU:STO  
tHD:DAT  
tHD:DAT  
tSU:DAT  
tLOW  
0.6  
0.6  
0.6  
0
µs  
µs  
µs  
µs  
µs  
ns  
µs  
µs  
ns  
ns  
pF  
When transmitting to the master  
When receiving from the master  
Data Hold Time  
0.3  
100  
1.3  
0.6  
Data Setup Time  
Clock Low Period  
Clock High Period  
Clock/Data Fall time  
Clock/Data Rise time  
Capacitive Load  
tHIGH  
tFALL  
300  
300  
400  
Min = 20+0.1CLOAD ns  
Min = 20+0.1CLOAD ns  
per bus line  
tRISE  
CLOAD  
Revision 1.41 (02-23-12)  
SMSC EMC1413 / EMC1414  
DATA1S2HEET  
Multiple Channel 1°C Temperature Sensors with Beta Compensation  
Datasheet  
Chapter 5 System Management Bus Interface Protocol  
5.1  
Communications Protocol  
The EMC1413 / EMC1414 communicates with a host controller, such as an SMSC SIO, through the  
SMBus. The SMBus is a two-wire serial communication protocol between a computer host and its  
peripheral devices. A detailed timing diagram is shown in Figure 5.1.  
For the first 15ms after power-up the device may not respond to SMBus communications.  
.
T
T
T
T
SU:STO  
LOW  
HIGH  
HD:STA  
T
FALL  
SMCLK  
T
RISE  
T
T
SU:DAT  
SU:STA  
T
HD:DAT  
T
HD:STA  
SMDATA  
TBUF  
S
S
P
P
S - Start Condition  
P - Stop Condition  
Figure 5.1 SMBus Timing Diagram  
5.1.1  
5.1.2  
SMBus Start Bit  
The SMBus Start bit is defined as a transition of the SMBus Data line from a logic ‘1’ state to a logic  
‘0’ state while the SMBus Clock line is in a logic ‘1’ state.  
SMBus Address and RD / WR Bit  
The SMBus Address Byte consists of the 7-bit client address followed by the RD / WR indicator bit. If  
this RD / WR bit is a logic ‘0’, the SMBus Host is writing data to the client device. If this RD / WR bit  
is a logic ‘1’, the SMBus Host is reading data from the client device.  
The EMC1413-A and EMC1414-A SMBus slave address is determined by the pull-up resistor on the  
THERM pin as shown in Table 5.1, "SMBus Address Decode".  
The Address decode is performed by pulling known currents from VDD through the external resistor  
causing the pin voltage to drop based on the respective current / resistor relationship. This pin voltage  
is compared against a threshold that determines the value of the pull-up resistor.  
Table 5.1 SMBus Address Decode  
PULL UP RESISTOR ON  
THERM PIN (±5%)  
SMBUS ADDRESS  
4.7k  
6.8k  
10k  
1111_100(r/w)b  
1011_100(r/w)b  
1001_100(r/w)b  
SMSC EMC1413 / EMC1414  
Revision 1.41 (02-23-12)  
DATA1S3HEET  
Multiple Channel 1°C Temperature Sensors with Beta Compensation  
Datasheet  
Table 5.1 SMBus Address Decode (continued)  
PULL UP RESISTOR ON  
THERM PIN (±5%)  
SMBUS ADDRESS  
15k  
22k  
33k  
1101_100(r/w)b  
0011_100(r/w)b  
0111_100(r/w)b  
The EMC1413-1 SMBus address is hard coded to 1001_100(r/w).  
The EMC1413-3 SMBus address is hard coded to 0011_000(r/w).  
The EMC1414-1 SMBus address is hard coded to 1001_100(r/w).  
5.1.3  
THERM Pin Considerations  
Because of the decode method used to determine the SMBus Address, it is important that the pull-up  
resistance on the THERM pin be within the tolerances shown in Table 5.1. Additionally, the pull-up  
resistor on the THERM pin must be connected to the same 3.3V supply that drives the VDD pin.  
For 15ms after power up, the THERM pin must not be pulled low or the SMBus address will not be  
decoded properly. If the system requirements do not permit these conditions, the THERM pin must be  
isolated from its hard-wired OR’d bus during this time.  
One method of isolating this pin is shown in Figure 5.2.  
+3.3V  
+2.5 - 5V  
22K  
4.7K – 33k  
1
2
3
4
5
10  
9
VDD  
DP1  
DN1  
SMCLK  
SMDATA  
ALERT  
EMC1413 /  
EMC1414  
8
Shared Therm  
DP2 / DN3  
DN2 / DP3  
7
THERM / ADDR  
GND  
6
Figure 5.2 Isolating THERM Pin  
5.1.4  
SMBus Data Bytes  
All SMBus Data bytes are sent most significant bit first and composed of 8-bits of information.  
5.1.5  
SMBus ACK and NACK Bits  
The SMBus client will acknowledge all data bytes that it receives. This is done by the client device  
pulling the SMBus data line low after the 8th bit of each byte that is transmitted. This applies to the  
Write Byte protocol.  
The Host will NACK (not acknowledge) the last data byte to be received from the client by holding the  
SMBus data line high after the 8th data bit has been sent.  
Revision 1.41 (02-23-12)  
SMSC EMC1413 / EMC1414  
DATA1S4HEET  
Multiple Channel 1°C Temperature Sensors with Beta Compensation  
Datasheet  
5.1.6  
SMBus Stop Bit  
The SMBus Stop bit is defined as a transition of the SMBus Data line from a logic ‘0’ state to a logic  
‘1’ state while the SMBus clock line is in a logic ‘1’ state. When the device detects an SMBus Stop bit  
and it has been communicating with the SMBus protocol, it will reset its client interface and prepare  
to receive further communications.  
5.1.7  
5.1.8  
SMBus Timeout  
The EMC1413 / EMC1414 supports SMBus Timeout. If the clock line is held low for longer than 30ms,  
the device will reset its SMBus protocol. This function can be enabled by setting the TIMEOUT bit in  
the Consecutive Alert Register (see Section 7.12).  
2
SMBus and I C Compatibility  
The EMC1413 / EMC1414 is compatible with SMBus and I2C. The major differences between SMBus  
and I2C devices are highlighted here. For more information, refer to the SMBus 2.0 and I2C  
specifications. For information on using the EMC1413 / EMC1414 in an I2C system, refer to SMSC AN  
14.0 SMSC Dedicated Slave Devices in I2C Systems.  
1. EMC1413 / EMC1414 supports I2C fast mode at 400kHz. This covers the SMBus max time of  
100kHz.  
2. Minimum frequency for SMBus communications is 10kHz.  
3. The SMBus client protocol will reset if the clock is held at a logic ‘0’ for longer than 30ms. This  
timeout functionality is disabled by default in the EMC1413 / EMC1414 and can be enabled by  
writing to the TIMEOUT bit. I2C does not have a timeout.  
4. I2C devices do not support the Alert Response Address functionality (which is optional for SMBus).  
Attempting to communicate with the EMC1413 / EMC1414 SMBus interface with an invalid slave  
address or invalid protocol will result in no response from the device and will not affect its register  
contents. Stretching of the SMCLK signal is supported, provided other devices on the SMBus control  
the timing.  
5.2  
SMBus Protocols  
The device supports Send Byte, Read Byte, Write Byte, Receive Byte, and the Alert Response Address  
as valid protocols as shown below.  
All of the below protocols use the convention in Table 5.2.  
Table 5.2 Protocol Format  
DATA SENT  
TO DEVICE  
DATA SENT TO  
THE HOST  
# of bits sent  
# of bits sent  
SMSC EMC1413 / EMC1414  
Revision 1.41 (02-23-12)  
DATA1S5HEET  
Multiple Channel 1°C Temperature Sensors with Beta Compensation  
Datasheet  
5.2.1  
Write Byte  
The Write Byte is used to write one byte of data to the registers, as shown in Table 5.3.  
Table 5.3 Write Byte Protocol  
SLAVE  
ADDRESS  
REGISTER  
ADDRESS  
REGISTER  
DATA  
START  
1 -> 0  
WR  
ACK  
ACK  
ACK  
STOP  
YYYY_YYY  
0
0
XXh  
0
XXh  
0
0 -> 1  
5.2.2  
Read Byte  
The Read Byte protocol is used to read one byte of data from the registers as shown in Table 5.4.  
Table 5.4 Read Byte Protocol  
START  
SLAVE  
ADDRESS  
WR  
ACK  
REGISTER  
ADDRESS  
ACK  
START  
SLAVE  
ADDRESS  
RD  
ACK  
REGISTER  
DATA  
NACK  
STOP  
1 -> 0  
YYYY_  
YYY  
0
0
XXh  
0
1 -> 0  
YYYY_  
YYY  
1
0
XX  
1
0 -> 1  
5.2.3  
Send Byte  
The Send Byte protocol is used to set the internal address register pointer to the correct address  
location. No data is transferred during the Send Byte protocol as shown in Table 5.5.  
Table 5.5 Send Byte Protocol  
SLAVE  
ADDRESS  
REGISTER  
ADDRESS  
START  
1 -> 0  
WR  
ACK  
ACK  
STOP  
YYYY_YYY  
0
0
XXh  
0
0 -> 1  
5.2.4  
Receive Byte  
The Receive Byte protocol is used to read data from a register when the internal register address  
pointer is known to be at the right location (e.g. set via Send Byte). This is used for consecutive reads  
of the same register as shown in Table 5.6.  
Table 5.6 Receive Byte Protocol  
SLAVE  
START  
ADDRESS  
RD  
ACK  
REGISTER DATA  
NACK  
STOP  
1 -> 0  
YYYY_YYY  
1
0
XXh  
1
0 -> 1  
5.3  
Alert Response Address  
The ALERT output can be used as a processor interrupt or as an SMBus Alert.  
When it detects that the ALERT pin is asserted, the host will send the Alert Response Address (ARA)  
to the general address of 0001_100xb. All devices with active interrupts will respond with their client  
address as shown in Table 5.7.  
Revision 1.41 (02-23-12)  
SMSC EMC1413 / EMC1414  
DATA1S6HEET  
Multiple Channel 1°C Temperature Sensors with Beta Compensation  
Datasheet  
Table 5.7 Alert Response Address Protocol  
ALERT  
RESPONSE  
DEVICE  
START  
ADDRESS  
RD  
ACK  
ADDRESS  
NACK  
STOP  
1 -> 0  
0001_100  
1
0
YYYY_YYY  
1
0 -> 1  
The EMC1413 / EMC1414 will respond to the ARA in the following way:  
1. Send Slave Address and verify that full slave address was sent (i.e. the SMBus communication  
from the device was not prematurely stopped due to a bus contention event).  
2. Set the MASK bit to clear the ALERT pin.  
APPLICATION NOTE: The ARA does not clear the Status Register and if the MASK bit is cleared prior to the Status  
Register being cleared, the ALERT pin will be reasserted.  
SMSC EMC1413 / EMC1414  
Revision 1.41 (02-23-12)  
DATA1S7HEET  
Multiple Channel 1°C Temperature Sensors with Beta Compensation  
Datasheet  
Chapter 6 Product Description  
The EMC1413 / EMC1414 is an SMBus temperature sensor. The EMC1413 and EMC1414 monitor  
one internal diode and up to two (EMC1413) or three (EMC1414) externally connected temperature  
diodes.  
Thermal management is performed in cooperation with a host device. This consists of the host reading  
the temperature data of both the external and internal temperature diodes of the EMC1413 / EMC1414  
and using that data to control the speed of one or more fans.  
The EMC1413 and EMC1414 have two levels of monitoring. The first provides a maskable ALERT  
signal to the host when the measured temperatures exceeds user programmable limits. This allows  
the EMC1413 and EMC1414 to be used as an independent thermal watchdog to warn the host of  
temperature hot spots without direct control by the host. The second level of monitoring provides a non  
maskable interrupt on the THERM pin if the measured temperatures meet or exceed a second  
programmable limit.  
For the EMC1414, External Diode channels 2 and 3 are only compatible with general purpose diodes  
(such as a 2N3904). For the EMC1413, the External Diode 2 channel is compatible with any diode  
type.  
Figure 6.1 shows a system level block diagram of the EMC1414 and Figure 6.2 shows a system level  
block diagram of the EMC1413.  
VDD = 3.3V  
CPU / GPU  
3.3V – 5V  
DP1  
DN1  
VDD  
Host  
Thermal  
Junction  
SMCLK  
SMDATA  
EMC1414  
SMBus  
Interface  
ALERT  
DP2 / DN3  
Optional  
Anti-parallel  
diode  
THERM / ADDR  
Power Control  
DN2 / DP3  
GND  
Figure 6.1 System Diagram for EMC1414  
Revision 1.41 (02-23-12)  
SMSC EMC1413 / EMC1414  
DATA1S8HEET  
Multiple Channel 1°C Temperature Sensors with Beta Compensation  
Datasheet  
VDD = 3.3V  
CPU / GPU  
3.3V – 5V  
DP1  
VDD  
Host  
Thermal  
Junction  
DN1  
SMCLK  
SMDATA  
EMC1413  
SMBus  
Interface  
ALERT  
DP2  
THERM / ADDR  
Power Control  
DN2  
GND  
Figure 6.2 System Diagram for EMC1413  
6.1  
Modes of Operation  
The EMC1413 and EMC1414 have two modes of operation.  
„
Active (Run) - In this mode of operation, the ADC is converting on all temperature channels at the  
programmed conversion rate. The temperature data is updated at the end of every conversion and  
the limits are checked. In Active mode, writing to the one-shot register will do nothing.  
„
Standby (Stop) - In this mode of operation, the majority of circuitry is powered down to reduce  
supply current. The temperature data is not updated and the limits are not checked. In this mode  
of operation, the SMBus is fully active and the part will return requested data. Writing to the one-  
shot register will enable the device to update all temperature channels. Once all the channels are  
updated, the device will return to the Standby mode.  
6.1.1  
6.1.2  
Conversion Rates  
The EMC1413 / EMC1414 may be configured for different conversion rates based on the system  
requirements. The conversion rate is configured as described in Section 7.5. The default conversion  
rate is 4 conversions per second. Other available conversion rates are shown in Table 7.6, "Conversion  
Rate".  
Dynamic Averaging  
Dynamic averaging causes the EMC1413 / EMC1414 to measure the external diode channels for an  
extended time based on the selected conversion rate. This functionality can be disabled for increased  
power savings at the lower conversion rates (see Section 7.4, "Configuration Register"). When  
dynamic averaging is enabled, the device will automatically adjust the sampling and measurement time  
for the external diode channels. This allows the device to average 2x or 16x longer than the normal  
11 bit operation (nominally 21ms per channel) while still maintaining the selected conversion rate. The  
benefits of dynamic averaging are improved noise rejection due to the longer integration time as well  
as less random variation of the temperature measurement.  
When enabled, the dynamic averaging applies when a one-shot command is issued. The device will  
perform the desired averaging during the one-shot operation according to the selected conversion rate.  
When enabled, the dynamic averaging will affect the average supply current based on the chosen  
conversion rate as shown in Table 6.1.  
SMSC EMC1413 / EMC1414  
Revision 1.41 (02-23-12)  
DATA1S9HEET  
Multiple Channel 1°C Temperature Sensors with Beta Compensation  
Datasheet  
Table 6.1 Supply Current vs. Conversion Rate for EMC1413 / EMC1414  
AVERAGING FACTOR (BASED ON  
11-BIT OPERATION)  
AVERAGE SUPPLY CURRENT  
ENABLED  
ENABLED  
CONVERSION RATE  
(DEFAULT)  
DISABLED  
(DEFAULT)  
DISABLED  
1 / 16 sec  
1 / 8 sec  
1 / 4 sec  
1 / 2 sec  
1 / sec  
660uA  
660uA  
660uA  
660uA  
660uA  
930uA  
950uA  
1010uA  
1020uA  
1050uA  
1100uA  
430uA  
430uA  
430uA  
430uA  
430uA  
475uA  
510uA  
630uA  
775uA  
1050uA  
1100uA  
16x  
16x  
16x  
16x  
8x  
1x  
1x  
1x  
1x  
1x  
2 / sec  
4x  
1x  
4 / sec (default)  
8 / sec  
2x  
1x  
1x  
1x  
16 / sec  
0.5x  
0.25x  
0.125x  
0.5x  
0.25x  
0.125x  
32 / sec  
64 / sec  
6.2  
THERM Output  
The THERM output is asserted independently of the ALERT output and cannot be masked. Whenever  
any of the measured temperatures exceed the user programmed Therm Limit values for the  
programmed number of consecutive measurements, the THERM output is asserted. Once it has been  
asserted, it will remain asserted until all measured temperatures drop below the Therm Limit minus  
the Therm Hysteresis (also programmable).  
When the THERM pin is asserted, the THERM status bits will likewise be set. Reading these bits will  
not clear them until the THERM pin is deasserted. Once the THERM pin is deasserted, the THERM  
status bits will be automatically cleared.  
6.3  
ALERT Output  
The ALERT pin is an open drain output and requires a pull-up resistor to VDD and has two modes of  
operation: interrupt mode and comparator mode. The mode of the ALERT output is selected via the  
ALERT / COMP bit in the Configuration Register (see Section 7.4).  
6.3.1  
ALERT Pin Interrupt Mode  
When configured to operate in interrupt mode, the ALERT pin asserts low when an out of limit  
measurement (> high limit or < low limit) is detected on any diode or when a diode fault is detected.  
The ALERT pin will remain asserted as long as an out-of-limit condition remains. Once the out-of-limit  
condition has been removed, the ALERT pin will remain asserted until the appropriate status bits are  
cleared.  
The ALERT pin can be masked by setting the MASK_ALL bit. Once the ALERT pin has been masked,  
it will be de-asserted and remain de-asserted until the MASK_ALL bit is cleared by the user. Any  
interrupt conditions that occur while the ALERT pin is masked will update the Status Register normally.  
There are also individual channel masks (see Section 7.11).  
Revision 1.41 (02-23-12)  
SMSC EMC1413 / EMC1414  
DATA2S0HEET  
Multiple Channel 1°C Temperature Sensors with Beta Compensation  
Datasheet  
The ALERT pin is used as an interrupt signal or as an SMBus Alert signal that allows an SMBus slave  
to communicate an error condition to the master. One or more ALERT outputs can be hard-wired  
together.  
6.3.2  
ALERT Pin Comparator Mode  
When the ALERT pin is configured to operate in comparator mode, it will be asserted if any of the  
measured temperatures exceeds the respective high limit. The ALERT pin will remain asserted until  
all temperatures drop below the corresponding high limit minus the Therm Hysteresis value.  
When the ALERT pin is asserted in comparator mode, the corresponding high limit status bits will be  
set. Reading these bits will not clear them until the ALERT pin is deasserted. Once the ALERT pin is  
deasserted, the status bits will be automatically cleared.  
The MASK_ALL bit will not block the ALERT pin in this mode; however, the individual channel masks  
(see Section 7.11) will prevent the respective channel from asserting the ALERT pin.  
6.4  
Temperature Measurement  
The EMC1413 / EMC1414 can monitor the temperature of up to two / three externally connected  
diodes. Each external diode channel is configured with Resistance Error Correction and Beta  
Compensation based on user settings and system requirements.  
The device contains programmable High, Low, and Therm limits for all measured temperature  
channels. If the measured temperature goes below the Low limit or above the High limit, the ALERT  
pin can be asserted (based on user settings). If the measured temperature meets or exceeds the  
Therm Limit, the THERM pin is asserted unconditionally, providing two tiers of temperature detection.  
6.4.1  
Beta Compensation  
The EMC1413 / EMC1414 is configured to monitor the temperature of basic diodes (e.g., 2N3904) or  
CPU thermal diodes. It automatically detects the type of external diode (CPU diode or diode connected  
transistor) and determines the optimal setting to reduce temperature errors introduced by beta  
variation. Compensating for this error is also known as implementing the transistor or BJT model for  
temperature measurement.  
For discrete transistors configured with the collector and base shorted together, the beta is generally  
sufficiently high such that the percent change in beta variation is very small. For example, a 10%  
variation in beta for two forced emitter currents with a transistor whose ideal beta is 50 would contribute  
approximately 0.25°C error at 100°C. However for substrate transistors where the base-emitter junction  
is used for temperature measurement and the collector is tied to the substrate, the proportional beta  
variation will cause large error. For example, a 10% variation in beta for two forced emitter currents  
with a transistor whose ideal beta is 0.5 would contribute approximately 8.25°C error at 100°C.  
For the EMC1414, the External Diode 2 and External Diode 3 channels do not support Beta  
Compensation.  
6.4.2  
6.4.3  
Resistance Error Correction (REC)  
Parasitic resistance in series with the external diodes will limit the accuracy obtainable from  
temperature measurement devices. The voltage developed across this resistance by the switching  
diode currents cause the temperature measurement to read higher than the true temperature.  
Contributors to series resistance are PCB trace resistance, on die (i.e. on the processor) metal  
resistance, bulk resistance in the base and emitter of the temperature transistor. Typically, the error  
caused by series resistance is +0.7°C per ohm. The EMC1413 / EMC1414 automatically corrects up  
to 100 ohms of series resistance.  
Programmable External Diode Ideality Factor  
The EMC1413 / EMC1414 is designed for external diodes with an ideality factor of 1.008. Not all  
external diodes, processor or discrete, will have this exact value. This variation of the ideality factor  
introduces error in the temperature measurement which must be corrected for. This correction is  
SMSC EMC1413 / EMC1414  
Revision 1.41 (02-23-12)  
DATA2S1HEET  
Multiple Channel 1°C Temperature Sensors with Beta Compensation  
Datasheet  
typically done using programmable offset registers. Since an ideality factor mismatch introduces an  
error that is a function of temperature, this correction is only accurate within a small range of  
temperatures. To provide maximum flexibility to the user, the EMC1413 / EMC1414 provides a 6-bit  
register for each external diode where the ideality factor of the diode used is programmed to eliminate  
errors across all temperatures.  
APPLICATION NOTE: When monitoring a substrate transistor or CPU diode and beta compensation is enabled, the  
Ideality Factor should not be adjusted. Beta Compensation automatically corrects for most  
ideality errors.  
6.5  
Diode Faults  
The EMC1413 / EMC1414 detects an open on the DP and DN pins, and a short across the DP and  
DN pins. For each temperature measurement made, the device checks for a diode fault on the external  
diode channel(s). When a diode fault is detected, the ALERT pin asserts (unless masked, see  
Section 6.6) and the temperature data reads 00h in the MSB and LSB registers (note: the low limit will  
not be checked). A diode fault is defined as one of the following: an open between DP and DN, a short  
from VDD to DP, or a short from VDD to DN.  
If a short occurs across DP and DN or a short occurs from DP to GND, the low limit status bit is set  
and the ALERT pin asserts (unless masked). This condition is indistinguishable from a temperature  
measurement of 0.000°C (-64°C in extended range) resulting in temperature data of 00h in the MSB  
and LSB registers.  
If a short from DN to GND occurs (with a diode connected), temperature measurements will continue  
as normal with no alerts.  
6.6  
6.7  
Consecutive Alerts  
The EMC1413 / EMC1414 contain multiple consecutive alert counters. One set of counters applies to  
the ALERT pin and the second set of counters applies to the THERM pin. Each temperature  
measurement channel has a separate consecutive alert counter for each of the ALERT and THERM  
pins. All counters are user programmable and determine the number of consecutive measurements  
that a temperature channel(s) must be out-of-limit or reporting a diode fault before the corresponding  
pin is asserted.  
See Section 7.12, "Consecutive ALERT Register" for more details on the consecutive alert function.  
Digital Filter  
To reduce the effect of noise and temperature spikes on the reported temperature, the External Diode  
1 channel uses a programmable digital filter. This filter can be configured as Level 1, Level 2, or  
Disabled (default) (see Section 7.18). The typical filter performance is shown in Figure 6.3 and  
Figure 6.4.  
Revision 1.41 (02-23-12)  
SMSC EMC1413 / EMC1414  
DATA2S2HEET  
Multiple Channel 1°C Temperature Sensors with Beta Compensation  
Datasheet  
Filter Step Response  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
Disabled  
Level1  
Level2  
0
2
4
6
8
10  
12  
14  
Samples  
Figure 6.3 Temperature Filter Step Response  
Filter Impulse Response  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
Disabled  
Level1  
Level2  
0
2
4
6
8
10  
12  
14  
Samples  
Figure 6.4 Temperature Filter Impulse Response  
SMSC EMC1413 / EMC1414  
Revision 1.41 (02-23-12)  
DATA2S3HEET  
Multiple Channel 1°C Temperature Sensors with Beta Compensation  
Datasheet  
6.8  
Temperature Measurement Results and Data  
The temperature measurement results are stored in the internal and external temperature registers.  
These are then compared with the values stored in the high and low limit registers. Both external and  
internal temperature measurements are stored in 11-bit format with the eight (8) most significant bits  
stored in a high byte register and the three (3) least significant bits stored in the three (3) MSB  
positions of the low byte register. All other bits of the low byte register are set to zero.  
The EMC1413 / EMC1414 has two selectable temperature ranges. The default range is from 0°C to  
+127°C and the temperature is represented as binary number able to report a temperature from 0°C  
to +127.875°C in 0.125°C steps.  
The extended range is an extended temperature range from -64°C to +191°C. The data format is a  
binary number offset by 64°C. The extended range is used to measure temperature diodes with a large  
known offset (such as AMD processor diodes) where the diode temperature plus the offset would be  
equivalent to a temperature higher than +127°C.  
Table 6.2 shows the default and extended range formats.  
Table 6.2 Temperature Data Format  
TEMPERATURE (°C)  
DEFAULT RANGE 0°C TO 127°C  
EXTENDED RANGE -64°C TO 191°C  
Diode Fault  
-64  
000 0000 0000  
000 0000 0000  
000 0000 0000  
000 0000 0000  
Note 6.2  
-1  
0
000 0000 0000  
001 1111 1000  
010 0000 0000  
000 0000 0000  
Note 6.1  
0.125  
1
000 0000 0001  
000 0000 1000  
010 0000 0000  
010 0000 1000  
011 1111 1000  
011 1111 1111  
010 0000 0001  
010 0000 1000  
100 0000 0000  
100 0000 1000  
101 1111 1000  
101 1111 1111  
110 0000 0000  
64  
65  
127  
127.875  
128  
011 1111 1111  
Note 6.3  
190  
011 1111 1111  
011 1111 1111  
011 1111 1111  
111 1111 0000  
111 1111 1000  
191  
>= 191.875  
111 1111 1111  
Note 6.4  
Note 6.1 In default mode, all temperatures < 0°C will be reported as 0°C.  
Note 6.2 In the extended range, all temperatures < -64°C will be reported as -64°C.  
Note 6.3 For the default range, all temperatures > +127.875°C will be reported as +127.875°C.  
Note 6.4 For the extended range, all temperatures > +191.875°C will be reported as +191.875°C.  
Revision 1.41 (02-23-12)  
SMSC EMC1413 / EMC1414  
DATA2S4HEET  
Multiple Channel 1°C Temperature Sensors with Beta Compensation  
Datasheet  
6.9  
Anti-parallel Diode Connections  
The EMC1414 supports reading two external diodes on the same set of pins (DP2, DN2). These  
diodes are connected as shown in Figure 6.1. Due to the anti-parallel connection of these diodes, both  
diodes will be reverse biased by a VBE voltage (approximately 0.7V). Because of this reverse bias,  
only discrete thermal diodes (such as a 2N3904) are recommended to be placed on these pins.  
6.10  
External Diode Connections  
The EMC1413 / EMC1414 can be configured to measure a CPU substrate transistor, a discrete  
2N3904 thermal diode, or an AMD processor diode on the External Diode 1 channel only. For the  
EMC1414 the External Diode 2 and External Diode 3 channels are configured to measure a pair of  
discrete anti-parallel diodes (shared on pins DP2 and DN2). The supported configurations for the  
external diode channels are shown in Figure 6.5.  
to  
DP1  
to  
DP1  
to DP2 / DN3  
to DN2 / DP3  
to  
DN1  
to  
DN1  
Local  
Ground  
Typical remote  
Anti-parallel connected  
discrete NPN transistors  
e.g. 2N3904  
Typical remote  
discrete NPN transistor  
e.g. 2N3904  
substrate transistor  
e.g. CPU substrate  
PNP  
Figure 6.5 Diode Configurations  
SMSC EMC1413 / EMC1414  
Revision 1.41 (02-23-12)  
DATA2S5HEET  
Multiple Channel 1°C Temperature Sensors with Beta Compensation  
Datasheet  
Chapter 7 Register Description  
The registers shown in Table 7.1 are accessible through the SMBus. An entry of ‘-’ indicates that the  
bit is not used and will always read ‘0’.  
Table 7.1 Register Set in Hexadecimal Order  
DEFAULT  
REGISTER  
ADDRESS  
R/W  
REGISTER NAME  
FUNCTION  
VALUE  
PAGE  
Internal Diode Data  
High Byte  
Stores the integer data for the  
Internal Diode  
00h  
01h  
02h  
R
00h  
Page 29  
External Diode 1  
Data High Byte  
Stores the integer data for External  
Diode 1  
R
R
00h  
00h  
Stores the status bits for the  
Internal Diode and External Diodes  
Status  
Page 30  
Page 30  
Controls the general operation of  
the device (mirrored at address  
09h)  
03h  
04h  
05h  
06h  
07h  
08h  
09h  
0Ah  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Configuration  
00h  
Controls the conversion rate for  
updating temperature data  
(mirrored at address 0Ah)  
06h  
(4/sec)  
Conversion Rate  
Page 31  
Stores the 8-bit high limit for the  
Internal Diode (mirrored at address  
0Bh)  
Internal Diode High  
Limit  
55h  
(85°C)  
Stores the 8-bit low limit for the  
Internal Diode (mirrored at address  
0Ch)  
Internal Diode Low  
Limit  
00h  
(0°C)  
Page 32  
Stores the integer portion of the  
high limit for External Diode 1  
(mirrored at register 0Dh)  
External Diode 1  
High Limit High Byte  
55h  
(85°C)  
Stores the integer portion of the  
low limit for External Diode 1  
(mirrored at register 0Eh)  
External Diode 1 Low  
Limit High Byte  
00h  
(0°C)  
Controls the general operation of  
the device (mirrored at address  
03h)  
Configuration  
00h  
Page 30  
Page 31  
Controls the conversion rate for  
updating temperature data  
(mirrored at address 04h)  
06h  
(4/sec)  
Conversion Rate  
Revision 1.41 (02-23-12)  
SMSC EMC1413 / EMC1414  
DATA2S6HEET  
Multiple Channel 1°C Temperature Sensors with Beta Compensation  
Datasheet  
Table 7.1 Register Set in Hexadecimal Order (continued)  
REGISTER  
ADDRESS  
DEFAULT  
VALUE  
R/W  
REGISTER NAME  
FUNCTION  
PAGE  
Stores the 8-bit high limit for the  
Internal Diode (mirrored at address  
05h)  
Internal Diode High  
Limit  
55h  
(85°C)  
0Bh  
0Ch  
0Dh  
0Eh  
R/W  
Stores the 8-bit low limit for the  
Internal Diode (mirrored at address  
06h)  
Internal Diode Low  
Limit  
00h  
(0°C)  
R/W  
R/W  
R/W  
Page 32  
Stores the integer portion of the  
high limit for External Diode 1  
(mirrored at register 07h)  
External Diode 1  
High Limit High Byte  
55h  
(85°C)  
Stores the integer portion of the  
low limit for External Diode 1  
(mirrored at register 08h)  
External Diode 1 Low  
Limit High Byte  
00h  
(0°C)  
A write to this register initiates a  
one shot update.  
0Fh  
10h  
11h  
12h  
13h  
14h  
15h  
16h  
17h  
18h  
19h  
1Ah  
W
One shot  
00h  
00h  
00h  
00h  
00h  
00h  
Page 34  
Page 29  
Page 34  
Page 34  
External Diode 1  
Data Low Byte  
Stores the fractional data for  
External Diode 1  
R
Scratchpad register for software  
compatibility  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Scratchpad  
Scratchpad  
Scratchpad register for software  
compatibility  
External Diode 1  
High Limit Low Byte  
Stores the fractional portion of the  
high limit for External Diode 1  
Page 32  
Page 32  
Page 32  
External Diode 1 Low  
Limit Low Byte  
Stores the fractional portion of the  
low limit for External Diode 1  
External Diode 2  
High Limit High Byte  
Stores the integer portion of the  
high limit for External Diode 2  
55h  
(85°C)  
External DIode 2 Low  
Limit High Byte  
Stores the integer portion of the  
low limit for External Diode 2  
00h  
(0°C)  
External Diode 2  
High Limit Low Byte  
Stores the fractional portion of the  
high limit External Diode 2  
00h  
00h  
External Diode 2 Low  
Limit Low Byte  
Stores the fractional portion of the  
low limit for External Diode 2  
External Diode 1  
Therm Limit  
Stores the 8-bit critical temperature  
limit for External Diode 1  
55h  
(85°C)  
Page 34  
Page 34  
External Diode 2  
Therm Limit  
Stores the 8-bit critical temperature  
limit for External Diode 2  
55h  
(85°C)  
Stores status bits indicating which  
external diode detected a diode  
fault  
1Bh  
1Fh  
R-C  
R/W  
External Diode Fault  
00h  
00h  
Page 35  
Page 35  
Channel Mask  
Register  
Controls the masking of individual  
channels  
SMSC EMC1413 / EMC1414  
Revision 1.41 (02-23-12)  
DATA2S7HEET  
Multiple Channel 1°C Temperature Sensors with Beta Compensation  
Datasheet  
Table 7.1 Register Set in Hexadecimal Order (continued)  
REGISTER  
ADDRESS  
DEFAULT  
VALUE  
R/W  
REGISTER NAME  
FUNCTION  
PAGE  
Internal Diode Therm  
Limit  
Stores the 8-bit critical temperature  
limit for the Internal Diode  
55h  
(85°C)  
20h  
21h  
R/W  
Page 34  
Stores the 8-bit hysteresis value  
that applies to all Therm limits  
0Ah  
(10°C)  
R/W  
R/W  
Therm Hysteresis  
Controls the number of out-of-limit  
conditions that must occur before  
an interrupt is asserted  
22h  
Consecutive ALERT  
70h  
Page 36  
Page 29  
External Diode 2  
Data High Byte  
Stores the integer data for External  
Diode 2  
23h  
24h  
R
R
00h  
00h  
External Diode 2  
Data Low Byte  
Stores the fractional data for  
External Diode 2  
Stores the Beta Compensation  
circuitry settings for External Diode  
External Diode Beta  
Configuration  
25h  
26h  
R/W  
R/W  
08h  
Page 37  
Page 37  
1
08h for  
EMC1413  
and 07h for  
EMC1414  
Stores the Beta Compensation  
circuitry settings for External Diode  
2
External Diode 2  
Beta Configuration  
External Diode 1  
Ideality Factor  
Stores the ideality factor for  
External Diode 1  
12h  
(1.008)  
27h  
28h  
29h  
2Ah  
2Bh  
2Ch  
2Dh  
2Eh  
2Fh  
30h  
31h  
R/W  
R/W  
R
Page 38  
Page 38  
Page 29  
External Diode 2  
Ideality Factor  
Stores the ideality factor for  
External Diode 2  
12h  
(1.008)  
Internal Diode Data  
Low Byte  
Stores the fractional data for the  
Internal Diode  
00h  
00h  
00h  
External Diode 3  
High Byte  
Stores the integer data for External  
Diode 3  
R
Page 29  
External Diode 3 Low  
Byte  
Stores the fractional data for  
External Diode 3  
R
External Diode 3  
High Limit High Byte  
Stores the integer portion of the  
high limit for External Diode 3  
55h  
(85°C)  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
External Diode 3 Low  
Limit High Byte  
Stores the integer portion of the  
low limit for External Diode 3  
00h  
(0°C)  
Page 32  
External Diode 3  
High Limit Low Byte  
Stores the fractional portion of the  
high limit for External Diode 3  
00h  
00h  
External Diode 3 Low  
Limit Low Byte  
Stores the fractional portion of the  
low limit for External Diode 3  
External Diode 3  
Therm Limit  
Stores the 8-bit critical temperature  
limit for External Diode 3  
55h  
(85°C)  
Page 34  
Page 38  
External Diode 3  
Ideality Factor  
Stores the ideality factor for  
External Diode 3  
12h  
(1.008)  
35h  
36h  
R-C  
R-C  
High Limit Status  
Low Limit Status  
Status bits for the High Limits  
Status bits for the Low Limits  
00h  
00h  
Page 40  
Page 41  
Revision 1.41 (02-23-12)  
SMSC EMC1413 / EMC1414  
DATA2S8HEET  
Multiple Channel 1°C Temperature Sensors with Beta Compensation  
Datasheet  
Table 7.1 Register Set in Hexadecimal Order (continued)  
REGISTER  
ADDRESS  
DEFAULT  
VALUE  
R/W  
REGISTER NAME  
FUNCTION  
PAGE  
37h  
40h  
R
Therm Limit Status  
Status bits for the Therm Limits  
00h  
00h  
Page 41  
Controls the digital filter setting for  
the External Diode 1 channel  
R/W  
R
Filter Control  
Page 42  
Page 42  
Page 42  
Page 42  
Page 43  
Product ID  
(EMC1413)  
Stores a fixed value that identifies  
the device  
FDh  
FDh  
FEh  
FFh  
21h  
25h  
5Dh  
04h  
Product ID  
(EMC1414)  
Stores a fixed value that identifies  
the device  
R
Stores a fixed value that  
represents SMSC  
R
Manufacturer ID  
Revision  
Stores a fixed value that  
represents the revision number  
R
7.1  
Data Read Interlock  
When any temperature channel high byte register is read, the corresponding low byte is copied into  
an internal ‘shadow’ register. The user is free to read the low byte at any time and be guaranteed that  
it will correspond to the previously read high byte. Regardless if the low byte is read or not, reading  
from the same high byte register again will automatically refresh this stored low byte data.  
7.2  
Temperature Data Registers  
Table 7.2 Temperature Data Registers  
ADDR  
R/W  
REGISTER  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
DEFAULT  
Internal Diode  
High Byte  
00h  
29h  
01h  
10h  
23h  
24h  
R
128  
64  
32  
16  
8
4
2
1
00h  
Internal Diode  
Low Byte  
R
R
R
R
R
0.5  
128  
0.5  
0.25  
64  
0.125  
32  
-
16  
-
-
8
-
-
4
-
-
2
-
-
1
-
00h  
00h  
00h  
00h  
00h  
External Diode  
1 High Byte  
External Diode  
1 Low Byte  
0.25  
64  
0.125  
32  
External Diode  
2 High Byte  
128  
0.5  
16  
-
8
-
4
-
2
-
1
-
External Diode  
2 Low Byte  
0.25  
0.125  
As shown in Table 7.2, all temperatures are stored as an 11-bit value with the high byte representing  
the integer value and the low byte representing the fractional value left justified to occupy the MSBits.  
SMSC EMC1413 / EMC1414  
Revision 1.41 (02-23-12)  
DATA2S9HEET  
Multiple Channel 1°C Temperature Sensors with Beta Compensation  
Datasheet  
7.3  
Status Register  
Table 7.3 Status Register  
ADDR  
R/W  
REGISTER  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
DEFAULT  
02h  
R
Status  
BUSY  
-
-
HIGH LOW FAULT THERM  
-
00h  
The Status Register reports general error conditions. To identify specific channels, refer to  
Section 7.10, Section 7.15, Section 7.16, and Section 7.17. The individual Status Register bits are  
cleared when the appropriate High Limit, Low Limit, or Therm Limit register has been read or cleared.  
Bit 7 - BUSY - This bit indicates that the ADC is currently converting. This bit does not cause either  
the ALERT or THERM pins to be asserted.  
Bit 4 - HIGH - This bit is set when any of the temperature channels exceeds its programmed high limit.  
See the High Limit Status Register for specific channel information (Section 7.15). When set, this bit  
will assert the ALERT pin.  
Bit 3 - LOW - This bit is set when any of the temperature channels drops below its programmed low  
limit. See the Low Limit Status Register for specific channel information (Section 7.16). When set, this  
bit will assert the ALERT pin.  
Bit 2 - FAULT - This bit is asserted when a diode fault is detected on any of the external diode  
channels. See the External Diode Fault Register for specific channel information (Section 7.10). When  
set, this bit will assert the ALERT pin.  
Bit 1 - THERM - This bit is set when the any of the temperature channels exceeds its programmed  
Therm Limit. See the Therm Limit Status Register for specific channel information (Section 7.17).  
7.4  
Configuration Register  
Table 7.4 Configuration Register  
ADDR  
R/W  
REGISTER  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
DEFAULT  
03h  
09h  
MASK_  
ALL  
RUN/  
STOP  
ALERT/  
COMP  
DAVG_  
DIS  
R/W  
Configuration  
RECD1  
RECD2  
RANGE  
APDD  
00h  
The Configuration Register controls the basic operation of the device. This register is fully accessible  
at either address.  
Bit 7 - MASK_ALL - Masks the ALERT pin from asserting.  
„
„
‘0’ - (default) - The ALERT pin is not masked. If any of the appropriate status bits are set the ALERT  
pin will be asserted.  
‘1’ - - The ALERT pin is masked. It will not be asserted for any interrupt condition unless it is  
configured in comparator mode. The Status Registers will be updated normally.  
Bit 6 - RUN / STOP - Controls Active/Standby modes.  
„
„
‘0’ (default) - The device is in Active mode and converting on all channels.  
‘1’ - The device is in Standby mode and not converting.  
Bit 5 - ALERT/COMP - Controls the operation of the ALERT pin.  
„
„
‘0’ (default) - The ALERT pin acts as described in Section 6.3.  
‘1’ - The ALERT pin acts in comparator mode as described in Section 6.3.2. In this mode the  
MASK_ALL bit is ignored.  
Revision 1.41 (02-23-12)  
SMSC EMC1413 / EMC1414  
DATA3S0HEET  
Multiple Channel 1°C Temperature Sensors with Beta Compensation  
Datasheet  
Bit 4 - RECD1 - Disables the Resistance Error Correction (REC) for External Diode 1.  
„
„
‘0’ (default) - REC is enabled for External Diode 1.  
‘1’ - REC is disabled for External Diode 1.  
Bit 3 - RECD2 - Disables the Resistance Error Correction (REC) for External Diode 2 and External  
Diode 3.  
„
„
‘0’ (default) - REC is enabled for External Diode 2 and External Diode 3.  
‘1’ - REC is disabled for External Diode 2 and External Diode 3.  
Bit 2 - RANGE - Configures the measurement range and data format of the temperature channels.  
„
‘0’ (default) - The temperature measurement range is 0°C to +127.875°C and the data format is  
binary.  
„
‘1’ -The temperature measurement range is -64°C to +191.875°C and the data format is offset  
binary (see Table 6.2).  
Bit 1 - DAVG_DIS - Disables the dynamic averaging feature on all temperature channels.  
„
‘0’ (default) - The dynamic averaging feature is enabled. All temperature channels will be converted  
with an averaging factor that is based on the conversion rate as shown in Table 6.1.  
„
‘1’ - The dynamic averaging feature is disabled. All temperature channels will be converted with a  
maximum averaging factor of 1x (equivalent to 11-bit conversion). For higher conversion rates, this  
averaging factor will be reduced as shown in Table 6.1.  
Bit 0 - APDD (EMC1414 only) - Disables the anti-parallel diode operation. Beta Compensation is  
disabled on External Diode 2 and 3 regardless of APDD setting. In addition, External Diode 2 Beta  
Configuration register will be ignored.  
„
‘0’ (default) - Anti-parallel diode mode is enabled. Two external diodes will be measured on the  
DP2 and DN2 pins.  
„
‘1’ - Anti-parallel diode mode is disabled. Only one external diode will be measured on the DP2  
and DN2 pins.  
7.5  
Conversion Rate Register  
Table 7.5 Conversion Rate Register  
ADDR  
R/W  
REGISTER  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
DEFAULT  
04h  
0Ah  
Conversion  
Rate  
06h  
(4/sec)  
R/W  
-
-
-
-
CONV[3:0]  
The Conversion Rate Register controls how often the temperature measurement channels are updated  
and compared against the limits. This register is fully accessible at either address.  
Bits 3-0 - CONV[3:0] - Determines the conversion rate as shown in Table 7.6.  
Table 7.6 Conversion Rate  
CONV[3:0]  
HEX  
3
2
1
0
CONVERSIONS / SECOND  
0h  
1h  
0
0
0
0
0
0
0
1
1 / 16  
1 / 8  
SMSC EMC1413 / EMC1414  
Revision 1.41 (02-23-12)  
DATA3S1HEET  
Multiple Channel 1°C Temperature Sensors with Beta Compensation  
Datasheet  
Table 7.6 Conversion Rate (continued)  
CONV[3:0]  
2
HEX  
3
1
0
CONVERSIONS / SECOND  
2h  
3h  
0
0
0
0
0
0
1
1
1
0
0
1
1
1
1
0
0
0
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
1
0
1 / 4  
1 / 2  
4h  
1
5h  
2
6h  
4 (default)  
7h  
8
8h  
16  
32  
64  
1
9h  
Ah  
Bh - Fh  
All others  
7.6  
Limit Registers  
Table 7.7 Temperature Limit Registers  
ADDR.  
R/W  
REGISTER  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
DEFAULT  
05h  
0Bh  
06h  
0Ch  
07h  
Internal Diode  
High Limit  
55h  
(85°C)  
R/W  
128  
64  
32  
16  
8
4
2
1
Internal Diode  
Low Limit  
00h  
(0°C)  
R/W  
R/W  
128  
128  
64  
64  
32  
32  
16  
16  
8
8
4
4
2
2
1
1
External  
Diode 1 High  
Limit High  
Byte  
55h  
(85°C)  
0Dh  
External  
Diode 1 High  
Limit Low  
Byte  
13h  
R/W  
R/W  
R/W  
0.5  
128  
0.5  
0.25 0.125  
-
16  
-
-
8
-
-
4
-
-
2
-
-
1
-
00h  
08h  
0Eh  
External  
Diode 1 Low  
Limit High  
Byte  
00h  
(0°C)  
64  
32  
External  
Diode 1 Low  
Limit Low  
Byte  
14h  
0.25 0.125  
00h  
Revision 1.41 (02-23-12)  
SMSC EMC1413 / EMC1414  
DATA3S2HEET  
Multiple Channel 1°C Temperature Sensors with Beta Compensation  
Datasheet  
Table 7.7 Temperature Limit Registers (continued)  
ADDR.  
R/W  
REGISTER  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
DEFAULT  
External  
Diode 2 High  
Limit High  
Byte  
55h  
(85°C)  
15h  
R/W  
128  
64  
32  
16  
8
4
2
1
External  
Diode 2 Low  
Limit High  
Byte  
00h  
(0°C)  
16h  
17h  
18h  
2Ch  
2Dh  
2Eh  
2Fh  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
128  
0.5  
0.5  
128  
128  
0.5  
0.5  
64  
32  
16  
-
8
-
4
-
2
-
1
-
External  
Diode 2 High  
Limit Low  
Byte  
0.25 0.125  
0.25 0.125  
00h  
00h  
External  
Diode 2 Low  
Limit Low  
Byte  
-
-
-
-
-
External  
Diode 3 High  
Limit High  
Byte  
55h  
(85°C)  
64  
64  
32  
32  
16  
16  
-
8
8
-
4
4
-
2
2
-
1
1
-
External  
Diode 3 Low  
Limit High  
Byte  
00h  
(0°C)  
External  
Diode 3 High  
Limit Low  
Byte  
0.25 0.125  
0.25 0.125  
00h  
00h  
External  
Diode 3 Low  
Limit Low  
Byte  
-
-
-
-
-
The device contains both high and low limits for all temperature channels. If the measured temperature  
exceeds the high limit, then the corresponding status bit is set and the ALERT pin is asserted.  
Likewise, if the measured temperature is less than or equal to the low limit, the corresponding status  
bit is set and the ALERT pin is asserted.  
The data format for the limits must match the selected data format for the temperature so that if the  
extended temperature range is used, the limits must be programmed in the extended data format.  
The limit registers with multiple addresses are fully accessible at either address.  
When the device is in Standby mode, updating the limit registers will have no effect until the next  
conversion cycle occurs. This can be initiated via a write to the One Shot Register or by clearing the  
RUN / STOP bit in the Configuration Register (see Section 7.4).  
SMSC EMC1413 / EMC1414  
Revision 1.41 (02-23-12)  
DATA3S3HEET  
Multiple Channel 1°C Temperature Sensors with Beta Compensation  
Datasheet  
7.7  
Scratchpad Registers  
Table 7.8 Scratchpad Register  
ADDR  
R/W  
REGISTER  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
DEFAULT  
11h  
12h  
R/W  
R/W  
Scratchpad  
Scratchpad  
7
7
6
6
5
5
4
4
3
3
2
2
1
1
0
0
00h  
00h  
The Scratchpad Registers are Read / Write registers that are used for place holders to be software  
compatible with legacy programs. Reading from the registers will return what is written to them.  
7.8  
One Shot Register  
Table 7.9 One Shot Register  
ADDR.  
R/W  
REGISTER  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
DEFAULT  
Writing to this register initiates a single conversion cycle. Data  
is not stored and always reads 00h  
0Fh  
W
One Shot  
00h  
The One Shot Register is used to initiate a one shot command. Writing to the one shot register when  
the device is in standby mode and BUSY bit (in Status Register) is ‘0’, will immediately cause the ADC  
to update all temperature measurements. Writing to the One Shot Register while the device is in active  
mode will have no effect.  
7.9  
Therm Limit Registers  
Table 7.10 Therm Limit Registers  
ADDR.  
R/W  
REGISTER  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
DEFAULT  
External  
Diode 1  
Therm Limit  
55h  
(85°C)  
19h  
R/W  
128  
64  
32  
16  
8
4
2
1
External  
Diode 2  
Therm Limit  
55h  
(85°C)  
1Ah  
R/W  
128  
64  
32  
16  
8
4
2
1
Internal Diode  
Therm Limit  
55h  
(85°C)  
20h  
21h  
R/W  
R/W  
128  
128  
64  
64  
32  
32  
16  
16  
8
8
4
4
2
2
1
1
Therm  
Hysteresis  
0Ah  
(10°C)  
External  
Diode 3  
Therm Limit  
55h  
(85°C)  
30h  
R/W  
128  
64  
32  
16  
8
4
2
1
The Therm Limit Registers are used to determine whether a critical thermal event has occurred. If the  
measured temperature exceeds the Therm Limit, the THERM pin is asserted. The limit setting must  
match the chosen data format of the temperature reading registers.  
Revision 1.41 (02-23-12)  
SMSC EMC1413 / EMC1414  
DATA3S4HEET  
Multiple Channel 1°C Temperature Sensors with Beta Compensation  
Datasheet  
Unlike the ALERT pin, the THERM pin cannot be masked. Additionally, the THERM pin will be released  
once the temperature drops below the corresponding threshold minus the Therm Hysteresis.  
7.10  
External Diode Fault Register  
Table 7.11 External Diode Fault Register  
ADDR.  
R/W  
REGISTER  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
DEFAULT  
External  
Diode Fault  
1Bh  
R-C  
-
-
-
-
E3FLT  
E2FLT  
E1FLT  
-
00h  
The External Diode Fault Register indicates which of the external diodes caused the FAULT bit in the  
Status Register to be set. This register is cleared when it is read.  
Bit 3 - E3FLT (EMC1414 only) - This bit is set if the External Diode 3 channel reported a diode fault.  
Bit 2 - E2FLT - This bit is set if the External Diode 2 channel reported a diode fault.  
Bit 1 - E1FLT - This bit is set if the External Diode 1 channel reported a diode fault.  
7.11  
Channel Mask Register  
Table 7.12 Channel Mask Register  
ADDR.  
R/W  
REGISTER  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
DEFAULT  
Channel  
Mask  
E3  
MASK  
E2  
E1  
INT  
MASK  
1Fh  
R/W  
-
-
-
-
00h  
MASK MASK  
The Channel Mask Register controls individual channel masking. When a channel is masked, the  
ALERT pin will not be asserted when the masked channel reads a diode fault or out of limit error. The  
channel mask does not mask the THERM pin.  
Bit 3 - E3MASK (EMC1414 only) - Masks the ALERT pin from asserting when the External Diode 3  
channel is out of limit or reports a diode fault.  
„
‘0’ (default) - The External Diode 3 channel will cause the ALERT pin to be asserted if it is out of  
limit or reports a diode fault.  
„
‘1’ - The External Diode 3 channel will not cause the ALERT pin to be asserted if it is out of limit  
or reports a diode fault.  
Bit 2 - E2MASK - Masks the ALERT pin from asserting when the External Diode 2 channel is out of  
limit or reports a diode fault.  
„
‘0’ (default) - The External Diode 2 channel will cause the ALERT pin to be asserted if it is out of  
limit or reports a diode fault.  
„
‘1’ - The External Diode 2 channel will not cause the ALERT pin to be asserted if it is out of limit  
or reports a diode fault.  
Bit 1 - E1MASK - Masks the ALERT pin from asserting when the External Diode 1 channel is out of  
limit or reports a diode fault.  
„
‘0’ (default) - The External Diode 1 channel will cause the ALERT pin to be asserted if it is out of  
limit or reports a diode fault.  
„
‘1’ - The External Diode 1 channel will not cause the ALERT pin to be asserted if it is out of limit  
or reports a diode fault.  
SMSC EMC1413 / EMC1414  
Revision 1.41 (02-23-12)  
DATA3S5HEET  
Multiple Channel 1°C Temperature Sensors with Beta Compensation  
Datasheet  
Bit 0 - INTMASK - Masks the ALERT pin from asserting when the Internal Diode temperature is out  
of limit.  
„
„
‘0’ (default) - The Internal Diode channel will cause the ALERT pin to be asserted if it is out of limit.  
‘1’ - The Internal Diode channel will not cause the ALERT pin to be asserted if it is out of limit.  
7.12  
Consecutive ALERT Register  
Table 7.13 Consecutive ALERT Register  
ADDR.  
R/W  
REGISTER  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
DEFAULT  
Consecutive  
ALERT  
TIME  
OUT  
22h  
R/W  
CTHRM[2:0]  
CALRT[2:0]  
-
70h  
The Consecutive ALERT Register determines how many times an out-of-limit error or diode fault must  
be detected in consecutive measurements before the ALERT or THERM pin is asserted. Additionally,  
the Consecutive ALERT Register controls the SMBus Timeout functionality.  
An out-of-limit condition (i.e. HIGH, LOW, or FAULT) occurring on the same temperature channel in  
consecutive measurements will increment the consecutive alert counter. The counters will also be reset  
if no out-of-limit condition or diode fault condition occurs in a consecutive reading.  
When the ALERT pin is configured as an interrupt, when the consecutive alert counter reaches its  
programmed value, the following will occur: the STATUS bit(s) for that channel and the last error  
condition(s) (i.e. E1HIGH, or E2LOW and/or E2FAULT) will be set to ‘1’, the ALERT pin will be  
asserted, the consecutive alert counter will be cleared, and measurements will continue.  
When the ALERT pin is configured as a comparator, the consecutive alert counter will ignore diode  
fault and low limit errors and only increment if the measured temperature exceeds the High Limit.  
Additionally, once the consecutive alert counter reaches the programmed limit, the ALERT pin will be  
asserted, but the counter will not be reset. It will remain set until the temperature drops below the High  
Limit minus the Therm Hysteresis value.  
For example, if the CALRT[2:0] bits are set for 4 consecutive alerts on an EMC1413 / EMC1414  
device, the high limits are set at 70°C, and none of the channels are masked, then the ALERT pin will  
be asserted after the following four measurements:  
1. Internal Diode reads 71°C and both external diodes read 69°C. Consecutive alert counter for INT  
is incremented to 1.  
2. Both the Internal Diode and External Diode 1 read 71°C and External Diode 2 reads 68°C.  
Consecutive alert counter for INT is incremented to 2 and for EXT1 is set to 1.  
3. The External Diode 1 reads 71°C and both the Internal Diode and External Diode 2 read 69°C.  
Consecutive alert counters for INT and EXT2 are cleared and EXT1 is incremented to 2.  
4. The Internal Diode reads 71°C and both external diodes read 71°C. Consecutive alert counter for  
INT is set to 1, EXT2 is set to 1, and EXT1 is incremented to 3.  
5. The Internal Diode reads 71°C and both the external diodes read 71°C. Consecutive alert counter  
for INT is incremented to 2, EXT2 is set to 2, and EXT1 is incremented to 4. The appropriate status  
bits are set for EXT1 and the ALERT pin is asserted. EXT1 counter is reset to 0 and all other  
counters hold the last value until the next temperature measurement.  
Bit 7 - TIMEOUT - Determines whether the SMBus Timeout function is enabled.  
„
„
‘0’ (default) - The SMBus Timeout feature is disabled. The SMCLK line can be held low indefinitely  
without the device resetting its SMBus protocol.  
‘1’ - The SMBus Timeout feature is enabled. If the SMCLK line is held low for more than 30ms,  
the device will reset the SMBus protocol.  
Revision 1.41 (02-23-12)  
SMSC EMC1413 / EMC1414  
DATA3S6HEET  
Multiple Channel 1°C Temperature Sensors with Beta Compensation  
Datasheet  
Bits 6-4 - CTHRM[2:0] - Determines the number of consecutive measurements that must exceed the  
corresponding Therm Limit before the THERM pin is asserted. All temperature channels use this value  
to set the respective counters. The consecutive Therm counter is incremented whenever any  
measurement exceed the corresponding Therm Limit.  
If the temperature drops below the Therm Limit, the counter is reset. If a number of consecutive  
measurements above the Therm Limit occurs, the THERM pin is asserted low.  
Once the THERM pin has been asserted, the consecutive therm counter will not reset until the  
corresponding temperature drops below the Therm Limit minus the Therm Hysteresis value.  
The bits are decoded as shown in Table 7.14. The default setting is 4 consecutive out of limit  
conversions.  
Bits 3-1 - CALRT[2:0] - Determine the number of consecutive measurements that must have an out of  
limit condition or diode fault before the ALERT pin is asserted. All temperature channels use this value  
to set the respective counters. The bits are decoded as shown in Table 7.14. The default setting is 1  
consecutive out of limit conversion.  
Table 7.14 Consecutive Alert / Therm Settings  
NUMBER OF CONSECUTIVE OUT OF LIMIT  
2
1
0
MEASUREMENTS  
1
0
0
0
(default for CALRT[2:0])  
0
0
0
1
1
1
2
3
4
1
1
1
(default for CTHRM[2:0])  
7.13  
Beta Configuration Registers  
Table 7.15 Beta Configuration Registers  
ADDR.  
R/W  
REGISTER  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
DEFAULT  
External  
Diode 1 Beta  
Configuration  
25h  
R/W  
-
-
-
-
ENABLE1  
BETA1[2:0]  
BETA2[2:0]  
08h  
08h for  
EMC1413  
and 07h  
for  
External  
Diode 2 Beta  
Configuration  
26h  
R/W  
-
-
-
-
ENABLE2  
EMC1414  
These registers are used to set the Beta Compensation factor that is used for the external diode  
channels.  
Bit 3 - ENABLEX - Enables the Beta Compensation factor auto-detection function. The ENABLE2  
control is disabled for the EMC1414; beta compensation cannot be enabled for External Diode 2 or 3.  
„
„
‘0’ - The Beta Compensation Factor auto-detection circuitry is disabled.  
‘1’ - The Beta Compensation factor auto-detection circuitry is enabled. At the beginning of every  
conversion, the optimal Beta Compensation factor setting will be determined and applied. The  
BETAX[2:0] bits will be automatically updated to indicate the current setting. This is the default for  
SMSC EMC1413 / EMC1414  
Revision 1.41 (02-23-12)  
DATA3S7HEET  
Multiple Channel 1°C Temperature Sensors with Beta Compensation  
Datasheet  
EMC1413. This is the default for EMC1414 for External Diode 1 only; it is disabled and cannot be  
enabled for External Diode 2 or 3.  
Bit 2-0 - BETAX[2:0] - These bits always reflect the current beta configuration settings. If auto-detection  
circuitry is enabled, these bits will be updated automatically and writing to these bits will have no effect.  
If the auto-detection circuitry is disabled, these bits will determine the beta configuration setting that is  
used for their respective channels.  
Care should be taken when setting the BETAX[2:0] bits when the auto-detection circuitry is disabled.  
If the Beta Compensation factor is set at a beta value that is higher than the transistor beta, the circuit  
may introduce measurement errors. When measuring a discrete thermal diode (such as 2N3904) or a  
CPU diode that functions like a discrete thermal diode (such as an AMD processor diode), the  
BETAX[2:0] bits should be set to ‘111b’.  
Table 7.16 CPU Beta Values  
BETAX[2:0]  
HEX  
ENABLEX  
2
1
0
MINIMUM BETA  
0.11  
0h  
1h  
0
0
0
0
0
0
0
0
1
0
0
0
0
1
1
1
1
X
0
0
1
1
0
0
1
1
X
0
1
0
1
0
1
0
1
X
0.18  
2h  
0.25  
3h  
0.33  
4h  
0.43  
5h  
1.00  
6h  
2.33  
7h  
Disabled  
Auto-detection  
8h - Fh  
7.14  
External Diode Ideality Factor Registers  
Table 7.17 Ideality Configuration Registers  
ADDR.  
R/W  
REGISTER  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
DEFAULT  
External  
Diode 1  
Ideality  
Factor  
27h  
R/W  
-
-
IDEALITY1[5:0]  
IDEALITY2[5:0]  
IDEALITY3[5:0]  
12h  
12h  
12h  
External  
Diode 2  
Ideality  
Factor  
28h  
31h  
R/W  
R/W  
-
-
-
-
External  
Diode 3  
Ideality  
Factor  
Revision 1.41 (02-23-12)  
SMSC EMC1413 / EMC1414  
DATA3S8HEET  
Multiple Channel 1°C Temperature Sensors with Beta Compensation  
Datasheet  
These registers store the ideality factors that are applied to the external diodes. Table 7.18 defines  
each setting and the corresponding ideality factor. Beta Compensation and Resistance Error Correction  
automatically correct for most diode ideality errors; therefore, it is not recommended that these settings  
be updated without consulting SMSC.  
Table 7.18 Ideality Factor Look-Up Table (Diode Model)  
SETTING  
FACTOR  
SETTING  
FACTOR  
SETTING  
FACTOR  
08h  
09h  
0Ah  
0Bh  
0Ch  
0Dh  
0Eh  
0Fh  
10h  
11h  
12h  
13h  
14h  
15h  
16h  
17h  
0.9949  
0.9962  
0.9975  
0.9988  
1.0001  
1.0014  
1.0027  
1.0040  
1.0053  
1.0066  
1.0080  
1.0093  
1.0106  
1.0119  
1.0133  
1.0146  
18h  
19h  
1Ah  
1Bh  
1Ch  
1Dh  
1Eh  
1Fh  
20h  
21h  
22h  
23h  
24h  
25h  
26h  
27h  
1.0159  
1.0172  
1.0185  
1.0200  
1.0212  
1.0226  
1.0239  
1.0253  
1.0267  
1.0280  
1.0293  
1.0306  
1.0319  
1.0332  
1.0345  
1.0358  
28h  
29h  
2Ah  
2Bh  
2Ch  
2Dh  
2Eh  
2Fh  
30h  
31h  
32h  
33h  
34h  
35h  
36h  
37h  
1.0371  
1.0384  
1.0397  
1.0410  
1.0423  
1.0436  
1.0449  
1.0462  
1.0475  
1.0488  
1.0501  
1.0514  
1.0527  
1.0540  
1.0553  
1.0566  
For CPU substrate transistors that require the BJT transistor model, the ideality factor behaves slightly  
differently than for discrete diode-connected transistors. Refer to Table 7.19 when using a CPU  
substrate transistor.  
Table 7.19 Substrate Diode Ideality Factor Look-Up Table (BJT Model)  
SETTING  
FACTOR  
SETTING  
FACTOR  
SETTING  
FACTOR  
08h  
09h  
0Ah  
0Bh  
0Ch  
0Dh  
0Eh  
0.9869  
0.9882  
0.9895  
0.9908  
0.9921  
0.9934  
0.9947  
18h  
19h  
1Ah  
1Bh  
1Ch  
1Dh  
1Eh  
1.0079  
1.0092  
1.0105  
1.0120  
1.0132  
1.0146  
1.0159  
28h  
29h  
2Ah  
2Bh  
2Ch  
2Dh  
2Eh  
1.0291  
1.0304  
1.0317  
1.0330  
1.0343  
1.0356  
1.0369  
SMSC EMC1413 / EMC1414  
Revision 1.41 (02-23-12)  
DATA3S9HEET  
Multiple Channel 1°C Temperature Sensors with Beta Compensation  
Datasheet  
Table 7.19 Substrate Diode Ideality Factor Look-Up Table (BJT Model) (continued)  
SETTING  
FACTOR  
SETTING  
FACTOR  
SETTING  
FACTOR  
0Fh  
10h  
11h  
12h  
13h  
14h  
15h  
16h  
17h  
0.9960  
0.9973  
0.9986  
1.0000  
1.0013  
1.0026  
1.0039  
1.0053  
1.0066  
1Fh  
20h  
21h  
22h  
23h  
24h  
25h  
26h  
27h  
1.0173  
1.0187  
1.0200  
1.0213  
1.0226  
1.0239  
1.0252  
1.0265  
1.0278  
2Fh  
30h  
31h  
32h  
33h  
34h  
35h  
36h  
37h  
1.0382  
1.0395  
1.0408  
1.0421  
1.0434  
1.0447  
1.0460  
1.0473  
1.0486  
APPLICATION NOTE: When measuring a 65nm Intel CPU, the Ideality Setting should be the default 12h. When  
measuring a 45nm Intel CPU, the Ideality Setting should be 15h.  
7.15  
High Limit Status Register  
Table 7.20 High Limit Status Register  
ADDR.  
R/W  
REGISTER  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
DEFAULT  
High Limit  
Status  
35h  
R-C  
-
-
-
-
E3HIGH  
E2HIGH  
E1HIGH  
IHIGH  
00h  
The High Limit Status Register contains the status bits that are set when a temperature channel high  
limit is exceeded. If any of these bits are set, then the HIGH status bit in the Status Register is set.  
Reading from the High Limit Status Register will clear all bits if. Reading from the register will also  
clear the HIGH status bit in the Status Register.  
The ALERT pin will be set if the programmed number of consecutive alert counts have been met and  
any of these status bits are set.  
The status bits will remain set until read unless the ALERT pin is configured as a comparator output  
(see Section 6.3.2).  
Bit 3 - E3HIGH (EMC1414 only) - This bit is set when the External Diode 3 channel exceeds its  
programmed high limit.  
Bit 2 - E2HIGH - This bit is set when the External Diode 2 channel exceeds its programmed high limit.  
Bit 1 - E1HIGH - This bit is set when the External Diode 1 channel exceeds its programmed high limit.  
Bit 0 - IHIGH - This bit is set when the Internal Diode channel exceeds its programmed high limit.  
Revision 1.41 (02-23-12)  
SMSC EMC1413 / EMC1414  
DATA4S0HEET  
Multiple Channel 1°C Temperature Sensors with Beta Compensation  
Datasheet  
7.16  
Low Limit Status Register  
Table 7.21 Low Limit Status Register  
ADDR.  
R/W  
REGISTER  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
DEFAULT  
Low Limit  
Status  
36h  
R-C  
-
-
-
-
E3LOW E2LOW  
E1LOW  
ILOW  
00h  
The Low Limit Status Register contains the status bits that are set when a temperature channel drops  
below the low limit. If any of these bits are set, then the LOW status bit in the Status Register is set.  
Reading from the Low Limit Status Register will clear all bits. Reading from the register will also clear  
the LOW status bit in the Status Register.  
The ALERT pin will be set if the programmed number of consecutive alert counts have been met and  
any of these status bits are set.  
The status bits will remain set until read unless the ALERT pin is configured as a comparator output  
(see Section 6.3.2).  
Bit 3 - E3LOW (EMC1414 only) - This bit is set when the External Diode 3 channel drops below its  
programmed low limit.  
Bit 2 - E2LOW - This bit is set when the External Diode 2 channel drops below its programmed low  
limit.  
Bit 1 - E1LOW - This bit is set when the External Diode 1 channel drops below its programmed low  
limit.  
Bit 0 - ILOW - This bit is set when the Internal Diode channel drops below its programmed low limit.  
7.17  
Therm Limit Status Register  
Table 7.22 Therm Limit Status Register  
ADDR.  
R/W  
REGISTER  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
DEFAULT  
Therm  
Limit  
Status  
E3  
E2  
E1  
THERM  
37h  
R-C  
-
-
-
-
ITHERM  
00h  
THERM THERM  
The Therm Limit Status Register contains the status bits that are set when a temperature channel  
Therm Limit is exceeded. If any of these bits are set, the THERM status bit in the Status Register is  
set. Reading from the Therm Limit Status Register will not clear the status bits. Once the temperature  
drops below the Therm Limit minus the Therm Hysteresis, the corresponding status bits will be  
automatically cleared. The THERM bit in the Status Register will be cleared when all individual channel  
THERM bits are cleared.  
Bit 3 - E3THERM (EMC1414 only) - This bit is set when the External Diode 3 channel exceeds its  
programmed Therm Limit. When set, this bit will assert the THERM pin.  
Bit 2 - E2THERM - This bit is set when the External Diode 2 channel exceeds its programmed Therm  
Limit. When set, this bit will assert the THERM pin.  
Bit 1 - E1THERM - This bit is set when the External Diode 1 channel exceeds its programmed Therm  
Limit.  
Bit 0- ITHERM - This bit is set when the Internal Diode channel exceeds its programmed Therm Limit.  
When set, this bit will assert the THERM pin.  
SMSC EMC1413 / EMC1414  
Revision 1.41 (02-23-12)  
DATA4S1HEET  
Multiple Channel 1°C Temperature Sensors with Beta Compensation  
Datasheet  
7.18  
Filter Control Register  
Table 7.23 Filter Configuration Register  
ADDR.  
R/W  
REGISTER  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
DEFAULT  
40h  
R/W  
Filter Control  
-
-
-
-
-
-
FILTER[1:0]  
00h  
The Filter Configuration Register controls the digital filter on the External Diode 1 channel.  
Bits 1-0 - FILTER[1:0] - Control the level of digital filtering that is applied to the External Diode 1  
temperature measurement as shown in Table 7.24. See Figure 6.3 and Figure 6.4 for examples on the  
filter behavior.  
Table 7.24 FILTER Decode  
FILTER[1:0]  
1
0
AVERAGING  
0
0
1
1
0
1
0
1
Disabled (default)  
Level 1  
Level 1  
Level 2  
7.19  
Product ID Register  
Table 7.25 Product ID Register  
ADDR  
R/W  
REGISTER  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
DEFAULT  
Product ID  
(EMC1413)  
FDh  
FDh  
R
0
0
1
0
0
0
0
1
21h  
Product ID  
(EMC1414)  
R
0
0
1
0
0
1
0
1
25h  
The Product ID Register holds a unique value that identifies the device.  
7.20  
SMSC ID Register  
Table 7.26 Manufacturer ID Register  
ADDR.  
R/W  
REGISTER  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
DEFAULT  
5Dh  
FEh  
R
SMSC ID  
0
1
0
1
1
1
0
1
The Manufacturer ID register contains an 8-bit word that identifies the SMSC as the manufacturer of  
the EMC1413 / EMC1414.  
Revision 1.41 (02-23-12)  
SMSC EMC1413 / EMC1414  
DATA4S2HEET  
Multiple Channel 1°C Temperature Sensors with Beta Compensation  
Datasheet  
7.21  
Revision Register  
Table 7.27 Revision Register  
ADDR.  
R/W  
REGISTER  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
DEFAULT  
FFh  
R
Revision  
0
0
0
0
0
1
0
0
04h  
The Revision register contains an 8-bit word that identifies the die revision.  
SMSC EMC1413 / EMC1414  
Revision 1.41 (02-23-12)  
DATA4S3HEET  
Multiple Channel 1°C Temperature Sensors with Beta Compensation  
Datasheet  
Chapter 8 Typical Operating Curves  
Temperature Error vs. Ambient Temperature  
(2N3904, TDIODE = 42.5°C, VDD = 3.3V)  
Temperature Error vs. Filter Capacitor  
(2N3904, TA = 27°C, TDIODE = 27°C, VDD = 3.3V)  
1.0  
0.8  
1.0  
0.8  
0.6  
0.5  
0.4  
0.3  
0.2  
0.0  
0.0  
-0.3  
-0.5  
-0.8  
-1.0  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
0
1000  
2000  
3000  
4000  
Filter Capacitor (pF)  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Ambient Temperature (°C)  
Temperature Error vs. CPUTemperature  
Typical 65nm CPUfrom major vendor  
Temperature Error vs. External Diode Temperature  
(2N3904, TA = 42.5°C, VDD = 3.3V)  
(TA = 27°C, VDD= 3.3V, BETA = 011, CFILTER = 470pF)  
1.0  
0.8  
5
4
3
0.6  
Beta Compensation  
Disabled  
0.4  
0.2  
2
0.0  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
1
0
Beta Compensation Enabled  
-1  
20  
40  
60  
80  
100  
120  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
CPU Temperature (°C)  
External Diode Temperature (°C)  
Revision 1.41 (02-23-12)  
SMSC EMC1413 / EMC1414  
DATA4S4HEET  
Multiple Channel 1°C Temperature Sensors with Beta Compensation  
Datasheet  
Temperature Error vs. Ambient Temperature  
(2N3904, TDIODE = 27°C, VDD = 3.3V)  
Temperature Error vs. Series Resistance  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
120  
100  
80  
60  
40  
20  
0
2.0  
1.5  
EXT2 - A PD  
EXT3 - A PD  
REC Disabled  
1.0  
0.5  
0.0  
-0.5  
-1.0  
-1.5  
-2.0  
REC Enabled  
0
50  
100  
150  
200  
Series R (Ohm)  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Ambient Temperature (°C)  
Supply Current vs. Conversion Rate  
1200  
1100  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
Dynamic  
Averaging  
Enabled  
Dynamic  
Averaging  
Disabled  
1
2
4
8
16  
32  
64  
Conversion Rate  
SMSC EMC1413 / EMC1414  
Revision 1.41 (02-23-12)  
DATA4S5HEET  
Multiple Channel 1°C Temperature Sensors with Beta Compensation  
Datasheet  
Chapter 9 Package Information  
REVISION HISTORY  
DESCRIPTION  
INITIAL RELEASE  
REVISION  
A
DATE  
RELEASED BY  
S.K.ILIEV  
5
3
3/29/05  
D
PIN 1 IDENTIFIER  
AREA (D/2 X E1/2)  
e
c
4
3
E1  
E
SEE DETAIL "A"  
END VIEW  
4
2
10X b  
TOP VIEW  
A2  
A
C
SEATING PLANE  
A1  
ccc  
C
NOTES:  
1. ALL DIMENSIONS ARE IN MILLIMETER.  
2. TOLERANCE ON THE TRUE POSITION OF EACH LEAD IS ± 0.04 mm AT MAXIMUM MATERIAL  
CONDITION.  
SIDE VIEW  
3-D VIEW  
3. PACKAGE BODY DIMENSIONS "D" AND "E1" DO NOT INCLUDE MOLD/INTERLEAD PROTRUSIONS  
OR FLASH. MAXIMUM MOLD PROTRUSIONS OR FLASH IS 0.15 mm (0.006 INCHES) PER END AND  
SIDE. DIMENSIONS "D" AND "E1" ARE DETERMINED AT THE OUTERMOST EXTREMES OF THE  
PLASTIC BODY, INCLUDING ANY MISMATCH BETWEEN TOP AND BOTTOM PLASTIC BODY. THEY  
ARE DETERMINED AT DATUM PLANE "H".  
H
4. DIMENSIONS "b" AND "c" APPLY TO THE FLAT SECTION OF THE LEAD BETWEEN 0.08 mm AND  
0.15 mm FROM THE LEAD TIP.  
5. DETAILS OF THE PIN 1 IDENTIFIER ARE OPTIONAL, BUT MUST BE LOCATED WITHIN THE ZONE  
INDICATED.  
C
GAUGE PLANE  
0° - 8°  
0.25  
SEATING PLANE  
THIRD ANGLE PROJECTION  
UNLESS OTHERWISE SPECIFIED  
DIMENSIONS ARE IN MILLIMETERS  
AND TOLERANCES ARE:  
L
80 ARKAY DRIVE  
HAUPPAUGE, NY 11788  
USA  
DECIMAL  
X.X ±0.1  
ANGULAR  
±1°  
(0.95)  
X.XX ±0.05  
X.XXX ±0.025  
TITLE  
NAME  
DATE  
DIM AND TOL PER ASME Y14.5M  
-
1994  
PACKAGE OUTLINE  
10 PIN TSSOP, 3x3 MM BODY, 0.50 MM PITCH  
DETAIL "A"  
MATERIAL  
DRAWN  
-
S.K.ILIEV  
3/29/05  
FINISH  
CHECKED  
DWG NUMBER  
REV  
-
S.K.ILIEV  
3/29/05  
3/29/05  
A
MO-10-TSSOP-3x3  
STD COMPLIANCE  
APPROVED  
SCALE  
SHEET  
PRINT WITH "SCALE TO FIT"  
DO NOT SCALE DRAWING  
S.K.ILIEV  
1:1  
JEDEC: MO-187  
1 OF 1  
Figure 9.1 10-Pin MSOP / TSSOP Package  
Revision 1.41 (02-23-12)  
SMSC EMC1413 / EMC1414  
DATA4S6HEET  
Multiple Channel 1°C Temperature Sensors with Beta Compensation  
Datasheet  
Figure 9.2 10-Pin DFN Package Drawing  
SMSC EMC1413 / EMC1414  
Revision 1.41 (02-23-12)  
DATA4S7HEET  
Multiple Channel 1°C Temperature Sensors with Beta Compensation  
Datasheet  
Figure 9.3 10-Pin DFN Package Dimensions  
Figure 9.4 10 Pin DFN PCB Footprint  
Revision 1.41 (02-23-12)  
SMSC EMC1413 / EMC1414  
DATA4S8HEET  
Multiple Channel 1°C Temperature Sensors with Beta Compensation  
Datasheet  
9.1  
Package Markings  
The EMC1414 devices will be marked as shown in Figure 9.5 and Figure 9.6.  
The EMC1413 devices will be marked as shown in Figure 9.7 and Figure 9.8.  
TOP  
LINE 1: Device code, first 2 of last 6  
3
L
3
L
L
L
L
L
digits of lot number  
LINE 2: Last 4 digits of lot number  
e4  
PIN 1  
BOTTOM  
BOTTOM MARKING IS NOT ALLOWED  
Figure 9.5 EMC1414-A 10-Pin DFN Package Markings  
TOP  
LINE: 1-T – Device Number  
1 4 1 4  
2x 1.5pt  
V R C C  
LINE: 2-T Version, Revision, Country Code (VRCC)  
e3  
PB-FREE/GREEN SYMBOL  
(Matte Sn)  
PIN 1  
ALL TOP LINES CENTER  
HORIZONTAL ALIGNMENT  
BOTTOM  
PIN 1  
LINE: 1-B – Date Code (YYWW)  
3x 1.5pt  
Y Y W W  
2 3  
4 5 6 a  
LINE: 2-B – First 3 Digits of Lot Number  
LINE: 3-B – Last 4 Digits of Lot Number  
1
Figure 9.6 EMC1414 10-Pin MSOP Package Markings  
SMSC EMC1413 / EMC1414  
Revision 1.41 (02-23-12)  
DATA4S9HEET  
Multiple Channel 1°C Temperature Sensors with Beta Compensation  
Datasheet  
TOP  
LINE 1: Device Code, First 2 of last 6 digits  
of Lot Number  
3
0
2x 0.6  
LINE 2: Last 4 digits of Lot Number  
e4  
PB-FREE/GREEN SYMBOL  
(Ni/Pd PP-LF)  
PIN 1  
LINES 1 & 2: CENTER HORIZONTAL ALIGNMENT  
LINE 3: AS SHOWN  
BOTTOM  
BOTTOM MARKING IS NOT ALLOWED  
Figure 9.7 EMC1413-A 10-Pin DFN Package Markings  
TOP  
LINE: 1-T – Device Number  
1 4 1 3  
2x 1.5pt  
V R C C  
LINE: 2-T Version, Revision, Country Code (VRCC)  
e3  
PB-FREE/GREEN SYMBOL  
(Matte Sn)  
PIN 1  
ALL TOP LINES CENTER  
HORIZONTAL ALIGNMENT  
BOTTOM  
PIN 1  
LINE: 1-B – Date Code (YYWW)  
3x 1.5pt  
Y Y W W  
1 2 3  
LINE: 2-B – First 3 Digits of Lot Number  
LINE: 3-B – Last 4 Digits of Lot Number  
4 5 6 a  
Figure 9.8 EMC1413 10-Pin MSOP Package Markings  
Revision 1.41 (02-23-12)  
SMSC EMC1413 / EMC1414  
DATA5S0HEET  
Multiple Channel 1°C Temperature Sensors with Beta Compensation  
Datasheet  
Chapter 10 Document Revision History  
Table 10.1 Customer Revision History  
REVISION LEVEL & DATE  
SECTION/FIGURE/ENTRY  
CORRECTION  
Rev. 1.41 (02-23-12)  
Chapter 3, Pin Description  
Labeled exposed pad in pinout figure and added  
row in pin description table. Recommendation is to  
ground the exposed pad.  
Rev. 1.40 (01-05-12)  
Table 4.3, "SMBus Electrical  
Specifications"  
Added conditions for tHD:DAT. Data hold time  
minimum of 0.3µs is required when receiving from  
the master.  
Section 5.1.8, "SMBus and  
I2C Compatibility"  
Renamed from “SMBus and I2C Compliance.” First  
paragraph, added first sentence: “The EMC1413 /  
EMC1414 is compatible with SMBus and I2C.”  
And added last sentence: “For information on  
using the EMC1413 / EMC1414 in an I2C system,  
refer to SMSC AN 14.0 SMSC Dedicated Slave  
Devices in I2C Systems.”  
Rev. 1.39 (06-07-11)  
Figure 3.2, "EMC1413 /  
EMC1414 Pin Diagram,  
DFN-10"  
Updated to include EMC1414.  
Figure 9.5, "EMC1414-A 10- Added.  
Pin DFN Package Markings"  
Ordering Information  
Added EMC1414-A-AIA to ordering information  
table.  
Rev. 1.38 (09-30-10)  
Table 4.2, "Electrical  
Specifications"  
Filter MAX changed from “2.5nF” to “2.7nF”.  
Section 7.21, "Revision  
Register"  
Set revision ID to 04h.  
Chapter 5, System  
Management Bus Interface  
Protocol  
Updated error on ACK bit settings and reorganized  
chapter information and moved ALERT pin  
considerations.  
Chapter 6, Product  
Description  
Reorganized information for temperature  
monitoring and ALERT pin considerations.  
Rev. 1.37 (12-23-09)  
Section 7.21, "Revision  
Register"  
Changed default from 01h to 03h to match the  
actual value.  
Ordering Information  
Added EMC1414-A-AIA-TR in a 10-pin DFN  
Section 4.1, "Absolute  
Maximum Ratings"  
Updated voltage on 5V tolerant pins with pull up  
from -0.3 to 3.6 to 0 to 3.6.  
Chapter 9, Package  
Information  
Added package information for the TDFN.  
Section 9.1, "Package  
Markings"  
Added package marking information for the TDFN.  
SMSC EMC1413 / EMC1414  
Revision 1.41 (02-23-12)  
DATA5S1HEET  
Multiple Channel 1°C Temperature Sensors with Beta Compensation  
Datasheet  
Table 10.1 Customer Revision History (continued)  
REVISION LEVEL & DATE  
SECTION/FIGURE/ENTRY  
CORRECTION  
Rev. 1.35 (05-06-09)  
Pin Table  
Identified 5V tolerant pins. Added the following  
application note below table: “For the 5V tolerant  
pins that have a pull-up resistor (SMCLK,  
SMDATA, THERM, ALERT), the voltage difference  
between VDD and the pull-up voltage must never  
exceed 3.6V.”  
Table 4.1, "Absolute  
Maximum Ratings"  
Updated voltage limits for 5V tolerant pins with  
pull-up resistors.  
Added the following note below table: “For the 5V  
tolerant pins that have a pull-up resistor (SMCLK,  
SMDATA, THERM, ALERT), the pull-up voltage  
must not exceed 3.6V when the device is  
unpowered.”  
Table 4.2, "Electrical  
Specifications"  
Added leakage current  
Ordering Information and  
Table 2.1, “Part Selection”  
Added EMC1414-3 and EMC1413-3  
Updated figures for package  
Table 9.2, "10-Pin DFN  
Package Drawing"  
Rev. 1.34 (12-02-08)  
Initial document creation  
Revision 1.41 (02-23-12)  
SMSC EMC1413 / EMC1414  
DATA5S2HEET  

相关型号:

EMC1413-1-AIZL-TR

Multiple Channel 1 Temperature Sensors with Beta Compensation
SMSC

EMC1413-3-AIZL-TR

Multiple Channel 1 Temperature Sensors with Beta Compensation
SMSC

EMC1413-A-AIA-TR

Multiple Channel 1 Temperature Sensors with Beta Compensation
SMSC

EMC1413-A-AIZL-TR

Multiple Channel 1 Temperature Sensors with Beta Compensation
SMSC

EMC1414

Analog & Interface Product Selector Guide
MICROCHIP

EMC1414

Multiple Channel 1 Temperature Sensors with Beta Compensation
SMSC

EMC1414-1-AIZL-TR

Multiple Channel 1 Temperature Sensors with Beta Compensation
SMSC

EMC1414-A-AIA-TR

Multiple Channel 1 Temperature Sensors with Beta Compensation
SMSC

EMC1414-A-AIZL-TR

Multiple Channel 1 Temperature Sensors with Beta Compensation
SMSC

EMC1422

1C Temperature Sensor with Hardware Thermal Shutdown
SMSC

EMC1422

Analog & Interface Product Selector Guide
MICROCHIP

EMC1422-1-ACZL-TR

1C Temperature Sensor with Hardware Thermal Shutdown
SMSC