EMC1422 [SMSC]

1C Temperature Sensor with Hardware Thermal Shutdown; 1C温度传感器与硬件热关断
EMC1422
型号: EMC1422
厂家: SMSC CORPORATION    SMSC CORPORATION
描述:

1C Temperature Sensor with Hardware Thermal Shutdown
1C温度传感器与硬件热关断

传感器 温度传感器
文件: 总36页 (文件大小:640K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
EMC1422  
1°C Temperature  
Sensor with Hardware  
Thermal Shutdown  
Datasheet  
PRODUCT FEATURES  
GENERAL DESCRIPTION  
APPLICATIONS  
Notebook Computers  
„
„
„
„
The EMC1422 is a high accuracy, low cost, System  
Management Bus (SMBus) temperature sensor.  
Advanced features such as Resistance Error Correction  
(REC), Beta Compensation (to support 90nm and 65nm  
CPU diodes) and automatic diode type detection  
combine to provide a robust solution for complex  
environmental monitoring applications.  
Desktop Computers  
Industrial  
Embedded applications  
FEATURES  
Hardware Thermal Shutdown  
„
triggers dedicated SYS_SHDN pin  
hardware configured range 77°C to 112°C in 1°C steps  
cannot be disabled or modified by software  
Additionally, the EMC1422 provides a hardware  
programmable system shutdown feature that is  
programmed at part power-up via two pull-up resistor  
values and that cannot be masked or corrupted through  
the SMBus.  
„
„
„
Support for 90nm and 65nm CPU diodes  
Pin compatible with ADM1032, MAX6649, and LM99  
Automatically determines external diode type and  
optimal settings  
Each device provides ±1° accuracy for external diode  
temperatures and ±2°C accuracy for the internal diode  
temperature. The EMC1422 monitors two temperature  
channels (one external and one internal).  
„
„
Resistance Error Correction  
External Temperature Monitors  
±1°C Accuracy (60°C < TDIODE < 100°C)  
0.125°C Resolution  
Supports up to 2.2nF diode filter capacitor  
Resistance Error Correction automatically eliminates the  
temperature error caused by series resistance allowing  
greater flexibility in routing thermal diodes. Beta  
Compensation eliminates temperature errors caused by  
low, variable beta transistors common in today's fine  
geometry processors. The automatic beta detection  
feature monitors the external diode/transistor and  
determines the optimum sensor settings for accurate  
temperature measurements regardless of processor  
technology. This frees the user from providing unique  
sensor configurations for each temperature monitoring  
application. These advanced features plus ±1°C  
measurement accuracy provide a low-cost, highly  
flexible and accurate solution for critical temperature  
monitoring applications.  
„
Internal Temperature Monitor  
±2°C accuracy  
„
„
„
3.3V Supply Voltage  
Programmable temperature limits for ALERT  
Small 8-pin MSOP Lead-free RoHS Compliant  
Package  
EMC1422 PIN DESCRIPTION  
VDD  
DP  
8
7
6
5
SMCLK  
1
2
3
4
SMDATA  
DN  
ALERT  
GND  
SYS_SHDN  
SMSC EMC1422  
DATASHEET  
Revision 1.16 (03-15-07)  
1°C Temperature Sensor with Hardware Thermal Shutdown  
Datasheet  
ORDER NUMBER:  
EMC1422-1-ACZL-TR FOR 8 PIN, MSOP LEAD-FREE ROHS COMPLIANT PACKAGE  
Note: See Table 1.1, "Part Selection" for SMBus addressing options.  
80 ARKAY DRIVE, HAUPPAUGE, NY 11788 (631) 435-6000, FAX (631) 273-3123  
Copyright © 2007 SMSC or its subsidiaries. All rights reserved.  
Circuit diagrams and other information relating to SMSC products are included as a means of illustrating typical applications. Consequently, complete information sufficient for  
construction purposes is not necessarily given. Although the information has been checked and is believed to be accurate, no responsibility is assumed for inaccuracies. SMSC  
reserves the right to make changes to specifications and product descriptions at any time without notice. Contact your local SMSC sales office to obtain the latest specifications  
before placing your product order. The provision of this information does not convey to the purchaser of the described semiconductor devices any licenses under any patent  
rights or other intellectual property rights of SMSC or others. All sales are expressly conditional on your agreement to the terms and conditions of the most recently dated  
version of SMSC's standard Terms of Sale Agreement dated before the date of your order (the "Terms of Sale Agreement"). The product may contain design defects or errors  
known as anomalies which may cause the product's functions to deviate from published specifications. Anomaly sheets are available upon request. SMSC products are not  
designed, intended, authorized or warranted for use in any life support or other application where product failure could cause or contribute to personal injury or severe property  
damage. Any and all such uses without prior written approval of an Officer of SMSC and further testing and/or modification will be fully at the risk of the customer. Copies of  
this document or other SMSC literature, as well as the Terms of Sale Agreement, may be obtained by visiting SMSC’s website at http://www.smsc.com. SMSC is a registered  
trademark of Standard Microsystems Corporation (“SMSC”). Product names and company names are the trademarks of their respective holders.  
SMSC DISCLAIMS AND EXCLUDES ANY AND ALL WARRANTIES, INCLUDING WITHOUT LIMITATION ANY AND ALL IMPLIED WARRANTIES OF MERCHANTABILITY,  
FITNESS FOR A PARTICULAR PURPOSE, TITLE, AND AGAINST INFRINGEMENT AND THE LIKE, AND ANY AND ALL WARRANTIES ARISING FROM ANY COURSE  
OF DEALING OR USAGE OF TRADE. IN NO EVENT SHALL SMSC BE LIABLE FOR ANY DIRECT, INCIDENTAL, INDIRECT, SPECIAL, PUNITIVE, OR CONSEQUENTIAL  
DAMAGES; OR FOR LOST DATA, PROFITS, SAVINGS OR REVENUES OF ANY KIND; REGARDLESS OF THE FORM OF ACTION, WHETHER BASED ON CONTRACT;  
TORT; NEGLIGENCE OF SMSC OR OTHERS; STRICT LIABILITY; BREACH OF WARRANTY; OR OTHERWISE; WHETHER OR NOT ANY REMEDY OF BUYER IS HELD  
TO HAVE FAILED OF ITS ESSENTIAL PURPOSE, AND WHETHER OR NOT SMSC HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.  
Revision 1.16 (03-15-07)  
2
SMSC EMC1422  
DATASHEET  
1°C Temperature Sensor with Hardware Thermal Shutdown  
Datasheet  
Table of Contents  
Chapter 1 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
1.1  
Part Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Chapter 2 Pin Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Chapter 3 Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
3.1  
3.2  
3.3  
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
SMBus Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Chapter 4 System Management Bus Interface Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
4.1  
4.2  
4.3  
4.4  
4.5  
4.6  
4.7  
4.8  
System Management Bus Interface Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Write Byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Read Byte. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Send Byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Receive Byte. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Alert Response Address. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
SMBus Address . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
SMBus Timeout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Chapter 5 Product Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
5.0.1  
5.0.2  
Conversion Rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Dynamic Averaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
5.1  
5.2  
5.3  
SYS_SHDN Output. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Hardware Thermal Shutdown Limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
ALERT Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
5.3.1  
5.3.2  
ALERT Pin Interrupt Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
ALERT Pin Comparator Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
5.4  
5.5  
5.6  
5.7  
5.8  
5.9  
ALERT and SYS_SHDN Pin Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Beta Compensation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Resistance Error Correction (REC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Diode Faults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Consecutive Alerts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Digital Filter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
5.10 Temperature Monitors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
5.11 Temperature Measurement Results and Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
5.12 External Diode Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Chapter 6 Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
6.1  
6.2  
6.3  
6.4  
6.5  
6.6  
6.7  
6.8  
6.9  
Data Read Interlock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Temperature Data Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Configuration Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Conversion Rate Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Limit Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Scratchpad Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Therm Limit Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
External Diode Fault Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
6.10 Software Thermal Shutdown Configuration Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
6.11 Hardware Thermal Shutdown Limit Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
6.12 Channel Mask Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
SMSC EMC1422  
3
Revision 1.16 (03-15-07)  
DATASHEET  
1°C Temperature Sensor with Hardware Thermal Shutdown  
Datasheet  
6.13 Consecutive ALERT Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
6.14 High Limit Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
6.15 Low Limit Status Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
6.16 THERM Limit Status Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
6.17 Filter Control Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
6.18 Product ID Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
6.19 SMSC ID Register (FEh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
6.20 Revision Register (FFh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Chapter 7 Package Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Revision 1.16 (03-15-07)  
4
SMSC EMC1422  
DATASHEET  
1°C Temperature Sensor with Hardware Thermal Shutdown  
Datasheet  
List of Figures  
Figure 4.1 SMBus Timing Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Figure 5.1 System Diagram for EMC1422 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Figure 5.2 Block Diagram of Hardware Thermal Shutdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Figure 5.3 Isolating ALERT and SYS_SHDN Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Figure 5.4 Temperature Filter Step Response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Figure 5.5 Temperature Filter Impulse Response. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Figure 5.6 Block Diagram of Temperature Monitoring Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Figure 5.7 Diode Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Figure 7.1 8 PIN MSOP / TSSOP Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
SMSC EMC1422  
5
Revision 1.16 (03-15-07)  
DATASHEET  
1°C Temperature Sensor with Hardware Thermal Shutdown  
Datasheet  
List of Tables  
Table 1.1 Part Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Table 2.1 EMC1422 Preliminary Pin Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Table 3.1 Absolute Maximum Ratings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Table 3.2 Electrical Specifications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Table 3.3 SMBus Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Table 4.1 Protocol Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Table 4.2 Write Byte Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Table 4.3 Read Byte Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Table 4.4 Send Byte Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Table 4.5 Receive Byte Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Table 4.6 Alert Response Address Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Table 5.1 Supply Current vs. Conversion Rate for EMC1422 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Table 5.2 SYS_SHDN Threshold Temperature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Table 5.3 EMC1422 Temperature Data Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Table 6.1 Register Set in Hexadecimal Order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Table 6.2 Temperature Data Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Table 6.3 Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Table 6.4 Configuration Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Table 6.5 Conversion Rate Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Table 6.6 Conversion Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Table 6.7 Temperature Limit Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Table 6.8 Scratchpad Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Table 6.9 Therm Limit Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Table 6.10 External Diode Fault Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Table 6.11 Software Thermal Shutdown Configuration Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Table 6.12 Hardware Thermal Shutdown Limit Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Table 6.13 Channel Mask Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Table 6.14 Consecutive ALERT Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Table 6.15 Consecutive Alert / THERM Settings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Table 6.16 High Limit Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Table 6.17 Low Limit Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Table 6.18 THERM Limit Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Table 6.19 Filter Configuration Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Table 6.20 Filter Settings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Table 6.21 Product ID Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Table 6.22 Manufacturer ID Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Table 6.23 Revision Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Revision 1.16 (03-15-07)  
6
SMSC EMC1422  
DATASHEET  
1°C Temperature Sensor with Hardware Thermal Shutdown  
Datasheet  
Chapter 1 Block Diagram  
VDD  
SYS_SHDN Limit  
EMC1422  
Switching  
Current  
Conversion Rate Register  
External  
Temperature  
Register(s)  
Low Limit Registers  
High Limit Registers  
Analog  
Mux  
ΔΣ ADC  
DP1  
DN1  
Internal  
Temperature  
Register  
Internal  
Temp Diode  
SMCLK  
SMDATA  
ALERT  
Configuration Register  
Interupt Masking  
Status Registers  
SYS_SHDN  
GND  
1.1  
Part Selection  
The EMC1422 device configuration is highlighted below.  
Table 1.1 Part Selection  
FUNCTIONALITY  
DIODE 2  
PART  
NUMBER  
SMBUS  
ADDRESS  
EXTERNAL  
DIODES  
DIODE 1 DEFAULT  
CONFIGURATION  
DEFAULT  
PRODUCT  
ID  
CONFIGURATION  
OTHER  
EMC1422 - 1  
100_1100b  
1
Detect Diode w/  
REC enabled  
N/A  
Software  
programmable  
and maskable  
High Limit  
22h  
Software  
programmable  
and maskable  
SYS_SHDN  
Limit  
Hardware set  
SYS_SHDN  
Limit on  
External Diode  
1
SMSC EMC1422  
7
Revision 1.16 (03-15-07)  
DATASHEET  
1°C Temperature Sensor with Hardware Thermal Shutdown  
Datasheet  
Chapter 2 Pin Description  
Table 2.1 EMC1422 Preliminary Pin Description  
NAME FUNCTION  
PIN NUMBER  
TYPE  
1
2
VDD  
DP  
Power supply  
Power  
AIO  
External diode positive (anode)  
connection  
3
4
DN  
External diode negative (cathode)  
connection  
AIO  
OD  
SYS_SHDN  
Active low System Shutdown output  
signal - requires pull-up resistor  
which selects the Hardware  
Thermal Shutdown Limit  
5
6
GND  
Ground  
Power  
OD  
ALERT  
Active low digital ALERT output  
signal - requires pull-up resistor,  
7
8
SMDATA  
SMCLK  
SMBus Data input/output  
SMBus Clock input  
DIOD  
DI  
The pin types are described below:  
Power - these pins are used to supply either VDD or GND to the device.  
AIO - Analog Input / Output.  
DI - Digital Input.  
OD - Open Drain Digital Output.  
DIOD - Digital Input / Open Drain Output.  
Revision 1.16 (03-15-07)  
8
SMSC EMC1422  
DATASHEET  
1°C Temperature Sensor with Hardware Thermal Shutdown  
Datasheet  
Chapter 3 Electrical Specifications  
3.1  
Absolute Maximum Ratings  
Table 3.1 Absolute Maximum Ratings  
DESCRIPTION  
RATING  
UNIT  
Supply Voltage (VDD  
)
-0.3 to 5.0  
-0.3 to 5.5  
V
V
Voltage on SMDATA and SMCLK pins  
Voltage on any other pin to Ground  
Operating Temperature Range  
Storage Temperature Range  
-0.3 to VDD +0.3  
-40 to +125  
-55 to +150  
V
°C  
°C  
Lead Temperature Range  
Refer to JEDEC Spec. J-STD-  
020  
Package Thermal Characteristics for MSOP-8  
Thermal Resistance (θj-a  
)
140.8  
2000  
°C/W  
V
ESD Rating, All pins HBM  
Note: Stresses at or above those listed could cause permanent damage to the device. This is a stress  
rating only and functional operation of the device at any other condition above those indicated  
in the operation sections of this specification is not implied. When powering this device from  
laboratory or system power supplies, it is important that the Absolute Maximum Ratings not be  
exceeded or device failure can result. Some power supplies exhibit voltage spikes on their  
outputs when the AC power is switched on or off. In addition, voltage transients on the AC  
power line may appear on the DC output. If this possibility exists, it is suggested that a clamp  
circuit be used.  
3.2  
Electrical Specifications  
Table 3.2 Electrical Specifications  
VDD = 3.0V to 3.6V, TA = -40°C to 125°C, all typical values at TA = 27°C unless otherwise noted.  
CHARACTERISTIC  
SYMBOL  
MIN  
TYP  
MAX  
UNITS  
CONDITIONS  
DC Power  
Supply Voltage  
Supply Current  
VDD  
IDD  
3.0  
3.3  
3.6  
V
150  
220  
uA  
1 conversion / sec, dynamic  
averaging disabled  
750  
uA  
> 16 conversions / sec, dynamic  
averaging enabled  
SMSC EMC1422  
9
Revision 1.16 (03-15-07)  
DATASHEET  
1°C Temperature Sensor with Hardware Thermal Shutdown  
Datasheet  
Table 3.2 Electrical Specifications (continued)  
VDD = 3.0V to 3.6V, TA = -40°C to 125°C, all typical values at TA = 27°C unless otherwise noted.  
CHARACTERISTIC  
SYMBOL  
MIN  
TYP  
MAX  
UNITS  
CONDITIONS  
Internal Temperature Monitor  
Temperature Accuracy  
Temperature Resolution  
Temperature Accuracy  
±0.25  
0.125  
±1  
±2  
°C  
°C  
°C  
0°C < TA < 85°C  
External Temperature Monitor  
±0.25  
±1  
±2  
°C  
+20°C < TDIODE < +100°C  
0°C < TA < 85°C  
±0.5  
0.125  
190  
°C  
°C  
ms  
-40°C < TDIODE < 127°C  
Temperature Resolution  
Conversion Time all  
Channels  
tCONV  
EMC1422, default settings  
Capacitive Filter  
CFILTER  
2.2  
2.5  
nF  
Connected across external diode  
ALERT and SYS_SHDN pins  
Output Low Voltage  
Power up time  
VOL  
0.4  
V
ISINK = 8mA  
15  
ms  
Temp selection read  
Note 3.1  
Note 3.1 During the power up time, SMBus communication is permitted, however the SYS_SHDN  
and ALERT pins must not be pulled low.  
Revision 1.16 (03-15-07)  
SMSC EMC1422  
DATA1S0HEET  
1°C Temperature Sensor with Hardware Thermal Shutdown  
Datasheet  
3.3  
SMBus Electrical Characteristics  
Table 3.3 SMBus Electrical Specifications  
VDD = 3.0V to 3.6V, TA = -40°C to 125°C, all typical values are at TA = 27°C unless otherwise noted.  
CHARACTERISTIC  
SYMBOL  
MIN  
TYP  
MAX  
UNITS  
CONDITIONS  
SMBus Interface  
Input High Voltage  
Input Low Voltage  
VIH  
VIL  
2.0  
VDD  
0.8  
1
V
5V Tolerant  
5V Tolerant  
-0.3  
-1  
V
Input High/Low Current  
I
IH / IIL  
uA  
TA = 27°C, SMDATA / SMCLK = 0V  
to VDD  
Input High/ Low Current  
Hysteresis  
TBD  
uA  
SMDATA / SMCLK = 0V to 5.5V  
420  
mV  
pF  
Input Capacitance  
CIN  
5
Output Low Sink Current IOL  
8.2  
10  
15  
SMBus Timing  
400  
mA  
SMDATA = 0.4V  
Clock Frequency  
fSMB  
kHz  
ns  
Spike Suppression  
tSP  
50  
Bus free time Start to  
Stop  
tBUF  
1.3  
us  
Hold Time: Start  
Setup Time: Start  
Setup Time: Stop  
Data Hold Time  
tHD:STA  
tSU:STA  
tSU:STP  
tHD:DAT  
tSU:DAT  
tLOW  
0.6  
0.6  
0.6  
0.3  
100  
1.3  
0.6  
us  
us  
us  
us  
ns  
us  
us  
ns  
ns  
pF  
Data Setup Time  
Clock Low Period  
Clock High Period  
Clock/Data Fall time  
Clock/Data Rise time  
Capacitive Load  
tHIGH  
tFALL  
300  
300  
400  
Min = 20+0.1CLOAD ns  
Min = 20+0.1CLOAD ns  
per bus line  
tRISE  
CLOAD  
SMSC EMC1422  
Revision 1.16 (03-15-07)  
DATAS11HEET  
1°C Temperature Sensor with Hardware Thermal Shutdown  
Datasheet  
Chapter 4 System Management Bus Interface Protocol  
4.1  
System Management Bus Interface Protocol  
The EMC1422 communicates with a host controller, such as an SMSC SIO, through the SMBus. The  
SMBus is a two-wire serial communication protocol between a computer host and its peripheral  
devices. A detailed timing diagram is shown in Figure 4.1.  
.
TLOW  
THIGH  
THD:STA  
TSU:STO  
TRISE  
TFALL  
SMCLK  
TSU:STA  
THD:STA  
THD:DAT  
TSU:DAT  
SMDTA  
TBUF  
S
S
P
P
S - Start Condition  
P - Stop Condition  
Figure 4.1 SMBus Timing Diagram  
The EMC1422 is SMBus 2.0 compatible and support Send Byte, Read Byte, Write Byte, Receive Byte,  
and the Alert Response Address as valid protocols as shown below.  
All of the below protocols use the convention in Table 4.1.  
Table 4.1 Protocol Format  
DATA SENT  
TO DEVICE  
DATA SENT TO  
THE HOST  
# of bits sent  
# of bits sent  
Attempting to communicate with the EMC1422 SMBus interface with an invalid slave address or invalid  
protocol will result in no response from the device and will not affect its register contents. Stretching  
of the SMCLK signal is supported, provided other devices on the SMBus control the timing.  
4.2  
Write Byte  
The Write Byte is used to write one byte of data to the registers as shown below Table 4.2:  
Table 4.2 Write Byte Protocol  
SLAVE  
ADDRESS  
REGISTER  
ADDRESS  
REGISTER  
DATA  
START  
WR  
ACK  
ACK  
ACK  
STOP  
1
7
1
1
8
1
8
1
1
Revision 1.16 (03-15-07)  
SMSC EMC1422  
DATA1S2HEET  
1°C Temperature Sensor with Hardware Thermal Shutdown  
Datasheet  
4.3  
Read Byte  
The Read Byte protocol is used to read one byte of data from the registers as shown in Table 4.3.  
Table 4.3 Read Byte Protocol  
START  
SLAVE  
ADDRESS  
WR  
ACK  
REGISTER  
ADDRESS  
ACK  
START  
SLAVE  
ADDRESS  
RD  
ACK  
REGISTER  
DATA  
NACK  
STOP  
1
7
1
1
8
1
1
7
1
1
8
1
1
4.4  
Send Byte  
The Send Byte protocol is used to set the internal address register pointer to the correct address  
location. No data is transferred during the Send Byte protocol as shown in Table 4.4.  
Table 4.4 Send Byte Protocol  
SLAVE  
ADDRESS  
REGISTER  
ADDRESS  
START  
WR  
ACK  
ACK  
STOP  
1
7
1
1
8
1
1
4.5  
Receive Byte  
The Receive Byte protocol is used to read data from a register when the internal register address  
pointer is known to be at the right location (e.g. set via Send Byte). This is used for consecutive reads  
of the same register as shown in Table 4.5.  
Table 4.5 Receive Byte Protocol  
SLAVE  
START  
ADDRESS  
RD  
ACK  
REGISTER DATA  
NACK  
STOP  
1
7
1
1
8
1
1
4.6  
Alert Response Address  
The ALERT output can be used as a processor interrupt or as an SMBus Alert.  
When it detects that the ALERT pin is asserted, the host will send the Alert Response Address (ARA)  
to the general address of 000_1100b. All devices with active interrupts will respond with their client  
address as shown in Table 4.6.  
Table 4.6 Alert Response Address Protocol  
ALERT  
RESPONSE  
ADDRESS  
DEVICE  
ADDRESS  
START  
RD  
ACK  
NACK  
STOP  
1
7
1
1
8
1
1
SMSC EMC1422  
Revision 1.16 (03-15-07)  
DATA1S3HEET  
1°C Temperature Sensor with Hardware Thermal Shutdown  
Datasheet  
The EMC1422 will respond to the ARA in the following way:  
1. Send Slave Address and verify that full slave address was sent (i.e. the SMBus communication  
from the device was not prematurely stopped due to a bus contention event).  
2. Set the MASK bit to clear the ALERT pin.  
APPLICATION NOTE: The ARA does not clear the Status Register and if the MASK bit is cleared prior to the Status  
Register being cleared, the ALERT pin will be reasserted.  
4.7  
4.8  
SMBus Address  
The EMC1422-1 responds to hard-wired SMBus slave address as shown in Table 1.1.  
Note: Other addresses are available. Contact SMSC for more information.  
SMBus Timeout  
The EMC1422 supports SMBus Timeout. If the clock line is held low for longer than 30ms, the device  
will reset its SMBus protocol. This function can be disabled by clearing the TIMEOUT bit in the  
Consecutive Alert Register (see Section 6.13).  
Revision 1.16 (03-15-07)  
SMSC EMC1422  
DATA1S4HEET  
1°C Temperature Sensor with Hardware Thermal Shutdown  
Datasheet  
Chapter 5 Product Description  
The EMC1422 is an SMBus temperature sensor with Hardware Thermal Shutdown. The EMC1422  
monitors one internal diode and one externally connected temperature diode.  
Thermal management is performed in cooperation with a host device. This consists of the host reading  
the temperature data of both the external and internal temperature diodes of the EMC1422 and using  
that data to control the speed of one or more fans.  
The EMC1422 has two levels of monitoring. The first provides a maskable ALERT signal to the host  
when measured temperatures meet or exceed user programmable limits. This allows the EMC1422 to  
be used as an independent thermal watchdog to warn the host of temperature hot spots without direct  
control by the host.  
The second level of monitoring asserts the SYS_SHDN pin when the External Diode temperature  
exceeds a hardware specified threshold temperature. Additionally, the internal diodecan be configured  
to assert the SYS_SHDN pin when the measured temperature exceeds user programmable limits.  
Since the EMC1422 automatically corrects for temperature errors due to series resistance in  
temperature diode lines, there is greater flexibility in where external diodes are positioned and better  
measurement accuracy than previously available with non-resistance error correcting devices. The  
automatic beta detection feature means that there is no need to program the device according to which  
type of diode is present. Therefore, the EMC1422 can power up ready to operate for any system  
configuration.  
Figure 5.1 shows a system level block diagram of the EMC1422.  
EMC1422  
CPU  
Host  
DP1  
DN1  
Thermal  
diode  
SMCLK  
Internal  
Diode  
SMDATA  
SMBus  
Interface  
ALERT  
SYS_SHDN  
Power Control  
Figure 5.1 System Diagram for EMC1422  
5.0.1  
5.0.2  
Conversion Rates  
The EMC1422 may be configured for different conversion rates based on the system requirements.  
The conversion rate is configured as described in Section 6.5. The default conversion rate is 4  
conversions per second. Other available conversion rates are shown in Table 6.6.  
Dynamic Averaging  
Dynamic averaging causes the EMC1422 to measure the external diode channels for an extended time  
based on the selected conversion rate. This functionality can be disabled for increased power savings  
at the lower conversion rates (see Section 6.4). When dynamic averaging is enabled, the device will  
automatically adjust the sampling and measurement time for the external diode channels. This allows  
SMSC EMC1422  
Revision 1.16 (03-15-07)  
DATA1S5HEET  
1°C Temperature Sensor with Hardware Thermal Shutdown  
Datasheet  
the device to average 2x or 16x longer than the normal 11 bit operation (nominally 21ms per channel)  
while still maintaining the selected conversion rate. The benefits of dynamic averaging are improved  
noise rejection due to the longer integration time as well as less random variation of the temperature  
measurement.  
When enabled, the dynamic averaging will affect the average supply current based on the chosen  
conversion rate as shown in Table 5.1 for the EMC1422.  
Table 5.1 Supply Current vs. Conversion Rate for EMC1422  
AVERAGING FACTOR (BASED ON  
AVERAGE SUPPLY CURRENT  
11-BIT OPERATION)  
ENABLED  
(DEFAULT)  
ENABLED  
(DEFAULT)  
CONVERSION RATE  
DISABLED  
DISABLED  
1 / sec  
2 / sec  
365uA  
625uA  
660uA  
725uA  
730uA  
745uA  
775uA  
130uA  
165uA  
225uA  
350uA  
485uA  
745uA  
775uA  
16x  
16x  
8x  
1x  
1x  
4 / sec (default)  
8 / sec  
1x  
4x  
1x  
16 / sec  
2x  
1x  
32 / sec  
1x  
1x  
64 / sec  
0.5x  
0.5x  
5.1  
SYS_SHDN Output  
The SYS_SHDN output is asserted independently of the ALERT output and cannot be masked. If the  
External Diode temperature exceeds the Hardware Thermal Shutdown Limit for the programmed  
number of consecutive measurements, then the SYS_SHDN pin is asserted.  
The Hardware Thermal Shutdown Limit is defined at power-up via the pull-up resistors on the  
SYS_SHDN and ALERT pins as shown in Table 5.2. This limit cannot be modified or masked via  
software.  
In addition to External Diode channel triggering the SYS_SHDN pin when the measured temperature  
exceeds to the Hardware Thermal Shutdown Limit, each of the measurement channels can be  
configured to assert the SYS_SHDN pin when they exceed the corresponding THERM Limit.  
When the SYS_SHDN pin is asserted, it will not release until the External Diode temperature drops  
below the Hardware Thermal Shutdown Limit minus 10°C and all other measured temperatures drop  
below the THERM Limit minus the THERM Hysteresis value (when linked to SYS_SHDN).  
Figure 5.2 shows a block diagram of the interaction between the input channels and the SYS_SHDN  
pin.  
Revision 1.16 (03-15-07)  
SMSC EMC1422  
DATA1S6HEET  
1°C Temperature Sensor with Hardware Thermal Shutdown  
Datasheet  
SMBus  
Traffic  
Hardware Thermal Shutdown  
Internal Diode  
Temperature  
Conversion  
and THERM  
Limit  
Software  
Shutdown Enable  
Compare  
H/W Thermal  
Shutdown Sensor  
3.3V  
SW_SHDN  
HW_SHDN  
Temperature  
Conversion  
3.3V  
SYS_SHDN  
ALERT  
Function  
Select  
Figure 5.2 Block Diagram of Hardware Thermal Shutdown  
5.2  
Hardware Thermal Shutdown Limit  
The Hardware Thermal Shutdown Limit temperature is determined by pull-up resistors on the  
SYS_SHDN and ALERT pins shown in Table 5.2.  
Table 5.2 SYS_SHDN Threshold Temperature  
SYS_SHD  
PULL-UP  
4.7K OHM  
±10%  
6.8K OHM  
±10%  
10K OHM  
±10%  
15K OHM  
±10%  
22K OHM  
±10%  
33K OHM  
±10%  
ALERT  
PULL-UP  
77°C  
78°C  
79°C  
80°C  
81°C  
82°C  
83°C  
84°C  
85°C  
86°C  
87°C  
88°C  
89°C  
90°C  
91°C  
92°C  
93°C  
94°C  
95°C  
96°C  
97°C  
98°C  
99°C  
100°C  
101°C  
102°C  
103°C  
104°C  
105°C  
106°C  
107°C  
108°C  
109°C  
110°C  
111°C  
112°C  
4.7K OHM ±10%  
6.8K OHM ±10%  
10K OHM ±10%  
15K OHM ±10%  
22K OHM ±10%  
33K OHM ±10%  
5.3  
ALERT Output  
The ALERT pin is an open drain output and requires a pull-up resistor to VDD and has two modes of  
operation: interrupt mode and comparator Mode. The mode of the ALERT output is selected via the  
ALERT / COMP bit in the Configuration Register (see Section 6.4).  
SMSC EMC1422  
Revision 1.16 (03-15-07)  
DATA1S7HEET  
1°C Temperature Sensor with Hardware Thermal Shutdown  
Datasheet  
5.3.1  
ALERT Pin Interrupt Mode  
When configured to operate in interrupt mode, the ALERT pin asserts low when an out of limit  
measurement (> high limit or < low limit) is detected on any diode or when a diode fault is detected.  
The ALERT pin will remain asserted as long as an out-of-limit condition remains. Once the out-of-limit  
condition has been removed, the ALERT pin will remain asserted until the appropriate status bits are  
cleared.  
The ALERT pin can be masked by setting the MASK bit. Once the ALERT pin has been masked, it  
will be de-asserted and remain de-asserted until the MASK bit is cleared by the user. Any interrupt  
conditions that occur while the ALERT pin is masked will update the Status Register normally.  
The ALERT pin is used as an interrupt signal or as an Smbus Alert signal that allows an SMBus slave  
to communicate an error condition to the master. One or more ALERT outputs can be hard-wired  
together.  
5.3.2  
ALERT Pin Comparator Mode  
When the ALERT pin is configured to operate in comparator mode it will be asserted if if any of the  
measured temperatures exceeds the respective high limit. The ALERT pin will remain asserted until  
all temperatures drop below the corresponding high limit minus the THERM Hysteresis value.  
When the ALERT pin is asserted in comparator mode, the corresponding high limit status bits will be  
set. Reading these bits will not clear them until the ALERT pin is deasserted. Once the ALERT pin is  
deasserted, the status bits will be automatically cleared.  
The MASK bit will not block the ALERT pin in this mode, however the individual channel masks (see  
Section 6.12) will prevent the respective channel from asserting the ALERT pin.  
5.4  
ALERT and SYS_SHDN Pin Considerations  
Because of the decode method used to determine the Hardware Thermal Shutdown Limit, it is  
important that the pull-up resistance on both the ALERT and SYS_SHDN pins be within the tolerances  
shown in Table 5.2. Additionally, the pull-up resistor on the ALERT and SYS_SHDN pins must be  
connected to the same 3.3V supply that drives the VDD pin.  
For 15ms after power up, the ALERT and SYS_SHDN pins must not be pulled low or the Hardware  
Thermal Shutdown Limit will not be decoded properly. If the system requirements do not permit these  
conditions, then the ALERT and SYS_SHDN pins must be isolated from their respective busses during  
this time.  
One method of isolating this pin is shown in Figure 5.3.  
+3.3V  
+2.5 - 5V  
4.7K -  
33K  
22K  
VDD  
DP1  
DN1  
1
2
3
10  
9
SMCLK  
SMDATA  
ALERT  
GND  
Shared Alert/  
8
SYS_SHDN  
7
4
Figure 5.3 Isolating ALERT and SYS_SHDN Pins  
Revision 1.16 (03-15-07)  
SMSC EMC1422  
DATA1S8HEET  
1°C Temperature Sensor with Hardware Thermal Shutdown  
Datasheet  
5.5  
Beta Compensation  
The EMC1422 is configured to monitor the temperature of basic diodes (e.g. 2N3904), or CPU thermal  
diodes. It automatically detects the type of external diode (CPU diode or diode connected transistor)  
and determines the optimal setting to reduce temperature errors introduced by beta variation.  
For discrete transistors configured with the collector and base shorted together, the beta is generally  
sufficiently high such that the percent change in beta variation is very small. For example, a 10%  
variation in beta for two forced emitter currents with a transistor whose ideal beta is 50 would contribute  
approximately 0.25°C error at 100°C. However for substrate transistors where the base-emitter junction  
is used for temperature measurement and the collector is tied to the substrate, the proportional beta  
variation will cause large error. For example, a 10% variation in beta for two forced emitter currents  
with a transistor whose ideal beta is 0.5 would contribute approximately 8.25°C error at 100°C.  
5.6  
Resistance Error Correction (REC)  
Parasitic resistance in series with the external diodes will limit the accuracy obtainable from  
temperature measurement devices. The voltage developed across this resistance by the switching  
diode currents cause the temperature measurement to read higher than the true temperature.  
Contributors to series resistance are PCB trace resistance, on die (i.e. on the processor) metal  
resistance, bulk resistance in the base and emitter of the temperature transistor. Typically, the error  
caused by series resistance is +0.7°C per ohm. The EMC1422 automatically corrects up to 100 ohms  
of series resistance.  
APPLICATION NOTE: When monitoring a substrate transistor or CPU diode and beta compensation is enabled, the  
Ideality Factor should not be adjusted. Beta Compensation automatically corrects for most  
ideality errors.  
5.7  
Diode Faults  
The EMC1422 detects an open on the DP and DN pins, and a short across the DP and DN pins. For  
each temperature measurement made, the device checks for a diode fault on the external diode  
channel(s). When a diode fault is detected, the ALERT pin asserts (unless masked, see Section 5.8)  
and the temperature data reads 00h in the MSB and LSB registers (note: the low limit will not be  
checked). A diode fault is defined as one of the following: an open between DP and DN, a short from  
Vdd to DP, or a short from Vdd to DN.  
If a short occurs across DP and DN or a short occurs from DP to GND, the low limit status bit is set  
and the ALERT pin asserts (unless masked). This condition is indistinguishable from a temperature  
measurement of 0.000degC (-64°C in extended range) resulting in temperature data of 00h in the MSB  
and LSB registers.  
If a short from DN to GND occurs (with a diode connected), temperature measurements will continue  
as normal with no alerts.  
5.8  
Consecutive Alerts  
The EMC1422 contains multiple consecutive alert counters. One set of counters applies to the ALERT  
pin and the second set of counters applies to the SYS_SHDN pin. Each temperature measurement  
channel has a separate consecutive alert counter for each of the ALERT and SYS_SHDN pins. All  
counters are user programmable and determine the number of consecutive measurements that a  
temperature channel(s) must be out-of-limit or reporting a diode fault before the corresponding pin is  
asserted.  
See Section 6.13 for more details on the consecutive alert function.  
SMSC EMC1422  
Revision 1.16 (03-15-07)  
DATA1S9HEET  
1°C Temperature Sensor with Hardware Thermal Shutdown  
Datasheet  
5.9  
Digital Filter  
To reduce the effect of noise and temperature spikes on the reported temperature, the External Diode  
channel uses a programmable digital filter. This filter can be configured as Level 1, Level 2, or  
Disabled. The typical filter performance is shown in Figure 5.4 and Figure 5.5.  
Filter Step Response  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
Disabled  
Level1  
Level2  
0
2
4
6
8
10  
12  
14  
Samples  
Figure 5.4 Temperature Filter Step Response  
Revision 1.16 (03-15-07)  
SMSC EMC1422  
DATA2S0HEET  
1°C Temperature Sensor with Hardware Thermal Shutdown  
Datasheet  
Filter Impulse Response  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
Disabled  
Level1  
Level2  
0
2
4
6
8
10  
12  
14  
Samples  
Figure 5.5 Temperature Filter Impulse Response  
5.10 Temperature Monitors  
In general, thermal diode temperature measurements are based on the change in forward bias voltage  
of a diode when operated at two different currents. This ΔVBE is proportional to absolute temperature  
as shown in the following equation:  
where:  
k = Boltzmann’s constant  
η kT  
I HIGH  
Δ V BE  
=
ln  
T = absolute temperature in Kelvin  
q = electron charge  
[1]  
q
I LOW  
η = diode ideality factor  
Figure 5.6 shows a block diagram of the temperature measurement circuit. The negative terminal for  
the remote temperature diode, DN, is internally biased with a forward diode voltage referenced to  
ground.  
SMSC EMC1422  
Revision 1.16 (03-15-07)  
DATA2S1HEET  
1°C Temperature Sensor with Hardware Thermal Shutdown  
Datasheet  
IHIGH  
ILOW  
Substrate  
PNP  
DP  
Anti-  
Aliasing  
Filter  
Resistance  
Error  
Correction  
ΔΣ  
ADC  
DN  
Figure 5.6 Block Diagram of Temperature Monitoring Circuit  
5.11 Temperature Measurement Results and Data  
The temperature measurement results are stored in the internal and external temperature registers.  
These are then compared with the values stored in the high and low limit registers. Both external and  
internal temperature measurements are stored in 11-bit format with the eight (8) most significant bits  
stored in a high byte register and the three (3) least significant bits stored in the three (3) MSB  
positions of the low byte register. All other bits of the low byte register are set to zero.  
The EMC1422 has two selectable temperature ranges. The default range is from 0°C to +127°C and  
the temperature is represented as binary number able to report a temperature from 0°C to +127.875°C  
in 0.125°C steps.  
The extended range is an extended temperature range from -64°C to +191°C. The data format is a  
binary number offset by 64°C. The extended range is used to measure temperature diodes with a large  
known offset (such as AMD processor diodes) where the diode temperature plus the offset would be  
equivalent to a temperature higher than +127°C.  
Table 5.3 shows the default and extended range formats.  
Table 5.3 EMC1422 Temperature Data Format  
EXTENDED RANGE RANGE -64°C  
TEMPERATURE (°C)  
DEFAULT RANGE 0°C TO 127°C  
TO 191°C  
Diode Fault  
-64  
000 0000 0000  
000 0000 0000  
000 0000 0000  
000 0000 0000  
Note 5.2  
-1  
000 0000 0000  
001 1111 1111  
010 0000 0000  
0
000 0000 0000  
Note 5.1  
0.125  
000 0000 0001  
010 0000 0001  
Revision 1.16 (03-15-07)  
SMSC EMC1422  
DATA2S2HEET  
1°C Temperature Sensor with Hardware Thermal Shutdown  
Datasheet  
Table 5.3 EMC1422 Temperature Data Format (continued)  
EXTENDED RANGE RANGE -64°C  
TO 191°C  
TEMPERATURE (°C)  
DEFAULT RANGE 0°C TO 127°C  
1
000 0000 1000  
010 0000 0000  
010 0000 1000  
011 1111 1000  
011 1111 1111  
010 0000 1000  
100 0000 0000  
100 0000 1000  
101 1111 1000  
101 1111 1111  
110 0000 0000  
64  
65  
127  
127.875  
128  
011 1111 1111  
Note 5.3  
190  
011 1111 1111  
011 1111 1111  
011 1111 1111  
111 1111 0000  
111 1111 1000  
191  
>= 191.875  
111 1111 1111  
Note 5.4  
Note 5.1 In default mode, all temperatures < 0°C will be reported as 0°C.  
Note 5.2 In the extended range, all temperatures < -64°C will be reported as -64°C.  
Note 5.3 For the default range, all temperatures > +127.875°C will be reported as +127.875°C.  
Note 5.4 For the extended range, all temperatures > +191.875°C will be reported as +191.875°C.  
5.12 External Diode Connections  
The EMC1422 is hard-wired to measure a specific kind of thermal diode and none of the measurement  
options can be changed by software. Figure 5.7 shows the different diode configurations.  
to  
to  
to  
DP  
DP  
DP  
to  
DN  
to  
to  
DN  
DN  
Local Ground  
Typical remote  
substrate transistor  
i.e. CPU substrate PNP  
Typical remote  
discrete PNP transistor  
i.e. 2N3906  
Typical remote  
discrete NPN transistor  
i.e. 2N3904  
Figure 5.7 Diode Configurations  
SMSC EMC1422  
Revision 1.16 (03-15-07)  
DATA2S3HEET  
1°C Temperature Sensor with Hardware Thermal Shutdown  
Datasheet  
Chapter 6 Register Description  
The registers shown in Table 6.1 are accessible through the SMBus. An entry of ‘-’ indicates that the  
bit is not used and will always read ‘0’.  
Table 6.1 Register Set in Hexadecimal Order  
DEFAULT  
REGISTER  
ADDRESS  
R/W  
REGISTER NAME  
FUNCTION  
VALUE  
PAGE  
Internal Diode Data  
High Byte  
Stores the integer data for the  
Internal Diode  
00h  
01h  
02h  
R
00h  
Page 26  
External Diode Data  
High Byte  
Stores the integer data for the  
External Diode  
R
R
00h  
00h  
Stores the status bits for the  
Internal Diode and External Diodes  
Status  
Page 26  
Page 27  
Controls the general operation of  
the device (mirrored at address  
09h)  
03h  
04h  
05h  
06h  
07h  
08h  
09h  
0Ah  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Configuration  
00h  
Controls the conversion rate for  
updating temperature data  
(mirrored at address 0Ah)  
06h  
(4/sec)  
Conversion Rate  
Page 28  
Stores the 8-bit high limit for the  
Internal Diode (mirrored at address  
0Bh)  
Internal Diode High  
Limit  
55h  
(85°C)  
Stores the 8-bit low limit for the  
Internal Diode (mirrored at address  
0Ch)  
Internal Diode Low  
Limit  
00h  
(0°C)  
Page 29  
Stores the integer portion of the  
high limit for the External Diode  
(mirrored at register 0Dh)  
External Diode High  
Limit High Byte  
55h  
(85°C)  
Stores the integer portion of the  
low limit for the External Diode  
(mirrored at register 0Eh)  
External Diode Low  
Limit High Byte  
00h  
(0°C)  
Controls the general operation of  
the device (mirrored at address  
03h)  
Configuration  
00h  
Page 27  
Page 28  
Controls the conversion rate for  
updating temperature data  
(mirrored at address 04h)  
06h  
(4/sec)  
Conversion Rate  
Revision 1.16 (03-15-07)  
SMSC EMC1422  
DATA2S4HEET  
1°C Temperature Sensor with Hardware Thermal Shutdown  
Datasheet  
Table 6.1 Register Set in Hexadecimal Order (continued)  
REGISTER  
ADDRESS  
DEFAULT  
VALUE  
R/W  
REGISTER NAME  
FUNCTION  
PAGE  
Stores the 8-bit high limit for the  
Internal Diode (mirrored at address  
05h)  
Internal Diode High  
Limit  
55h  
(85°C)  
0Bh  
0Ch  
0Dh  
0Eh  
R/W  
Stores the 8-bit low limit for the  
Internal Diode (mirrored at address  
06h)  
Internal Diode Low  
Limit  
00h  
(0°C)  
R/W  
R/W  
R/W  
Page 29  
Stores the integer portion of the  
high limit for the External Diode  
(mirrored at register 07h)  
External Diode High  
Limit High Byte  
55h  
(85°C)  
Stores the integer portion of the  
low limit for the External Diode  
(mirrored at register 08h)  
External Diode Low  
Limit High Byte  
00h  
(0°C)  
External Diode Data  
Low Byte  
Stores the fractional data for the  
External Diode  
10h  
11h  
12h  
13h  
14h  
19h  
R
00h  
00h  
00h  
00h  
00h  
Page 26  
Page 29  
Page 29  
Scratchpad register for software  
compatibility  
R/W  
R/W  
R/W  
R/W  
R/W  
Scratchpad  
Scratchpad  
Scratchpad register for software  
compatibility  
External Diode High  
Limit Low Byte  
Stores the fractional portion of the  
high limit for the External Diode  
Page 29  
External Diode Low  
Limit Low Byte  
Stores the fractional portion of the  
low limit for the External Diode  
External Diode  
THERM Limit  
Stores the 8-bit critical temperature  
limit for the External Diode  
55h  
(85°C)  
Page 30  
Page 30  
Controls which software channels,  
if any, are linked to the  
SYS_SHDN pin  
SYS_SHDN  
Configuration  
1Dh  
R/W  
00h  
Hardware Thermal  
Shutdown Limit  
When read, returns the selected  
Hardware Thermal Shutdown Limit  
1Eh  
1Fh  
20h  
21h  
R
N/A  
00h  
Page 31  
Page 31  
Channel Mask  
Register  
Controls the masking of individual  
channels  
R/W  
R/W  
R/W  
Internal Diode  
THERM Limit  
Stores the 8-bit critical temperature  
limit for the Internal Diode  
55h  
(85°C)  
Page 30  
Stores the 8-bit hysteresis value  
that applies to all THERM limits  
0Ah  
(10°C)  
THERM Hysteresis  
Consecutive ALERT  
Controls the number of out-of-limit  
conditions that must occur before  
an interrupt is asserted  
22h  
29h  
R/W  
R
70h  
00h  
Page 32  
Page 26  
Internal Diode Data  
Low Byte  
Stores the fractional data for the  
Internal Diode  
35h  
36h  
37h  
R-C  
R-C  
R
High Limit Status  
Low Limit Status  
Status bits for the High Limits  
Status bits for the Low Limits  
Status bits for the THERM Limits  
00h  
00h  
00h  
Page 33  
Page 34  
Page 34  
THERM Limit Status  
SMSC EMC1422  
Revision 1.16 (03-15-07)  
DATA2S5HEET  
1°C Temperature Sensor with Hardware Thermal Shutdown  
Datasheet  
Table 6.1 Register Set in Hexadecimal Order (continued)  
REGISTER  
ADDRESS  
DEFAULT  
VALUE  
R/W  
REGISTER NAME  
FUNCTION  
PAGE  
Controls the digital filter setting for  
the External Diode channel  
40h  
FDh  
FEh  
FFh  
R/W  
Filter Control  
00h  
Table 6.21  
5Dh  
Page 34  
Stores a fixed value that identifies  
each product  
R
R
R
Product ID  
SMSC ID  
Revision  
Page 35  
Page 35  
Page 35  
Stores a fixed value that  
represents SMSC  
Stores a fixed value that  
represents the revision number  
01h  
6.1  
6.2  
Data Read Interlock  
When any temperature channel high byte register is read, the corresponding low byte is copied into  
an internal ‘shadow’ register. The user is free to read the low byte at any time and be guaranteed that  
it will correspond to the previously read high byte. Regardless if the low byte is read or not, reading  
from the same high byte register again will automatically refresh this stored low byte data.  
Temperature Data Registers  
Table 6.2 Temperature Data Registers  
ADDR  
R/W  
REGISTER  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
DEFAULT  
Internal Diode  
High Byte  
00h  
29h  
01h  
10h  
R
128  
64  
32  
16  
8
4
2
1
00h  
Internal Diode  
Low Byte  
R
R
R
0.5  
128  
0.5  
0.25  
64  
0.125  
32  
-
16  
-
-
8
-
-
4
-
-
2
-
-
1
-
00h  
00h  
00h  
External Diode  
High Byte  
External Diode  
Low Byte  
0.25  
0.125  
As shown in Table 6.2, all temperatures are stored as an 11-bit value with the high byte representing  
the integer value and the low byte representing the fractional value left justified to occupy the MSBits.  
6.3  
Status Register  
Table 6.3 Status Register  
ADDR  
R/W  
REGISTER  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
DEFAULT  
02h  
R
Status  
BUSY  
-
-
HIGH  
LOW  
FAULT  
THERM  
HWSD  
00h  
The Status Register reports general error conditions. To identify specific channels, refer to Section 6.9,  
Section 6.14, Section 6.15, and Section 6.16. The individual Status Register bits are cleared when the  
appropriate High Limit, Low Limit, or THERM Limit register has been read or cleared.  
Revision 1.16 (03-15-07)  
SMSC EMC1422  
DATA2S6HEET  
1°C Temperature Sensor with Hardware Thermal Shutdown  
Datasheet  
Bit 7 - BUSY - This bit indicates that the ADC is currently converting. This bit does not cause either  
the ALERT or THERM pin to be asserted.  
Bit 4 - HIGH - This bit is set when any of the temperature channels exceeds its programmed high limit.  
See the High Limit Status Register for specific channel information (Section 6.14). When set, this bit  
will assert the ALERT pin.  
Bit 3 - LOW - This bit is set when any of the temperature channels drops below its programmed low  
limit. See the Low Limit Status Register for specific channel information (Section 6.15). When set, this  
bit will assert the ALERT pin.  
Bit 2 - FAULT - This bit is asserted when a diode fault is detected on any of the external diode  
channels. See the External Diode Fault Register for specific channel information (Section 6.9). When  
set, this bit will assert the ALERT pin.  
Bit 1 - THERM - This bit is set when the any of the temperature channels exceeds its programmed  
THERM limit. See the THERM Limit Status Register for specific channel information (Section 6.16).  
Bit 0 - HWSD - This bit is set when the External Diode Temperature exceeds the Hardware Thermal  
Shutdown Limit set by the pull-up resistors on the ALERT and SYS_SHDN pins. When set, this bit will  
assert the SYS_SHDN pin.  
6.4  
Configuration Register  
Table 6.4 Configuration Register  
ADDR  
R/W  
REGISTER  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
DEFAULT  
03h  
09h  
MASK  
_ALL  
ALERT/  
COMP  
DAVG_  
DIS  
R/W  
Configuration  
-
-
-
RANGE  
-
00h  
The Configuration Register controls the basic operation of the device. This register is fully accessible  
at either address.  
Bit 7 - MASK_ALL - Masks the ALERT pin from asserting.  
„
„
‘0’ (default) - The ALERT pin is not masked. If any of the appropriate status bits are set the ALERT  
pin will be asserted.  
‘1’ - The ALERT pin is masked. It will not be asserted for any interrupt condition unless it is  
configured as a THERM pin. The Status Registers will be updated normally.  
Bit 5 - ALERT/COMP - Controls the operation of the ALERT pin.  
„
„
‘0’ (default) - The ALERT pin acts as described in Section 5.3.  
‘1’ - The ALERT pin acts in comparator mode as described in Section 5.3.2. In this mode the  
MASK_ALL bit is ignored.  
Bit 2 - RANGE - Configures the measurement range and data format of the temperature channels.  
„
‘0’ (default) - The temperature measurement range is 0°C to +127.875°C and the data format is  
binary.  
„
‘1’ -The temperature measurement range is -64°C to +191.875°C and the data format is offset  
binary (see Table 5.3).  
Bit 1 - DAVG_DIS - Disables the dynamic averaging feature on all temperature channels.  
„
‘0’ (default) - The dynamic averaging feature is enabled. All temperature channels will be converted  
with an averaging factor that is based on the conversion rate as shown in Table 5.1.  
SMSC EMC1422  
Revision 1.16 (03-15-07)  
DATA2S7HEET  
1°C Temperature Sensor with Hardware Thermal Shutdown  
Datasheet  
„
‘1’ - The dynamic averaging feature is disabled. All temperature channels will be converted with a  
maximum averaging factor of 1x (equivalent to 11-bit conversion). For higher conversion rates, this  
averaging factor will be reduced as shown in Table 5.1.  
6.5  
Conversion Rate Register  
Table 6.5 Conversion Rate Register  
ADDR  
R/W  
REGISTER  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
DEFAULT  
04h  
0Ah  
Conversion  
Rate  
06h  
(4/sec)  
R/W  
-
-
-
-
CONV[3:0]  
The Conversion Rate Register controls how often the temperature measurement channels are updated  
and compared against the limits. This register is fully accessible at either address.  
Bits 3-0 - CONV[3:0] - Determines the conversion rate as shown in Table 6.6.  
Table 6.6 Conversion Rate  
CONV[3:0]  
HEX  
3
2
1
0
CONVERSIONS / SECOND  
0h  
1h  
0
0
0
0
0
0
0
0
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
0
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
1
2h  
1
3h  
1
4h  
1
5h  
2
6h  
4 (default)  
7h  
8
8h  
16  
32  
64  
1
9h  
Ah  
Bh - Fh  
All others  
Revision 1.16 (03-15-07)  
SMSC EMC1422  
DATA2S8HEET  
1°C Temperature Sensor with Hardware Thermal Shutdown  
Datasheet  
6.6  
Limit Registers  
Table 6.7 Temperature Limit Registers  
ADDR.  
R/W  
REGISTER  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
DEFAULT  
05h  
0Bh  
06h  
0Ch  
07h  
Internal Diode  
High Limit  
55h  
(85°C)  
R/W  
128  
64  
32  
16  
8
4
2
1
Internal Diode  
Low Limit  
00h  
(0°C)  
R/W  
R/W  
128  
128  
64  
64  
32  
32  
16  
16  
8
8
4
4
2
2
1
1
External  
Diode High  
Limit High  
Byte  
55h  
(85°C)  
0Dh  
External  
Diode High  
Limit Low  
Byte  
13h  
R/W  
R/W  
R/W  
0.5  
128  
0.5  
0.25 0.125  
-
16  
-
-
8
-
-
4
-
-
2
-
-
1
-
00h  
08h  
0Eh  
External  
Diode Low  
Limit High  
Byte  
00h  
(0°C)  
64  
32  
External  
Diode Low  
Limit Low  
Byte  
14h  
0.25 0.125  
00h  
The device contains both high and low limits for all temperature channels. If the measured temperature  
exceeds the high limit, then the corresponding status bit is set and the ALERT pin is asserted.  
Likewise, if the measured temperature is less than or equal to the low limit, the corresponding status  
bit is set and the ALERT pin is asserted.  
The data format for the limits must match the selected data format for the temperature so that if the  
extended temperature range is used, the limits must be programmed in the extended data format.  
The limit registers with multiple addresses are fully accessible at either address.  
6.7  
Scratchpad Registers  
Table 6.8 Scratchpad Register  
ADDR  
R/W  
REGISTER  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
DEFAULT  
11h  
12h  
R/W  
R/W  
Scratchpad  
Scratchpad  
7
7
6
6
5
5
4
4
3
3
2
2
1
1
0
0
00h  
00h  
The Scratchpad Registers are Read Write registers that are used for place holders to be software  
compatible with legacy programs. Reading from the registers will return what is written to them.  
SMSC EMC1422  
Revision 1.16 (03-15-07)  
DATA2S9HEET  
1°C Temperature Sensor with Hardware Thermal Shutdown  
Datasheet  
6.8  
Therm Limit Registers  
Table 6.9 Therm Limit Registers  
ADDR.  
R/W  
REGISTER  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
DEFAULT  
External  
Diode THERM  
Limit  
55h  
(85°C)  
19h  
R/W  
128  
64  
32  
16  
8
4
2
1
Internal Diode  
THERM Limit  
55h  
(85°C)  
20h  
21h  
R/W  
R/W  
128  
128  
64  
64  
32  
32  
16  
16  
8
8
4
4
2
2
1
1
THERM  
Hysteresis  
0Ah  
(10°C)  
6.9  
External Diode Fault Register  
Table 6.10 External Diode Fault Register  
ADDR.  
R/W  
REGISTER  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
DEFAULT  
-
External  
Diode Fault  
-
1Bh  
R-C  
-
-
-
-
FLT  
-
00h  
The External Diode Fault Register indicates which of the external diodes caused the FAULT bit in the  
Status Register to be set. This register is cleared when it is read.  
Bit 1 - FLT - This bit is set if the External Diode channel reported a diode fault.  
6.10 Software Thermal Shutdown Configuration Register  
Table 6.11 Software Thermal Shutdown Configuration Register  
ADDR.  
R/W  
REGISTER  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
DEFAULT  
Software  
Thermal  
Shutdown  
Configuration  
-
-
1Dh  
R/W  
-
-
-
-
EXTSYS  
INTSYS  
00h  
The Software Thermal Shutdown Configuration Register controls whether any of the software channels  
will assert the SYS_SHDN pin. If a channel is enabled, the temperature is compared against the  
corresponding THERM Limit. If the measured temperature exceeds the THERM Limit, then the  
SYS_SHDN pin is asserted. This functionality is in addition to the Hardware Shutdown circuitry.  
Bit 1 - EXTSYS - configures the External Diode channel to assert the SYS_SHDN pin based on the  
THERM Limit.  
„
‘0’ (default) - the External Diode channel is not linked to the SYS_SHDN pin. If the temperature  
exceeds the THERM Limit, the ETHERM status bit is set but the SYS_SHDN pin is not asserted.  
„
‘1’ - the External Diode channel is linked to the SYS_SHDN pin. If the temperature exceeds the  
THERM Limit, the ETHERM status bit is set and the SYS_SHDN pin is asserted. It will remain  
asserted until the temperature drops below the THERM Limit minus the THERM Hysteresis.  
Revision 1.16 (03-15-07)  
SMSC EMC1422  
DATA3S0HEET  
1°C Temperature Sensor with Hardware Thermal Shutdown  
Datasheet  
Bit 0 - INTSYS - configures the Internal Diode channel to assert the SYS_SHDN pin based on it’s  
respective THERM Limit.  
„
‘0’ (default) - the Internal Diode channel is not linked to the SYS_SHDN pin. If the temperature  
exceeds it’s THERM Limit, the ITHERM status bit is set but the SYS_SHDN pin is not asserted.  
„
‘1’ - the Internal Diode channel is linked to the SYS_SHDN pin. If the temperature exceeds it’s  
THERM Limit, the ITHERM status bit is set and the SYS_SHDN pin is asserted. It will remain  
asserted until the temperature drops below it’s THERM Limit minus the THERM Hysteresis.  
6.11 Hardware Thermal Shutdown Limit Register  
Table 6.12 Hardware Thermal Shutdown Limit Register  
ADDR.  
R/W  
REGISTER  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
DEFAULT  
Hardware Thermal  
Shutdown Limit  
1Eh  
R
128  
64  
32  
16  
8
4
2
1
N/A  
This read only register returns the Hardware Thermal Shutdown Limit selected by the value of the pull-  
up resistors on the ALERT and SYS_SHDN pins. The data represents the hardware set temperature  
in °C using the active temperature setting set by the RANGE bit in the Configuration Register. See  
Table 5.3 for the data format.  
When the External Diode Temperature exceeds this limit, the SYS_SHDN pin is asserted and will  
remain asserted until the External Diode Temperature drops below this limit minus 10°C.  
6.12 Channel Mask Register  
Table 6.13 Channel Mask Register  
ADDR.  
R/W  
REGISTER  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
DEFAULT  
-
Channel  
Mask  
-
E
INT  
MASK  
1Fh  
R/W  
-
-
-
-
MASK  
00h  
The Channel Mask Register controls individual channel masking. When a channel is masked, the  
ALERT pin will not be asserted when the masked channel reads a diode fault or out of limit error. The  
channel mask does not mask the SYS_SHDN pin.  
Bit 1 - EMASK - Masks the ALERT pin from asserting when the External Diode channel is out of limit  
or reports a diode fault.  
„
‘0’ (default) - The External Diode channel will cause the ALERT pin to be asserted if it is out of  
limit or reports a diode fault.  
„
‘1’ - The External Diode channel will not cause the ALERT pin to be asserted if it is out of limit or  
reports a diode fault.  
Bit 0 - INTMASK - Masks the ALERT pin from asserting when the Internal Diode temperature is out  
of limit.  
„
„
‘0’ (default) - The Internal Diode channel will cause the ALERT pin to be asserted if it is out of limit.  
‘1’ - The Internal Diode channel will not cause the ALERT pin to be asserted if it is out of limit.  
SMSC EMC1422  
Revision 1.16 (03-15-07)  
DATA3S1HEET  
1°C Temperature Sensor with Hardware Thermal Shutdown  
Datasheet  
6.13 Consecutive ALERT Register  
Table 6.14 Consecutive ALERT Register  
ADDR.  
R/W  
REGISTER  
B7  
B6  
B5  
CTHRM[2:0]  
B4  
B3  
B2  
B1  
B0  
DEFAULT  
Consecutive  
ALERT  
TIME  
OUT  
22h  
R/W  
CALRT[2:0]  
-
70h  
The Consecutive ALERT Register determines how many times an out-of-limit error or diode fault must  
be detected in consecutive measurements before the ALERT or SYS_SHDN pin is asserted.  
Additionally, the Consecutive ALERT Register controls the SMBus Timeout functionality.  
An out-of-limit condition (i.e. HIGH, LOW, or FAULT) occurring on the same temperature channel in  
consecutive measurements will increment the consecutive alert counter. The counters will also be reset  
if no out-of-limit condition or diode fault condition occurs in a consecutive reading.  
When the ALERT pin is configured as an interrupt, when the consecutive alert counter reaches its  
programmed value, the following will occur: the STATUS bit(s) for that channel and the last error  
condition(s) (i.e. EHIGH) will be set to ‘1’, the ALERT pin will be asserted, the consecutive alert counter  
will be cleared, and measurements will continue.  
When the ALERT pin is configured as a comparator, the consecutive alert counter will ignore diode  
fault and low limit errors and only increment if the measured temperature exceeds the High Limit.  
Additionally, once the consecutive alert counter reaches the programmed limit, the ALERT pin will be  
asserted, but the counter will not be reset. It will remain set until the temperature drops below the High  
Limit minus the THERM Hysteresis value.  
For example, if the CALRT[2:0] bits are set for 4 consecutive alerts, the high limits are set at 70°C,  
and none of the channels are masked, then the ALERT pin will be asserted after the following four  
measurements:  
1. Internal Diode reads 71°C and the external diode reads 69°C. Consecutive alert counter for INT is  
incremented to 1.  
2. Both the Internal Diode and the External Diode read 71°C. Consecutive alert counter for INT is  
incremented to 2and for EXT is set to 1.  
3. The External Diode reads 71°C and the Internal Diode reads 69°C. Consecutive alert counter for  
INT is cleared and EXT is incremented to 2.  
4. The Internal Diode reads 71°C and the external diode reads 71°C. Consecutive alert counter for  
INT is set to 1 and EXT is incremented to 3.  
5. The Internal Diode reads 71°C and the external diode reads 71°C. Consecutive alert counter for  
INT is incremented to 2 and EXT is incremented to 4. The appropriate status bits are set for EXT  
and the ALERT pin is asserted. EXT counter is reset to 0 and all other counters hold the last value  
until the next temperature measurement.  
Bit 7 - TIMEOUT - Determines whether the SMBus Timeout function is enabled.  
„
„
‘0’ (default) - The SMBus Timeout feature is disabled. The SMCLK line can be held low indefinitely  
without the device resetting its SMBus protocol.  
‘1’ - The SMBus Timeout feature is enabled. If the SMCLK line is held low for more than 30ms,  
then the device will reset the SMBus protocol.  
Bits 6-4 CTHRM[2:0] - Determines the number of consecutive measurements that must exceed the  
corresponding THERM Limit and Hardware Thermal Shutdown Limit before the SYS_SHDN pin is  
asserted. All temperature channels use this value to set the respective counters. The consecutive  
THERM counter is incremented whenever any of the measurements exceed the corresponding  
THERM Limit or if the External Diode measurement exceeds the Hardware Thermal Shutdown Limit.  
Revision 1.16 (03-15-07)  
SMSC EMC1422  
DATA3S2HEET  
1°C Temperature Sensor with Hardware Thermal Shutdown  
Datasheet  
If the temperature drops below the THERM limit or Hardware Thermal Shutdown Limit, then the  
counter is reset. If the programmed number of consecutive measurements exceed the THERM Limit  
or Hardware Thermal Shutdown Limit, and the appropriate channel is linked to the SYS_SHDN pin,  
then the SYS_SHDN pin will be asserted low.  
Once the SYS_SHDN pin is asserted, the consecutive THERM counter will not reset until the  
corresponding temperature drops below the appropriate limit minus the corresponding hysteresis.  
The bits are decoded as shown in Table 6.15. The default setting is 4 consecutive out of limit  
conversions.  
Bits 3-1 - CALRT[2:0] - Determine the number of consecutive measurements that must have an out of  
limit condition or diode fault before the ALERT pin is asserted. All temperature channels use this value  
to set the respective counters. The bits are decoded as shown in Table 6.15. The default setting is 1  
consecutive out of limit conversion.  
Table 6.15 Consecutive Alert / THERM Settings  
NUMBER OF CONSECUTIVE OUT OF LIMIT  
2
1
0
MEASUREMENTS  
1
0
0
0
(default for CALRT[2:0])  
0
0
0
1
1
1
2
3
4
1
1
1
(default for CTHRM[2:0])  
6.14 High Limit Status Register  
Table 6.16 High Limit Status Register  
ADDR.  
R/W  
REGISTER  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
DEFAULT  
High Limit  
Status  
35h  
R-C  
-
-
-
-
-
-
EHIGH  
IHIGH  
00h  
The High Limit Status Register contains the status bits that are set when a temperature channel high  
limit is exceeded. If any of these bits are set, then the HIGH status bit in the Status Register is set.  
Reading from the High Limit Status Register will clear all bits if. Reading from the register will also  
clear the HIGH status bit in the Status Register.  
The ALERT pin will be set if the programmed number of consecutive alert counts have been met and  
any of these status bits are set.  
The status bits will remain set until read unless the ALERT pin is configured as a comparator output  
(see Section 5.3.2).  
Bit 1 - EHIGH - This bit is set when the External Diode channel exceeds its programmed high limit.  
Bit 0 - IHIGH - This bit is set when the Internal Diode channel exceeds its programmed high limit.  
SMSC EMC1422  
Revision 1.16 (03-15-07)  
DATA3S3HEET  
1°C Temperature Sensor with Hardware Thermal Shutdown  
Datasheet  
6.15 Low Limit Status Register  
Table 6.17 Low Limit Status Register  
ADDR.  
R/W  
REGISTER  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
DEFAULT  
Low Limit  
Status  
36h  
R-C  
-
-
-
-
-
-
ELOW  
ILOW  
00h  
The Low Limit Status Register contains the status bits that are set when a temperature channel drops  
below the low limit. If any of these bits are set, then the LOW status bit in the Status Register is set.  
Reading from the Low Limit Status Register will clear all bits. Reading from the register will also clear  
the LOW status bit in the Status Register.  
The ALERT pin will be set if the programmed number of consecutive alert counts have been met and  
any of these status bits are set.  
The status bits will remain set until read unless the ALERT pin is configured as a comparator output  
(see Section 5.3.2).  
Bit 1 - ELOW - This bit is set when the External Diode channel drops below its programmed low limit.  
Bit 0 - ILOW - This bit is set when the Internal Diode channel drops below its programmed low limit.  
6.16 THERM Limit Status Register  
Table 6.18 THERM Limit Status Register  
ADDR.  
R/W  
REGISTER  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
DEFAULT  
THERM  
Limit Status  
-
-
E
37h  
R-C  
-
-
-
-
THERM  
ITHERM  
00h  
The THERM Limit Status Register contains the status bits that are set when a temperature channel  
THERM Limit is exceeded. If any of these bits are set, then the THERM status bit in the Status Register  
is set. Reading from the THERM Limit Status Register will not clear the status bits. Once the  
temperature drops below the THERM Limit minus the THERM Hysteresis, the corresponding status  
bits will be automatically cleared. The THERM bit in the Status Register will be cleared when all  
individual channel THERM bits are cleared.  
Bit 1 - ETHERM - This bit is set when the External Diode channel exceeds it’s programmed THERM  
limit.  
Bit 0- ITHERM - This bit is set when the Internal Diode channel exceeds it’s programmed THERM limit.  
6.17 Filter Control Register  
Table 6.19 Filter Configuration Register  
ADDR.  
R/W  
REGISTER  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
DEFAULT  
40h  
R/W  
Filter Control  
-
-
-
-
-
-
FILTER[1:0]  
00h  
The Filter Configuration Register controls the digital filter on the External Diode channel.  
Revision 1.16 (03-15-07)  
SMSC EMC1422  
DATA3S4HEET  
1°C Temperature Sensor with Hardware Thermal Shutdown  
Datasheet  
Bits 1-0 - FILTER[1:0] - Control the level of digital filtering that is applied to the External Diode  
temperature measurements as shown in Table 6.20. See Figure 5.4and Figure 5.5 for examples on the  
filter behavior.  
Table 6.20 Filter Settings  
FILTER[1:0]  
1
0
AVERAGING  
0
0
1
1
0
1
0
1
Disabled (default)  
Level 1  
Level 1  
Level 2  
6.18 Product ID Register  
Table 6.21 Product ID Register  
ADDR  
R/W  
REGISTER  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
DEFAULT  
22h  
EMC1422  
FDh  
R
Product ID  
0
0
1
0
0
0
1
0
The Product ID Register holds a unique value that identifies the device.  
6.19 SMSC ID Register (FEh)  
Table 6.22 Manufacturer ID Register  
ADDR.  
R/W  
REGISTER  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
DEFAULT  
FEh  
R
SMSC ID  
0
1
0
1
1
1
0
1
5Dh  
The Manufacturer ID register contains an 8 bit word that identifies the SMSC as the manufacturer of  
the EMC1422.  
6.20 Revision Register (FFh)  
Table 6.23 Revision Register  
ADDR.  
R/W  
REGISTER  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
DEFAULT  
FFh  
R
Revision  
0
0
0
0
0
0
0
1
01h  
The Revision register contains an 8 bit word that identifies the die revision.  
SMSC EMC1422  
Revision 1.16 (03-15-07)  
DATA3S5HEET  
Chapter 7 Package Information  
REVISION HISTORY  
DESCRIPTION  
SEE SPEC FRONT PAGE FOR REVISION HISTORY  
REVISION  
-
DATE  
-
RELEASED BY  
-
3
D
PIN 1 IDENTIFIER  
AREA (D/2 X E1/2)  
5
e
c
E
3
E1  
SEE DETAIL "A"  
2
8X b  
TOP VIEW  
END VIEW  
A2  
A
C
SEATING PLANE  
A1  
ccc  
C
SIDE VIEW  
3-D VIEW  
NOTES:  
1. ALL DIMENSIONS ARE IN MILLIMETER.  
2. TOLERANCE ON THE TRUE POSITION OF THE LEADS IS ± 0.065mm MAXIMUM.  
3. PACKAGE BODY DIMENSIONS "D" AND "E1" DO NOT INCLUDE MOLD PROTRUSIONS OR FLASH.  
MAXIMUM MOLD PROTRUSIONS OR FLASH IS 0.15 mm (0.006 INCHES) PER END AND SIDE.  
DIMENSIONS "D" AND "E1" ARE DETERMINED AT DATUM PLANE "H".  
4. DIMENSION FOR FOOT LENGTH "L" IS MEASURED AT THE GAUGE PLANE 0.25mm ABOVE THE  
SEATING PLANE.  
H
C
GAUGE PLANE  
5. DETAILS OF PIN 1 IDENTIFIER ARE OPTIONAL, BUT MUST BE LOCATED WITHIN THE ZONE  
INDICATED.  
0.25  
SEATING PLANE  
4
L
0° - 8°  
THIRD ANGLE PROJECTION  
UNLESS OTHERWISE SPECIFIED  
DIMENSIONS ARE IN MILLIMETERS  
AND TOLERANCES ARE:  
80 ARKAY DRIVE  
HAUPPAUGE, NY 11788  
DECIMAL  
ANGULAR  
±1°  
USA  
L1  
X.X  
±0.1  
X.XX ±0.05  
X.XXX ±0.025  
TITLE  
NAME  
DATE  
DIM AND TOL PER ASME Y14.5M - 1994  
MATERIAL  
PACKAGE OUTLINE  
8 PIN TSSOP, 3x3 MM BODY, 0.65 MM PITCH  
DETAIL "A"  
SCALE: 3/1  
DRAWN  
-
S.K.ILIEV  
7/05/04  
FINISH  
CHECKED  
DWG NUMBER  
REV  
-
S.K.ILIEV  
7/05/04  
7/07/04  
D
MO-8-TSSOP-3x3  
STD COMPLIANCE  
APPROVED  
SCALE  
SHEET  
PRINT WITH "SCALE TO FIT"  
DO NOT SCALE DRAWING  
S.K.ILIEV  
1:1  
JEDEC: MO-187 / D  
1 OF 1  
Figure 7.1 8 PIN MSOP / TSSOP Package  

相关型号:

EMC1422-1-ACZL-TR

1C Temperature Sensor with Hardware Thermal Shutdown
SMSC

EMC1422-1-ACZL-TR

DIGITAL TEMP SENSOR-SERIAL, 11BIT(s), 2Cel, SQUARE, SURFACE MOUNT, 3 X 3 MM, 0.65 MM PITCH, ROHS COMPLIANT, MO-187D, TSSOP-8
MICROCHIP

EMC1422-2-ACZL-TR

EMC1422-2-ACZL-TR
MICROCHIP

EMC1422_08

1∑C Temperature Sensor with Hardware Thermal Shutdown
SMSC

EMC1423

1∑C Temperature Sensor with Hardware Thermal Shutdown
SMSC

EMC1423

Analog and Interface Product Selector Guide
MICROCHIP

EMC1423-1-AIZL-TR

1∑C Temperature Sensor with Hardware Thermal Shutdown
SMSC

EMC1424

1∑C Temperature Sensor with Hardware Thermal Shutdown
SMSC

EMC1424

Analog and Interface Product Selector Guide
MICROCHIP

EMC1424-1-AIZL-TR

1∑C Temperature Sensor with Hardware Thermal Shutdown
SMSC

EMC1428

1∑C Multiple Temperature Sensor with HW Thermal Shutdown & Hottest of Thermal Zones
SMSC

EMC1428

Analog and Interface Product Selector Guide
MICROCHIP