UL635H256 [SIMTEK]

Low Voltage PowerStore 32K x 8 nvSRAM; 低电压POWERSTORE 32K ×8 NVSRAM
UL635H256
型号: UL635H256
厂家: SIMTEK CORPORATION    SIMTEK CORPORATION
描述:

Low Voltage PowerStore 32K x 8 nvSRAM
低电压POWERSTORE 32K ×8 NVSRAM

静态存储器
文件: 总14页 (文件大小:188K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Obsolete - Not Recommended for New Designs  
UL635H256  
Low Voltage PowerStore 32K x 8 nvSRAM  
Features  
Description  
High-performance CMOS non-  
The UL635H256 has two separate The UL635H256 combines the  
volatile static RAM 32768 x 8 bits modes of operation: SRAM mode high performance and ease of use  
35 and 45 ns Access Times  
15 and 20 ns Output Enable  
Access Times  
and nonvolatile mode. In SRAM of a fast SRAM with nonvolatile  
mode, the memory operates as an data integrity.  
ordinary static RAM. In nonvolatile STORE cycles also may be initia-  
operation, data is transferred in ted under user control via a soft-  
parallel from SRAM to EEPROM or ware sequence.  
ICC = 8 mA typ. at 200 ns Cycle  
Time  
Automatic STORE to EEPROM  
on Power Down using system  
capacitance  
from EEPROM to SRAM. In this Once a STORE cycle is initiated,  
mode SRAM functions are disab- further input or output are disabled  
led.  
until the cycle is completed.  
Software initiated STORE  
Automatic STORE Timing  
106 STORE cycles to EEPROM  
100 years data retention in  
EEPROM  
The UL635H256 is a fast static Because a sequence of addresses  
RAM (35 and 45 ns), with a nonvo- is used for STORE initiation, it is  
latile electrically erasable PROM important that no other read or  
(EEPROM) element incorporated write accesses intervene in the  
in each static memory cell. The sequence or the sequence will be  
Automatic RECALL on Power Up SRAM can be read and written an  
aborted.  
Software RECALL Initiation  
Unlimited RECALL cycles from  
EEPROM  
unlimited number of times, while  
independent nonvolatile data resi-  
des in EEPROM. Data transfers  
from the SRAM to the EEPROM  
(the STORE operation) take place  
automatically upon power down  
using charge stored in system  
capacitance. Transfers from the  
EEPROM to the SRAM (the  
RECALL operation) take place  
automatically on powerup.  
RECALL cycles may also be initia-  
ted by a software sequence.  
Internally, RECALL is a two step  
procedure. First, the SRAM data is  
cleared and second, the nonvola-  
tile information is transferred into  
the SRAM cells.  
The RECALL operation in no way  
alters the data in the EEPROM  
cells. The nonvolatile data can be  
recalled an unlimited number of  
times.  
Wide voltage range: 2.7 ... 3.6 V  
(3.0 ... 3.6 V for 35 ns type)  
Operating temperature range:  
0 to 70 °C  
-40 to 85 °C  
QS 9000 Quality Standard  
ESD protection > 2000 V  
(MIL STD 883C M3015.7-HBM)  
RoHS compliance and Pb- free  
Package:SOP28 (330 mil)  
Pin Description  
Pin Configuration  
G
A11  
A9  
A8  
A13  
W
1
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
n.c.  
A10  
E
VCC  
W
A13  
A8  
A9  
A11  
G
A14  
A12  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
1
2
3
4
5
6
7
8
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
2
Signal Name Signal Description  
3
4
DQ7  
DQ6  
DQ5  
DQ4  
DQ3  
VSS  
DQ2  
DQ1  
DQ0  
A0  
A0 - A14  
Address Inputs  
Data In/Out  
5
6
DQ0 - DQ7  
n. c.  
VCC  
n. c.  
A14  
A12  
A7  
7
8
SOP  
TSOP  
Chip Enable  
E
A10  
E
9
10  
11  
12  
13  
14  
15  
16  
9
Output Enable  
Write Enable  
Power Supply Voltage  
Ground  
G
DQ7  
DQ6  
DQ5  
DQ4  
DQ3  
A0  
10  
11  
12  
13  
14  
DQ0  
DQ1  
DQ2  
VSS  
W
A6  
A5  
A1  
VCC  
VSS  
A4  
A2  
A3  
n.c.  
Top View  
Top View  
March 31, 2006  
STK Control #ML0059  
1
Rev 1.0  
UL635H256  
Block Diagram  
EEPROM Array  
512 x (64 x 8)  
VCC  
VSS  
A5  
A6  
STORE  
A7  
A8  
A9  
RECALL  
SRAM  
Array  
Power  
Control  
VCC  
A11  
A12  
A13  
A14  
512 Rows x  
64 x 8 Columns  
Store/  
Recall  
Control  
DQ0  
DQ1  
DQ2  
DQ3  
DQ4  
DQ5  
DQ6  
Column I/O  
Software  
Detect  
Column Decoder  
A0 - A13  
G
A0 A1 A2 A3 A4A10  
DQ7  
E
W
Truth Table for SRAM Operations  
Operating Mode  
E
W
G
DQ0 - DQ7  
Standby/not selected  
Internal Read  
Read  
H
L
L
L
High-Z  
High-Z  
*
*
H
H
L
H
L
Data Outputs Low-Z  
Data Inputs High-Z  
Write  
*
* H or L  
Characteristics  
All voltages are referenced to VSS = 0 V (ground).  
All characteristics are valid in the power supply voltage range and in the operating temperature range specified.  
Dynamic measurements are based on a rise and fall time of 5 ns, measured between 10 % and 90 % of VI, as well as  
input levels of VIL = 0 V and VIH = 3 V. The timing reference level of all input and output signals is 1.5 V,  
with the exception of the tdis-times and ten-times, in which cases transition is measured ± ±200 mV from steady-state voltage.  
Absolute Maximum Ratingsa  
Symbol  
Min.  
Max.  
Unit  
Power Supply Voltage  
Input Voltage  
VCC  
VI  
-0.5  
-0.3  
-0.3  
4.6  
VCC+0.5  
VCC+0.5  
1
V
V
Output Voltage  
VO  
PD  
Ta  
V
Power Dissipation  
W
Operating Temperature  
C-Type  
K-Type  
0
-40  
70  
85  
°C  
°C  
Storage Temperature  
Tstg  
-65  
150  
°C  
a: Stresses greater than those listed under „Absolute Maximum Ratings“ may cause permanent damage to the device. This is a stress  
rating only, and functional operation of the device at condition above those indicated in the operational sections of this specification is  
not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.  
Rev 1.0  
March 31, 2006  
STK Control #ML0059  
2
UL635H256  
Recommended  
Operating Conditions  
Symbol  
Conditions  
tc = 35 ns  
Min.  
Max.  
Unit  
Power Supply Voltage  
VCC  
3.0  
2.7  
3.6  
3.6  
V
V
tc = 45 ns  
-2 V at Pulse Width  
10 ns permitted  
Input Low Voltage  
Input High Voltage  
VIL  
VIH  
-0.3  
2.2  
0.8  
V
V
VCC+0.3  
C-Type  
K-Type  
DC Characteristics  
Symbol  
Conditions  
Unit  
Min. Max. Min. Max.  
Operating Supply Currentb  
ICC1  
VCC  
VIL  
VIH  
= 3.6 V  
= 0.8 V  
= 2.2 V  
tc  
tc  
= 35 ns  
= 45 ns  
45  
35  
47  
37  
mA  
mA  
Average Supply Current duringc  
STORE  
ICC2  
VCC  
E
W
VIL  
VIH  
= 3.6 V  
0.2 V  
VCC-0.2 V  
0.2 V  
≥±VCC-0.2 V  
3
4
mA  
Operating Supply Currentb  
at tcR = 200 ns  
(Cycling CMOS Input Levels)  
ICC3  
VCC  
W
VIL  
VIH  
= 3.6 V  
10  
2
11  
2
mA  
mA  
VCC-0.2 V  
0.2 V  
VCC-0.2 V  
Average Supply Current duringc  
PowerStore Cycle  
ICC4  
VCC  
VIL  
= VCCmin  
= 0.2 V  
VIH  
VCC-0.2 V  
Standby Supply Currentd  
(Cycling TTL Input Levels)  
ICC(SB)1  
VCC  
E
= 3.6 V  
= VIH  
tc  
tc  
= 35 ns  
= 45 ns  
11  
9
12  
10  
mA  
mA  
Standby Supply Curentd  
(Stable CMOS Input Levels)  
ICC(SB)  
VCC  
E
VIL  
VIH  
= 3.6 V  
1
1
mA  
VCC-0.2 V  
0.2 V  
VCC-0.2 V  
b: ICC1 and ICC3 are depedent on output loading and cycle rate. The specified values are obtained with outputs unloaded.  
The current ICC1 is measured for WRITE/READ - ratio of 1/2.  
c: ICC2 and ICC4 are the average currents required for the duration of the respective STORE cycles.  
d: Bringing E±≥±VIH will not produce standby current levels until any nonvolatile cycle in progress has timed out. See MODE SELECTION  
table. The current ICC(SB)1 is measured for WRITE/READ - ratio of 1/2.  
March 31, 2006  
STK Control #ML0059  
3
Rev 1.0  
UL635H256  
C-Type  
K-Type  
DC Characteristics  
Symbol  
Conditions  
Unit  
Min. Max. Min. Max.  
VCC  
IOH  
IOL  
= VCC  
min  
=-2 mA  
= 2 mA  
Output High Voltage  
Output Low Voltage  
VOH  
VOL  
2.4  
2
2.4  
2
V
V
0.4  
-2  
0.4  
-2  
VCC  
VOH  
VOL  
= VCC  
min  
= 2.4 V  
= 0.4 V  
Output High Current  
Output Low Current  
IOH  
IOL  
mA  
mA  
Input Leakage Current  
VCC  
= 3.6 V  
High  
Low  
IIH  
IIL  
VIH  
VIL  
= 3.6 V  
1
1
μA  
μA  
=
0 V  
-1  
-1  
-1  
-1  
Output Leakage Current  
VCC  
= 3.6 V  
High at Three-State- Output  
Low at Three-State- Output  
IOHZ  
IOLZ  
VOH  
VOL  
= 3.6 V  
1
1
μA  
μA  
=
0 V  
SRAM Memory Operations  
Symbol  
35  
45  
Switching Characteristics  
No.  
Unit  
Read Cycle  
Alt.  
IEC  
Min.  
Max.  
Min.  
Max.  
1
2
3
4
Read Cycle Timef  
tAVAV  
tAVQV  
tELQV  
tcR  
35  
45  
ns  
ns  
ns  
ns  
Address Access Time to Data Validg  
Chip Enable Access Time to Data Valid  
ta(A)  
ta(E)  
ta(G)  
35  
35  
15  
45  
45  
20  
Output Enable Access Time to Data  
Valid  
tGLQV  
5
6
7
8
9
E HIGH to Output in High-Zh  
G HIGH to Output in High-Zh  
E LOW to Output in Low-Z  
G LOW to Output in Low-Z  
tEHQZ  
tGHQZ  
tELQX  
tGLQX  
tdis(E)  
tdis(G)  
ten(E)  
ten(G)  
tv(A)  
13  
13  
15  
15  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
5
0
3
0
5
0
3
0
Output Hold Time after Address Change tAXQX  
10 Chip Enable to Power Activee  
tELICCH  
tEHICCL  
tPU  
11 Chip Disable to Power Standbyd, e  
tPD  
35  
45  
e: Parameter guaranteed but not tested.  
f: Device is continuously selected with E and G both Low.  
g: Address valid prior to or coincident with E transition LOW.  
h: Measured ± ±200 mV from steady state output voltage.  
Rev 1.0  
March 31, 2006  
STK Control #ML0059  
4
UL635H256  
f
=
=
VIL, W = VIH)  
Read Cycle 1: Ai-controlled (during Read cycle: E  
G
tcR  
(1)  
Ai  
Address Valid  
ta(A)  
(2)  
DQi  
Previous Data Valid  
Output  
Output Data Valid  
tv(A)  
(9)  
Read Cycle 2: G-, E-controlled (during Read cycle: W = VIH)g  
tcR  
(1)  
Ai  
E
Address Valid  
ta(A)  
tPD  
tdis(E)  
(2)  
(3)  
(11)  
ta(E)  
(5)  
ten(E)  
(7)  
G
ta(G)  
(4)  
tdis(G)  
(6)  
ten(G)  
(8)  
DQi  
Output  
High Impedance  
Output Data Valid  
t
PU (10)  
ACTIVE  
ICC  
STANDBY  
Symbol  
Alt. #1 Alt. #2  
35  
45  
Switching Characteristics  
Write Cycle  
No.  
Unit  
IEC  
Min.  
Max.  
Min.  
Max.  
12 Write Cycle Time  
tAVAV  
tAVAV  
tcW  
35  
25  
25  
0
45  
30  
30  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
13 Write Pulse Width  
tWLWH  
tw(W)  
tsu(W)  
tsu(A)  
14 Write Pulse Width Setup Time  
15 Address Setup Time  
tWLEH  
tAVEL  
tAVEH  
tAVWL  
tAVWH  
tELWH  
tsu(A-WH)  
tsu(E)  
tw(E)  
16 Address Valid to End of Write  
17 Chip Enable Setup Time  
18 Chip Enable to End of Write  
19 Data Setup Time to End of Write  
25  
25  
25  
12  
0
30  
30  
30  
15  
0
tELEH  
tDVEH  
tEHDX  
tEHAX  
tDVWH  
tsu(D)  
th(D)  
20 Data Hold Time after End of Write tWHDX  
21 Address Hold after End of Write  
22 W LOW to Output in High-Zh, i  
23 W HIGH to Output in Low-Z  
tWHAX  
tWLQZ  
tWHQX  
th(A)  
0
0
tdis(W)  
ten(W)  
13  
15  
5
5
March 31, 2006  
STK Control #ML0059  
5
Rev 1.0  
UL635H256  
Write Cycle #1: W-controlledj  
tcW  
(12)  
Ai  
Address Valid  
(17)  
tsu(E)  
th(A)  
(21)  
E
tsu(A-WH)  
(16)  
(13)  
W
tw(W)  
tsu(A)  
(15)  
th(D)  
tsu(D)  
(20)  
(19)  
DQi  
Input  
Input Data Valid  
ten(W)  
tdis(W)  
(23)  
(22)  
DQi  
Output  
High Impedance  
Previous Data Valid  
Write Cycle #2: E-controlledj  
tcW  
(12)  
Ai  
E
Address Valid  
tw(E)  
tsu(A)  
(15)  
th(A)  
(21)  
(20)  
(18)  
tsu(W)  
(14)  
W
tsu(D)  
th(D)  
Input Data Valid  
High Impedance  
(19)  
DQi  
Input  
DQi  
Output  
undefined  
L- to H-level  
H- to L-level  
i: If W is low and when E goes low, the outputs remain in the high impedance state.  
j: E or W must be VIH during address transition.  
Rev 1.0  
March 31, 2006  
STK Control #ML0059  
6
UL635H256  
Nonvolatile Memory Operations  
Mode Selection  
A13 - A0  
(hex)  
E
W
Mode  
I/O  
Power  
Notes  
H
L
L
L
X
H
L
X
X
X
Not Selected  
Read SRAM  
Write SRAM  
Output High Z  
Output Data  
Input Data  
Standby  
Active  
Active  
Active  
m
H
0E38  
31C7  
03E0  
3C1F  
303F  
0FC0  
Read SRAM  
Read SRAM  
Read SRAM  
Read SRAM  
Read SRAM  
Output Data  
Output Data  
Output Data  
Output Data  
Output Data  
Output High Z  
k, l  
k, l  
k, l  
k, l  
k, l  
k, l  
Nonvolatile STORE  
L
H
0E38  
31C7  
03E0  
3C1F  
303F  
0C63  
Read SRAM  
Read SRAM  
Read SRAM  
Read SRAM  
Read SRAM  
Output Data  
Output Data  
Output Data  
Output Data  
Output Data  
Output High Z  
Active  
k, l  
k, l  
k, l  
k, l  
k, l  
k, l  
Nonvolatile RECALL  
k: The six consecutive addresses must be in order listed. W must be high during all six consecutive cycles. See STORE cycle and RECALL  
cycle tables and diagrams for further details.  
The following six-address sequence is used for testing purposes and should not be used: 0E38, 31C7, 03E0, 3C1F, 303F, 339C.  
l: While there are 15 addresses on the UL635H256, only the lower 14 are used to control software modes.  
Activation of nonvolatile cycles does not depend on the state of G.  
m: I/O state assumes that G ≤±VIL.  
Symbol  
PowerStore  
No.  
Conditions  
Min. Max. Unit  
Power Up RECALL  
Alt.  
IEC  
24 Power Up RECALL Durationn  
25 STORE Cycle Durationf, e  
tRESTORE  
650  
10  
μs  
the power supply decay  
rate has to be smaller  
than 10 Vs-1 after the  
start of the STORE  
operation  
tPDSTORE  
ms  
Time allowed to Complete SRAM  
26  
tDELAY  
500  
2.4  
ns  
V
Cyclef  
Low Voltage Trigger Level  
VSWITCH  
2.7  
n: tRESTORE starts from the time VCC rises above VSWITCH  
.
March 31, 2006  
STK Control #ML0059  
7
Rev 1.0  
UL635H256  
PowerStore and automatic Power Up RECALL  
VCC  
3.0 V  
VSWITCH  
t
PowerStore  
p
tPDSTORE  
Power Up  
(24)  
(24)  
RECALL  
tRESTORE  
tRESTOR  
E
W
p
tDELAY  
DQi  
BROWN OUT  
BROWN OUT  
POWER UP  
RECALL  
NO STORE  
PowerStore  
(NO SRAM WRITES)  
35  
Symbol  
45  
Software Controlled STORE/RECALL  
Cyclek, o  
No.  
Unit  
Min.  
Max.  
Alt.  
IEC  
tcR  
Min.  
Max.  
27 STORE/RECALL Initiation Time  
28 Chip Enable to Output Inactivep  
29 STORE Cycle Timeq  
tAVAV  
35  
45  
ns  
ns  
ms  
μs  
ns  
ns  
ns  
tELQZ  
tdis(E)SR  
td(E)S  
600  
10  
600  
10  
tELQXS  
tELQXR  
tAVELN  
tELEHN  
tEHAXN  
30 RECALL Cycle Timer  
td(E)R  
20  
20  
31 Address Setup to Chip Enables  
32 Chip Enable Pulse Widths, t  
33 Chip Disable to Address Changes  
tsu(A)SR  
tw(E)SR  
th(A)SR  
0
25  
0
0
30  
0
o: The software sequence is clocked with E controlled READs.  
p: Once the software controlled STORE or RECALL cycle is initiated, it completes automatically, ignoring all inputs.  
q: Note that STORE cycles (but not RECALL) are aborted by VCC < VSWITCH (STORE inhibit).  
r: An automatic RECALL also takes place at power up, starting when VCC exceeds VSWITCH and takes tRESTORE. VCC must not drop below  
VSWITCH once it has been exceeded for the RECALL to function properly.  
s: Noise on the E pin may trigger multiple READ cycles from the same address and abort the address sequence.  
t: If the Chip Enable Pulse Width is less than ta(E) (see Read Cycle) but greater than or equal tw(E)SR, than the data may not be valid at  
the end of the low pulse, however the STORE or RECALL will still be initiated.  
Rev 1.0  
March 31, 2006  
STK Control #ML0059  
8
UL635H256  
Software Controlled STORE/RECALL Cyclet, u, v (E = HIGH after STORE initiation)  
tcR  
tcR  
(27)  
(27)  
ADDRESS 1  
ADDRESS 6  
Ai  
E
tw(E)SR  
(32)  
tsu(A)SR  
th(A)SR (33)  
VALID  
(31)  
td(E)R (30)  
t
d(E)S (29)  
VALID  
tdis(E)SR  
DQi  
Output  
High Impedance  
(28)  
Software Controlled STORE/RECALL Cyclet, u, v, w (E = LOW after STORE initiation)  
tcR  
(29)  
ADDRESS 1  
ADDRESS 6  
th(A)SR  
Ai  
E
(35)  
tw(E)SR  
(34)  
tsu(A)SR  
th(A)SR  
VALID  
(33)  
(33)  
tsu(A)SR  
(35)  
td(E)R (32)  
t
d(E)S (31)  
VALID  
tdis(E)SR  
DQi  
Output  
High Impedance  
(30)  
u: W must be HIGH when E is LOW during the address sequence in order to initiate a nonvolatile cycle. G may be either HIGH or LOW  
throughout. Addresses 1 through 6 are found in the mode selection table. Address 6 determines wheter the UL635H256 performs a STORE  
or RECALL.  
v: E must be used to clock in the address sequence for the Software controlled STORE and RECALL cycles.  
March 31, 2006  
STK Control #ML0059  
9
Rev 1.0  
UL635H256  
Test Configuration for Functional Check  
3 V  
X
VCC  
A0  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
A8  
A9  
A10  
A11  
A12  
A13  
A14  
DQ0  
DQ1  
DQ2  
DQ3  
DQ4  
DQ5  
DQ6  
DQ7  
1.1 k  
VIH  
VIL  
VO  
30 pF w  
E
W
VSS  
950  
G
w: In measurement of tdis-times and ten-times the capacitance is 5 pF.  
x: Between VCC and VSS must be connected a high frequency bypass capacitor 0.1 μF to avoid disturbances.  
Capacitancee  
Conditions  
Symbol  
Min.  
Max.  
Unit  
VCC  
VI  
f
= 3.0 V  
= VSS  
= 1 MHz  
= 25 °C  
Input Capacitance  
CI  
8
pF  
Output Capacitance  
CO  
7
pF  
Ta  
All Pins not under test must be connected with ground by capacitors.  
Ordering Code  
Example  
Type  
UL635H256 S2  
C
45 G1  
Leadfree Option  
blank= Standard Package  
Package  
G1 = Leadfree Green Package  
S = SOP28 (330mil) Type 1  
S2 = SOP28 (330mil) Type 2  
Access Time  
35 = 35 ns (VCC = 3.0 ... 3.6 V)  
45 = 45 ns (VCC = 2.7 ... 3.6 V)  
Operating Temperature Range  
C = 0 to 70 °C  
K = -40 to 85 °C  
y: on special request  
Device Marking (example)  
ZMD  
Product specification  
Internal Code  
Date of manufacture  
UL635H256S2C  
(The first 2 digits indicating  
the year, and the last 2  
digits the calendar week.)  
45  
Z 0425  
G1  
Leadfree Green Package  
Rev 1.0  
March 31, 2006  
STK Control #ML0059  
10  
UL635H256  
Device Operation  
WRITE operation has taken place since the most  
recent STORE or RECALL cycle. Software initiated  
STORE cycles are performed regardless of whether or  
not a WRITE operation has taken place.  
The UL635H256 has two separate modes of operation:  
SRAM mode and nonvolatile mode. The memory ope-  
rates in SRAM mode as a standard fast static RAM.  
Data is transferred in nonvolatile mode from SRAM to  
EEPROM (the STORE operation) or from EEPROM to  
SRAM (the RECALL operation). In this mode SRAM  
functions are disabled.  
Automatic RECALL  
During power up, an automatic RECALL takes place. At  
a low power condition (power supply voltage < VSWITCH  
)
STORE cycles may be initiated under user control via a  
software sequence and are also automatically initiated  
when the power supply voltage level of the chip falls  
below VSWITCH. RECALL operations are automatically  
initiated upon power up and may also occur when the  
VCC rises above VSWITCH, after a low power condition.  
RECALL cycles may also be initiated by a software  
sequence.  
an internal RECALL request may be latched. As soon  
as power supply voltage exceeds the sense voltage of  
V
SWITCH, a requested RECALL cycle will automatically  
be initiated and will take tRESTORE to complete.  
If the UL635H256 is in a WRITE state at the end of  
power up RECALL, the SRAM data will be corrupted.  
To help avoid this situation, a 10 kΩ resistor should be  
connected between W and power supply voltage.  
SRAM READ  
Software Nonvolatile STORE  
The UL635H256 performs a READ cycle whenever E  
and G are LOW and W is HIGH. The address specified  
on pins A0 - A14 determines which of the 32768 data  
bytes will be accessed. When the READ is initiated by  
an address transition, the outputs will be valid after a  
delay of tcR. If the READ is initiated by E or G, the out-  
puts will be valid at ta(E) or at ta(G), whichever is later.  
The data outputs will repeatedly respond to address  
changes within the tcR access time without the need for  
transition on any control input pins, and will remain  
valid until another address change or until E or G is  
brought HIGH or W is brought LOW.  
The UL635H256 software controlled STORE cycle is  
initiated by executing sequential READ cycles from six  
specific address locations. By relying on READ cycles  
only, the UL635H256 implements nonvolatile operation  
while remaining compatible with standard 32K x 8  
SRAMs. During the STORE cycle, an erase of the pre-  
vious nonvolatile data is performed first, followed by a  
parallel programming of all the nonvolatile elements.  
Once a STORE cycle is initiated, further inputs and out-  
puts are disabled until the cycle is completed.  
Because a sequence of addresses is used for STORE  
initiation, it is important that no other READ or WRITE  
accesses intervene in the sequence or the sequence  
will be aborted.  
SRAM WRITE  
To initiate the STORE cycle the following READ  
sequence must be performed:  
A WRITE cycle is performed whenever E and W are  
LOW. The address inputs must be stable prior to  
entering the WRITE cycle and must remain stable until  
either E or W goes HIGH at the end of the cycle. The  
data on pins DQ0 - 7 will be written into the memory if it  
is valid tsu(D) before the end of a W controlled WRITE or  
1.  
2.  
3.  
4.  
5.  
6.  
Read addresses 0E38 (hex) Valid READ  
Read addresses 31C7 (hex) Valid READ  
Read addresses 03E0 (hex) Valid READ  
Read addresses 3C1F (hex) Valid READ  
Read addresses 303F (hex) Valid READ  
Read addresses 0FC0 (hex) Initiate STORE  
Cycle  
tsu(D) before the end of an E controlled WRITE.  
It is recommended that G is kept HIGH during the  
entire WRITE cycle to avoid data bus contention on the  
common I/O lines. If G is left LOW, internal circuitry will  
turn off the output buffers tdis (W) after W goes LOW.  
Once the sixth address in the sequence has been  
entered, the STORE cycle will commence and the chip  
will be disabled. It is important that READ cycles and  
not WRITE cycles be used in the sequence, although it  
is not necessary that G be LOW for the sequence to be  
valid. After the tSTORE cycle time has been fulfilled, the  
SRAM will again be activated for READ and WRITE  
operation.  
Automatic STORE  
The UL635H256 uses the intrinsic system capacitance  
to perform an automatic STORE on power down. As  
long as the decay rate from the system power supply is  
smaller than 15 Vs-1 the UL635H256 will safely and  
automatically STORE the SRAM data in EEPROM on  
power down.  
In order to prevent unneeded STORE operations, auto-  
matic STORE will be ignored unless at least one  
March 31, 2006  
STK Control #ML0059  
11  
Rev 1.0  
UL635H256  
Software Nonvolatile RECALL  
Hardware Protection  
A RECALL cycle of the EEPROM data into the SRAM  
is initiated with a sequence of READ operations in a  
manner similar to the STORE initiation. To initiate the  
RECALL cycle the following sequence of READ opera-  
tions must be performed:  
The UL635H256 offers hardware protection against  
inadvertent STORE operation through VCC Sense.  
When VCC < VSWITCH all software STORE operations  
will be inhibited.  
Low Average Active Power  
1.  
2.  
3.  
4.  
5.  
6.  
Read addresses 0E38 (hex) Valid READ  
Read addresses 31C7 (hex) Valid READ  
Read addresses 03E0 (hex) Valid READ  
Read addresses 3C1F (hex) Valid READ  
Read addresses 303F (hex) Valid READ  
Read addresses 0C63 (hex) Initiate RECALL  
Cycle  
The UL635H256 has been designed to draw signifi-  
cantly less power when E is LOW (chip enabled) but  
the cycle time is longer than 45 ns.  
When E is HIGH the chip consumes only standby cur-  
rent.  
The overall average current drawn by the part depends  
on the following items:  
Internally, RECALL is a two step procedure. First, the  
SRAM data is cleared and second, the nonvolatile  
information is transferred into the SRAM cells. After  
1. CMOS or TTL input levels  
2. the time during which the chip is disabled (E HIGH)  
3. the cycle time for accesses (E LOW)  
4. the ratio of READs to WRITEs  
td(E)R cycle time the SRAM will once again be ready for  
READ and WRITE operations.The RECALL operation  
in no way alters the data in the EEPROM cells. The  
nonvolatile data can be recalled an unlimited number of  
times.  
5. the operating temperature  
6. the VCC level  
The information describes the type of component and shall not be considered as assured characteristics. Terms of  
delivery and rights to change design reserved.  
Rev 1.0  
March 31, 2006  
STK Control #ML0059  
12  
UL635H256  
LIFE SUPPORT POLICY  
Simtek products are not designed, intended, or authorized for use as components in systems intended for surgical  
implant into the body, or other applications intended to support or sustain life, or for any other application in which  
the failure of the Simtek product could create a situation where personal injury or death may occur.  
Components used in life-support devices or systems must be expressly authorized by Simtek for such purpose.  
LIMITED WARRANTY  
The information in this document has been carefully checked and is believed to be reliable. However, Simtek  
makes no guarantee or warranty concerning the accuracy of said information and shall not be responsible for any  
loss or damage of whatever nature resulting from the use of, or reliance upon it. The information in this document  
describes the type of component and shall not be considered as assured characteristics.  
Simtek does not guarantee that the use of any information contained herein will not infringe upon the patent,  
trademark, copyright, mask work right or other rights of third parties, and no patent or licence is implied hereby.  
This document does not in any way extent Simtek’s warranty on any product beyond that set forth in its standard  
terms and conditions of sale.  
Simtek reserves terms of delivery and reserves the right to make changes in the products or specifications, or  
both, presented in this publication at any time and without notice.  
March 31, 2006  
Change record  
Date/Rev  
Name  
Change  
01.11.2001 Ivonne Steffens  
03.07.2002 Matthias Schniebel  
25.09.2002 Matthias Schniebel  
09.01.2003 Matthias Schniebel  
20.10.2003 Matthias Schniebel  
format revision and release for „Memory CD 2002“  
adding 35 ns type with VCC = 3.0 ... 3.6 V  
Adding „Type 1“ to SOP28 (330mil)  
Removing 55 ns type  
Low Voltage Trigger Level VSWITCH = 2.4 ... 2.7 V (old: 2.5 ... 2.7 V)  
changing max. decay rate from the system power supply to 15 Vs-1  
(old: 10 Vs-1)  
05.12.2003 Matthias Schniebel  
21.04.2004 Matthias Schniebel  
ICC = 8 mA typ. at 200 ns Cycle Time  
adding K-Type with 35 ns: ICC1 = 47 mA, ICC(SB)1 = 12mA  
adding „Leadfree Green Package“ to ordering information  
adding „Device Marking“  
6
7.4.2005  
Stefan Günther  
Page1: adding RoHS compliance and Pb- free, 10 endurance cycles  
and 100a data retention,  
add also S2 package (chip pack) and ordering code  
31.3.2006  
1.0  
Troy Meester  
Simtek  
changed to obsolete status  
Assigned Simtek Document Control Number  

相关型号:

UL635H256BSC55

32KX8 NON-VOLATILE SRAM, 55ns, PDSO28, 0.330 INCH, SOP-28
CYPRESS

UL635H256BSC55G1

Non-Volatile SRAM, 32KX8, 55ns, CMOS, PDSO28, 0.330 INCH, SOP-28
CYPRESS

UL635H256BSK45

32KX8 NON-VOLATILE SRAM, 45ns, PDSO28, 0.330 INCH, SOP-28
CYPRESS

UL635H256BSK45G1

32KX8 NON-VOLATILE SRAM, 45ns, PDSO28, 0.330 INCH, SOP-28
CYPRESS

UL635H256BSK55

32KX8 NON-VOLATILE SRAM, 55ns, PDSO28, 0.330 INCH, SOP-28
CYPRESS

UL635H256BSK55G1

32KX8 NON-VOLATILE SRAM, 55ns, PDSO28, 0.330 INCH, SOP-28
CYPRESS

UL635H256BTC45

32KX8 NON-VOLATILE SRAM, 45ns, PDSO32, TSOP1-32
CYPRESS

UL635H256BTC55

Non-Volatile SRAM, 32KX8, 55ns, CMOS, PDSO32, TSOP1-32
CYPRESS

UL635H256BTC55G1

暂无描述
CYPRESS

UL635H256BTK45

Non-Volatile SRAM, 32KX8, 45ns, CMOS, PDSO32, TSOP1-32
CYPRESS

UL635H256BTK45G1

Non-Volatile SRAM, 32KX8, 45ns, CMOS, PDSO32, TSOP1-32
CYPRESS

UL635H256BTK55

Non-Volatile SRAM, 32KX8, 55ns, CMOS, PDSO32, TSOP1-32
CYPRESS