UL635H256BSC55 [CYPRESS]

32KX8 NON-VOLATILE SRAM, 55ns, PDSO28, 0.330 INCH, SOP-28;
UL635H256BSC55
型号: UL635H256BSC55
厂家: CYPRESS    CYPRESS
描述:

32KX8 NON-VOLATILE SRAM, 55ns, PDSO28, 0.330 INCH, SOP-28

静态存储器 光电二极管
文件: 总13页 (文件大小:205K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
UL635H256  
Advanced Information  
Low Voltage PowerStore 32K x 8 nvSRAM  
Description  
Features  
automatically on power up. The  
UL635H256 combines the high per-  
formance and ease of use of a fast  
SRAM with nonvolatile data inte-  
grity.  
STORE cycles also may be initiated  
under user control via a software  
sequence.  
Once a STORE cycle is initiated,  
further input or output are disabled  
until the cycle is completed.  
Because a sequence of addresses  
is used for STORE initiation, it is  
important that no other read or write  
accesses intervene in the sequence  
or the sequence will be aborted.  
RECALL cycles may also be initia-  
ted by a software sequence.  
Internally, RECALL is a two step  
procedure. First, the SRAM data is  
cleared and second, the nonvolatile  
information is transferred into the  
SRAM cells.  
The RECALL operation in no way  
alters the data in the EEPROM  
cells. The nonvolatile data can be  
recalled an unlimited number of  
times.  
The UL635H256 has two separate  
modes of operation: SRAM mode  
and nonvolatile mode. In SRAM  
mode, the memory operates as an  
ordinary static RAM. In nonvolatile  
operation, data is transferred in  
parallel from SRAM to EEPROM or  
from EEPROM to SRAM. In this  
mode SRAM functions are disab-  
led.  
The UL635H256 is a fast static  
RAM (45 and 55 ns), with a nonvo-  
latile electrically erasable PROM  
(EEPROM) element incorporated  
in each static memory cell. The  
SRAM can be read and written an  
unlimited number of times, while  
independent nonvolatile data resi-  
des in EEPROM. Data transfers  
from the SRAM to the EEPROM  
(the STORE operation) take place  
automatically upon power down  
using charge stored in system  
capacitance. Transfers from the  
EEPROM to the SRAM (the  
RECALL operation) take place  
High-performance CMOS non-  
volatile static RAM 32768 x 8 bits  
45 and 55 ns Access Times  
20 and 25 ns Output Enable  
Access Times  
ICC = 8 mA at 200 ns Cycle Time  
Automatic STORE to EEPROM  
on Power Down using system  
capacitance  
Software initiated STORE  
Automatic STORE Timing  
105 STORE cycles to EEPROM  
10 years data retention in  
EEPROM  
Automatic RECALL on Power Up  
Software RECALL Initiation  
Unlimited RECALL cycles from  
EEPROM  
Wide voltage range: 2.7 ... 3.6 V  
Operating temperature range:  
0 to 70 °C  
-40 to 85 °C  
CECC 90000 Quality Standard  
ESD characterization according  
MIL STD 883C M3015.7-HBM  
Packages: SOP28 (330 mil)  
TSOP32 (Type I)  
Pin Configuration  
Pin Description  
G
A11  
A9  
1
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
n.c.  
A10  
E
VCC  
W
A13  
A8  
A9  
A11  
G
A10  
E
DQ7  
DQ6  
DQ5  
DQ4  
DQ3  
A14  
A12  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
1
2
3
4
5
6
7
8
9
10  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
Signal Name Signal Description  
2
3
A0 - A14  
Address Inputs  
Data In/Out  
A8  
4
DQ7  
DQ6  
DQ5  
DQ4  
DQ3  
VSS  
DQ2  
DQ1  
DQ0  
A0  
A13  
W
n. c.  
VCC  
n. c.  
A14  
A12 11  
A7  
A6  
5
DQ0 - DQ7  
6
7
Chip Enable  
E
8
SOP  
TSOP  
9
Output Enable  
Write Enable  
Power Supply Voltage  
Ground  
G
10  
W
12  
13  
DQ0 11  
DQ1  
DQ2 13  
VSS  
VCC  
VSS  
12  
A5 14  
A4  
A3  
A1  
15  
16  
A2  
14  
n.c.  
Top View  
Top View  
271  
December 12, 1997  
UL635H256  
Advanced Information  
Block Diagram  
EEPROM Array  
512 x (64 x 8)  
VCC  
VSS  
A5  
A6  
A7  
A8  
STORE  
RECALL  
SRAM  
Array  
Power  
Control  
VCC  
A9  
A11  
512 Rows x  
64 x 8 Columns  
A12  
A13  
A14  
Store/  
Recall  
Control  
DQ0  
DQ1  
Column I/O  
DQ2  
DQ3  
DQ4  
Software  
Detect  
Column Decoder  
A0 - A13  
DQ5  
DQ6  
A0 A1 A2 A3 A4 A10  
G
DQ7  
E
W
Truth Table for SRAM Operations  
Operating Mode  
E
W
G
DQ0 - DQ7  
Standby/not selected  
Internal Read  
Read  
H
L
L
L
High-Z  
High-Z  
*
*
H
H
H
L
L
*
Data Outputs Low-Z  
Data Inputs High-Z  
Write  
* H or L  
Characteristics  
All voltages are referenced to VSS = 0 V (ground).  
All characteristics are valid in the power supply voltage range and in the operating temperature range specified.  
Dynamic measurements are based on a rise and fall time of 5 ns, measured between 10 % and 90 % of VI, as well as  
input levels of VIL = 0 V and VIH = 3 V. The timing reference level of all input and output signals is 1.5 V,  
with the exception of the tdis-times and ten-times, in which cases transition is measured ± 200 mV from steady-state voltage.  
Absolute Maximum Ratingsa  
Symbol  
Min.  
Max.  
Unit  
Power Supply Voltage  
Input Voltage  
VCC  
VI  
-0.5  
-0.3  
-0.3  
4.6  
VCC+0.5  
VCC+0.5  
1
V
V
Output Voltage  
VO  
PD  
Ta  
V
Power Dissipation  
Operating Temperature  
W
C-Type  
K-Type  
0
-40  
70  
85  
°C  
°C  
Storage Temperature  
Tstg  
-65  
150  
°C  
a: Stresses greater than those listed under „Absolute Maximum Ratings“ may cause permanent damage to the device. This is a stress  
rating only, and functional operation of the device at condition above those indicated in the operational sections of this specification is  
not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.  
272  
December 12, 1997  
UL635H256  
Advanced Information  
Recommended  
Operating Conditions  
Symbol  
Conditions  
Min.  
Max.  
Unit  
Power Supply Voltage  
VCC  
VIL  
2.7  
-0.3  
2.2  
3.6  
0.8  
V
V
V
-2 V at Pulse Width  
10 ns permitted  
Input Low Voltage  
Input High Voltage  
VIH  
VCC+0.3  
C-Type  
K-Type  
DC Characteristics  
Symbol  
Conditions  
Unit  
Min. Max. Min. Max.  
Operating Supply Currentb  
ICC1  
VCC  
VIL  
VIH  
= 3.6 V  
= 0.8 V  
= 2.2 V  
tc  
tc  
= 45 ns  
= 55 ns  
35  
30  
37  
32  
mA  
mA  
Average Supply Current duringc  
STORE  
ICC2  
VCC  
E
= 3.6 V  
0.2 V  
3
4
mA  
W
VIL  
VIH  
VCC-0.2 V  
0.2 V  
VCC-0.2 V  
Operating Supply Currentb  
at tcR = 200 ns  
(Cycling CMOS Input Levels)  
ICC3  
VCC  
W
VIL  
VIH  
= 3.6 V  
VCC-0.2 V  
0.2 V  
10  
2
11  
2
mA  
mA  
VCC-0.2 V  
Average Supply Current duringc  
PowerStore Cycle  
ICC4  
VCC  
VIL  
= 4.5 V  
= 0.2 V  
VIH  
VCC-0.2 V  
Standby Supply Currentd  
(Cycling TTL Input Levels)  
ICC(SB)1 VCC  
E
= 3.6 V  
= VIH  
tc  
tc  
= 45 ns  
= 55 ns  
9
8
10  
9
mA  
mA  
Standby Supply Curentd  
ICC(SB) VCC  
= 3.6 V  
1
1
mA  
(Stable CMOS Input Levels)  
E
VIL  
VIH  
VCC-0.2 V  
0.2 V  
VCC-0.2 V  
b: ICC1 and ICC3 are depedent on output loading and cycle rate. The specified values are obtained with outputs unloaded.  
The current ICC1 is measured for WRITE/READ - ratio of 1/2.  
c:  
ICC2 and ICC4 are the average currents required for the duration of the respective STORE cycles.  
d: Bringing E VIH will not produce standby current levels until any nonvolatile cycle in progress has timed out. See MODE SELECTION  
table. The current ICC(SB)1 is measured for WRITE/READ - ratio of 1/2.  
273  
December 12, 1997  
UL635H256  
Advanced Information  
C-Type  
K-Type  
DC Characteristics  
Symbol  
Conditions  
Unit  
Min. Max. Min. Max.  
VCC  
IOH  
IOL  
= 2.7 V  
=-2 mA  
= 2 mA  
Output High Voltage  
Output Low Voltage  
VOH  
VOL  
2.4  
2
2.4  
2
V
V
0.4  
-2  
0.4  
-2  
VCC  
VOH  
VOL  
= 2.7 V  
= 2.4 V  
= 0.4 V  
Output High Current  
Output Low Current  
IOH  
IOL  
mA  
mA  
Input Leakage Current  
VCC  
= 3.6 V  
High  
Low  
IIH  
IIL  
VIH  
VIL  
= 3.6 V  
1
1
µA  
µA  
=
0 V  
-1  
-1  
-1  
-1  
Output Leakage Current  
VCC  
= 3.6 V  
High at Three-State- Output  
Low at Three-State- Output  
IOHZ  
IOLZ  
VOH  
VOL  
= 3.6 V  
1
1
µA  
µA  
=
0 V  
SRAM MEMORY OPERATIONS  
Symbol  
45  
55  
Switching Characteristics  
No.  
Unit  
Read Cycle  
Alt.  
IEC  
Min. Max. Min. Max.  
1
2
3
4
5
6
7
8
9
Read Cycle Timef  
tAVAV  
tAVQV  
tELQV  
tGLQV  
tEHQZ  
tGHQZ  
tELQX  
tGLQX  
tAXQX  
tELICCH  
tEHICCL  
tcR  
ta(A)  
ta(E)  
ta(G)  
tdis(E)  
tdis(G)  
ten(E)  
ten(G)  
tv(A)  
45  
55  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Address Access Time to Data Validg  
Chip Enable Access Time to Data Valid  
Output Enable Access Time to Data Valid  
E HIGH to Output in High-Zh  
45  
45  
20  
15  
15  
55  
55  
25  
20  
20  
G HIGH to Output in High-Zh  
E LOW to Output in Low-Z  
5
0
3
0
5
0
3
0
G LOW to Output in Low-Z  
Output Hold Time after Address Change  
10 Chip Enable to Power Activee  
tPU  
11 Chip Disable to Power Standbyd, e  
tPD  
45  
55  
e: Parameter guaranteed but not tested.  
f: Device is continuously selected with E and G both Low.  
g: Address valid prior to or coincident with E transition LOW.  
h: Measured ± 200 mV from steady state output voltage.  
274  
December 12, 1997  
UL635H256  
Advanced Information  
f
=
=
VIL, W = VIH)  
Read Cycle 1: Ai-controlled (during Read cycle: E  
G
1
tcR  
Ai  
Address Valid  
2
ta(A)  
DQi  
Output  
Output Data  
Valid  
Previous  
Data Valid  
9
tv(A)  
Read Cycle 2: G-, E-controlled (during Read cycle: W = VIH)g  
1
tcR  
Address Valid  
Ai  
2
ta(A)  
3
ta(E)  
5
tdis(E)  
E
7
11  
tPD  
ten(E)  
4
G
ta(G)  
6
tdis(G)  
8
ten(G)  
DQi  
Output  
High Impedance  
Output Data  
Valid  
10  
ICC  
tPU  
ACTIVE  
STANDBY  
Symbol  
45  
55  
Switching Characteristics  
Write Cycle  
No.  
Unit  
Alt. #1 Alt. #2  
IEC  
Min. Max. Min. Max.  
12 Write Cycle Time  
tAVAV  
tAVAV  
tcW  
tw(W)  
tsu(W)  
tsu(A)  
45  
30  
30  
0
55  
40  
40  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
13 Write Pulse Width  
tWLWH  
14 Write Pulse Width Setup Time  
15 Address Setup Time  
tWLEH  
tAVEL  
tAVEH  
tAVWL  
tAVWH  
tELWH  
tsu(A-WH)  
16 Address Valid to End of Write  
17 Chip Enable Setup Time  
18 Chip Enable to End of Write  
19 Data Setup Time to End of Write  
20 Data Hold Time after End of Write  
21 Address Hold after End of Write  
22 W LOW to Output in High-Zh, i  
23 W HIGH to Output in Low-Z  
30  
30  
30  
15  
0
40  
40  
40  
20  
0
tsu(E)  
tw(E)  
tsu(D)  
th(D)  
tELEH  
tDVEH  
tEHDX  
tEHAX  
tDVWH  
tWHDX  
tWHAX  
tWLQZ  
tWHQX  
th(A)  
0
0
tdis(W)  
ten(W)  
15  
20  
5
5
275  
December 12, 1997  
UL635H256  
Advanced Information  
Write Cycle #1: W-controlledj  
12  
tcW  
Ai  
E
Address Valid  
21  
th(A  
17  
tsu(E)  
)
16  
tsu(A-WH)  
13  
w(W)  
t
15  
tsu(A)  
W
20  
th(D)  
19  
tsu(D)  
Input Data  
Valid  
DQi  
Input  
23  
ten(W)  
22  
tdis(W)  
DQi  
Output  
High Impedance  
Previous Data  
Write Cycle #2: E-controlledj  
12  
tcW  
Ai  
Address Valid  
21  
th(A)  
15  
tsu(A)  
18  
tw(E)  
E
14  
tsu(W)  
W
19  
tsu(D)  
20  
th(D)  
Input Data  
Valid  
DQi  
Input  
DQi  
Output  
High Impedance  
undefined  
L- to H-level  
H- to L-level  
i: If W is low and when E goes low, the outputs remain in the high impedance state.  
j: E or W must be VIH during address transition.  
276  
December 12, 1997  
UL635H256  
Advanced Information  
NONVOLATILE MEMORY OPERATIONS  
MODE SELECTION  
A13 - A0  
(hex)  
E
W
Mode  
I/O  
Power  
Notes  
H
L
L
L
X
H
L
X
X
X
Not Selected  
Read SRAM  
Write SRAM  
Output High Z  
Output Data  
Input Data  
Standby  
Active  
Active  
Active  
m
H
0E38  
31C7  
03E0  
3C1F  
303F  
0FC0  
Read SRAM  
Read SRAM  
Read SRAM  
Read SRAM  
Read SRAM  
Output Data  
Output Data  
Output Data  
Output Data  
Output Data  
Output High Z  
k, l  
k, l  
k, l  
k, l  
k, l  
k, l  
Nonvolatile STORE  
L
H
0E38  
31C7  
03E0  
3C1F  
303F  
0C63  
Read SRAM  
Read SRAM  
Read SRAM  
Read SRAM  
Read SRAM  
Output Data  
Output Data  
Output Data  
Output Data  
Output Data  
Output High Z  
Active  
k, l  
k, l  
k, l  
k, l  
k, l  
k, l  
Nonvolatile RECALL  
k: The six consecutive addresses must be in order listed. W must be high during all six consecutive cycles. See STORE cycle and RECALL  
cycle tables and diagrams for further details.  
The following six-address sequence is used for testing purposes and should not be used: 0E38, 31C7, 03E0, 3C1F, 303F, 339C.  
l: While there are 15 addresses on the UL635H256, only the lower 14 are used to control software modes.  
Activation of nonvolatile cycles does not depend on the state of G.  
m: I/O state assumes that G VIL.  
Symbol  
PowerStore  
No.  
Conditions  
Min. Max. Unit  
Power Up RECALL  
Alt.  
IEC  
24 Power Up RECALL Durationn  
25 STORE Cycle Durationf, e  
tRESTORE  
650  
10  
µs  
the power supply decay  
rate has to be smaller  
than 20 Vs after the  
-1  
tPDSTORE  
ms  
start of the STORE  
operation  
Time allowed to Complete SRAM  
26  
tDELAY  
1
µs  
Cyclef  
Low Voltage Trigger Level  
VSWITCH  
2.4  
2.7  
V
n:  
tRESTORE starts from the time VCC rises above VSWITCH.  
277  
December 12, 1997  
UL635H256  
Advanced Information  
PowerStore and automatic Power Up RECALL  
VCC  
3.0 V  
VSWITCH  
t
PowerStore  
p
tPDSTORE  
Power Up  
24  
24  
RECALL  
tRESTORE  
tRESTORE  
W
p
tDELAY  
DQi  
BROWN OUT  
NO STORE  
(NO SRAM WRITES)  
BROWN OUT  
PowerStore  
POWER UP  
RECALL  
Symbol  
45  
55  
Software Controlled STORE/RECALL  
Cyclek, o  
No.  
Unit  
Alt.  
IEC  
Min. Max. Min. Max.  
27 STORE/RECALL Initiation Time  
28 Chip Enable to Output Inactivep  
29 STORE Cycle Timeq  
tAVAV  
tELQZ  
tcR  
45  
55  
ns  
ns  
ms  
µs  
ns  
ns  
ns  
tdis(E)SR  
td(E)S  
600  
10  
600  
10  
tELQXS  
tELQXR  
tAVELN  
tELEHN  
tEHAXN  
30 RECALL Cycle Timer  
td(E)R  
20  
20  
31 Address Setup to Chip Enables  
32 Chip Enable Pulse Widths, t  
33 Chip Disable to Address Changes  
tsu(A)SR  
tw(E)SR  
th(A)SR  
0
30  
0
0
40  
0
o: The software sequence is clocked with E controlled READs.  
p: Once the software controlled STORE or RECALL cycle is initiated, it completes automatically, ignoring all inputs.  
q: Note that STORE cycles (but not RECALL) are aborted by VCC < VSWITCH (STORE inhibit).  
r: An automatic RECALL also takes place at power up, starting when VCC exceeds VSWITCH and takes tRESTORE. VCC must not drop below  
VSWITCH once it has been exceeded for the RECALL to function properly.  
s: Noise on the E pin may trigger multiple READ cycles from the same address and abort the address sequence.  
t: If the Chip Enable Pulse Width is less than ta(E) (see Read Cycle) but greater than or equal tw(E)SR, than the data may not be valid at  
the end of the low pulse, however the STORE or RECALL will still be initiated.  
278  
December 12, 1997  
UL635H256  
Advanced Information  
SOFTWARE CONTROLLED STORE/RECALL CYCLEt, u, v (E = HIGH after STORE initiation)  
27  
tcR  
27  
tcR  
ADDRESS 1  
ADDRESS 6  
Ai  
E
32  
tw(E)SR  
31  
33  
tsu(A)SR  
th(A)SR  
29  
/ 30  
td(E)S / td(E)R  
High Impedance  
VALID  
DQi  
Output  
VALID  
28  
tdis(E)SR  
SOFTWARE CONTROLLED STORE/RECALL CYCLEt, u, v, w (E = LOW after STORE initiation)  
29  
tcR  
Ai  
ADDRESS 1  
ADDRESS 6  
35  
th(A)SR  
34  
tw(E)SR  
E
33  
35  
33  
tsu(A)SR  
th(A)SR  
tsu(A)SR  
31  
/
32  
td(E)S / td(E)R  
High Impedance  
VALID  
VALID  
DQi  
Output  
30  
tdis(E)SR  
u: W must be HIGH when E is LOW during the address sequence in order to initiate a nonvolatile cycle. G may be either HIGH or LOW  
throughout. Addresses 1 through 6 are found in the mode selection table. Address 6 determines wheter the UL635H256 performs a STORE  
or RECALL.  
v: E must be used to clock in the address sequence for the Software controlled STORE and RECALL cycles.  
279  
December 12, 1997  
UL635H256  
Advanced Information  
Test Configuration for Functional Check  
3 V  
X
VCC  
A0  
A1  
A2  
A3  
A4  
DQ0  
DQ1  
DQ2  
DQ3  
DQ4  
DQ5  
DQ6  
DQ7  
A5  
1.1 k  
A6  
A7  
VIH  
A8  
A9  
A10  
A11  
A12  
VIL  
VO  
A13  
A14  
30 pF w  
E
W
VSS  
950  
G
w: In measurement of tdis-times and ten-times the capacitance is 5 pF.  
x: Between VCC and VSS must be connected a high frequency bypass capacitor 0.1 µF to avoid disturbances.  
Capacitancee  
Conditions  
Symbol  
Min.  
Max.  
Unit  
VCC = 3.0 V  
Input Capacitance  
CI  
8
pF  
VI  
f
= VSS  
= 1 MHz  
= 25 °C  
Output Capacitance  
CO  
7
pF  
Ta  
All Pins not under test must be connected with ground by capacitors.  
IC Code Numbers  
Example  
UL635H256  
S
C
45  
B
Type  
ESD Class  
blank > 2000  
Vy  
B > 1000 V  
Package  
Access Time  
45 = 45 ns  
55 = 55 ns (on special request)  
S
T
= SOP (330 mil)  
= TSOP (Type I)  
Operating Temperature Range  
C = 0 to 70 °C  
K = -40 to 85 °C  
The date of manufacture is given by the last 4 digits of the mark, the first 2 digits indicating the year, and the last 2  
digits the calendar week.  
y:  
ESD protection > 2000 V under development  
280  
December 12, 1997  
UL635H256  
Advanced Information  
Device Operation  
WRITE operation has taken place since the most  
recent STORE or RECALL cycle. Software initiated  
STORE cycles are performed regardless of whether or  
not a WRITE operation has taken place.  
The UL635H256 has two separate modes of operation:  
SRAM mode and nonvolatile mode. The memory ope-  
rates in SRAM mode as a standard fast static RAM.  
Data is transferred in nonvolatile mode from SRAM to  
EEPROM (the STORE operation) or from EEPROM to  
SRAM (the RECALL operation). In this mode SRAM  
functions are disabled.  
AUTOMATIC RECALL  
During power up, an automatic RECALL takes place.  
At a low power condition (power supply voltage <  
STORE cycles may be initiated under user control via a  
software sequence and are also automatically initiated  
when the power supply voltage level of the chip falls  
below VSWITCH. RECALL operations are automatically  
initiated upon power up and may also occur when the  
VCC rises above VSWITCH, after a low power condition.  
RECALL cycles may also be initiated by a software  
sequence.  
VSWITCH) an internal RECALL request may be latched.  
As soon as power supply voltage exceeds the sense  
voltage of VSWITCH, a requested RECALL cycle will  
automatically be initiated and will take tRESTORE to com-  
plete.  
If the UL635H256 is in a WRITE state at the end of  
power up RECALL, the SRAM data will be corrupted.  
To help avoid this situation, a 10 kresistor should be  
connected between W and power supply voltage.  
SRAM READ  
SOFTWARE NONVOLATILE STORE  
The UL635H256 performs a READ cycle whenever E  
and G are LOW and W is HIGH. The address specified  
on pins A0 - A14 determines which of the 32768 data  
bytes will be accessed. When the READ is initiated by  
an address transition, the outputs will be valid after a  
delay of tcR. If the READ is initiated by E or G, the out-  
puts will be valid at ta(E) or at ta(G), whichever is later.  
The data outputs will repeatedly respond to address  
changes within the tcR access time without the need for  
transition on any control input pins, and will remain  
valid until another address change or until E or G is  
brought HIGH or W is brought LOW.  
The UL635H256 software controlled STORE cycle is  
initiated by executing sequential READ cycles from six  
specific address locations. By relying on READ cycles  
only, the UL635H256 implements nonvolatile operation  
while remaining compatible with standard 32K x 8  
SRAMs. During the STORE cycle, an erase of the pre-  
vious nonvolatile data is performed first, followed by a  
parallel programming of all the nonvolatile elements.  
Once a STORE cycle is initiated, further inputs and out-  
puts are disabled until the cycle is completed.  
Because a sequence of addresses is used for STORE  
initiation, it is important that no other READ or WRITE  
accesses intervene in the sequence or the sequence  
will be aborted.  
SRAM WRITE  
A WRITE cycle is performed whenever E and W are  
LOW. The address inputs must be stable prior to  
entering the WRITE cycle and must remain stable until  
either E or W goes HIGH at the end of the cycle. The  
data on pins DQ0 - 7 will be written into the memory if it  
is valid tsu(D) before the end of a W controlled WRITE or  
To initiate the STORE cycle the following READ  
sequence must be performed:  
1.  
2.  
3.  
4.  
5.  
6.  
Read addresses 0E38 (hex) Valid READ  
Read addresses 31C7 (hex) Valid READ  
Read addresses 03E0 (hex) Valid READ  
Read addresses 3C1F (hex) Valid READ  
Read addresses 303F (hex) Valid READ  
Read addresses 0FC0 (hex) Initiate STORE  
Cycle  
t
su(D) before the end of an E controlled WRITE.  
It is recommended that G is kept HIGH during the  
entire WRITE cycle to avoid data bus contention on the  
common I/O lines. If G is left LOW, internal circuitry will  
turn off the output buffers tdis (W) after W goes LOW.  
Once the sixth address in the sequence has been  
entered, the STORE cycle will commence and the chip  
will be disabled. It is important that READ cycles and  
not WRITE cycles be used in the sequence, although it  
is not necessary that G be LOW for the sequence to be  
valid. After the tSTORE cycle time has been fulfilled, the  
SRAM will again be activated for READ and WRITE  
operation.  
AUTOMATIC STORE  
The UL635H256 uses the intrinsic system capacitance  
to perform an automatic STORE on power down. As  
long as the decay rate from the system power supply is  
-1  
smaller than 20 Vs the UL635H256 will safely and  
automatically STORE the SRAM data in EEPROM on  
power down.  
In order to prevent unneeded STORE operations, auto-  
matic STORE will be ignored unless at least one  
281  
December 12, 1997  
UL635H256  
Advanced Information  
SOFTWARE NONVOLATILE RECALL  
HARDWARE PROTECTION  
A RECALL cycle of the EEPROM data into the SRAM  
is initiated with a sequence of READ operations in a  
manner similar to the STORE initiation. To initiate the  
RECALL cycle the following sequence of READ opera-  
tions must be performed:  
The UL635H256 offers hardware protection against  
inadvertent STORE operation through VCC Sense.  
When VCC < VSWITCH all software STORE operations  
will be inhibited.  
LOW AVERAGE ACTIVE POWER  
1.  
2.  
3.  
4.  
5.  
6.  
Read addresses 0E38 (hex) Valid READ  
Read addresses 31C7 (hex) Valid READ  
Read addresses 03E0 (hex) Valid READ  
Read addresses 3C1F (hex) Valid READ  
Read addresses 303F (hex) Valid READ  
Read addresses 0C63 (hex) Initiate RECALL  
Cycle  
The UL635H256 has been designed to draw signifi-  
cantly less power when E is LOW (chip enabled) but  
the cycle time is longer than 55 ns.  
When E is HIGH the chip consumes only standby cur-  
rent.  
The overall average current drawn by the part depends  
on the following items:  
Internally, RECALL is a two step procedure. First, the  
SRAM data is cleared and second, the nonvolatile  
information is transferred into the SRAM cells. After  
1. CMOS or TTL input levels  
2. the time during which the chip is disabled (E HIGH)  
3. the cycle time for accesses (E LOW)  
4. the ratio of READs to WRITEs  
td(E)R cycle time the SRAM will once again be ready for  
READ and WRITE operations.The RECALL operation  
in no way alters the data in the EEPROM cells. The  
nonvolatile data can be recalled an unlimited number of  
times.  
5. the operating temperature  
6. the VCC level  
282  
December 12, 1997  
LIFE SUPPORT POLICY  
ZMD products are not designed, intended, or authorized for use as components in  
systems intended for surgical implant into the body, or other applications intended  
to support or sustain life, or for any other application in which the failure of the ZMD  
product could create a situation where personal injury or death may occur.  
Components used in life-support devices or systems must be expressly authorized  
by ZMD for such purpose.  
LIMITED WARRANTY  
The information in this document has been carefully checked and is believed to be  
reliable. However Zentrum Mikroelektronik Dresden GmbH (ZMD) makes no  
guarantee or warranty concerning the accuracy of said information and shall not be  
responsible for any loss or damage of whatever nature resulting from the use of, or  
reliance upon it. The information in this document describes the type of component  
and shall not be considered as assured characteristics.  
ZMD does not guarantee that the use of any information contained herein will not  
infringe upon the patent, trademark, copyright, mask work right or other rights of  
third parties, and no patent or licence is implied hereby. This document does not in  
any way extent ZMD’s warranty on any product beyond that set forth in its standard  
terms and conditions of sale.  
ZMD reserves terms of delivery and reserves the right to make changes in the  
products or specifications, or both, presented in this publication at any time and  
without notice.  
Zentrum Mikroelektronik Dresden GmbH  
Grenzstrasse 28 · D-01109 Dresden · P. O. B. 80 01 34 · D-01101 Dresden · Germany  
Phone: +49 351 88 22-3 06 • Fax: +49 351 88 22-3 37 • Email: sales@zmd.de • http://www.zmd.de  

相关型号:

UL635H256BSC55G1

Non-Volatile SRAM, 32KX8, 55ns, CMOS, PDSO28, 0.330 INCH, SOP-28
CYPRESS

UL635H256BSK45

32KX8 NON-VOLATILE SRAM, 45ns, PDSO28, 0.330 INCH, SOP-28
CYPRESS

UL635H256BSK45G1

32KX8 NON-VOLATILE SRAM, 45ns, PDSO28, 0.330 INCH, SOP-28
CYPRESS

UL635H256BSK55

32KX8 NON-VOLATILE SRAM, 55ns, PDSO28, 0.330 INCH, SOP-28
CYPRESS

UL635H256BSK55G1

32KX8 NON-VOLATILE SRAM, 55ns, PDSO28, 0.330 INCH, SOP-28
CYPRESS

UL635H256BTC45

32KX8 NON-VOLATILE SRAM, 45ns, PDSO32, TSOP1-32
CYPRESS

UL635H256BTC55

Non-Volatile SRAM, 32KX8, 55ns, CMOS, PDSO32, TSOP1-32
CYPRESS

UL635H256BTC55G1

暂无描述
CYPRESS

UL635H256BTK45

Non-Volatile SRAM, 32KX8, 45ns, CMOS, PDSO32, TSOP1-32
CYPRESS

UL635H256BTK45G1

Non-Volatile SRAM, 32KX8, 45ns, CMOS, PDSO32, TSOP1-32
CYPRESS

UL635H256BTK55

Non-Volatile SRAM, 32KX8, 55ns, CMOS, PDSO32, TSOP1-32
CYPRESS

UL635H256BTK55G1

Non-Volatile SRAM, 32KX8, 55ns, CMOS, PDSO32, TSOP1-32
CYPRESS