UL631H256SK55G1 [SIMTEK]

Non-Volatile SRAM, 32KX8, 55ns, CMOS, PDSO28, 0.330 INCH, SOP1-28;
UL631H256SK55G1
型号: UL631H256SK55G1
厂家: SIMTEK CORPORATION    SIMTEK CORPORATION
描述:

Non-Volatile SRAM, 32KX8, 55ns, CMOS, PDSO28, 0.330 INCH, SOP1-28

静态存储器 光电二极管
文件: 总12页 (文件大小:129K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
UL631H256  
Low Voltage SoftStore 32K x 8 nvSRAM  
Features  
Description  
F High-performance CMOS non-  
The UL631H256 has two separate of a fast SRAM with nonvolatile  
volatile static RAM 32768 x 8 bits modes of operation: SRAM mode data integrity.  
F 35, 45 and 55 ns Access Times  
F 15, 20 and 25 ns Output Enable  
Access Times  
F Software STORE Initiation  
F Automatic STORE Timing  
F 105 STORE cycles to EEPROM  
F 10 years data retention in  
EEPROM  
and nonvolatile mode. In SRAM Once a STORE cycle is initiated,  
mode, the memory operates as an further input or output are disabled  
ordinary static RAM. In nonvolatile until the cycle is completed.  
operation, data is transferred in Because a sequence of addresses  
parallel from SRAM to EEPROM or is used for STORE initiation, it is  
from EEPROM to SRAM. In this important that no other read or  
mode SRAM functions are disab- write accesses intervene in the  
led.  
sequence or the sequence will be  
F Automatic RECALL on Power Up The UL631H256 is a fast static aborted.  
F Software RECALL Initiation  
F Unlimited RECALL cycles from  
EEPROM  
F Unlimited Read and Write to  
SRAM  
RAM (35, 45 and 55 ns), with a Internally, RECALL is a two step  
nonvolatile electrically erasable procedure. First, the SRAM data is  
PROM (EEPROM) element incor- cleared and second, the nonvola-  
porated in each static memory cell. tile information is transferred into  
The SRAM can be read and written the SRAM cells.  
F Wide voltage range: 2.7 ... 3.6 V  
(3.0 ... 3.6 V for 35 ns type)  
F Operating temperature range:  
0 to 70 °C  
an unlimited number of times, while The RECALL operation in no way  
independent nonvolatile data resi- alters the data in the EEPROM  
des in EEPROM. Data transfers cells. The nonvolatile data can be  
from the SRAM to the EEPROM recalled an unlimited number of  
-40 to 85 °C (only 45 and 55 ns) (the STORE operation), or from the times.  
F CECC 90000 Quality Standard  
F ESD protection > 2000 V  
(MIL STD 883C M3015.7-HBM)  
F Packages:SOP28 (330 mil)  
TSOP32 (Type I)  
EEPROM to the SRAM (the The UL631H256 is pin compatible  
RECALL operation) are initiated with standard SRAMs.  
through software sequences.  
The UL631H256 combines the  
high performance and ease of use  
Pin Configuration  
Pin Description  
G
A11  
A9  
1
2
3
4
5
6
7
8
9
10  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
n.c.  
A10  
E
VCC  
W
A13  
A8  
A9  
A11  
G
Signal Name Signal Description  
A14  
A12  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
1
2
3
4
5
6
7
8
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
A0 - A14  
Address Inputs  
Data In/Out  
A8  
DQ7  
DQ6  
DQ5  
DQ4  
DQ3  
VSS  
DQ2  
DQ1  
DQ0  
A0  
A13  
W
n. c.  
VCC  
n. c.  
A14  
DQ0 - DQ7  
Chip Enable  
E
TSOP  
SOP  
A10  
E
Output Enable  
Write Enable  
Power Supply Voltage  
Ground  
G
9
A12 11  
DQ7  
DQ6  
DQ5  
DQ4  
DQ3  
A0  
10  
11  
12  
13  
14  
W
A7  
A6  
A5  
A4  
A3  
12  
13  
14  
15  
16  
DQ0  
DQ1  
DQ2  
VSS  
VCC  
VSS  
A1  
A2  
n.c.  
Top View  
Top View  
1
September 25, 2002  
UL631H256  
Block Diagram  
EEPROM Array  
512 x (64 x 8)  
A5  
A6  
A7  
A8  
A9  
STORE  
RECALL  
VCC  
VSS  
SRAM  
Array  
A11  
A12  
A13  
A14  
512 Rows x  
64 x 8 Columns  
Store/  
Recall  
Control  
VCC  
DQ0  
DQ1  
Column I/O  
DQ2  
DQ3  
Software  
Detect  
Column Decoder  
A0 - A13  
DQ4  
DQ5  
DQ6  
G
A0 A1 A2 A3 A4A10  
DQ7  
E
W
Truth Table for SRAM Operations  
Operating Mode  
E
W
G
DQ0 - DQ7  
Standby/not selected  
H
L
L
L
High-Z  
*
*
Internal Read  
H
H
L
High-Z  
Read  
Write  
H
L
Data Outputs Low-Z  
Data Inputs High-Z  
*
* H or L  
Characteristics  
All voltages are referenced to VSS = 0 V (ground).  
All characteristics are valid in the power supply voltage range and in the operating temperature range specified.  
Dynamic measurements are based on a rise and fall time of 5 ns, measured between 10 % and 90 % of VI, as well as  
input levels of VIL = 0 V and VIH = 3 V. The timing reference level of all input and output signals is 1.5 V,  
with the exception of the tdis-times and ten-times, in which cases transition is measured ± 200 mV from steady-state voltage.  
Absolute Maximum Ratingsa  
Symbol  
Min.  
Max.  
Unit  
Power Supply Voltage  
Input Voltage  
VCC  
VI  
-0.5  
-0.3  
-0.3  
4.6  
VCC+0.5  
VCC+0.5  
1
V
V
Output Voltage  
VO  
PD  
V
Power Dissipation  
W
Operating Temperature  
C-Type  
K-Type  
0
-40  
70  
85  
°C  
°C  
Ta  
Storage Temperature  
Tstg  
-65  
150  
°C  
a: Stresses greater than those listed under „Absolute Maximum Ratings“ may cause permanent damage to the device. This is a stress  
rating only, and functional operation of the device at condition above those indicated in the operational sections of this specification is  
not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.  
2
September 25, 2002  
UL631H256  
Recommended  
Operating Conditions  
Symbol  
Conditions  
tc = 35 ns  
Min.  
Max.  
Unit  
Power Supply Voltage  
VCC  
3.0  
2.7  
3.6  
3.6  
V
V
tc = 45 / 55 ns  
-2 V at Pulse Width  
10 ns permitted  
Input Low Voltage  
Input High Voltage  
VIL  
-0.3  
2.2  
0.8  
V
V
VIH  
VCC+0.3  
C-Type  
K-Type  
DC Characteristics  
Symbol  
Conditions  
Unit  
Min. Max. Min. Max.  
Operating Supply Currentb  
ICC1  
VCC  
VIL  
VIH  
= 3.6 V  
= 0.8 V  
= 2.2 V  
tc  
tc  
tc  
= 35 ns  
= 45 ns  
= 55 ns  
45  
35  
30  
-
37  
32  
mA  
mA  
mA  
Average Supply Current during  
STOREc  
ICC2  
VCC  
E
W
VIL  
VIH  
= 3.6 V  
3
4
mA  
VCC-0.2 V  
VCC-0.2 V  
0.2 V  
VCC-0.2 V  
Average Supply Current  
at tcR = 200 nsb  
(Cycling CMOS Input Levels)  
ICC3  
VCC  
W
VIL  
VIH  
= 3.6V  
VCC-0.2 V  
0.2 V  
10  
11  
mA  
VCC-0.2 V  
Standby Supply Currentd  
(Cycling TTL Input Levels)  
ICC(SB)1  
VCC  
E
= 3.6 V  
VIH  
tc  
tc  
tc  
= 35ns  
= 45 ns  
= 55 ns  
11  
9
8
-
10  
9
mA  
mA  
mA  
Standby Supply Curentd  
(Stable CMOS Input Levels)  
ICC(SB)  
VCC  
E
VIL  
VIH  
= 3.6 V  
VCC-0.2 V  
0.2 V  
0.7  
0.7  
mA  
VCC-0.2 V  
b: ICC1 and ICC3 are dependent on output loading and cycle rate. The specified values are obtained with outputs unloaded  
The current ICC1 is measured for WRITE/READ - ratio of 1/2.  
c:  
ICC2 is the average current required for the duration of the STORE cycle (tSTORE).  
d: Bringing E VIH will not produce standby current levels until any nonvolatile cycle in progress has timed out.  
The current ICC(SB)1 is measured for WRITE/READ - ratio of 1/2.  
3
September 25, 2002  
UL631H256  
C-Type  
K-Type  
DC Characteristics  
Symbol  
Conditions  
Unit  
Min. Max. Min. Max.  
VCC  
IOH  
IOL  
= VCC  
min  
=-2 mA  
= 2 mA  
Output High Voltage  
Output Low Voltage  
VOH  
VOL  
2.4  
2
2.4  
2
V
V
0.4  
-2  
0.4  
-2  
VCC  
VOH  
VOL  
= VCC  
min  
= 2.4 V  
= 0.4 V  
Output High Current  
Output Low Current  
IOH  
IOL  
mA  
mA  
Input Leakage Current  
VCC  
= 3.6 V  
High  
Low  
IIH  
IIL  
VIH  
VIL  
= 3.6 V  
1
1
µA  
µA  
=
0 V  
-1  
-1  
-1  
-1  
Output Leakage Current  
VCC  
E or G VIH  
VOH  
VOL  
= 3.6 V  
High at Three-State- Output  
Low at Three-State- Output  
IOHZ  
IOLZ  
= 3.6 V  
0 V  
1
1
µA  
µA  
=
SRAM Memory Operations  
Symbol  
35  
Min.  
45  
55  
Switching Characteristics  
Read Cycle  
No.  
Unit  
Alt.  
IEC  
Max. Min. Max.  
1
2
3
4
Read Cycle Timef  
tAVAV  
tAVQV  
tELQV  
tcR  
35  
45  
55  
ns  
ns  
ns  
Address Access Time to Data Validg  
Chip Enable Access Time to Data Valid  
ta(A)  
ta(E)  
35  
45  
45  
55  
55  
35  
15  
Output Enable Access Time to Data  
Valid  
tGLQV  
ta(G)  
20  
25  
ns  
5
6
7
8
9
E HIGH to Output in High-Zh  
G HIGH to Output in High-Zh  
E LOW to Output in Low-Z  
tEHQZ  
tGHQZ  
tELQX  
tdis(E)  
tdis(G)  
ten(E)  
ten(G)  
tv(A)  
13  
13  
15  
15  
20  
20  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
5
0
3
0
5
0
3
5
0
3
0
G LOW to Output in Low-Z  
tGLQX  
Output Hold Time after Addr. Changeg  
tAXQX  
10 Chip Enable to Power Activee  
tELICCH  
tEHICCL  
tPU  
11 Chip Disable to Power Standbyd, e  
tPD  
35  
45  
55  
e: Parameter guaranteed but not tested.  
f: Device is continuously selected with E and G both Low.  
g: Address valid prior to or coincident with E transition LOW.  
h: Measured ± 200 mV from steady state output voltage.  
4
September 25, 2002  
UL631H256  
f
=
=
VIL, W = VIH)  
Read Cycle 1: Ai-controlled (during Read cycle: E  
G
tcR  
(1)  
Ai  
Address Valid  
ta(A)  
(2)  
DQi  
Previous Data Valid  
Output  
Output Data Valid  
tv(A)  
(9)  
Read Cycle 2: G-, E-controlled (during Read cycle: W = VIH)g  
tcR  
(1)  
Ai  
E
Address Valid  
ta(A) (2)  
ta(E) (3)  
tPD  
(11)  
tdis(E)  
(5)  
ten(E)  
(7)  
G
ta(G)  
(4)  
tdis(G)  
(6)  
ten(G)  
(8)  
DQi  
Output  
High Impedance  
Output Data Valid  
t
PU (10)  
ACTIVE  
ICC  
STANDBY  
Symbol  
Alt. #1 Alt. #2  
35  
45  
55  
Switching Characteristics  
Write Cycle  
No.  
Unit  
IEC  
Min. Max. Min. Max. Min. Max.  
12 Write Cycle Time  
tAVAV  
tAVAV  
tcW  
35  
25  
25  
0
45  
30  
30  
0
55  
40  
40  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
13 Write Pulse Width  
tWLWH  
tw(W)  
tsu(W)  
tsu(A)  
14 Write Pulse Width Setup Time  
15 Address Setup Time  
tWLEH  
tAVEL  
tAVEH  
tAVWL  
tAVWH  
tELWH  
tsu(A-WH)  
tsu(E)  
tw(E)  
16 Address Valid to End of Write  
17 Chip Enable Setup Time  
18 Chip Enable to End of Write  
19 Data Setup Time to End of Write  
25  
25  
25  
12  
0
30  
30  
30  
15  
0
40  
40  
40  
20  
0
tELEH  
tDVEH  
tEHDX  
tEHAX  
tDVWH  
tsu(D)  
th(D)  
20 Data Hold Time after End of Write tWHDX  
21 Address Hold after End of Write  
22 W LOW to Output in High-Zh, i  
23 W HIGH to Output in Low-Z  
tWHAX  
tWLQZ  
tWHQX  
th(A)  
0
0
0
tdis(W)  
ten(W)  
13  
15  
20  
5
5
5
5
September 25, 2002  
UL631H256  
Write Cycle #1: W-controlledj  
tcW  
(12)  
Ai  
Address Valid  
tsu(E)  
th(A)  
(17)  
(21)  
E
tsu(A-WH)  
(16)  
tw(W) (13)  
W
tsu(A)  
(15)  
tsu(D)  
th(D)  
(20)  
(19)  
Input Data Valid  
ten(W)  
DQi  
Input  
tdis(W)  
(12)  
(23)  
DQi  
Output  
High Impedance  
Previous Data  
Write Cycle #2: E-controlledj  
tcW  
(12)  
Ai  
E
Address Valid  
tw(E)  
tsu(A)  
(15)  
th(A)  
(21)  
(18)  
tsu(W) (14)  
W
tsu(D) (19)  
Input Data Valid  
th(D) (20)  
DQi  
Input  
High Impedance  
DQi  
Output  
undefined  
L- to H-level  
H- to L-level  
i: If W is low and when E goes low, the outputs remain in the high impedance state.  
>
j: E or W must be  
VIH during address transitions.  
6
September 25, 2002  
UL631H256  
Nonvolatile Memory Operations  
Symbol  
Alt. IEC  
STORE Cycle Inhibit and  
No.  
Min.  
Max.  
Unit  
Automatic Power Up RECALL  
24 Power Up RECALL Durationk  
Low Voltage Trigger Level  
tRESTORE  
VSWITCH  
650  
2.7  
µs  
2.5  
V
k: tRESTORE starts from the time VCC rises above VSWITCH  
.
STORE Cycle Inhibit and Automatic Power Up RECALL  
VCC  
3.0 V  
VSWITCH  
t
STORE inhibit  
(24)  
Power Up  
RECALL  
tRESTORE  
Software Mode Selection  
A13 - A0  
E
W
Mode  
I/O  
Power  
Notes  
(hex)  
L
H
0E38  
31C7  
03E0  
3C1F  
303F  
0FC0  
Read SRAM  
Read SRAM  
Read SRAM  
Read SRAM  
Read SRAM  
Output Data  
Output Data  
Output Data  
Output Data  
Output Data  
Output High Z  
Active  
l, m  
l, m  
l, m  
l, m  
l, m  
l, m  
Nonvolatile STORE  
ICC2  
L
H
0E38  
31C7  
03E0  
3C1F  
303F  
0C63  
Read SRAM  
Read SRAM  
Read SRAM  
Read SRAM  
Read SRAM  
Output Data  
Output Data  
Output Data  
Output Data  
Output Data  
Output High Z  
Active  
l, m  
l, m  
l, m  
l, m  
l, m  
l, m  
Nonvolatile RECALL  
l: The six consecutive addresses must be in order listed. W must be high during all six consecutive cycles. See STORE cycle and RECALL  
cycle tables and diagrams for further details.  
The following six-address sequence is used for testing purposes and should not be used: 0E38, 31C7, 03E0, 3C1F, 303F, 339C.  
m: While there are 15 addresses on the UL631H256, only the lower 14 are used to control software modes.  
7
September 25, 2002  
UL631H256  
35  
45  
55  
Symbol  
No. Software Controlled STORE/RECALL  
Unit  
l, n  
Cycle  
Alt.  
IEC  
Min. Max. Min. Max. Min. Max.  
25 STORE/RECALL Initiation Time  
t
t
35  
45  
55  
ns  
ns  
ms  
ms  
ns  
ns  
ns  
AVAV  
cR  
dis(E)SR  
o
26 Chip Enable to Output Inactive  
t
t
600  
10  
600  
10  
600  
10  
ELQZ  
p
27 STORE Cycle Time  
t
t
t
ELQXS  
ELQXR  
d(E)S  
d(E)R  
q
28 RECALL Cycle Time  
t
20  
20  
20  
r
29 Address Setup to Chip Enable  
t
t
0
25  
0
0
30  
0
0
40  
0
AVELN  
ELEHN  
EHAXN  
su(A)SR  
r, s  
30 Chip Enable Pulse Width  
t
t
w(E)SR  
r
31 Chip Disable to Address Change  
t
t
h(A)SR  
n: The software sequence is clocked with E controlled READs  
o: Once the software controlled STORE or RECALL cycle is initiated, it completes automatically, ignoring all inputs.  
p: Note that STORE cycles (but not RECALL) are aborted by VCC < VSWITCH (STORE inhibit).  
q: An automatic RECALL also takes place at power up, starting when VCC exceeds VSWITCH and takes tRESTORE. VCC must not drop below  
SWITCH once it has been exceeded for the RECALL to function properly.  
V
r: Noise on the E pin may trigger multiple READ cycles from the same address and abort the address sequence.  
s: If the Chip Enable Pulse Width is less than ta(E) (see Read Cycle) but greater than or equal tw(E)SR, than the data may not be valid at  
the end of the low pulse, however the STORE or RECALL will still be initiated.  
Software Controlled STORE/RECALL Cyclet, u (E = HIGH after STORE initiation)  
tcR  
tcR  
(25)  
(25)  
Ai  
E
ADDRESS 1  
ADDRESS 6  
tw(E)SR  
(30)  
th(A)SR  
(31)  
tsu(A)SR  
(29)  
t
t
d(E)R (28)  
d(E)S (27)  
DQi  
Output  
High Impedance  
VALID  
VALID  
tdis(E)SR  
(26)  
Software Controlled STORE/RECALL Cycler, s, t, u (E = LOW after STORE initiation)  
tcR  
(25)  
ADDRESS 1  
Ai  
E
ADDRESS 6  
th(A)SR  
(31)  
(28)  
tw(E)SR  
(30)  
tsu(A)SR  
(29)  
(29)  
tsu(A)SR  
(31)  
th(A)SR  
td(E)S  
td(E)R  
(27)  
DQi  
Output  
High Impedance  
VALID  
VALID  
tdis(E)SR  
(26)  
t: W must be HIGH when E is LOW during the address sequence in order to initiate a nonvolatile cycle. G may be either HIGH or LOW  
throughout. Addresses 1 through 6 are found in the mode selection table. Address 6 determines wheter the UL631H256 performs a  
STORE or RECALL.  
u: E must be used to clock in the address sequence for the Software controlled STORE and RECALL cycles.  
8
September 25, 2002  
UL631H256  
Test Configuration for Functional Check  
3 V  
w
A0  
A1  
VCC  
A2  
A3  
A4  
A5  
DQ0  
DQ1  
DQ2  
DQ3  
DQ4  
DQ5  
DQ6  
DQ7  
1.1 k  
A6  
A7  
A8  
A9  
A10  
A11  
A12  
A13  
A14  
VIH  
VIL  
VO  
30 pF v  
E
W
VSS  
950  
G
v: In measurement of tdis-times and ten-times the capacitance is 5 pF.  
w: Between VCC and VSS must be connected a high frequency bypass capacitor 0.1 µF to avoid disturbances.  
Capacitancee  
Conditions  
Symbol  
Min.  
Max.  
Unit  
VCC  
VI  
f
= 3.0 V  
= VSS  
= 1 MHz  
= 25 °C  
Input Capacitance  
CI  
8
7
pF  
Output Capacitance  
CO  
pF  
Ta  
All pins not under test must be connected with ground by capacitors.  
IC Code Numbers  
UL631H256 S  
C
45  
Internal Code  
Access Time  
Type  
x
Package  
35 = 35 ns (V = 3.0 ... 3.6 V)  
CC  
S = SOP28 (330 mil) Type 1  
45 = 45 ns  
55 = 55 ns  
y
Operating Temperature Range  
C =  
K =  
0 to 70 °C  
-40 to 85 °C (only 45 and 55 ns)  
x:  
y:  
Package TSOP Typ I under development  
on special request  
The date of manufacture is given by the last 4 digits of the mark, the first 2 digits indicating the year, and the last  
2 digits the calendar week.  
9
September 25, 2002  
UL631H256  
Device Operation  
program of the nonvolatile elements. Once a STORE  
cycle is initiated, further inputs and outputs are disabled  
until the cycle is completed.  
Because a sequence of addresses is used for STORE  
initiation, it is important that no other READ or WRITE  
accesses intervene in the sequence or the sequence  
will be aborted and no STORE or RECALL will take  
place.  
The UL631H256 has two separate modes of operation:  
SRAM mode and nonvolatile mode. The memory ope-  
rates in SRAM mode as a standard fast static RAM.  
Data is transferred In nonvolatile mode from SRAM to  
EEPROM shadow (the STORE operation) or from  
EEPROM to SRAM (the RECALL operation). In this  
mode SRAM functions are disabled.  
To initiate the STORE cycle the following READ  
sequence must be performed:  
SRAM READ  
1.  
2.  
3.  
4.  
5.  
6.  
Read addresses 0E38 (hex) Valid READ  
Read addresses 31C7 (hex) Valid READ  
Read addresses 03E0 (hex) Valid READ  
Read addresses 3C1F (hex) Valid READ  
Read addresses 303F (hex) Valid READ  
Read addresses 0FC0 (hex) Initiate STORE  
Cycle  
The UL631H256 performs a READ cycle whenever E  
and G are LOW while W is HIGH. The address speci-  
fied on pins A0 - A14 determines which of the 32768  
data bytes will be accessed. When the READ is initia-  
ted by an address transition, the outputs will be valid  
after a delay of t . If the READ is initiated by E or G,  
cR  
the outputs will be valid at t  
or at t  
, whichever is  
a(E)  
a(G)  
later. The data outputs will repeatedly respond to  
Once the sixth address in the sequence has been  
entered, the STORE cycle will commence and the chip  
will be disabled. It is important that READ cycles and  
not WRITE cycles be used in the sequence, although it  
is not necessary that G be LOW for the sequence to be  
address changes within the t access time without the  
cR  
need for transition on any control input pins, and will  
remain valid until another address change or until E or  
G is brought HIGH or W is brought LOW.  
valid. After the t  
cycle time has been fulfilled, the  
STORE  
SRAM WRITE  
SRAM will again be activated for READ and WRITE  
operation.  
A WRITE cycle is performed whenever E and W are  
LOW. The address inputs must be stable prior to  
entering the WRITE cycle and must remain stable until  
either E or W goes HIGH at the end of the cycle. The  
data on pins DQ0 - 7 will be written into the memory if it  
Software Nonvolatile RECALL  
A RECALL cycle of the EEPROM data into the SRAM  
is initiated with a sequence of READ operations in a  
manner similar to the STORE initiation. To initiate the  
RECALL cycle the following sequence of READ opera-  
tions must be performed:  
is valid t  
before the end of a W controlled WRITE  
su(D)  
or t  
before the end of an E controlled WRITE.  
su(D)  
It is recommended that G is kept HIGH during the  
entire WRITE cycle to avoid data bus contention on the  
common I/O lines. If G is left LOW, internal circuitry will  
1.  
2.  
3.  
4.  
5.  
6.  
Read addresses 0E38 (hex) Valid READ  
Read addresses 31C7 (hex) Valid READ  
Read addresses 03E0 (hex) Valid READ  
Read addresses 3C1F (hex) Valid READ  
Read addresses 303F (hex) Valid READ  
Read addresses 0C63 (hex) Initiate RECALL  
Cycle  
turn off the output buffers t  
after W goes LOW.  
dis(W)  
Noise Consideration  
The UL631H256 is a high speed memory and therefore  
must have a high frequency bypass capacitor of appro-  
ximately 0.1 µF connected between V and V using  
CC  
SS  
leads and traces that are as short as possible. As with  
all high speed CMOS ICs, normal carefull routing of  
power, ground and signals will help prevent noise pro-  
blems.  
Internally, RECALL is a two step procedure. First, the  
SRAM data is cleared and second, the nonvolatile  
information is transferred into the SRAM cells. The  
RECALL operation in no way alters the data in the  
EEPROM cells. The nonvolatile data can be recalled an  
unlimited number of times.  
Software Nonvolatile STORE  
The UL631H256 software controlled STORE cycle is  
initiated by executing sequential READ cycles from six  
specific address locations. By relying on READ cycles  
only, the UL631H256 implements nonvolatile operation  
while remaining compatible with standard 32K x 8  
SRAMs. During the STORE cycle, an erase of the pre-  
vious nonvolatile data is first performed, followed by a  
Automatic Power Up RECALL  
On power up, once V  
exceeds the sense voltage of  
CC  
V
, a RECALL cycle is automatically initiated.  
SWITCH  
The voltage on the V  
pin must not drop below  
CC  
V
once it has risen above it in order for the  
SWITCH  
RECALL to operate properly. Due to this automatic  
10  
September 25, 2002  
UL631H256  
RECALL,SRAM operation cannot commence until  
after V exceeds V  
Low Average Active Power  
t
.
SWITCH  
RESTORE  
CC  
If the UL631H256 is in a WRITE state at the end of  
power up RECALL, the SRAM data will be corrupted.  
To help avoid this situation, a 10 kresistor should be  
The UL631H256 has been designed to draw signifi-  
cantly less power when E is LOW (chip enabled) but  
the cycle time is longer than 55 ns.  
connected between W and V  
When E is HIGH the chip consumes only standby cur-  
rent.  
CC.  
Hardware Protection  
The overall average current drawn by the part depends  
on the following items:  
The UL631H256 offers hardware protection against  
inadvertent STORE operation through V sense.  
1. CMOS or TTL input levels  
2. the time during which the chip is disabled (E HIGH)  
3. the cycle time for accesses (E LOW)  
4. the ratio of READs to WRITEs  
CC  
For V < V  
the software initiated STORE ope-  
CC  
SWITCH  
ration will be inhibited.  
5. the operating temperature  
6. the V level  
CC  
The information describes the type of component and shall not be considered as assured characteristics. Terms of  
delivery and rights to change design reserved.  
11  
September 25, 2002  
UL631H256  
LIFE SUPPORT POLICY  
ZMD products are not designed, intended, or authorized for use as components in systems intended for surgical  
implant into the body, or other applications intended to support or sustain life, or for any other application in which  
the failure of the ZMD product could create a situation where personal injury or death may occur.  
Components used in life-support devices or systems must be expressly authorized by ZMD for such purpose.  
LIMITED WARRANTY  
The information in this document has been carefully checked and is believed to be reliable. However Zentrum  
Mikroelektronik Dresden AG (ZMD) makes no guarantee or warranty concerning the accuracy of said information  
and shall not be responsible for any loss or damage of whatever nature resulting from the use of, or reliance upon  
it. The information in this document describes the type of component and shall not be considered as assured cha-  
racteristics.  
ZMD does not guarantee that the use of any information contained herein will not infringe upon the patent, trade-  
mark, copyright, mask work right or other rights of third parties, and no patent or licence is implied hereby. This  
document does not in any way extent ZMD’s warranty on any product beyond that set forth in its standard terms  
and conditions of sale.  
ZMD reserves terms of delivery and reserves the right to make changes in the products or specifications, or both,  
presented in this publication at any time and without notice.  
September 25, 2002  
Zentrum Mikroelektronik Dresden AG  
Grenzstraße 28 D-01109 Dresden P. O. B. 80 01 34 D-01101 Dresden Germany  
Phone: +49 351 8822 306 Fax: +49 351 8822 337 Email: memory@zmd.de http://www.zmd.de  

相关型号:

UL634H256

Low Voltage PowerStore 32K x 8 nvSRAM
SIMTEK

UL634H256SA35G1

Low Voltage PowerStore 32K x 8 nvSRAM
SIMTEK

UL634H256SA45G1

Low Voltage PowerStore 32K x 8 nvSRAM
SIMTEK

UL634H256SC35

LOW VOLTAGE POWERSTORE 32K X 8 NVSRAM
ETC

UL634H256SC35G1

Low Voltage PowerStore 32K x 8 nvSRAM
SIMTEK

UL634H256SC45

LOW VOLTAGE POWERSTORE 32K X 8 NVSRAM
ETC

UL634H256SC45G1

Low Voltage PowerStore 32K x 8 nvSRAM
SIMTEK

UL634H256SC55

NVRAM (EEPROM Based)
ETC

UL634H256SC55G1

Non-Volatile SRAM, 32KX8, 55ns, CMOS, PDSO32, 0.300 INCH, SOP-32
SIMTEK

UL634H256SK35

LOW VOLTAGE POWERSTORE 32K X 8 NVSRAM
ETC

UL634H256SK35G1

Low Voltage PowerStore 32K x 8 nvSRAM
SIMTEK

UL634H256SK45

LOW VOLTAGE POWERSTORE 32K X 8 NVSRAM
ETC