U631H256 [SIMTEK]

SoftStore 32K x 8 nvSRAM; SoftStore 32K ×8的nvSRAM
U631H256
型号: U631H256
厂家: SIMTEK CORPORATION    SIMTEK CORPORATION
描述:

SoftStore 32K x 8 nvSRAM
SoftStore 32K ×8的nvSRAM

静态存储器
文件: 总13页 (文件大小:248K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
U631H256  
SoftStore 32K x 8 nvSRAM  
Not Recommended For New Designs  
Features  
Description  
‡
High-performance CMOS non-  
volatile static RAM 32768 x 8 bits  
25 ns Access Times  
10 ns Output Enable Access  
Times  
Software STORE Initiation  
Automatic STORE Timing  
106 STORE cycles to EEPROM  
100 years data retention in  
EEPROM  
Automatic RECALL on Power Up  
Software RECALL Initiation  
Unlimited RECALL cycles from  
EEPROM  
The U631H256 has two separate Once a STORE cycle is initiated,  
modes of operation: SRAM mode further input or output are disabled  
and nonvolatile mode. In SRAM until the cycle is completed.  
mode, the memory operates as an Because a sequence of addresses  
ordinary static RAM. In nonvolatile is used for STORE initiation, it is  
operation, data is transferred in important that no other read or  
parallel from SRAM to EEPROM or write accesses intervene in the  
from EEPROM to SRAM. In this sequence or the sequence will be  
mode SRAM functions are disab- aborted.  
‡
‡
‡
‡
‡
‡
led.  
Internally, RECALL is a two step  
procedure. First, the SRAM data is  
‡
‡
‡
The U631H256 is a fast static RAM  
(25 ns), with a nonvolatile electri- cleared and second, the nonvola-  
cally erasable PROM (EEPROM) tile information is transferred into  
element incorporated in each static the SRAM cells.  
‡
Unlimited Read and Write to  
SRAM  
memory cell. The SRAM can be The RECALL operation in no way  
read and written an unlimited num- alters the data in the EEPROM  
ber of times, while independent cells. The nonvolatile data can be  
‡
‡
Single 5 V ± 10 % Operation  
Operating temperature ranges:  
0 to 70 °C  
nonvolatile  
data  
resides  
in recalled an unlimited number of  
EEPROM. Data transfers from the times.  
SRAM to the EEPROM (the The U631H256 is pin compatible  
STORE operation), or from the with standard SRAMs.  
EEPROM to the SRAM (the  
RECALL operation) are initiated  
through software sequences.  
-40 to 85 °C  
‡
‡
QS 9000 Quality Standard  
ESD protection > 2000 V  
(MIL STD 883C M3015.7-HBM)  
RoHS compliance and Pb- free  
Package: SOP28 (330 mil)  
‡
The U631H256 combines the high  
performance and ease of use of a  
fast SRAM with nonvolatile data  
integrity.  
Pin Description  
Pin Configuration  
A14  
A12  
A7  
1
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
VCC  
W
2
3
A13  
A8  
Signal Name Signal Description  
4
A6  
A0 - A14  
Address Inputs  
Data In/Out  
A5  
5
A9  
DQ0 - DQ7  
A4  
6
A11  
G
A3  
7
Chip Enable  
E
SOP  
A2  
8
A10  
E
Output Enable  
Write Enable  
Power Supply Voltage  
Ground  
G
A1  
9
W
A0  
10  
11  
12  
13  
14  
DQ7  
DQ6  
DQ5  
DQ4  
DQ3  
VCC  
VSS  
DQ0  
DQ1  
DQ2  
VSS  
Top View  
August 15, 2006  
STK Control #ML0043  
1
Rev 1.1  
U631H256  
Block Diagram  
EEPROM Array  
512 x (64 x 8)  
VCC  
VSS  
A5  
A6  
A7  
A8  
STORE  
RECALL  
SRAM  
Array  
A9  
A11  
A12  
A13  
A14  
512 Rows x  
64 x 8 Columns  
Store/  
Recall  
Control  
VCC  
DQ0  
DQ1  
DQ2  
DQ3  
DQ4  
DQ5  
DQ6  
Column I/O  
Column Decoder  
Software  
Detect  
A0 - A13  
A0 A1 A2 A3 A4A10  
G
DQ7  
E
W
Truth Table for SRAM Operations  
Operating Mode  
E
W
G
DQ0 - DQ7  
Standby/not selected  
Internal Read  
Read  
H
L
L
L
High-Z  
High-Z  
*
*
H
H
H
L
L
Data Outputs Low-Z  
Data Inputs High-Z  
Write  
*
* H or L  
Characteristics  
All voltages are referenced to VSS = 0 V (ground).  
All characteristics are valid in the power supply voltage range and in the operating temperature range specified.  
Dynamic measurements are based on a rise and fall time of 5 ns, measured between 10 % and 90 % of VI, as well as  
input levels of VIL = 0 V and VIH = 3 V. The timing reference level of all input and output signals is 1.5 V,  
with the exception of the tdis-times and ten-times, in which cases transition is measured ± ±200 mV from steady-state voltage.  
Absolute Maximum Ratingsa  
Symbol  
Min.  
Max.  
Unit  
Power Supply Voltage  
Input Voltage  
VCC  
VI  
-0.5  
-0.3  
-0.3  
7
V
V
VCC+0.5  
VCC+0.5  
1
Output Voltage  
VO  
PD  
V
Power Dissipation  
W
Operating Temperature  
C-Type  
K-Type  
0
-40  
70  
85  
°C  
°C  
Ta  
Storage Temperature  
Tstg  
-65  
150  
°C  
a: Stresses greater than those listed under „Absolute Maximum Ratings“ may cause permanent damage to the device. This is a stress  
rating only, and functional operation of the device at condition above those indicated in the operational sections of this specification is  
not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.  
Rev 1.1  
August 15, 2006  
STK Control #ML0043  
2
U631H256  
Recommended  
Operating Conditions  
Symbol  
Conditions  
Min.  
Max.  
Unit  
Power Supply Voltage  
Input Low Voltage  
Input High Voltage  
VCC  
VIL  
4.5  
-0.3  
2.2  
5.5  
0.8  
V
V
V
-2 V at Pulse Width  
10 ns permitted  
VIH  
VCC+0.3  
C-Type  
K-Type  
DC Characteristics  
Symbol  
Conditions  
Unit  
Min. Max. Min. Max.  
Operating Supply Currentb  
ICC1  
VCC = 5.5 V  
VIL  
VIH  
= 0.8 V  
= 2.2 V  
tc  
= 25 ns  
95  
6
100 mA  
Average Supply Current during  
STOREc  
ICC2  
VCC = 5.5 V  
E
W
VIL  
VIH  
7
mA  
mA  
VCC-0.2 V  
VCC-0.2 V  
0.2 V  
VCC-0.2 V  
Average Supply Current  
at tcR = 200 nsb  
(Cycling CMOS Input Levels)  
ICC3  
VCC = 5.5 V  
20  
20  
W
VIL  
VIH  
VCC-0.2 V  
0.2 V  
VCC-0.2 V  
Standby Supply Currentd  
(Cycling TTL Input Levels)  
ICC(SB)1 VCC = 5.5 V  
E
≥±VIH  
tc  
= 25 ns  
40  
1
42  
2
mA  
mA  
Standby Supply Curentd  
ICC(SB) VCC = 5.5 V  
(Stable CMOS Input Levels)  
E
VIL  
VIH  
VCC-0.2 V  
0.2 V  
VCC-0.2 V  
b: ICC1 and ICC3 are dependent on output loading and cycle rate. The specified values are obtained with outputs unloaded  
The current ICC1 is measured for WRITE/READ - ratio of 1/2.  
c:  
ICC2 is the average current required for the duration of the STORE cycle (tSTORE).  
d: Bringing E±≥±VIH will not produce standby current levels until any nonvolatile cycle in progress has timed out.  
The current ICC(SB)1 is measured for WRITE/READ - ratio of 1/2.  
August 15, 2006  
STK Control #ML0043  
3
Rev 1.1  
U631H256  
Symbol  
Conditions  
Min.  
Max.  
Unit  
DC Characteristics  
VCC  
IOH  
IOL  
= 4.5 V  
=-4 mA  
= 8 mA  
Output High Voltage  
Output Low Voltage  
VOH  
VOL  
2.4  
V
V
0.4  
-4  
VCC  
VOH  
VOL  
= 4.5 V  
= 2.4 V  
= 0.4 V  
Output High Current  
Output Low Current  
IOH  
IOL  
mA  
mA  
8
Input Leakage Current  
VCC  
= 5.5 V  
High  
Low  
IIH  
IIL  
VIH  
VIL  
= 5.5 V  
1
μA  
μA  
=
0 V  
-1  
-1  
Output Leakage Current  
VCC  
E or G VIH  
VOH  
VOL  
= 5.5 V  
High at Three-State- Output  
Low at Three-State- Output  
IOHZ  
IOLZ  
= 5.5 V  
1
μA  
μA  
=
0 V  
SRAM Memory Operation  
Symbol  
Switching Characteristics  
No.  
Unit  
Read Cycle  
Alt.  
IEC  
Min. Max.  
1
2
3
4
Read Cycle Timef  
tAVAV  
tAVQV  
tELQV  
tcR  
25  
25  
25  
ns  
ns  
ns  
Address Access Time to Data Validg  
Chip Enable Access Time to Data Valid  
ta(A)  
ta(E)  
Output Enable Access Time to Data  
Valid  
tGLQV  
ta(G)  
10  
ns  
5
6
7
8
9
E HIGH to Output in High-Zh  
G HIGH to Output in High-Zh  
E LOW to Output in Low-Z  
tEHQZ  
tGHQZ  
tELQX  
tdis(E)  
tdis(G)  
ten(E)  
ten(G)  
tv(A)  
10  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
10  
5
G LOW to Output in Low-Z  
tGLQX  
0
Output Hold Time after Addr. Changeg  
tAXQX  
3
10 Chip Enable to Power Activee  
tELICCH  
tEHICCL  
tPU  
0
11 Chip Disable to Power Standbyd, e  
tPD  
25  
e: Parameter guaranteed but not tested.  
f: Device is continuously selected with E and G both Low.  
g: Address valid prior to or coincident with E transition LOW.  
h: Measured ± ±200 mV from steady state output voltage.  
Rev 1.1  
August 15, 2006  
STK Control #ML0043  
4
U631H256  
f
=
=
VIL, W = VIH)  
Read Cycle 1: Ai-controlled (during Read cycle: E  
G
tcR  
(1)  
Ai  
Address Valid  
ta(A)  
(2)  
Output Data Valid  
Previous Data Valid  
DQi  
Output  
tv(A)  
(9)  
Read Cycle 2: G-, E-controlled (during Read cycle: W = VIH)g  
tcR  
Address Valid  
(1)  
Ai  
E
ta(A)  
ta(E)  
(2)  
(3)  
tdis(E)  
(5)  
tPD  
ten(E)  
(11)  
(7)  
G
ta(G)  
(4)  
tdis(G)  
(6)  
ten(G)  
(8)  
DQi  
Output  
High Impedance  
Output Data Valid  
t
PU (10)  
ACTIVE  
ICC  
STANDBY  
Symbol  
Switching Characteristics  
Write Cycle  
Unit  
No.  
Alt. #1  
Alt. #2  
IEC  
Min. Max.  
12 Write Cycle Time  
13 Write Pulse Width  
tAVAV  
tAVAV  
tcW  
tw(W)  
tsu(W)  
tsu(A)  
tsu(A-WH)  
tsu(E)  
tw(E)  
25  
20  
20  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tWLWH  
14 Write Pulse Width Setup Time  
15 Address Setup Time  
tWLEH  
tAVEL  
tAVEH  
tAVWL  
tAVWH  
tELWH  
16 Address Valid to End of Write  
17 Chip Enable Setup Time  
18 Chip Enable to End of Write  
20  
20  
20  
10  
0
tELEH  
tDVEH  
tEHDX  
19 Data Setup Time to End of Write tDVWH  
tsu(D)  
th(D)  
20 Data Hold Time after End of  
Write  
tWHDX  
21 Address Hold after End of Write tWHAX  
tEHAX  
th(A)  
0
5
ns  
ns  
ns  
22 W LOW to Output in High-Zh, i  
23 W HIGH to Output in Low-Z  
tWLQZ  
tWHQX  
tdis(W)  
ten(W)  
10  
August 15, 2006  
STK Control #ML0043  
5
Rev 1.1  
U631H256  
Write Cycle #1: W-controlledj  
tcW  
(12)  
Ai  
Address Valid  
(17)  
tsu(E)  
th(A)  
(21)  
E
tsu(A-WH)  
tw(W)  
(16)  
(13)  
W
tsu(A)  
(15)  
th(D)  
tsu(D)  
(20)  
(19)  
DQi  
Input  
Input Data Valid  
tdis(W)  
ten(W)  
(22)  
(23)  
DQi  
Output  
High Impedance  
Previous Data  
Write Cycle #2: E-controlledj  
tcW  
(12)  
Ai  
E
Address Valid  
tw(E)  
th(A)  
(18)  
(21)  
tsu(A)  
(15)  
tsu(W)  
(14)  
tsu(D)  
W
th(D)  
Input Data Valid  
(19)  
(20)  
DQi  
Input  
DQi  
High Impedance  
Output  
undefined  
L- to H-level  
H- to L-level  
i: If W is low and when E goes low, the outputs remain in the high impedance state.  
>
j: E or W must be  
VIH during address transitions.  
Rev 1.1  
August 15, 2006  
STK Control #ML0043  
6
U631H256  
Nonvolatile Memory Operations  
Symbol  
STORE Cycle Inhibit and  
No.  
Min.  
Max.  
Unit  
Automatic Power Up RECALL  
Alt.  
IEC  
24 Power Up RECALL Durationk  
Low Voltage Trigger Level  
tRESTORE  
VSWITCH  
650  
4.5  
μs  
4.0  
V
k: tRESTORE starts from the time VCC rises above VSWITCH  
.
STORE Cycle Inhibit and Automatic Power Up RECALL  
V
CC  
5.0 V  
V
SWITCH  
t
STORE inhibit  
Power Up  
RECALL  
(24)  
t
RESTORE  
Software Mode Selection  
A13 - A0  
(hex)  
E
W
Mode  
I/O  
Power  
Notes  
L
H
0E38  
31C7  
03E0  
3C1F  
303F  
0FC0  
Read SRAM  
Read SRAM  
Read SRAM  
Read SRAM  
Read SRAM  
Output Data  
Output Data  
Output Data  
Output Data  
Output Data  
Output High Z  
Active  
l, m  
l, m  
l, m  
l, m  
l, m  
l, m  
Nonvolatile STORE  
ICC2  
L
H
0E38  
31C7  
03E0  
3C1F  
303F  
0C63  
Read SRAM  
Read SRAM  
Read SRAM  
Read SRAM  
Read SRAM  
Output Data  
Output Data  
Output Data  
Output Data  
Output Data  
Output High Z  
Active  
l, m  
l, m  
l, m  
l, m  
l, m  
l, m  
Nonvolatile RECALL  
l: The six consecutive addresses must be in order listed. W must be high during all six consecutive cycles. See STORE cycle and RECALL  
cycle tables and diagrams for further details.  
The following six-address sequence is used for testing purposes and should not be used: 0E38, 31C7, 03E0, 3C1F, 303F, 339C.  
m: While there are 15 addresses on the U631H256, only the lower 14 are used to control software modes.  
August 15, 2006  
STK Control #ML0043  
7
Rev 1.1  
U631H256  
Symbol  
Alt.  
tAVAV  
tELQZ  
No. Software Controlled STORE/RECALL  
Unit  
Cyclel, n  
IEC  
tcR  
Min. Max.  
25 STORE/RECALL Initiation Time  
26 Chip Enable to Output Inactiveo  
27 STORE Cycle Timep  
25  
600  
10  
20  
0
ns  
ns  
ms  
μs  
ns  
ns  
ns  
tdis(E)SR  
td(E)S  
tELQXS  
tELQXR  
tAVELN  
tELEHN  
tEHAXN  
28 RECALL Cycle Timeq  
td(E)R  
29 Address Setup to Chip Enabler  
30 Chip Enable Pulse Widthr, s  
31 Chip Disable to Address Changer  
tsu(A)SR  
tw(E)SR  
th(A)SR  
20  
0
n: The software sequence is clocked with E controlled READs  
o: Once the software controlled STORE or RECALL cycle is initiated, it completes automatically, ignoring all inputs.  
p: Note that STORE cycles (but not RECALL) are aborted by VCC < VSWITCH (STORE inhibit).  
q: An automatic RECALL also takes place at power up, starting when VCC exceeds VSWITCH and takes tRESTORE. VCC must not drop below  
SWITCH once it has been exceeded for the RECALL to function properly.  
V
r: Noise on the E pin may trigger multiple READ cycles from the same address and abort the address sequence.  
s: If the Chip Enable Pulse Width is less than ta(E) (see Read Cycle) but greater than or equal tw(E)SR, than the data may not be valid at  
the end of the low pulse, however the STORE or RECALL will still be initiated.  
Software Controlled STORE/RECALL Cyclet, u (E = HIGH after STORE initiation)  
tcR  
ADDREESS 1  
tcR  
(25)  
(25)  
Ai  
E
ADDRESS 6  
t
(30)  
w(E)SR  
tsu(A)SR  
(31)  
th(A)SR  
(29)  
td(E)S (27) td(E)R  
(28)  
High Impedance  
DQi  
Output  
VALID  
VALID  
tdis(E)SR  
(26)  
Software Controlled STORE/RECALL Cycler, s, t, u (E = LOW after STORE initiation)  
tcR  
(25)  
Ai  
E
ADDRESS 6  
tsu(A)SR (29)  
ADDRESS 1  
th(A)SR  
(31)  
tw(E)SR  
(30)  
th(A)SR  
(31)  
VALID  
tsu(A)SR (29)  
td(E)R  
td(E)S  
(27)  
(28)  
DQi  
Output  
High Impedance  
VALID  
tdis(E)SR  
(26)  
t: W must be HIGH when E is LOW during the address sequence in order to initiate a nonvolatile cycle. G may be either HIGH or LOW  
throughout. Addresses 1 through 6 are found in the mode selection table. Address 6 determines wheter the U631H256 performs a STORE  
or RECALL.  
u: E must be used to clock in the address sequence for the Software controlled STORE and RECALL cycles.  
Rev 1.1  
August 15, 2006  
STK Control #ML0043  
8
U631H256  
Test Configuration for Functional Check  
5 V  
w
A0  
A1  
VCC  
A2  
A3  
A4  
A5  
A6  
A7  
A8  
A9  
A10  
A11  
A12  
A13  
A14  
DQ0  
DQ1  
DQ2  
DQ3  
DQ4  
DQ5  
DQ6  
DQ7  
480  
VIH  
VIL  
VO  
v
30 pF  
E
W
G
255  
VSS  
v: In measurement of tdis-times and ten-times the capacitance is 5 pF.  
w: Between VCC and VSS must be connected a high frequency bypass capacitor 0.1 μF to avoid disturbances.  
Capacitancee  
Conditions  
Symbol  
Min.  
Max.  
Unit  
VCC  
VI  
f
= 5.0 V  
= VSS  
= 1 MHz  
= 25 °C  
Input Capacitance  
CI  
8
pF  
Output Capacitance  
CO  
7
pF  
Ta  
All pins not under test must be connected with ground by capacitors.  
Ordering Code  
Example  
Type  
U631H256  
S
C
25 G1  
Leadfree Option  
G1 = Leadfree Green Package  
Package  
S2 = SOP28 (330mil) Type 2  
Access Time  
25 = 25 ns  
Operating Temperature Range  
C = 0 to 70 °C  
K = -40 to 85 °C  
Device Marking (example)  
ZMD  
Product specification  
Date of manufacture  
U631H256SC  
25 Z 0425  
G1  
(The first 2 digits indicating  
the year, and the last 2  
digits the calendar week.)  
Internal Code  
Leadfree Green Package  
August 15, 2006  
STK Control #ML0043  
9
Rev 1.1  
U631H256  
Device Operation  
vious nonvolatile data is first performed, followed by a  
program of the nonvolatile elements. Once a STORE  
cycle is initiated, further inputs and outputs are disabled  
until the cycle is completed .Because a sequence of  
addresses is used for STORE initiation, it is important  
that no other READ or WRITE accesses intervene in  
the sequence or the sequence  
The U631H256 has two separate modes of operation:  
SRAM mode and nonvolatile mode. The memory ope-  
rates in SRAM mode as a standard fast static RAM.  
Data is transferred in nonvolatile mode from SRAM to  
EEPROM shadow (the STORE operation) or from  
EEPROM to SRAM (the RECALL operation). In this  
mode SRAM functions are disabled.  
will be aborted and no STORE or RECALL will take  
place.  
To initiate the STORE cycle the following READ  
sequence must be performed:  
SRAM READ  
The U631H256 performs a READ cycle whenever E  
and G are LOW while W is HIGH. The address speci-  
fied on pins A0 - A14 determines which of the 32768  
data bytes will be accessed. When the READ is initia-  
ted by an address transition, the outputs will be valid  
after a delay of tcR. If the READ is initiated by E or G,  
the outputs will be valid at ta(E) or at ta(G), whichever is  
later. The data outputs will repeatedly respond to  
address changes within the tcR access time without the  
need for transition on any control input pins, and will  
remain valid until another address change or until E or  
G is brought HIGH or W is brought LOW.  
1.  
2.  
3.  
4.  
5.  
6.  
Read addresses 0E38 (hex) Valid READ  
Read addresses 31C7 (hex) Valid READ  
Read addresses 03E0 (hex) Valid READ  
Read addresses 3C1F (hex) Valid READ  
Read addresses 303F (hex) Valid READ  
Read addresses 0FC0 (hex) Initiate STORE  
Cycle  
Once the sixth address in the sequence has been  
entered, the STORE cycle will commence and the chip  
will be disabled. It is important that READ cycles and  
not WRITE cycles be used in the sequence, although it  
is not necessary that G be LOW for the sequence to be  
valid. After the tSTORE cycle time has been fulfilled, the  
SRAM will again be activated for READ and WRITE  
operation.  
SRAM WRITE  
A WRITE cycle is performed whenever E and W are  
LOW. The address inputs must be stable prior to  
entering the WRITE cycle and must remain stable until  
either E or W goes HIGH at the end of the cycle. The  
data on pins DQ0 - 7 will be written into the memory if it  
is valid tsu(D) before the end of a W controlled WRITE  
or tsu(D) before the end of an E controlled WRITE.  
It is recommended that G is kept HIGH during the  
entire WRITE cycle to avoid data bus contention on the  
common I/O lines. If G is left LOW, internal circuitry will  
turn off the output buffers tdis(W) after W goes LOW.  
Software Nonvolatile RECALL  
A RECALL cycle of the EEPROM data into the SRAM  
is initiated with a sequence of READ operations in a  
manner similar to the STORE initiation. To initiate the  
RECALL cycle the following sequence of READ opera-  
tions must be performed:  
1.  
2.  
3.  
4.  
5.  
6.  
Read addresses 0E38 (hex) Valid READ  
Read addresses 31C7 (hex) Valid READ  
Read addresses 03E0 (hex) Valid READ  
Read addresses 3C1F (hex) Valid READ  
Read addresses 303F (hex) Valid READ  
Read addresses 0C63 (hex) Initiate RECALL  
Cycle  
Noise Consideration  
The U631H256 is a high speed memory and therefore  
must have a high frequency bypass capacitor of appro-  
ximately 0.1 μF connected between VCC and VSS using  
leads and traces that are as short as possible. As with  
all high speed CMOS ICs, normal carefull routing of  
power, ground and signals will help prevent noise pro-  
blems.  
Internally, RECALL is a two step procedure. First, the  
SRAM data is cleared and second, the nonvolatile  
information is transferred into the SRAM cells. The  
RECALL operation in no way alters the data in the  
EEPROM cells. The nonvolatile data can be recalled an  
unlimited number of times.  
Software Nonvolatile STORE  
The U631H256 software controlled STORE cycle is  
initiated by executing sequential READ cycles from six  
specific address locations. By relying on READ cycles  
only, the U631H256 implements nonvolatile operation  
while remaining compatible with standard 32K x 8  
SRAMs. During the STORE cycle, an erase of the pre-  
Automatic Power Up RECALL  
On power up, once VCC exceeds the sense voltage of  
V
SWITCH, a RECALL cycle is automatically initiated.  
The voltage on the VCC pin must not drop below  
Rev 1.1  
August 15, 2006  
STK Control #ML0043  
10  
U631H256  
Low Average Active Power  
RECALL; SRAM operation cannot commence until  
RESTORE after VCC exceeds VSWITCH  
t
.
The U631H256 has been designed to draw significantly  
less power when E is LOW (chip enabled) but the  
access cycle time is longer than 55 ns.  
When E is HIGH the chip consumes only standby cur-  
rent.  
If the U631H256 is in a WRITE state at the end of  
power up RECALL, the SRAM data will be corrupted.  
To help avoid this situation, a 10 kΩ resistor should be  
connected between W and VCC.  
The overall average current drawn by the part depends  
on the following items:  
Hardware Protection  
1. CMOS or TTL input levels  
The U631H256 offers hardware protection against  
inadvertent STORE operation through VCC sense.  
For VCC < VSWITCH the software initiated STORE ope-  
ration will be inhibited.  
2. the time during which the chip is disabled (E HIGH)  
3. the cycle time for accesses (E LOW)  
4. the ratio of READs to WRITEs  
5. the operating temperature  
6. the VCC level  
The information describes the type of component and shall not be considered as assured characteristics. Terms of  
delivery and rights to change design reserved.  
August 15, 2006  
STK Control #ML0043  
11  
Rev 1.1  
U631H256  
LIFE SUPPORT POLICY  
SIMTEK products are not designed, intended, or authorized for use as components in systems intended for sur-  
gical implant into the body, or other applications intended to support or sustain life, or for any other application in  
which the failure of the SIMTEK product could create a situation where personal injury or death may occur.  
Components used in life-support devices or systems must be expressly authorized by SIMTEK for such purpose.  
LIMITED WARRANTY  
The information in this document has been carefully checked and is believed to be reliable. However SIMTEK  
Corporation (SIMTEK) makes no guarantee or warranty concerning the accuracy of said information and shall  
not be responsible for any loss or damage of whatever nature resulting from the use of, or reliance upon it. The  
information in this document describes the type of component and shall not be considered as assured characte-  
ristics.  
SIMTEK does not guarantee that the use of any information contained herein will not infringe upon the patent,  
trademark, copyright, mask work right or other rights of third parties, and no patent or licence is implied hereby.  
This document does not in any way extent SIMTEK’s warranty on any product beyond that set forth in its stan-  
dard terms and conditions of sale.  
SIMTEK reserves terms of delivery and reserves the right to make changes in the products or specifications, or  
both, presented in this publication at any time and without notice.  
August 15, 2006  
Simtek Corporation  
4250 Buckingham Drive suite 100±• Colorado Springs, CO 80907 USA  
Phone: +(800)637-1667 Fax: +(719)531-9481 Email: information@simtek.com http://www.simtek.com  
Change record  
Date/Rev  
Name  
Change  
01.08.2001  
Steffen Buschbeck  
changed limit for CMOS standby current  
Page 3: ICC(SB) = 2 mA for K-Type  
01.11.2001  
25.09.2002  
30.10.2002  
04.12.2003  
21.04.2004  
Ivonne Steffens  
format revision and release for “Memory CD 2002“  
adding “Type 1“ to SOP28 (330 mil)  
Matthias Schniebel  
Matthias Schniebel  
Matthias Schniebel  
Matthias Schniebel  
combining U631H256 and U631H256SM in one datasheet  
Operating Supply Current at tcR = 200 ns: ICC3 = 20 mA  
adding “Leadfree Green Package“ to ordering information  
adding “Device Marking“  
6
7.4.2005  
Stefan Günther  
Stefan Günther  
changing 10 endurance cycles and 100a dataretention, mil.  
temperature range and PDIP28 (300mil) deleted, G1 no more on  
special request, add S2 = SOP28 (330mil) Type 2 (chip pack)  
12.10.2005  
change -55°C to -40°C and M- to A- type in DC characteristics,  
absolute ratings, ordering code  
31.03.2006  
15.08.2006  
Simtek  
Simtek  
Assigned Simtek Document Control Number  
Moved Product To End of Life Status  

相关型号:

U631H256BSM35

32KX8 NON-VOLATILE SRAM, 35ns, PDSO28, 0.330 INCH, SOP-28
CYPRESS

U631H256BSM35G1

32KX8 NON-VOLATILE SRAM, 35ns, PDSO28, 0.330 INCH, SOP-28
CYPRESS

U631H256CSM35G1

Non-Volatile SRAM, 32KX8, 35ns, CMOS, PDSO28, 0.330 INCH, SOP-28
CYPRESS

U631H256D1C25

Non-Volatile SRAM, 32KX8, 25ns, CMOS, PDIP28, 0.600 INCH, PLASTIC, DIP-28
SIMTEK

U631H256D1C25G1

Non-Volatile SRAM, 32KX8, 25ns, CMOS, PDIP28, 0.600 INCH, GREEN, PLASTIC, DIP-28
SIMTEK

U631H256D1C35

32KX8 NON-VOLATILE SRAM, 35ns, PDIP28, 0.600 INCH, PLASTIC, DIP-28
SIMTEK

U631H256D1C35G1

32KX8 NON-VOLATILE SRAM, 35ns, PDIP28, 0.600 INCH, GREEN, PLASTIC, DIP-28
CYPRESS

U631H256D1C45

Non-Volatile SRAM, 32KX8, 45ns, CMOS, PDIP28, 0.600 INCH, PLASTIC, DIP-28
SIMTEK

U631H256D1C45G1

Non-Volatile SRAM, 32KX8, 45ns, CMOS, PDIP28, 0.600 INCH, GREEN, PLASTIC, DIP-28
SIMTEK

U631H256D1K25

32KX8 NON-VOLATILE SRAM, 25ns, PDIP28, 0.600 INCH, PLASTIC, DIP-28
SIMTEK

U631H256D1K35

Non-Volatile SRAM, 32KX8, 35ns, CMOS, PDIP28, 0.600 INCH, PLASTIC, DIP-28
SIMTEK

U631H256D1K45

Non-Volatile SRAM, 32KX8, 45ns, CMOS, PDIP28, 0.600 INCH, PLASTIC, DIP-28
SIMTEK