SI3000-KSR [SILICON]

Programmable Codec, 1-Func, PDSO16, SOIC-16;
SI3000-KSR
型号: SI3000-KSR
厂家: SILICON    SILICON
描述:

Programmable Codec, 1-Func, PDSO16, SOIC-16

放大器 电动机控制
文件: 总34页 (文件大小:816K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Si3000  
VOICEBAND CODEC WITH MICROPHONE/SPEAKER DRIVE  
Features  
Complete voice codec solution includes the following:  
84 dB ADC Dynamic Range  
84 dB DAC Dynamic Range  
4–12 kHz Sample Rates  
30 dB Microphone Pre-Amp  
Support for 32 Headphones  
3:1 Analog Input Mixer  
3.3–5.0 V Power Supply  
Direct Serial Interface to DSPs  
Programmable Input Gain/  
Direct Connection to Si303x/44/56,  
Ordering Information:  
Attenuation: –34.5 dB to 12 dB  
serial interface DAA chipsets  
See page 29.  
Programmable Output Gain/  
Low profile 16-Pin SOIC Package  
Attenuation: –34.5 dB to 12 dB  
RoHS-compliant package  
available  
Pin Assignments  
Si3000  
Applications  
Modem Voice Channel (DSVD) Speech Processing  
1
2
3
4
5
6
7
8
SPKRL  
Telephony  
General Purpose Analog I/O  
SPKRR  
MBIAS  
HDST  
SDI  
16  
15  
14  
13  
12  
11  
10  
9
LINEO  
GND  
VA  
Companion chip for FDX  
ISOmodems with voice features  
SDO  
VD  
Description  
FSYNC  
MCLK  
SCLK  
LINEI  
MIC  
The Si3000 is a complete voice band audio codec solution that offers high  
integration by incorporating programmable input and output gain/  
attenuation, a microphone bias circuit, handset hybrid circuit, and an  
output drive for 32 headphones. The Si3000 can be connected directly  
to the Si3034, Si3035, Si3044, and Si3056 North American and  
international DAA chipsets through their daisy-chaining serial interface. It  
also serves as a companion chip to a FAT ISOmodem chipset with voice  
features, providing hardware support for a handset and speaker phone.  
The device operates from a single 3.3 to 5 V power supply and is  
available in a 16-pin small outline package (SOIC).  
RESET  
Functional Block Diagram  
Si3000  
MBIAS  
0/+10/+20/+30 dB  
MIC  
MCLK  
Prog Gain/  
Attenuator  
ADC  
SCLK  
LINEI  
0/+10/+20 dB  
FSYNC  
Digital  
SDI  
Handset  
Hybrid  
Interface  
HDST  
SDO  
0/–6/–12/–18 dB  
SPKRR  
Headphone  
Driver  
Prog Gain/  
Attenuator  
DAC  
SPKRL  
LINEO  
0/–6/–12/–18 dB  
RESET  
Rev. 1.4 12/10  
Copyright © 2010 by Silicon Laboratories  
Si3000  
Si3000  
2
Rev. 1.4  
Si3000  
TABLE OF CONTENTS  
Section  
Page  
1. Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4  
2. Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14  
2.1. Analog Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14  
2.2. Pre-amp/Microphone Bias Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14  
2.3. Programmable Input Gain/Attenuation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14  
2.4. Analog Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14  
2.5. Programmable Output Gain/Attenuation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15  
2.6. Line Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15  
2.7. Speaker Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15  
2.8. Digital Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15  
2.9. Clock Generation Subsystem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17  
2.10. Sleep Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18  
2.11. Loopback Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18  
2.12. Reducing Power-on Pop Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18  
3. Control Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19  
4. Pin Descriptions: Si3000 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27  
5. Ordering Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29  
6. Package Outline: 16-Pin SOIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30  
7. 16-Pin SOIC Land Pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31  
8. Package Markings (Top Markings) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32  
8.1. Si3000-C-GS Top Marking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32  
8.2. Si3000-C-FS Top Marking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32  
Document Change List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33  
Contact Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34  
Rev. 1.4  
3
Si3000  
1. Electrical Specifications  
Table 1. Recommended Operating Conditions  
1
1
Parameter  
Symbol  
Test Condition  
Typ  
Unit  
Min  
0
Max  
Ambient Temperature  
TA  
VA  
VD  
F and K-grade  
25  
70  
°C  
V
Si3000 Supply Voltage, Analog2  
Si3000 Supply Voltage, Digital2,3  
3.0  
3.0  
3.3/5.0  
3.3/5.0  
5.25  
5.25  
V
Notes:  
1. All minimum and maximum specifications are guaranteed and apply across the recommended operating conditions.  
Typical values apply at nominal supply voltages and an operating temperature of 25°C unless otherwise stated.  
2. The digital supply, VD, and analog supply, VA, can operate from either 3.3 V or 5.0 V. The Si3000 supports interface to  
3.3 V logic when operating from 3.3 V. VD must be within 0.6 V of VA.  
3. The Si3000 specifications are guaranteed using the typical application circuit (including component tolerance) of  
Figure 13.  
Table 2. DC Characteristics, VA/VD = 5 V  
(VA = 5 V ±5%, VD = 5 V ±5%, TA = 0 to 70°C)  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
High Level Input Voltage  
VIH  
VIL  
VOH  
VOL  
IL  
3.5  
6.5  
10  
0.8  
V
V
Low Level Input Voltage  
High Level Output Voltage  
Low Level Output Voltage  
Input Leakage Current  
Power Supply Current, Analog1  
Power Supply Current, Digital2  
Total Supply Current, Sleep Mode3  
IO = –2 mA  
IO = 2 mA  
3.5  
V
0.4  
10  
10  
15  
1.5  
V
–10  
µA  
mA  
mA  
mA  
IA  
VA pin  
VD pin  
ID  
Notes:  
1. No loads at DAC outputs, no load at MBIAS, Fs=12.5 kHz.  
2. Slave mode operation, Fs = 12.5 kHz.  
3. All inputs, except MCLK, are held static, and all outputs are unloaded.  
Table 3. DC Characteristics, VA/VD = 3.3 V  
(VA = 3.3 V ±10%, VD = 3.3 V ±10%, TA = 0 to 70°C)  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
High Level Input Voltage  
VIH  
VIL  
VOH  
VOL  
IL  
2.4  
6
0.8  
V
V
Low Level Input Voltage  
High Level Output Voltage  
Low Level Output Voltage  
Input Leakage Current  
IO = –2 mA  
IO = 2 mA  
2.4  
V
0.35  
10  
V
–10  
µA  
mA  
mA  
mA  
Power Supply Current, Analog  
Power Supply Current, Digital2  
Total Supply Current, Sleep Mode3  
IA  
VA pin  
VD pin  
10  
ID  
6
10  
1.5  
Notes:  
1. No loads at DAC outputs, no load at MBIAS, Fs=12.5 kHz.  
2. Slave mode operation, Fs = 12.5 kHz.  
3. All inputs, except MCLK, are held static, and all outputs are unloaded.  
4
Rev. 1.4  
Si3000  
Table 4. AC Characteristics  
(VA, VD = 5 V ±5% or 3.3 V ±10%, TA = 0 to 70°C)  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
16  
Max  
Unit  
Bits  
dB  
ADC Resolution  
ADC Dynamic Range1,2  
ADC Total Harmonic Distortion3  
VA, VD = 3.3 V ±10%  
ADCDR  
VIN = 1 kHz, –3 dB  
80  
84  
ADCTHD VIN = 1 kHz, –3 dB, MIC/LINEI  
VIN = 1 kHz, –3 dB, HDST  
–80  
–80  
–80  
–80  
1
–62  
–62  
–76  
–71  
dB  
ADC Total Harmonic Distortion3  
VA, VD = 5 V ±5%  
ADCTHD VIN = 1 kHz, –3 dB, MIC/LINEI  
VIN = 1 kHz, –3 dB, HDST  
dB  
ADC Full Scale Level (0 dB gain)4  
ADC Programmable Input Gain  
ADC Input Gain Step Size  
ADC Freq Response5  
ADC Freq Response5  
ADC Freq Response  
VRX  
Vin = 1 kHz  
Vrms  
dB  
dB  
Hz  
dB  
dB  
dB  
dB  
–34.5  
12  
1.5  
33  
FRR  
FRR  
FRR  
Low –3 dB corner  
300 Hz  
–0.1  
–0.2  
0
3400 Hz  
0
Line In Preamp Gain  
0/10/20  
Mic In Preamp Gain  
0/10/20/  
30  
ADC Input Resistance  
ADC Input Capacitance  
ADC Gain Drift  
0 dB Preamp Gain  
VIN = 1 kHz  
20  
15  
k  
pF  
AT  
0.002  
16  
dB/°C  
Bits  
dB  
DAC Resolution  
DAC Dynamic Range1,2  
DAC Total Harmonic Distortion3  
VA, VD = 3.3 V ±10%  
DACDR  
VIN = 1 kHz, –6 dB  
80  
84  
DACTHD VIN=1 kHz,–6 dB,LINEO,600   
VIN=1 kHz,–6 dB, SPKR, 60   
VIN=1 kHz,–6 dB, HDST, 600   
DACTHD VIN=1 kHz,–3 dB,LINEO,600   
VIN=1 kHz,–3 dB, SPKR, 60   
VIN=1 kHz,–3 dB, HDST, 600   
VRX  
–76  
–72  
–80  
–76  
–72  
–80  
1
–60  
–60  
–70  
–65  
–65  
–76  
dB  
DAC Total Harmonic Distortion3  
VA, VD = 5 V ±5%  
dB  
DAC Full Scale Level (0 dB gain)  
DAC Programmable Output Gain  
Notes:  
Vrms  
dB  
–34.5  
12  
1. DR = VIN + 20 log (RMS signal/RMS noise). Measurement bandwidth is 300 to 3400 Hz. Valid sample rate ranges  
between 4000 and 12000 Hz.  
2. 0 dB setting for analog and digital attenuation/gain.  
3. THD = 20 log (RMS distortion/RMS signal). Valid sample rate ranges between 4000 and 12000 Hz.  
4. At 0 dB gain setting, 1 Vrms input corresponds to –1.5 dB of full scale digital output code.  
5. These characteristics are determined by external components. See Figure 13.  
6. With a 600 load. Output starts clipping with half of full scale digital input, which corresponds to a 0.5 Vrms output.  
Rev. 1.4  
5
Si3000  
Table 4. AC Characteristics (Continued)  
(VA, VD = 5 V ±5% or 3.3 V ±10%, TA = 0 to 70°C)  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
1.5  
33  
Max  
0
Unit  
dB  
DAC Output Gain Step Size  
DAC Freq Response5  
FRR  
FRR  
FRR  
Low –3 dB corner  
300 Hz  
Hz  
DAC Freq Response5  
–0.01  
–0.2  
600  
dB  
DAC Freq Response  
3400 Hz  
0
dB  
DAC Line Output Load Resistance  
DAC Line Output Load Capacitance  
DAC SPKR Output Load Resistance  
DAC Gain Drift  
40  
pF  
60  
AT  
VIN = 1 kHz  
0.002  
90  
dB/°C  
dB  
Interchannel Isolation (Crosstalk)  
HDST Full Scale Level Input  
HDST Full Scale Level Output6  
HDST Output Resistance  
MIC Bias Voltage  
0.5  
1.0  
600  
2.5  
40  
Vrms  
Vrms  
Rout  
Vmbias  
PSRR  
DC  
V
MIC Power Supply Rejection Ratio  
Notes:  
dB  
1. DR = VIN + 20 log (RMS signal/RMS noise). Measurement bandwidth is 300 to 3400 Hz. Valid sample rate ranges  
between 4000 and 12000 Hz.  
2. 0 dB setting for analog and digital attenuation/gain.  
3. THD = 20 log (RMS distortion/RMS signal). Valid sample rate ranges between 4000 and 12000 Hz.  
4. At 0 dB gain setting, 1 Vrms input corresponds to –1.5 dB of full scale digital output code.  
5. These characteristics are determined by external components. See Figure 13.  
6. With a 600 load. Output starts clipping with half of full scale digital input, which corresponds to a 0.5 Vrms output.  
Table 5. Absolute Maximum Ratings  
Parameter  
Symbol  
V , V  
Value  
–0.5 to 6.0  
±10  
Unit  
V
DC Supply Voltage  
D
A
Input Current, Si3000 Digital Input Pins  
Digital Input Voltage  
I
mA  
V
IN  
V
–0.3 to (V + 0.3)  
IND  
D
Operating Temperature Range  
Storage Temperature Range  
T
–10 to 100  
–40 to 150  
°C  
°C  
A
T
STG  
Note: Permanent device damage may occur if the above Absolute Maximum Ratings are exceeded. Functional operation  
should be restricted to the conditions as specified in the operational sections of this data sheet. Exposure to absolute  
maximum rating conditions for extended periods may affect device reliability.  
6
Rev. 1.4  
Si3000  
Table 6. Switching Characteristics—General Inputs  
(VA, VD = 5 V ±5% or 3.3 V ±10%,TA = 0 to 70°C, CL = 20 pF)  
1
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Parameter  
Cycle Time, MCLK  
MCLK Duty Cycle  
Rise Time, MCLK  
Fall Time, MCLK  
RESET Pulse Width  
Rise Time, RESET  
Notes:  
t
t
16.67  
40  
50  
1
60  
5
ns  
%
mc  
dty  
t
ns  
ns  
ns  
µs  
r
t
5
f
2
t
250  
rl  
t
Rr  
1. All timing (except Rise and Fall time) is referenced to the 50% level of the waveform. Input test levels are VIH = VD –  
0.4 V, VIL = 0.4 V. Rise and Fall times are referenced to the 20% and 80% levels of the waveform.  
2. The minimum RESET pulse width is the greater of 5 s or 10 MCLK cycle times.  
tmc  
tr  
tf  
VIH  
VIL  
MCLK  
tRr  
RESET  
trl  
Figure 1. General Inputs Timing Diagram  
Rev. 1.4  
7
Si3000  
Table 7. Switching Characteristics—Serial Interface  
(VA, VD = 5 V ±5% or 3.3 V ±10%, TA = 0 to 70°C, CL = 20 pF)  
Parameter  
Symbol  
Test Condition  
Min  
354  
Typ  
Max  
Unit  
ns  
%
Cycle Time, SCLK  
t
1/256 Fs  
c
SCLK Duty Cycle  
t
50  
dty  
Delay Time, SCLK to FSYNC   
Delay Time, SCLK to SDO Valid  
Delay Time, SCLK to FSYNC   
Setup Time, SDI, before SCLK   
Hold Time, SDI, after SCLK   
t
10  
20  
10  
ns  
ns  
ns  
ns  
ns  
ns  
d1  
d2  
d3  
t
t
t
25  
20  
25  
su  
t
h
Setup Time, FSYNC (mode 2) before  
t
su  
MCLK   
Hold Time, FSYNC (mode 2) after  
t
20  
ns  
h
MCLK   
Note: All timing is referenced to the 50% level of the waveform. Input test levels are VIH = VD – 0.4 V, VIL = 0.4 V  
tc  
VOH  
VOL  
SCLK  
td3  
td1  
FSYNC  
(mode 0)  
td3  
FSYNC  
(mode 1)  
FSYNC  
(mode 2)  
td2  
16 Bit  
SDO  
High-Z  
High-Z  
D15  
D14  
D14  
... D2  
D1  
D1  
D0  
tsu  
th  
16 Bit  
SDI  
D15  
... D2  
D0  
Figure 2. Serial Interface Timing Diagram  
8
Rev. 1.4  
Si3000  
Table 8. Digital FIR Filter Characteristics—Transmit and Receive  
(VA, VD = 5 V ±5% or 3.3 V ±10%, Sample Rate = 8 kHz, TA = 0 to 70°C)  
Parameter  
Symbol  
Min  
0
Typ  
Max  
3.6  
3.6  
0.1  
Unit  
kHz  
kHz  
dB  
F
Passband (3 dB, HPFD = 1)  
Passband (3 dB, HPFD = 0)  
Passband Ripple Peak-to-Peak  
Stopband  
(3 dB)  
F
0.01  
–0.1  
(3 dB)  
4.4  
kHz  
dB  
–74  
Stopband Attenuation  
Group Delay  
t
12/Fs  
sec  
gd  
Note: Typical FIR filter characteristics for Fs = 8000 Hz are shown in Figures 3, 4, 5, and 6.  
Table 9. Digital IIR Filter Characteristics—Transmit and Receive  
(VA, VD = 5 V ±5% or 3.3 V ±10%, Sample Rate = 8 kHz, TA = 70°C)  
Parameter  
Symbol  
Min  
0
Typ  
Max  
3.6  
3.6  
0.2  
Unit  
kHz  
kHz  
dB  
F
Passband (3 dB, HPFD = 1)  
Passband (3 dB, HPFD = 0)  
Passband Ripple Peak-to-Peak  
Stopband  
(3 dB)  
F
0.01  
–0.2  
(3 dB)  
4.4  
kHz  
dB  
–40  
Stopband Attenuation  
Group Delay  
t
1.6/Fs  
sec  
gd  
Note: Typical IIR filter characteristics for Fs = 8000 Hz are shown in Figures 7, 8, 9, and 10. Figures 11 and 12 show group  
delay versus input frequency.  
Rev. 1.4  
9
Si3000  
Input Frequency - Hz  
Input Frequency - Hz  
Figure 3. FIR Receive Filter Response  
Figure 5. FIR Transmit Filter Response  
Input Frequency - Hz  
Input Frequency - Hz  
Figure 6. FIR Transmit Filter Passband Ripple  
Figure 4. FIR Receive Filter Passband Ripple  
For Figures 3–6, all filter plots apply to a sample rate of   
Fs = 8 kHz. The filters scale with the sample rate as follows:  
= 0.4125 Fs  
F
(0.1 dB)  
F
= 0.45 Fs  
(– 3 dB)  
where Fs is the sample frequency.  
10  
Rev. 1.4  
Si3000  
Input Frequency - Hz  
Input Frequency - Hz  
Figure 7. IIR Receive Filter Response  
Figure 10. IIR Transmit Filter Passband Ripple  
Input Frequency - Hz  
Input Frequency - Hz  
Figure 8. IIR Receive Filter Passband Ripple  
Figure 11. IIR Receive Group Delay  
Input Frequency - Hz  
Input Frequency - Hz  
Figure 9. IIR Transmit Filter Response  
Figure 12. IIR Transmit Group Delay  
Rev. 1.4  
11  
Si3000  
12  
Rev. 1.4  
Si3000  
Table 10. Component Values—Typical Application  
Symbol  
Value  
C1,C3,C6,C8  
0.1 µF, 16 V, ±20%  
10 µF, 16 V, ±20%  
Motorola MMBD914L  
Phonejack Stereo  
4 Header  
C2,C4,C5,C7,C9,C10  
D1  
J1,J2  
JP1  
K1  
Relay DPDT  
L1,L2  
R1  
Ferrite Bead  
0 , 1/4 W ±5%  
51 , 1/4 W ±5%  
10 k, 1/4 W ±5%  
2.2 k, 1/4 W, ±5%  
10 , 1/16 W, ±5%  
30 , 1/16 W, ±5%  
LM317LZ  
R2  
R4  
R8  
R9  
R11,R12  
U2  
Q1  
PNP Transistor  
Rev. 1.4  
13  
Si3000  
2.2. Pre-amp/Microphone Bias Circuit  
2. Functional Description  
An internal amplifier with a selectable gain of 0 dB,  
10 dB, 20 dB, or 30 dB is provided for the MIC input and  
an internal amplifier with a selectable gain of 0 dB,  
10 dB, or 20 dB, is provided for the LINEI input. AC  
coupling is required for both inputs because any DC  
offset on the input will be amplified if gain is selected.  
Gain settings for the LINEI and MIC inputs are achieved  
by writing the RX Gain Control 1 register 5. When gain  
is disabled, these inputs become line level inputs with a  
full-scale input of 1 Vrms.  
The Si3000 is a highly integrated voice bandwidth audio  
codec which contains a single 16-bit A/D converter and  
D/A converter. The analog input path contains a  
microphone input with selectable gain, a line level input  
with selectable gain, and a handset input. Each of the  
inputs go through a mixer prior to A/D conversion. The  
result of this A/D conversion is a 16-bit 2s complement  
signed number. Following the A/D converter is a digital  
programmable gain amplifier. The analog output path  
contains a digital programmable gain amplifier feeding a  
single 16-bit D/A converter. The DAC output is provided  
to a line output, a headphone drive output, and a  
handset output. Control for the various functions  
available on the Si3000 as well as the audio data are  
communicated to the device over a serial interface.  
A microphone bias circuit is provided on-chip which  
consists of a 2.5 V reference output capable of sourcing  
up to 5 mA of current. This circuit can be used for active  
microphones requiring a bias source.  
2.3. Programmable Input Gain/Attenuation  
The Si3000 can be connected directly to the Si3035,  
Si3034, Si3044, or Si3056 in modem applications  
requiring a voice channel, or the device can be used as  
a stand-alone codec in other voice band applications.  
The Si3000 offers high integration, and it needs only a  
few low-cost, discrete components as shown in  
Figure 13.  
The signals from the microphone, line, or handset inputs  
are mixed and then routed to the A/D converter and a  
digital programmable gain circuit which provides up to  
12 dB of gain or –34.5 dB of attenuation in 1.5 dB steps.  
Level changes only take effect on zero crossings to  
minimize audible artifacts. The requested level change  
is implemented if no zero crossing is found after 256  
frames. Write the ADC Volume Control register 6 to set  
digital input gain/attenuation.  
2.1. Analog Inputs  
The typical connection diagram (Figure 13) shows the  
recommended external analog circuitry for the Si3000.  
The device supports three mono analog inputs—line  
level, microphone level, and a handset input. Each of  
these inputs is provided to a mixer circuit prior to A/D  
conversion. Each analog input may also be muted by  
writing the appropriate bits in the control registers.  
Unused analog inputs should be tied to GND through a  
0.1 F capacitor. This prevents any DC current flow.  
2.4. Analog Outputs  
The analog outputs of the D/A converter are routed to a  
line level output (LINEO), a pair of speaker outputs  
(SPKRL and SPKRR), and a handset. Each analog  
output can be independently muted.  
Si3034/35/44/56 Chipsets  
DAA  
Line-Side  
Device  
DAA  
System-Side  
Device  
TIP  
Discretes  
RING  
DSP  
SPKR  
Line  
Si3000  
Voice Codec  
Handset  
Mic  
Figure 14. Si3000 with Silicon Labs DAA System Diagram  
14  
Rev. 1.4  
Si3000  
frequency and the value of the sample rate control  
registers 3 and 4 determine the sample rate (Fs). The  
serial port clock, SCLK, runs at 256 bits per frame,  
where the frame rate is equivalent to the sample rate.  
Digital information is transferred between the DSP and  
the Si3000 in the form of 16-bit Primary Frames and 16-  
bit Secondary Frames. There are separate pins for  
receive (SDO) and transmit (SDI) functions, providing  
simultaneous receive/transmit operation within each  
frame.  
2.5. Programmable Output Gain/Attenuation  
Prior to D/A conversion, the Si3000 contains a digital  
programmable gain/attenuator which provides up to  
12 dB of gain or –34.5 dB of attenuation in 1.5 dB steps.  
Level changes only take effect on zero crossings to  
minimize audible artifacts. The requested level change  
is implemented if no zero crossing is found after 256  
frames. Write the DAC Volume Control (register 7) to  
set digital input gain/attenuation.  
2.6. Line Output  
Primary Frames are used for digital audio data samples.  
Primary Frames occur at the frame rate and are always  
present.  
Secondary Frames are used for accessing internal  
Si3000 registers. Secondary Frames are not always  
present and are requested on-demand. When  
Secondary Frames are present, they occur mid-point  
between Primary Frames. Hence, no Primary Frames  
are dropped.  
On Primary Frame transmits (DSP to Si3000), the  
Si3000 treats the LSB (16th bit) as a flag to request a  
Secondary Frame. Set the primary frame LSB = 1 to  
request a secondary frame; otherwise, set the primary  
frame LSB = 0. Therefore, out of 16-bits of transmit data  
on SDI, only 15-bits represent actual audio data. When  
secondary frames are not present, no transmission  
occurs during this time slot.  
On Primary Frames receives (Si3000 to DSP), the  
Si3000 drives SDO with 16-bits of audio data, if the  
Si3000 is in either Serial Mode 0 or 1. However, if the  
Si3000 is in SLAVE mode (Mode 2), the Si3000  
supplies 15-bits of Audio Data to the DSP and always  
drives the LSB zero. This feature is designed to work  
with the Si3021 register 14 SSEL set to 10. In this  
system configuration, when the DSP receives Primary  
Frames, it can check the LSB to determine whether the  
receive data is from the Si3021 or from the Si3000.  
On Secondary Frame receives and transmits; the  
Si3000 treats the input and output serial stream as 16-  
bits of data. Figure 15 shows the relative timing of the  
serial frames.  
LINEO is a line level analog output signal centered  
around a common mode voltage. The minimum  
recommended load impedance is 600 . This output is  
a fully filtered output with a 1 Vrms full scale range. The  
only external component required is the 10 F DC  
blocking capacitor shown in Figure 13 on page 12. This  
output may be muted through the LOM bit in register 6  
or attenuated by setting the analog attenuation bits in  
register 9.  
2.7. Speaker Output  
The SPKRL and SPKRR are mono, in-phase, analog  
outputs capable of driving a small loudspeaker whose  
impedance is typically 32 (see Figure 13 on page 12).  
The speaker outputs may be muted through the SLM  
and SRM bits in the DAC Gain Control register 7 or  
attenuated by setting the analog attenuation bits in  
register 9.  
2.8. Digital Interface  
The Si3000 has two serial interface modes that support  
most standard modem DSPs. These modes are  
selected by the addition of a 50 kpull-down/up resistor  
on the SDO and SCLK pins as shown in Figure 13 on  
page 12. The key difference between these two serial  
modes is the operation of the FSYNC signal. Table 11  
summarizes the serial mode definitions.  
Table 11. Serial Modes  
Mode SCLK* SDO*  
Description  
FSYNC frames data  
FSYNC pulse starts data frame  
Slave mode  
0
1
2
3
0
0
1
1
0
1
0
1
Figure 16 and Figure 17 illustrate the secondary frame  
write cycle and read cycle, respectively. During a read  
cycle, the R/W bit is high and the 5-bit address field  
contains the address of the register to be read. The  
contents of the 8-bit control register are placed on the  
SDO signal. During a write cycle, the R/W bit is low and  
the 5-bit address field contains the address of the  
register to be written. The 8-bit data to be written  
immediately follows the address on SDI. Only one  
register can be read or written during each secondary  
frame. See "3. Control Registers" on page 19 for the  
register addresses and functions.  
Reserved  
*Note: Pull-up/pull-down states  
The digital interface consists of a single synchronous  
serial link which communicates audio and control data.  
In slave mode, SCLK is connected only to the pullup/  
pulldown resistor, and MCLK is a 256 Fs input which is  
internally multiplied using the on-chip phase-locked loop  
(PLL) to clock the A/D converter and D/A converter. In  
master mode, the master clock (MCLK) is an input and  
the serial data clock (SCLK) is an output. The MCLK  
Rev. 1.4  
15  
Si3000  
Primary  
Secondary  
Primary  
FSYNC  
D15 – D1 D0 = 0 (Software FC Bit)  
Secondary  
Update  
XMT Data  
XMT Data  
RCV Data  
SDI  
Secondary  
Update  
RCV Data  
SDO  
16 SCLKs  
128 SCLKs  
256 SCLKs  
Figure 15. Secondary Request  
FSYNC  
(mode 0)  
FSYNC  
(mode 1)  
D15 D14 D13 D12 D11 D10 D9 D8  
D7 D6 D5 D4 D3 D2 D1 D0  
0
0
0
A
A
A
A
A
D
D
D
D
D
D
D
D
SDI  
R/W  
SDO  
Figure 16. Secondary Communication Data Format—Write Cycle  
FSYNC  
(mode 0)  
FSYNC  
(mode 1)  
D0  
D15 D14 D13 D12 D11 D10 D9 D8 D7  
0
0
1
A
A
A
A
A
SDI  
D7 D6 D5 D4 D3 D2 D1 D0  
R/W  
D
D
D
D
D
D
D
D
High Z  
SDO  
High Z  
Figure 17. Secondary Frame Format—Read Cycle  
16  
Rev. 1.4  
Si3000  
FUP1  
FPLL1  
MCLK  
÷ N1  
P
÷ 5 or  
÷ 10*  
VCO1  
1024·Fs  
D
*Note: See PLL bit in Register 2.  
÷ M1  
8 bits  
Figure 18. Clock Generation Subsystem (PLL)  
2.9. Clock Generation Subsystem  
Table 12. MCLK Examples for 8 kHz  
The Si3000 contains an on-chip clock generator. Using  
a single MCLK input frequency, the Si3000 can  
generate all the desired standard modem sample rates,  
as well as the common 11.025 kHz rate for audio  
playback.  
MCLK (MHz)  
1.8432  
N1  
9
M1  
200  
256  
10  
4.0000  
25  
1
4.0960  
The clock generator consists of a phase-locked loop  
(PLL1) that achieves the desired sample frequency.  
Figure 18 illustrates the clock generator. The  
architecture of the PLL allows for fast lock time on initial  
start-up, fast lock time when changing modem sample  
rates and high noise immunity. A large number of MCLK  
frequencies between 1 MHz and 60 MHz are supported.  
5.2800  
33  
9
256  
64  
5.7600  
6.1440  
3
20  
8.1920  
1
5
9.2160  
9
40  
2.9.1. Programming the Clock Generator  
10.0800  
10.5600  
11.0592  
12.288  
63  
33  
27  
3
256  
128  
100  
10  
As noted in Figure 18, the clock generator must output a  
clock equal to 1024*Fs, where Fs is the desired sample  
rate. The 1024*Fs clock is determined through  
programming of the following registers:  
Register 3 - N1 divider, 8 bits.  
14.7456  
16.0000  
18.4320  
24.5760  
25.8048  
33.7600  
44.2368  
46.0800  
47.9232  
48.0000  
56.0000  
59.200  
9
25  
Register 4 - M1 divider, 8 bits  
25  
9
64  
N1 (register 3) and M1 (register 4) are 8-bit unsigned  
20  
values. F  
is the clock provided to the MCLK pin.  
MCLK  
Table 12 lists several standard crystal rates that could  
be supplied to MCLK.  
3
5
63  
211  
27  
9
100  
256  
25  
When programming the registers of the clock generator,  
the order of register writes is important. For PLL  
updates, N1 (register 3) must always be written first,  
immediately followed by a write to M1 (register 4).  
8
Note: The values shown in Table 12 satisfy the equations  
above. However, when programming the registers for  
N1 and M1, the value placed in these registers must be  
one less than the value calculated from the equations.  
117  
75  
175  
185  
100  
64  
128  
128  
Rev. 1.4  
17  
Si3000  
3. Restore MCLK before initiating the power up sequence.  
2.9.2. PLL Lock Times  
4. Reset the Si3000 using the RESET pin (after MCLK is  
present).  
The Si3000 changes sample rates very quickly.  
However, lock time will vary based on the programming  
of the clock generator. The following relationship  
describes the boundaries on PLL locking time:  
5. Program the registers to desired settings.  
2.11. Loopback Operation  
PLL lock time < 1 ms  
The Si3000 advanced design provides the  
manufacturer with increased ability to determine system  
functionality during production line tests, as well as  
support for end-user diagnostics. Two loopback modes  
exist for this purpose, allowing increased coverage of  
system components.  
It is recommended that the PLL be programmed during  
initialization.  
The final design consideration for the clock generator is  
the update rate of PLL. The following criteria must be  
satisfied in order for the PLL to remain stable:  
F
= F  
 N1  144kHz  
The digital loopback1 mode allows an external device to  
send audio data to the SDI input pin and receive the  
signal through the SDO output pin. In this mode, the  
group delay of the digital filters is present. This mode  
UP1  
MCLK  
Where F  
is shown in Figure 18.  
UP1  
2.9.3. Setting Generic Sample Rates  
The above clock generation description focuses on allows testing of the digital filters, DAC, and ADC. To  
common modem sample rates. The restrictions and enable this mode, set the DL1 bit of register 2, and clear  
equations above still apply; however, a more generic DL2.  
relationship between MCLK and Fs (the desired sample  
rate) is needed. The following equation describes this  
send audio data to the SDI input pin and receive the  
relationship:  
The digital loopback2 mode allows an external device to  
signal through the SDO output pin. This mode allows  
M1  
5 1024 Fs  
testing of the digital filters, but not the ADC and DAC. To  
enable this mode, set the DL2 bit of register 2, and clear  
DL1.  
------- = --------------------------------  
N1 MCLK  
where Fs is the sample frequency, and all other symbols  
are shown in Figure 18.  
2.12. Reducing Power-on Pop Noise  
Knowing the MCLK frequency and desired sample rate  
the values for the M1 and N1 registers can be  
determined. When determining these values, remember  
to consider the range for each register as well as the  
minimum update rate for the first PLL.  
To minimize power-on pop during initialization, a waiting  
period is recommended before powering up the analog  
output drivers. The waiting period starts when the reset  
signal to the Si3000 is negated. The wait time required  
is dependent on the external load. Typically, the load  
consists of an AC coupling capacitor in series with an  
equivalent load resistor to ground. The equivalent load  
resistor can either be a speaker load, or the input  
resistance of an external amplifier. The rule-of-thumb for  
the waiting period in msec is derived by C*(12+R). For  
example, in the case of a 10 F AC coupling capacitor  
and resistive load of 1.0 kthe recommended waiting  
period is 10*(12+1) = 130 msec.  
The values determined for M1 and N1 must be adjusted  
by minus one when determining the value written to the  
respective registers. This is due to internal logic, which  
adds one to the value stored in the register. This  
addition allows the user to write a zero value in any of  
the registers and the effective divide-by is one. A  
special case occurs when both M1 and N1 are  
programmed with a zero value. When M1 and N1 are  
both zero, the PLL is bypassed.  
If the analog outputs drive external amplifiers, another  
factor to consider is the voltage division ratio  
determined by R/(R+12), where R represents the input  
resistance of the external amplifier. This ratio must be  
kept as small as possible. A good target value is R = 1  
k. If needed, add a load resistor in parallel with the  
amplifier input to lower the effective input resistance of  
the amplifier stage.  
2.10. Sleep Mode  
The Si3000 supports a low-power sleep mode. Sleep  
mode is activated by setting the Chip Power Down  
(CPD) bit in register 1. When the Si3000 is in sleep  
mode, the MCLK signal may be stopped or remain  
active, but it must be active before waking up the  
Si3000. To take the Si3000 out of sleep mode, pulse the  
reset pin (RESET) low. In summary, the power down/up  
sequence is as follows:  
1. Set the Power Down bit (PDN, register 6, bit 3).  
2. MCLK may stay active or stop.  
18  
Rev. 1.4  
Si3000  
3. Control Registers  
Note: Any register not listed here is reserved and should not be written. Any register bit labelled reserved should be written to  
zero during writes to the register. Register 0 can be read (always returns 0) and written safely.  
Table 13. Register Summary  
Register Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
SPD  
Bit 3  
LPD  
PLL  
Bit 2  
HPD  
DL1  
Bit 1  
MPD  
DL2  
Bit 0  
1
2
3
4
5
6
7
8
9
Control 1  
SR  
CPD  
Control 2  
HPFD  
PLL1 Divide N1  
PLL1 Multiply M1  
RX Gain Control 1  
ADC Volume Control  
DAC Volume Control  
Status Report  
Divider N1  
Multiplier M1  
MCG  
LIG  
LIM  
MCM  
HIM  
LOM  
SLM  
IIR  
RXG  
TXG  
HOM  
SRM  
SLSC  
SRSC  
LOSC  
Analog Attenuation  
LOT  
SOT  
Rev. 1.4  
19  
Si3000  
Register 1. Control 1  
Bit  
D7  
SR  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
SPD  
R/W  
LPD  
R/W  
HPD  
R/W  
MPD  
R/W  
CPD  
R/W  
R/W  
Reset settings = 0000_0000  
Bit  
Name  
Function  
7
SR  
Software Reset.   
1 = Sets all registers to their reset value.  
0 = Enables chip for normal operation.  
Note: Bit will automatically clear after being set.  
6:5 Reserved Read returns zero.  
4
3
2
1
0
SPD  
LPD  
HPD  
MPD  
CPD  
Speaker Drive Power Down.  
1= Normal operation  
0 = Power down left and right speaker drive.  
Line Drive Power Down.  
1 = Normal operation  
0 = Power down line driver.  
Handset Drive Power Down.  
1 = Normal operation  
0 = Power down handset driver.  
MIC Bias Power Down.  
1 = Power down MIC bias buffer.  
0 = Normal operation  
Chip Power Down.   
1 = Puts Si3000 into power down mode.  
0 = Normal operation  
20  
Rev. 1.4  
Si3000  
Register 2. Control 2  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
HPFD  
R/W  
PLL  
R/W  
DL1  
R/W  
DL2  
R/W  
Reset Settings = 0000_0000  
Bit  
7:5  
4
Name  
Reserved  
HPFD  
Function  
Read returns zero.  
High Pass Filter (HPF) Disable.  
1 = HPF disabled  
0 = HPF enabled  
3
2
1
0
PLL  
DL1  
PLL Divide by 10.  
1 = Sets final stage of PLL to divide by 10.  
0 = Sets final stage of PLL to divide by 5.  
Digital Loopback.  
1 = Enables digital loopback (DAC analog out ADC analog in).  
0 = Normal operation  
DL2  
Digital Loopback.  
1 = Enables digital loopback (DAC one bit ADC one bit).  
0 = Normal operation  
Reserved  
Read returns zero.  
Rev. 1.4  
21  
Si3000  
Register 3. PLL1 Divide N1  
Bit  
D7  
D6  
D5  
D4  
Divider N1  
R/W  
D3  
D2  
D1  
D0  
Name  
Type  
Reset settings = 0000_0000  
Bit  
Name  
Function  
7:0  
N1  
N1.  
Contains the (value – 1) for determining the output frequency on PLL.  
Register 4. PLL1 Multiply M1  
Bit  
D7  
D6  
D5  
D4  
Multiplier M1  
R/W  
D3  
D2  
D1  
D0  
Name  
Type  
Reset settings = 0000_0000  
Bit  
Name  
Function  
7:0  
M1  
M1.  
Contains the (value – 1) for determining the output frequency on PLL.  
22  
Rev. 1.4  
Si3000  
Register 5. RX Gain Control 1  
Bit  
D7  
D6  
D5  
LIM  
R/W  
D4  
D3  
D2  
D1  
D0  
IIR  
Name  
Type  
LIG  
MCG  
R/W  
MCM  
R/W  
HIM  
R/W  
R/W  
R/W  
Reset settings = 0100_0111  
Bit  
Name  
Function  
7:6  
LIG  
Line in Gain.  
11 = 20 dB gain  
10 = 10 dB gain  
01 = 0 dB gain  
00 = Reserved  
5
LIM  
Line in Mute.  
1 = Line input muted  
0 = Line input goes to mixer  
4:3  
MCG  
MIC Input Gain.  
11 = 30 dB gain  
10 = 20 dB gain  
01 = 10 dB gain  
00 = 0 dB gain  
2
1
0
MCM  
HIM  
IIR  
MIC Input Mute.  
1 = Mute MIC input  
0 = MIC input goes into mixer.  
Handset Input Mute.  
1 = Mute handset input  
0 = Handset input goes into mixer.  
IIR Enable.  
1 = Enables IIR filter  
0 = Enables FIR filter  
Rev. 1.4  
23  
Si3000  
Register 6. ADC Volume Control  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
RXG  
R/W  
LOM  
R/W  
HOM  
R/W  
Reset settings = 0101_1100  
Bit  
7
Name  
Reserved  
RXG  
Function  
Read returns zero.  
6:2  
RX PGA Gain Control.  
11111 = 12 dB  
10111 = 0 dB  
00000 = –34.5 dB  
LSB = 1.5 dB  
1
0
LOM  
HOM  
Line Out Mute.  
0 = Mute  
1 = Active  
Handset Out Mute.  
0 = Mute  
1 = Active  
24  
Rev. 1.4  
Si3000  
Register 7. DAC Volume Control  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
TXG  
R/W  
SLM  
R/W  
SRM  
R/W  
Reset settings = 0101_1100  
Bit  
7
Name  
Reserved  
TXG  
Function  
Read returns zero.  
6:2  
TX PGA Gain Control.  
11111 = 12 dB  
10111 = 0 dB  
00000 = –34.5 dB  
LSB = 1.5 dB  
1
0
SLM  
SRM  
SPKR_L Mute.  
0 = Mute  
1 = Active  
SPKR_R Mute.  
0 = Mute  
1 = Active  
Rev. 1.4  
25  
Si3000  
Register 8. Status Report  
Bit  
D7  
SLSC  
R
D6  
SRSC  
R
D5  
LOSC  
R
D4  
D3  
D2  
D1  
D0  
Name  
Type  
Reset settings = 0000_0000  
Bit  
Name  
Function  
7
SLSC  
SPK_L Short Circuit.  
1 = Indicate short circuit status is detected at left speaker.  
0 = Normal mode  
6
5
SRSC  
LOSC  
SPK_R Short Circuit.  
1 = Indicate short circuit status is detected at right speaker.  
0 = Normal mode  
Line Out Short Circuit.  
1 = Indicate short circuit status is detected at line out.  
0 = Normal mode  
4:0  
Reserved  
Read returns zero.  
Register 9. Analog Attenuation  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
LOT  
R/W  
SOT  
R/W  
Reset settings = 0000_0000  
Bit  
7:4  
3:2  
Name  
Reserved  
LOT  
Type  
Read returns zero.  
Line Out Attenuation.  
11 = –18 dB analog attenuation on Line Output.  
10 = –12 dB analog attenuation on Line Output.  
01 = –6 dB analog attenuation on Line Output.  
00 = 0 dB analog attenuation on Line Output.  
Speaker Out Attenuation.  
2:0  
SOT  
11 = –18 dB analog attenuation on Speaker Output.  
10 = –12 dB analog attenuation on Speaker Output.  
01 = –6 dB analog attenuation on Speaker Output.  
00 = 0 dB analog attenuation on Speaker Output.  
26  
Rev. 1.4  
Si3000  
4. Pin Descriptions: Si3000  
1
2
3
4
5
6
7
8
SPKRL  
LINEO  
GND  
VA  
SPKRR  
16  
15  
14  
13  
12  
11  
10  
9
MBIAS  
HDST  
SDI  
SDO  
VD  
FSYNC  
MCLK  
SCLK  
LINEI  
MIC  
RESET  
Pin #  
Pin Name  
Description  
1
SPKRR  
Speaker Right Output.  
Analog output capable of driving a 60 load.  
2
3
MBIAS  
HDST  
Microphone bias output.  
Handset Input/Output.  
Handset analog input/output.  
4
SDI  
Serial Port Data In.  
Serial communication and control data that is generated by the System DSP to the  
Si3000.  
5
6
SDO  
Serial Port Data Out.  
Serial communication data that is provided by the Si3000 to the system DSP.  
FSYNC  
Frame Sync Output.  
Data framing signal that is used to indicate the start and stop of a communication data  
frame.  
7
8
MCLK  
SCLK  
Master Clock Input.  
High speed master clock input. Generally supplied by the system crystal clock or DSP.  
Serial Port Bit Clock Input/Output.  
Controls the serial data on SDO and latches the data on SDI. This pin is an input in  
slave mode and an output in master mode.  
9
RESET  
Reset.  
An active low input that is used to reset all control registers to a defined initialized  
state. Also used to bring the Si3000 out of sleep mode.  
10  
11  
12  
MIC  
MIC Input.  
Microphone level or line level input. This input contains selectable gain of 0, 10, 20, or  
30 dB with a full scale input level of 1 V  
.
RMS  
LINEI  
Line Input.  
Line level input with selectable gain of 0, 10, or 20 dB. The full scale input level is  
1 V  
.
RMS  
V
Digital Supply Voltage.  
D
Provides the digital supply voltage to the Si3000. Nominally either 5 or 3.3 V and  
within 0.6 V of V .  
A
Rev. 1.4  
27  
Si3000  
Pin #  
Pin Name  
Description  
13  
V
Analog Supply Voltage.  
Provides the analog supply voltage to the Si3000. Nominally either 5 or 3.3 V and  
A
within 0.6 V of V .  
D
14  
15  
GND  
Ground.  
Connects to the system digital ground.  
LINEO  
Line Output.  
Line level analog output with a 1 V  
full scale output level.  
RMS  
16  
SPKRL  
Speaker Left Output.  
Analog output capable of driving a 60 load.  
28  
Rev. 1.4  
Si3000  
5. Ordering Guide  
Table 14. Ordering Guide  
Part Number  
Si3000-C-FS  
Si3000-C-GS  
Package  
SOIC-16  
SOIC-16  
Lead-Free  
Yes  
Temp. Range  
0 to 70 °C  
Yes  
–40 to 85 °C  
*Note: Add an “R” at the end of the device to denote tape and reel option.  
Rev. 1.4  
29  
Si3000  
6. Package Outline: 16-Pin SOIC  
Figure 19 illustrates the package details for the Si3000. Table 15 lists the values for the dimensions shown in the  
illustration.  
Figure 19. 16-Pin Small Outline Integrated Circuit (SOIC) Package  
Table 15. Package Diagram Dimensions  
Dimension  
Min  
Max  
1.75  
0.25  
Dimension  
Min  
Max  
A
A1  
A2  
b
L
L2  
h
0.40  
1.27  
0.10  
1.25  
0.31  
0.17  
0.25 BSC  
0.25  
0°  
0.50  
8°  
0.51  
0.25  
θ
c
aaa  
bbb  
0.10  
0.20  
D
9.90 BSC  
6.00 BSC  
3.90 BSC  
E
ccc  
0.10  
0.25  
E1  
ddd  
e
1.27 BSC  
Notes:  
1. All dimensions shown are in millimeters (mm) unless otherwise noted.  
2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.  
3. This drawing conforms to the JEDEC Solid State Outline MS-012, Variation AC.  
4. Recommended card reflow profile is per the JEDEC/IPC J-STD-020C specification for Small Body Components.  
30  
Rev. 1.4  
Si3000  
7. 16-Pin SOIC Land Pattern  
Figure illustrates the recommended land pattern for the Si3000 16-pin SOIC. Table 16 lists the values for the  
dimensions shown in the illustration.  
Figure 20. 16-Pin SOIC Land Pattern Diagram  
Table 16. 16-Pin MSOP Land Pattern Dimensions  
Dimension  
Feature  
Pad Column Spacing  
Pad Row Pitch  
Pad Width  
mm  
5.40  
1.27  
0.60  
1.55  
C1  
E
X1  
Y1  
Pad Length  
Notes:  
General  
1. All dimensions shown are in millimeters (mm) unless otherwise noted.  
2. Dimensioning and Tolerancing per ASME Y14.5M-1994.  
3. This Land Pattern Design is based on the IPC-7351 guidelines.  
4. All dimensions shown are at Maximum Material Condition (MMC). Least Material Condition (LMC) is calculated based on a  
Fabrication Allowance of 0.05 mm.  
Solder Mask Design  
5. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be 60 µm  
minimum, all the way around the pad.  
Stencil Design  
6. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release.  
7. The stencil thickness should be 0.125 mm (5 mils).  
8. The ratio of stencil aperture to land pad size should be 1:1.  
Card Assembly  
9. A No-Clean, Type-3 solder paste is recommended.  
10. The recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.  
Rev. 1.4  
31  
Si3000  
8. Package Markings (Top Markings)  
Codes for the Si3000-C-GS and Si3000-C-FS top marks are as follows:  
YY = Current Year  
WW = Work Week  
R = Die Revision  
TTTTT = Trace Code  
8.1. Si3000-C-GS Top Marking  
8.2. Si3000-C-FS Top Marking  
32  
Rev. 1.4  
Si3000  
DOCUMENT CHANGE LIST  
Revision 1.0 to Revision 1.1  
Updated Functional Block Diagram.  
Removed all B-grade references.  
Updated Table 4 (AC Characteristics).  
Updated Figure 14.  
Removed analog loopback feature description.  
Revision 1.1 to Revision 1.2  
Updated " Features" on page 1 and "5. Ordering  
Guide" on page 29 to add updated support for lead-  
free, RoHS-compliant packages.  
Updated document for compatibility with Silicon  
Laboratories 3rd generation serial interface DAA, the  
Si3056.  
Updated Figure 13 on page 12.  
Updated MIC and MICBIAS pin number labels.  
Changed standardized minimum input/output  
attenuation level to –34.5 dB. In some instances, this  
level was incorrectly specified at –36 dB.  
Updated SOIC package outline drawing and  
dimensions table.  
Revision 1.2 to Revision 1.3  
Updated Table 6 on page 7.  
Updated Figure 1 on page 7.  
Updated Figure 2 on page 8.  
Updated Figure 13 on page 12.  
Updated "2.8. Digital Interface" on page 15.  
Updated "2.11. Loopback Operation" on page 18.  
Updated "4. Pin Descriptions: Si3000" on page 27.  
Revision 1.3 to Revision 1.4  
Added extended temperature Si3000-C-GS to Table  
14 ordering guide.  
Added Section 7, 16-Pin SOIC Land Pattern.  
Added Section 8, Package Top Markings.  
Rev. 1.4  
33  
Si3000  
CONTACT INFORMATION  
Silicon Laboratories Inc.  
400 West Cesar Chavez  
Austin, TX 78701  
Tel: 1+(512) 416-8500  
Fax: 1+(512) 416-9669  
Toll Free: 1+(877) 444-3032  
Please visit the Silicon Labs Technical Support web page:  
https://www.silabs.com/support/pages/contacttechnicalsupport.aspx  
and register to submit a technical support request.  
The information in this document is believed to be accurate in all respects at the time of publication but is subject to change without notice.  
Silicon Laboratories assumes no responsibility for errors and omissions, and disclaims responsibility for any consequences resulting from  
the use of information included herein. Additionally, Silicon Laboratories assumes no responsibility for the functioning of undescribed features  
or parameters. Silicon Laboratories reserves the right to make changes without further notice. Silicon Laboratories makes no warranty, rep-  
resentation or guarantee regarding the suitability of its products for any particular purpose, nor does Silicon Laboratories assume any liability  
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation conse-  
quential or incidental damages. Silicon Laboratories products are not designed, intended, or authorized for use in applications intended to  
support or sustain life, or for any other application in which the failure of the Silicon Laboratories product could create a situation where per-  
sonal injury or death may occur. Should Buyer purchase or use Silicon Laboratories products for any such unintended or unauthorized ap-  
plication, Buyer shall indemnify and hold Silicon Laboratories harmless against all claims and damages.  
Silicon Laboratories and Silicon Labs are trademarks of Silicon Laboratories Inc.  
Other products or brandnames mentioned herein are trademarks or registered trademarks of their respective holders.  
34  
Rev. 1.4  

相关型号:

SI3000-X-FS

Programmable Codec, 1-Func, PDSO16, ROHS COMPLIANT, SOIC-16
SILICON

SI3000-X-FSR

Programmable Codec, 1-Func, PDSO16, ROHS COMPLIANT, SOIC-16
SILICON

SI3000H

Analog Circuit
SANKEN

SI3008

V.22BIS ISOMODEM㈢ WITH LOW-COST DAA
SILICON

SI3008-B-FS

V.22BIS ISOMODEM㈢ WITH LOW-COST DAA
SILICON

SI3008-X-FS

Modem, 56kbps Data, PDSO8, ROHS COMPLIANT, SOIC-8
SILICON

SI3008-X-FSR

Modem, 56kbps Data, PDSO8, ROHS COMPLIANT, SOIC-8
SILICON

SI3010

GLOBAL SERIAL INTERFACE DIRECT ACCESS ARRANGEMENT
SILICON

SI3010-F-FS

V.22BIS ISOMODEM㈢ WITH INTEGRATED GLOBAL DAA
SILICON

SI3010-F-FSR

暂无描述
SILICON

SI3010-F-GS

Consumer Circuit, PDSO16, ROHS COMPLIANT, SOIC-16
SILICON

SI3010-F-GSR

暂无描述
SILICON