CY28419ZXC [SILICON]

Processor Specific Clock Generator, 400MHz, CMOS, PDSO56, 6 X 14 MM, LEAD FREE, TSSOP-56;
CY28419ZXC
型号: CY28419ZXC
厂家: SILICON    SILICON
描述:

Processor Specific Clock Generator, 400MHz, CMOS, PDSO56, 6 X 14 MM, LEAD FREE, TSSOP-56

时钟 光电二极管 外围集成电路 晶体
文件: 总15页 (文件大小:177K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
CY28419  
Clock Synthesizer with Differential SRC and CPU Outputs  
• Four differential CPU clock pairs  
• One differential SRC clock  
• I2C support with readback capabilities  
Features  
• CK409B-compliant  
Supports Intel Pentium4-type CPUs  
• Selectable CPU frequencies  
• 3.3V power supply  
• Ideal Lexmark Spread Spectrum profile for maximum  
electromagnetic interference (EMI) reduction  
• 56-pin SSOP package  
• Ten copies of PCI clocks  
CPU  
x 4  
SRC  
x 1  
3V66  
x 5  
PCI  
REF  
x 2  
48M  
x 2  
• Two copies 48 MHz clock  
• Five copies of 3V66 with one optional VCH  
x 10  
[1]  
Block Diagram  
Pin Configuration  
VDD_REF  
REF0:1  
REF_0  
REF_1  
VDD_REF  
XIN  
1
2
3
4
5
6
7
8
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
FS_B  
VDD_A  
VSS_A  
VSS_IREF  
IREF  
FS_A  
CPUT3  
CPUC3  
VDD_CPU  
CPUT2  
CPUC2  
VSS_CPU  
CPUT1  
CPUC1  
VDD_CPU  
CPUT0  
CPUC0  
VSS_SRC  
SRCT  
SRCC  
VDD_SRC  
VTT_PWRGD#  
VDD_48  
VSS_48  
DOT_48  
USB_48  
SDATA  
3V66_4/VCH  
XIN  
XTAL  
OSC  
XOUT  
PLL Ref Freq  
VDD_CPU  
CPUT(0:3), CPUC(0:3)  
Divider  
Network  
PLL 1  
XOUT  
VDD_SRC  
VSS_REF  
PCIF0  
PCIF1  
SRCT, SRCC  
FS_(A:B)  
VTT_PWRGD#  
PCIF2  
9
IREF  
VDD_PCI  
VSS_PCI  
PCI0  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
VDD_3V66  
3V66_(0:3)  
PCI1  
PCI2  
PCI3  
VDD_PCI  
PCIF(0:2)  
PLL2  
2
PCI(0:6)  
VDD_PCI  
VSS_PCI  
PCI4  
3V66_4/VCH  
PCI5  
PCI6  
PD#  
VDD_48MHz  
DOT_48  
PD#  
3V66_0  
3V66_1  
VDD_3V66  
VSS_3V66  
3V66_2  
3V66_3  
SCLK  
USB_48  
I2C  
Logic  
SDATA  
SCLK  
SSOP-56  
Note:  
1. Signals marked with [*] and [**] have internal pull-up and pull-down resistors, respectively.  
Rev 1.0, November 22, 2006  
Page 1 of 15  
2200 Laurelwood Road, Santa Clara, CA 95054  
Tel:(408) 855-0555  
Fax:(408) 855-0550  
www.SpectraLinear.com  
CY28419  
Pin Description  
Pin No.  
1,2  
Pin Name  
Pin Type  
Pin Description  
REF(0:1)  
XIN  
O, SE Reference Clock. 3.3V 14.318-Mz clock output.  
4
I
Crystal Connection or External Reference Frequency Input. This pin has dual  
functions. It can be used as an external 14.318-MHz crystal connection or as an  
external reference frequency input.  
5
XOUT  
O, SE Crystal Connection. Connection for an external 14.318-MHz crystal output.  
41,44,47,50 CPUT(0:3)  
O, DIF CPU Clock Output. Differential CPU clock outputs. See Table 1 for frequency config-  
uration.  
40,43,46,49 CPUC(0:3)  
O, DIF CPU Clock Output. Differential CPU clock outputs. See Table 1 for frequency config-  
uration.  
38, 37  
SRCT, SRCC  
O, DIF Differential serial reference clock.  
22,23,26,27 3V66(3:0)  
O, SE 66 MHz Clock Output. 3.3V 66-MHz clock from internal VCO.  
O, SE 48/66 MHz Clock Output. 3.3V selectable through SMBus to be 66 or 48 MHz.  
O, SE Free Running PCI Output. 33-MHz clocks divided down from 3V66.  
O, SE PCI Clock Output. 33-MHz clocks divided down from 3V66.  
29  
3V66_4VCH  
PCIF(0:2)  
7,8,9  
12,13,14,15, PCI(0:6)  
18,19,20  
31,  
32  
USB_48  
DOT_48  
FS_A, FS_B  
IREF  
O, SE Fixed 48 MHz clock output.  
O, SE Fixed 48 MHz clock output.  
51,56  
52  
I
I
3.3V LVTTL input for CPU frequency selection.  
Current Reference. A precision resistor is attached to this pin which is connected to  
the internal current reference.  
21  
35  
PD#  
I, PU  
I
3.3V LVTTL input for power-down# active LOW.  
VTT_PWRGD#  
3.3V LVTTL input is a level-sensitive strobe used to latch the FS0 input (active  
LOW).  
30  
SDATA  
I/O  
SMBus-compatible SDATA.  
SMBus-compatible SCLOCK.  
Ground for current reference.  
3.3V power supply for PLL.  
Ground for PLL.  
28  
SCLK  
I
53  
VSS_IREF  
VDD_A  
GND  
PWR  
GND  
PWR  
GND  
PWR  
GND  
PWR  
GND  
PWR  
GND  
PWR  
GND  
PWR  
GND  
55  
54  
VSS_A  
42,48  
45  
VDD_CPU  
VSS_CPU  
VDD_SRC  
VSS_SRC  
VDD_48  
3.3V power supply for outputs.  
Ground for outputs.  
36  
3.3V power supply for outputs.  
Ground for outputs.  
39  
34  
3.3V power supply for outputs.  
Ground for outputs.  
33  
VSS_48  
10,16  
11,17  
24  
VDD_PCI  
VSS_PCI  
VDD_3V66  
VSS_3V66  
VDD_REF  
VSS_REF  
3.3V power supply for outputs.  
Ground for outputs.  
3.3V power supply for outputs.  
Ground for outputs.  
25  
3
3.3V power supply for outputs.  
Ground for outputs.  
6
Rev 1.0,November 22, 2006  
Page 2 of 15  
CY28419  
VTT_PWRGD# has been sampled low, all further  
VTT_PWRGD#, FS_A and FS_B transitions will be ignored. In  
the case where FS_B is at mid level when VTT_PWRGD# is  
sampled low, the clock chip will assume “Test Clock Mode”.  
Once “Test Clock Mode” has been invoked, all further FS_B  
transitions will be ignored and FS_A will asynchronously  
select between the Hi-Z and REF/N mode. Exiting test mode  
is accomplished by cycling power with FS_B in a high or low  
state.  
Frequency Select Pins (FS_A, FS_B)  
Host clock frequency selection is achieved by applying the  
appropriate logic levels to FS_A and FS_B inputs prior to  
VTT_PWRGD# assertion (as seen by the clock synthesizer).  
Upon VTT_PWRGD# being sampled low by the clock chip  
(indicating processor VTT voltage is stable), the clock chip  
samples the FS_A and FS_B input values. For all logic levels  
of FS_A and FS_B except MID, VTT_PWRGD# employs a  
one-shot functionality in that once  
a
valid low on  
Table 1. Frequency Select Table (FS_A FS_B)  
FS_A  
FS_B  
0
CPU  
SRC  
3V66  
66 MHz  
REF/N  
66 MHz  
66 MHz  
66 MHz  
Hi-Z  
PCIF/PCI  
33 MHz  
REF/N  
33 MHz  
33 MHz  
33 MHz  
Hi-Z  
REF0  
14.3 MHz  
REF/N  
REF1  
14.31 MHz  
REF/N  
USB/DOT  
48 MHz  
REF/N  
0
0
0
1
1
1
100 MHz  
REF/N  
100/200 MHz  
REF/N  
MID  
1
200 MHz  
133 MHz  
166 MHz  
Hi-Z  
100/200 MHz  
100/200 MHz  
100/200 MHz  
Hi-Z  
14.3 MHz  
14.3 MHz  
14.3 MHz  
Hi-Z  
14.31 MHz  
14.31 MHz  
14.31 MHz  
Hi-Z  
48 MHz  
48 MHz  
48 MHz  
Hi-Z  
0
1
MID  
Table 2. Frequency Select Table (FS_A FS_B) SMBus Bit 5 of Byte 6 = 1  
FS_A  
FS_B  
CPU  
SRC  
3V66  
PCIF/PCI  
33 MHz  
33 MHz  
33 MHz  
33 MHz  
REF0  
REF1  
USB/DOT  
48 MHz  
48 MHz  
48 MHz  
48 MHz  
0
0
1
1
0
1
0
1
200 MHz  
400 MHz  
266 MHz  
333 MHz  
100/200 MHz  
100/200 MHz  
100/200 MHz  
100/200 MHz  
66 MHz  
66 MHz  
66 MHz  
66 MHz  
14.3 MHz  
14.3 MHz  
14.3 MHz  
14.3 MHz  
14.31 MHz  
14.31 MHz  
14.31 MHz  
14.31 MHz  
first) with the ability to stop after any complete byte has been  
transferred. For byte write and byte read operations, the sys-  
tem controller can access individually indexed bytes. The off-  
set of the indexed byte is encoded in the command code, as  
described in Table 3.  
Serial Data Interface  
To enhance the flexibility and function of the clock synthesizer,  
a two-signal serial interface is provided. Through the Serial  
Data Interface, various device functions, such as individual  
clock output buffers, can be individually enabled or disabled.  
The registers associated with the Serial Data Interface  
initializes to their default setting upon power-up, and therefore  
use of this interface is optional. Clock device register changes  
are normally made upon system initialization, if any are  
required. The interface cannot be used during system  
operation for power management functions.  
The block write and block read protocol is outlined in Table 4  
while Table 5 outlines the corresponding byte write and byte  
read protocol. The slave receiver address is 11010010 (D2h).  
Table 3. Command Code Definition  
Bit  
Description  
7
0 = Block read or block write operation, 1 = Byte  
read or byte write operation  
Data Protocol  
(6:0)  
Byte offset for byte read or byte write operation.  
For block read or block write operations, these bits  
should be '0000000'  
The clock driver serial protocol accepts byte write, byte read,  
block write, and block read operations from the controller. For  
block write/read operation, the bytes must be accessed in se-  
quential order from lowest to highest byte (most significant bit  
Table 4. Block Read and Block Write Protocol  
Block Write Protocol  
Block Read Protocol  
Description  
Bit  
1
Description  
Bit  
1
Start  
Start  
2:8  
9
Slave address – 7 bits  
Write = 0  
2:8  
9
Slave address – 7 bits  
Write = 0  
10  
Acknowledge from slave  
10  
Acknowledge from slave  
11:18  
Command Code – 8 bits  
'00000000' stands for block operation  
11:18  
Command Code – 8 bits  
'00000000' stands for block operation  
Rev 1.0,November 22, 2006  
Page 3 of 15  
CY28419  
Table 4. Block Read and Block Write Protocol (continued)  
Block Write Protocol  
Block Read Protocol  
Acknowledge from slave  
19  
20:27 Byte Count – 8 bits  
28 Acknowledge from slave  
29:36 Data byte 1 – 8 bits  
37 Acknowledge from slave  
38:45 Data byte 2 – 8 bits  
Acknowledge from slave  
19  
20  
Repeat start  
21:27  
28  
Slave address – 7 bits  
Read = 1  
29  
Acknowledge from slave  
Byte count from slave – 8 bits  
Acknowledge from master  
Data byte from slave – 8 bits  
Acknowledge from master  
Data byte from slave – 8 bits  
Acknowledge from master  
Data byte N from slave – 8 bits  
Acknowledge from master  
Stop  
30:37  
38  
46  
....  
....  
....  
....  
....  
....  
Acknowledge from slave  
......................  
39:46  
47  
Data Byte (N–1) –8 bits  
Acknowledge from slave  
Data Byte N –8 bits  
Acknowledge from slave  
Stop  
48:55  
56  
....  
....  
....  
Table 5. Byte Read and Byte Write Protocol  
Byte Write Protocol  
Byte Read Protocol  
Description  
Bit  
1
Description  
Bit  
1
Start  
Start  
2:8  
9
Slave address – 7 bits  
Write = 0  
2:8  
9
Slave address – 7 bits  
Write = 0  
10  
Acknowledge from slave  
10  
Acknowledge from slave  
11:18  
Command Code – 8 bits  
11:18  
Command Code – 8 bits  
'100xxxxx' stands for byte operation, bits[6:0] of the  
command code represents the offset of the byte to  
be accessed  
'100xxxxx' stands for byte operation, bits[6:0] of  
the command code represents the offset of the  
byte to be accessed  
19  
20:27  
28  
Acknowledge from slave  
Data byte from master – 8 bits  
Acknowledge from slave  
Stop  
19  
20  
Acknowledge from slave  
Repeat start  
21:27  
28  
Slave address – 7 bits  
Read = 1  
29  
29  
Acknowledge from slave  
Data byte from slave – 8 bits  
Acknowledge from master  
Stop  
30:37  
38  
39  
Rev 1.0,November 22, 2006  
Page 4 of 15  
CY28419  
Byte 0: Control Register 0  
Bit  
7
@Pup  
Name  
Description  
0
1
0
0
1
1
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
6
5
4
3
2
1
Externally FS_B  
Selected  
FS_B reflects the value of the FS_B pin sampled on power-up.  
0 = FS_B low at power-up  
0
Externally FS_A  
Selected  
FS_A reflects the value of the FS_A pin sampled on power-up.  
0 = FS_A low at power-up  
Byte 1: Control Register 1  
Bit  
@Pup  
Name  
SRCT, SRCC  
Description  
7
0
Allow control of SRCT/C with assertion of PCI_STP#  
0 = Free Running, 1 = Stopped with PCI_STP#  
6
1
SRCT, SRCC  
SRCT/C Output Enable  
0 = Disabled (three-state), 1 = Enabled  
5
4
3
2
1
1
1
1
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
CPUT2, CPUC2  
CPUT/C2 Output Enable  
0 = Disabled (three-state), 1 = Enabled  
1
0
1
1
CPUT1, CPUC1  
CPUT0, CPUC0  
CPUT/C1 Output Enable,  
0 = Disabled (three-state), 1 = Enabled  
CPUT/C0 Output Enable  
0 = Disabled (three-state), 1 = Enabled  
Byte 2: Control Register 2  
Bit  
@Pup  
Name  
SRCT, SRCC  
Description  
7
0
SRCT/C Pwrdwn drive mode  
0 = Driven in power-down, 1 = Three-state in power-down  
6
5
4
3
0
0
0
0
SRCT, SRCC  
SRCT/C Stop drive mode  
0 = Driven in PCI_STP, 1 = Three-state in power-down  
CPUT2, CPUC2  
CPUT1, CPUC1  
CPUT0, CPUC0  
CPUT/C2 Pwrdwn drive mode  
0 = Driven in power-down, 1 = Three-state in power-down  
CPUT/C1 Pwrdwn drive mode  
0 = Driven in power-down, 1 = Three-state in power-down  
CPUT/C0 Pwrdwn drive mode  
0 = Driven in power-down, 1 = Three-state in power-down  
2
1
0
0
0
0
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Rev 1.0,November 22, 2006  
Page 5 of 15  
CY28419  
Byte 3: Control Register 3  
Bit @Pup Name  
Description  
7
1
All PCI and SRC Clock outputs PCI_STP Control. 0 = SW PCI_STP not enabled and only the PCI_STP# pin will  
except PCIF and SRC clocks stop the PCI stop enabled outputs, 1 = the PCI_STP function is enabled and the  
set to free-running  
stop enabled outputs will be stopped in a synchronous manner with no short pulses.  
6
5
4
3
2
1
0
1
1
1
1
1
1
1
PCI6  
PCI6 Output Enable  
0 = Disabled, 1 = Enabled  
PCI5  
PCI4  
PCI3  
PCI2  
PCI1  
PCI0  
PCI5 Output Enable  
0 = Disabled, 1 = Enabled  
PCI4 Output Enable  
0 = Disabled, 1 = Enabled  
PCI3 Output Enable  
0 = Disabled, 1 = Enabled  
PCI2 Output Enable  
0 = Disabled, 1 = Enabled  
PCI1 Output Enable  
0 = Disabled, 1 = Enabled  
PCI0 Output Enable  
0 = Disabled, 1 = Enabled  
Byte 4: Control Register 4  
Bit  
@Pup  
Name  
USB_ 48MHz  
Description  
7
0
USB_48 Drive Strength  
0 = High drive strength, 1 = Normal drive strength  
6
5
4
3
2
1
0
1
0
0
0
1
1
1
USB_ 48MHz  
PCIF2  
USB_48 Output Enable  
0 = Disabled, 1 = Enabled  
Allow control of PCIF2 with assertion of PCI_STP#  
0 = Free Running, 1 = Stopped with PCI_STP#  
PCIF1  
Allow control of PCIF1 with assertion of PCI_STP#  
0 = Free Running, 1 = Stopped with PCI_STP#  
PCIF0  
Allow control of PCIF0 with assertion of PCI_STP#  
0 = Free Running, 1 = Stopped with PCI_STP#  
PCIF2  
PCIF2 Output Enable  
0 = Disabled, 1 = Enabled  
PCIF1  
PCIF1 Output Enable  
0 = Disabled, 1 = Enabled  
PCIF0  
PCIF0 Output Enable  
0 = Disabled, 1 = Enabled  
Byte 5: Control Register 5  
Bit  
@Pup  
Name  
Description  
7
1
DOT_48  
DOT_48 Output Enable  
0 = Disabled, 1 = Enabled  
6
5
1
0
CPUT3, CPUC3  
3V66_4/VCH  
0 = three-state, 1 = Enabled  
VCH Select 66 MHz/48 MHz  
0 = 3V66 mode, 1 = VCH (48MHz) mode  
4
3
2
1
0
1
1
1
1
1
3V66_4/VCH  
3V66_3  
3V66_4/VCH Output Enable  
0 = Disabled, 1 = Enabled  
3V66_3 Output Enable  
0 = Disabled, 1 = Enabled  
3V66_2  
3V66_2 Output Enable  
0 = Disabled, 1 = Enabled  
3V66_1  
3V66_1 Output Enable  
0 = Disabled, 1 = Enabled  
3V66_0  
3V66_0 Output Enable  
0 = Disabled, 1 = Enabled  
Rev 1.0,November 22, 2006  
Page 6 of 15  
CY28419  
Byte 6: Control Register 6  
Bit  
@Pup  
Name  
Description  
7
0
REF  
PCIF  
Test Clock Mode  
0= Disabled, 1 = Enabled  
PCI  
3V66  
USB_48  
DOT_48  
CPUT/C  
SRCT/C  
6
5
0
0
Reserved, Set = 0  
CPUC0, CPUT0  
CPUC1, CPUT1  
CPUC2, CPUT2  
CPUC3, CPUT3  
FS_A & FS_B Operation  
0 = Normal, 1 = Test mode  
4
0
SRCT, SRCC  
SRC Frequency Select  
0 = 100 MHz, 1 = 200 MHz  
3
2
0
0
Reserved, Set = 0  
PCIF  
PCI  
Spread Spectrum Mode  
0 = Spread Off, 1 = Spread On  
3V66  
SRC(T/C)  
CPUT/ C  
1
0
1
1
REF_1  
REF_1 Output Enable  
0 = Disabled, 1 = Enabled  
REF_0  
REF_0 Output Enable  
0 = Disabled, 1 = Enabled  
Byte 7: Vendor ID  
Bit @Pup  
Name  
Revision Code Bit 3  
Revision Code Bit 2  
Revision Code Bit 1  
Revision Code Bit 0  
Vendor ID Bit 3  
Description  
7
6
5
4
3
2
1
0
0
0
0
0
1
0
0
0
Revision Code Bit 3  
Revision Code Bit 2  
Revision Code Bit 1  
Revision Code Bit 0  
Vendor ID Bit 3  
Vendor ID Bit 2  
Vendor ID Bit 2  
Vendor ID Bit 1  
Vendor ID Bit 1  
Vendor ID Bit 0  
Vendor ID Bit 0  
Crystal Recommendations  
The CY28419 requires a Parallel Resonance Crystal.  
Substituting a series resonance crystal will cause the  
CY28419 to operate at the wrong frequency and violate the  
ppm specification. For most applications there is a 300-ppm  
frequency shift between series and parallel crystals due to  
incorrect loading.  
Table 6. Crystal Recommendations  
Frequency  
(Fund)  
Drive  
(max.)  
Shunt Cap Motional  
(max.)  
Tolerance  
(max.)  
Stability  
(max.)  
Aging  
(max.)  
Cut  
Loading Load Cap  
Parallel 20 pF  
(max.)  
14.31818 MHz  
AT  
0.1 mW  
5 pF  
0.016 pF  
50 ppm  
50 ppm  
5 ppm  
Rev 1.0,November 22, 2006  
Page 7 of 15  
CY28419  
As mentioned previously, the capacitance on each side of the  
crystal is in series with the crystal. This mean the total capac-  
itance on each side of the crystal must be twice the specified  
load capacitance(CL). While the capacitance on each side of  
the crystal is in series with the crystal, trim capac-  
itors(Ce1,Ce2) should be calculated to provide equal capaci-  
tative loading on both sides.  
Crystal Loading  
Crystal loading plays a critical role in achieving low ppm perfor-  
mance. To realize low-ppm performance, the total capacitance  
the crystal will see must be considered to calculate the appro-  
priate capacitive loading (CL).  
The following diagram shows a typical crystal configuration  
using the two trim capacitors. An important clarification for the  
following discussion is that the trim capacitors are in series  
with the crystal not parallel. It’s a common misconception that  
load capacitors are in parallel with the crystal and should be  
approximately equal to the load capacitance of the crystal.  
This is not true.  
Use the following formulas to calculate the trim capacitor  
values fro Ce1 and Ce2.  
Load Capacitance (each side)  
Ce = 2 * CL – (Cs + Ci)  
Total Capacitance (as seen by the crystal)  
1
CLe  
=
1
Ce2 + Cs2 + Ci2  
1
Ce1 + Cs1 + Ci1  
(
)
+
CL....................................................Crystal load capacitance  
CLe......................................... Actual loading seen by crystal  
..................................... using standard value trim capacitors  
Ce..................................................... External trim capacitors  
Cs........................................... Stray capacitance (trace, etc.)  
Figure 1. Crystal Capacitive Clarification  
Ci ...........................................................Internalcapacitance  
................................................ (lead frame, bond wires, etc.)  
Calculating Load Capacitors  
PD# (Power-down) Clarification  
In addition to the standard external trim capacitors, trace  
capacitance and pin capacitance must also be considered to  
correctly calculate crystal loading. As mentioned previously,  
the capacitance on each side of the crystal is in series with the  
crystal. This means the total capacitance on each side of the  
crystal must be twice the specified crystal load capacitance  
(CL). While the capacitance on each side of the crystal is in  
series with the crystal, trim capacitors (Ce1,Ce2) should be  
calculated to provide equal capacitive loading on both sides.  
The PD# pin is used to shut off all clocks and PLLs without  
having to remove power from the device. All clocks are shut  
down in a synchronous manner so has not to cause glitches  
while transitioning to the power-down state.  
PD#–Assertion  
When PD# is sampled low by two consecutive rising edges of  
the CPUC clock then all clock outputs (except CPU) clocks  
must be held low on their next high to low transition. CPU  
clocks must be held with CPUT clock pin driven high with a  
value of 2x Iref and CPUC undriven as the default condition.  
There exists an I2C bit that allows for the CPUT/C outputs to  
be three-stated during power-down. Due to the state of internal  
logic, stopping and holding the REF clock outputs in the LOW  
state may require more than one clock cycle to complete.  
Clock Chip  
(CY28419)  
Ci2  
Ci1  
Pin  
3 to 6p  
X2  
X1  
Cs2  
Cs1  
Trace  
2.8pF  
XTAL  
Ce1  
Ce2  
Trim  
33pF  
Figure 2. Crystal Loading Example  
Rev 1.0,November 22, 2006  
Page 8 of 15  
CY28419  
PD#  
CPUT, 133MHz  
CPUC, 133MHz  
SRCT 100MHz  
SRCC 100MHz  
3V66, 66MHz  
USB, 48MHz  
PCI, 33MHz  
REF  
Figure 3. Power-down Assertion Timing Waveforms  
PD# Deassertion  
The power-up latency between PD# rising to a valid logic ‘1’  
level and the starting of all clocks is less than 1.8 ms. The  
CPUT/C outputs must be driven to greater than 200 mV is less  
than 300 us.  
Tstable  
<1.8ms  
PD#  
CPUT, 133MHz  
CPUC, 133MHz  
SRCT 100MHz  
SRCC 100MHz  
3V66, 66MHz  
USB, 48MHz  
PCI, 33MHz  
REF  
Tdrive_PWRDN#  
<300µS, >200mV  
Figure 4. Power-down Deassertion Timing Waveforms  
Rev 1.0,November 22, 2006  
Page 9 of 15  
CY28419  
FS_A, FS_B  
VTT_PWRGD#  
PWRGD_VRM  
0.2-0.3mS  
Delay  
Wait for  
VTT_PWRGD#  
Device is not affected,  
VTT_PWRGD# is ignored  
Sample Sels  
State 2  
VDD Clock Gen  
Clock State  
State 0  
Off  
State 1  
State 3  
On  
Clock Outputs  
Clock VCO  
On  
Off  
Figure 5. VTTPWRGD Timing Diagram  
S2  
S1  
VTT_PWRGD# = Low  
Delay  
>0.25mS  
Sample  
Inputs straps  
VDD_A = 2.0V  
Wait for <1.8ms  
S0  
S3  
VDD_A = off  
Normal  
Operation  
Enable Outputs  
Power Off  
VTT_PWRGD# = toggle  
Figure 6. Clock Generator Power-up/Run State Diagram  
Rev 1.0,November 22, 2006  
Page 10 of 15  
CY28419  
Absolute Maximum Conditions  
Parameter  
VDD  
Description  
Core Supply Voltage  
Condition  
Min.  
–0.5  
–0.5  
–0.5  
–65  
0
Max.  
Unit  
V
4.6  
4.6  
VDD_A  
VIN  
Analog Supply Voltage  
Input Voltage  
V
Relative to V SS  
VDD + 0.5  
+150  
70  
VDC  
°C  
TS  
Temperature, Storage  
Non-functional  
TA  
Temperature, Operating Ambient  
Temperature, Junction  
Functional  
°C  
TJ  
Functional  
150  
15  
°C  
ØJC  
Dissipation, Junction to Case  
Dissipation, Junction to Ambient  
Mil-Spec 883E Method 1012.1  
JEDEC (JESD 51)  
°C/W  
°C/W  
V
ØJA  
45  
ESDHBM  
UL-94  
MSL  
ESD Protection (Human Body Model) MIL-STD-883, Method 3015  
2000  
Flammability Rating  
At 1/8 in.  
V–0  
1
Moisture Sensitivity Level  
Multiple Supplies: The Voltage on any input or I/O pin cannot exceed the power pin during power-up. Power supply sequencing  
is NOT required.  
DC Electrical Specifications  
Parameter  
Description  
Conditions  
Min.  
Max.  
Unit  
V
VDD, VDD_A 3.3 Operating Voltage  
3.3V 5%  
3.135  
3.465  
VILI2C  
VIHI2C  
VIL  
Input Low Voltage  
SDATA, SCLK  
SDATA, SCLK  
1.0  
V
Input High Voltage  
Input Low Voltage  
2.2  
V
VSS – 0.5  
0.8  
V
VIH  
Input High Voltage  
Input Leakage Current  
Input High Voltage  
Output Low Voltage  
Output High Voltage  
High-impedance Output Current  
Input Pin Capacitance  
Output Pin Capacitance  
Pin Inductance  
2.0  
VDD + 0.5  
V
IIL  
except Pull-ups or Pull-downs 0 < VIN < VDD  
–5  
5
µA  
V
IILI2C  
VOL  
VOH  
IOZ  
SDATA, SCLK  
IOL = 1 mA  
2.2  
0.4  
V
IOH = –1 mA  
2.4  
V
–10  
10  
µA  
pF  
pF  
nH  
V
CIN  
2
5
COUT  
LIN  
3
6
7
VXIH  
VXIL  
IDD  
Xin High Voltage  
0.7VDD  
VDD  
0.3VDD  
280  
Xin Low Voltage  
0
V
Dynamic Supply Current  
At 200 MHz and all outputs loaded per Table 9  
and Figure 7  
mA  
IPD  
Power-down Supply Current  
PD# asserted, Outputs Three-stated  
1
mA  
Unit  
%
AC Electrical Specifications  
Parameter  
Description  
Conditions  
Min.  
47.5  
Max.  
52.5  
Crystal  
TDC  
XIN Duty Cycle  
The device will operate reliably with input duty  
cycles up to 30/70 but the REF clock duty cycle  
will not be within specification  
TPERIOD  
TR / TF  
TCCJ  
XIN Period  
When XIN is driven from an external clock source 69.841  
71.0  
10.0  
500  
300  
ns  
ns  
XIN Rise and Fall Times  
XIN Cycle-to-Cycle Jitter  
Long-term Accuracy  
Measured between 0.3VDD and 0.7VDD  
As an average over 1-µs duration  
Over 150 ms  
ps  
LACC  
ppm  
Rev 1.0,November 22, 2006  
Page 11 of 15  
CY28419  
AC Electrical Specifications (continued)  
Parameter  
Description  
Conditions  
Min.  
Max.  
Unit  
CPU at 0.7V  
TDC  
CPUT and CPUC Duty Cycle  
Measured at crossing point VOX  
45  
9.9970  
7.4978  
5.9982  
4.9985  
55  
10.003  
7.5023  
6.0018  
5.0015  
100  
%
ns  
ns  
ns  
ns  
ps  
ps  
ps  
%
TPERIOD  
TPERIOD  
TPERIOD  
TPERIOD  
TSKEW  
TCCJ  
100-MHz CPUT and CPUC Period Measured at crossing point VOX  
133-MHz CPUT and CPUC Period Measured at crossing point VOX  
166-MHz CPUT and CPUC Period Measured at crossing point VOX  
200-MHz CPUT and CPUC Period Measured at crossing point VOX  
Any CPU to CPU Clock Skew  
CPU Cycle-to-Cycle Jitter  
Measured at crossing point VOX  
Measured at crossing point VOX  
125  
TR/TF  
TRFM  
CPUT/CPUC Rise and Fall Times Measured from VOL = 0.175 to VOH = 0.525V  
175  
700  
Rise/Fall Matching  
Rise Time Variation  
Fall Time Variation  
Voltage High  
Determined as a fraction of 2*(TR–TF)/ (TR+TF)  
20  
TR  
125  
ps  
ps  
mv  
mv  
TF  
125  
VHIGH  
VLOW  
VOX  
Math average, see Figure 7  
Math average, see Figure 7  
660  
–150  
850  
Voltage Low  
Crossing Point voltage at 0.7V  
Swing  
250  
550  
mv  
VOVS  
VUDS  
VRB  
Maximum Overshoot Voltage  
Minimum Undershoot Voltage  
Ring Back Voltage  
–0.3  
VHIGH + 0.3  
V
V
V
See Figure 7. Measure SE  
0.2  
SRC  
TDC  
SRCT and SRCC Duty Cycle  
Measured at crossing point VOX  
45  
9.9970  
4.9985  
55  
10.003  
5.0015  
125  
300  
700  
20  
%
ns  
TPERIOD  
TPERIOD  
TCCJ  
100-MHz SRCT and SRCC Period Measured at crossing point VOX  
200-MHz SRCT and SRCC Period Measured at crossing point VOX  
ns  
SRC Cycle-to-Cycle Jitter  
Measured at crossing point VOX  
Measured at crossing point VOX  
ps  
LACC  
SRCT/C Long-term Accuracy  
ppm  
ps  
TR / TF  
TRFM  
TR  
SRCT/SRCT\C Rise and Fall Times Measured from VOL = 0.175 to VOH = 0.525V  
175  
Rise/Fall Matching  
Rise Time Variation  
Fall Time Variation  
Voltage High  
Determined as a fraction of 2*(TR–TF)/ (TR+TF)  
%
125  
125  
850  
ps  
TF  
ps  
VHIGH  
VLOW  
VOX  
Math average, see Figure 7  
Math average, see Figure 7  
660  
–150  
mv  
mv  
Voltage Low  
Crossing Point Voltage at 0.7V  
Swing  
250  
550  
mV  
VOVS  
VUDS  
VRB  
Maximum Overshoot Voltage  
Minimum Undershoot Voltage  
Ring Back Voltage  
–0.3  
VHIGH+0.3  
V
V
V
See Figure 7. Measure SE  
0.2  
3V66  
TDC  
3V66 Duty Cycle  
Measurement at 1.5V  
Measurement at 1.5V  
Measurement at 1.5V  
Measurement at 2.0V  
Measurement at 0.8V  
Measured between 0.8V and 2.0V  
45  
55  
%
ns  
ns  
ns  
ns  
ns  
ps  
ps  
TPERIOD  
TPERIOD  
THIGH  
Spread Disabled 3V66 Period  
Spread Enabled 3V66 Period  
3V66 High Time  
14.9955 15.0045  
14.9955 15.0799  
4.9500  
TLOW  
3V66 Low Time  
4.5500  
TR / TF  
TSKEW  
TCCJ  
3V66 Rise and Fall Times  
0.5  
2.0  
250  
250  
Any 3V66 to Any 3V66 Clock Skew Measurement at 1.5V  
3V66 Cycle-to-Cycle Jitter Measurement at 1.5V  
Rev 1.0,November 22, 2006  
Page 12 of 15  
CY28419  
AC Electrical Specifications (continued)  
Parameter  
Description  
Conditions  
Min.  
Max.  
Unit  
PCI / PCIF  
TDC  
PCIF and PCI Duty Cycle  
Measurement at 1.5V  
45  
55  
%
ns  
ns  
nS  
nS  
nS  
TPERIOD  
TPERIOD  
THIGH  
Spread Disabled PCIF/PCI Period Measurement at 1.5V  
Spread Enabled PCIF/PCI Period Measurement at 1.5V  
29.9910 30.0009  
29.9910 30.1598  
PCIF and PCI High Time  
PCIF and PCI Low Time  
Measurement at 2.0V  
12.0  
12.0  
0.5  
TLOW  
Measurement at 0.8V  
TR / TF  
TSKEW  
PCIF and PCI rise and fall times  
Measured between 0.8V and 2.0V  
Measurement at 1.5V  
2.0  
Any PCI Clock to Any PCI Clock  
Skew  
500  
250  
pS  
ps  
TCCJ  
PCIF and PCI Cycle-to-Cycle Jitter Measurement at 1.5V  
DOT  
TDC  
DOT Duty Cycle  
DOT Period  
Measurement at 1.5V  
Measurement at 1.5V  
Measurement at 2.0V  
Measurement at 0.8V  
Measured between 0.8V and 2.0V  
10-µs period  
45  
55  
%
ns  
nS  
nS  
ns  
ns  
TPERIOD  
THIGH  
TLOW  
20.8257 20.8340  
DOT High Time  
DOT Low Time  
Rise and Fall Times  
Long-term Jitter  
8.994  
8.794  
0.5  
10.486  
10.386  
1.0  
TR / TF  
TLTJ  
2.0  
USB  
TDC  
USB Duty Cycle  
USB Period  
Measurement at 1.5V  
Measurement at 1.5V  
Measurement at 2.0V  
Measurement at 0.8V  
Measured between 0.8V and 2.0V  
125-µs period  
45  
55  
%
ns  
nS  
nS  
ns  
ns  
TPERIOD  
THIGH  
TLOW  
20.8257 20.8340  
USB High Time  
USB Low Time  
Rise and Fall Times  
Long-term Jitter  
8.094  
7.694  
1.0  
10.036  
9.836  
2.0  
TR / TF  
TLTJ  
6.0  
REF  
TDC  
REF Duty Cycle  
Measurement at 1.5V  
45  
69.827  
1.0  
55  
69.855  
4.0  
%
ns  
TPERIOD  
TR / TF  
TCCJ  
REF Period  
Measurement at 1.5V  
REF Rise and Fall Times  
REF Cycle-to-Cycle Jitter  
Measured between 0.8V and 2.0V  
Measurement at 1.5V  
V/ns  
ps  
1000  
ENABLE/DISABLE and SET-UP  
TSTABLE Clock Stabilization from Power-up  
TSS  
10.0  
0
1.8  
ms  
ns  
ns  
Stopclock Set-up Time  
Stopclock Hold Time  
TSH  
Table 7. Group Timing Relationship and Tolerances  
Offset  
Table 9. Maximum Lumped Capacitive Output Loads  
Clock  
Max Load  
Unit  
pF  
Group  
Conditions  
Min.  
Max.  
PCI Clocks  
3V66 Clocks  
USB Clock  
DOT Clock  
REF Clock  
30  
30  
20  
10  
30  
3V66 to PCI  
3V66 Leads PCI  
1.5 ns 3.5 ns  
pF  
pF  
Table 8. USB to DOT Phase Offset  
pF  
Parameter  
DOT Skew  
USB Skew  
VCH SKew  
Typical  
0°  
Value  
0.0ns  
0.0ns  
0.0ns  
Tolerance  
1000 ps  
1000 ps  
1000 ps  
pF  
180°  
0°  
Rev 1.0,November 22, 2006  
Page 13 of 15  
CY28419  
Test and Measurement Set-up  
For Differential CPU and SRC Output Signals  
The following diagram shows lumped test load configurations  
for the differential Host Clock Outputs.  
M e a s u re m e n t  
P o in t  
T P C B  
3 3 Ω  
C P U T  
4 9 .9 Ω  
2 p F  
M e a s u re m e n t  
P o in t  
2 p F  
T P C B  
4 9 .9 Ω  
3 3 Ω  
C P U C  
IR E F  
4 7 5 Ω  
Figure 7. 0.7V Load Configuration  
3.3V signals  
tDC  
-
-
3.3V  
2.0V  
1.5V  
0.8V  
0V  
Tr  
Tf  
Figure 8. Lumped Load For Single-ended Output Signals (for AC Parameters Measurement)  
Table 10.CPU Clock Current Select Function  
Board Target Trace/Term Z  
Reference R, Iref – VDD (3*Rr)  
Output Current  
Voh @ Z  
50 Ohms  
RREF = 475 1%, IREF = 2.32 mA  
Ioh = 6*Iref  
0.7V @ 50  
Ordering Information  
Part Number  
Package Type  
Product Flow  
CY28419OC  
CY28419OCT 56-pin Shrunk Small Outline package (SSOP) – Tape and Reel  
CY28419ZC 56-pin Thin Shrunk Small Outline package (TSSOP)  
CY28419ZCT 56-pin Thin Shrunk Small Outline package (TSSOP) – Tape and Reel  
Part Number Package Type - Lead Free  
56-pin Shrunk Small Outline package (SSOP)  
Commercial, 0° to 70°C  
Commercial, 0° to 70°C  
Commercial, 0° to 70°C  
Commercial, 0° to 70°C  
Product Flow  
CY28419OXC 56-pin Shrunk Small Outline package (SSOP)  
Commercial, 0° to 70°C  
Commercial, 0° to 70°C  
Commercial, 0° to 70°C  
Commercial, 0° to 70°C  
CY28419OXCT 56-pin Shrunk Small Outline package (SSOP) – Tape and Reel  
CY28419ZXC 56-pin Thin Shrunk Small Outline package (TSSOP)  
CY28419ZXCT 56-pin Thin Shrunk Small Outline package (TSSOP) – Tape and Reel  
Rev 1.0,November 22, 2006  
Page 14 of 15  
CY28419  
Package Drawing and Dimensions  
56-Lead Shrunk Small Outline Package O56  
56-Lead Thin Shrunk Small Outline Package, Type II (6 mm x 14 mm) Z56  
While SLI has reviewed all information herein for accuracy and reliability, Spectra Linear Inc. assumes no responsibility for the use of any cir-  
cuitry or for the infringement of any patents or other rights of third parties which would result from each use. This product is intended for use in  
normal commercial applications and is not warranted nor is it intended for use in life support, critical medical instruments, or any other applica-  
tion requiring extended temperature range, high reliability, or any other extraordinary environmental requirements unless pursuant to additional  
processing by Spectra Linear Inc., and expressed written agreement by Spectra Linear Inc. Spectra Linear Inc. reserves the right to change any  
circuitry or specification without notice.  
Rev 1.0, November 22, 2006  
Page 15 of 15  

相关型号:

CY28419ZXCT

Processor Specific Clock Generator, 400MHz, CMOS, PDSO56, 6 X 14 MM, LEAD FREE, TSSOP-56
SILICON

CY28435

Clock Generator for Intel Grantsdale Chipset
CYPRESS

CY28435

Clock Generator for Intel Grantsdale Chipset
SPECTRALINEAR

CY28435OXC

Clock Generator for Intel Grantsdale Chipset
CYPRESS

CY28435OXC

Clock Generator for Intel Grantsdale Chipset
SPECTRALINEAR

CY28435OXCT

Clock Generator for Intel Grantsdale Chipset
CYPRESS

CY28435OXCT

Clock Generator for Intel Grantsdale Chipset
SPECTRALINEAR

CY28435ZXC

Clock Generator for Intel Grantsdale Chipset
CYPRESS

CY28435ZXC

Clock Generator for Intel Grantsdale Chipset
SPECTRALINEAR

CY28435ZXCT

Clock Generator for Intel Grantsdale Chipset
CYPRESS

CY28435ZXCT

Clock Generator for Intel Grantsdale Chipset
SPECTRALINEAR

CY28437

Clock Generator for Intel Grantsdale Chipset
SPECTRALINEAR