C8051F124-GQR [SILICON]

Microcontroller, 8-Bit, FLASH, 50MHz, CMOS, PQFP100, ROHS COMPLIANT, TQFP-100;
C8051F124-GQR
型号: C8051F124-GQR
厂家: SILICON    SILICON
描述:

Microcontroller, 8-Bit, FLASH, 50MHz, CMOS, PQFP100, ROHS COMPLIANT, TQFP-100

微控制器和处理器
文件: 总350页 (文件大小:1560K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
Mixed Signal ISP Flash MCU Family  
Analog Peripherals  
High Speed 8051 µC Core  
-
10 or 12-bit SAR ADC  
-
Pipelined instruction architecture; executes 70% of  
instruction set in 1 or 2 system clocks  
± 1 LSB INL  
Programmable throughput up to 100 ksps  
Up to 8 external inputs; programmable as single-  
ended or differential  
-
-
100 MIPS or 50 MIPS throughput with on-chip PLL  
2-cycle 16 x 16 MAC engine (C8051F120/1/2/3 and  
C8051F130/1/2/3 only)  
Programmable amplifier gain: 16, 8, 4, 2, 1, 0.5  
Data-dependent windowed interrupt generator  
Built-in temperature sensor  
Memory  
-
-
8-bit SAR ADC (‘F12x Only)  
-
8448 bytes internal data RAM (8 k + 256)  
Programmable throughput up to 500 ksps  
8 external inputs (single-ended or differential)  
Programmable amplifier gain: 4, 2, 1, 0.5  
-
128 or 64 kB Banked Flash; in-system programma-  
ble in 1024-byte sectors  
Two 12-bit DACs (‘F12x Only)  
-
External 64 kB data memory interface (programma-  
ble multiplexed or non-multiplexed modes)  
Can synchronize outputs to timers for jitter-free wave-  
form generation  
Digital Peripherals  
-
-
-
Two Analog Comparators  
Voltage Reference  
-
-
-
8 byte-wide port I/O (100TQFP); 5 V tolerant  
4 Byte-wide port I/O (64TQFP); 5 V tolerant  
Hardware SMBus™ (I2C™ Compatible), SPI™, and  
two UART serial ports available concurrently  
Programmable 16-bit counter/timer array with  
6 capture/compare modules  
V
Monitor/Brown-Out Detector  
DD  
On-Chip JTAG Debug & Boundary Scan  
-
-
-
On-chip debug circuitry facilitates full-speed, non-  
intrusive in-circuit/in-system debugging  
Provides breakpoints, single-stepping, watchpoints,  
stack monitor; inspect/modify memory and registers  
Superior performance to emulation systems using  
ICE-chips, target pods, and sockets  
-
-
-
5 general purpose 16-bit counter/timers  
Dedicated watchdog timer; bi-directional reset pin  
Clock Sources  
-
-
IEEE1149.1 compliant boundary scan  
Complete development kit  
-
-
-
Internal precision oscillator: 24.5 MHz  
Flexible PLL technology  
External Oscillator: Crystal, RC, C, or clock  
100-Pin TQFP or 64-Pin TQFP Packaging  
-
Temperature Range: –40 to +85 °C  
Voltage Supples  
-
RoHS Available  
-
Range: 2.7–3.6 V (50 MIPS) 3.0–3.6 V (100 MIPS)  
-
Power saving sleep and shutdown modes  
ANALOG PERIPHERALS  
DIGITAL I/O  
UART0  
VREF  
Port 0  
10/12-bit  
100ksps  
ADC  
UART1  
Port 1  
SMBus  
PGA  
Port 2  
SPI Bus  
PCA  
+
-
+
Port 3  
TEMP  
SENSOR  
-
Timer 0  
Timer 1  
Timer 2  
Timer 3  
Timer 4  
VOLTAGE  
COMPARATORS  
Port 4  
Port 5  
Port 6  
12-Bit  
DAC  
8-bit  
PGA  
500ksps  
ADC  
12-Bit  
DAC  
Port 7  
C8051F12x Only  
64 pin 100 pin  
HIGH-SPEED CONTROLLER CORE  
8051 CPU  
128/64 kB 8448 B  
16 x 16 MAC  
(50 or 100MIPS) ISP FLASH SRAM ('F120/1/2/3, 'F13x)  
20  
DEBUG  
CIRCUITRY  
CLOCK / PLL  
CIRCUIT  
JTAG  
INTERRUPTS  
Preliminary Rev. 1.4 12/05  
Copyright © 2005 by Silicon Laboratories  
C8051F12x C8051F13x  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
NOTES:  
2
Rev. 1.4  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
Table of Contents  
1. System Overview.................................................................................................... 19  
1.1. CIP-51™ Microcontroller Core.......................................................................... 27  
1.1.1. Fully 8051 Compatible.............................................................................. 27  
1.1.2. Improved Throughput............................................................................... 27  
1.1.3. Additional Features .................................................................................. 28  
1.2. On-Chip Memory............................................................................................... 29  
1.3. JTAG Debug and Boundary Scan..................................................................... 30  
1.4. 16 x 16 MAC (Multiply and Accumulate) Engine............................................... 31  
1.5. Programmable Digital I/O and Crossbar........................................................... 32  
1.6. Programmable Counter Array........................................................................... 33  
1.7. Serial Ports ....................................................................................................... 33  
1.8. 12 or 10-Bit Analog to Digital Converter ........................................................... 34  
1.9. 8-Bit Analog to Digital Converter....................................................................... 35  
1.10.12-bit Digital to Analog Converters................................................................... 36  
1.11.Analog Comparators......................................................................................... 37  
2. Absolute Maximum Ratings .................................................................................. 38  
3. Global DC Electrical Characteristics .................................................................... 39  
4. Pinout and Package Definitions............................................................................ 41  
5. ADC0 (12-Bit ADC, C8051F120/1/4/5 Only)........................................................... 55  
5.1. Analog Multiplexer and PGA............................................................................. 55  
5.2. ADC Modes of Operation.................................................................................. 57  
5.2.1. Starting a Conversion............................................................................... 57  
5.2.2. Tracking Modes........................................................................................ 58  
5.2.3. Settling Time Requirements..................................................................... 59  
5.3. ADC0 Programmable Window Detector ........................................................... 66  
6. ADC0 (10-Bit ADC, C8051F122/3/6/7 and C8051F13x Only)................................ 73  
6.1. Analog Multiplexer and PGA............................................................................. 73  
6.2. ADC Modes of Operation.................................................................................. 75  
6.2.1. Starting a Conversion............................................................................... 75  
6.2.2. Tracking Modes........................................................................................ 76  
6.2.3. Settling Time Requirements..................................................................... 77  
6.3. ADC0 Programmable Window Detector ........................................................... 84  
7. ADC2 (8-Bit ADC, C8051F12x Only)...................................................................... 91  
7.1. Analog Multiplexer and PGA............................................................................. 91  
7.2. ADC2 Modes of Operation................................................................................ 92  
7.2.1. Starting a Conversion............................................................................... 92  
7.2.2. Tracking Modes........................................................................................ 92  
7.2.3. Settling Time Requirements..................................................................... 94  
7.3. ADC2 Programmable Window Detector ......................................................... 100  
7.3.1. Window Detector In Single-Ended Mode ............................................... 100  
7.3.2. Window Detector In Differential Mode.................................................... 101  
Rev. 1.4  
3
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
8. DACs, 12-Bit Voltage Mode (C8051F12x Only) .................................................. 105  
8.1. DAC Output Scheduling.................................................................................. 105  
8.1.1. Update Output On-Demand ................................................................... 106  
8.1.2. Update Output Based on Timer Overflow .............................................. 106  
8.2. DAC Output Scaling/Justification.................................................................... 106  
9. Voltage Reference ................................................................................................ 113  
9.1. Reference Configuration on the C8051F120/2/4/6 ......................................... 113  
9.2. Reference Configuration on the C8051F121/3/5/7 ......................................... 115  
9.3. Reference Configuration on the C8051F130/1/2/3 ......................................... 117  
10.Comparators ......................................................................................................... 119  
11.CIP-51 Microcontroller ......................................................................................... 127  
11.1.Instruction Set................................................................................................. 129  
11.1.1.Instruction and CPU Timing ................................................................... 129  
11.1.2.MOVX Instruction and Program Memory ............................................... 129  
11.2.Memory Organization ..................................................................................... 133  
11.2.1.Program Memory ................................................................................... 133  
11.2.2.Data Memory.......................................................................................... 135  
11.2.3.General Purpose Registers.................................................................... 135  
11.2.4.Bit Addressable Locations...................................................................... 135  
11.2.5.Stack ..................................................................................................... 135  
11.2.6.Special Function Registers .................................................................... 136  
11.2.7.Register Descriptions............................................................................. 151  
11.3.Interrupt Handler............................................................................................. 154  
11.3.1.MCU Interrupt Sources and Vectors ...................................................... 154  
11.3.2.External Interrupts.................................................................................. 155  
11.3.3.Interrupt Priorities................................................................................... 156  
11.3.4.Interrupt Latency .................................................................................... 156  
11.3.5.Interrupt Register Descriptions............................................................... 157  
11.4.Power Management Modes............................................................................ 163  
11.4.1.Idle Mode ............................................................................................... 163  
11.4.2.Stop Mode.............................................................................................. 164  
12.Multiply And Accumulate (MAC0)....................................................................... 165  
12.1.Special Function Registers............................................................................. 165  
12.2.Integer and Fractional Math............................................................................ 166  
12.3.Operating in Multiply and Accumulate Mode.................................................. 167  
12.4.Operating in Multiply Only Mode .................................................................... 167  
12.5.Accumulator Shift Operations......................................................................... 167  
12.6.Rounding and Saturation................................................................................ 168  
12.7.Usage Examples ............................................................................................ 168  
12.7.1.Multiply and Accumulate Example ......................................................... 168  
12.7.2.Multiply Only Example............................................................................ 169  
12.7.3.MAC0 Accumulator Shift Example......................................................... 169  
4
Rev. 1.4  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
13.Reset Sources....................................................................................................... 177  
13.1.Power-on Reset.............................................................................................. 178  
13.2.Power-fail Reset ............................................................................................. 178  
13.3.External Reset................................................................................................ 179  
13.4.Missing Clock Detector Reset ........................................................................ 179  
13.5.Comparator0 Reset ........................................................................................ 179  
13.6.External CNVSTR0 Pin Reset........................................................................ 179  
13.7.Watchdog Timer Reset................................................................................... 179  
13.7.1.Enable/Reset WDT ................................................................................ 180  
13.7.2.Disable WDT.......................................................................................... 180  
13.7.3.Disable WDT Lockout ............................................................................ 180  
13.7.4.Setting WDT Interval.............................................................................. 180  
14.Oscillators............................................................................................................. 185  
14.1.Internal Calibrated Oscillator .......................................................................... 185  
14.2.External Oscillator Drive Circuit...................................................................... 187  
14.3.System Clock Selection.................................................................................. 187  
14.4.External Crystal Example ............................................................................... 190  
14.5.External RC Example ..................................................................................... 190  
14.6.External Capacitor Example........................................................................... 190  
14.7.Phase-Locked Loop (PLL).............................................................................. 191  
14.7.1.PLL Input Clock and Pre-divider ............................................................ 191  
14.7.2.PLL Multiplication and Output Clock ...................................................... 191  
14.7.3.Powering on and Initializing the PLL...................................................... 192  
15.Flash Memory ....................................................................................................... 199  
15.1.Programming the Flash Memory .................................................................... 199  
15.1.1.Non-volatile Data Storage...................................................................... 200  
15.1.2.Erasing Flash Pages From Software ..................................................... 201  
15.1.3.Writing Flash Memory From Software.................................................... 202  
15.2.Security Options ............................................................................................. 203  
15.2.1.Summary of Flash Security Options....................................................... 207  
16.Branch Target Cache ........................................................................................... 211  
16.1.Cache and Prefetch Operation....................................................................... 211  
16.2.Cache and Prefetch Optimization................................................................... 212  
17.External Data Memory Interface and On-Chip XRAM........................................ 219  
17.1.Accessing XRAM............................................................................................ 219  
17.1.1.16-Bit MOVX Example ........................................................................... 219  
17.1.2.8-Bit MOVX Example ............................................................................. 219  
17.2.Configuring the External Memory Interface.................................................... 219  
17.3.Port Selection and Configuration.................................................................... 220  
17.4.Multiplexed and Non-multiplexed Selection.................................................... 222  
17.4.1.Multiplexed Configuration....................................................................... 222  
17.4.2.Non-multiplexed Configuration............................................................... 223  
17.5.Memory Mode Selection................................................................................. 224  
17.5.1.Internal XRAM Only ............................................................................... 224  
17.5.2.Split Mode without Bank Select.............................................................. 224  
Rev. 1.4  
5
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
17.5.3.Split Mode with Bank Select................................................................... 225  
17.5.4.External Only.......................................................................................... 225  
17.6.EMIF Timing ................................................................................................... 225  
17.6.1.Non-multiplexed Mode ........................................................................... 227  
17.6.2.Multiplexed Mode................................................................................... 230  
18.Port Input/Output.................................................................................................. 235  
18.1.Ports 0 through 3 and the Priority Crossbar Decoder..................................... 238  
18.1.1.Crossbar Pin Assignment and Allocation............................................... 238  
18.1.2.Configuring the Output Modes of the Port Pins...................................... 239  
18.1.3.Configuring Port Pins as Digital Inputs................................................... 240  
18.1.4.Weak Pullups ......................................................................................... 240  
18.1.5.Configuring Port 1 Pins as Analog Inputs .............................................. 240  
18.1.6.External Memory Interface Pin Assignments ......................................... 241  
18.1.7.Crossbar Pin Assignment Example........................................................ 243  
18.2.Ports 4 through 7 (100-pin TQFP devices only) ............................................. 252  
18.2.1.Configuring Ports which are not Pinned Out.......................................... 252  
18.2.2.Configuring the Output Modes of the Port Pins...................................... 252  
18.2.3.Configuring Port Pins as Digital Inputs................................................... 253  
18.2.4.Weak Pullups ......................................................................................... 253  
18.2.5.External Memory Interface..................................................................... 253  
19.System Management Bus / I2C Bus (SMBus0).................................................. 259  
19.1.Supporting Documents................................................................................... 260  
19.2.SMBus Protocol.............................................................................................. 260  
19.2.1.Arbitration............................................................................................... 261  
19.2.2.Clock Low Extension.............................................................................. 261  
19.2.3.SCL Low Timeout................................................................................... 261  
19.2.4.SCL High (SMBus Free) Timeout .......................................................... 261  
19.3.SMBus Transfer Modes.................................................................................. 262  
19.3.1.Master Transmitter Mode....................................................................... 262  
19.3.2.Master Receiver Mode........................................................................... 262  
19.3.3.Slave Transmitter Mode......................................................................... 263  
19.3.4.Slave Receiver Mode............................................................................. 263  
19.4.SMBus Special Function Registers ................................................................ 264  
19.4.1.Control Register ..................................................................................... 264  
19.4.2.Clock Rate Register ............................................................................... 267  
19.4.3.Data Register ......................................................................................... 268  
19.4.4.Address Register.................................................................................... 268  
19.4.5.Status Register....................................................................................... 269  
20.Enhanced Serial Peripheral Interface (SPI0)...................................................... 273  
20.1.Signal Descriptions......................................................................................... 274  
20.1.1.Master Out, Slave In (MOSI).................................................................. 274  
20.1.2.Master In, Slave Out (MISO).................................................................. 274  
20.1.3.Serial Clock (SCK) ................................................................................. 274  
20.1.4.Slave Select (NSS) ................................................................................ 274  
6
Rev. 1.4  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
20.2.SPI0 Master Mode Operation......................................................................... 275  
20.3.SPI0 Slave Mode Operation........................................................................... 277  
20.4.SPI0 Interrupt Sources ................................................................................... 277  
20.5.Serial Clock Timing......................................................................................... 278  
20.6.SPI Special Function Registers...................................................................... 280  
21.UART0.................................................................................................................... 287  
21.1.UART0 Operational Modes ............................................................................ 288  
21.1.1.Mode 0: Synchronous Mode .................................................................. 288  
21.1.2.Mode 1: 8-Bit UART, Variable Baud Rate.............................................. 289  
21.1.3.Mode 2: 9-Bit UART, Fixed Baud Rate .................................................. 291  
21.1.4.Mode 3: 9-Bit UART, Variable Baud Rate.............................................. 292  
21.2.Multiprocessor Communications .................................................................... 293  
21.2.1.Configuration of a Masked Address....................................................... 293  
21.2.2.Broadcast Addressing............................................................................ 293  
21.3.Frame and Transmission Error Detection....................................................... 294  
22.UART1.................................................................................................................... 299  
22.1.Enhanced Baud Rate Generation................................................................... 300  
22.2.Operational Modes ......................................................................................... 301  
22.2.1.8-Bit UART............................................................................................. 301  
22.2.2.9-Bit UART............................................................................................. 302  
22.3.Multiprocessor Communications .................................................................... 303  
23.Timers.................................................................................................................... 309  
23.1.Timer 0 and Timer 1 ....................................................................................... 309  
23.1.1.Mode 0: 13-bit Counter/Timer ................................................................ 309  
23.1.2.Mode 1: 16-bit Counter/Timer ................................................................ 311  
23.1.3.Mode 2: 8-bit Counter/Timer with Auto-Reload...................................... 311  
23.1.4.Mode 3: Two 8-bit Counter/Timers (Timer 0 Only)................................. 312  
23.2.Timer 2, Timer 3, and Timer 4........................................................................ 317  
23.2.1.Configuring Timer 2, 3, and 4 to Count Down........................................ 317  
23.2.2.Capture Mode ........................................................................................ 318  
23.2.3.Auto-Reload Mode ................................................................................. 319  
23.2.4.Toggle Output Mode (Timer 2 and Timer 4 Only) .................................. 320  
24.Programmable Counter Array ............................................................................. 325  
24.1.PCA Counter/Timer ........................................................................................ 326  
24.2.Capture/Compare Modules ............................................................................ 328  
24.2.1.Edge-triggered Capture Mode................................................................ 329  
24.2.2.Software Timer (Compare) Mode........................................................... 330  
24.2.3.High Speed Output Mode....................................................................... 331  
24.2.4.Frequency Output Mode ........................................................................ 332  
24.2.5.8-Bit Pulse Width Modulator Mode......................................................... 333  
24.2.6.16-Bit Pulse Width Modulator Mode....................................................... 334  
24.3.Register Descriptions for PCA0...................................................................... 335  
Rev. 1.4  
7
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
25.JTAG (IEEE 1149.1) .............................................................................................. 341  
25.1.Boundary Scan............................................................................................... 342  
25.1.1.EXTEST Instruction................................................................................ 343  
25.1.2.SAMPLE Instruction............................................................................... 343  
25.1.3.BYPASS Instruction ............................................................................... 343  
25.1.4.IDCODE Instruction................................................................................ 343  
25.2.Flash Programming Commands..................................................................... 344  
25.3.Debug Support ............................................................................................... 347  
Document Change List............................................................................................. 349  
Contact Information.................................................................................................. 350  
8
Rev. 1.4  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
List of Figures  
1. System Overview  
Figure 1.1. C8051F120/124 Block Diagram............................................................. 21  
Figure 1.2. C8051F121/125 Block Diagram............................................................. 22  
Figure 1.3. C8051F122/126 Block Diagram............................................................. 23  
Figure 1.4. C8051F123/127 Block Diagram............................................................. 24  
Figure 1.5. C8051F130/132 Block Diagram............................................................. 25  
Figure 1.6. C8051F131/133 Block Diagram............................................................. 26  
Figure 1.7. On-Board Clock and Reset .................................................................... 28  
Figure 1.8. On-Chip Memory Map............................................................................ 29  
Figure 1.9. Development/In-System Debug Diagram............................................... 30  
Figure 1.10. MAC0 Block Diagram........................................................................... 31  
Figure 1.11. Digital Crossbar Diagram ..................................................................... 32  
Figure 1.12. PCA Block Diagram.............................................................................. 33  
Figure 1.13. 12-Bit ADC Block Diagram................................................................... 34  
Figure 1.14. 8-Bit ADC Diagram............................................................................... 35  
Figure 1.15. DAC System Block Diagram ................................................................ 36  
Figure 1.16. Comparator Block Diagram.................................................................. 37  
2. Absolute Maximum Ratings  
3. Global DC Electrical Characteristics  
4. Pinout and Package Definitions  
Figure 4.1. C8051F120/2/4/6 Pinout Diagram (TQFP-100) ..................................... 49  
Figure 4.2. C8051F130/2 Pinout Diagram (TQFP-100) ........................................... 50  
Figure 4.3. TQFP-100 Package Drawing ................................................................. 51  
Figure 4.4. C8051F121/3/5/7 Pinout Diagram (TQFP-64) ....................................... 52  
Figure 4.5. C8051F131/3 Pinout Diagram (TQFP-64) ............................................. 53  
Figure 4.6. TQFP-64 Package Drawing ................................................................... 54  
5. ADC0 (12-Bit ADC, C8051F120/1/4/5 Only)  
Figure 5.1. 12-Bit ADC0 Functional Block Diagram ................................................. 55  
Figure 5.2. Typical Temperature Sensor Transfer Function..................................... 56  
Figure 5.3. ADC0 Track and Conversion Example Timing....................................... 58  
Figure 5.4. ADC0 Equivalent Input Circuits.............................................................. 59  
Figure 5.5. ADC0 Data Word Example .................................................................... 65  
Figure 5.6. 12-Bit ADC0 Window Interrupt Example:  
Right Justified Single-Ended Data......................................................... 68  
Figure 5.7. 12-Bit ADC0 Window Interrupt Example:  
Right Justified Differential Data ............................................................. 69  
Figure 5.8. 12-Bit ADC0 Window Interrupt Example:  
Left Justified Single-Ended Data ........................................................... 70  
Figure 5.9. 12-Bit ADC0 Window Interrupt Example:  
Left Justified Differential Data................................................................ 71  
Rev. 1.4  
9
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
6. ADC0 (10-Bit ADC, C8051F122/3/6/7 and C8051F13x Only)  
Figure 6.1. 10-Bit ADC0 Functional Block Diagram ................................................. 73  
Figure 6.2. Typical Temperature Sensor Transfer Function..................................... 74  
Figure 6.3. ADC0 Track and Conversion Example Timing....................................... 76  
Figure 6.4. ADC0 Equivalent Input Circuits.............................................................. 77  
Figure 6.5. ADC0 Data Word Example .................................................................... 83  
Figure 6.6. 10-Bit ADC0 Window Interrupt Example:  
Right Justified Single-Ended Data......................................................... 86  
Figure 6.7. 10-Bit ADC0 Window Interrupt Example:  
Right Justified Differential Data ............................................................. 87  
Figure 6.8. 10-Bit ADC0 Window Interrupt Example:  
Left Justified Single-Ended Data ........................................................... 88  
Figure 6.9. 10-Bit ADC0 Window Interrupt Example:  
Left Justified Differential Data................................................................ 89  
7. ADC2 (8-Bit ADC, C8051F12x Only)  
Figure 7.1. ADC2 Functional Block Diagram............................................................ 91  
Figure 7.2. ADC2 Track and Conversion Example Timing....................................... 93  
Figure 7.3. ADC2 Equivalent Input Circuit................................................................ 94  
Figure 7.4. ADC2 Data Word Example .................................................................... 99  
Figure 7.5. ADC2 Window Compare Examples, Single-Ended Mode.................... 100  
Figure 7.6. ADC2 Window Compare Examples, Differential Mode........................ 101  
8. DACs, 12-Bit Voltage Mode (C8051F12x Only)  
Figure 8.1. DAC Functional Block Diagram............................................................ 105  
9. Voltage Reference  
Figure 9.1. Voltage Reference Functional Block Diagram (C8051F120/2/4/6) ...... 114  
Figure 9.2. Voltage Reference Functional Block Diagram (C8051F121/3/5/7) ...... 115  
Figure 9.3. Voltage Reference Functional Block Diagram (C8051F130/1/2/3) ...... 117  
10.Comparators  
Figure 10.1. Comparator Functional Block Diagram .............................................. 119  
Figure 10.2. Comparator Hysteresis Plot ............................................................... 121  
11.CIP-51 Microcontroller  
Figure 11.1. CIP-51 Block Diagram....................................................................... 128  
Figure 11.2. Memory Map ...................................................................................... 133  
Figure 11.3. Address Memory Map for Instruction Fetches (128 kB Flash Only)... 134  
Figure 11.4. SFR Page Stack................................................................................. 137  
Figure 11.5. SFR Page Stack While Using SFR Page 0x0F To Access Port 5...... 138  
Figure 11.6. SFR Page Stack After ADC2 Window Comparator Interrupt Occurs. 139  
Figure 11.7. SFR Page Stack Upon PCA Interrupt Occurring During an ADC2 ISR140  
Figure 11.8. SFR Page Stack Upon Return From PCA Interrupt ........................... 140  
Figure 11.9. SFR Page Stack Upon Return From ADC2 Window Interrupt ........... 141  
12.Multiply And Accumulate (MAC0)  
Figure 12.1. MAC0 Block Diagram......................................................................... 165  
Figure 12.2. Integer Mode Data Representation .................................................... 166  
Figure 12.3. Fractional Mode Data Representation................................................ 166  
Figure 12.4. MAC0 Pipeline.................................................................................... 167  
10  
Rev. 1.4  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
13.Reset Sources  
Figure 13.1. Reset Sources.................................................................................... 177  
Figure 13.2. Reset Timing ...................................................................................... 178  
14.Oscillators  
Figure 14.1. Oscillator Diagram.............................................................................. 185  
Figure 14.2. PLL Block Diagram............................................................................. 191  
15.Flash Memory  
Figure 15.1. Flash Memory Map for MOVC Read and MOVX Write Operations ... 201  
Figure 15.2. 128 kB Flash Memory Map and Security Bytes ................................. 204  
Figure 15.3. 64 kB Flash Memory Map and Security Bytes ................................... 205  
16.Branch Target Cache  
Figure 16.1. Branch Target Cache Data Flow........................................................ 211  
Figure 16.2. Branch Target Cache Organiztion...................................................... 212  
Figure 16.3. Cache Lock Operation........................................................................ 214  
17.External Data Memory Interface and On-Chip XRAM  
Figure 17.1. Multiplexed Configuration Example.................................................... 222  
Figure 17.2. Non-multiplexed Configuration Example............................................ 223  
Figure 17.3. EMIF Operating Modes ...................................................................... 224  
Figure 17.4. Non-multiplexed 16-bit MOVX Timing................................................ 227  
Figure 17.5. Non-multiplexed 8-bit MOVX without Bank Select Timing ................. 228  
Figure 17.6. Non-multiplexed 8-bit MOVX with Bank Select Timing ...................... 229  
Figure 17.7. Multiplexed 16-bit MOVX Timing........................................................ 230  
Figure 17.8. Multiplexed 8-bit MOVX without Bank Select Timing ......................... 231  
Figure 17.9. Multiplexed 8-bit MOVX with Bank Select Timing .............................. 232  
18.Port Input/Output  
Figure 18.1. Port I/O Cell Block Diagram ............................................................... 235  
Figure 18.2. Port I/O Functional Block Diagram..................................................... 237  
Figure 18.3. Priority Crossbar Decode Table (EMIFLE = 0; P1MDIN = 0xFF)....... 238  
Figure 18.4. Priority Crossbar Decode Table  
(EMIFLE = 1; EMIF in Multiplexed Mode; P1MDIN = 0xFF)................ 241  
Figure 18.5. Priority Crossbar Decode Table  
(EMIFLE = 1; EMIF in Non-Multiplexed Mode; P1MDIN = 0xFF)........ 242  
Figure 18.6. Crossbar Example.............................................................................. 244  
19.System Management Bus / I2C Bus (SMBus0)  
Figure 19.1. SMBus0 Block Diagram ..................................................................... 259  
Figure 19.2. Typical SMBus Configuration............................................................. 260  
Figure 19.3. SMBus Transaction............................................................................ 261  
Figure 19.4. Typical Master Transmitter Sequence................................................ 262  
Figure 19.5. Typical Master Receiver Sequence.................................................... 262  
Figure 19.6. Typical Slave Transmitter Sequence.................................................. 263  
Figure 19.7. Typical Slave Receiver Sequence...................................................... 263  
20.Enhanced Serial Peripheral Interface (SPI0)  
Figure 20.1. SPI Block Diagram ............................................................................. 273  
Figure 20.2. Multiple-Master Mode Connection Diagram....................................... 276  
Figure 20.3. 3-Wire Single Master and Slave Mode Connection Diagram............. 276  
Rev. 1.4  
11  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
Figure 20.4. 4-Wire Single Master and Slave Mode Connection Diagram............. 276  
Figure 20.5. Master Mode Data/Clock Timing........................................................ 278  
Figure 20.6. Slave Mode Data/Clock Timing (CKPHA = 0).................................... 279  
Figure 20.7. Slave Mode Data/Clock Timing (CKPHA = 1).................................... 279  
Figure 20.8. SPI Master Timing (CKPHA = 0)........................................................ 283  
Figure 20.9. SPI Master Timing (CKPHA = 1)........................................................ 283  
Figure 20.10. SPI Slave Timing (CKPHA = 0)........................................................ 284  
Figure 20.11. SPI Slave Timing (CKPHA = 1)........................................................ 284  
21.UART0  
Figure 21.1. UART0 Block Diagram ....................................................................... 287  
Figure 21.2. UART0 Mode 0 Timing Diagram ........................................................ 288  
Figure 21.3. UART0 Mode 0 Interconnect.............................................................. 288  
Figure 21.4. UART0 Mode 1 Timing Diagram ....................................................... 289  
Figure 21.5. UART0 Modes 2 and 3 Timing Diagram ............................................ 291  
Figure 21.6. UART0 Modes 1, 2, and 3 Interconnect Diagram .............................. 292  
Figure 21.7. UART Multi-Processor Mode Interconnect Diagram .......................... 294  
22.UART1  
Figure 22.1. UART1 Block Diagram ....................................................................... 299  
Figure 22.2. UART1 Baud Rate Logic.................................................................... 300  
Figure 22.3. UART Interconnect Diagram .............................................................. 301  
Figure 22.4. 8-Bit UART Timing Diagram.............................................................. 301  
Figure 22.5. 9-Bit UART Timing Diagram............................................................... 302  
Figure 22.6. UART Multi-Processor Mode Interconnect Diagram .......................... 303  
23.Timers  
Figure 23.1. T0 Mode 0 Block Diagram.................................................................. 310  
Figure 23.2. T0 Mode 2 Block Diagram.................................................................. 311  
Figure 23.3. T0 Mode 3 Block Diagram.................................................................. 312  
Figure 23.4. T2, 3, and 4 Capture Mode Block Diagram........................................ 318  
Figure 23.5. Tn Auto-reload (T2,3,4) and Toggle Mode (T2,4) Block Diagram..... 319  
24.Programmable Counter Array  
Figure 24.1. PCA Block Diagram............................................................................ 325  
Figure 24.2. PCA Counter/Timer Block Diagram.................................................... 326  
Figure 24.3. PCA Interrupt Block Diagram ............................................................. 328  
Figure 24.4. PCA Capture Mode Diagram.............................................................. 329  
Figure 24.5. PCA Software Timer Mode Diagram.................................................. 330  
Figure 24.6. PCA High Speed Output Mode Diagram............................................ 331  
Figure 24.7. PCA Frequency Output Mode ............................................................ 332  
Figure 24.8. PCA 8-Bit PWM Mode Diagram ......................................................... 333  
Figure 24.9. PCA 16-Bit PWM Mode...................................................................... 334  
25.JTAG (IEEE 1149.1)  
12  
Rev. 1.4  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
List Of Tables  
1. System Overview  
Table 1.1. Product Selection Guide ......................................................................... 20  
2. Absolute Maximum Ratings  
Table 2.1. Absolute Maximum Ratings .................................................................... 38  
3. Global DC Electrical Characteristics  
Table 3.1. Global DC Electrical Characteristics  
(C8051F120/1/2/3 and C8051F130/1/2/3) ............................................. 39  
Table 3.2. Global DC Electrical Characteristics (C8051F124/5/6/7) ....................... 40  
4. Pinout and Package Definitions  
Table 4.1. Pin Definitions ......................................................................................... 41  
5. ADC0 (12-Bit ADC, C8051F120/1/4/5 Only)  
Table 5.1. 12-Bit ADC0 Electrical Characteristics (C8051F120/1/4/5) .................... 72  
6. ADC0 (10-Bit ADC, C8051F122/3/6/7 and C8051F13x Only)  
Table 6.1. 10-Bit ADC0 Electrical Characteristics  
(C8051F122/3/6/7 and C8051F13x) ...................................................... 90  
7. ADC2 (8-Bit ADC, C8051F12x Only)  
Table 7.1. ADC2 Electrical Characteristics ............................................................ 103  
8. DACs, 12-Bit Voltage Mode (C8051F12x Only)  
Table 8.1. DAC Electrical Characteristics .............................................................. 111  
9. Voltage Reference  
Table 9.1. Voltage Reference Electrical Characteristics ....................................... 118  
10.Comparators  
Table 10.1. Comparator Electrical Characteristics ................................................ 126  
11.CIP-51 Microcontroller  
Table 11.1. CIP-51 Instruction Set Summary ........................................................ 129  
Table 11.2. Special Function Register (SFR) Memory Map .................................. 144  
Table 11.3. Special Function Registers ................................................................. 146  
Table 11.4. Interrupt Summary .............................................................................. 155  
12.Multiply And Accumulate (MAC0)  
Table 12.1. MAC0 Rounding (MAC0SAT = 0) ....................................................... 168  
13.Reset Sources  
Table 13.1. Reset Electrical Characteristics .......................................................... 183  
14.Oscillators  
Table 14.1. Oscillator Electrical Characteristics .................................................... 185  
Table 14.2. PLL Frequency Characteristics .......................................................... 195  
Table 14.3. PLL Lock Timing Characteristics ........................................................ 196  
15.Flash Memory  
Table 15.1. Flash Electrical Characteristics .......................................................... 200  
16.Branch Target Cache  
17.External Data Memory Interface and On-Chip XRAM  
Table 17.1. AC Parameters for External Memory Interface ................................... 233  
Rev. 1.4  
13  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
18.Port Input/Output  
Table 18.1. Port I/O DC Electrical Characteristics ................................................. 236  
19.System Management Bus / I2C Bus (SMBus0)  
Table 19.1. SMB0STA Status Codes and States .................................................. 270  
20.Enhanced Serial Peripheral Interface (SPI0)  
Table 20.1. SPI Slave Timing Parameters ............................................................ 285  
21.UART0  
Table 21.1. UART0 Modes .................................................................................... 288  
Table 21.2. Oscillator Frequencies for Standard Baud Rates ............................... 295  
22.UART1  
Table 22.1. Timer Settings for Standard Baud Rates  
Using The Internal 24.5 MHz Oscillator ............................................... 305  
Table 22.2. Timer Settings for Standard Baud Rates  
Using an External 25.0 MHz Oscillator ................................................ 306  
Table 22.3. Timer Settings for Standard Baud Rates  
Using an External 22.1184 MHz Oscillator .......................................... 306  
Table 22.4. Timer Settings for Standard Baud Rates Using the PLL .................... 307  
Table 22.5. Timer Settings for Standard Baud Rates Using the PLL .................... 307  
23.Timers  
24.Programmable Counter Array  
Table 24.1. PCA Timebase Input Options ............................................................. 326  
Table 24.2. PCA0CPM Register Settings for PCA Capture/Compare Modules .... 329  
25.JTAG (IEEE 1149.1)  
Table 25.1. Boundary Data Register Bit Definitions .............................................. 342  
14  
Rev. 1.4  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
List of Registers  
SFR Definition 5.1. AMX0CF: AMUX0 Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
SFR Definition 5.2. AMX0SL: AMUX0 Channel Select . . . . . . . . . . . . . . . . . . . . . . . . 61  
SFR Definition 5.3. ADC0CF: ADC0 Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
SFR Definition 5.4. ADC0CN: ADC0 Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
SFR Definition 5.5. ADC0H: ADC0 Data Word MSB . . . . . . . . . . . . . . . . . . . . . . . . . . 64  
SFR Definition 5.6. ADC0L: ADC0 Data Word LSB . . . . . . . . . . . . . . . . . . . . . . . . . . . 64  
SFR Definition 5.7. ADC0GTH: ADC0 Greater-Than Data High Byte . . . . . . . . . . . . . 66  
SFR Definition 5.8. ADC0GTL: ADC0 Greater-Than Data Low Byte . . . . . . . . . . . . . . 66  
SFR Definition 5.9. ADC0LTH: ADC0 Less-Than Data High Byte . . . . . . . . . . . . . . . . 67  
SFR Definition 5.10. ADC0LTL: ADC0 Less-Than Data Low Byte . . . . . . . . . . . . . . . 67  
SFR Definition 6.1. AMX0CF: AMUX0 Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . 78  
SFR Definition 6.2. AMX0SL: AMUX0 Channel Select . . . . . . . . . . . . . . . . . . . . . . . . . 79  
SFR Definition 6.3. ADC0CF: ADC0 Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . 80  
SFR Definition 6.4. ADC0CN: ADC0 Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81  
SFR Definition 6.5. ADC0H: ADC0 Data Word MSB . . . . . . . . . . . . . . . . . . . . . . . . . . 82  
SFR Definition 6.6. ADC0L: ADC0 Data Word LSB . . . . . . . . . . . . . . . . . . . . . . . . . . . 82  
SFR Definition 6.7. ADC0GTH: ADC0 Greater-Than Data High Byte . . . . . . . . . . . . . 84  
SFR Definition 6.8. ADC0GTL: ADC0 Greater-Than Data Low Byte . . . . . . . . . . . . . . 84  
SFR Definition 6.9. ADC0LTH: ADC0 Less-Than Data High Byte . . . . . . . . . . . . . . . . 85  
SFR Definition 6.10. ADC0LTL: ADC0 Less-Than Data Low Byte . . . . . . . . . . . . . . . 85  
SFR Definition 7.1. AMX2CF: AMUX2 Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . 95  
SFR Definition 7.2. AMX2SL: AMUX2 Channel Select . . . . . . . . . . . . . . . . . . . . . . . . 96  
SFR Definition 7.3. ADC2CF: ADC2 Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . 97  
SFR Definition 7.4. ADC2CN: ADC2 Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98  
SFR Definition 7.5. ADC2: ADC2 Data Word . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99  
SFR Definition 7.6. ADC2GT: ADC2 Greater-Than Data Byte . . . . . . . . . . . . . . . . . . 102  
SFR Definition 7.7. ADC2LT: ADC2 Less-Than Data Byte . . . . . . . . . . . . . . . . . . . . 102  
SFR Definition 8.1. DAC0H: DAC0 High Byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107  
SFR Definition 8.2. DAC0L: DAC0 Low Byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107  
SFR Definition 8.3. DAC0CN: DAC0 Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108  
SFR Definition 8.4. DAC1H: DAC1 High Byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109  
SFR Definition 8.5. DAC1L: DAC1 Low Byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109  
SFR Definition 8.6. DAC1CN: DAC1 Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110  
SFR Definition 9.1. REF0CN: Reference Control (C8051F120/2/4/6) . . . . . . . . . . . . 114  
SFR Definition 9.2. REF0CN: Reference Control (C8051F121/3/5/7) . . . . . . . . . . . . 116  
SFR Definition 9.3. REF0CN: Reference Control (C8051F130/1/2/3) . . . . . . . . . . . . 117  
SFR Definition 10.1. CPT0CN: Comparator0 Control . . . . . . . . . . . . . . . . . . . . . . . . . 122  
SFR Definition 10.2. CPT0MD: Comparator0 Mode Selection . . . . . . . . . . . . . . . . . 123  
SFR Definition 10.3. CPT1CN: Comparator1 Control . . . . . . . . . . . . . . . . . . . . . . . . . 124  
SFR Definition 10.4. CPT1MD: Comparator1 Mode Selection . . . . . . . . . . . . . . . . . 125  
SFR Definition 11.1. PSBANK: Program Space Bank Select . . . . . . . . . . . . . . . . . . 134  
SFR Definition 11.2. SFRPGCN: SFR Page Control . . . . . . . . . . . . . . . . . . . . . . . . . 142  
SFR Definition 11.3. SFRPAGE: SFR Page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142  
Rev. 1.4  
15  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
SFR Definition 11.4. SFRNEXT: SFR Next Register . . . . . . . . . . . . . . . . . . . . . . . . . 143  
SFR Definition 11.5. SFRLAST: SFR Last Register . . . . . . . . . . . . . . . . . . . . . . . . . 143  
SFR Definition 11.6. SP: Stack Pointer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151  
SFR Definition 11.7. DPL: Data Pointer Low Byte . . . . . . . . . . . . . . . . . . . . . . . . . . . 151  
SFR Definition 11.8. DPH: Data Pointer High Byte . . . . . . . . . . . . . . . . . . . . . . . . . . 151  
SFR Definition 11.9. PSW: Program Status Word . . . . . . . . . . . . . . . . . . . . . . . . . . . 152  
SFR Definition 11.10. ACC: Accumulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153  
SFR Definition 11.11. B: B Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153  
SFR Definition 11.12. IE: Interrupt Enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157  
SFR Definition 11.13. IP: Interrupt Priority . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158  
SFR Definition 11.14. EIE1: Extended Interrupt Enable 1 . . . . . . . . . . . . . . . . . . . . . 159  
SFR Definition 11.15. EIE2: Extended Interrupt Enable 2 . . . . . . . . . . . . . . . . . . . . . 160  
SFR Definition 11.16. EIP1: Extended Interrupt Priority 1 . . . . . . . . . . . . . . . . . . . . . 161  
SFR Definition 11.17. EIP2: Extended Interrupt Priority 2 . . . . . . . . . . . . . . . . . . . . . 162  
SFR Definition 11.18. PCON: Power Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164  
SFR Definition 12.1. MAC0CF: MAC0 Configuration . . . . . . . . . . . . . . . . . . . . . . . . . 170  
SFR Definition 12.2. MAC0STA: MAC0 Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171  
SFR Definition 12.3. MAC0AH: MAC0 A High Byte . . . . . . . . . . . . . . . . . . . . . . . . . . 171  
SFR Definition 12.4. MAC0AL: MAC0 A Low Byte . . . . . . . . . . . . . . . . . . . . . . . . . . 172  
SFR Definition 12.5. MAC0BH: MAC0 B High Byte . . . . . . . . . . . . . . . . . . . . . . . . . . 172  
SFR Definition 12.6. MAC0BL: MAC0 B Low Byte . . . . . . . . . . . . . . . . . . . . . . . . . . . 172  
SFR Definition 12.7. MAC0ACC3: MAC0 Accumulator Byte 3 . . . . . . . . . . . . . . . . . . 173  
SFR Definition 12.8. MAC0ACC2: MAC0 Accumulator Byte 2 . . . . . . . . . . . . . . . . . 173  
SFR Definition 12.9. MAC0ACC1: MAC0 Accumulator Byte 1 . . . . . . . . . . . . . . . . . 173  
SFR Definition 12.10. MAC0ACC0: MAC0 Accumulator Byte 0 . . . . . . . . . . . . . . . . . 174  
SFR Definition 12.11. MAC0OVR: MAC0 Accumulator Overflow . . . . . . . . . . . . . . . . 174  
SFR Definition 12.12. MAC0RNDH: MAC0 Rounding Register High Byte . . . . . . . . . 174  
SFR Definition 12.13. MAC0RNDL: MAC0 Rounding Register Low Byte . . . . . . . . . 175  
SFR Definition 13.1. WDTCN: Watchdog Timer Control . . . . . . . . . . . . . . . . . . . . . . 181  
SFR Definition 13.2. RSTSRC: Reset Source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182  
SFR Definition 14.1. OSCICL: Internal Oscillator Calibration. . . . . . . . . . . . . . . . . . . 186  
SFR Definition 14.2. OSCICN: Internal Oscillator Control . . . . . . . . . . . . . . . . . . . . . 186  
SFR Definition 14.3. CLKSEL: System Clock Selection . . . . . . . . . . . . . . . . . . . . . . . 188  
SFR Definition 14.4. OSCXCN: External Oscillator Control . . . . . . . . . . . . . . . . . . . . 189  
SFR Definition 14.5. PLL0CN: PLL Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193  
SFR Definition 14.6. PLL0DIV: PLL Pre-divider . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194  
SFR Definition 14.7. PLL0MUL: PLL Clock Scaler . . . . . . . . . . . . . . . . . . . . . . . . . . . 194  
SFR Definition 14.8. PLL0FLT: PLL Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195  
SFR Definition 15.1. FLACL: Flash Access Limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206  
SFR Definition 15.2. FLSCL: Flash Memory Control . . . . . . . . . . . . . . . . . . . . . . . . . 208  
SFR Definition 15.3. PSCTL: Program Store Read/Write Control . . . . . . . . . . . . . . . 209  
SFR Definition 16.1. CCH0CN: Cache Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215  
SFR Definition 16.2. CCH0TN: Cache Tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216  
SFR Definition 16.3. CCH0LC: Cache Lock Control . . . . . . . . . . . . . . . . . . . . . . . . . 216  
SFR Definition 16.4. CCH0MA: Cache Miss Accumulator . . . . . . . . . . . . . . . . . . . . . 217  
16  
Rev. 1.4  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
SFR Definition 16.5. FLSTAT: Flash Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217  
SFR Definition 17.1. EMI0CN: External Memory Interface Control . . . . . . . . . . . . . . 220  
SFR Definition 17.2. EMI0CF: External Memory Configuration . . . . . . . . . . . . . . . . . 221  
SFR Definition 17.3. EMI0TC: External Memory Timing Control . . . . . . . . . . . . . . . . 226  
SFR Definition 18.1. XBR0: Port I/O Crossbar Register 0 . . . . . . . . . . . . . . . . . . . . . 245  
SFR Definition 18.2. XBR1: Port I/O Crossbar Register 1 . . . . . . . . . . . . . . . . . . . . . 246  
SFR Definition 18.3. XBR2: Port I/O Crossbar Register 2 . . . . . . . . . . . . . . . . . . . . . 247  
SFR Definition 18.4. P0: Port0 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248  
SFR Definition 18.5. P0MDOUT: Port0 Output Mode . . . . . . . . . . . . . . . . . . . . . . . . . 248  
SFR Definition 18.6. P1: Port1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249  
SFR Definition 18.7. P1MDIN: Port1 Input Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249  
SFR Definition 18.8. P1MDOUT: Port1 Output Mode . . . . . . . . . . . . . . . . . . . . . . . . . 250  
SFR Definition 18.9. P2: Port2 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250  
SFR Definition 18.10. P2MDOUT: Port2 Output Mode . . . . . . . . . . . . . . . . . . . . . . . 251  
SFR Definition 18.11. P3: Port3 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251  
SFR Definition 18.12. P3MDOUT: Port3 Output Mode . . . . . . . . . . . . . . . . . . . . . . . 252  
SFR Definition 18.13. P4: Port4 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254  
SFR Definition 18.14. P4MDOUT: Port4 Output Mode . . . . . . . . . . . . . . . . . . . . . . . . 254  
SFR Definition 18.15. P5: Port5 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255  
SFR Definition 18.16. P5MDOUT: Port5 Output Mode . . . . . . . . . . . . . . . . . . . . . . . 255  
SFR Definition 18.17. P6: Port6 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256  
SFR Definition 18.18. P6MDOUT: Port6 Output Mode . . . . . . . . . . . . . . . . . . . . . . . . 256  
SFR Definition 18.19. P7: Port7 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257  
SFR Definition 18.20. P7MDOUT: Port7 Output Mode . . . . . . . . . . . . . . . . . . . . . . . 257  
SFR Definition 19.1. SMB0CN: SMBus0 Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266  
SFR Definition 19.2. SMB0CR: SMBus0 Clock Rate . . . . . . . . . . . . . . . . . . . . . . . . . 267  
SFR Definition 19.3. SMB0DAT: SMBus0 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268  
SFR Definition 19.4. SMB0ADR: SMBus0 Address . . . . . . . . . . . . . . . . . . . . . . . . . . 269  
SFR Definition 19.5. SMB0STA: SMBus0 Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269  
SFR Definition 20.1. SPI0CFG: SPI0 Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . 280  
SFR Definition 20.2. SPI0CN: SPI0 Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281  
SFR Definition 20.3. SPI0CKR: SPI0 Clock Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282  
SFR Definition 20.4. SPI0DAT: SPI0 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282  
SFR Definition 21.1. SCON0: UART0 Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296  
SFR Definition 21.2. SSTA0: UART0 Status and Clock Selection . . . . . . . . . . . . . . . 297  
SFR Definition 21.3. SBUF0: UART0 Data Buffer . . . . . . . . . . . . . . . . . . . . . . . . . . . 298  
SFR Definition 21.4. SADDR0: UART0 Slave Address . . . . . . . . . . . . . . . . . . . . . . . 298  
SFR Definition 21.5. SADEN0: UART0 Slave Address Enable . . . . . . . . . . . . . . . . . 298  
SFR Definition 22.1. SCON1: Serial Port 1 Control . . . . . . . . . . . . . . . . . . . . . . . . . . 304  
SFR Definition 22.2. SBUF1: Serial (UART1) Port Data Buffer . . . . . . . . . . . . . . . . . 305  
SFR Definition 23.1. TCON: Timer Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313  
SFR Definition 23.2. TMOD: Timer Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 314  
SFR Definition 23.3. CKCON: Clock Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315  
SFR Definition 23.4. TL0: Timer 0 Low Byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315  
SFR Definition 23.5. TL1: Timer 1 Low Byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 316  
Rev. 1.4  
17  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
SFR Definition 23.6. TH0: Timer 0 High Byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 316  
SFR Definition 23.7. TH1: Timer 1 High Byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 316  
SFR Definition 23.8. TMRnCN: Timer 2, 3, and 4 Control . . . . . . . . . . . . . . . . . . . . . 321  
SFR Definition 23.9. TMRnCF: Timer 2, 3, and 4 Configuration . . . . . . . . . . . . . . . . 322  
SFR Definition 23.10. RCAPnL: Timer 2, 3, and 4 Capture Register Low Byte . . . . . 323  
SFR Definition 23.11. RCAPnH: Timer 2, 3, and 4 Capture Register High Byte . . . . 323  
SFR Definition 23.12. TMRnL: Timer 2, 3, and 4 Low Byte . . . . . . . . . . . . . . . . . . . . 323  
SFR Definition 23.13. TMRnH Timer 2, 3, and 4 High Byte . . . . . . . . . . . . . . . . . . . 324  
SFR Definition 24.1. PCA0CN: PCA Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335  
SFR Definition 24.2. PCA0MD: PCA0 Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 336  
SFR Definition 24.3. PCA0CPMn: PCA0 Capture/Compare Mode . . . . . . . . . . . . . . 337  
SFR Definition 24.4. PCA0L: PCA0 Counter/Timer Low Byte . . . . . . . . . . . . . . . . . . 338  
SFR Definition 24.5. PCA0H: PCA0 Counter/Timer High Byte . . . . . . . . . . . . . . . . . . 338  
SFR Definition 24.6. PCA0CPLn: PCA0 Capture Module Low Byte . . . . . . . . . . . . . . 338  
SFR Definition 24.7. PCA0CPHn: PCA0 Capture Module High Byte . . . . . . . . . . . . 339  
JTAG Register Definition 25.1. IR: JTAG Instruction Register . . . . . . . . . . . . . . . . . . 341  
JTAG Register Definition 25.2. DEVICEID: JTAG Device ID . . . . . . . . . . . . . . . . . . . 343  
JTAG Register Definition 25.3. FLASHCON: JTAG Flash Control . . . . . . . . . . . . . . . 345  
JTAG Register Definition 25.4. FLASHDAT: JTAG Flash Data . . . . . . . . . . . . . . . . . 346  
JTAG Register Definition 25.5. FLASHADR: JTAG Flash Address . . . . . . . . . . . . . . 346  
18  
Rev. 1.4  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
1. System Overview  
The C8051F12x and C8051F13x device families are fully integrated mixed-signal System-on-a-Chip  
MCUs with 64 digital I/O pins (100-pin TQFP) or 32 digital I/O pins (64-pin TQFP).  
Highlighted features are listed below. Refer to Table 1.1 for specific product feature selection.  
High-Speed pipelined 8051-compatible CIP-51 microcontroller core (100 MIPS or 50 MIPS)  
In-system, full-speed, non-intrusive debug interface (on-chip)  
True 12 or 10-bit 100 ksps ADC with PGA and 8-channel analog multiplexer  
True 8-bit 500 ksps ADC with PGA and 8-channel analog multiplexer (C8051F12x Family)  
Two 12-bit DACs with programmable update scheduling (C8051F12x Family)  
2-cycle 16 by 16 Multiply and Accumulate Engine (C8051F120/1/2/3 and C8051F130/1/2/3)  
128 or 64 kB of in-system programmable Flash memory  
8448 (8 k + 256) bytes of on-chip RAM  
External Data Memory Interface with 64 kB address space  
SPI, SMBus/I2C, and (2) UART serial interfaces implemented in hardware  
Five general purpose 16-bit Timers  
Programmable Counter/Timer Array with 6 capture/compare modules  
On-chip Watchdog Timer, V Monitor, and Temperature Sensor  
DD  
With on-chip V monitor, Watchdog Timer, and clock oscillator, the C8051F12x and C8051F13x devices  
DD  
are truly stand-alone System-on-a-Chip solutions. All analog and digital peripherals are enabled/disabled  
and configured by user firmware. The Flash memory can be reprogrammed even in-circuit, providing non-  
volatile data storage, and also allowing field upgrades of the 8051 firmware.  
On-board JTAG debug circuitry allows non-intrusive (uses no on-chip resources), full speed, in-circuit  
debugging using the production MCU installed in the final application. This debug system supports inspec-  
tion and modification of memory and registers, setting breakpoints, watchpoints, single stepping, run and  
halt commands. All analog and digital peripherals are fully functional while debugging using JTAG.  
Each MCU is specified for operation over the industrial temperature range (–45 to +85 °C). The Port I/O,  
RST, and JTAG pins are tolerant for input signals up to 5 V. The devices are available in 100-pin TQFP or  
64-pin TQFP packaging. Table 1.1 lists the specific device features and package offerings for each part  
number. Figure 1.1 through Figure 1.6 show functional block diagrams for each device.  
Rev. 1.4  
19  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
Table 1.1. Product Selection Guide  
C8051F120  
C8051F120-GQ 100 128 k 8448  
C8051F121 100 128 k 8448  
C8051F121-GQ 100 128 k 8448  
C8051F122 100 128 k 8448  
C8051F122-GQ 100 128 k 8448  
C8051F123 100 128 k 8448  
C8051F123-GQ 100 128 k 8448  
C8051F124 50 128 k 8448  
C8051F124-GQ 50 128 k 8448  
C8051F125 50 128 k 8448  
C8051F125-GQ 50 128 k 8448  
C8051F126 50 128 k 8448  
C8051F126-GQ 50 128 k 8448  
C8051F127 50 128 k 8448  
C8051F127-GQ 50 128 k 8448  
C8051F130 100 128 k 8448  
C8051F130-GQ 100 128 k 8448  
C8051F131 100 128 k 8448  
C8051F131-GQ 100 128 k 8448  
C8051F132 100 64 k 8448  
C8051F132-GQ 100 64 k 8448  
C8051F133 100 64 k 8448  
100 128 k 8448  
-
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
64  
64  
32  
32  
64  
64  
32  
32  
64  
64  
32  
32  
64  
64  
32  
32  
64  
64  
32  
32  
64  
64  
32  
32  
8
8
8
8
-
-
-
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
-
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
-
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
-
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
-
-
100TQFP  
100TQFP  
64TQFP  
64TQFP  
100TQFP  
100TQFP  
64TQFP  
64TQFP  
100TQFP  
100TQFP  
64TQFP  
64TQFP  
100TQFP  
100TQFP  
64TQFP  
64TQFP  
100TQFP  
100TQFP  
64TQFP  
64TQFP  
100TQFP  
100TQFP  
64TQFP  
64TQFP  
-
-
-
8
8
8
8
-
-
-
-
-
-
8
8
8
8
-
-
-
-
-
-
-
-
-
-
8
8
8
8
8
8
8
8
8
8
8
8
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
C8051F133-GQ 100 64 k 8448  
-
-
-
-
20  
Rev. 1.4  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
VDD  
VDD  
VDD  
DGND  
DGND  
DGND  
Port I/O  
Config.  
Digital Power  
Analog Power  
P0.0  
UART0  
P0  
Drv  
P0.7  
SFR Bus  
UART1  
SMBus  
SPI Bus  
PCA  
AV+  
AV+  
AGND  
C
R
O
S
S
B
A
R
P1.0/AIN2.0  
P1.7/AIN2.7  
P1  
Drv  
AGND  
8
0
5
1
256 byte  
RAM  
TCK  
TMS  
TDI  
Boundary Scan  
Debug HW  
JTAG  
Logic  
Timers 0,  
1, 2, 4  
P2.0  
P2.7  
TDO  
P2  
Drv  
8 kB  
XRAM  
Reset  
RST  
Timer 3/  
RTC  
VDD  
Monitor  
P3.0  
P3.7  
WDT  
MONEN  
P3  
Drv  
P0, P1,  
P2, P3  
Latches  
External Data  
Memory Bus  
External Oscillator  
Circuit  
XTAL1  
XTAL2  
Crossbar  
Config.  
PLL  
Circuitry  
System  
Clock  
C
o
r
128 kB  
FLASH  
VREF2  
Calibrated Internal  
Oscillator  
A
M
U
X
ADC  
500 ksps  
(8-Bit)  
8:1  
Prog  
Gain  
VREF  
VREF  
VREFD  
P4.0  
64x4 byte  
cache  
DAC1  
(12-Bit)  
e
DAC1  
C
T
L
P4 Latch  
Bus Control  
P4  
DRV  
P4.4  
P4.5/ALE  
P4.6/RD  
P4.7/WR  
DAC0  
(12-Bit)  
DAC0  
VREF0  
P5.0/A8  
P5 Latch  
P6 Latch  
P5  
DRV  
AIN0.0  
AIN0.1  
AIN0.2  
AIN0.3  
AIN0.4  
AIN0.5  
AIN0.6  
AIN0.7  
A
d
d
r
P5.7/A15  
P6.0/A0  
Address Bus  
ADC  
100 ksps  
(12-Bit)  
A
P6  
DRV  
Prog  
Gain  
M
U
X
P6.7/A7  
P7.0/D0  
P7.7/D7  
D
a
t
P7 Latch  
TEMP  
SENSOR  
P7  
DRV  
Data Bus  
CP0+  
CP0-  
CP1+  
CP1-  
CP0  
a
CP1  
Figure 1.1. C8051F120/124 Block Diagram  
Rev. 1.4  
21  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
VDD  
VDD  
VDD  
DGND  
DGND  
DGND  
Port I/O  
Config.  
Digital Power  
P0.0  
P0.7  
UART0  
UART1  
SMBus  
SPI Bus  
PCA  
P0  
Drv  
SFR Bus  
AV+  
C
R
O
S
S
B
A
R
Analog Power  
AGND  
P1.0/AIN2.0  
P1.7/AIN2.7  
P1  
Drv  
8
0
5
1
256 byte  
RAM  
TCK  
TMS  
TDI  
Boundary Scan  
Debug HW  
JTAG  
Logic  
Timers 0,  
1, 2, 4  
P2.0  
P2.7  
TDO  
P2  
Drv  
8 kB  
XRAM  
Reset  
RST  
Timer 3/  
RTC  
VDD  
Monitor  
P3.0  
P3.7  
WDT  
MONEN  
P3  
Drv  
P0, P1,  
P2, P3  
Latches  
External Data  
Memory Bus  
External Oscillator  
Circuit  
XTAL1  
XTAL2  
Crossbar  
Config.  
PLL  
Circuitry  
System  
Clock  
C
o
r
Calibrated Internal  
Oscillator  
128 kB  
FLASH  
A
M
U
X
ADC  
500 ksps  
(8-Bit)  
8:1  
Prog  
Gain  
VREF  
DAC1  
VREF  
AV+  
VREFA  
64x4 byte  
cache  
DAC1  
(12-Bit)  
e
C
T
L
P4 Latch  
Bus Control  
P4  
DRV  
DAC0  
(12-Bit)  
DAC0  
VREFA  
P5 Latch  
P6 Latch  
P5  
DRV  
AIN0.0  
AIN0.1  
AIN0.2  
AIN0.3  
AIN0.4  
AIN0.5  
AIN0.6  
AIN0.7  
A
d
d
r
Address Bus  
ADC  
100 ksps  
(12-Bit)  
A
P6  
DRV  
Prog  
Gain  
M
U
X
D
a
t
P7 Latch  
TEMP  
SENSOR  
P7  
DRV  
Data Bus  
CP0+  
CP0-  
CP1+  
CP1-  
CP0  
a
CP1  
Figure 1.2. C8051F121/125 Block Diagram  
22  
Rev. 1.4  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
VDD  
VDD  
VDD  
DGND  
DGND  
DGND  
Port I/O  
Config.  
Digital Power  
Analog Power  
P0.0  
UART0  
P0  
Drv  
P0.7  
UART1  
SMBus  
SPI Bus  
PCA  
SFR Bus  
AV+  
AV+  
AGND  
C
R
O
S
S
B
A
R
P1.0/AIN2.0  
P1.7/AIN2.7  
P1  
Drv  
AGND  
8
0
5
1
256 byte  
RAM  
TCK  
TMS  
TDI  
Boundary Scan  
Debug HW  
JTAG  
Logic  
Timers 0,  
1, 2, 4  
P2.0  
P2.7  
TDO  
P2  
Drv  
8 kB  
XRAM  
Reset  
RST  
Timer 3/  
RTC  
VDD  
Monitor  
P3.0  
P3.7  
WDT  
MONEN  
P3  
Drv  
P0, P1,  
P2, P3  
Latches  
External Data  
Memory Bus  
External Oscillator  
Circuit  
XTAL1  
XTAL2  
Crossbar  
Config.  
PLL  
Circuitry  
System  
Clock  
C
o
r
VREF2  
Calibrated Internal  
Oscillator  
128 kB  
FLASH  
A
M
U
X
ADC  
500 ksps  
(8-Bit)  
8:1  
Prog  
Gain  
VREF  
VREF  
VREFD  
P4.0  
64x4 byte  
cache  
DAC1  
(12-Bit)  
e
DAC1  
C
T
L
P4 Latch  
Bus Control  
P4  
DRV  
P4.4  
P4.5/ALE  
P4.6/RD  
P4.7/WR  
DAC0  
(12-Bit)  
DAC0  
VREF0  
P5.0/A8  
P5 Latch  
P6 Latch  
P5  
DRV  
AIN0.0  
AIN0.1  
AIN0.2  
AIN0.3  
AIN0.4  
AIN0.5  
AIN0.6  
AIN0.7  
A
d
d
r
P5.7/A15  
P6.0/A0  
Address Bus  
ADC  
100 ksps  
(10-Bit)  
A
P6  
DRV  
Prog  
Gain  
M
U
X
P6.7/A7  
P7.0/D0  
P7.7/D7  
D
a
t
P7 Latch  
TEMP  
SENSOR  
P7  
DRV  
Data Bus  
CP0+  
CP0-  
CP1+  
CP1-  
CP0  
a
CP1  
Figure 1.3. C8051F122/126 Block Diagram  
Rev. 1.4  
23  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
VDD  
VDD  
VDD  
DGND  
DGND  
DGND  
Port I/O  
Config.  
Digital Power  
P0.0  
P0.7  
UART0  
UART1  
SMBus  
SPI Bus  
PCA  
P0  
Drv  
SFR Bus  
AV+  
C
R
O
S
S
B
A
R
Analog Power  
AGND  
P1.0/AIN2.0  
P1.7/AIN2.7  
P1  
Drv  
8
0
5
1
256 byte  
RAM  
TCK  
TMS  
TDI  
Boundary Scan  
Debug HW  
JTAG  
Logic  
Timers 0,  
1, 2, 4  
P2.0  
P2.7  
TDO  
P2  
Drv  
8 kb  
XRAM  
Reset  
RST  
Timer 3/  
RTC  
VDD  
Monitor  
P3.0  
P3.7  
WDT  
MONEN  
P3  
Drv  
P0, P1,  
P2, P3  
Latches  
External Data  
Memory Bus  
External Oscillator  
Circuit  
XTAL1  
XTAL2  
Crossbar  
Config.  
PLL  
Circuitry  
System  
Clock  
C
o
r
Calibrated Internal  
Oscillator  
128 kb  
FLASH  
A
M
U
X
ADC  
500 ksps  
(8-Bit)  
8:1  
Prog  
Gain  
VREF  
DAC1  
VREF  
AV+  
VREFA  
64x4 byte  
cache  
DAC1  
(12-Bit)  
e
C
T
L
P4 Latch  
Bus Control  
P4  
DRV  
DAC0  
(12-Bit)  
DAC0  
VREFA  
P5 Latch  
P6 Latch  
P5  
DRV  
AIN0.0  
AIN0.1  
AIN0.2  
AIN0.3  
AIN0.4  
AIN0.5  
AIN0.6  
AIN0.7  
A
d
d
r
Address Bus  
ADC  
100 ksps  
(10-Bit)  
A
P6  
DRV  
Prog  
Gain  
M
U
X
D
a
t
P7 Latch  
TEMP  
SENSOR  
P7  
DRV  
Data Bus  
CP0+  
CP0-  
CP1+  
CP1-  
CP0  
a
CP1  
Figure 1.4. C8051F123/127 Block Diagram  
24  
Rev. 1.4  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
VDD  
VDD  
VDD  
DGND  
DGND  
DGND  
Port I/O  
Config.  
Digital Power  
Analog Power  
P0.0  
UART0  
P0  
Drv  
P0.7  
UART1  
SMBus  
SPI Bus  
PCA  
SFR Bus  
AV+  
AV+  
AGND  
C
R
O
S
S
B
A
R
P1.0/AIN2.0  
P1.7/AIN2.7  
P1  
Drv  
AGND  
8
0
5
1
256 byte  
RAM  
TCK  
TMS  
TDI  
Boundary Scan  
Debug HW  
JTAG  
Logic  
Timers 0,  
1, 2, 4  
P2.0  
P2.7  
TDO  
P2  
Drv  
8kbyte  
XRAM  
Reset  
RST  
Timer 3/  
RTC  
VDD  
Monitor  
P3.0  
P3.7  
WDT  
MONEN  
P3  
Drv  
P0, P1,  
P2, P3  
Latches  
External Data  
Memory Bus  
External Oscillator  
Circuit  
XTAL1  
XTAL2  
Crossbar  
Config.  
PLL  
Circuitry  
System  
Clock  
C
o
r
Calibrated Internal  
Oscillator  
FLASH  
128kbyte  
(‘F130)  
64kbyte  
(‘F132)  
VREF  
VREF  
P4.0  
e
C
T
L
P4 Latch  
Bus Control  
P4  
DRV  
P4.4  
P4.5/ALE  
P4.6/RD  
P4.7/WR  
64x4 byte  
cache  
VREF0  
P5.0/A8  
P5 Latch  
P6 Latch  
P5  
DRV  
AIN0.0  
AIN0.1  
AIN0.2  
AIN0.3  
AIN0.4  
AIN0.5  
AIN0.6  
AIN0.7  
A
d
d
r
P5.7/A15  
P6.0/A0  
Address Bus  
ADC  
100ksps  
(10-Bit)  
A
P6  
DRV  
Prog  
Gain  
M
U
X
P6.7/A7  
P7.0/D0  
P7.7/D7  
D
a
t
P7 Latch  
TEMP  
SENSOR  
P7  
DRV  
Data Bus  
CP0+  
CP0-  
CP1+  
CP1-  
CP0  
a
CP1  
Figure 1.5. C8051F130/132 Block Diagram  
Rev. 1.4  
25  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
VDD  
VDD  
VDD  
DGND  
DGND  
DGND  
Port I/O  
Config.  
Digital Power  
P0.0  
P0.7  
UART0  
UART1  
SMBus  
SPI Bus  
PCA  
P0  
Drv  
SFR Bus  
AV+  
C
R
O
S
S
B
A
R
Analog Power  
AGND  
P1.0/AIN2.0  
P1.7/AIN2.7  
P1  
Drv  
8
0
5
1
256 byte  
RAM  
TCK  
TMS  
TDI  
Boundary Scan  
Debug HW  
JTAG  
Logic  
Timers 0,  
1, 2, 4  
P2.0  
P2.7  
TDO  
P2  
Drv  
8kbyte  
XRAM  
Reset  
RST  
Timer 3/  
RTC  
VDD  
Monitor  
P3.0  
P3.7  
WDT  
MONEN  
P3  
Drv  
P0, P1,  
P2, P3  
Latches  
External Data  
Memory Bus  
External Oscillator  
Circuit  
XTAL1  
XTAL2  
Crossbar  
Config.  
PLL  
Circuitry  
System  
Clock  
C
o
r
Calibrated Internal  
Oscillator  
FLASH  
128kbyte  
(‘F131)  
64kbyte  
(‘F133)  
VREF  
VREF  
e
C
T
L
P4 Latch  
Bus Control  
P4  
DRV  
64x4 byte  
cache  
VREF0  
P5 Latch  
P6 Latch  
P5  
DRV  
AIN0.0  
AIN0.1  
AIN0.2  
AIN0.3  
AIN0.4  
AIN0.5  
AIN0.6  
AIN0.7  
A
d
d
r
Address Bus  
ADC  
100ksps  
(10-Bit)  
A
P6  
DRV  
Prog  
Gain  
M
U
X
D
a
t
P7 Latch  
TEMP  
SENSOR  
P7  
DRV  
Data Bus  
CP0+  
CP0-  
CP1+  
CP1-  
CP0  
a
CP1  
Figure 1.6. C8051F131/133 Block Diagram  
26  
Rev. 1.4  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
1.1. CIP-51™ Microcontroller Core  
1.1.1. Fully 8051 Compatible  
The C8051F12x and C8051F13x utilize Silicon Labs’ proprietary CIP-51 microcontroller core. The CIP-51  
is fully compatible with the MCS-51™ instruction set; standard 803x/805x assemblers and compilers can  
be used to develop software. The core has all the peripherals included with a standard 8052, including five  
16-bit counter/timers, two full-duplex UARTs, 256 bytes of internal RAM, 128 byte Special Function Regis-  
ter (SFR) address space, and 8/4 byte-wide I/O Ports.  
1.1.2. Improved Throughput  
The CIP-51 employs a pipelined architecture that greatly increases its instruction throughput over the stan-  
dard 8051 architecture. In a standard 8051, all instructions except for MUL and DIV take 12 or 24 system  
clock cycles to execute with a maximum system clock of 12-to-24 MHz. By contrast, the CIP-51 core exe-  
cutes 70% of its instructions in one or two system clock cycles, with only four instructions taking more than  
four system clock cycles.  
The CIP-51 has a total of 109 instructions. The table below shows the total number of instructions that  
require each execution time.  
Clocks to Execute  
Number of Instructions  
1
26  
2
50  
2/3  
5
3
14  
3/4  
7
4
3
4/5  
1
5
2
8
1
With the CIP-51's maximum system clock at 100 MHz, the C8051F120/1/2/3 and C8051F130/1/2/3 have a  
peak throughput of 100 MIPS (the C8051F124/5/6/7 have a peak throughput of 50 MIPS).  
Rev. 1.4  
27  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
1.1.3. Additional Features  
Several key enhancements are implemented in the CIP-51 core and peripherals to improve overall perfor-  
mance and ease of use in end applications.  
The extended interrupt handler provides 20 interrupt sources into the CIP-51 (as opposed to 7 for the stan-  
dard 8051), allowing the numerous analog and digital peripherals to interrupt the controller. An interrupt  
driven system requires less intervention by the MCU, giving it more effective throughput. The extra inter-  
rupt sources are very useful when building multi-tasking, real-time systems.  
There are up to seven reset sources for the MCU: an on-board V monitor, a Watchdog Timer, a missing  
DD  
clock detector, a voltage level detection from Comparator0, a forced software reset, the CNVSTR0 input  
pin, and the RST pin. The RST pin is bi-directional, accommodating an external reset, or allowing the inter-  
nally generated POR to be output on the RST pin. Each reset source except for the V monitor and Reset  
DD  
Input pin may be disabled by the user in software; the V  
monitor is enabled/disabled via the MONEN  
DD  
pin. The Watchdog Timer may be permanently enabled in software after a power-on reset during MCU ini-  
tialization.  
The MCU has an internal, stand alone clock generator which is used by default as the system clock after  
any reset. If desired, the clock source may be switched on the fly to the external oscillator, which can use a  
crystal, ceramic resonator, capacitor, RC, or external clock source to generate the system clock. This can  
be extremely useful in low power applications, allowing the MCU to run from a slow (power saving) exter-  
nal crystal source, while periodically switching to the 24.5 MHz internal oscillator as needed. Additionally,  
an on-chip PLL is provided to achieve higher system clock speeds for increased throughput.  
VDD  
CNVSTR  
Crossbar  
(Port I/O)  
Supply  
Monitor  
(CNVSTR  
reset  
enable)  
Supply  
Reset  
Timeout  
+
-
RST  
(wired-OR)  
Comparator0  
CP0+  
CP0-  
+
-
(CP0  
reset  
enable)  
Reset  
Funnel  
Missing  
Clock  
Detector  
(one-  
shot)  
WDT  
EN  
EN  
PRE  
Internal  
Clock  
Generator  
System  
Clock  
PLL  
Circuitry  
Software Reset  
System Reset  
CIP-51  
Microcontroller  
Core  
XTAL1  
XTAL2  
OSC  
Clock Select  
Extended Interrupt  
Handler  
Figure 1.7. On-Board Clock and Reset  
28  
Rev. 1.4  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
1.2. On-Chip Memory  
The CIP-51 has a standard 8051 program and data address configuration. It includes 256 bytes of data  
RAM, with the upper 128 bytes dual-mapped. Indirect addressing accesses the upper 128 bytes of general  
purpose RAM, and direct addressing accesses the 128 byte SFR address space. The lower 128 bytes of  
RAM are accessible via direct and indirect addressing. The first 32 bytes are addressable as four banks of  
general purpose registers, and the next 16 bytes can be byte addressable or bit addressable.  
The devices include an on-chip 8k byte RAM block and an external memory interface (EMIF) for accessing  
off-chip data memory. The on-chip 8k byte block can be addressed over the entire 64k external data mem-  
ory address range (overlapping 8k boundaries). External data memory address space can be mapped to  
on-chip memory only, off-chip memory only, or a combination of the two (addresses up to 8k directed to on-  
chip, above 8k directed to EMIF). The EMIF is also configurable for multiplexed or non-multiplexed  
address/data lines.  
On the C8051F12x and C8051F130/1, the MCU’s program memory consists of 128 k bytes of banked  
Flash memory. The 1024 bytes from addresses 0x1FC00 to 0x1FFFF are reserved. On the C8051F132/3,  
the MCU’s program memory consists of 64 k bytes of Flash memory. This memory may be reprogrammed  
in-system in 1024 byte sectors, and requires no special off-chip programming voltage.  
On all devices, there are also two 128 byte sectors at addresses 0x20000 to 0x200FF, which may be used  
by software for data storage. See Figure 1.8 for the MCU system memory map.  
PROGRAM/DATA MEMORY  
(FLASH)  
DATA MEMORY (RAM)  
INTERNAL DATA ADDRESS SPACE  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1  
Upper 128 RAM  
(Indirect Addressing  
Only)  
Special Function  
Registers  
(Direct Addressing Only)  
0x200FF  
0x20000  
0x1FFFF  
0x1FC00  
0x1FBFF  
Scrachpad Memory  
(DATA only)  
0
1
2
3
RESERVED  
(Direct and Indirect  
Addressing)  
Up To  
256 SFR Pages  
Lower 128 RAM  
(Direct and Indirect  
Addressing)  
FLASH  
Bit Addressable  
(In-System  
Programmable in 1024  
Byte Sectors)  
General Purpose  
Registers  
0x00000  
EXTERNAL DATA ADDRESS SPACE  
0xFFFF  
C8051F132/3  
0x200FF  
0x20000  
Scrachpad Memory  
(DATA only)  
Off-chip XRAM space  
0x0FFFF  
FLASH  
(In-System  
Programmable in 1024  
Byte Sectors)  
0x2000  
0x1FFF  
XRAM - 8192 Bytes  
(accessable using MOVX  
instruction)  
0x0000  
0x00000  
Figure 1.8. On-Chip Memory Map  
Rev. 1.4  
29  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
1.3. JTAG Debug and Boundary Scan  
JTAG boundary scan and debug circuitry is included which provides non-intrusive, full speed, in-circuit  
debugging using the production part installed in the end application, via the four-pin JTAG interface. The  
JTAG port is fully compliant to IEEE 1149.1, providing full boundary scan for test and manufacturing pur-  
poses.  
Silicon Labs' debugging system supports inspection and modification of memory and registers, break-  
points, watchpoints, a stack monitor, and single stepping. No additional target RAM, program memory, tim-  
ers, or communications channels are required. All the digital and analog peripherals are functional and  
work correctly while debugging. All the peripherals (except for the ADC and SMBus) are stalled when the  
MCU is halted, during single stepping, or at a breakpoint in order to keep them synchronized.  
The C8051F120DK development kit provides all the hardware and software necessary to develop applica-  
tion code and perform in-circuit debugging with the C8051F12x or C8051F13x MCUs.  
The kit includes a Windows (95 or later) development environment, a serial adapter for connecting to the  
JTAG port, and a target application board with a C8051F120 MCU installed. All of the necessary commu-  
nication cables and a wall-mount power supply are also supplied with the development kit. Silicon Labs’  
debug environment is a vastly superior configuration for developing and debugging embedded applications  
compared to standard MCU emulators, which use on-board "ICE Chips" and target cables and require the  
MCU in the application board to be socketed. Silicon Labs' debug environment both increases ease of use  
and preserves the performance of the precision, on-chip analog peripherals.  
Silicon Labs Integrated  
Development Environment  
WINDOWS 95 OR LATER  
JTAG (x4), VDD, GND  
Serial  
Adapter  
TARGET PCB  
C8051  
F12x/13x  
Figure 1.9. Development/In-System Debug Diagram  
30  
Rev. 1.4  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
1.4. 16 x 16 MAC (Multiply and Accumulate) Engine  
The C8051F120/1/2/3 and C8051F130/1/2/3 devices include a multiply and accumulate engine which can  
be used to speed up many mathematical operations. MAC0 contains a 16-by-16 bit multiplier and a 40-bit  
adder, which can perform integer or fractional multiply-accumulate and multiply operations on signed input  
values in two SYSCLK cycles. A rounding engine provides a rounded 16-bit fractional result after an addi-  
tional (third) SYSCLK cycle. MAC0 also contains a 1-bit arithmetic shifter that will left or right-shift the con-  
tents of the 40-bit accumulator in a single SYSCLK cycle.  
MAC0 A Register  
MAC0AH MAC0AL  
MAC0 B Register  
MAC0BH MAC0BL  
MAC0MS  
MAC0FM  
16 x 16 Multiply  
0
1
0
40 bit Add  
MAC0 Accumulator  
MAC0ACC3 MAC0ACC2 MAC0ACC1 MAC0ACC0  
MAC0OVR  
1 bit Shift  
Rounding Engine  
Flag Logic  
MAC0 Rounding Register  
MAC0RNDH MAC0RNDL  
MAC0CF  
MAC0STA  
Figure 1.10. MAC0 Block Diagram  
Rev. 1.4  
31  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
1.5. Programmable Digital I/O and Crossbar  
The standard 8051 8-bit Ports (0, 1, 2, and 3) are available on the MCUs. The devices in the larger (100-  
pin TQFP) packaging have 4 additional ports (4, 5, 6, and 7) for a total of 64 general-purpose port I/O. The  
Port I/O behave like the standard 8051 with a few enhancements.  
Each Port I/O pin can be configured as either a push-pull or open-drain output. Also, the "weak pullups"  
which are normally fixed on an 8051 can be globally disabled, providing additional power saving capabili-  
ties for low-power applications.  
Perhaps the most unique enhancement is the Digital Crossbar. This is a large digital switching network that  
allows mapping of internal digital system resources to Port I/O pins on P0, P1, P2, and P3. (See  
Figure 1.11) Unlike microcontrollers with standard multiplexed digital I/O, all combinations of functions are  
supported.  
The on-chip counter/timers, serial buses, HW interrupts, ADC Start of Conversion inputs, comparator out-  
puts, and other digital signals in the controller can be configured to appear on the Port I/O pins specified in  
the Crossbar Control registers. This allows the user to select the exact mix of general purpose Port I/O and  
digital resources needed for the particular application.  
XBR0, XBR1,  
XBR2, P1MDIN  
Registers  
P0MDOUT, P1MDOUT,  
P2MDOUT, P3MDOUT  
Registers  
2
4
Highest  
Priority  
UART0  
SPI  
External  
Pins  
2
2
7
SMBus  
UART1  
PCA  
Priority  
Decoder  
P0.0  
Highest  
Priority  
P0  
I/O  
Cells  
8
8
8
8
P0.7  
2
Comptr.  
Outputs  
Digital  
Crossbar  
P1.0  
P1.7  
P1  
I/O  
Cells  
T0, T1,  
T2, T2EX,  
T4,T4EX  
/INT0,  
8
P2.0  
P2.7  
/INT1  
P2  
I/O  
Cells  
Lowest  
Priority  
/SYSCLK divided by 1,2,4, or 8  
2
CNVSTR0/2  
P3.0  
P3.7  
P3  
I/O  
Cells  
8
Lowest  
Priority  
P0  
(P0.0-P0.7)  
8
P1  
P2  
P3  
(P1.0-P1.7)  
8
To External  
Memory  
Interface  
(EMIF)  
Port  
Latches  
To ADC2 Input  
(‘F12x Only)  
(P2.0-P2.7)  
8
(P3.0-P3.7)  
Figure 1.11. Digital Crossbar Diagram  
32  
Rev. 1.4  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
1.6. Programmable Counter Array  
An on-board Programmable Counter/Timer Array (PCA) is included in addition to the five 16-bit general  
purpose counter/timers. The PCA consists of a dedicated 16-bit counter/timer time base with 6 program-  
mable capture/compare modules. The timebase is clocked from one of six sources: the system clock  
divided by 12, the system clock divided by 4, Timer 0 overflow, an External Clock Input (ECI pin), the sys-  
tem clock, or the external oscillator source divided by 8.  
Each capture/compare module can be configured to operate in one of six modes: Edge-Triggered Capture,  
Software Timer, High Speed Output, Frequency Output, 8-Bit Pulse Width Modulator, or 16-Bit Pulse Width  
Modulator. The PCA Capture/Compare Module I/O and External Clock Input are routed to the MCU Port I/  
O via the Digital Crossbar.  
SYSCLK/12  
SYSCLK/4  
Timer 0 Overflow  
PCA  
16-Bit Counter/Timer  
CLOCK  
MUX  
ECI  
SYSCLK  
External Clock/8  
Capture/Compare  
Module 0  
Capture/Compare  
Module 1  
Capture/Compare  
Module 2  
Capture/Compare  
Module 3  
Capture/Compare  
Module 4  
Capture/Compare  
Module 5  
Crossbar  
Port I/O  
Figure 1.12. PCA Block Diagram  
1.7. Serial Ports  
Serial peripherals included on the devices are two Enhanced Full-Duplex UARTs, SPI Bus, and SMBus/  
I2C. Each of the serial buses is fully implemented in hardware and makes extensive use of the CIP-51's  
interrupts, thus requiring very little intervention by the CPU. The serial buses do not "share" resources  
such as timers, interrupts, or Port I/O, so any or all of the serial buses may be used together with any other.  
Rev. 1.4  
33  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
1.8. 12 or 10-Bit Analog to Digital Converter  
All devices include either a 12 or 10-bit SAR ADC (ADC0) with a 9-channel input multiplexer and program-  
mable gain amplifier. With a maximum throughput of 100 ksps, the 12 and 10-bit ADCs offer true 12-bit lin-  
earity with an INL of ±1LSB. The ADC0 voltage reference can be selected from an external VREF pin, or  
(on the C8051F12x devices) the DAC0 output. On the 100-pin TQFP devices, ADC0 has its own dedicated  
Voltage Reference input pin; on the 64-pin TQFP devices, the ADC0 shares a Voltage Reference input pin  
with the 8-bit ADC2. The on-chip voltage reference may generate the voltage reference for other system  
components or the on-chip ADCs via the VREF output pin.  
The ADC is under full control of the CIP-51 microcontroller via its associated Special Function Registers.  
One input channel is tied to an internal temperature sensor, while the other eight channels are available  
externally. Each pair of the eight external input channels can be configured as either two single-ended  
inputs or a single differential input. The system controller can also put the ADC into shutdown mode to  
save power.  
A programmable gain amplifier follows the analog multiplexer. The gain can be set in software from 0.5 to  
16 in powers of 2. The gain stage can be especially useful when different ADC input channels have widely  
varied input voltage signals, or when it is necessary to "zoom in" on a signal with a large DC offset (in dif-  
ferential mode, a DAC could be used to provide the DC offset).  
Conversions can be started in four ways; a software command, an overflow of Timer 2, an overflow of  
Timer 3, or an external signal input. This flexibility allows the start of conversion to be triggered by software  
events, external HW signals, or a periodic timer overflow signal. Conversion completions are indicated by a  
status bit and an interrupt (if enabled). The resulting 10 or 12-bit data word is latched into two SFRs upon  
completion of a conversion. The data can be right or left justified in these registers under software control.  
Window Compare registers for the ADC data can be configured to interrupt the controller when ADC data  
is within or outside of a specified range. The ADC can monitor a key voltage continuously in background  
mode, but not interrupt the controller unless the converted data is within the specified window.  
Analog Multiplexer  
Window  
Compare  
Interrupt  
Configuration, Control, and Data  
Registers  
Window Compare  
Logic  
+
AIN0.0  
AIN0.1  
AIN0.2  
AIN0.3  
AIN0.4  
AIN0.5  
AIN0.6  
AIN0.7  
-
Programmable Gain  
Amplifier  
+
-
9-to-1  
AMUX  
(SE or  
DIFF)  
AV+  
12-Bit  
SAR  
+
12  
ADC Data  
Registers  
+
-
X
-
+
ADC  
Conversion  
Complete  
Interrupt  
-
TEMP  
SENSOR  
Write to AD0BUSY  
External VREF  
Pin  
Start  
Conversion  
VREF  
Timer 3 Overflow  
CNVSTR0  
AGND  
DAC0 Output  
Timer 2 Overflow  
Figure 1.13. 12-Bit ADC Block Diagram  
34  
Rev. 1.4  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
1.9. 8-Bit Analog to Digital Converter  
The C8051F12x devices have an on-board 8-bit SAR ADC (ADC2) with an 8-channel input multiplexer and  
programmable gain amplifier. This ADC features a 500 ksps maximum throughput and true 8-bit linearity  
with an INL of ±1LSB. Eight input pins are available for measurement. The ADC is under full control of the  
CIP-51 microcontroller via the Special Function Registers. The ADC2 voltage reference is selected  
between the analog power supply (AV+) and an external VREF pin. On the 100-pin TQFP devices, ADC2  
has its own dedicated Voltage Reference input pin; on the 64-pin TQFP devices, ADC2 shares a Voltage  
Reference input pin with ADC0. User software may put ADC2 into shutdown mode to save power.  
A programmable gain amplifier follows the analog multiplexer. The gain stage can be especially useful  
when different ADC input channels have widely varied input voltage signals, or when it is necessary to  
"zoom in" on a signal with a large DC offset (in differential mode, a DAC could be used to provide the DC  
offset). The PGA gain can be set in software to 0.5, 1, 2, or 4.  
A flexible conversion scheduling system allows ADC2 conversions to be initiated by software commands,  
timer overflows, or an external input signal. ADC2 conversions may also be synchronized with ADC0 soft-  
ware-commanded conversions. Conversion completions are indicated by a status bit and an interrupt (if  
enabled), and the resulting 8-bit data word is latched into an SFR upon completion.  
Analog Multiplexer  
Window  
Compare  
Logic  
Window  
Compare  
Interrupt  
Configuration, Control, and Data Registers  
AIN2.0  
AIN2.1  
AIN2.2  
AIN2.3  
AIN2.4  
AIN2.5  
AIN2.6  
AIN2.7  
Programmable Gain  
Amplifier  
AV+  
8-Bit  
SAR  
8-to-1  
AMUX  
8
ADC Data  
Register  
+
-
X
Conversion  
Complete  
Interrupt  
ADC  
Write to AD2BUSY  
Timer 3 Overflow  
CNVSTR2 Input  
Timer 2 Overflow  
External VREF  
Pin  
VREF  
Start Conversion  
AV+  
Write to AD0BUSY  
(synchronized with  
ADC0)  
Figure 1.14. 8-Bit ADC Diagram  
Rev. 1.4  
35  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
1.10. 12-bit Digital to Analog Converters  
The C8051F12x devices have two integrated 12-bit Digital to Analog Converters (DACs). The MCU data  
and control interface to each DAC is via the Special Function Registers. The MCU can place either or both  
of the DACs in a low power shutdown mode.  
The DACs are voltage output mode and include a flexible output scheduling mechanism. This scheduling  
mechanism allows DAC output updates to be forced by a software write or scheduled on a Timer 2, 3, or 4  
overflow. The DAC voltage reference is supplied from the dedicated VREFD input pin on the 100-pin TQFP  
devices or via the internal Voltage reference on the 64-pin TQFP devices. The DACs are especially useful  
as references for the comparators or offsets for the differential inputs of the ADCs.  
DAC0EN  
DAC0MD1  
DAC0MD0  
DAC0DF2  
DAC0DF1  
DAC0DF0  
REF  
AV+  
8
8
8
8
12  
DAC0  
DAC0  
AGND  
DAC1EN  
DAC1MD1  
DAC1MD0  
DAC1DF2  
DAC1DF1  
DAC1DF0  
REF  
AV+  
8
8
8
8
12  
DAC1  
DAC1  
AGND  
Figure 1.15. DAC System Block Diagram  
36  
Rev. 1.4  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
1.11. Analog Comparators  
Two analog comparators with dedicated input pins are included on-chip. The comparators have software  
programmable hysteresis and response time. Each comparator can generate an interrupt on a rising edge,  
falling edge, or both. The interrupts are capable of waking up the MCU from sleep mode, and Comparator  
0 can be used as a reset source. The output state of the comparators can be polled in software or routed to  
Port I/O pins via the Crossbar. The comparators can be programmed to a low power shutdown mode when  
not in use.  
CPn Output  
CROSSBAR  
(Port I/O)  
2 Comparators  
SFR's  
CIP-51  
and  
Interrupt  
Handler  
CPn+  
CPn-  
+
(Data  
and  
Control)  
CPn  
-
Figure 1.16. Comparator Block Diagram  
Rev. 1.4  
37  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
2. Absolute Maximum Ratings  
*
Table 2.1. Absolute Maximum Ratings  
Parameter  
Conditions  
Min  
Typ  
Max  
125  
150  
Units  
°C  
Ambient temperature under bias  
–55  
–65  
–0.3  
Storage Temperature  
°C  
Voltage on any Pin (except VDD and Port I/O) with  
Respect to DGND  
VDD  
0.3  
+
V
Voltage on any Port I/O Pin or RST with Respect to  
DGND  
–0.3  
5.8  
V
Voltage on VDD with Respect to DGND  
–0.3  
4.2  
V
Maximum Total Current through VDD, AV+, DGND,  
and AGND  
800  
mA  
Maximum Output Current Sunk by any Port pin  
Maximum Output Current Sunk by any other I/O pin  
Maximum Output Current Sourced by any Port pin  
100  
50  
mA  
mA  
mA  
mA  
100  
50  
Maximum Output Current Sourced by any other I/O  
Pin  
*Note: Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the device.  
This is a stress rating only and functional operation of the devices at those or any other conditions above those  
indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for  
extended periods may affect device reliability.  
38  
Rev. 1.4  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
3. Global DC Electrical Characteristics  
Table 3.1. Global DC Electrical Characteristics  
(C8051F120/1/2/3 and C8051F130/1/2/3)  
–40 to +85 °C, 100 MHz System Clock unless otherwise specified.  
Parameter  
Conditions  
Min  
Typ  
Max  
Units  
Analog Supply Voltage1  
SYSCLK = 0 to 50 MHz  
SYSCLK > 50 MHz  
2.7  
3.0  
3.0  
3.3  
3.6  
3.6  
V
V
Analog Supply Current  
Internal REF, ADCs, DACs, Com-  
parators all active  
1.7  
mA  
Analog Supply Current with Internal REF, ADCs, DACs, Com-  
analog sub-systems inactive parators all disabled, oscillator  
disabled  
0.2  
µA  
Analog-to-Digital Supply  
Delta (|VDD – AV+|)  
0.5  
V
Digital Supply Voltage  
SYSCLK = 0 to 50 MHz  
SYSCLK > 50 MHz  
2.7  
3.0  
3.0  
3.3  
3.6  
3.6  
V
V
Digital Supply Current with  
CPU active  
VDD = 3.0 V, Clock = 100 MHz  
VDD = 3.0 V, Clock = 50 MHz  
VDD = 3.0 V, Clock = 1 MHz  
VDD = 3.0 V, Clock = 32 kHz  
65  
35  
1
mA  
mA  
mA  
µA  
33  
Digital Supply Current with  
CPU inactive (not accessing  
Flash)  
VDD = 3.0 V, Clock = 100 MHz  
40  
20  
0.4  
15  
mA  
mA  
mA  
µA  
VDD = 3.0 V, Clock = 50 MHz  
VDD = 3.0 V, Clock = 1 MHz  
VDD = 3.0 V, Clock = 32 kHz  
Digital Supply Current (shut- Oscillator not running  
down)  
0.4  
1.5  
µA  
V
Digital Supply RAM Data  
Retention Voltage  
SYSCLK (System Clock)2,3  
VDD, AV+ = 2.7 to 3.6 V  
0
0
50  
100  
MHz  
MHz  
V
DD, AV+ = 3.0 to 3.6 V  
Specified Operating Temper-  
ature Range  
–40  
+85  
°C  
Notes:  
1. Analog Supply AV+ must be greater than 1 V for VDD monitor to operate.  
2. SYSCLK is the internal device clock. For operational speeds in excess of 30 MHz, SYSCLK must be derived  
from the Phase-Locked Loop (PLL).  
3. SYSCLK must be at least 32 kHz to enable debugging.  
Rev. 1.4  
39  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
Table 3.2. Global DC Electrical Characteristics (C8051F124/5/6/7)  
–40 to +85 °C, 50 MHz System Clock unless otherwise specified.  
Parameter  
Conditions  
Min  
Typ  
Max  
Units  
Analog Supply Voltage1  
Analog Supply Current  
2.7  
3.0  
3.6  
V
Internal REF, ADC, DAC, Com-  
parators all active  
1.7  
0.2  
mA  
µA  
Analog Supply Current with Internal REF, ADC, DAC, Com-  
analog sub-systems inactive parators all disabled, oscillator  
disabled  
Analog-to-Digital Supply  
Delta (|VDD – AV+|)  
0.5  
V
V
Digital Supply Voltage  
2.7  
3.0  
3.6  
Digital Supply Current with  
CPU active  
VDD = 3.0 V, Clock = 50 MHz  
VDD = 3.0 V, Clock = 1 MHz  
VDD = 3.0 V, Clock = 32 kHz  
35  
1
33  
mA  
mA  
µA  
Digital Supply Current with  
CPU inactive (not accessing  
Flash)  
VDD = 3.0 V, Clock = 50 MHz  
27  
0.4  
15  
mA  
mA  
µA  
VDD = 3.0 V, Clock = 1 MHz  
DD = 3.0 V, Clock = 32 kHz  
V
Digital Supply Current (shut- Oscillator not running  
down)  
0.4  
1.5  
µA  
V
Digital Supply RAM Data  
Retention Voltage  
SYSCLK (System Clock)2,3  
0
50  
MHz  
°C  
Specified Operating  
Temperature Range  
–40  
+85  
Notes:  
1. Analog Supply AV+ must be greater than 1 V for VDD monitor to operate.  
2. SYSCLK is the internal device clock. For operational speeds in excess of 30 MHz, SYSCLK must be derived  
from the phase-locked loop (PLL).  
3. SYSCLK must be at least 32 kHz to enable debugging.  
40  
Rev. 1.4  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
4. Pinout and Package Definitions  
Table 4.1. Pin Definitions  
Pin Numbers  
‘F120 ‘F121 ‘F130 ‘F131  
‘F122 ‘F123 ‘F132 ‘F133  
‘F124 ‘F125  
Name  
Type  
Description  
‘F126 ‘F127  
VDD  
DGND  
AV+  
37,  
24,  
37,  
24,  
Digital Supply Voltage. Must be tied to +2.7 to  
+3.6 V.  
64, 90 41, 57 64, 90 41, 57  
38, 25, 38, 25,  
63, 89 40, 56 63, 89 40, 56  
Digital Ground. Must be tied to Ground.  
11, 14  
6
11, 14  
6
Analog Supply Voltage. Must be tied to +2.7 to  
+3.6 V.  
AGND  
TMS  
TCK  
TDI  
10, 13  
5
10, 13  
5
Analog Ground. Must be tied to Ground.  
1
2
3
58  
59  
60  
1
2
3
58  
59  
60  
D In JTAG Test Mode Select with internal pullup.  
D In JTAG Test Clock with internal pullup.  
D In JTAG Test Data Input with internal pullup. TDI is  
latched on the rising edge of TCK.  
TDO  
RST  
4
5
61  
62  
4
5
61 D Out JTAG Test Data Output with internal pullup. Data  
is shifted out on TDO on the falling edge of TCK.  
TDO output is a tri-state driver.  
62  
D I/O Device Reset. Open-drain output of internal VDD  
monitor. Is driven low when VDD is < VRST and  
MONEN is high. An external source can initiate  
a system reset by driving this pin low.  
XTAL1  
26  
17  
26  
17  
A In Crystal Input. This pin is the return for the inter-  
nal oscillator circuit for a crystal or ceramic reso-  
nator. For a precision internal clock, connect a  
crystal or ceramic resonator from XTAL1 to  
XTAL2. If overdriven by an external CMOS  
clock, this becomes the system clock.  
XTAL2  
27  
28  
18  
19  
27  
28  
18 A Out Crystal Output. This pin is the excitation driver  
for a crystal or ceramic resonator.  
MONEN  
19  
D In VDD Monitor Enable. When tied high, this pin  
enables the internal VDD monitor, which forces a  
system reset when VDD is < VRST. When tied  
low, the internal VDD monitor is disabled.  
This pin must be tied high or low.  
Rev. 1.4  
41  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
Table 4.1. Pin Definitions (Continued)  
Pin Numbers  
‘F120 ‘F121 ‘F130 ‘F131  
‘F122 ‘F123 ‘F132 ‘F133  
‘F124 ‘F125  
Name  
Type  
Description  
‘F126 ‘F127  
VREF  
12  
7
12  
7
A I/O Bandgap Voltage Reference Output  
(all devices).  
DAC Voltage Reference Input  
(C8051F121/3/5/7 only).  
VREFA  
VREF0  
VREF2  
VREFD  
AIN0.0  
8
A In ADC0 and ADC2 Voltage Reference Input.  
A In ADC0 Voltage Reference Input.  
A In ADC2 Voltage Reference Input.  
A In DAC Voltage Reference Input.  
16  
17  
15  
18  
16  
17  
15  
18  
8
9
9
A In ADC0 Input Channel 0 (See ADC0 Specification  
for complete description).  
AIN0.1  
AIN0.2  
AIN0.3  
AIN0.4  
AIN0.5  
AIN0.6  
AIN0.7  
19  
20  
21  
22  
23  
24  
25  
10  
11  
12  
13  
14  
15  
16  
19  
20  
21  
22  
23  
24  
25  
10  
11  
12  
13  
14  
15  
16  
A In ADC0 Input Channel 1 (See ADC0 Specification  
for complete description).  
A In ADC0 Input Channel 2 (See ADC0 Specification  
for complete description).  
A In ADC0 Input Channel 3 (See ADC0 Specification  
for complete description).  
A In ADC0 Input Channel 4 (See ADC0 Specification  
for complete description).  
A In ADC0 Input Channel 5 (See ADC0 Specification  
for complete description).  
A In ADC0 Input Channel 6 (See ADC0 Specification  
for complete description).  
A In ADC0 Input Channel 7 (See ADC0 Specification  
for complete description).  
CP0+  
CP0-  
9
8
4
3
9
8
7
6
4
3
2
1
A In Comparator 0 Non-Inverting Input.  
A In Comparator 0 Inverting Input.  
A In Comparator 1 Non-Inverting Input.  
A In Comparator 1 Inverting Input.  
CP1+  
CP1–  
DAC0  
7
2
6
1
100  
64  
A Out Digital to Analog Converter 0 Voltage Output.  
(See DAC Specification for complete descrip-  
tion).  
42  
Rev. 1.4  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
Table 4.1. Pin Definitions (Continued)  
Pin Numbers  
‘F120 ‘F121 ‘F130 ‘F131  
‘F122 ‘F123 ‘F132 ‘F133  
‘F124 ‘F125  
Name  
Type  
Description  
‘F126 ‘F127  
DAC1  
99  
63  
A Out Digital to Analog Converter 1 Voltage Output.  
(See DAC Specification for complete descrip-  
tion).  
P0.0  
P0.1  
62  
61  
60  
59  
58  
57  
55  
54  
53  
52  
51  
50  
62  
61  
60  
59  
58  
57  
55  
54  
53  
52  
51  
50  
D I/O Port 0.0. See Port Input/Output section for com-  
plete description.  
D I/O Port 0.1. See Port Input/Output section for com-  
plete description.  
P0.2  
D I/O Port 0.2. See Port Input/Output section for com-  
plete description.  
P0.3  
D I/O Port 0.3. See Port Input/Output section for com-  
plete description.  
P0.4  
D I/O Port 0.4. See Port Input/Output section for com-  
plete description.  
ALE/P0.5  
D I/O ALE Strobe for External Memory Address bus  
(multiplexed mode)  
Port 0.5  
See Port Input/Output section for complete  
description.  
RD/P0.6  
WR/P0.7  
56  
55  
36  
49  
48  
29  
56  
55  
36  
49  
48  
29  
D I/O /RD Strobe for External Memory Address bus  
Port 0.6  
See Port Input/Output section for complete  
description.  
D I/O /WR Strobe for External Memory Address bus  
Port 0.7  
See Port Input/Output section for complete  
description.  
AIN2.0/A8/P1.0  
A In ADC2 Input Channel 0 (See ADC2 Specification  
D I/O for complete description).  
Bit 8 External Memory Address bus (Non-multi-  
plexed mode)  
Port 1.0  
See Port Input/Output section for complete  
description.  
AIN2.1/A9/P1.1  
35  
28  
35  
28  
A In Port 1.1. See Port Input/Output section for com-  
D I/O plete description.  
Rev. 1.4  
43  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
Table 4.1. Pin Definitions (Continued)  
Pin Numbers  
‘F120 ‘F121 ‘F130 ‘F131  
‘F122 ‘F123 ‘F132 ‘F133  
‘F124 ‘F125  
Name  
Type  
Description  
‘F126 ‘F127  
AIN2.2/A10/P1.2 34  
27  
26  
23  
22  
21  
20  
37  
34  
33  
32  
31  
30  
29  
46  
27  
26  
23  
22  
21  
20  
37  
A In Port 1.2. See Port Input/Output section for com-  
D I/O plete description.  
AIN2.3/A11/P1.3  
33  
A In Port 1.3. See Port Input/Output section for com-  
D I/O plete description.  
AIN2.4/A12/P1.4 32  
AIN2.5/A13/P1.5 31  
AIN2.6/A14/P1.6 30  
AIN2.7/A15/P1.7 29  
A In Port 1.4. See Port Input/Output section for com-  
D I/O plete description.  
A In Port 1.5. See Port Input/Output section for com-  
D I/O plete description.  
A In Port 1.6. See Port Input/Output section for com-  
D I/O plete description.  
A In Port 1.7. See Port Input/Output section for com-  
D I/O plete description.  
A8m/A0/P2.0  
46  
D I/O Bit 8 External Memory Address bus (Multiplexed  
mode)  
Bit 0 External Memory Address bus (Non-multi-  
plexed mode)  
Port 2.0  
See Port Input/Output section for complete  
description.  
A9m/A1/P2.1  
A10m/A2/P2.2  
A11m/A3/P2.3  
A12m/A4/P2.4  
A13m/A5/P2.5  
A14m/A6/P2.6  
A15m/A7/P2.7  
45  
44  
43  
42  
41  
40  
39  
36  
35  
34  
33  
32  
31  
30  
45  
44  
43  
42  
41  
40  
39  
36  
35  
34  
33  
32  
31  
30  
D I/O Port 2.1. See Port Input/Output section for com-  
plete description.  
D I/O Port 2.2. See Port Input/Output section for com-  
plete description.  
D I/O Port 2.3. See Port Input/Output section for com-  
plete description.  
D I/O Port 2.4. See Port Input/Output section for com-  
plete description.  
D I/O Port 2.5. See Port Input/Output section for com-  
plete description.  
D I/O Port 2.6. See Port Input/Output section for com-  
plete description.  
D I/O Port 2.7. See Port Input/Output section for com-  
plete description.  
44  
Rev. 1.4  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
Table 4.1. Pin Definitions (Continued)  
Pin Numbers  
‘F120 ‘F121 ‘F130 ‘F131  
‘F122 ‘F123 ‘F132 ‘F133  
‘F124 ‘F125  
Name  
Type  
Description  
‘F126 ‘F127  
AD0/D0/P3.0  
54  
47  
54  
47  
D I/O Bit 0 External Memory Address/Data bus (Multi-  
plexed mode)  
Bit 0 External Memory Data bus (Non-multi-  
plexed mode)  
Port 3.0  
See Port Input/Output section for complete  
description.  
AD1/D1/P3.1  
AD2/D2/P3.2  
AD3/D3/P3.3  
AD4/D4/P3.4  
AD5/D5/P3.5  
AD6/D6/P3.6  
AD7/D7/P3.7  
P4.0  
53  
52  
51  
50  
49  
48  
47  
98  
97  
96  
95  
94  
46  
45  
44  
43  
42  
39  
38  
53  
52  
51  
50  
49  
48  
47  
98  
97  
96  
95  
94  
46  
45  
44  
43  
42  
39  
38  
D I/O Port 3.1. See Port Input/Output section for com-  
plete description.  
D I/O Port 3.2. See Port Input/Output section for com-  
plete description.  
D I/O Port 3.3. See Port Input/Output section for com-  
plete description.  
D I/O Port 3.4. See Port Input/Output section for com-  
plete description.  
D I/O Port 3.5. See Port Input/Output section for com-  
plete description.  
D I/O Port 3.6. See Port Input/Output section for com-  
plete description.  
D I/O Port 3.7. See Port Input/Output section for com-  
plete description.  
D I/O Port 4.0. See Port Input/Output section for com-  
plete description.  
P4.1  
D I/O Port 4.1. See Port Input/Output section for com-  
plete description.  
P4.2  
D I/O Port 4.2. See Port Input/Output section for com-  
plete description.  
P4.3  
D I/O Port 4.3. See Port Input/Output section for com-  
plete description.  
P4.4  
D I/O Port 4.4. See Port Input/Output section for com-  
plete description.  
Rev. 1.4  
45  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
Table 4.1. Pin Definitions (Continued)  
Pin Numbers  
‘F120 ‘F121 ‘F130 ‘F131  
‘F122 ‘F123 ‘F132 ‘F133  
‘F124 ‘F125  
Name  
Type  
Description  
‘F126 ‘F127  
ALE/P4.5  
93  
93  
D I/O ALE Strobe for External Memory Address bus  
(multiplexed mode)  
Port 4.5  
See Port Input/Output section for complete  
description.  
RD/P4.6  
WR/P4.7  
A8/P5.0  
92  
91  
88  
92  
91  
88  
D I/O /RD Strobe for External Memory Address bus  
Port 4.6  
See Port Input/Output section for complete  
description.  
D I/O /WR Strobe for External Memory Address bus  
Port 4.7  
See Port Input/Output section for complete  
description.  
D I/O Bit 8 External Memory Address bus (Non-multi-  
plexed mode)  
Port 5.0  
See Port Input/Output section for complete  
description.  
A9/P5.1  
A10/P5.2  
A11/P5.3  
A12/P5.4  
A13/P5.5  
A14/P5.6  
A15/P5.7  
87  
86  
85  
84  
83  
82  
81  
87  
86  
85  
84  
83  
82  
81  
D I/O Port 5.1. See Port Input/Output section for com-  
plete description.  
D I/O Port 5.2. See Port Input/Output section for com-  
plete description.  
D I/O Port 5.3. See Port Input/Output section for com-  
plete description.  
D I/O Port 5.4. See Port Input/Output section for com-  
plete description.  
D I/O Port 5.5. See Port Input/Output section for com-  
plete description.  
D I/O Port 5.6. See Port Input/Output section for com-  
plete description.  
D I/O Port 5.7. See Port Input/Output section for com-  
plete description.  
46  
Rev. 1.4  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
Table 4.1. Pin Definitions (Continued)  
Pin Numbers  
‘F120 ‘F121 ‘F130 ‘F131  
‘F122 ‘F123 ‘F132 ‘F133  
‘F124 ‘F125  
Name  
Type  
Description  
‘F126 ‘F127  
A8m/A0/P6.0  
80  
80  
D I/O Bit 8 External Memory Address bus (Multiplexed  
mode)  
Bit 0 External Memory Address bus (Non-multi-  
plexed mode)  
Port 6.0  
See Port Input/Output section for complete  
description.  
A9m/A1/P6.1  
A10m/A2/P6.2  
A11m/A3/P6.3  
A12m/A4/P6.4  
A13m/A5/P6.5  
A14m/A6/P6.6  
A15m/A7/P6.7  
AD0/D0/P7.0  
79  
78  
77  
76  
75  
74  
73  
72  
79  
78  
77  
76  
75  
74  
73  
72  
D I/O Port 6.1. See Port Input/Output section for com-  
plete description.  
D I/O Port 6.2. See Port Input/Output section for com-  
plete description.  
D I/O Port 6.3. See Port Input/Output section for com-  
plete description.  
D I/O Port 6.4. See Port Input/Output section for com-  
plete description.  
D I/O Port 6.5. See Port Input/Output section for com-  
plete description.  
D I/O Port 6.6. See Port Input/Output section for com-  
plete description.  
D I/O Port 6.7. See Port Input/Output section for com-  
plete description.  
D I/O Bit 0 External Memory Address/Data bus (Multi-  
plexed mode)  
Bit 0 External Memory Data bus (Non-multi-  
plexed mode)  
Port 7.0  
See Port Input/Output section for complete  
description.  
AD1/D1/P7.1  
AD2/D2/P7.2  
AD3/D3/P7.3  
AD4/D4/P7.4  
71  
70  
69  
68  
71  
70  
69  
68  
D I/O Port 7.1. See Port Input/Output section for com-  
plete description.  
D I/O Port 7.2. See Port Input/Output section for com-  
plete description.  
D I/O Port 7.3. See Port Input/Output section for com-  
plete description.  
D I/O Port 7.4. See Port Input/Output section for com-  
plete description.  
Rev. 1.4  
47  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
Table 4.1. Pin Definitions (Continued)  
Pin Numbers  
‘F120 ‘F121 ‘F130 ‘F131  
‘F122 ‘F123 ‘F132 ‘F133  
‘F124 ‘F125  
Name  
Type  
Description  
‘F126 ‘F127  
AD5/D5/P7.5  
AD6/D6/P7.6  
AD7/D7/P7.7  
NC  
67  
66  
65  
67  
66  
65  
D I/O Port 7.5. See Port Input/Output section for com-  
plete description.  
D I/O Port 7.6. See Port Input/Output section for com-  
plete description.  
D I/O Port 7.7. See Port Input/Output section for com-  
plete description.  
15, 63, 64  
No Connection.  
17,  
99,  
100  
48  
Rev. 1.4  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
TMS  
TCK  
1
2
3
4
5
6
7
8
9
75 A13m/A5/P6.5  
74 A14m/A6/P6.6  
73 A15m/A7/P6.7  
72 AD0/D0/P7.0  
71 AD1/D1/P7.1  
70 AD2/D2/P7.2  
69 AD3/D3/P7.3  
68 AD4/D4/P7.4  
67 AD5/D5/P7.5  
66 AD6/D6/P7.6  
TDI  
TDO  
/RST  
CP1-  
CP1+  
CP0-  
CP0+  
AGND 10  
AV+ 11  
C8051F120  
65 AD7/D7/P7.7  
64 VDD  
VREF 12  
AGND 13  
AV+ 14  
C8051F122  
C8051F124  
C8051F126  
63 DGND  
62 P0.0  
VREFD 15  
VREF0 16  
VREF2 17  
AIN0.0 18  
AIN0.1 19  
AIN0.2 20  
AIN0.3 21  
AIN0.4 22  
AIN0.5 23  
AIN0.6 24  
AIN0.7 25  
61 P0.1  
60 P0.2  
59 P0.3  
58 P0.4  
57 ALE/P0.5  
56 /RD/P0.6  
55 /WR/P0.7  
54 AD0/D0/P3.0  
53 AD1/D1/P3.1  
52 AD2/D2/P3.2  
51 AD3/D3/P3.3  
Figure 4.1. C8051F120/2/4/6 Pinout Diagram (TQFP-100)  
Rev. 1.4  
49  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
TMS  
TCK  
1
2
3
4
5
6
7
8
9
75 A13m/A5/P6.5  
74 A14m/A6/P6.6  
73 A15m/A7/P6.7  
72 AD0/D0/P7.0  
71 AD1/D1/P7.1  
70 AD2/D2/P7.2  
69 AD3/D3/P7.3  
68 AD4/D4/P7.4  
67 AD5/D5/P7.5  
66 AD6/D6/P7.6  
65 AD7/D7/P7.7  
64 VDD  
TDI  
TDO  
/RST  
CP1-  
CP1+  
CP0-  
CP0+  
AGND 10  
AV+ 11  
VREF 12  
AGND 13  
AV+ 14  
C8051F130  
C8051F132  
63 DGND  
62 P0.0  
NC 15  
61 P0.1  
VREF0 16  
NC 17  
60 P0.2  
59 P0.3  
AIN0.0 18  
AIN0.1 19  
AIN0.2 20  
AIN0.3 21  
AIN0.4 22  
AIN0.5 23  
AIN0.6 24  
AIN0.7 25  
58 P0.4  
57 ALE/P0.5  
56 /RD/P0.6  
55 /WR/P0.7  
54 AD0/D0/P3.0  
53 AD1/D1/P3.1  
52 AD2/D2/P3.2  
51 AD3/D3/P3.3  
Figure 4.2. C8051F130/2 Pinout Diagram (TQFP-100)  
50  
Rev. 1.4  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
D
MIN NOM MAX  
(mm) (mm) (mm)  
D1  
A
-
-
-
1.20  
0.15  
A1 0.05  
A2 0.95 1.00 1.05  
b
D
0.17 0.22 0.27  
-
-
-
-
-
16.00  
14.00  
0.50  
-
-
-
-
-
E1  
E
D1  
e
E
16.00  
14.00  
E1  
L
100  
0.45 0.60 0.75  
PIN 1  
DESIGNATOR  
1
e
A2  
L
A
b
A1  
Figure 4.3. TQFP-100 Package Drawing  
Rev. 1.4  
51  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
CP1-  
CP1+  
CP0-  
1
2
3
4
5
6
7
8
9
48 /WR/P0.7  
47 AD0/D0/P3.0  
46 AD1/D1/P3.1  
45 AD2/D2/P3.2  
44 AD3/D3/P3.3  
43 AD4/D4/P3.4  
42 AD5/D5/P3.5  
41 VDD  
CP0+  
AGND  
AV+  
C8051F121  
C8051F123  
C8051F125  
C8051F127  
VREF  
VREFA  
AIN0.0  
40 DGND  
AIN0.1 10  
AIN0.2 11  
AIN0.3 12  
AIN0.4 13  
AIN0.5 14  
AIN0.6 15  
AIN0.7 16  
39 AD6/D6/P3.6  
38 AD7/D7/P3.7  
37 A8m/A0/P2.0  
36 A9m/A1/P2.1  
35 A10m/A2/P2.2  
34 A11m/A3/P2.3  
33 A12m/A4/P2.4  
Figure 4.4. C8051F121/3/5/7 Pinout Diagram (TQFP-64)  
52  
Rev. 1.4  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
CP1-  
CP1+  
CP0-  
1
2
3
4
5
6
7
8
9
48 /WR/P0.7  
47 AD0/D0/P3.0  
46 AD1/D1/P3.1  
45 AD2/D2/P3.2  
44 AD3/D3/P3.3  
43 AD4/D4/P3.4  
42 AD5/D5/P3.5  
41 VDD  
CP0+  
AGND  
AV+  
VREF  
VREF0  
AIN0.0  
C8051F131  
C8051F133  
40 DGND  
AIN0.1 10  
AIN0.2 11  
AIN0.3 12  
AIN0.4 13  
AIN0.5 14  
AIN0.6 15  
AIN0.7 16  
39 AD6/D6/P3.6  
38 AD7/D7/P3.7  
37 A8m/A0/P2.0  
36 A9m/A1/P2.1  
35 A10m/A2/P2.2  
34 A11m/A3/P2.3  
33 A12m/A4/P2.4  
Figure 4.5. C8051F131/3 Pinout Diagram (TQFP-64)  
Rev. 1.4  
53  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
D
MIN NOM MAX  
(mm) (mm) (mm)  
D1  
A
-
-
-
1.20  
0.15  
A1 0.05  
A2 0.95 1.00 1.05  
E1  
E
b
D
0.17 0.22 0.27  
-
-
-
-
-
12.00  
10.00  
0.50  
-
-
-
-
-
D1  
e
64  
PIN 1  
DESIGNATOR  
E
12.00  
10.00  
1
e
A2  
L
E1  
L
A
0.45 0.60 0.75  
b
A1  
Figure 4.6. TQFP-64 Package Drawing  
54  
Rev. 1.4  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
5. ADC0 (12-Bit ADC, C8051F120/1/4/5 Only)  
The ADC0 subsystem for the C8051F120/1/4/5 consists of a 9-channel, configurable analog multiplexer  
(AMUX0), a programmable gain amplifier (PGA0), and a 100 ksps, 12-bit successive-approximation-regis-  
ter ADC with integrated track-and-hold and Programmable Window Detector (see block diagram in  
Figure 5.1). The AMUX0, PGA0, Data Conversion Modes, and Window Detector are all configurable under  
software control via the Special Function Registers shown in Figure 5.1. The voltage reference used by  
ADC0 is selected as described in Section “9. Voltage Reference” on page 113. The ADC0 subsystem  
(ADC0, track-and-hold and PGA0) is enabled only when the AD0EN bit in the ADC0 Control register  
(ADC0CN) is set to logic 1. The ADC0 subsystem is in low power shutdown when this bit is logic 0.  
ADC0GTH  
+
ADC0GTL  
ADC0LTH  
ADC0LTL  
24  
Comb.  
Logic  
AD0WINT  
12  
AV+  
AIN0.0  
AIN0.1  
AIN0.2  
AIN0.3  
AIN0.4  
AIN0.5  
AIN0.6  
AIN0.7  
AD0EN  
AV+  
-
+
-
9-to-1  
AMUX  
(SE or  
DIFF)  
12-Bit  
SAR  
+
+
12  
X
-
-
+
ADC  
AGND  
-
TEMP  
SENSOR  
00  
01  
10  
11  
AD0BUSY (W)  
Timer 3 Overflow  
CNVSTR0  
Start Conversion  
AGND  
Timer 2 Overflow  
AMX0SL  
AMX0CF  
ADC0CF  
ADC0CN  
Figure 5.1. 12-Bit ADC0 Functional Block Diagram  
5.1. Analog Multiplexer and PGA  
Eight of the AMUX channels are available for external measurements while the ninth channel is internally  
connected to an on-chip temperature sensor (temperature transfer function is shown in Figure 5.2). AMUX  
input pairs can be programmed to operate in either differential or single-ended mode. This allows the user  
to select the best measurement technique for each input channel, and even accommodates mode  
changes "on-the-fly". The AMUX defaults to all single-ended inputs upon reset. There are two registers  
associated with the AMUX: the Channel Selection register AMX0SL (SFR Definition 5.2), and the Configu-  
ration register AMX0CF (SFR Definition 5.1). The table in SFR Definition 5.2 shows AMUX functionality by  
channel, for each possible configuration. The PGA amplifies the AMUX output signal by an amount deter-  
mined by the states of the AMP0GN2-0 bits in the ADC0 Configuration register, ADC0CF (SFR Definition  
5.3). The PGA can be software-programmed for gains of 0.5, 2, 4, 8 or 16. Gain defaults to unity on reset.  
Rev. 1.4  
55  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
The Temperature Sensor transfer function is shown in Figure 5.2. The output voltage (VTEMP) is the PGA  
input when the Temperature Sensor is selected by bits AMX0AD3-0 in register AMX0SL; this voltage will  
be amplified by the PGA according to the user-programmed PGA settings. Typical values for the Slope and  
Offset parameters can be found in Table 5.1.  
Slope (V / deg C)  
Offset (V at 0 Celsius)  
VTEMP = (Slope x TempC) + Offset  
TempC = (VTEMP - Offset) / Slope  
-50  
0
50  
100  
Temperature (Celsius)  
Figure 5.2. Typical Temperature Sensor Transfer Function  
56  
Rev. 1.4  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
5.2. ADC Modes of Operation  
ADC0 has a maximum conversion speed of 100 ksps. The ADC0 conversion clock is derived from the sys-  
tem clock divided by the value held in the ADCSC bits of register ADC0CF.  
5.2.1. Starting a Conversion  
A conversion can be initiated in one of four ways, depending on the programmed states of the ADC0 Start  
of Conversion Mode bits (AD0CM1, AD0CM0) in ADC0CN. Conversions may be initiated by:  
1. Writing a ‘1’ to the AD0BUSY bit of ADC0CN;  
2. A Timer 3 overflow (i.e. timed continuous conversions);  
3. A rising edge detected on the external ADC convert start signal, CNVSTR0;  
4. A Timer 2 overflow (i.e. timed continuous conversions).  
The AD0BUSY bit is set to logic 1 during conversion and restored to logic 0 when conversion is complete.  
The falling edge of AD0BUSY triggers an interrupt (when enabled) and sets the AD0INT interrupt flag  
(ADC0CN.5). Converted data is available in the ADC0 data word MSB and LSB registers, ADC0H, ADC0L.  
Converted data can be either left or right justified in the ADC0H:ADC0L register pair (see example in  
Figure 5.5) depending on the programmed state of the AD0LJST bit in the ADC0CN register.  
When initiating conversions by writing a ‘1’ to AD0BUSY, the AD0INT bit should be polled to determine  
when a conversion has completed (ADC0 interrupts may also be used). The recommended polling proce-  
dure is shown below.  
Step 1. Write a ‘0’ to AD0INT;  
Step 2. Write a ‘1’ to AD0BUSY;  
Step 3. Poll AD0INT for ‘1’;  
Step 4. Process ADC0 data.  
When CNVSTR0 is used as a conversion start source, it must be enabled in the crossbar, and the corre-  
sponding pin must be set to open-drain, high-impedance mode (see Section “18. Port Input/Output” on  
page 235 for more details on Port I/O configuration).  
Rev. 1.4  
57  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
5.2.2. Tracking Modes  
The AD0TM bit in register ADC0CN controls the ADC0 track-and-hold mode. In its default state, the ADC0  
input is continuously tracked when a conversion is not in progress. When the AD0TM bit is logic 1, ADC0  
operates in low-power track-and-hold mode. In this mode, each conversion is preceded by a tracking  
period of 3 SAR clocks (after the start-of-conversion signal). When the CNVSTR0 signal is used to initiate  
conversions in low-power tracking mode, ADC0 tracks only when CNVSTR0 is low; conversion begins on  
the rising edge of CNVSTR0 (see Figure 5.3). Tracking can also be disabled (shutdown) when the entire  
chip is in low power standby or sleep modes. Low-power track-and-hold mode is also useful when AMUX  
or PGA settings are frequently changed, to ensure that settling time requirements are met (see Section  
“5.2.3. Settling Time Requirements” on page 59).  
A. ADC Timing for External Trigger Source  
CNVSTR0  
(AD0CM[1:0]=10)  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16  
SAR Clocks  
Low Power  
or Convert  
ADC0TM=1  
ADC0TM=0  
Track  
Convert  
Convert  
Low Power Mode  
Track  
Track Or Convert  
B. ADC Timing for Internal Trigger Sources  
Timer 2, Timer 3 Overflow;  
Write '1' to AD0BUSY  
(AD0CM[1:0]=00, 01, 11)  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19  
SAR Clocks  
ADC0TM=1  
Low Power  
or Convert  
Track  
Convert  
Low Power Mode  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16  
SAR Clocks  
ADC0TM=0  
Track or  
Convert  
Convert  
Track  
Figure 5.3. ADC0 Track and Conversion Example Timing  
58  
Rev. 1.4  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
5.2.3. Settling Time Requirements  
A minimum tracking time is required before an accurate conversion can be performed. This tracking time is  
determined by the ADC0 MUX resistance, the ADC0 sampling capacitance, any external source resis-  
tance, and the accuracy required for the conversion. Figure 5.4 shows the equivalent ADC0 input circuits  
for both Differential and Single-ended modes. Notice that the equivalent time constant for both input cir-  
cuits is the same. The required settling time for a given settling accuracy (SA) may be approximated by  
Equation 5.1. When measuring the Temperature Sensor output, R  
reduces to RMUX. An absolute  
TOTAL  
minimum settling time of 1.5 µs is required after any MUX or PGA selection. Note that in low-power track-  
ing mode, three SAR clocks are used for tracking at the start of every conversion. For most applications,  
these three SAR clocks will meet the tracking requirements.  
2n  
SA  
------  
t = ln  
RTOTALCSAMPLE  
Equation 5.1. ADC0 Settling Time Requirements  
Where:  
SA is the settling accuracy, given as a fraction of an LSB (for example, 0.25 to settle within 1/4 LSB)  
t is the required settling time in seconds  
RTOTAL is the sum of the ADC0 MUX resistance and any external source resistance.  
n is the ADC resolution in bits (12).  
Differential Mode  
Single-Ended Mode  
MUX Select  
MUX Select  
AIN0.x  
AIN0.x  
RMUX = 5k  
RMUX = 5k  
CSAMPLE = 10pF  
CSAMPLE = 10pF  
RCInput= RMUX * CSAMPLE  
RCInput= RMUX * CSAMPLE  
CSAMPLE = 10pF  
AIN0.y  
RMUX = 5k  
MUX Select  
Figure 5.4. ADC0 Equivalent Input Circuits  
Rev. 1.4  
59  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
SFR Definition 5.1. AMX0CF: AMUX0 Configuration  
SFR Page:  
SFR Address:  
0
0xBA  
R/W  
-
R/W  
R/W  
-
R/W  
-
R/W  
R/W  
R/W  
R/W  
Reset Value  
-
AIN67IC AIN45IC AIN23IC AIN01IC 00000000  
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Bit0  
Bits7–4: UNUSED. Read = 0000b; Write = don’t care.  
Bit3:  
Bit2:  
Bit1:  
Bit0:  
AIN67IC: AIN0.6, AIN0.7 Input Pair Configuration Bit.  
0: AIN0.6 and AIN0.7 are independent single-ended inputs.  
1: AIN0.6, AIN0.7 are (respectively) +, – differential input pair.  
AIN45IC: AIN0.4, AIN0.5 Input Pair Configuration Bit.  
0: AIN0.4 and AIN0.5 are independent single-ended inputs.  
1: AIN0.4, AIN0.5 are (respectively) +, – differential input pair.  
AIN23IC: AIN0.2, AIN0.3 Input Pair Configuration Bit.  
0: AIN0.2 and AIN0.3 are independent single-ended inputs.  
1: AIN0.2, AIN0.3 are (respectively) +, – differential input pair.  
AIN01IC: AIN0.0, AIN0.1 Input Pair Configuration Bit.  
0: AIN0.0 and AIN0.1 are independent single-ended inputs.  
1: AIN0.0, AIN0.1 are (respectively) +, – differential input pair.  
Note:  
The ADC0 Data Word is in 2’s complement format for channels configured as differential.  
60  
Rev. 1.4  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
SFR Definition 5.2. AMX0SL: AMUX0 Channel Select  
SFR Page:  
SFR Address:  
0
0xBB  
R/W  
-
R/W  
R/W  
-
R/W  
-
R/W  
R/W  
R/W  
R/W  
Reset Value  
-
AMX0AD3 AMX0AD2 AMX0AD1 AMX0AD0 00000000  
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Bit0  
Bits7–4: UNUSED. Read = 0000b; Write = don’t care.  
Bits3–0: AMX0AD3–0: AMX0 Address Bits.  
0000-1111b: ADC Inputs selected per chart below.  
AMX0AD3–0  
0100  
0000  
0001  
0010  
0011  
0101  
0110  
0111  
1xxx  
TEMP  
SENSOR  
AIN0.0  
AIN0.1  
AIN0.2  
AIN0.3  
AIN0.4  
AIN0.4  
AIN0.4  
AIN0.4  
AIN0.5  
AIN0.6  
AIN0.6  
AIN0.6  
AIN0.6  
AIN0.6  
AIN0.6  
AIN0.6  
AIN0.6  
AIN0.7  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
+(AIN0.0)  
–(AIN0.1)  
TEMP  
SENSOR  
AIN0.2  
AIN0.3  
AIN0.5  
AIN0.5  
AIN0.5  
AIN0.7  
AIN0.7  
AIN0.7  
AIN0.7  
AIN0.7  
AIN0.7  
AIN0.7  
+(AIN0.2)  
–(AIN0.3)  
TEMP  
SENSOR  
AIN0.0  
AIN0.1  
AIN0.1  
AIN0.1  
AIN0.1  
AIN0.1  
AIN0.1  
AIN0.1  
+(AIN0.0)  
–(AIN0.1)  
+(AIN0.2)  
–(AIN0.3)  
TEMP  
SENSOR  
+(AIN0.4)  
–(AIN0.5)  
TEMP  
SENSOR  
AIN0.0  
AIN0.2  
AIN0.2  
AIN0.3  
AIN0.3  
+(AIN0.0)  
–(AIN0.1)  
+(AIN0.4)  
–(AIN0.5)  
TEMP  
SENSOR  
+(AIN0.2)  
–(AIN0.3)  
+(AIN0.4)  
–(AIN0.5)  
TEMP  
SENSOR  
AIN0.0  
+(AIN0.0)  
–(AIN0.1)  
+(AIN0.2)  
–(AIN0.3)  
+(AIN0.4)  
–(AIN0.5)  
TEMP  
SENSOR  
+(AIN0.6)  
–(AIN0.7)  
TEMP  
SENSOR  
AIN0.0  
AIN0.2  
AIN0.2  
AIN0.3  
AIN0.3  
AIN0.4  
AIN0.4  
AIN0.4  
AIN0.4  
AIN0.5  
AIN0.5  
AIN0.5  
AIN0.5  
+(AIN0.0)  
–(AIN0.1)  
+(AIN0.6)  
–(AIN0.7)  
TEMP  
SENSOR  
+(AIN0.2)  
–(AIN0.3)  
+(AIN0.6)  
–(AIN0.7)  
TEMP  
SENSOR  
AIN0.0  
+(AIN0.0)  
–(AIN0.1)  
+(AIN0.2)  
–(AIN0.3)  
+(AIN0.6)  
–(AIN0.7)  
TEMP  
SENSOR  
+(AIN0.4)  
–(AIN0.5)  
+(AIN0.6)  
–(AIN0.7)  
TEMP  
SENSOR  
AIN0.0  
AIN0.2  
AIN0.2  
AIN0.3  
AIN0.3  
+(AIN0.0)  
–(AIN0.1)  
+(AIN0.4)  
–(AIN0.5)  
+(AIN0.6)  
–(AIN0.7)  
TEMP  
SENSOR  
+(AIN0.2)  
–(AIN0.3)  
+(AIN0.4)  
–(AIN0.5)  
+(AIN0.6)  
–(AIN0.7)  
TEMP  
SENSOR  
AIN0.0  
+(AIN0.0)  
–(AIN0.1)  
+(AIN0.2)  
–(AIN0.3)  
+(AIN0.4)  
–(AIN0.5)  
+(AIN0.6)  
–(AIN0.7)  
TEMP  
SENSOR  
Rev. 1.4  
61  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
SFR Definition 5.3. ADC0CF: ADC0 Configuration  
SFR Page:  
SFR Address:  
0
0xBC  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Reset Value  
AD0SC4 AD0SC3 AD0SC2 AD0SC1 AD0SC0 AMP0GN2 AMP0GN1 AMP0GN0 11111000  
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Bit0  
Bits7–3: AD0SC4–0: ADC0 SAR Conversion Clock Period Bits.  
The SAR Conversion clock is derived from system clock by the following equation, where  
AD0SC refers to the 5-bit value held in AD0SC4-0, and CLKSAR0 refers to the desired ADC0  
SAR clock (Note: the ADC0 SAR Conversion Clock should be less than or equal to  
2.5 MHz).  
SYSCLK  
2 CLKSAR0  
-------------------------------  
AD0SC =  
– 1  
AD0SC 00000b  
When the AD0SC bits are equal to 00000b, the SAR Conversion clock is equal to SYSCLK  
to facilitate faster ADC conversions at slower SYSCLK speeds.  
Bits2–0: AMP0GN2–0: ADC0 Internal Amplifier Gain (PGA).  
000: Gain = 1  
001: Gain = 2  
010: Gain = 4  
011: Gain = 8  
10x: Gain = 16  
11x: Gain = 0.5  
62  
Rev. 1.4  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
SFR Definition 5.4. ADC0CN: ADC0 Control  
SFR Page:  
SFR Address:  
0
0xE8  
(bit addressable)  
R/W  
AD0EN  
Bit7  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Reset Value  
AD0TM AD0INT AD0BUSY AD0CM1 AD0CM0 AD0WINT AD0LJST 00000000  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Bit0  
Bit7:  
Bit6:  
Bit5:  
AD0EN: ADC0 Enable Bit.  
0: ADC0 Disabled. ADC0 is in low-power shutdown.  
1: ADC0 Enabled. ADC0 is active and ready for data conversions.  
AD0TM: ADC Track Mode Bit.  
0: When the ADC is enabled, tracking is continuous unless a conversion is in process.  
1: Tracking Defined by ADCM1-0 bits.  
AD0INT: ADC0 Conversion Complete Interrupt Flag.  
This flag must be cleared by software.  
0: ADC0 has not completed a data conversion since the last time this flag was cleared.  
1: ADC0 has completed a data conversion.  
AD0BUSY: ADC0 Busy Bit.  
Bit4:  
Read:  
0: ADC0 Conversion is complete or a conversion is not currently in progress. AD0INT is set  
to logic 1 on the falling edge of AD0BUSY.  
1: ADC0 Conversion is in progress.  
Write:  
0: No Effect.  
1: Initiates ADC0 Conversion if AD0CM1-0 = 00b.  
Bits3–2: AD0CM1–0: ADC0 Start of Conversion Mode Select.  
If AD0TM = 0:  
00: ADC0 conversion initiated on every write of ‘1’ to AD0BUSY.  
01: ADC0 conversion initiated on overflow of Timer 3.  
10: ADC0 conversion initiated on rising edge of external CNVSTR0.  
11: ADC0 conversion initiated on overflow of Timer 2.  
If AD0TM = 1:  
00: Tracking starts with the write of ‘1’ to AD0BUSY and lasts for 3 SAR clocks, followed by  
conversion.  
01: Tracking started by the overflow of Timer 3 and lasts for 3 SAR clocks, followed by con-  
version.  
10: ADC0 tracks only when CNVSTR0 input is logic low; conversion starts on rising  
CNVSTR0 edge.  
11: Tracking started by the overflow of Timer 2 and lasts for 3 SAR clocks, followed by con-  
version.  
Bit1:  
Bit0:  
AD0WINT: ADC0 Window Compare Interrupt Flag.  
This bit must be cleared by software.  
0: ADC0 Window Comparison Data match has not occurred since this flag was last cleared.  
1: ADC0 Window Comparison Data match has occurred.  
AD0LJST: ADC0 Left Justify Select.  
0: Data in ADC0H:ADC0L registers are right-justified.  
1: Data in ADC0H:ADC0L registers are left-justified.  
Rev. 1.4  
63  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
SFR Definition 5.5. ADC0H: ADC0 Data Word MSB  
SFR Page:  
SFR Address:  
0
0xBF  
R/W  
Bit7  
R/W  
R/W  
Bit5  
R/W  
Bit4  
R/W  
Bit3  
R/W  
Bit2  
R/W  
Bit1  
R/W  
Bit0  
Reset Value  
00000000  
Bit6  
Bits7–0: ADC0 Data Word High-Order Bits.  
For AD0LJST = 0: Bits 7–4 are the sign extension of Bit3. Bits 3–0 are the upper 4 bits of the  
12-bit ADC0 Data Word.  
For AD0LJST = 1: Bits 7–0 are the most-significant bits of the 12-bit ADC0 Data Word.  
SFR Definition 5.6. ADC0L: ADC0 Data Word LSB  
SFR Page:  
SFR Address:  
0
0xBE  
R/W  
R/W  
R/W  
Bit5  
R/W  
Bit4  
R/W  
Bit3  
R/W  
Bit2  
R/W  
Bit1  
R/W  
Bit0  
Reset Value  
00000000  
Bit7  
Bit6  
Bits7–0: ADC0 Data Word Low-Order Bits.  
For AD0LJST = 0: Bits 7–0 are the lower 8 bits of the 12-bit ADC0 Data Word.  
For AD0LJST = 1: Bits 7–4 are the lower 4 bits of the 12-bit ADC0 Data Word. Bits 3–0 will  
always read ‘0’.  
64  
Rev. 1.4  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
12-bit ADC0 Data Word appears in the ADC0 Data Word Registers as follows:  
ADC0H[3:0]:ADC0L[7:0], if AD0LJST = 0  
(ADC0H[7:4] will be sign-extension of ADC0H.3 for a differential reading, otherwise  
=
0000b).  
ADC0H[7:0]:ADC0L[7:4], if AD0LJST = 1  
(ADC0L[3:0] = 0000b).  
Example: ADC0 Data Word Conversion Map, AIN0.0 Input in Single-Ended Mode  
(AMX0CF = 0x00, AMX0SL = 0x00)  
AIN0.0–AGND  
(Volts)  
ADC0H:ADC0L  
(AD0LJST = 0)  
ADC0H:ADC0L  
(AD0LJST = 1)  
VREF x (4095/4096)  
VREF / 2  
0x0FFF  
0x0800  
0x07FF  
0x0000  
0xFFF0  
0x8000  
0x7FF0  
0x0000  
VREF x (2047/4096)  
0
Example: ADC0 Data Word Conversion Map, AIN0.0-AIN0.1 Differential Input Pair  
(AMX0CF = 0x01, AMX0SL = 0x00)  
AIN0.0–AIN0.1  
(Volts)  
ADC0H:ADC0L  
(AD0LJST = 0)  
ADC0H:ADC0L  
(AD0LJST = 1)  
VREF x (2047/2048)  
VREF / 2  
0x07FF  
0x0400  
0x7FF0  
0x4000  
0x0010  
0x0000  
0xFFF0  
0xC000  
0x8000  
VREF x (1/2048)  
0
0x0001  
0x0000  
–VREF x (1/2048)  
–VREF / 2  
0xFFFF (–1d)  
0xFC00 (–1024d)  
0xF800 (–2048d)  
–VREF  
For AD0LJST = 0:  
Gain  
---------------  
n
Code = Vin   
2 ; ‘n’ = 12 for Single-Ended; ‘n’=11 for Differential.  
VREF  
Figure 5.5. ADC0 Data Word Example  
Rev. 1.4  
65  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
5.3. ADC0 Programmable Window Detector  
The ADC0 Programmable Window Detector continuously compares the ADC0 output to user-programmed  
limits, and notifies the system when an out-of-bound condition is detected. This is especially effective in an  
interrupt-driven system, saving code space and CPU bandwidth while delivering faster system response  
times. The window detector interrupt flag (AD0WINT in ADC0CN) can also be used in polled mode. The  
high and low bytes of the reference words are loaded into the ADC0 Greater-Than and ADC0 Less-Than  
registers (ADC0GTH, ADC0GTL, ADC0LTH, and ADC0LTL). Reference comparisons are shown starting  
on page 68. Notice that the window detector flag can be asserted when the measured data is inside or out-  
side the user-programmed limits, depending on the programming of the ADC0GTx and ADC0LTx regis-  
ters.  
SFR Definition 5.7. ADC0GTH: ADC0 Greater-Than Data High Byte  
SFR Page:  
SFR Address:  
0
0xC5  
R/W  
Bit7  
R/W  
R/W  
Bit5  
R/W  
Bit4  
R/W  
Bit3  
R/W  
Bit2  
R/W  
Bit1  
R/W  
Bit0  
Reset Value  
11111111  
Bit6  
Bits7–0: High byte of ADC0 Greater-Than Data Word.  
SFR Definition 5.8. ADC0GTL: ADC0 Greater-Than Data Low Byte  
SFR Page:  
SFR Address:  
0
0xC4  
R/W  
R/W  
R/W  
Bit5  
R/W  
Bit4  
R/W  
Bit3  
R/W  
Bit2  
R/W  
Bit1  
R/W  
Bit0  
Reset Value  
11111111  
Bit7  
Bit6  
Bits7–0: Low byte of ADC0 Greater-Than Data Word.  
66  
Rev. 1.4  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
SFR Definition 5.9. ADC0LTH: ADC0 Less-Than Data High Byte  
SFR Page:  
SFR Address:  
0
0xC7  
R/W  
Bit7  
R/W  
R/W  
Bit5  
R/W  
Bit4  
R/W  
Bit3  
R/W  
Bit2  
R/W  
Bit1  
R/W  
Bit0  
Reset Value  
00000000  
Bit6  
Bits7–0: High byte of ADC0 Less-Than Data Word.  
SFR Definition 5.10. ADC0LTL: ADC0 Less-Than Data Low Byte  
SFR Page:  
SFR Address:  
0
0xC6  
R/W  
R/W  
R/W  
Bit5  
R/W  
Bit4  
R/W  
Bit3  
R/W  
Bit2  
R/W  
Bit1  
R/W  
Bit0  
Reset Value  
00000000  
Bit7  
Bit6  
Bits7–0: Low byte of ADC0 Less-Than Data Word.  
Rev. 1.4  
67  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
Input Voltage  
ADC Data  
Input Voltage  
(AD0.0 - AGND)  
ADC Data  
Word  
(AD0.0 - AGND)  
Word  
REF x (4095/4096)  
0x0FFF  
REF x (4095/4096)  
0x0FFF  
AD0WINT  
not affected  
AD0WINT=1  
0x0201  
0x0201  
REF x (512/4096)  
REF x (256/4096)  
0x0200  
0x01FF  
ADC0LTH:ADC0LTL  
AD0WINT=1  
REF x (512/4096)  
REF x (256/4096)  
0x0200  
0x01FF  
ADC0GTH:ADC0GTL  
AD0WINT  
not affected  
0x0101  
0x0100  
0x0101  
0x0100  
ADC0GTH:ADC0GTL  
ADC0LTH:ADC0LTL  
0x00FF  
0x00FF  
AD0WINT=1  
AD0WINT  
not affected  
0x0000  
0x0000  
0
0
Given:  
Given:  
AMX0SL = 0x00, AMX0CF = 0x00  
AD0LJST = ‘0’,  
AMX0SL = 0x00, AMX0CF = 0x00,  
AD0LJST = ‘0’,  
ADC0LTH:ADC0LTL = 0x0200,  
ADC0GTH:ADC0GTL = 0x0100.  
An ADC0 End of Conversion will cause an  
ADC0 Window Compare Interrupt (AD0WINT  
= ‘1’) if the resulting ADC0 Data Word is  
< 0x0200 and > 0x0100.  
ADC0LTH:ADC0LTL = 0x0100,  
ADC0GTH:ADC0GTL = 0x0200.  
An ADC0 End of Conversion will cause an  
ADC0 Window Compare Interrupt (AD0WINT  
= ‘1’) if the resulting ADC0 Data Word is  
> 0x0200 or < 0x0100.  
Figure 5.6. 12-Bit ADC0 Window Interrupt Example: Right Justified Single-Ended  
Data  
68  
Rev. 1.4  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
Input Voltage  
(AD0.0 - AD0.1)  
Input Voltage  
ADC Data  
ADC Data  
Word  
(AD0.0 - AD0.1)  
Word  
REF x (2047/2048)  
0x07FF  
REF x (2047/2048)  
0x07FF  
AD0WINT  
not affected  
AD0WINT=1  
0x0101  
0x0101  
REF x (256/2048)  
REF x (-1/2048)  
0x0100  
0x00FF  
ADC0LTH:ADC0LTL  
AD0WINT=1  
REF x (256/2048)  
REF x (-1/2048)  
0x0100  
0x00FF  
ADC0GTH:ADC0GTL  
AD0WINT  
not affected  
0x0000  
0xFFFF  
0x0000  
0xFFFF  
ADC0GTH:ADC0GTL  
ADC0LTH:ADC0LTL  
AD0WINT=1  
0xFFFE  
0xFFFE  
AD0WINT  
not affected  
0xF800  
0xF800  
-REF  
-REF  
Given:  
Given:  
AMX0SL = 0x00, AMX0CF = 0x01,  
AD0LJST = ‘0’,  
AMX0SL = 0x00, AMX0CF = 0x01,  
AD0LJST = ‘0’,  
ADC0LTH:ADC0LTL = 0x0100,  
ADC0GTH:ADC0GTL = 0xFFFF.  
An ADC0 End of Conversion will cause an  
ADC0 Window Compare Interrupt (AD0WINT  
= ‘1’) if the resulting ADC0 Data Word is  
< 0x0100 and > 0xFFFF. (In 2s-complement  
math, 0xFFFF = -1.)  
ADC0LTH:ADC0LTL = 0xFFFF,  
ADC0GTH:ADC0GTL = 0x0100.  
An ADC0 End of Conversion will cause an  
ADC0 Window Compare Interrupt (AD0WINT  
= ‘1’) if the resulting ADC0 Data Word is  
< 0xFFFF or > 0x0100. (In 2s-complement  
math, 0xFFFF = -1.)  
Figure 5.7. 12-Bit ADC0 Window Interrupt Example: Right Justified Differential  
Data  
Rev. 1.4  
69  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
Input Voltage  
ADC Data  
Input Voltage  
(AD0.0 - AGND)  
ADC Data  
Word  
(AD0.0 - AGND)  
Word  
REF x (4095/4096)  
0xFFF0  
REF x (4095/4096)  
0xFFF0  
AD0WINT  
not affected  
AD0WINT=1  
0x2010  
0x2010  
REF x (512/4096)  
REF x (256/4096)  
0x2000  
0x1FF0  
ADC0LTH:ADC0LTL  
AD0WINT=1  
REF x (512/4096)  
REF x (256/4096)  
0x2000  
0x1FF0  
ADC0GTH:ADC0GTL  
AD0WINT  
not affected  
0x1010  
0x1000  
0x1010  
0x1000  
ADC0GTH:ADC0GTL  
ADC0LTH:ADC0LTL  
AD0WINT=1  
0x0FF0  
0x0FF0  
AD0WINT  
not affected  
0x0000  
0x0000  
0
0
Given:  
Given:  
AMX0SL = 0x00, AMX0CF = 0x00,  
AD0LJST = ‘1’,  
AMX0SL = 0x00, AMX0CF = 0x00,  
AD0LJST = ‘1’  
ADC0LTH:ADC0LTL = 0x2000,  
ADC0GTH:ADC0GTL = 0x1000.  
An ADC0 End of Conversion will cause an  
ADC0 Window Compare Interrupt (AD0WINT  
= ‘1’) if the resulting ADC0 Data Word is  
< 0x2000 and > 0x1000.  
ADC0LTH:ADC0LTL = 0x1000,  
ADC0GTH:ADC0GTL = 0x2000.  
An ADC0 End of Conversion will cause an  
ADC0 Window Compare Interrupt (AD0WINT  
= ‘1’) if the resulting ADC0 Data Word is  
< 0x1000 or > 0x2000.  
Figure 5.8. 12-Bit ADC0 Window Interrupt Example: Left Justified Single-Ended  
Data  
70  
Rev. 1.4  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
Input Voltage  
(AD0.0 - AD0.1)  
Input Voltage  
ADC Data  
ADC Data  
Word  
(AD0.0 - AD0.1)  
Word  
REF x (2047/2048)  
0x7FF0  
REF x (2047/2048)  
0x7FF0  
AD0WINT  
not affected  
AD0WINT=1  
0x1010  
0x1010  
REF x (256/2048)  
REF x (-1/2048)  
0x1000  
0x0FF0  
ADC0LTH:ADC0LTL  
AD0WINT=1  
REF x (256/2048)  
REF x (-1/2048)  
0x1000  
0x0FF0  
ADC0GTH:ADC0GTL  
AD0WINT  
not affected  
0x0000  
0xFFF0  
0x0000  
0xFFF0  
ADC0GTH:ADC0GTL  
ADC0LTH:ADC0LTL  
0xFFE0  
0xFFE0  
AD0WINT=1  
AD0WINT  
not affected  
0x8000  
0x8000  
-REF  
-REF  
Given:  
Given:  
AMX0SL = 0x00, AMX0CF = 0x01,  
AD0LJST = ‘1’,  
AMX0SL = 0x00, AMX0CF = 0x01,  
AD0LJST = ‘1’,  
ADC0LTH:ADC0LTL = 0x1000,  
ADC0GTH:ADC0GTL = 0xFFF0.  
An ADC0 End of Conversion will cause an  
ADC0 Window Compare Interrupt (AD0WINT  
= ‘1’) if the resulting ADC0 Data Word is  
< 0x1000 and > 0xFFF0. (2s-complement  
math.)  
ADC0LTH:ADC0LTL = 0xFFF0,  
ADC0GTH:ADC0GTL = 0x1000.  
An ADC0 End of Conversion will cause an  
ADC0 Window Compare Interrupt (AD0WINT  
= ‘1’) if the resulting ADC0 Data Word is  
< 0xFFF0 or > 0x1000. (2s-complement math.)  
Figure 5.9. 12-Bit ADC0 Window Interrupt Example: Left Justified Differential Data  
Rev. 1.4  
71  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
Table 5.1. 12-Bit ADC0 Electrical Characteristics (C8051F120/1/4/5)  
VDD = 3.0 V, AV+ = 3.0 V, VREF = 2.40 V (REFBE = 0), PGA Gain = 1, –40 to +85 °C unless otherwise specified.  
Parameter  
Conditions  
Min  
Typ  
Max  
Units  
DC Accuracy  
Resolution  
12  
bits  
LSB  
Integral Nonlinearity  
Differential Nonlinearity  
Offset Error  
±1  
±1  
Guaranteed Monotonic  
Differential mode  
LSB  
–3±1  
–7±3  
±0.25  
LSB  
Full Scale Error  
LSB  
Offset Temperature Coefficient  
ppm/°C  
Dynamic Performance (10 kHz sine-wave input, 0 to 1 dB below Full Scale, 100 ksps  
Signal-to-Noise Plus Distortion  
Total Harmonic Distortion  
66  
–75  
80  
dB  
dB  
dB  
Up to the 5th harmonic  
Spurious-Free Dynamic Range  
Conversion Rate  
SAR Clock Frequency  
16  
1.5  
2.5  
MHz  
clocks  
µs  
Conversion Time in SAR Clocks  
Track/Hold Acquisition Time  
Throughput Rate  
100  
ksps  
Analog Inputs  
Input Voltage Range  
Single-ended operation  
0
AGND  
10  
VREF  
AV+  
V
V
*Common-mode Voltage Range Differential operation  
Input Capacitance  
pF  
Temperature Sensor  
Linearity1  
Offset  
±0.2  
776  
°C  
mV  
(Temp = 0 °C)  
(Temp = 0 °C)  
Offset Error1, 2  
Slope  
±8.5  
mV  
2.86  
mV / °C  
mV / °C  
Slope Error2  
±0.034  
Power Specifications  
Operating Mode, 100 ksps  
Power Supply Current  
(AV+ supplied to ADC)  
450  
900  
µA  
Power Supply Rejection  
±0.3  
mV/V  
Notes:  
1. Includes ADC offset, gain, and linearity variations.  
2. Represents one standard deviation from the mean.  
72  
Rev. 1.4  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
6. ADC0 (10-Bit ADC, C8051F122/3/6/7 and C8051F13x Only)  
The ADC0 subsystem for the C8051F122/3/6/7 and C8051F13x consists of a 9-channel, configurable ana-  
log multiplexer (AMUX0), a programmable gain amplifier (PGA0), and a 100 ksps, 10-bit successive-  
approximation-register ADC with integrated track-and-hold and Programmable Window Detector (see  
block diagram in Figure 6.1). The AMUX0, PGA0, Data Conversion Modes, and Window Detector are all  
configurable under software control via the Special Function Registers shown in Figure 6.1. The voltage  
reference used by ADC0 is selected as described in Section “9. Voltage Reference” on page 113. The  
ADC0 subsystem (ADC0, track-and-hold and PGA0) is enabled only when the AD0EN bit in the ADC0  
Control register (ADC0CN) is set to logic 1. The ADC0 subsystem is in low power shutdown when this bit is  
logic 0.  
ADC0GTH  
+
ADC0GTL  
ADC0LTH  
ADC0LTL  
20  
Comb.  
Logic  
AD0WINT  
10  
AV+  
AIN0.0  
AIN0.1  
AIN0.2  
AIN0.3  
AIN0.4  
AIN0.5  
AIN0.6  
AIN0.7  
AD0EN  
AV+  
-
+
-
9-to-1  
AMUX  
(SE or  
DIFF)  
10-Bit  
SAR  
+
+
10  
X
-
-
+
ADC  
AGND  
-
TEMP  
SENSOR  
00  
01  
10  
11  
AD0BUSY (W)  
Timer 3 Overflow  
CNVSTR0  
Start Conversion  
AGND  
Timer 2 Overflow  
AMX0SL  
AMX0CF  
ADC0CF  
ADC0CN  
Figure 6.1. 10-Bit ADC0 Functional Block Diagram  
6.1. Analog Multiplexer and PGA  
Eight of the AMUX channels are available for external measurements while the ninth channel is internally  
connected to an on-chip temperature sensor (temperature transfer function is shown in Figure 6.2). AMUX  
input pairs can be programmed to operate in either differential or single-ended mode. This allows the user  
to select the best measurement technique for each input channel, and even accommodates mode  
changes "on-the-fly". The AMUX defaults to all single-ended inputs upon reset. There are two registers  
associated with the AMUX: the Channel Selection register AMX0SL (SFR Definition 6.2), and the Configu-  
ration register AMX0CF (SFR Definition 6.1). The table in SFR Definition 6.2 shows AMUX functionality by  
channel, for each possible configuration. The PGA amplifies the AMUX output signal by an amount deter-  
mined by the states of the AMP0GN2-0 bits in the ADC0 Configuration register, ADC0CF (SFR Definition  
6.3). The PGA can be software-programmed for gains of 0.5, 2, 4, 8 or 16. Gain defaults to unity on reset.  
Rev. 1.4  
73  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
The Temperature Sensor transfer function is shown in Figure 6.2. The output voltage (VTEMP) is the PGA  
input when the Temperature Sensor is selected by bits AMX0AD3-0 in register AMX0SL; this voltage will  
be amplified by the PGA according to the user-programmed PGA settings. Typical values for the Slope and  
Offset parameters can be found in Table 6.1.  
Slope (V / deg C)  
Offset (V at 0 Celsius)  
VTEMP = (Slope x TempC) + Offset  
TempC = (VTEMP - Offset) / Slope  
-50  
0
50  
100  
Temperature (Celsius)  
Figure 6.2. Typical Temperature Sensor Transfer Function  
74  
Rev. 1.4  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
6.2. ADC Modes of Operation  
ADC0 has a maximum conversion speed of 100 ksps. The ADC0 conversion clock is derived from the sys-  
tem clock divided by the value held in the ADCSC bits of register ADC0CF.  
6.2.1. Starting a Conversion  
A conversion can be initiated in one of four ways, depending on the programmed states of the ADC0 Start  
of Conversion Mode bits (AD0CM1, AD0CM0) in ADC0CN. Conversions may be initiated by:  
1. Writing a ‘1’ to the AD0BUSY bit of ADC0CN;  
2. A Timer 3 overflow (i.e. timed continuous conversions);  
3. A rising edge detected on the external ADC convert start signal, CNVSTR0;  
4. A Timer 2 overflow (i.e. timed continuous conversions).  
The AD0BUSY bit is set to logic 1 during conversion and restored to logic 0 when conversion is complete.  
The falling edge of AD0BUSY triggers an interrupt (when enabled) and sets the AD0INT interrupt flag  
(ADC0CN.5). Converted data is available in the ADC0 data word MSB and LSB registers, ADC0H, ADC0L.  
Converted data can be either left or right justified in the ADC0H:ADC0L register pair (see example in  
Figure 6.5) depending on the programmed state of the AD0LJST bit in the ADC0CN register.  
When initiating conversions by writing a ‘1’ to AD0BUSY, the AD0INT bit should be polled to determine  
when a conversion has completed (ADC0 interrupts may also be used). The recommended polling proce-  
dure is shown below.  
Step 1. Write a ‘0’ to AD0INT;  
Step 2. Write a ‘1’ to AD0BUSY;  
Step 3. Poll AD0INT for ‘1’;  
Step 4. Process ADC0 data.  
When CNVSTR0 is used as a conversion start source, it must be enabled in the crossbar, and the corre-  
sponding pin must be set to open-drain, high-impedance mode (see Section “18. Port Input/Output” on  
page 235 for more details on Port I/O configuration).  
Rev. 1.4  
75  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
6.2.2. Tracking Modes  
The AD0TM bit in register ADC0CN controls the ADC0 track-and-hold mode. In its default state, the ADC0  
input is continuously tracked when a conversion is not in progress. When the AD0TM bit is logic 1, ADC0  
operates in low-power track-and-hold mode. In this mode, each conversion is preceded by a tracking  
period of 3 SAR clocks (after the start-of-conversion signal). When the CNVSTR0 signal is used to initiate  
conversions in low-power tracking mode, ADC0 tracks only when CNVSTR0 is low; conversion begins on  
the rising edge of CNVSTR0 (see Figure 6.3). Tracking can also be disabled (shutdown) when the entire  
chip is in low power standby or sleep modes. Low-power track-and-hold mode is also useful when AMUX  
or PGA settings are frequently changed, to ensure that settling time requirements are met (see Section  
“6.2.3. Settling Time Requirements” on page 77).  
A. ADC Timing for External Trigger Source  
CNVSTR0  
(AD0CM[1:0]=10)  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16  
SAR Clocks  
Low Power  
or Convert  
ADC0TM=1  
ADC0TM=0  
Track  
Convert  
Convert  
Low Power Mode  
Track  
Track Or Convert  
B. ADC Timing for Internal Trigger Sources  
Timer 2, Timer 3 Overflow;  
Write '1' to AD0BUSY  
(AD0CM[1:0]=00, 01, 11)  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19  
SAR Clocks  
ADC0TM=1  
Low Power  
or Convert  
Track  
Convert  
Low Power Mode  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16  
SAR Clocks  
ADC0TM=0  
Track or  
Convert  
Convert  
Track  
Figure 6.3. ADC0 Track and Conversion Example Timing  
76  
Rev. 1.4  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
6.2.3. Settling Time Requirements  
A minimum tracking time is required before an accurate conversion can be performed. This tracking time is  
determined by the ADC0 MUX resistance, the ADC0 sampling capacitance, any external source resis-  
tance, and the accuracy required for the conversion. Figure 6.4 shows the equivalent ADC0 input circuits  
for both Differential and Single-ended modes. Notice that the equivalent time constant for both input cir-  
cuits is the same. The required settling time for a given settling accuracy (SA) may be approximated by  
Equation 6.1. When measuring the Temperature Sensor output, R  
reduces to RMUX. An absolute  
TOTAL  
minimum settling time of 1.5 µs is required after any MUX or PGA selection. Note that in low-power track-  
ing mode, three SAR clocks are used for tracking at the start of every conversion. For most applications,  
these three SAR clocks will meet the tracking requirements.  
2n  
SA  
------  
t = ln  
RTOTALCSAMPLE  
Equation 6.1. ADC0 Settling Time Requirements  
Where:  
SA is the settling accuracy, given as a fraction of an LSB (for example, 0.25 to settle within 1/4 LSB)  
t is the required settling time in seconds  
RTOTAL is the sum of the ADC0 MUX resistance and any external source resistance.  
n is the ADC resolution in bits (10).  
Differential Mode  
Single-Ended Mode  
MUX Select  
MUX Select  
AIN0.x  
AIN0.x  
RMUX = 5k  
RMUX = 5k  
CSAMPLE = 10pF  
CSAMPLE = 10pF  
RCInput= RMUX * CSAMPLE  
RCInput= RMUX * CSAMPLE  
CSAMPLE = 10pF  
AIN0.y  
RMUX = 5k  
MUX Select  
Figure 6.4. ADC0 Equivalent Input Circuits  
Rev. 1.4  
77  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
SFR Definition 6.1. AMX0CF: AMUX0 Configuration  
SFR Page:  
SFR Address:  
0
0xBA  
R/W  
-
R/W  
R/W  
-
R/W  
-
R/W  
R/W  
R/W  
R/W  
Reset Value  
-
AIN67IC AIN45IC AIN23IC AIN01IC 00000000  
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Bit0  
Bits7–4: UNUSED. Read = 0000b; Write = don’t care.  
Bit3:  
Bit2:  
Bit1:  
Bit0:  
AIN67IC: AIN0.6, AIN0.7 Input Pair Configuration Bit.  
0: AIN0.6 and AIN0.7 are independent single-ended inputs.  
1: AIN0.6, AIN0.7 are (respectively) +, - differential input pair.  
AIN45IC: AIN0.4, AIN0.5 Input Pair Configuration Bit.  
0: AIN0.4 and AIN0.5 are independent single-ended inputs.  
1: AIN0.4, AIN0.5 are (respectively) +, - differential input pair.  
AIN23IC: AIN0.2, AIN0.3 Input Pair Configuration Bit.  
0: AIN0.2 and AIN0.3 are independent single-ended inputs.  
1: AIN0.2, AIN0.3 are (respectively) +, - differential input pair.  
AIN01IC: AIN0.0, AIN0.1 Input Pair Configuration Bit.  
0: AIN0.0 and AIN0.1 are independent single-ended inputs.  
1: AIN0.0, AIN0.1 are (respectively) +, - differential input pair.  
Note: The ADC0 Data Word is in 2’s complement format for channels configured as differential.  
78  
Rev. 1.4  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
SFR Definition 6.2. AMX0SL: AMUX0 Channel Select  
SFR Page:  
SFR Address:  
0
0xBB  
R/W  
-
R/W  
R/W  
-
R/W  
-
R/W  
R/W  
R/W  
R/W  
Reset Value  
-
AMX0AD3 AMX0AD2 AMX0AD1 AMX0AD0 00000000  
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Bit0  
Bits7–4: UNUSED. Read = 0000b; Write = don’t care.  
Bits3–0: AMX0AD3–0: AMX0 Address Bits.  
0000-1111b: ADC Inputs selected per chart below.  
AMX0AD3-0  
0100  
0000  
0001  
0010  
0011  
0101  
0110  
0111  
1xxx  
TEMP  
SENSOR  
AIN0.0  
AIN0.1  
AIN0.2  
AIN0.3  
AIN0.4  
AIN0.4  
AIN0.4  
AIN0.4  
AIN0.5  
AIN0.6  
AIN0.6  
AIN0.6  
AIN0.6  
AIN0.6  
AIN0.6  
AIN0.6  
AIN0.6  
AIN0.7  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
+(AIN0.0)  
–(AIN0.1)  
TEMP  
SENSOR  
AIN0.2  
AIN0.3  
AIN0.5  
AIN0.5  
AIN0.5  
AIN0.7  
AIN0.7  
AIN0.7  
AIN0.7  
AIN0.7  
AIN0.7  
AIN0.7  
+(AIN0.2)  
–(AIN0.3)  
TEMP  
SENSOR  
AIN0.0  
AIN0.1  
AIN0.1  
AIN0.1  
AIN0.1  
AIN0.1  
AIN0.1  
AIN0.1  
+(AIN0.0)  
–(AIN0.1)  
+(AIN0.2)  
–(AIN0.3)  
TEMP  
SENSOR  
+(AIN0.4)  
–(AIN0.5)  
TEMP  
SENSOR  
AIN0.0  
AIN0.2  
AIN0.2  
AIN0.3  
AIN0.3  
+(AIN0.0)  
–(AIN0.1)  
+(AIN0.4)  
–(AIN0.5)  
TEMP  
SENSOR  
+(AIN0.2)  
–(AIN0.3)  
+(AIN0.4)  
–(AIN0.5)  
TEMP  
SENSOR  
AIN0.0  
+(AIN0.0)  
–(AIN0.1)  
+(AIN0.2)  
–(AIN0.3)  
+(AIN0.4)  
–(AIN0.5)  
TEMP  
SENSOR  
+(AIN0.6)  
–(AIN0.7)  
TEMP  
SENSOR  
AIN0.0  
AIN0.2  
AIN0.2  
AIN0.3  
AIN0.3  
AIN0.4  
AIN0.4  
AIN0.4  
AIN0.4  
AIN0.5  
AIN0.5  
AIN0.5  
AIN0.5  
+(AIN0.0)  
–(AIN0.1)  
+(AIN0.6)  
–(AIN0.7)  
TEMP  
SENSOR  
+(AIN0.2)  
–(AIN0.3)  
+(AIN0.6)  
–(AIN0.7)  
TEMP  
SENSOR  
AIN0.0  
+(AIN0.0)  
–(AIN0.1)  
+(AIN0.2)  
–(AIN0.3)  
+(AIN0.6)  
–(AIN0.7)  
TEMP  
SENSOR  
+(AIN0.4)  
–(AIN0.5)  
+(AIN0.6)  
–(AIN0.7)  
TEMP  
SENSOR  
AIN0.0  
AIN0.2  
AIN0.2  
AIN0.3  
AIN0.3  
+(AIN0.0)  
–(AIN0.1)  
+(AIN0.4)  
–(AIN0.5)  
+(AIN0.6)  
–(AIN0.7)  
TEMP  
SENSOR  
+(AIN0.2)  
–(AIN0.3)  
+(AIN0.4)  
–(AIN0.5)  
+(AIN0.6)  
–(AIN0.7)  
TEMP  
SENSOR  
AIN0.0  
+(AIN0.0)  
–(AIN0.1)  
+(AIN0.2)  
–(AIN0.3)  
+(AIN0.4)  
–(AIN0.5)  
+(AIN0.6)  
–(AIN0.7)  
TEMP  
SENSOR  
Rev. 1.4  
79  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
SFR Definition 6.3. ADC0CF: ADC0 Configuration  
SFR Page:  
SFR Address:  
0
0xBC  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Reset Value  
AD0SC4 AD0SC3 AD0SC2 AD0SC1 AD0SC0 AMP0GN2 AMP0GN1 AMP0GN0 11111000  
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Bit0  
Bits7–3: AD0SC4–0: ADC0 SAR Conversion Clock Period Bits.  
SAR Conversion clock is derived from system clock by the following equation, where  
AD0SC refers to the 5-bit value held in AD0SC4-0, and CLKSAR0 refers to the desired ADC0  
SAR clock (Note: the ADC0 SAR Conversion Clock should be less than or equal to  
2.5 MHz).  
SYSCLK  
2 CLKSAR0  
-------------------------------  
AD0SC =  
– 1  
AD0SC 00000b  
When the AD0SC bits are equal to 00000b, the SAR Conversion clock is equal to SYSCLK  
to facilitate faster ADC conversions at slower SYSCLK speeds.  
Bits2–0: AMP0GN2–0: ADC0 Internal Amplifier Gain (PGA).  
000: Gain = 1  
001: Gain = 2  
010: Gain = 4  
011: Gain = 8  
10x: Gain = 16  
11x: Gain = 0.5  
80  
Rev. 1.4  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
SFR Definition 6.4. ADC0CN: ADC0 Control  
SFR Page:  
SFR Address:  
0
0xE8  
(bit addressable)  
R/W  
AD0EN  
Bit7  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Reset Value  
AD0TM AD0INT AD0BUSY AD0CM1 AD0CM0 AD0WINT AD0LJST 00000000  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Bit0  
Bit7:  
Bit6:  
Bit5:  
AD0EN: ADC0 Enable Bit.  
0: ADC0 Disabled. ADC0 is in low-power shutdown.  
1: ADC0 Enabled. ADC0 is active and ready for data conversions.  
AD0TM: ADC Track Mode Bit.  
0: When the ADC is enabled, tracking is continuous unless a conversion is in process.  
1: Tracking Defined by ADCM1-0 bits.  
AD0INT: ADC0 Conversion Complete Interrupt Flag.  
This flag must be cleared by software.  
0: ADC0 has not completed a data conversion since the last time this flag was cleared.  
1: ADC0 has completed a data conversion.  
AD0BUSY: ADC0 Busy Bit.  
Bit4:  
Read:  
0: ADC0 Conversion is complete or a conversion is not currently in progress. AD0INT is set  
to logic 1 on the falling edge of AD0BUSY.  
1: ADC0 Conversion is in progress.  
Write:  
0: No Effect.  
1: Initiates ADC0 Conversion if AD0CM1-0 = 00b.  
Bits3–2: AD0CM1–0: ADC0 Start of Conversion Mode Select.  
If AD0TM = 0:  
00: ADC0 conversion initiated on every write of ‘1’ to AD0BUSY.  
01: ADC0 conversion initiated on overflow of Timer 3.  
10: ADC0 conversion initiated on rising edge of external CNVSTR0.  
11: ADC0 conversion initiated on overflow of Timer 2.  
If AD0TM = 1:  
00: Tracking starts with the write of ‘1’ to AD0BUSY and lasts for 3 SAR clocks, followed by  
conversion.  
01: Tracking started by the overflow of Timer 3 and lasts for 3 SAR clocks, followed by con-  
version.  
10: ADC0 tracks only when CNVSTR0 input is logic low; conversion starts on rising  
CNVSTR0 edge.  
11: Tracking started by the overflow of Timer 2 and lasts for 3 SAR clocks, followed by con-  
version.  
Bit1:  
Bit0:  
AD0WINT: ADC0 Window Compare Interrupt Flag.  
This bit must be cleared by software.  
0: ADC0 Window Comparison Data match has not occurred since this flag was last cleared.  
1: ADC0 Window Comparison Data match has occurred.  
AD0LJST: ADC0 Left Justify Select.  
0: Data in ADC0H:ADC0L registers are right-justified.  
1: Data in ADC0H:ADC0L registers are left-justified.  
Rev. 1.4  
81  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
SFR Definition 6.5. ADC0H: ADC0 Data Word MSB  
SFR Page:  
SFR Address:  
0
0xBF  
R/W  
Bit7  
R/W  
R/W  
Bit5  
R/W  
Bit4  
R/W  
Bit3  
R/W  
Bit2  
R/W  
Bit1  
R/W  
Bit0  
Reset Value  
00000000  
Bit6  
Bits7–0: ADC0 Data Word High-Order Bits.  
For AD0LJST = 0: Bits 7–4 are the sign extension of Bit3. Bits 3–0 are the upper 4 bits of the  
10-bit ADC0 Data Word.  
For AD0LJST = 1: Bits 7–0 are the most-significant bits of the 10-bit ADC0 Data Word.  
SFR Definition 6.6. ADC0L: ADC0 Data Word LSB  
SFR Page:  
SFR Address:  
0
0xBE  
R/W  
R/W  
R/W  
Bit5  
R/W  
Bit4  
R/W  
Bit3  
R/W  
Bit2  
R/W  
Bit1  
R/W  
Bit0  
Reset Value  
00000000  
Bit7  
Bit6  
Bits7–0: ADC0 Data Word Low-Order Bits.  
For AD0LJST = 0: Bits 7–0 are the lower 8 bits of the 10-bit ADC0 Data Word.  
For AD0LJST = 1: Bits 7–4 are the lower 4 bits of the 10-bit ADC0 Data Word. Bits 3–0 will  
always read ‘0’.  
82  
Rev. 1.4  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
10-bit ADC0 Data Word appears in the ADC0 Data Word Registers as follows:  
ADC0H[1:0]:ADC0L[7:0], if AD0LJST = 0  
(ADC0H[7:2] will be sign-extension of ADC0H.1 for a differential reading, otherwise  
=
000000b).  
ADC0H[7:0]:ADC0L[7:6], if AD0LJST = 1  
(ADC0L[5:0] = 00b).  
Example: ADC0 Data Word Conversion Map, AIN0.0 Input in Single-Ended Mode  
(AMX0CF = 0x00, AMX0SL = 0x00)  
AIN0.0–AGND  
(Volts)  
ADC0H:ADC0L  
(AD0LJST = 0)  
ADC0H:ADC0L  
(AD0LJST = 1)  
VREF x (1023/1024)  
VREF / 2  
0x03FF  
0x0200  
0x01FF  
0x0000  
0xFFC0  
0x8000  
0x7FC0  
0x0000  
VREF x (511/1024)  
0
Example: ADC0 Data Word Conversion Map, AIN0.0-AIN0.1 Differential Input Pair  
(AMX0CF = 0x01, AMX0SL = 0x00)  
AIN0.0–AIN0.1  
(Volts)  
ADC0H:ADC0L  
(AD0LJST = 0)  
ADC0H:ADC0L  
(AD0LJST = 1)  
VREF x (511/512)  
VREF / 2  
0x01FF  
0x0100  
0x7FC0  
0x4000  
0x0040  
0x0000  
0xFFC0  
0xC000  
0x8000  
VREF x (1/512)  
0
0x0001  
0x0000  
–VREF x (1/512)  
–VREF / 2  
–VREF  
0xFFFF (–1d)  
0xFF00 (–256d)  
0xFE00 (–512d)  
For AD0LJST = 0:  
Gain  
---------------  
n
Code = Vin   
2 ; ‘n’ = 10 for Single-Ended; ‘n’= 9 for Differential.  
VREF  
Figure 6.5. ADC0 Data Word Example  
Rev. 1.4  
83  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
6.3. ADC0 Programmable Window Detector  
The ADC0 Programmable Window Detector continuously compares the ADC0 output to user-programmed  
limits, and notifies the system when an out-of-bound condition is detected. This is especially effective in an  
interrupt-driven system, saving code space and CPU bandwidth while delivering faster system response  
times. The window detector interrupt flag (AD0WINT in ADC0CN) can also be used in polled mode. The  
high and low bytes of the reference words are loaded into the ADC0 Greater-Than and ADC0 Less-Than  
registers (ADC0GTH, ADC0GTL, ADC0LTH, and ADC0LTL). Reference comparisons are shown starting  
on page 87. Notice that the window detector flag can be asserted when the measured data is inside or out-  
side the user-programmed limits, depending on the programming of the ADC0GTx and ADC0LTx regis-  
ters.  
SFR Definition 6.7. ADC0GTH: ADC0 Greater-Than Data High Byte  
SFR Page:  
SFR Address:  
0
0xC5  
R/W  
Bit7  
R/W  
R/W  
Bit5  
R/W  
Bit4  
R/W  
Bit3  
R/W  
Bit2  
R/W  
Bit1  
R/W  
Bit0  
Reset Value  
11111111  
Bit6  
Bits7–0: High byte of ADC0 Greater-Than Data Word.  
SFR Definition 6.8. ADC0GTL: ADC0 Greater-Than Data Low Byte  
SFR Page:  
SFR Address:  
0
0xC4  
R/W  
R/W  
R/W  
Bit5  
R/W  
Bit4  
R/W  
Bit3  
R/W  
Bit2  
R/W  
Bit1  
R/W  
Bit0  
Reset Value  
11111111  
Bit7  
Bit6  
Bits7–0: Low byte of ADC0 Greater-Than Data Word.  
84  
Rev. 1.4  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
SFR Definition 6.9. ADC0LTH: ADC0 Less-Than Data High Byte  
SFR Page:  
SFR Address:  
0
0xC7  
R/W  
Bit7  
R/W  
R/W  
Bit5  
R/W  
Bit4  
R/W  
Bit3  
R/W  
Bit2  
R/W  
Bit1  
R/W  
Bit0  
Reset Value  
00000000  
Bit6  
Bits7–0: High byte of ADC0 Less-Than Data Word.  
SFR Definition 6.10. ADC0LTL: ADC0 Less-Than Data Low Byte  
SFR Page:  
SFR Address:  
0
0xC6  
R/W  
R/W  
R/W  
Bit5  
R/W  
Bit4  
R/W  
Bit3  
R/W  
Bit2  
R/W  
Bit1  
R/W  
Bit0  
Reset Value  
00000000  
Bit7  
Bit6  
Bits7–0: Low byte of ADC0 Less-Than Data Word.  
Rev. 1.4  
85  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
Input Voltage  
ADC Data  
Input Voltage  
(AD0.0 - AGND)  
ADC Data  
Word  
(AD0.0 - AGND)  
Word  
REF x (1023/1024)  
0x03FF  
REF x (1023/1024)  
0x03FF  
ADWINT  
not affected  
ADWINT=1  
0x0201  
0x0201  
REF x (512/1024)  
REF x (256/1024)  
0x0200  
0x01FF  
ADC0LTH:ADC0LTL  
ADWINT=1  
REF x (512/1024)  
REF x (256/1024)  
0x0200  
0x01FF  
ADC0GTH:ADC0GTL  
ADWINT  
not affected  
0x0101  
0x0100  
0x0101  
0x0100  
ADC0GTH:ADC0GTL  
ADC0LTH:ADC0LTL  
0x00FF  
0x00FF  
ADWINT=1  
ADWINT  
not affected  
0x0000  
0x0000  
0
0
Given:  
Given:  
AMX0SL = 0x00, AMX0CF = 0x00  
AD0LJST = ‘0’,  
AMX0SL = 0x00, AMX0CF = 0x00,  
AD0LJST = ‘0’,  
ADC0LTH:ADC0LTL = 0x0200,  
ADC0GTH:ADC0GTL = 0x0100.  
An ADC0 End of Conversion will cause an  
ADC0 Window Compare Interrupt (AD0WINT  
= ‘1’) if the resulting ADC0 Data Word is  
< 0x0200 and > 0x0100.  
ADC0LTH:ADC0LTL = 0x0100,  
ADC0GTH:ADC0GTL = 0x0200.  
An ADC0 End of Conversion will cause an  
ADC0 Window Compare Interrupt (AD0WINT  
= ‘1’) if the resulting ADC0 Data Word is  
> 0x0200 or < 0x0100.  
Figure 6.6. 10-Bit ADC0 Window Interrupt Example: Right Justified Single-Ended  
Data  
86  
Rev. 1.4  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
Input Voltage  
(AD0.0 - AD0.1)  
Input Voltage  
ADC Data  
ADC Data  
Word  
(AD0.0 - AD0.1)  
Word  
REF x (511/512)  
0x01FF  
REF x (511/512)  
0x01FF  
ADWINT  
not affected  
ADWINT=1  
0x0101  
0x0101  
REF x (256/512)  
REF x (-1/512)  
0x0100  
0x00FF  
ADC0LTH:ADC0LTL  
ADWINT=1  
REF x (256/512)  
REF x (-1/512)  
0x0100  
0x00FF  
ADC0GTH:ADC0GTL  
ADWINT  
not affected  
0x0000  
0xFFFF  
0x0000  
0xFFFF  
ADC0GTH:ADC0GTL  
ADC0LTH:ADC0LTL  
ADWINT=1  
0xFFFE  
0xFFFE  
ADWINT  
not affected  
0xFE00  
0xFE00  
-REF  
-REF  
Given:  
Given:  
AMX0SL = 0x00, AMX0CF = 0x01,  
AD0LJST = ‘0’,  
AMX0SL = 0x00, AMX0CF = 0x01,  
AD0LJST = ‘0’,  
ADC0LTH:ADC0LTL = 0x0100,  
ADC0GTH:ADC0GTL = 0xFFFF.  
An ADC0 End of Conversion will cause an  
ADC0 Window Compare Interrupt (AD0WINT  
= ‘1’) if the resulting ADC0 Data Word is  
< 0x0100 and > 0xFFFF. (In 2s-complement  
math, 0xFFFF = -1.)  
ADC0LTH:ADC0LTL = 0xFFFF,  
ADC0GTH:ADC0GTL = 0x0100.  
An ADC0 End of Conversion will cause an  
ADC0 Window Compare Interrupt (AD0WINT  
= ‘1’) if the resulting ADC0 Data Word is  
< 0xFFFF or > 0x0100. (In 2s-complement  
math, 0xFFFF = -1.)  
Figure 6.7. 10-Bit ADC0 Window Interrupt Example: Right Justified Differential  
Data  
Rev. 1.4  
87  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
Input Voltage  
ADC Data  
Input Voltage  
(AD0.0 - AGND)  
ADC Data  
Word  
(AD0.0 - AGND)  
Word  
REF x (1023/1024)  
0xFFC0  
REF x (1023/1024)  
0xFFC0  
ADWINT  
not affected  
ADWINT=1  
0x8040  
0x8040  
REF x (512/1024)  
REF x (256/1024)  
0x8000  
0x7FC0  
ADC0LTH:ADC0LTL  
ADWINT=1  
REF x (512/1024)  
REF x (256/1024)  
0x8000  
0x7FC0  
ADC0GTH:ADC0GTL  
ADWINT  
not affected  
0x4040  
0x4000  
0x4040  
0x4000  
ADC0GTH:ADC0GTL  
ADC0LTH:ADC0LTL  
ADWINT=1  
0x3FC0  
0x3FC0  
ADWINT  
not affected  
0x0000  
0x0000  
0
0
Given:  
Given:  
AMX0SL = 0x00, AMX0CF = 0x00,  
AD0LJST = ‘1’,  
AMX0SL = 0x00, AMX0CF = 0x00,  
AD0LJST = ‘1’  
ADC0LTH:ADC0LTL = 0x2000,  
ADC0GTH:ADC0GTL = 0x1000.  
An ADC0 End of Conversion will cause an  
ADC0 Window Compare Interrupt (AD0WINT  
= ‘1’) if the resulting ADC0 Data Word is  
< 0x2000 and > 0x1000.  
ADC0LTH:ADC0LTL = 0x1000,  
ADC0GTH:ADC0GTL = 0x2000.  
An ADC0 End of Conversion will cause an  
ADC0 Window Compare Interrupt (AD0WINT  
= ‘1’) if the resulting ADC0 Data Word is  
< 0x1000 or > 0x2000.  
Figure 6.8. 10-Bit ADC0 Window Interrupt Example: Left Justified Single-Ended  
Data  
88  
Rev. 1.4  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
Input Voltage  
(AD0.0 - AD0.1)  
Input Voltage  
ADC Data  
ADC Data  
Word  
(AD0.0 - AD0.1)  
Word  
REF x (511/512)  
0x7FC0  
REF x (511/512)  
0x7FC0  
ADWINT  
not affected  
ADWINT=1  
0x2040  
0x2040  
REF x (128/512)  
REF x (-1/512)  
0x2000  
0x1FC0  
ADC0LTH:ADC0LTL  
ADWINT=1  
REF x (128/512)  
REF x (-1/512)  
0x2000  
0x1FC0  
ADC0GTH:ADC0GTL  
ADWINT  
not affected  
0x0000  
0xFFC0  
0x0000  
0xFFC0  
ADC0GTH:ADC0GTL  
ADC0LTH:ADC0LTL  
0xFF80  
0xFF80  
ADWINT=1  
ADWINT  
not affected  
0x8000  
0x8000  
-REF  
-REF  
Given:  
Given:  
AMX0SL = 0x00, AMX0CF = 0x01,  
AD0LJST = ‘1’,  
AMX0SL = 0x00, AMX0CF = 0x01,  
AD0LJST = ‘1’,  
ADC0LTH:ADC0LTL = 0x2000,  
ADC0GTH:ADC0GTL = 0xFFC0.  
An ADC0 End of Conversion will cause an  
ADC0 Window Compare Interrupt (AD0WINT  
= ‘1’) if the resulting ADC0 Data Word is  
< 0x2000 and > 0xFFC0. (2s-complement  
math.)  
ADC0LTH:ADC0LTL = 0xFFC0,  
ADC0GTH:ADC0GTL = 0x2000.  
An ADC0 End of Conversion will cause an  
ADC0 Window Compare Interrupt (AD0WINT  
= ‘1’) if the resulting ADC0 Data Word is  
< 0xFFC0 or > 0x2000. (2s-complement  
math.)  
Figure 6.9. 10-Bit ADC0 Window Interrupt Example: Left Justified Differential Data  
Rev. 1.4  
89  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
Table 6.1. 10-Bit ADC0 Electrical Characteristics (C8051F122/3/6/7 and C8051F13x)  
VDD = 3.0 V, AV+ = 3.0 V, VREF = 2.40 V (REFBE = 0), PGA Gain = 1, –40 to +85 °C unless otherwise specified.  
Parameter  
Conditions  
Min  
Typ  
Max  
Units  
DC Accuracy  
Resolution  
10  
bits  
LSB  
Integral Nonlinearity  
Differential Nonlinearity  
Offset Error  
±1  
±1  
Guaranteed Monotonic  
Differential mode  
LSB  
±0.5  
LSB  
Full Scale Error  
–1.5±0.5  
±0.25  
LSB  
Offset Temperature Coefficient  
ppm/°C  
Dynamic Performance (10 kHz sine-wave input, 0 to 1 dB below Full Scale, 100 ksps  
Signal-to-Noise Plus Distortion  
Total Harmonic Distortion  
59  
–70  
80  
dB  
dB  
dB  
Up to the 5th harmonic  
Spurious-Free Dynamic Range  
Conversion Rate  
SAR Clock Frequency  
16  
1.5  
2.5  
MHz  
clocks  
µs  
Conversion Time in SAR Clocks  
Track/Hold Acquisition Time  
Throughput Rate  
100  
ksps  
Analog Inputs  
Input Voltage Range  
Single-ended operation  
0
AGND  
10  
VREF  
AV+  
V
V
*Common-mode Voltage Range Differential operation  
Input Capacitance  
pF  
Temperature Sensor  
Linearity1  
Offset  
±0.2  
776  
°C  
mV  
(Temp = 0 °C)  
(Temp = 0 °C)  
Offset Error1,2  
Slope  
±8.5  
mV  
2.86  
mV/°C  
mV/°C  
Slope Error2  
±0.034  
Power Specifications  
Operating Mode, 100 ksps  
Power Supply Current  
(AV+ supplied to ADC)  
450  
900  
µA  
Power Supply Rejection  
±0.3  
mV/V  
Notes:  
1. Includes ADC offset, gain, and linearity variations.  
2. Represents one standard deviation from the mean.  
90  
Rev. 1.4  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
7. ADC2 (8-Bit ADC, C8051F12x Only)  
The C8051F12x devices include a second ADC peripheral (ADC2), which consists of an 8-channel, config-  
urable analog multiplexer, a programmable gain amplifier, and a 500 ksps, 8-bit successive-approximation-  
register ADC with integrated track-and-hold (see block diagram in Figure 7.1). ADC2 is fully configurable  
under software control via the Special Function Registers shown in Figure 7.1. The ADC2 subsystem (8-bit  
ADC, track-and-hold and PGA) is enabled only when the AD2EN bit in the ADC2 Control register  
(ADC2CN) is set to logic 1. The ADC2 subsystem is in low power shutdown when this bit is logic 0. The  
voltage reference used by ADC2 is selected as described in Section “9. Voltage Reference” on  
page 113.  
ADC2GTH  
ADC2LTH  
16  
Dig  
Comp  
AV+  
AD2WINT  
AD2EN  
+
AIN2.0 (P1.0)  
AIN2.1 (P1.1)  
AIN2.2 (P1.2)  
AIN2.3 (P1.3)  
AIN2.4 (P1.4)  
AIN2.5 (P1.5)  
AIN2.6 (P1.6)  
AIN2.7 (P1.7)  
8
AV+  
-
+
8-Bit  
SAR  
-
+
-
8
8
8-to-1  
AMUX  
X
+
ADC  
-
AGND  
+
000  
001  
010  
011  
1xx  
Write to AD2BUSY  
Timer 3 Overflow  
CNVSTR2  
-
Start Conversion  
Timer 2 Overflow  
Write to AD0BUSY  
(synchronized with  
ADC0)  
AMX2CF  
ADC2CF  
AMX2SL  
ADC2CN  
Figure 7.1. ADC2 Functional Block Diagram  
7.1. Analog Multiplexer and PGA  
Eight ADC2 channels are available for measurement, as selected by the AMX2SL register (see SFR Defi-  
nition 7.2). The PGA amplifies the ADC2 output signal by an amount determined by the states of the  
AMP2GN2-0 bits in the ADC2 Configuration register, ADC2CF (SFR Definition 7.3). The PGA can be soft-  
ware-programmed for gains of 0.5, 1, 2, or 4. Gain defaults to 0.5 on reset.  
Important Note: AIN2 pins also function as Port 1 I/O pins, and must be configured as analog inputs when  
used as ADC2 inputs. To configure an AIN2 pin for analog input, set to ‘0’ the corresponding bit in register  
P1MDIN. Port 1 pins selected as analog inputs are skipped by the Digital I/O Crossbar. See Section  
“18.1.5. Configuring Port 1 Pins as Analog Inputs” on page 240 for more information on configuring  
the AIN2 pins.  
Rev. 1.4  
91  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
7.2. ADC2 Modes of Operation  
ADC2 has a maximum conversion speed of 500 ksps. The ADC2 conversion clock (SAR2 clock) is a  
divided version of the system clock, determined by the AD2SC bits in the ADC2CF register. The maximum  
ADC2 conversion clock is 6 MHz.  
7.2.1. Starting a Conversion  
A conversion can be initiated in one of five ways, depending on the programmed states of the ADC2 Start  
of Conversion Mode bits (AD2CM2-0) in ADC2CN. Conversions may be initiated by:  
1. Writing a ‘1’ to the AD2BUSY bit of ADC2CN;  
2. A Timer 3 overflow (i.e. timed continuous conversions);  
3. A rising edge detected on the external ADC convert start signal, CNVSTR2;  
4. A Timer 2 overflow (i.e. timed continuous conversions);  
5. Writing a ‘1’ to the AD0BUSY of register ADC0CN (initiate conversion of ADC2 and ADC0 with  
a single software command).  
During conversion, the AD2BUSY bit is set to logic 1 and restored to 0 when conversion is complete. The  
falling edge of AD2BUSY triggers an interrupt (when enabled) and sets the interrupt flag in ADC2CN. Con-  
verted data is available in the ADC2 data word, ADC2.  
When a conversion is initiated by writing a ‘1’ to AD2BUSY, it is recommended to poll AD2INT to determine  
when the conversion is complete. The recommended procedure is:  
Step 1. Write a ‘0’ to AD2INT;  
Step 2. Write a ‘1’ to AD2BUSY;  
Step 3. Poll AD2INT for ‘1’;  
Step 4. Process ADC2 data.  
When CNVSTR2 is used as a conversion start source, it must be enabled in the crossbar, and the corre-  
sponding pin must be set to open-drain, high-impedance mode (see Section “18. Port Input/Output” on  
page 235 for more details on Port I/O configuration).  
7.2.2. Tracking Modes  
The AD2TM bit in register ADC2CN controls the ADC2 track-and-hold mode. In its default state, the ADC2  
input is continuously tracked, except when a conversion is in progress. When the AD2TM bit is logic 1,  
ADC2 operates in low-power track-and-hold mode. In this mode, each conversion is preceded by a track-  
ing period of 3 SAR clocks (after the start-of-conversion signal). When the CNVSTR2 signal is used to ini-  
tiate conversions in low-power tracking mode, ADC2 tracks only when CNVSTR2 is low; conversion  
begins on the rising edge of CNVSTR2 (see Figure 7.2). Tracking can also be disabled (shutdown) when  
the entire chip is in low power standby or sleep modes. Low-power Track-and-Hold mode is also useful  
when AMUX or PGA settings are frequently changed, due to the settling time requirements described in  
Section “7.2.3. Settling Time Requirements” on page 94.  
92  
Rev. 1.4  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
A. ADC Timing for External Trigger Source  
CNVSTR2  
(AD2CM[2:0]=010)  
1
2
3
4
5
6
7
8
9
SAR Clocks  
AD2TM=1  
Low Power  
or Convert  
Track  
Convert  
Convert  
Low Power Mode  
Track  
AD2TM=0  
Track or Convert  
B. ADC Timing for Internal Trigger Source  
Write '1' to AD2BUSY,  
Timer 3 Overflow,  
Timer 2 Overflow,  
Write '1' to AD0BUSY  
(AD2CM[2:0]=000, 001, 011, 1xx)  
1
1
2
3
4
4
5
5
6
6
7
8
9
10 11 12  
SAR Clocks  
AD2TM=1  
Low Power  
or Convert  
Track  
Convert  
Low Power Mode  
2
3
7
8
9
SAR Clocks  
AD2TM=0  
Track or  
Convert  
Convert  
Track  
Figure 7.2. ADC2 Track and Conversion Example Timing  
Rev. 1.4  
93  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
7.2.3. Settling Time Requirements  
A minimum tracking time is required before an accurate conversion can be performed. This tracking time is  
determined by the ADC2 MUX resistance, the ADC2 sampling capacitance, any external source resis-  
tance, and the accuracy required for the conversion. Figure 7.3 shows the equivalent ADC2 input circuit.  
The required ADC2 settling time for a given settling accuracy (SA) may be approximated by Equation 7.1.  
Note: An absolute minimum settling time of 800 ns required after any MUX selection. In low-power tracking  
mode, three SAR2 clocks are used for tracking at the start of every conversion. For most applications,  
these three SAR2 clocks will meet the tracking requirements.  
2n  
SA  
------  
t = ln  
RTOTALCSAMPLE  
Equation 7.1. ADC2 Settling Time Requirements  
Where:  
SA is the settling accuracy, given as a fraction of an LSB (for example, 0.25 to settle within 1/4 LSB)  
t is the required settling time in seconds  
RTOTAL is the sum of the ADC2 MUX resistance and any external source resistance.  
n is the ADC resolution in bits (8).  
Differential Mode  
Single-Ended Mode  
MUX Select  
MUX Select  
AIN2.x  
AIN2.x  
RMUX = 5k  
RMUX = 5k  
CSAMPLE = 5pF  
CSAMPLE = 5pF  
RCInput= RMUX * CSAMPLE  
RCInput= RMUX * CSAMPLE  
CSAMPLE = 5pF  
AIN2.y  
RMUX = 5k  
MUX Select  
Note: When the PGA gain is set to 0.5, CSAMPLE = 3pF  
Figure 7.3. ADC2 Equivalent Input Circuit  
94  
Rev. 1.4  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
SFR Definition 7.1. AMX2CF: AMUX2 Configuration  
SFR Page:  
SFR Address:  
2
0xBA  
R/W  
-
R/W  
R/W  
-
R/W  
-
R/W  
R/W  
R/W  
R/W  
Reset Value  
-
PIN67IC PIN45IC PIN23IC PIN01IC 00000000  
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Bit0  
Bits7–4: UNUSED. Read = 0000b; Write = don’t care.  
Bit3:  
Bit2:  
Bit1:  
Bit0:  
PIN67IC: AIN2.6, AIN2.7 Input Pair Configuration Bit.  
0: AIN2.6 and AIN2.7 are independent single-ended inputs.  
1: AIN2.6 and AIN2.7 are (respectively) +, – differential input pair.  
PIN45IC: AIN2.4, AIN2.5 Input Pair Configuration Bit.  
0: AIN2.4 and AIN2.5 are independent single-ended inputs.  
1: AIN2.4 and AIN2.5 are (respectively) +, – differential input pair.  
PIN23IC: AIN2.2, AIN2.3 Input Pair Configuration Bit.  
0: AIN2.2 and AIN2.3 are independent single-ended inputs.  
1: AIN2.2 and AIN2.3 are (respectively) +, – differential input pair.  
PIN01IC: AIN2.0, AIN2.1 Input Pair Configuration Bit.  
0: AIN2.0 and AIN2.1 are independent single-ended inputs.  
1: AIN2.0 and AIN2.1 are (respectively) +, – differential input pair.  
Note: The ADC2 Data Word is in 2’s complement format for channels configured as differential.  
Rev. 1.4  
95  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
SFR Definition 7.2. AMX2SL: AMUX2 Channel Select  
SFR Page:  
SFR Address:  
2
0xBB  
R/W  
-
R/W  
R/W  
-
R/W  
-
R/W  
Bit3  
R/W  
R/W  
R/W  
Reset Value  
-
AMX2AD2 AMX2AD1 AMX2AD0 00000000  
Bit7  
Bit6  
Bit5  
Bit4  
Bit2  
Bit1  
Bit0  
Bits7–3: UNUSED. Read = 00000b; Write = don’t care.  
Bits2–0: AMX2AD2–0: AMX2 Address Bits.  
000-111b: ADC Inputs selected per chart below.  
AMX2AD2–0  
000  
001  
010  
011  
100  
101  
110  
111  
AIN2.0  
AIN2.1  
AIN2.2  
AIN2.3  
AIN2.4  
AIN2.5  
AIN2.6  
AIN2.7  
0000  
0001  
+(AIN2.0)  
–(AIN2.1)  
AIN2.2  
AIN2.3  
AIN2.4  
AIN2.4  
AIN2.4  
AIN2.5  
AIN2.5  
AIN2.5  
AIN2.6  
AIN2.7  
AIN2.7  
AIN2.7  
AIN2.7  
AIN2.7  
AIN2.7  
AIN2.7  
+(AIN2.2)  
–(AIN2.3)  
AIN2.0  
AIN2.1  
AIN2.1  
AIN2.1  
AIN2.1  
AIN2.1  
AIN2.1  
AIN2.1  
AIN2.6  
AIN2.6  
AIN2.6  
AIN2.6  
AIN2.6  
AIN2.6  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
+(AIN2.0)  
–(AIN2.1)  
+(AIN2.2)  
–(AIN2.3)  
+(AIN2.4)  
–(AIN2.5)  
AIN2.0  
AIN2.2  
AIN2.2  
AIN2.3  
AIN2.3  
+(AIN2.0)  
–(AIN2.1)  
+(AIN2.4)  
–(AIN2.5)  
+(AIN2.2)  
–(AIN2.3)  
+(AIN2.4)  
–(AIN2.5)  
AIN2.0  
+(AIN2.0)  
–(AIN2.1)  
+(AIN2.2)  
–(AIN2.3)  
+(AIN2.4)  
–(AIN2.5)  
+(AIN2.6)  
–(AIN2.7)  
AIN2.0  
AIN2.2  
AIN2.2  
AIN2.3  
AIN2.3  
AIN2.4  
AIN2.4  
AIN2.4  
AIN2.4  
AIN2.5  
AIN2.5  
AIN2.5  
AIN2.5  
+(AIN2.0)  
–(AIN2.1)  
+(AIN2.6)  
–(AIN2.7)  
+(AIN2.2)  
–(AIN2.3)  
+(AIN2.6)  
–(AIN2.7)  
AIN2.0  
+(AIN2.0)  
–(AIN2.1)  
+(AIN2.2)  
–(AIN2.3)  
+(AIN2.6)  
–(AIN2.7)  
+(AIN2.4)  
–(AIN2.5)  
+(AIN2.6)  
–(AIN2.7)  
AIN2.0  
AIN2.2  
AIN2.2  
AIN2.3  
AIN2.3  
+(AIN2.0)  
–(AIN2.1)  
+(AIN2.4)  
–(AIN2.5)  
+(AIN2.6)  
–(AIN2.7)  
+(AIN2.2)  
–(AIN2.3)  
+(AIN2.4)  
–(AIN2.5)  
+(AIN2.6)  
–(AIN2.7)  
AIN2.0  
+(AIN2.0)  
–(AIN2.1)  
+(AIN2.2)  
–(AIN2.3)  
+(AIN2.4)  
–(AIN2.5)  
+(AIN2.6)  
–(AIN2.7)  
96  
Rev. 1.4  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
SFR Definition 7.3. ADC2CF: ADC2 Configuration  
SFR Page:  
SFR Address:  
2
0xBC  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
-
R/W  
R/W  
Reset Value  
AD2SC4 AD2SC3 AD2SC2 AD2SC1 AD2SC0  
AMP2GN1 AMP2GN0 11111000  
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Bit0  
Bits7–3: AD2SC4–0: ADC2 SAR Conversion Clock Period Bits.  
SAR Conversion clock is derived from system clock by the following equation, where  
AD2SC refers to the 5-bit value held in AD2SC4–0, and CLKSAR2 refers to the desired  
ADC2 SAR clock (Note: the ADC2 SAR Conversion Clock should be less than or equal to  
6 MHz).  
SYSCLK  
CLKSAR2  
----------------------  
AD2SC =  
– 1  
Bit2:  
UNUSED. Read = 0b; Write = don’t care.  
Bits1–0: AMP2GN1–0: ADC2 Internal Amplifier Gain (PGA).  
00: Gain = 0.5  
01: Gain = 1  
10: Gain = 2  
11: Gain = 4  
Rev. 1.4  
97  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
SFR Definition 7.4. ADC2CN: ADC2 Control  
SFR Page:  
SFR Address:  
2
0xE8  
(bit addressable)  
R/W  
AD2EN  
Bit7  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Reset Value  
AD2TM AD2INT AD2BUSY AD2CM2 AD2CM1 AD2CM0 AD2WINT 00000000  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Bit0  
Bit7:  
Bit6:  
AD2EN: ADC2 Enable Bit.  
0: ADC2 Disabled. ADC2 is in low-power shutdown.  
1: ADC2 Enabled. ADC2 is active and ready for data conversions.  
AD2TM: ADC2 Track Mode Bit.  
0: Normal Track Mode: When ADC2 is enabled, tracking is continuous unless a conversion  
is in process.  
1: Low-power Track Mode: Tracking Defined by AD2CM2-0 bits (see below).  
AD2INT: ADC2 Conversion Complete Interrupt Flag.  
This flag must be cleared by software.  
0: ADC2 has not completed a data conversion since the last time this flag was cleared.  
1: ADC2 has completed a data conversion.  
AD2BUSY: ADC2 Busy Bit.  
Bit5:  
Bit4:  
Read:  
0: ADC2 Conversion is complete or a conversion is not currently in progress. AD2INT is set  
to logic 1 on the falling edge of AD2BUSY.  
1: ADC2 Conversion is in progress.  
Write:  
0: No Effect.  
1: Initiates ADC2 Conversion if AD2CM2-0 = 000b  
Bits3–1: AD2CM2–0: ADC2 Start of Conversion Mode Select.  
AD2TM = 0:  
000: ADC2 conversion initiated on every write of ‘1’ to AD2BUSY.  
001: ADC2 conversion initiated on overflow of Timer 3.  
010: ADC2 conversion initiated on rising edge of external CNVSTR2.  
011: ADC2 conversion initiated on overflow of Timer 2.  
1xx: ADC2 conversion initiated on write of ‘1’ to AD0BUSY (synchronized with ADC0 soft-  
ware-commanded conversions).  
AD2TM = 1:  
000: Tracking initiated on write of ‘1’ to AD2BUSY for 3 SAR2 clocks, followed by conver-  
sion.  
001: Tracking initiated on overflow of Timer 3 for 3 SAR2 clocks, followed by conversion.  
010: ADC2 tracks only when CNVSTR2 input is logic low; conversion starts on rising  
CNVSTR2 edge.  
011: Tracking initiated on overflow of Timer 2 for 3 SAR2 clocks, followed by conversion.  
1xx: Tracking initiated on write of ‘1’ to AD0BUSY and lasts 3 SAR2 clocks, followed by con-  
version.  
Bit0:  
AD2WINT: ADC2 Window Compare Interrupt Flag.  
This bit must be cleared by software.  
0: ADC2 Window Comparison Data match has not occurred since this flag was last cleared.  
1: ADC2 Window Comparison Data match has occurred.  
98  
Rev. 1.4  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
SFR Definition 7.5. ADC2: ADC2 Data Word  
SFR Page:  
SFR Address:  
2
0xBE  
R/W  
Bit7  
R/W  
R/W  
Bit5  
R/W  
Bit4  
R/W  
Bit3  
R/W  
Bit2  
R/W  
Bit1  
R/W  
Bit0  
Reset Value  
00000000  
Bit6  
Bits7–0: ADC2 Data Word.  
Single-Ended Example:  
8-bit ADC Data Word appears in the ADC2 Data Word Register as follows:  
Example: ADC2 Data Word Conversion Map, Single-Ended AIN2.0 Input  
(AMX2CF = 0x00; AMX2SL = 0x00)  
AIN2.0–AGND  
ADC2  
(Volts)  
VREF * (255/256)  
VREF * (128/256)  
VREF * (64/256)  
0
0xFF  
0x80  
0x40  
0x00  
Gain  
VREF  
---------------  
Code = Vin   
256  
Differential Example:  
8-bit ADC Data Word appears in the ADC2 Data Word Register as follows:  
Example: ADC2 Data Word Conversion Map, Differential AIN2.0-AIN2.1 Input  
(AMX2CF = 0x01; AMX2SL = 0x00)  
AIN2.0–AIN2.1  
ADC2  
(Volts)  
VREF * (127/128)  
VREF * (64/128)  
0
0x7F  
0x40  
0x00  
–VREF * (64/128)  
–VREF * (128/128)  
0xC0 (-64d)  
0x80 (-128d)  
Gain  
------------------------  
Code = Vin   
256  
2 VREF  
Figure 7.4. ADC2 Data Word Example  
Rev. 1.4  
99  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
7.3. ADC2 Programmable Window Detector  
The ADC2 Programmable Window Detector continuously compares the ADC2 output to user-programmed  
limits, and notifies the system when a desired condition is detected. This is especially effective in an inter-  
rupt-driven system, saving code space and CPU bandwidth while delivering faster system response times.  
The window detector interrupt flag (AD2WINT in register ADC2CN) can also be used in polled mode. The  
ADC2 Greater-Than (ADC2GT) and Less-Than (ADC2LT) registers hold the comparison values. Example  
comparisons for Differential and Single-ended modes are shown in Figure 7.6 and Figure 7.5, respectively.  
Notice that the window detector flag can be programmed to indicate when measured data is inside or out-  
side of the user-programmed limits, depending on the contents of the ADC2LT and ADC2GT registers.  
7.3.1. Window Detector In Single-Ended Mode  
Figure 7.5 shows two example window comparisons for Single-ended mode, with ADC2LT = 0x20 and  
ADC2GT = 0x10. Notice that in Single-ended mode, the codes vary from 0 to VREF*(255/256) and are  
represented as 8-bit unsigned integers. In the left example, an AD2WINT interrupt will be generated if the  
ADC2 conversion word (ADC2) is within the range defined by ADC2GT and ADC2LT  
(if 0x10 ADC2 0x20). In the right example, and AD2WINT interrupt will be generated if ADC2 is outside  
of the range defined by ADC2GT and ADC2LT (if ADC2 0x10 or ADC2 0x20).  
ADC2  
0xFF  
ADC2  
0xFF  
Input Voltage  
(AIN2.x - AGND)  
Input Voltage  
(AIN2.x - AGND)  
REF x (255/256)  
REF x (255/256)  
AD2WINT  
not affected  
AD2WINT=1  
0x21  
0x21  
REF x (32/256)  
REF x (16/256)  
0x20  
0x1F  
ADC2LT  
ADC2GT  
REF x (32/256)  
REF x (16/256)  
0x20  
0x1F  
ADC2GT  
AD2WINT  
not affected  
AD2WINT=1  
0x11  
0x10  
0x11  
0x10  
ADC2LT  
0x0F  
0x0F  
AD2WINT=1  
AD2WINT  
not affected  
0x00  
0x00  
0
0
Figure 7.5. ADC2 Window Compare Examples, Single-Ended Mode  
100  
Rev. 1.4  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
7.3.2. Window Detector In Differential Mode  
Figure 7.6 shows two example window comparisons for differential mode, with ADC2LT = 0x10 (+16d) and  
ADC2GT = 0xFF (-1d). Notice that in Differential mode, the codes vary from -VREF to VREF*(127/128)  
and are represented as 8-bit 2’s complement signed integers. In the left example, an AD2WINT interrupt  
will be generated if the ADC2 conversion word (ADC2L) is within the range defined by ADC2GT and  
ADC2LT (if 0xFF (-1d) < ADC2 < 0x0F (16d)). In the right example, an AD2WINT interrupt will be gener-  
ated if ADC2 is outside of the range defined by ADC2GT and ADC2LT (if ADC2 < 0xFF (-1d) or ADC2 >  
0x10 (+16d)).  
ADC2  
ADC2  
Input Voltage  
Input Voltage  
(AIN2.x - AIN2.y)  
(AIN2.x - AIN2.y)  
REF x (127/128)  
0x7F (127d)  
REF x (127/128)  
0x7F (127d)  
AD2WINT  
not affected  
AD2WINT=1  
0x11 (17d)  
0x11 (17d)  
REF x (16/128)  
REF x (-1/256)  
0x10 (16d)  
0x0F (15d)  
ADC2LT  
ADC2GT  
REF x (16/128)  
REF x (-1/256)  
0x10 (16d)  
0x0F (15d)  
ADC2GT  
AD2WINT  
not affected  
AD2WINT=1  
0x00 (0d)  
0x00 (0d)  
0xFF (-1d)  
0xFF (-1d)  
ADC2LT  
0xFE (-2d)  
0xFE (-2d)  
AD2WINT=1  
AD2WINT  
not affected  
0x80 (-128d)  
0x80 (-128d)  
-REF  
-REF  
Figure 7.6. ADC2 Window Compare Examples, Differential Mode  
Rev. 1.4  
101  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
SFR Definition 7.6. ADC2GT: ADC2 Greater-Than Data Byte  
SFR Page:  
SFR Address:  
2
0xC4  
R/W  
Bit7  
R/W  
R/W  
Bit5  
R/W  
Bit4  
R/W  
Bit3  
R/W  
Bit2  
R/W  
Bit1  
R/W  
Bit0  
Reset Value  
11111111  
Bit6  
Bits7–0: ADC2 Greater-Than Data Word.  
SFR Definition 7.7. ADC2LT: ADC2 Less-Than Data Byte  
SFR Page:  
SFR Address:  
2
0xC6  
R/W  
Bit7  
R/W  
R/W  
Bit5  
R/W  
Bit4  
R/W  
Bit3  
R/W  
Bit2  
R/W  
Bit1  
R/W  
Bit0  
Reset Value  
00000000  
Bit6  
Bits7–0: ADC2 Less-Than Data Word.  
102  
Rev. 1.4  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
Table 7.1. ADC2 Electrical Characteristics  
VDD = 3.0 V, AV+ = 3.0 V, VREF2 = 2.40 V (REFBE = 0), PGA gain = 1, –40 to +85 °C unless otherwise specified.  
Parameter  
Conditions  
Min  
Typ  
Max  
Units  
DC Accuracy  
Resolution  
8
bits  
LSB  
Integral Nonlinearity  
Differential Nonlinearity  
Offset Error  
±1  
±1  
Guaranteed Monotonic  
Differential mode  
LSB  
0.5±0.3  
–1±0.2  
10  
LSB  
Full Scale Error  
LSB  
Offset Temperature Coefficient  
ppm/°C  
Dynamic Performance (10 kHz sine-wave input, 1 dB below Full Scale, 500 ksps  
Signal-to-Noise Plus Distortion  
Total Harmonic Distortion  
45  
47  
-51  
52  
dB  
dB  
dB  
Up to the 5th harmonic  
Spurious-Free Dynamic Range  
Conversion Rate  
SAR Clock Frequency  
8
6
MHz  
clocks  
ns  
Conversion Time in SAR Clocks  
Track/Hold Acquisition Time  
Throughput Rate  
300  
500  
ksps  
Analog Inputs  
Input Voltage Range  
Input Capacitance  
0
5
VREF  
V
pF  
Power Specifications  
Power Supply Current  
(AV+ supplied to ADC2)  
420  
900  
µA  
Operating Mode, 500 ksps  
Power Supply Rejection  
±0.3  
mV/V  
Rev. 1.4  
103  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
NOTES:  
104  
Rev. 1.4  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
8. DACs, 12-Bit Voltage Mode (C8051F12x Only)  
The C8051F12x devices include two on-chip 12-bit voltage-mode Digital-to-Analog Converters (DACs).  
Each DAC has an output swing of 0 V to (VREF-1LSB) for a corresponding input code range of 0x000 to  
0xFFF. The DACs may be enabled/disabled via their corresponding control registers, DAC0CN and  
DAC1CN. While disabled, the DAC output is maintained in a high-impedance state, and the DAC supply  
current falls to 1 µA or less. The voltage reference for each DAC is supplied at the VREFD pin  
(C8051F120/2/4/6 devices) or the VREF pin (C8051F121/3/5/7 devices). Note that the VREF pin on  
C8051F121/3/5/7 devices may be driven by the internal voltage reference or an external source. If the  
internal voltage reference is used it must be enabled in order for the DAC outputs to be valid. See Section  
“9. Voltage Reference” on page 113 for more information on configuring the voltage reference for the  
DACs.  
8.1. DAC Output Scheduling  
Each DAC features a flexible output update mechanism which allows for seamless full-scale changes and  
supports jitter-free updates for waveform generation. The following examples are written in terms of DAC0,  
but DAC1 operation is identical.  
DAC0EN  
DAC0MD1  
DAC0MD0  
DAC0DF2  
DAC0DF1  
DAC0DF0  
REF  
AV+  
8
8
8
8
12  
DAC0  
DAC0  
AGND  
DAC1EN  
DAC1MD1  
DAC1MD0  
DAC1DF2  
DAC1DF1  
DAC1DF0  
REF  
AV+  
8
8
8
8
12  
DAC1  
DAC1  
AGND  
Figure 8.1. DAC Functional Block Diagram  
Rev. 1.4  
105  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
8.1.1. Update Output On-Demand  
In its default mode (DAC0CN.[4:3] = ‘00’) the DAC0 output is updated “on-demand” on a write to the high-  
byte of the DAC0 data register (DAC0H). It is important to note that writes to DAC0L are held, and have no  
effect on the DAC0 output until a write to DAC0H takes place. If writing a full 12-bit word to the DAC data  
registers, the 12-bit data word is written to the low byte (DAC0L) and high byte (DAC0H) data registers.  
Data is latched into DAC0 after a write to the corresponding DAC0H register, so the write sequence  
should be DAC0L followed by DAC0H if the full 12-bit resolution is required. The DAC can be used in 8-  
bit mode by initializing DAC0L to the desired value (typically 0x00), and writing data to only DAC0H (also  
see Section 8.2 for information on formatting the 12-bit DAC data word within the 16-bit SFR space).  
8.1.2. Update Output Based on Timer Overflow  
Similar to the ADC operation, in which an ADC conversion can be initiated by a timer overflow indepen-  
dently of the processor, the DAC outputs can use a Timer overflow to schedule an output update event.  
This feature is useful in systems where the DAC is used to generate a waveform of a defined sampling rate  
by eliminating the effects of variable interrupt latency and instruction execution on the timing of the DAC  
output. When the DAC0MD bits (DAC0CN.[4:3]) are set to ‘01’, ‘10’, or ‘11’, writes to both DAC data regis-  
ters (DAC0L and DAC0H) are held until an associated Timer overflow event (Timer 3, Timer 4, or Timer 2,  
respectively) occurs, at which time the DAC0H:DAC0L contents are copied to the DAC input latches allow-  
ing the DAC output to change to the new value.  
8.2. DAC Output Scaling/Justification  
In some instances, input data should be shifted prior to a DAC0 write operation to properly justify data  
within the DAC input registers. This action would typically require one or more load and shift operations,  
adding software overhead and slowing DAC throughput. To alleviate this problem, the data-formatting fea-  
ture provides a means for the user to program the orientation of the DAC0 data word within data registers  
DAC0H and DAC0L. The three DAC0DF bits (DAC0CN.[2:0]) allow the user to specify one of five data  
word orientations as shown in the DAC0CN register definition.  
DAC1 is functionally the same as DAC0 described above. The electrical specifications for both DAC0 and  
DAC1 are given in Table 8.1.  
106  
Rev. 1.4  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
SFR Definition 8.1. DAC0H: DAC0 High Byte  
R/W  
Bit7  
R/W  
Bit6  
R/W  
Bit5  
R/W  
Bit4  
R/W  
Bit3  
R/W  
Bit2  
R/W  
Bit1  
R/W  
Bit0  
Reset Value  
00000000  
SFR Address: 0xD3  
SFR Page: 0  
Bits7–0: DAC0 Data Word Most Significant Byte.  
SFR Definition 8.2. DAC0L: DAC0 Low Byte  
R/W  
Bit7  
R/W  
Bit6  
R/W  
Bit5  
R/W  
Bit4  
R/W  
Bit3  
R/W  
Bit2  
R/W  
Bit1  
R/W  
Bit0  
Reset Value  
00000000  
SFR Address: 0xD2  
SFR Page: 0  
Bits7–0: DAC0 Data Word Least Significant Byte.  
Rev. 1.4  
107  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
SFR Definition 8.3. DAC0CN: DAC0 Control  
R/W  
DAC0EN  
Bit7  
R/W  
-
R/W  
-
R/W  
R/W  
R/W  
R/W  
R/W  
Reset Value  
DAC0MD1 DAC0MD0 DAC0DF2 DAC0DF1 DAC0DF0 00000000  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Bit0  
SFR Address: 0xD4  
SFR Page: 0  
Bit7:  
DAC0EN: DAC0 Enable Bit.  
0: DAC0 Disabled. DAC0 Output pin is disabled; DAC0 is in low-power shutdown mode.  
1: DAC0 Enabled. DAC0 Output pin is active; DAC0 is operational.  
Bits6–5: UNUSED. Read = 00b; Write = don’t care.  
Bits4–3: DAC0MD1–0: DAC0 Mode Bits.  
00: DAC output updates occur on a write to DAC0H.  
01: DAC output updates occur on Timer 3 overflow.  
10: DAC output updates occur on Timer 4 overflow.  
11: DAC output updates occur on Timer 2 overflow.  
Bits2–0: DAC0DF2–0: DAC0 Data Format Bits:  
000:  
001:  
010:  
The most significant nibble of the DAC0 Data Word is in DAC0H[3:0], while the least  
significant byte is in DAC0L.  
DAC0H  
DAC0L  
MSB  
LSB  
The most significant 5-bits of the DAC0 Data Word is in DAC0H[4:0], while the least  
significant 7-bits are in DAC0L[7:1].  
DAC0H  
DAC0L  
MSB  
LSB  
The most significant 6-bits of the DAC0 Data Word is in DAC0H[5:0], while the least  
significant 6-bits are in DAC0L[7:2].  
DAC0H  
DAC0L  
MSB  
LSB  
011:  
The most significant 7-bits of the DAC0 Data Word is in DAC0H[6:0], while the least  
significant 5-bits are in DAC0L[7:3].  
DAC0H  
DAC0L  
MSB  
LSB  
1xx:  
The most significant 8-bits of the DAC0 Data Word is in DAC0H[7:0], while the least  
significant 4-bits are in DAC0L[7:4].  
DAC0H  
DAC0L  
MSB  
LSB  
108  
Rev. 1.4  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
SFR Definition 8.4. DAC1H: DAC1 High Byte  
R/W  
Bit7  
R/W  
Bit6  
R/W  
Bit5  
R/W  
Bit4  
R/W  
Bit3  
R/W  
Bit2  
R/W  
Bit1  
R/W  
Bit0  
Reset Value  
00000000  
SFR Address: 0xD3  
SFR Page: 1  
Bits7–0: DAC1 Data Word Most Significant Byte.  
SFR Definition 8.5. DAC1L: DAC1 Low Byte  
R/W  
Bit7  
R/W  
Bit6  
R/W  
Bit5  
R/W  
Bit4  
R/W  
Bit3  
R/W  
Bit2  
R/W  
Bit1  
R/W  
Bit0  
Reset Value  
00000000  
SFR Address: 0xD2  
SFR Page: 1  
Bits7–0: DAC1 Data Word Least Significant Byte.  
Rev. 1.4  
109  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
SFR Definition 8.6. DAC1CN: DAC1 Control  
R/W  
DAC1EN  
Bit7  
R/W  
-
R/W  
-
R/W  
R/W  
R/W  
R/W  
R/W  
Reset Value  
DAC1MD1 DAC1MD0 DAC1DF2 DAC1DF1 DAC1DF0 00000000  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Bit0  
SFR Address: 0xD4  
SFR Page: 1  
Bit7:  
DAC1EN: DAC1 Enable Bit.  
0: DAC1 Disabled. DAC1 Output pin is disabled; DAC1 is in low-power shutdown mode.  
1: DAC1 Enabled. DAC1 Output pin is active; DAC1 is operational.  
Bits6–5: UNUSED. Read = 00b; Write = don’t care.  
Bits4–3: DAC1MD1–0: DAC1 Mode Bits:  
00: DAC output updates occur on a write to DAC1H.  
01: DAC output updates occur on Timer 3 overflow.  
10: DAC output updates occur on Timer 4 overflow.  
11: DAC output updates occur on Timer 2 overflow.  
Bits2–0: DAC1DF2: DAC1 Data Format Bits:  
000:  
001:  
010:  
The most significant nibble of the DAC1 Data Word is in DAC1H[3:0], while the least  
significant byte is in DAC1L.  
DAC1H  
DAC1L  
MSB  
LSB  
The most significant 5-bits of the DAC1 Data Word is in DAC1H[4:0], while the least  
significant 7-bits are in DAC1L[7:1].  
DAC1H  
DAC1L  
MSB  
LSB  
The most significant 6-bits of the DAC1 Data Word is in DAC1H[5:0], while the least  
significant 6-bits are in DAC1L[7:2].  
DAC1H  
DAC1L  
MSB  
LSB  
011:  
The most significant 7-bits of the DAC1 Data Word is in DAC1H[6:0], while the least  
significant 5-bits are in DAC1L[7:3].  
DAC1H  
DAC1L  
MSB  
LSB  
1xx:  
The most significant 8-bits of the DAC1 Data Word is in DAC1H[7:0], while the least  
significant 4-bits are in DAC1L[7:4].  
DAC1H  
DAC1L  
MSB  
LSB  
110  
Rev. 1.4  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
.
Table 8.1. DAC Electrical Characteristics  
VDD = 3.0 V, AV+ = 3.0 V, VREF = 2.40 V (REFBE = 0), No Output Load unless otherwise specified  
Parameter  
Conditions  
Min  
Typ  
Max  
Units  
Static Performance  
Resolution  
12  
±1.5  
bits  
LSB  
Integral Nonlinearity  
±1  
Differential Nonlinearity  
LSB  
250  
128  
41  
µVrms  
No Output Filter  
100 kHz Output Filter  
10 kHz Output Filter  
Output Noise  
Offset Error  
Data Word = 0x014  
±3  
6
±30  
mV  
ppm/°C  
mV  
Offset Tempco  
Full-Scale Error  
Full-Scale Error Tempco  
±20  
10  
±60  
ppm/°C  
dB  
VDD Power Supply Rejection  
Ratio  
–60  
Output Impedance in Shutdown  
Mode  
100  
k  
DACnEN = 0  
Output Sink Current  
300  
15  
µA  
Output Short-Circuit Current  
Data Word = 0xFFF  
mA  
Dynamic Performance  
Voltage Output Slew Rate  
Load = 40 pF  
0.44  
10  
V/µs  
µs  
Load = 40 pF, Output swing from  
code 0xFFF to 0x014  
Output Settling Time to 1/2 LSB  
0
VREF-  
1LSB  
V
Output Voltage Swing  
Startup Time  
10  
µs  
Analog Outputs  
IL = 0.01 mA to 0.3 mA at code  
0xFFF  
60  
ppm  
µA  
Load Regulation  
Power Consumption (each DAC)  
Power Supply Current (AV+  
supplied to DAC)  
110  
400  
Data Word = 0x7FF  
Rev. 1.4  
111  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
NOTES:  
112  
Rev. 1.4  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
9. Voltage Reference  
The voltage reference options available on the C8051F12x and C8051F13x device families vary according  
to the device capabilities.  
All devices include an internal voltage reference circuit, consisting of a 1.2 V, 15 ppm/°C (typical) bandgap  
voltage reference generator and a gain-of-two output buffer amplifier. The internal reference may be routed  
via the VREF pin to external system components or to the voltage reference input pins. The maximum load  
seen by the VREF pin must be less than 200 µA to AGND. Bypass capacitors of 0.1 µF and 4.7 µF are rec-  
ommended from the VREF pin to AGND.  
The Reference Control Register, REF0CN enables/disables the internal reference generator and the inter-  
nal temperature sensor on all devices. The BIASE bit in REF0CN enables the on-board reference genera-  
tor while the REFBE bit enables the gain-of-two buffer amplifier which drives the VREF pin. When  
disabled, the supply current drawn by the bandgap and buffer amplifier falls to less than 1 µA (typical) and  
the output of the buffer amplifier enters a high impedance state. If the internal bandgap is used as the ref-  
erence voltage generator, BIASE and REFBE must both be set to logic 1. If the internal reference is not  
used, REFBE may be set to logic 0. Note that the BIASE bit must be set to logic 1 if any DACs or ADCs are  
used, regardless of whether the voltage reference is derived from the on-chip reference or supplied by an  
off-chip source. If no ADCs or DACs are being used, both of these bits can be set to logic 0 to conserve  
power.  
When enabled, the temperature sensor connects to the highest order input of the ADC0 input multiplexer.  
The TEMPE bit within REF0CN enables and disables the temperature sensor. While disabled, the temper-  
ature sensor defaults to a high impedance state. Any ADC measurements performed on the sensor while  
disabled will result in undefined data.  
The electrical specifications for the internal voltage reference are given in Table 9.1.  
9.1. Reference Configuration on the C8051F120/2/4/6  
On the C8051F120/2/4/6 devices, the REF0CN register also allows selection of the voltage reference  
source for ADC0 and ADC2, as shown in SFR Definition 9.1. Bits AD0VRS and AD2VRS in the REF0CN  
register select the ADC0 and ADC2 voltage reference sources, respectively. Three voltage reference input  
pins allow each ADC and the two DACs to reference an external voltage reference or the on-chip voltage  
reference output (with an external connection). ADC0 may also reference the DAC0 output internally, and  
ADC2 may reference the analog power supply voltage, via the VREF multiplexers shown in Figure 9.1.  
Rev. 1.4  
113  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
REF0CN  
ADC2  
AV+  
Ref  
1
0
VREF2  
VDD  
External  
Voltage  
R1  
Reference  
Circuit  
ADC0  
DGND  
VREF0  
VREFD  
VREF  
Ref  
0
1
DAC0  
Ref  
DAC1  
BIASE  
Bias to  
ADCs,  
DACs  
EN  
x2  
1.2V  
Band-Gap  
+
4.7F  
0.1F  
REFBE  
Recommended Bypass  
Capacitors  
Figure 9.1. Voltage Reference Functional Block Diagram (C8051F120/2/4/6)  
SFR Definition 9.1. REF0CN: Reference Control (C8051F120/2/4/6)  
SFR Page:  
SFR Address:  
0
0xD1  
R/W  
-
R/W  
R/W  
-
R/W  
R/W  
R/W  
R/W  
BIASE  
Bit1  
R/W  
Reset Value  
-
AD0VRS AD2VRS TEMPE  
REFBE 00000000  
Bit0  
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bits7–5: UNUSED. Read = 000b; Write = don’t care.  
Bit4:  
Bit3:  
Bit2:  
Bit1:  
Bit0:  
AD0VRS: ADC0 Voltage Reference Select.  
0: ADC0 voltage reference from VREF0 pin.  
1: ADC0 voltage reference from DAC0 output.  
AD2VRS: ADC2 Voltage Reference Select.  
0: ADC2 voltage reference from VREF2 pin.  
1: ADC2 voltage reference from AV+.  
TEMPE: Temperature Sensor Enable Bit.  
0: Internal Temperature Sensor Off.  
1: Internal Temperature Sensor On.  
BIASE: ADC/DAC Bias Generator Enable Bit. (Must be ‘1’ if using ADC, DAC, or VREF).  
0: Internal Bias Generator Off.  
1: Internal Bias Generator On.  
REFBE: Internal Reference Buffer Enable Bit.  
0: Internal Reference Buffer Off.  
1: Internal Reference Buffer On. Internal voltage reference is driven on the VREF pin.  
114  
Rev. 1.4  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
9.2. Reference Configuration on the C8051F121/3/5/7  
On the C8051F121/3/5/7 devices, the REF0CN register also allows selection of the voltage reference  
source for ADC0 and ADC2, as shown in SFR Definition 9.2. Bits AD0VRS and AD2VRS in the REF0CN  
register select the ADC0 and ADC2 voltage reference sources, respectively. The VREFA pin provides a  
voltage reference input for ADC0 and ADC2, which can be connected to an external precision reference or  
the internal voltage reference. ADC0 may also reference the DAC0 output internally, and ADC2 may refer-  
ence the analog power supply voltage, via the VREF multiplexers shown in Figure 9.2.  
REF0CN  
ADC2  
AV+  
VDD  
R1  
Ref  
1
0
External  
Voltage  
Reference  
Circuit  
VREFA  
DGND  
ADC0  
Ref  
0
1
DAC0  
Ref  
DAC1  
BIASE  
Bias to  
ADCs,  
DACs  
EN  
VREF  
x2  
1.2V  
Band-Gap  
+
4.7F  
0.1F  
REFBE  
Recommended Bypass  
Capacitors  
Figure 9.2. Voltage Reference Functional Block Diagram (C8051F121/3/5/7)  
Rev. 1.4  
115  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
SFR Definition 9.2. REF0CN: Reference Control (C8051F121/3/5/7)  
SFR Page:  
SFR Address:  
0
0xD1  
R/W  
-
R/W  
R/W  
-
R/W  
R/W  
R/W  
R/W  
BIASE  
Bit1  
R/W  
Reset Value  
-
AD0VRS AD2VRS TEMPE  
REFBE 00000000  
Bit0  
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bits7–5: UNUSED. Read = 000b; Write = don’t care.  
Bit4:  
Bit3:  
Bit2:  
Bit1:  
Bit0:  
AD0VRS: ADC0 Voltage Reference Select.  
0: ADC0 voltage reference from VREFA pin.  
1: ADC0 voltage reference from DAC0 output.  
AD2VRS: ADC2 Voltage Reference Select.  
0: ADC2 voltage reference from VREFA pin.  
1: ADC2 voltage reference from AV+.  
TEMPE: Temperature Sensor Enable Bit.  
0: Internal Temperature Sensor Off.  
1: Internal Temperature Sensor On.  
BIASE: ADC/DAC Bias Generator Enable Bit. (Must be ‘1’ if using ADC, DAC, or VREF).  
0: Internal Bias Generator Off.  
1: Internal Bias Generator On.  
REFBE: Internal Reference Buffer Enable Bit.  
0: Internal Reference Buffer Off.  
1: Internal Reference Buffer On. Internal voltage reference is driven on the VREF pin.  
116  
Rev. 1.4  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
9.3. Reference Configuration on the C8051F130/1/2/3  
On the C8051F130/1/2/3 devices, the VREF0 pin provides a voltage reference input for ADC0, which can  
be connected to an external precision reference or the internal voltage reference, as shown in Figure 9.3.  
The REF0CN register for the C8051F130/1/2/3 is described in SFR Definition 9.3.  
VDD  
VREF0  
External  
Voltage  
Ref  
R1  
Reference  
Circuit  
ADC0  
DGND  
REF0CN  
EN  
VREF  
1.2V  
x2  
+
Band-Gap  
4.7F  
0.1F  
Recommended Bypass  
Capacitors  
Figure 9.3. Voltage Reference Functional Block Diagram (C8051F130/1/2/3)  
SFR Definition 9.3. REF0CN: Reference Control (C8051F130/1/2/3)  
SFR Page:  
SFR Address:  
0
0xD1  
R/W  
-
R/W  
R/W  
-
R/W  
R/W  
R/W  
R/W  
BIASE  
Bit1  
R/W  
Reset Value  
-
Reserved Reserved TEMPE  
REFBE 00000000  
Bit0  
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bits7–5: UNUSED. Read = 000b; Write = don’t care.  
Bits4–3: Reserved: Must be written to 0.  
Bit2:  
Bit1:  
Bit0:  
TEMPE: Temperature Sensor Enable Bit.  
0: Internal Temperature Sensor Off.  
1: Internal Temperature Sensor On.  
BIASE: ADC/DAC Bias Generator Enable Bit. (Must be ‘1’ if using ADC or VREF).  
0: Internal Bias Generator Off.  
1: Internal Bias Generator On.  
REFBE: Internal Reference Buffer Enable Bit.  
0: Internal Reference Buffer Off.  
1: Internal Reference Buffer On. Internal voltage reference is driven on the VREF pin.  
Rev. 1.4  
117  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
Table 9.1. Voltage Reference Electrical Characteristics  
VDD = 3.0 V, AV+ = 3.0 V, –40 to +85 °C unless otherwise specified.  
Parameter  
Conditions  
BIASE = 1  
Min  
Typ  
Max  
Units  
Analog Bias Generator Power  
Supply Current  
100  
µA  
Internal Reference (REFBE = 1)  
Output Voltage  
25 °C ambient  
2.36  
2.43  
2.48  
30  
V
VREF Short-Circuit Current  
VREF Temperature Coefficient  
Load Regulation  
mA  
15  
0.5  
2
ppm/°C  
ppm/µA  
ms  
Load = 0 to 200 µA to AGND  
4.7 µF tantalum, 0.1 µF ceramic  
bypass  
VREF Turn-on Time 1  
VREF Turn-on Time 2  
VREF Turn-on Time 3  
0.1 µF ceramic bypass  
no bypass cap  
20  
10  
40  
µs  
µs  
µA  
Reference Buffer Power Sup-  
ply Current  
Power Supply Rejection  
140  
ppm/V  
External Reference (REFBE = 0)  
1.00  
Input Voltage Range  
Input Current  
0
(AV+) – 0.3  
1
V
µA  
118  
Rev. 1.4  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
10. Comparators  
Two on-chip programmable voltage comparators are included, as shown in Figure 10.1. The inputs of each  
comparator are available at dedicated pins. The output of each comparator is optionally available at the  
package pins via the I/O crossbar. When assigned to package pins, each comparator output can be pro-  
grammed to operate in open drain or push-pull modes. See Section “18.1. Ports 0 through 3 and the  
Priority Crossbar Decoder” on page 238 for Crossbar and port initialization details.  
CP0RIE  
CP0FIE  
CP0MD  
CP0MD1  
CP0MD0  
CP0EN  
CP0OUT  
CP0RIF  
AV+  
CP0FIF  
CP0HYP1  
CP0HYP0  
CP0HYN1  
CP0HYN0  
Reset  
Decision  
Tree  
CP0+  
CP0-  
+
-
SET  
SET  
CLR  
D
Q
Q
D
Q
Q
Crossbar  
CLR  
Interrupt  
Handler  
(SYNCHRONIZER)  
AGND  
CP1RIE  
CP1FIE  
CP1MD  
CP1MD1  
CP1MD0  
CP1EN  
CP1OUT  
CP1RIF  
AV+  
CP1FIF  
CP1HYP1  
CP1HYP0  
CP1HYN1  
CP1HYN0  
CP1+  
CP1-  
+
-
SET  
CLR  
SET  
CLR  
D
Q
Q
D
Q
Q
Crossbar  
Interrupt  
Handler  
(SYNCHRONIZER)  
AGND  
Figure 10.1. Comparator Functional Block Diagram  
Rev. 1.4  
119  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
Comparator interrupts can be generated on rising-edge and/or falling-edge output transitions. (For inter-  
rupt enable and priority control, see Section “11.3. Interrupt Handler” on page 154). The CP0FIF flag is  
set upon a Comparator0 falling-edge interrupt, and the CP0RIF flag is set upon the Comparator0 rising-  
edge interrupt. Once set, these bits remain set until cleared by software. The Output State of Comparator0  
can be obtained at any time by reading the CP0OUT bit. Comparator0 is enabled by setting the CP0EN  
bit to logic 1, and is disabled by clearing this bit to logic 0. Comparator0 can also be programmed as a  
reset source; for details, see Section “13.5. Comparator0 Reset” on page 179.  
Note that after being enabled, there is a Power-Up time (listed in Table 10.1) during which the comparator  
outputs stabilize. The states of the Rising-Edge and Falling-Edge flags are indeterminant after comparator  
Power-Up and should be explicitly cleared before the comparator interrupts are enabled or the compara-  
tors are configured as a reset source.  
Comparator0 response time may be configured in software via the CP0MD1-0 bits in register CPT0MD  
(see SFR Definition 10.2). Selecting a longer response time reduces the amount of current consumed by  
Comparator0. See Table 10.1 for complete timing and current consumption specifications.  
The hysteresis of each comparator is software-programmable via its respective Comparator control regis-  
ter (CPT0CN and CPT1CN for Comparator0 and Comparator1, respectively). The user can program both  
the amount of hysteresis voltage (referred to the input voltage) and the positive and negative-going sym-  
metry of this hysteresis around the threshold voltage. The output of the comparator can be polled in soft-  
ware, or can be used as an interrupt source. Each comparator can be individually enabled or disabled  
(shutdown). When disabled, the comparator output (if assigned to a Port I/O pin via the Crossbar) defaults  
to the logic low state, its interrupt capability is suspended and its supply current falls to less than 100 nA.  
Comparator inputs can be externally driven from –0.25 V to (AV+) + 0.25 V without damage or upset.  
Comparator0 hysteresis is programmed using bits 3-0 in the Comparator0 Control Register CPT0CN  
(shown in SFR Definition 10.1). The amount of negative hysteresis voltage is determined by the settings of  
the CP0HYN bits. As shown in SFR Definition 10.1, the negative hysteresis can be programmed to three  
different settings, or negative hysteresis can be disabled. In a similar way, the amount of positive hystere-  
sis is determined by the setting the CP0HYP bits.  
The operation of Comparator1 is identical to that of Comparator0, though Comparator1 may not be config-  
ured as a reset source. Comparator1 is controlled by the CPT1CN Register (SFR Definition 10.3) and the  
CPT1MD Register (SFR Definition 10.4). The complete electrical specifications for the Comparators are  
given in Table 10.1.  
120  
Rev. 1.4  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
CP0+  
CP0-  
VIN+  
VIN-  
+
CP0  
_
OUT  
CIRCUIT CONFIGURATION  
Positive Hysteresis Voltage  
(Programmed with CP0HYP Bits)  
VIN-  
Negative Hysteresis Voltage  
(Programmed by CP0HYN Bits)  
INPUTS  
VIN+  
VOH  
OUTPUT  
VOL  
Negative Hysteresis  
Disabled  
Maximum  
Negative Hysteresis  
Positive Hysteresis  
Disabled  
Maximum  
Positive Hysteresis  
Figure 10.2. Comparator Hysteresis Plot  
Rev. 1.4  
121  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
SFR Definition 10.1. CPT0CN: Comparator0 Control  
SFR Page:  
SFR Address:  
1
0x88  
R/W  
CP0EN  
Bit7  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Reset Value  
CP0OUT CP0RIF  
CP0FIF CP0HYP1 CP0HYP0 CP0HYN1 CP0HYN0 00000000  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Bit0  
Bit7:  
Bit6:  
Bit5:  
Bit4:  
CP0EN: Comparator0 Enable Bit.  
0: Comparator0 Disabled.  
1: Comparator0 Enabled.  
CP0OUT: Comparator0 Output State Flag.  
0: Voltage on CP0+ < CP0–.  
1: Voltage on CP0+ > CP0–.  
CP0RIF: Comparator0 Rising-Edge Flag.  
0: No Comparator0 Rising Edge has occurred since this flag was last cleared.  
1: Comparator0 Rising Edge has occurred.  
CP0FIF: Comparator0 Falling-Edge Flag.  
0: No Comparator0 Falling-Edge has occurred since this flag was last cleared.  
1: Comparator0 Falling-Edge has occurred.  
Bits3–2: CP0HYP1–0: Comparator0 Positive Hysteresis Control Bits.  
00: Positive Hysteresis Disabled.  
01: Positive Hysteresis = 5 mV.  
10: Positive Hysteresis = 10 mV.  
11: Positive Hysteresis = 15 mV.  
Bits1–0: CP0HYN1–0: Comparator0 Negative Hysteresis Control Bits.  
00: Negative Hysteresis Disabled.  
01: Negative Hysteresis = 5 mV.  
10: Negative Hysteresis = 10 mV.  
11: Negative Hysteresis = 15 mV.  
122  
Rev. 1.4  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
SFR Definition 10.2. CPT0MD: Comparator0 Mode Selection  
SFR Page:  
SFR Address:  
1
0x89  
R/W  
-
R/W  
R/W  
R/W  
R/W  
-
R/W  
-
R/W  
R/W  
Reset Value  
-
CP0RIE CP0FIE  
CP0MD1 CP0MD0 00000010  
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Bit0  
Bits7–6: UNUSED. Read = 00b, Write = don’t care.  
Bit 5:  
CP0RIE: Comparator 0 Rising-Edge Interrupt Enable Bit.  
0: Comparator 0 rising-edge interrupt disabled.  
1: Comparator 0 rising-edge interrupt enabled.  
CP0FIE: Comparator 0 Falling-Edge Interrupt Enable Bit.  
0: Comparator 0 falling-edge interrupt disabled.  
1: Comparator 0 falling-edge interrupt enabled.  
Bit 4:  
Bits3–2: UNUSED. Read = 00b, Write = don’t care.  
Bits1–0: CP0MD1–CP0MD0: Comparator0 Mode Select  
These bits select the response time for Comparator0.  
Mode  
CP0MD1 CP0MD0  
Notes  
0
1
2
3
0
0
1
1
0
1
0
1
Fastest Response Time  
Lowest Power Consumption  
Rev. 1.4  
123  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
SFR Definition 10.3. CPT1CN: Comparator1 Control  
SFR Page:  
SFR Address:  
2
0x88  
R/W  
CP1EN  
Bit7  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Reset Value  
CP1OUT CP1RIF  
CP1FIF CP1HYP1 CP1HYP0 CP1HYN1 CP1HYN0 00000000  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Bit0  
Bit7:  
Bit6:  
Bit5:  
Bit4:  
CP1EN: Comparator1 Enable Bit.  
0: Comparator1 Disabled.  
1: Comparator1 Enabled.  
CP1OUT: Comparator1 Output State Flag.  
0: Voltage on CP1+ < CP1–.  
1: Voltage on CP1+ > CP1–.  
CP1RIF: Comparator1 Rising-Edge Flag.  
0: No Comparator1 Rising Edge has occurred since this flag was last cleared.  
1: Comparator1 Rising Edge has occurred.  
CP1FIF: Comparator1 Falling-Edge Flag.  
0: No Comparator1 Falling-Edge has occurred since this flag was last cleared.  
1: Comparator1 Falling-Edge Interrupt has occurred.  
Bits3–2: CP1HYP1–0: Comparator1 Positive Hysteresis Control Bits.  
00: Positive Hysteresis Disabled.  
01: Positive Hysteresis = 5 mV.  
10: Positive Hysteresis = 10 mV.  
11: Positive Hysteresis = 15 mV.  
Bits1–0: CP1HYN1–0: Comparator1 Negative Hysteresis Control Bits.  
00: Negative Hysteresis Disabled.  
01: Negative Hysteresis = 5 mV.  
10: Negative Hysteresis = 10 mV.  
11: Negative Hysteresis = 15 mV.  
124  
Rev. 1.4  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
SFR Definition 10.4. CPT1MD: Comparator1 Mode Selection  
SFR Page:  
SFR Address:  
2
0x89  
R/W  
-
R/W  
R/W  
R/W  
R/W  
-
R/W  
-
R/W  
R/W  
Reset Value  
-
CP1RIE CP1FIE  
CP1MD1 CP1MD0 00000010  
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Bit0  
Bits7–6: UNUSED. Read = 00b, Write = don’t care.  
Bit 5:  
CP1RIE: Comparator 1 Rising-Edge Interrupt Enable Bit.  
0: Comparator 1 rising-edge interrupt disabled.  
1: Comparator 1 rising-edge interrupt enabled.  
CP1FIE: Comparator 0 Falling-Edge Interrupt Enable Bit.  
0: Comparator 1 falling-edge interrupt disabled.  
1: Comparator 1 falling-edge interrupt enabled.  
Bit 4:  
Bits3–2: UNUSED. Read = 00b, Write = don’t care.  
Bits1–0: CP1MD1–CP1MD0: Comparator1 Mode Select  
These bits select the response time for Comparator1.  
Mode  
CP0MD1 CP0MD0  
Notes  
0
1
2
3
0
0
1
1
0
1
0
1
Fastest Response Time  
Lowest Power Consumption  
Rev. 1.4  
125  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
Table 10.1. Comparator Electrical Characteristics  
VDD = 3.0 V, AV+ = 3.0 V, –40 to +85 °C unless otherwise specified.  
Parameter  
Response Time:  
Mode 0, VCM* = 1.5 V  
Conditions  
Min  
Typ  
100  
Max  
Units  
ns  
CPn+ – CPn- = 100 mV  
CPn+ – CPn– = –100 mV  
CPn+ – CPn– = 100 mV  
CPn+ – CPn– = –100 mV  
CPn+ – CPn– = 100 mV  
CPn+ – CPn– = –100 mV  
CPn+ – CPn– = 100 mV  
CPn+ – CPn– = –100 mV  
250  
ns  
175  
ns  
Response Time:  
Mode 1, VCM* = 1.5 V  
500  
ns  
320  
ns  
Response Time:  
Mode 2, VCM* = 1.5 V  
1100  
1050  
5200  
ns  
ns  
Response Time:  
Mode 3, VCM* = 1.5 V  
ns  
Common-Mode Rejection  
Ratio  
1.5  
4
mV/V  
Positive Hysteresis 1  
Positive Hysteresis 2  
Positive Hysteresis 3  
Positive Hysteresis 4  
Negative Hysteresis 1  
Negative Hysteresis 2  
Negative Hysteresis 3  
Negative Hysteresis 4  
CPnHYP1-0 = 00  
CPnHYP1-0 = 01  
CPnHYP1-0 = 10  
CPnHYP1-0 = 11  
CPnHYN1-0 = 00  
CPnHYN1-0 = 01  
CPnHYN1-0 = 10  
CPnHYN1-0 = 11  
2
0
4.5  
9
1
7
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
4
13  
25  
1
10  
2
17  
0
4.5  
9
7
4
13  
25  
10  
17  
Inverting or Non-Inverting  
Input Voltage Range  
(AV+)  
+ 0.25  
–0.25  
V
Input Capacitance  
Input Bias Current  
Input Offset Voltage  
–5  
7
0.001  
+5  
pF  
nA  
–10  
+10  
mV  
Power Supply  
Power-Up Time  
CPnEN from 0 to 1  
20  
0.1  
7.6  
3.2  
1.3  
0.4  
1
µs  
mV/V  
µA  
Power Supply Rejection  
Mode 0  
Mode 1  
Mode 2  
Mode 3  
µA  
Supply Current at DC  
(each comparator)  
µA  
µA  
*Note: VCM is the common-mode voltage on CPn+ and CPn-.  
126  
Rev. 1.4  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
11. CIP-51 Microcontroller  
The MCU system controller core is the CIP-51 microcontroller. The CIP-51 is fully compatible with the  
MCS-51™ instruction set; standard 803x/805x assemblers and compilers can be used to develop soft-  
ware. The MCU family has a superset of all the peripherals included with a standard 8051. Included are  
five 16-bit counter/timers (see description in Section 23), two full-duplex UARTs (see description in Sec-  
tion 21 and Section 22), 256 bytes of internal RAM, 128 byte Special Function Register (SFR) address  
space (see Section 11.2.6), and 8/4 byte-wide I/O Ports (see description in Section 18). The CIP-51 also  
includes on-chip debug hardware (see description in Section 25), and interfaces directly with the MCU’s  
analog and digital subsystems providing a complete data acquisition or control-system solution in a single  
integrated circuit.  
The CIP-51 Microcontroller core implements the standard 8051 organization and peripherals as well as  
additional custom peripherals and functions to extend its capability (see Figure 11.1 for a block diagram).  
-
-
-
-
Fully Compatible with MCS-51 Instruction Set  
100 or 50 MIPS Peak Using the On-Chip PLL  
256 Bytes of Internal RAM  
-
-
-
-
-
Extended Interrupt Handler  
Reset Input  
Power Management Modes  
On-chip Debug Logic  
8/4 Byte-Wide I/O Ports  
Program and Data Memory Security  
The CIP-51 includes the following features:  
Performance  
The CIP-51 employs a pipelined architecture that greatly increases its instruction throughput over the stan-  
dard 8051 architecture. In a standard 8051, all instructions except for MUL and DIV take 12 or 24 system  
clock cycles to execute, and usually have a maximum system clock of 12 MHz. By contrast, the CIP-51  
core executes 70% of its instructions in one or two system clock cycles, with no instructions taking more  
than eight system clock cycles.  
With the CIP-51's system clock running at 100 MHz, it has a peak throughput of 100 MIPS. The CIP-51  
has a total of 109 instructions. The table below shows the total number of instructions that require each  
execution time.  
Clocks to Execute  
1
2
2/3  
5
3
3/4  
7
4
3
4/5  
1
5
2
8
1
Number of Instructions  
26  
50  
14  
Rev. 1.4  
127  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
DATA BUS  
ACCUMULATOR  
B REGISTER  
STACK POINTER  
TMP1  
TMP2  
SRAM  
ADDRESS  
REGISTER  
SRAM  
(256 X 8)  
PSW  
ALU  
DATA BUS  
SFR_ADDRESS  
SFR_CONTROL  
D8  
BUFFER  
SFR  
BUS  
INTERFACE  
D8  
SFR_WRITE_DATA  
SFR_READ_DATA  
D8  
DATA POINTER  
PC INCREMENTER  
D8  
MEM_ADDRESS  
MEM_CONTROL  
PROGRAM COUNTER (PC)  
PRGM. ADDRESS REG.  
PIPELINE  
MEMORY  
INTERFACE  
A16  
D8  
MEM_WRITE_DATA  
MEM_READ_DATA  
CONTROL  
LOGIC  
RESET  
CLOCK  
SYSTEM_IRQs  
INTERRUPT  
INTERFACE  
EMULATION_IRQ  
D8  
STOP  
IDLE  
POWER CONTROL  
REGISTER  
D8  
Figure 11.1. CIP-51 Block Diagram  
Programming and Debugging Support  
A JTAG-based serial interface is provided for in-system programming of the Flash program memory and  
communication with on-chip debug support logic. The re-programmable Flash can also be read and  
changed by the application software using the MOVC and MOVX instructions. This feature allows program  
memory to be used for non-volatile data storage as well as updating program code under software control.  
The on-chip debug support logic facilitates full speed in-circuit debugging, allowing the setting of hardware  
breakpoints and watch points, starting, stopping and single stepping through program execution (including  
interrupt service routines), examination of the program's call stack, and reading/writing the contents of reg-  
isters and memory. This method of on-chip debug is completely non-intrusive and non-invasive, requiring  
no RAM, Stack, timers, or other on-chip resources.  
The CIP-51 is supported by development tools from Silicon Labs and third party vendors. Silicon Labs pro-  
vides an integrated development environment (IDE) including editor, macro assembler, debugger and pro-  
grammer. The IDE's debugger and programmer interface to the CIP-51 via its JTAG interface to provide  
fast and efficient in-system device programming and debugging. Third party macro assemblers and C  
compilers are also available.  
128  
Rev. 1.4  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
11.1. Instruction Set  
The instruction set of the CIP-51 System Controller is fully compatible with the standard MCS-51™ instruc-  
tion set; standard 8051 development tools can be used to develop software for the CIP-51. All CIP-51  
instructions are the binary and functional equivalent of their MCS-51™ counterparts, including opcodes,  
addressing modes and effect on PSW flags. However, instruction timing is different than that of the stan-  
dard 8051.  
11.1.1. Instruction and CPU Timing  
In many 8051 implementations, a distinction is made between machine cycles and clock cycles, with  
machine cycles varying from 2 to 12 clock cycles in length. However, the CIP-51 implementation is based  
solely on clock cycle timing. All instruction timings are specified in terms of clock cycles.  
Due to the pipelined architecture of the CIP-51, most instructions execute in the same number of clock  
cycles as there are program bytes in the instruction. Conditional branch instructions take one less clock  
cycle to complete when the branch is not taken as opposed to when the branch is taken. Table 11.1 is the  
CIP-51 Instruction Set Summary, which includes the mnemonic, number of bytes, and number of clock  
cycles for each instruction.  
11.1.2. MOVX Instruction and Program Memory  
In the CIP-51, the MOVX instruction serves three purposes: accessing on-chip XRAM, accessing off-chip  
XRAM, and accessing on-chip program Flash memory. The Flash access feature provides a mechanism  
for user software to update program code and use the program memory space for non-volatile data stor-  
age (see Section “15. Flash Memory” on page 199). The External Memory Interface provides a fast  
access to off-chip XRAM (or memory-mapped peripherals) via the MOVX instruction. Refer to Section  
“17. External Data Memory Interface and On-Chip XRAM” on page 219 for details.  
Table 11.1. CIP-51 Instruction Set Summary  
Clock  
Cycles  
Mnemonic  
Description  
Arithmetic Operations  
Bytes  
ADD A, Rn  
Add register to A  
Add direct byte to A  
Add indirect RAM to A  
Add immediate to A  
Add register to A with carry  
Add direct byte to A with carry  
Add indirect RAM to A with carry  
Add immediate to A with carry  
Subtract register from A with borrow  
Subtract direct byte from A with borrow  
Subtract indirect RAM from A with borrow  
Subtract immediate from A with borrow  
Increment A  
1
2
1
2
1
2
1
2
1
2
1
2
1
1
2
1
1
2
2
2
1
2
2
2
1
2
2
2
1
1
2
2
ADD A, direct  
ADD A, @Ri  
ADD A, #data  
ADDC A, Rn  
ADDC A, direct  
ADDC A, @Ri  
ADDC A, #data  
SUBB A, Rn  
SUBB A, direct  
SUBB A, @Ri  
SUBB A, #data  
INC A  
INC Rn  
INC direct  
INC @Ri  
Increment register  
Increment direct byte  
Increment indirect RAM  
Rev. 1.4  
129  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
Table 11.1. CIP-51 Instruction Set Summary (Continued)  
Clock  
Cycles  
Mnemonic  
Description  
Bytes  
DEC A  
Decrement A  
1
1
2
1
1
1
1
1
1
1
2
2
1
4
8
1
DEC Rn  
DEC direct  
DEC @Ri  
INC DPTR  
MUL AB  
DIV AB  
Decrement register  
Decrement direct byte  
Decrement indirect RAM  
Increment Data Pointer  
Multiply A and B  
Divide A by B  
Decimal adjust A  
DA A  
Logical Operations  
ANL A, Rn  
ANL A, direct  
ANL A, @Ri  
ANL A, #data  
ANL direct, A  
ANL direct, #data  
ORL A, Rn  
ORL A, direct  
ORL A, @Ri  
ORL A, #data  
ORL direct, A  
ORL direct, #data  
XRL A, Rn  
XRL A, direct  
XRL A, @Ri  
XRL A, #data  
XRL direct, A  
XRL direct, #data  
CLR A  
AND Register to A  
AND direct byte to A  
AND indirect RAM to A  
AND immediate to A  
AND A to direct byte  
AND immediate to direct byte  
OR Register to A  
OR direct byte to A  
OR indirect RAM to A  
OR immediate to A  
OR A to direct byte  
OR immediate to direct byte  
Exclusive-OR Register to A  
Exclusive-OR direct byte to A  
Exclusive-OR indirect RAM to A  
Exclusive-OR immediate to A  
Exclusive-OR A to direct byte  
Exclusive-OR immediate to direct byte  
Clear A  
Complement A  
Rotate A left  
Rotate A left through Carry  
Rotate A right  
Rotate A right through Carry  
Swap nibbles of A  
1
2
1
2
2
3
1
2
1
2
2
3
1
2
1
2
2
3
1
1
1
1
1
1
1
1
2
2
2
2
3
1
2
2
2
2
3
1
2
2
2
2
3
1
1
1
1
1
1
1
CPL A  
RL A  
RLC A  
RR A  
RRC A  
SWAP A  
Data Transfer  
MOV A, Rn  
Move Register to A  
1
2
1
2
1
2
2
2
2
3
1
2
2
2
1
2
2
2
2
3
MOV A, direct  
MOV A, @Ri  
MOV A, #data  
MOV Rn, A  
MOV Rn, direct  
MOV Rn, #data  
MOV direct, A  
MOV direct, Rn  
MOV direct, direct  
Move direct byte to A  
Move indirect RAM to A  
Move immediate to A  
Move A to Register  
Move direct byte to Register  
Move immediate to Register  
Move A to direct byte  
Move Register to direct byte  
Move direct byte to direct byte  
130  
Rev. 1.4  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
Table 11.1. CIP-51 Instruction Set Summary (Continued)  
Clock  
Cycles  
Mnemonic  
Description  
Bytes  
MOV direct, @Ri  
MOV direct, #data  
MOV @Ri, A  
Move indirect RAM to direct byte  
Move immediate to direct byte  
Move A to indirect RAM  
2
3
1
2
2
3
1
1
1
1
1
1
2
2
1
2
1
1
2
3
2
2
2
3
3
3
3
3
3
3
2
2
1
2
2
2
MOV @Ri, direct  
MOV @Ri, #data  
MOV DPTR, #data16  
MOVC A, @A+DPTR  
MOVC A, @A+PC  
MOVX A, @Ri  
MOVX @Ri, A  
MOVX A, @DPTR  
MOVX @DPTR, A  
PUSH direct  
Move direct byte to indirect RAM  
Move immediate to indirect RAM  
Load DPTR with 16-bit constant  
Move code byte relative DPTR to A  
Move code byte relative PC to A  
Move external data (8-bit address) to A  
Move A to external data (8-bit address)  
Move external data (16-bit address) to A  
Move A to external data (16-bit address)  
Push direct byte onto stack  
Pop direct byte from stack  
Exchange Register with A  
Exchange direct byte with A  
Exchange indirect RAM with A  
Exchange low nibble of indirect RAM with A  
Boolean Manipulation  
POP direct  
XCH A, Rn  
XCH A, direct  
XCH A, @Ri  
XCHD A, @Ri  
CLR C  
CLR bit  
SETB C  
SETB bit  
CPL C  
Clear Carry  
Clear direct bit  
Set Carry  
Set direct bit  
Complement Carry  
Complement direct bit  
AND direct bit to Carry  
AND complement of direct bit to Carry  
OR direct bit to carry  
OR complement of direct bit to Carry  
Move direct bit to Carry  
Move Carry to direct bit  
Jump if Carry is set  
Jump if Carry is not set  
1
2
1
2
1
2
2
2
2
2
2
2
2
2
3
3
3
1
2
1
2
1
2
2
2
2
2
2
2
2/3*  
2/3*  
3/4*  
3/4*  
3/4*  
CPL bit  
ANL C, bit  
ANL C, /bit  
ORL C, bit  
ORL C, /bit  
MOV C, bit  
MOV bit, C  
JC rel  
JNC rel  
JB bit, rel  
JNB bit, rel  
JBC bit, rel  
Jump if direct bit is set  
Jump if direct bit is not set  
Jump if direct bit is set and clear bit  
Program Branching  
ACALL addr11  
LCALL addr16  
RET  
Absolute subroutine call  
Long subroutine call  
Return from subroutine  
Return from interrupt  
Absolute jump  
Long jump  
Short jump (relative address)  
Jump indirect relative to DPTR  
2
3
1
1
2
3
2
1
3*  
4*  
5*  
5*  
3*  
4*  
3*  
3*  
RETI  
AJMP addr11  
LJMP addr16  
SJMP rel  
JMP @A+DPTR  
Rev. 1.4  
131  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
Table 11.1. CIP-51 Instruction Set Summary (Continued)  
Clock  
Cycles  
2/3*  
2/3*  
3/4*  
Mnemonic  
Description  
Bytes  
JZ rel  
JNZ rel  
CJNE A, direct, rel  
CJNE A, #data, rel  
Jump if A equals zero  
2
2
3
3
Jump if A does not equal zero  
Compare direct byte to A and jump if not equal  
Compare immediate to A and jump if not equal  
Compare immediate to Register and jump if not  
equal  
3/4*  
CJNE Rn, #data, rel  
CJNE @Ri, #data, rel  
3
3
3/4*  
4/5*  
Compare immediate to indirect and jump if not  
equal  
DJNZ Rn, rel  
DJNZ direct, rel  
NOP  
Decrement Register and jump if not zero  
Decrement direct byte and jump if not zero  
No operation  
2
3
1
2/3*  
3/4*  
1
* Branch instructions will incur a cache-miss penalty if the branch target location is not already stored in  
the Branch Target Cache. See Section “16. Branch Target Cache” on page 211 for more details.  
Notes on Registers, Operands and Addressing Modes:  
Rn - Register R0-R7 of the currently selected register bank.  
@Ri - Data RAM location addressed indirectly through R0 or R1.  
rel - 8-bit, signed (2s complement) offset relative to the first byte of the following instruction. Used by  
SJMP and all conditional jumps.  
direct - 8-bit internal data location’s address. This could be a direct-access Data RAM location (0x00-  
0x7F) or an SFR (0x80-0xFF).  
#data - 8-bit constant  
#data16 - 16-bit constant  
bit - Direct-accessed bit in Data RAM or SFR  
addr11 - 11-bit destination address used by ACALL and AJMP. The destination must be within the same  
2K-byte page of program memory as the first byte of the following instruction.  
addr16 - 16-bit destination address used by LCALL and LJMP. The destination may be anywhere within  
the 64K-byte program memory space.  
There is one unused opcode (0xA5) that performs the same function as NOP.  
All mnemonics copyrighted © Intel Corporation 1980.  
132  
Rev. 1.4  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
11.2. Memory Organization  
The memory organization of the CIP-51 System Controller is similar to that of a standard 8051. There are  
two separate memory spaces: program memory and data memory. Program and data memory share the  
same address space but are accessed via different instruction types. There are 256 bytes of internal data  
memory and 128k bytes (C8051F12x and C8051F130/1) or 64k bytes (C8051F132/3) of internal program  
memory address space implemented within the CIP-51. The CIP-51 memory organization is shown in  
Figure 11.2.  
PROGRAM/DATA MEMORY  
(FLASH)  
DATA MEMORY (RAM)  
INTERNAL DATA ADDRESS SPACE  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1  
Upper 128 RAM  
(Indirect Addressing  
Only)  
Special Function  
Registers  
(Direct Addressing Only)  
0x200FF  
0x20000  
0x1FFFF  
0x1FC00  
0x1FBFF  
Scrachpad Memory  
(DATA only)  
0
1
2
3
RESERVED  
(Direct and Indirect  
Addressing)  
Up To  
256 SFR Pages  
Lower 128 RAM  
(Direct and Indirect  
Addressing)  
FLASH  
Bit Addressable  
(In-System  
Programmable in 1024  
Byte Sectors)  
General Purpose  
Registers  
0x00000  
EXTERNAL DATA ADDRESS SPACE  
0xFFFF  
C8051F132/3  
0x200FF  
0x20000  
Scrachpad Memory  
(DATA only)  
Off-chip XRAM space  
0x0FFFF  
FLASH  
(In-System  
Programmable in 1024  
Byte Sectors)  
0x2000  
0x1FFF  
XRAM - 8192 Bytes  
(accessable using MOVX  
instruction)  
0x0000  
0x00000  
Figure 11.2. Memory Map  
11.2.1. Program Memory  
The C8051F12x and C8051F130/1 have a 128 kB program memory space. The MCU implements this pro-  
gram memory space as in-system re-programmable Flash memory in four 32 kB code banks. A common  
code bank (Bank 0) of 32 kB is always accessible from addresses 0x0000 to 0x7FFF. The three upper  
code banks (Bank 1, Bank 2, and Bank 3) are each mapped to addresses 0x8000 to 0xFFFF, depending  
on the selection of bits in the PSBANK register, as described in SFR Definition 11.1. The IFBANK bits  
select which of the upper banks are used for code execution, while the COBANK bits select the bank to be  
used for direct writes and reads of the Flash memory. Note: 1024 bytes of the memory in Bank 3  
(0x1FC00 to 0x1FFFF) are reserved and are not available for user program or data storage. The  
C8051F132/3 have a 64k byte program memory space implemented as in-system re-programmable Flash  
memory, and organized in a contiguous block from address 0x00000 to 0x0FFFF.  
Program memory is normally assumed to be read-only. However, the CIP-51 can write to program memory  
by setting the Program Store Write Enable bit (PSCTL.0) and using the MOVX instruction. This feature pro-  
vides a mechanism for the CIP-51 to update program code and use the program memory space for non-  
volatile data storage. Refer to Section “15. Flash Memory” on page 199 for further details.  
Rev. 1.4  
133  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
SFR Definition 11.1. PSBANK: Program Space Bank Select  
R/W  
-
R/W  
-
R/W  
R/W  
Bit4  
R/W  
-
R/W  
-
R/W  
Bit1  
R/W  
Reset Value  
COBANK  
Bit5  
IFBANK  
00010001  
Bit7  
Bit6  
Bit3  
Bit2  
Bit0  
SFR Address: 0xB1  
SFR Page: All Pages  
Bits 76: Reserved.  
Bits 54: COBANK: Constant Operations Bank Select.  
These bits select which Flash bank is targeted during constant operations (MOVC and Flash  
MOVX) involving addresses 0x8000 to 0xFFFF. These bits are ignored when accessing the  
Scratchpad memory areas (see Section “15. Flash Memory” on page 199).  
00: Constant Operations Target Bank 0 (note that Bank 0 is also mapped between 0x0000 to  
0x7FFF).  
01: Constant Operations Target Bank 1.  
10: Constant Operations Target Bank 2.  
11: Constant Operations Target Bank 3.  
Bits 32: Reserved.  
Bits 10: IFBANK: Instruction Fetch Operations Bank Select.  
These bits select which Flash bank is used for instruction fetches involving addresses 0x8000 to  
0xFFFF. These bits can only be changed from code in Bank 0 (see Figure 11.3).  
00: Instructions Fetch From Bank 0 (note that Bank 0 is also mapped between 0x0000 to  
0x7FFF).  
01: Instructions Fetch From Bank 1.  
10: Instructions Fetch From Bank 2.  
11: Instructions Fetch From Bank 3.  
*Note: On the C8051F132/3, the COBANK and IFBANK bits should both remain set to the default setting of ‘01’ to  
ensure proper device functionality.  
Internal  
IFBANK = 0 IFBANK = 1 IFBANK = 2 IFBANK = 3  
Address  
0xFFFF  
Bank 0  
Bank 1  
Bank 2  
Bank 3  
0x8000  
0x7FFF  
Bank 0  
Bank 0  
Bank 0  
Bank 0  
0x0000  
Figure 11.3. Address Memory Map for Instruction Fetches (128 kB Flash Only)  
134  
Rev. 1.4  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
11.2.2. Data Memory  
The CIP-51 implements 256 bytes of internal RAM mapped into the data memory space from 0x00 through  
0xFF. The lower 128 bytes of data memory are used for general purpose registers and memory. Either  
direct or indirect addressing may be used to access the lower 128 bytes of data memory. Locations 0x00  
through 0x1F are addressable as four banks of general purpose registers, each bank consisting of eight  
byte-wide registers. The next 16 bytes, locations 0x20 through 0x2F, may either be addressed as bytes or  
as 128 bit locations accessible with the direct addressing mode.  
The upper 128 bytes of data memory are accessible only by indirect addressing. This region occupies the  
same address space as the Special Function Registers (SFR) but is physically separate from the SFR  
space. The addressing mode used by an instruction when accessing locations above 0x7F determines  
whether the CPU accesses the upper 128 bytes of data memory space or the SFR’s. Instructions that use  
direct addressing will access the SFR space. Instructions using indirect addressing above 0x7F access the  
upper 128 bytes of data memory. Figure 11.2 illustrates the data memory organization of the CIP-51.  
11.2.3. General Purpose Registers  
The lower 32 bytes of data memory, locations 0x00 through 0x1F, may be addressed as four banks of gen-  
eral-purpose registers. Each bank consists of eight byte-wide registers designated R0 through R7. Only  
one of these banks may be enabled at a time. Two bits in the program status word, RS0 (PSW.3) and RS1  
(PSW.4), select the active register bank (see description of the PSW in SFR Definition 11.9). This allows  
fast context switching when entering subroutines and interrupt service routines. Indirect addressing modes  
use registers R0 and R1 as index registers.  
11.2.4. Bit Addressable Locations  
In addition to direct access to data memory organized as bytes, the sixteen data memory locations at 0x20  
through 0x2F are also accessible as 128 individually addressable bits. Each bit has a bit address from  
0x00 to 0x7F. Bit 0 of the byte at 0x20 has bit address 0x00 while bit 7 of the byte at 0x20 has bit address  
0x07. Bit 7 of the byte at 0x2F has bit address 0x7F. A bit access is distinguished from a full byte access by  
the type of instruction used (bit source or destination operands as opposed to a byte source or destina-  
tion). The MCS-51™ assembly language allows an alternate notation for bit addressing of the form XX.B  
where XX is the byte address and B is the bit position within the byte.  
For example, the instruction:  
MOV  
C, 22.3h  
moves the Boolean value at 0x13 (bit 3 of the byte at location 0x22) into the Carry flag.  
11.2.5. Stack  
A programmer's stack can be located anywhere in the 256 byte data memory. The stack area is designated  
using the Stack Pointer (SP, address 0x81) SFR. The SP will point to the last location used. The next value  
pushed on the stack is placed at SP+1 and then SP is incremented. A reset initializes the stack pointer to  
location 0x07; therefore, the first value pushed on the stack is placed at location 0x08, which is also the  
first register (R0) of register bank 1. Thus, if more than one register bank is to be used, the SP should be  
initialized to a location in the data memory not being used for data storage. The stack depth can extend up  
to 256 bytes.  
The MCUs also have built-in hardware for a stack record which is accessed by the debug logic. The stack  
record is a 32-bit shift register, where each PUSH or increment SP pushes one record bit onto the register,  
and each CALL pushes two record bits onto the register. (A POP or decrement SP pops one record bit,  
Rev. 1.4  
135  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
and a RET pops two record bits, also.) The stack record circuitry can also detect an overflow or underflow  
on the 32-bit shift register, and can notify the debug software even with the MCU running at speed.  
11.2.6. Special Function Registers  
The direct-access data memory locations from 0x80 to 0xFF constitute the special function registers  
(SFR’s). The SFR’s provide control and data exchange with the CIP-51's resources and peripherals. The  
CIP-51 duplicates the SFR’s found in a typical 8051 implementation as well as implementing additional  
SFR’s used to configure and access the sub-systems unique to the MCU. This allows the addition of new  
functionality while retaining compatibility with the MCS-51™ instruction set. Table 11.2 lists the SFR’s  
implemented in the CIP-51 System Controller.  
The SFR registers are accessed whenever the direct addressing mode is used to access memory loca-  
tions from 0x80 to 0xFF. SFR’s with addresses ending in 0x0 or 0x8 (e.g. P0, TCON, P1, SCON, IE, etc.)  
are bit-addressable as well as byte-addressable. All other SFR’s are byte-addressable only. Unoccupied  
addresses in the SFR space are reserved for future use. Accessing these areas will have an indeterminate  
effect and should be avoided. Refer to the corresponding pages of the datasheet, as indicated in  
Table 11.3, for a detailed description of each register.  
11.2.6.1.SFR Paging  
The CIP-51 features SFR paging, allowing the device to map many SFR’s into the 0x80 to 0xFF memory  
address space. The SFR memory space has 256 pages. In this way, each memory location from 0x80 to  
0xFF can access up to 256 SFR’s. The C8051F12x family of devices utilizes five SFR pages: 0, 1, 2, 3,  
and F. SFR pages are selected using the Special Function Register Page Selection register, SFRPAGE  
(see SFR Definition 11.3). The procedure for reading and writing an SFR is as follows:  
1. Select the appropriate SFR page number using the SFRPAGE register.  
2. Use direct accessing mode to read or write the special function register (MOV instruction).  
11.2.6.2.Interrupts and SFR Paging  
When an interrupt occurs, the SFR Page Register will automatically switch to the SFR page containing the  
flag bit that caused the interrupt. The automatic SFR Page switch function conveniently removes the bur-  
den of switching SFR pages from the interrupt service routine. Upon execution of the RETI instruction, the  
SFR page is automatically restored to the SFR Page in use prior to the interrupt. This is accomplished via  
a three-byte SFR Page Stack. The top byte of the stack is SFRPAGE, the current SFR Page. The second  
byte of the SFR Page Stack is SFRNEXT. The third, or bottom byte of the SFR Page Stack is SFRLAST.  
On interrupt, the current SFRPAGE value is pushed to the SFRNEXT byte, and the value of SFRNEXT is  
pushed to SFRLAST. Hardware then loads SFRPAGE with the SFR Page containing the flag bit associated  
with the interrupt. On a return from interrupt, the SFR Page Stack is popped resulting in the value of SFRN-  
EXT returning to the SFRPAGE register, thereby restoring the SFR page context without software interven-  
tion. The value in SFRLAST (0x00 if there is no SFR Page value in the bottom of the stack) of the stack is  
placed in SFRNEXT register. If desired, the values stored in SFRNEXT and SFRLAST may be modified  
during an interrupt, enabling the CPU to return to a different SFR Page upon execution of the RETI instruc-  
tion (on interrupt exit). Modifying registers in the SFR Page Stack does not cause a push or pop of the  
stack. Only interrupt calls and returns will cause push/pop operations on the SFR Page Stack.  
136  
Rev. 1.4  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
SFRPGCN Bit  
Interrupt  
Logic  
SFRPAGE  
CIP-51  
SFRNEXT  
SFRLAST  
Figure 11.4. SFR Page Stack  
Automatic hardware switching of the SFR Page on interrupts may be enabled or disabled as desired using  
the SFR Automatic Page Control Enable Bit located in the SFR Page Control Register (SFRPGCN). This  
function defaults to ‘enabled’ upon reset. In this way, the autoswitching function will be enabled unless dis-  
abled in software.  
A summary of the SFR locations (address and SFR page) is provided in Table 11.2. in the form of an SFR  
memory map. Each memory location in the map has an SFR page row, denoting the page in which that  
SFR resides. Note that certain SFR’s are accessible from ALL SFR pages, and are denoted by the “(ALL  
PAGES)” designation. For example, the Port I/O registers P0, P1, P2, and P3 all have the “(ALL PAGES)”  
designation, indicating these SFR’s are accessible from all SFR pages regardless of the SFRPAGE regis-  
ter value.  
Rev. 1.4  
137  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
11.2.6.3.SFR Page Stack Example  
The following is an example that shows the operation of the SFR Page Stack during interrupts.  
In this example, the SFR Page Control is left in the default enabled state (i.e., SFRPGEN = 1), and the  
CIP-51 is executing in-line code that is writing values to Port 5 (SFR “P5”, located at address 0xD8 on SFR  
Page 0x0F). The device is also using the Programmable Counter Array (PCA) and the 10-bit ADC (ADC2)  
window comparator to monitor a voltage. The PCA is timing a critical control function in its interrupt service  
routine (ISR), so its interrupt is enabled and is set to high priority. The ADC2 is monitoring a voltage that is  
less important, but to minimize the software overhead its window comparator is being used with an associ-  
ated ISR that is set to low priority. At this point, the SFR page is set to access the Port 5 SFR (SFRPAGE =  
0x0F). See Figure 11.5 below.  
SFR Page  
Stack SFR's  
0x0F  
SFRPAGE  
(Port 5)  
SFRNEXT  
SFRLAST  
Figure 11.5. SFR Page Stack While Using SFR Page 0x0F To Access Port 5  
While CIP-51 executes in-line code (writing values to Port 5 in this example), ADC2 Window Comparator  
Interrupt occurs. The CIP-51 vectors to the ADC2 Window Comparator ISR and pushes the current SFR  
Page value (SFR Page 0x0F) into SFRNEXT in the SFR Page Stack. The SFR page needed to access  
ADC2’s SFR’s is then automatically placed in the SFRPAGE register (SFR Page 0x02). SFRPAGE is con-  
sidered the “top” of the SFR Page Stack. Software can now access the ADC2 SFR’s. Software may switch  
to any SFR Page by writing a new value to the SFRPAGE register at any time during the ADC2 ISR to  
access SFR’s that are not on SFR Page 0x02. See Figure 11.6 below.  
138  
Rev. 1.4  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
SFR Page 0x02  
Automatically  
pushed on stack in  
SFRPAGE on ADC2  
interrupt  
0x02  
SFRPAGE  
SFRNEXT  
SFRLAST  
(ADC2)  
0x0F  
SFRPAGE  
pushed to  
SFRNEXT  
(Port 5)  
Figure 11.6. SFR Page Stack After ADC2 Window Comparator Interrupt Occurs  
While in the ADC2 ISR, a PCA interrupt occurs. Recall the PCA interrupt is configured as a high priority  
interrupt, while the ADC2 interrupt is configured as a low priority interrupt. Thus, the CIP-51 will now vector  
to the high priority PCA ISR. Upon doing so, the CIP-51 will automatically place the SFR page needed to  
access the PCA’s special function registers into the SFRPAGE register, SFR Page 0x00. The value that  
was in the SFRPAGE register before the PCA interrupt (SFR Page 2 for ADC2) is pushed down the stack  
into SFRNEXT. Likewise, the value that was in the SFRNEXT register before the PCA interrupt (in this  
case SFR Page 0x0F for Port 5) is pushed down to the SFRLAST register, the “bottom” of the stack. Note  
that a value stored in SFRLAST (via a previous software write to the SFRLAST register) will be overwritten.  
See Figure 11.7 below.  
Rev. 1.4  
139  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
SFR Page 0x00  
Automatically  
pushed on stack in  
SFRPAGE on PCA  
interrupt  
0x00  
SFRPAGE  
SFRNEXT  
SFRLAST  
(PCA)  
0x02  
SFRPAGE  
pushed to  
SFRNEXT  
(ADC2)  
0x0F  
SFRNEXT  
pushed to  
SFRLAST  
(Port 5)  
Figure 11.7. SFR Page Stack Upon PCA Interrupt Occurring During an ADC2 ISR  
On exit from the PCA interrupt service routine, the CIP-51 will return to the ADC2 Window Comparator  
ISR. On execution of the RETI instruction, SFR Page 0x00 used to access the PCA registers will be auto-  
matically popped off of the SFR Page Stack, and the contents of the SFRNEXT register will be moved to  
the SFRPAGE register. Software in the ADC2 ISR can continue to access SFR’s as it did prior to the PCA  
interrupt. Likewise, the contents of SFRLAST are moved to the SFRNEXT register. Recall this was the  
SFR Page value 0x0F being used to access Port 5 before the ADC2 interrupt occurred. See Figure 11.8  
below.  
SFR Page 0x00  
Automatically  
popped off of the  
stack on return from  
interrupt  
0x02  
SFRPAGE  
(ADC2)  
SFRNEXT  
popped to  
SFRPAGE  
0x0F  
SFRNEXT  
(Port 5)  
SFRLAST  
popped to  
SFRNEXT  
SFRLAST  
Figure 11.8. SFR Page Stack Upon Return From PCA Interrupt  
140  
Rev. 1.4  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
On the execution of the RETI instruction in the ADC2 Window Comparator ISR, the value in SFRPAGE  
register is overwritten with the contents of SFRNEXT. The CIP-51 may now access the Port 5 SFR bits as  
it did prior to the interrupts occurring. See Figure 11.9 below.  
SFR Page 0x02  
Automatically  
popped off of the  
stack on return from  
interrupt  
0x0F  
SFRPAGE  
(Port 5)  
SFRNEXT  
popped to  
SFRPAGE  
SFRNEXT  
SFRLAST  
Figure 11.9. SFR Page Stack Upon Return From ADC2 Window Interrupt  
Note that in the above example, all three bytes in the SFR Page Stack are accessible via the SFRPAGE,  
SFRNEXT, and SFRLAST special function registers. If the stack is altered while servicing an interrupt, it is  
possible to return to a different SFR Page upon interrupt exit than selected prior to the interrupt call. Direct  
access to the SFR Page stack can be useful to enable real-time operating systems to control and manage  
context switching between multiple tasks.  
Push operations on the SFR Page Stack only occur on interrupt service, and pop operations only occur on  
interrupt exit (execution on the RETI instruction). The automatic switching of the SFRPAGE and operation  
of the SFR Page Stack as described above can be disabled in software by clearing the SFR Automatic  
Page Enable Bit (SFRPGEN) in the SFR Page Control Register (SFRPGCN). See SFR Definition 11.2.  
Rev. 1.4  
141  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
SFR Definition 11.2. SFRPGCN: SFR Page Control  
R/W  
-
R/W  
-
R/W  
-
R/W  
-
R/W  
-
R/W  
-
R/W  
-
R/W  
Reset Value  
SFRPGEN 00000001  
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Bit0  
SFR Address: 0x96  
SFR Page: F  
Bits7–1: Reserved.  
Bit0: SFRPGEN: SFR Automatic Page Control Enable.  
Upon interrupt, the C8051 Core will vector to the specified interrupt service routine and auto-  
matically switch the SFR page to the corresponding peripheral or function’s SFR page. This  
bit is used to control this autopaging function.  
0: SFR Automatic Paging disabled. C8051 core will not automatically change to the appro-  
priate SFR page (i.e., the SFR page that contains the SFR’s for the peripheral/function that  
was the source of the interrupt).  
1: SFR Automatic Paging enabled. Upon interrupt, the C8051 will switch the SFR page to  
the page that contains the SFR’s for the peripheral or function that is the source of the inter-  
rupt.  
SFR Definition 11.3. SFRPAGE: SFR Page  
R/W  
R/W  
Bit6  
R/W  
Bit5  
R/W  
Bit4  
R/W  
Bit3  
R/W  
Bit2  
R/W  
Bit1  
R/W  
Bit0  
Reset Value  
00000000  
Bit7  
SFR Address: 0x84  
SFR Page: All Pages  
Bits7–0: SFR Page Bits: Byte Represents the SFR Page the C8051 MCU uses when reading or mod-  
ifying SFR’s.  
Write: Sets the SFR Page.  
Read: Byte is the SFR page the C8051 MCU is using.  
When enabled in the SFR Page Control Register (SFRPGCN), the C8051 will automatically  
switch to the SFR Page that contains the SFR’s of the corresponding peripheral/function that  
caused the interrupt, and return to the previous SFR page upon return from interrupt (unless  
SFR Stack was altered before a returning from the interrupt).  
SFRPAGE is the top byte of the SFR Page Stack, and push/pop events of this stack are  
caused by interrupts (and not by reading/writing to the SFRPAGE register)  
142  
Rev. 1.4  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
SFR Definition 11.4. SFRNEXT: SFR Next Register  
R/W  
Bit7  
R/W  
Bit6  
R/W  
Bit5  
R/W  
Bit4  
R/W  
Bit3  
R/W  
Bit2  
R/W  
Bit1  
R/W  
Bit0  
Reset Value  
00000000  
SFR Address: 0x85  
SFR Page: All Pages  
Bits7–0: SFR Page Stack Bits: SFR page context is retained upon interrupts/return from interrupts in  
a 3 byte SFR Page Stack: SFRPAGE is the first entry, SFRNEXT is the second, and SFR-  
LAST is the third entry. The SFR stack bytes may be used alter the context in the SFR Page  
Stack, and will not cause the stack to ‘push’ or ‘pop’. Only interrupts and return from inter-  
rupts cause pushes and pops of the SFR Page Stack.  
Write: Sets the SFR Page contained in the second byte of the SFR Stack. This will cause  
the SFRPAGE SFR to have this SFR page value upon a return from interrupt.  
Read: Returns the value of the SFR page contained in the second byte of the SFR stack.  
This is the value that will go to the SFR Page register upon a return from interrupt.  
SFR Definition 11.5. SFRLAST: SFR Last Register  
R/W  
Bit7  
R/W  
Bit6  
R/W  
Bit5  
R/W  
Bit4  
R/W  
Bit3  
R/W  
Bit2  
R/W  
Bit1  
R/W  
Bit0  
Reset Value  
00000000  
SFR Address: 0x86  
SFR Page: All Pages  
Bits7–0: SFR Page Stack Bits: SFR page context is retained upon interrupts/return from interrupts in  
a 3 byte SFR Page Stack: SFRPAGE is the first entry, SFRNEXT is the second, and SFR-  
LAST is the third entry. The SFR stack bytes may be used alter the context in the SFR Page  
Stack, and will not cause the stack to ‘push’ or ‘pop’. Only interrupts and return from inter-  
rupts cause pushes and pops of the SFR Page Stack.  
Write: Sets the SFR Page in the last entry of the SFR Stack. This will cause the SFRNEXT  
SFR to have this SFR page value upon a return from interrupt.  
Read: Returns the value of the SFR page contained in the last entry of the SFR stack.  
Rev. 1.4  
143  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
Table 11.2. Special Function Register (SFR) Memory Map  
0(8)  
1(9)  
2(A)  
3(B)  
4(C)  
5(D)  
6(E)  
7(F)  
0
1
2
3
F
0
1
2
3
F
0
1
2
3
F
0
1
2
3
F
0
1
2
3
F
0
1
2
3
F
0
1
2
3
F
0
1
2
3
F
SPI0CN  
PCA0L  
PCA0H  
PCA0CPL0 PCA0CPH0 PCA0CPL1 PCA0CPH1  
WDTCN  
(ALL  
PAGES)  
F8  
F0  
E8  
E0  
D8  
D0  
C8  
C0  
P7  
B
(ALL  
PAGES)  
EIP1  
(ALL  
PAGES)  
EIP2  
(ALL  
PAGES)  
ADC0CN PCA0CPL2 PCA0CPH2 PCA0CPL3 PCA0CPH3 PCA0CPL4 PCA0CPH4 RSTSRC  
ADC2CN  
P6  
PCA0CPL5 PCA0CPH5  
ACC  
(ALL  
PAGES)  
EIE1  
(ALL  
PAGES)  
EIE2  
(ALL  
PAGES)  
XBR0  
XBR1  
XBR2  
PCA0CN  
PCA0MD PCA0CPM0 PCA0CPM1 PCA0CPM2 PCA0CPM3 PCA0CPM4 PCA0CPM5  
P5  
REF0CN  
DAC0L  
DAC1L  
DAC0H  
DAC1H  
DAC0CN  
DAC1CN  
PSW  
(ALL  
PAGES)  
TMR2CN  
TMR3CN  
TMR4CN  
TMR2CF  
TMR3CF  
TMR4CF  
RCAP2L  
RCAP3L  
RCAP4L  
RCAP2H  
RCAP3H  
RCAP4H  
TMR2L  
TMR3L  
TMR4L  
TMR2H  
TMR3H  
TMR4H  
SMB0CR  
MAC0RNDL MAC0RNDH  
P4  
SMB0CN  
SMB0STA SMB0DAT SMB0ADR ADC0GTL ADC0GTH ADC0LTL  
ADC0LTH  
ADC2GT  
4(C)  
ADC2LT  
6(E)  
MAC0STA  
0(8)  
MAC0AL  
1(9)  
MAC0AH  
2(A)  
MAC0CF  
3(B)  
5(D)  
7(F)  
144  
Rev. 1.4  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
Table 11.2. Special Function Register (SFR) Memory Map (Continued)  
0
1
2
3
F
0
1
2
3
F
0
1
2
3
F
0
1
2
3
F
0
1
2
3
F
0
1
2
3
F
0
1
2
3
F
0
1
2
3
F
SADEN0  
AMX0CF  
AMX0SL  
ADC0CF  
ADC0L  
ADC0H  
IP  
(ALL  
PAGES)  
AMX2CF  
AMX2SL  
ADC2CF  
ADC2  
B8  
B0  
A8  
A0  
98  
90  
88  
80  
FLSCL  
FLACL  
P3  
(ALL  
PAGES)  
PSBANK  
(ALL  
PAGES)  
SADDR0  
IE  
(ALL  
PAGES)  
P1MDIN  
EMI0TC  
EMI0CN  
EMI0CF  
P2  
(ALL  
PAGES)  
CCH0CN  
SBUF0  
SBUF1  
CCH0TN  
SPI0CFG  
CCH0LC  
SPI0DAT  
P0MDOUT P1MDOUT P2MDOUT P3MDOUT  
SPI0CKR  
SCON0  
SCON1  
CCH0MA  
P4MDOUT P5MDOUT P6MDOUT P7MDOUT  
SSTA0  
P1  
(ALL  
PAGES)  
MAC0BL  
MAC0BH MAC0ACC0 MAC0ACC1 MAC0ACC2 MAC0ACC3 MAC0OVR  
SFRPGCN  
CKCON  
CLKSEL  
PSCTL  
TCON  
CPT0CN  
CPT1CN  
TMOD  
CPT0MD  
CPT1MD  
TL0  
TL1  
TH0  
TH1  
FLSTAT  
PLL0CN  
OSCICN  
OSCICL  
OSCXCN  
PLL0DIV  
PLL0MUL  
PLL0FLT  
P0  
(ALL  
PAGES)  
SP  
(ALL  
PAGES)  
DPL  
(ALL  
PAGES)  
DPH  
(ALL  
PAGES)  
SFRPAGE SFRNEXT SFRLAST  
(ALL  
PAGES)  
PCON  
(ALL  
PAGES)  
(ALL  
PAGES)  
(ALL  
PAGES)  
0(8)  
1(9)  
2(A)  
3(B)  
4(C)  
5(D)  
6(E)  
7(F)  
Rev. 1.4  
145  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
Table 11.3. Special Function Registers  
SFRs are listed in alphabetical order. All undefined SFR locations are reserved.  
SFR  
Register  
Address  
Description  
Page No.  
Page  
All Pages Accumulator  
ADC0 Configuration  
ACC  
0xE0  
0xBC  
0xE8  
0xC5  
0xC4  
0xBF  
0xBE  
0xC7  
0xC6  
0xBE  
0xBC  
0xE8  
0xC4  
0xC6  
0xBA  
0xBB  
0xBA  
page 153  
1
2
2
2
2
2
2
2
2
ADC0CF  
ADC0CN  
ADC0GTH  
ADC0GTL  
ADC0H  
0
0
0
0
0
0
0
0
2
2
2
2
2
0
0
2
2
page 62 , page 80  
1
ADC0 Control  
page 63 , page 81  
1
ADC0 Greater-Than High Byte  
ADC0 Greater-Than Low Byte  
ADC0 Data Word High Byte  
ADC0 Data Word Low Byte  
ADC0 Less-Than High Byte  
ADC0 Less-Than Low Byte  
ADC2 Data Word  
page 66 , page 84  
1
page 66 , page 84  
1
page 64 , page 82  
1
ADC0L  
page 64 , page 82  
1
ADC0LTH  
ADC0LTL  
ADC2  
page 67 , page 85  
1
page 67 , page 85  
3
page 99  
3
ADC2CF  
ADC2CN  
ADC2GT  
ADC2LT  
AMX0CF  
AMX0SL  
AMX2CF  
ADC2 Configuration  
page 97  
3
ADC2 Control  
page 98  
3
ADC2 Greater-Than  
page 102  
3
ADC2 Less-Than  
page 102  
1
2
2
ADC0 Multiplexer Configuration  
ADC0 Multiplexer Channel Select  
ADC2 Multiplexer Configuration  
ADC2 Multiplexer Channel Select  
page 60 , page 78  
1
page 61 , page 79  
3
page 95  
3
AMX2SL  
B
0xBB  
0xF0  
0xA1  
0xA3  
0x9A  
0xA2  
0x8E  
0x97  
0x88  
0x89  
0x88  
0x89  
0xD4  
page 96  
All Pages B Register  
page 153  
page 215  
page 216  
page 217  
page 216  
page 315  
page 188  
page 123  
page 123  
page 124  
page 125  
CCH0CN  
CCH0LC  
CCH0MA  
CCH0TN  
CKCON  
CLKSEL  
CPT0CN  
CPT0MD  
CPT1CN  
CPT1MD  
DAC0CN  
F
F
F
F
0
F
1
1
2
2
0
Cache Control  
Cache Lock  
Cache Miss Accumulator  
Cache Tuning  
Clock Control  
System Clock Select  
Comparator 0 Control  
Comparator 0 Configuration  
Comparator 1 Control  
Comparator 1 Configuration  
DAC0 Control  
3
page 108  
3
DAC0H  
DAC0L  
DAC1CN  
DAC1H  
0xD3  
0xD2  
0xD4  
0xD3  
0
0
1
1
1
DAC0 High Byte  
DAC0 Low Byte  
DAC1 Control  
page 107  
3
page 107  
3
page 110  
3
DAC1 High Byte  
DAC1 Low Byte  
page 109  
3
DAC1L  
DPH  
DPL  
0xD2  
0x83  
0x82  
page 109  
All Pages Data Pointer High Byte  
All Pages Data Pointer Low Byte  
page 151  
page 151  
146  
Rev. 1.4  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
Table 11.3. Special Function Registers (Continued)  
SFRs are listed in alphabetical order. All undefined SFR locations are reserved.  
SFR  
Page  
Register  
Address  
Description  
Page No.  
EIE1  
EIE2  
EIP1  
EIP2  
EMI0CF  
EMI0CN  
EMI0TC  
FLACL  
FLSCL  
FLSTAT  
IE  
0xE6  
0xE7  
0xF6  
0xF7  
0xA3  
0xA2  
0xA1  
0xB7  
0xB7  
0x88  
0xA8  
0xB8  
0x93  
All Pages Extended Interrupt Enable 1  
All Pages Extended Interrupt Enable 2  
All Pages Extended Interrupt Priority 1  
All Pages Extended Interrupt Priority 2  
page 159  
page 160  
page 161  
page 162  
page 221  
page 220  
page 226  
page 206  
page 208  
page 217  
page 157  
page 158  
0
0
0
F
0
F
EMIF Configuration  
EMIF Control  
EMIF Timing Control  
Flash Access Limit  
Flash Scale  
Flash Status  
All Pages Interrupt Enable  
All Pages Interrupt Priority  
IP  
4
MAC0ACC0  
3
3
3
3
3
3
3
3
3
3
3
3
MAC0 Accumulator Byte 0 (LSB)  
page 174  
page 173  
page 173  
page 173  
page 171  
page 172  
page 172  
page 172  
page 170  
page 174  
page 174  
page 175  
page 171  
4
4
4
4
4
4
4
4
4
4
4
4
MAC0ACC1  
MAC0ACC2  
MAC0ACC3  
MAC0AH  
0x94  
0x95  
0x96  
0xC2  
0xC1  
0x92  
0x91  
0xC3  
0x97  
0xCF  
0xCE  
MAC0 Accumulator Byte 1  
MAC0 Accumulator Byte 2  
MAC0 Accumulator Byte 3 (MSB)  
MAC0 A Register High Byte  
MAC0 A Register Low Byte  
MAC0 B Register High Byte  
MAC0 B Register Low Byte  
MAC0 Configuration  
MAC0AL  
MAC0BH  
MAC0BL  
MAC0CF  
MAC0OVR  
MAC0RNDH  
MAC0RNDL  
MAC0 Accumulator Overflow  
MAC0 Rounding Register High Byte  
MAC0 Rounding Register Low Byte  
MAC0STA  
OSCICL  
OSCICN  
OSCXCN  
P0  
P0MDOUT  
P1  
P1MDIN  
P1MDOUT  
P2  
P2MDOUT  
P3  
P3MDOUT  
P4  
P4MDOUT  
P5  
P5MDOUT  
0xC0  
0x8B  
0x8A  
0x8C  
0x80  
0xA4  
0x90  
0xAD  
0xA5  
0xA0  
0xA6  
0xB0  
0xA7  
0xC8  
0x9C  
0xD8  
0x9D  
3
F
F
F
MAC0 Status Register  
Internal Oscillator Calibration  
Internal Oscillator Control  
External Oscillator Control  
page 186  
page 186  
page 189  
page 248  
page 248  
page 249  
page 249  
page 250  
page 250  
page 251  
page 251  
page 252  
page 254  
page 254  
page 255  
page 255  
All Pages Port 0 Latch  
F
Port 0 Output Mode Configuration  
All Pages Port 1 Latch  
F
F
Port 1 Input Mode  
Port 1 Output Mode Configuration  
All Pages Port 2 Latch  
F
Port 2 Output Mode Configuration  
All Pages Port 3 Latch  
F
F
F
F
F
Port 3 Output Mode Configuration  
Port 4 Latch  
Port 4 Output Mode Configuration  
Port 5 Latch  
Port 5 Output Mode Configuration  
Rev. 1.4  
147  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
Table 11.3. Special Function Registers (Continued)  
SFRs are listed in alphabetical order. All undefined SFR locations are reserved.  
SFR  
Register  
Address  
Description  
Page No.  
Page  
F
F
F
F
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
P6  
P6MDOUT  
P7  
0xE8  
0x9E  
0xF8  
0x9F  
0xD8  
0xFC  
0xFE  
0xEA  
0xEC  
0xEE  
0xE2  
0xFB  
0xFD  
0xE9  
0xEB  
0xED  
0xE1  
0xDA  
0xDB  
0xDC  
0xDD  
0xDE  
0xDF  
0xFA  
0xF9  
0xD9  
0x87  
0x89  
0x8D  
0x8F  
0x8E  
0xB1  
0x8F  
0xD0  
0xCB  
0xCA  
0xCB  
0xCA  
0xCB  
0xCA  
Port 6 Latch  
Port 6 Output Mode Configuration  
Port 7 Latch  
Port 7 Output Mode Configuration  
PCA Control  
page 256  
page 256  
page 257  
page 257  
page 335  
page 339  
page 339  
page 339  
page 339  
page 339  
page 339  
page 338  
page 338  
page 338  
page 338  
page 338  
page 338  
page 337  
page 337  
page 337  
page 337  
page 337  
page 337  
page 338  
page 338  
page 336  
page 164  
page 193  
page 194  
page 195  
page 194  
page 134  
page 209  
page 152  
page 323  
page 323  
page 323  
page 323  
page 323  
page 323  
P7MDOUT  
PCA0CN  
PCA0CPH0  
PCA0CPH1  
PCA0CPH2  
PCA0CPH3  
PCA0CPH4  
PCA0CPH5  
PCA0CPL0  
PCA0CPL1  
PCA0CPL2  
PCA0CPL3  
PCA0CPL4  
PCA0CPL5  
PCA0CPM0  
PCA0CPM1  
PCA0CPM2  
PCA0CPM3  
PCA0CPM4  
PCA0CPM5  
PCA0H  
PCA Module 0 Capture/Compare High Byte  
PCA Module 1 Capture/Compare High Byte  
PCA Module 2 Capture/Compare High Byte  
PCA Module 3 Capture/Compare High Byte  
PCA Module 4 Capture/Compare High Byte  
PCA Module 5 Capture/Compare High Byte  
PCA Module 0 Capture/Compare Low Byte  
PCA Module 1 Capture/Compare Low Byte  
PCA Module 2 Capture/Compare Low Byte  
PCA Module 3 Capture/Compare Low Byte  
PCA Module 4 Capture/Compare Low Byte  
PCA Module 5 Capture/Compare Low Byte  
PCA Module 0 Mode  
PCA Module 1 Mode  
PCA Module 2 Mode  
PCA Module 3 Mode  
PCA Module 4 Mode  
PCA Module 5 Mode  
PCA Counter High Byte  
PCA Counter Low Byte  
PCA Mode  
PCA0L  
PCA0MD  
PCON  
0
All Pages Power Control  
PLL0CN  
F
F
F
F
PLL Control  
PLL Divider  
PLL Filter  
PLL0DIV  
PLL0FLT  
PLL0MUL  
PSBANK  
PSCTL  
PSW  
RCAP2H  
RCAP2L  
RCAP3H  
RCAP3L  
RCAP4H  
RCAP4L  
PLL Multiplier  
All Pages Flash Bank Select  
0
Flash Write/Erase Control  
All Pages Program Status Word  
0
0
1
1
2
2
Timer/Counter 2 Capture/Reload High Byte  
Timer/Counter 2 Capture/Reload Low Byte  
Timer 3 Capture/Reload High Byte  
Timer 3 Capture/Reload Low Byte  
Timer/Counter 4 Capture/Reload High Byte  
Timer/Counter 4 Capture/Reload Low Byte  
148  
Rev. 1.4  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
Table 11.3. Special Function Registers (Continued)  
SFRs are listed in alphabetical order. All undefined SFR locations are reserved.  
SFR  
Page  
Register  
Address  
Description  
Page No.  
5
page 114 ,  
6
REF0CN  
0xD1  
0
Voltage Reference Control  
page 116 ,  
7
page 117  
RSTSRC  
SADDR0  
SADEN0  
SBUF0  
0xEF  
0xA9  
0xB9  
0x99  
0x99  
0x98  
0x98  
0x86  
0x85  
0x84  
0x96  
0xC3  
0xC0  
0xCF  
0xC2  
0xC1  
0x81  
0x9A  
0x9D  
0xF8  
0x9B  
0x91  
0x88  
0x8C  
0x8D  
0x8A  
0x8B  
0x89  
0xC9  
0xC8  
0xCD  
0xCC  
0xC9  
0xC8  
0xCD  
0xCC  
0xC9  
0xC8  
0xCD  
0
0
0
0
1
0
1
Reset Source  
page 182  
page 298  
page 298  
page 298  
page 305  
page 296  
page 304  
page 143  
page 143  
page 142  
page 142  
page 269  
page 266  
page 267  
page 268  
page 269  
page 151  
page 280  
page 282  
page 281  
page 282  
page 297  
page 313  
page 316  
page 316  
page 315  
page 316  
page 314  
page 324  
page 324  
page 324  
page 323  
page 324  
page 324  
page 324  
page 323  
page 324  
page 324  
page 324  
UART 0 Slave Address  
UART 0 Slave Address Mask  
UART 0 Data Buffer  
UART 1 Data Buffer  
UART 0 Control  
SBUF1  
SCON0  
SCON1  
SFRLAST  
SFRNEXT  
SFRPAGE  
SFRPGCN  
SMB0ADR  
SMB0CN  
SMB0CR  
SMB0DAT  
SMB0STA  
SP  
SPI0CFG  
SPI0CKR  
SPI0CN  
SPI0DAT  
SSTA0  
TCON  
TH0  
TH1  
TL0  
TL1  
TMOD  
TMR2CF  
TMR2CN  
TMR2H  
TMR2L  
TMR3CF  
TMR3CN  
TMR3H  
TMR3L  
UART 1 Control  
All Pages SFR Stack Last Page  
All Pages SFR Stack Next Page  
All Pages SFR Page Select  
F
0
0
0
0
0
SFR Page Control  
SMBus Slave Address  
SMBus Control  
SMBus Clock Rate  
SMBus Data  
SMBus Status  
All Pages Stack Pointer  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
2
2
2
SPI Configuration  
SPI Clock Rate Control  
SPI Control  
SPI Data  
UART 0 Status  
Timer/Counter Control  
Timer/Counter 0 High Byte  
Timer/Counter 1 High Byte  
Timer/Counter 0 Low Byte  
Timer/Counter 1 Low Byte  
Timer/Counter Mode  
Timer/Counter 2 Configuration  
Timer/Counter 2 Control  
Timer/Counter 2 High Byte  
Timer/Counter 2 Low Byte  
Timer 3 Configuration  
Timer 3 Control  
Timer 3 High Byte  
Timer 3 Low Byte  
Timer/Counter 4 Configuration  
Timer/Counter 4 Control  
Timer/Counter 4 High Byte  
TMR4CF  
TMR4CN  
TMR4H  
Rev. 1.4  
149  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
Table 11.3. Special Function Registers (Continued)  
SFRs are listed in alphabetical order. All undefined SFR locations are reserved.  
SFR  
Page  
Register  
Address  
Description  
Page No.  
TMR4L  
WDTCN  
XBR0  
XBR1  
XBR2  
0xCC  
0xFF  
0xE1  
0xE2  
0xE3  
2
Timer/Counter 4 Low Byte  
page 323  
page 181  
page 245  
page 246  
page 247  
All Pages Watchdog Timer Control  
F
F
F
Port I/O Crossbar Control 0  
Port I/O Crossbar Control 1  
Port I/O Crossbar Control 2  
Notes:  
1. Refers to a register in the C8051F120/1/4/5 only.  
2. Refers to a register in the C8051F122/3/6/7 and C8051F130/1/2/3 only.  
3. Refers to a register in the C8051F120/1/2/3/4/5/6/7 only.  
4. Refers to a register in the C8051F120/1/2/3 and C8051F130/1/2/3 only.  
5. Refers to a register in the C8051F120/2/4/6 only.  
6. Refers to a register in the C8051F121/3/5/7 only.  
7. Refers to a register in the C8051F130/1/2/3 only.  
150  
Rev. 1.4  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
11.2.7. Register Descriptions  
Following are descriptions of SFRs related to the operation of the CIP-51 System Controller. Reserved bits  
should not be set to logic l. Future product versions may use these bits to implement new features in which  
case the reset value of the bit will be logic 0, selecting the feature's default state. Detailed descriptions of  
the remaining SFRs are included in the sections of the datasheet associated with their corresponding sys-  
tem function.  
SFR Definition 11.6. SP: Stack Pointer  
R/W  
Bit7  
R/W  
Bit6  
R/W  
Bit5  
R/W  
Bit4  
R/W  
Bit3  
R/W  
Bit2  
R/W  
Bit1  
R/W  
Bit0  
Reset Value  
00000111  
SFR Address: 0x81  
SFR Page: All Pages  
Bits7–0: SP: Stack Pointer.  
The Stack Pointer holds the location of the top of the stack. The stack pointer is incremented  
before every PUSH operation. The SP register defaults to 0x07 after reset.  
SFR Definition 11.7. DPL: Data Pointer Low Byte  
R/W  
Bit7  
R/W  
Bit6  
R/W  
Bit5  
R/W  
Bit4  
R/W  
Bit3  
R/W  
Bit2  
R/W  
Bit1  
R/W  
Bit0  
Reset Value  
00000000  
SFR Address: 0x82  
SFR Page: All Pages  
Bits7–0: DPL: Data Pointer Low.  
The DPL register is the low byte of the 16-bit DPTR. DPTR is used to access indirectly  
addressed XRAM and Flash memory.  
SFR Definition 11.8. DPH: Data Pointer High Byte  
R/W  
Bit7  
R/W  
Bit6  
R/W  
Bit5  
R/W  
Bit4  
R/W  
Bit3  
R/W  
Bit2  
R/W  
Bit1  
R/W  
Bit0  
Reset Value  
00000000  
SFR Address: 0x83  
SFR Page: All Pages  
Bits7–0: DPH: Data Pointer High.  
The DPH register is the high byte of the 16-bit DPTR. DPTR is used to access indirectly  
addressed XRAM and Flash memory.  
Rev. 1.4  
151  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
SFR Definition 11.9. PSW: Program Status Word  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R
Reset Value  
CY  
AC  
F0  
RS1  
RS0  
OV  
F1  
PARITY 00000000  
Bit  
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Bit0  
Addressable  
SFR Address: 0xD0  
SFR Page: All Pages  
Bit7:  
CY: Carry Flag.  
This bit is set when the last arithmetic operation resulted in a carry (addition) or a borrow  
(subtraction). It is cleared to 0 by all other arithmetic operations.  
AC: Auxiliary Carry Flag  
This bit is set when the last arithmetic operation resulted in a carry into (addition) or a borrow  
from (subtraction) the high order nibble. It is cleared to 0 by all other arithmetic operations.  
F0: User Flag 0.  
Bit6:  
Bit5:  
This is a bit-addressable, general purpose flag for use under software control.  
Bits4–3: RS1–RS0: Register Bank Select.  
These bits select which register bank is used during register accesses.  
RS1  
RS0  
Register Bank  
Address  
0
0
0
0x00–0x07  
0
1
1
1
0
1
1
2
3
0x08–0x0F  
0x10–0x17  
0x18–0x1F  
Bit2:  
OV: Overflow Flag.  
This bit is set to 1 under the following circumstances:  
• An ADD, ADDC, or SUBB instruction causes a sign-change overflow.  
• A MUL instruction results in an overflow (result is greater than 255).  
• A DIV instruction causes a divide-by-zero condition.  
The OV bit is cleared to 0 by the ADD, ADDC, SUBB, MUL, and DIV instructions in all other  
cases.  
Bit1:  
Bit0:  
F1: User Flag 1.  
This is a bit-addressable, general purpose flag for use under software control.  
PARITY: Parity Flag.  
This bit is set to 1 if the sum of the eight bits in the accumulator is odd and cleared if the sum  
is even.  
152  
Rev. 1.4  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
SFR Definition 11.10. ACC: Accumulator  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Reset Value  
ACC.7  
ACC.6  
ACC.5  
ACC.4  
ACC.3  
ACC.2  
ACC.1  
ACC.0 00000000  
Bit  
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Bit0  
Addressable  
SFR Address: 0xE0  
SFR Page: All Pages  
Bits7–0: ACC: Accumulator.  
This register is the accumulator for arithmetic operations.  
SFR Definition 11.11. B: B Register  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Reset Value  
B.7  
B.6  
B.5  
B.4  
B.3  
B.2  
B.1  
B.0  
00000000  
Bit  
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Bit0  
Addressable  
SFR Address: 0xF0  
SFR Page: All Pages  
Bits7–0: B: B Register.  
This register serves as a second accumulator for certain arithmetic operations.  
Rev. 1.4  
153  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
11.3. Interrupt Handler  
The CIP-51 includes an extended interrupt system supporting a total of 20 interrupt sources with two prior-  
ity levels. The allocation of interrupt sources between on-chip peripherals and external input pins varies  
according to the specific version of the device. Each interrupt source has one or more associated interrupt-  
pending flag(s) located in an SFR. When a peripheral or external source meets a valid interrupt condition,  
the associated interrupt-pending flag is set to logic 1.  
If interrupts are enabled for the source, an interrupt request is generated when the interrupt-pending flag is  
set. As soon as execution of the current instruction is complete, the CPU generates an LCALL to a prede-  
termined address to begin execution of an interrupt service routine (ISR). Each ISR must end with an RETI  
instruction, which returns program execution to the next instruction that would have been executed if the  
interrupt request had not occurred. If interrupts are not enabled, the interrupt-pending flag is ignored by the  
hardware and program execution continues as normal. (The interrupt-pending flag is set to logic 1 regard-  
less of the interrupt's enable/disable state.)  
Each interrupt source can be individually enabled or disabled through the use of an associated interrupt  
enable bit in an SFR (IE, EIE1, or EIE2). However, interrupts must first be globally enabled by setting the  
EA bit (IE.7) to logic 1 before the individual interrupt enables are recognized. Setting the EA bit to logic 0  
disables all interrupt sources regardless of the individual interrupt-enable settings.  
Note: Any instruction that clears the EA bit should be immediately followed by an instruction that has two  
or more opcode bytes. For example:  
// in 'C':  
EA = 0; // clear EA bit.  
EA = 0; // this is a dummy instruction with two-byte opcode.  
; in assembly:  
CLR EA ; clear EA bit.  
CLR EA ; this is a dummy instruction with two-byte opcode.  
If an interrupt is posted during the execution phase of a "CLR EA" opcode (or any instruction which clears  
the EA bit), and the instruction is followed by a single-cycle instruction, the interrupt may be taken. How-  
ever, a read of the EA bit will return a '0' inside the interrupt service routine. When the "CLR EA" opcode is  
followed by a multi-cycle instruction, the interrupt will not be taken.  
Some interrupt-pending flags are automatically cleared by the hardware when the CPU vectors to the ISR.  
However, most are not cleared by the hardware and must be cleared by software before returning from the  
ISR. If an interrupt-pending flag remains set after the CPU completes the return-from-interrupt (RETI)  
instruction, a new interrupt request will be generated immediately and the CPU will re-enter the ISR after  
the completion of the next instruction.  
11.3.1. MCU Interrupt Sources and Vectors  
The MCUs support 20 interrupt sources. Software can simulate an interrupt event by setting any interrupt-  
pending flag to logic 1. If interrupts are enabled for the flag, an interrupt request will be generated and the  
CPU will vector to the ISR address associated with the interrupt-pending flag. MCU interrupt sources,  
associated vector addresses, priority order and control bits are summarized in Table 11.4. Refer to the  
datasheet section associated with a particular on-chip peripheral for information regarding valid interrupt  
conditions for the peripheral and the behavior of its interrupt-pending flag(s).  
154  
Rev. 1.4  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
11.3.2. External Interrupts  
Two of the external interrupt sources (/INT0 and /INT1) are configurable as active-low level-sensitive or  
active-low edge-sensitive inputs depending on the setting of bits IT0 (TCON.0) and IT1 (TCON.2). IE0  
(TCON.1) and IE1 (TCON.3) serve as the interrupt-pending flag for the /INT0 and /INT1 external interrupts,  
respectively. If an /INT0 or /INT1 external interrupt is configured as edge-sensitive, the corresponding  
interrupt-pending flag is automatically cleared by the hardware when the CPU vectors to the ISR. When  
configured as level sensitive, the interrupt-pending flag follows the state of the external interrupt's input pin.  
The external interrupt source must hold the input active until the interrupt request is recognized. It must  
then deactivate the interrupt request before execution of the ISR completes or another interrupt request  
will be generated.  
Table 11.4. Interrupt Summary  
Interru  
pt  
Vector  
Priority  
Order  
Enable  
Flag  
Priority  
Control  
Interrupt Source  
Pending Flags  
Always  
Enabled Highest  
Always  
Reset  
0x0000  
Top None  
N/A N/A  
0
External Interrupt 0 (/INT0) 0x0003  
Timer 0 Overflow 0x000B  
External Interrupt 1 (/INT1) 0x0013  
0
1
2
3
IE0 (TCON.1)  
TF0 (TCON.5)  
IE1 (TCON.3)  
TF1 (TCON.7)  
Y
Y
Y
Y
Y
Y
Y
Y
0
0
0
0
EX0 (IE.0) PX0 (IP.0)  
ET0 (IE.1) PT0 (IP.1)  
EX1 (IE.2) PX1 (IP.2)  
ET1 (IE.3) PT1 (IP.3)  
Timer 1 Overflow  
0x001B  
RI0 (SCON0.0)  
TI0 (SCON0.1)  
TF2 (TMR2CN.7)  
EXF2 (TMR2CN.6)  
SPIF (SPI0CN.7)  
WCOL (SPI0CN.6)  
MODF (SPI0CN.5)  
RXOVRN (SPI0CN.4)  
UART0  
0x0023  
4
5
Y
Y
0
0
ES0 (IE.4) PS0 (IP.4)  
ET2 (IE.5) PT2 (IP.5)  
Timer 2  
0x002B  
ESPI0  
PSPI0  
Serial Peripheral Interface 0x0033  
6
Y
0
(EIE1.0) (EIP1.0)  
ESMB0  
PSMB0  
SMBus Interface  
0x003B  
7
8
SI (SMB0CN.3)  
Y
Y
Y
Y
Y
Y
0
0
0
1
1
2
(EIE1.1) (EIP1.1)  
EWADC0 PWADC0  
(EIE1.2) (EIP1.2)  
AD0WINT  
(ADC0CN.1)  
CF (PCA0CN.7)  
CCFn (PCA0CN.n)  
ADC0 Window Comparator 0x0043  
Programmable Counter  
EPCA0  
(EIE1.3) (EIP1.3)  
ECP0F PCP0F  
(EIE1.4) (EIP1.4)  
ECP0R PCP0R  
(EIE1.5) (EIP1.5)  
ECP1F PCP1F  
(EIE1.6) (EIP1.6)  
PPCA0  
0x004B  
Array  
9
Comparator 0 Falling Edge 0x0053  
Comparator 0 Rising Edge 0x005B  
Comparator 1 Falling Edge 0x0063  
10  
11  
12  
CP0FIF (CPT0CN.4)  
CP0RIF (CPT0CN.5)  
CP1FIF (CPT1CN.4)  
Rev. 1.4  
155  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
Table 11.4. Interrupt Summary (Continued)  
Interru  
pt  
Vector  
Priority  
Order  
Enable  
Flag  
Priority  
Control  
Interrupt Source  
Pending Flags  
ECP1R  
PCP1F  
Comparator 1 Rising Edge 0x006B  
Timer 3 0x0073  
ADC0 End of Conversion 0x007B  
Timer 4 0x0083  
13  
14  
15  
16  
17  
CP1RIF (CPT1CN.5)  
Y
Y
Y
Y
Y
Y
2
1
0
2
2
2
(EIE1.7) (EIP1.7)  
ET3 PT3  
(EIE2.0) (EIP2.0)  
EADC0 PADC0  
(EIE2.1) (EIP2.1)  
ET4 PT4  
(EIE2.2) (EIP2.2)  
EWADC2 PWADC2  
(EIE2.3) (EIP2.3)  
TF3 (TMR3CN.7)  
EXF3 (TMR3CN.6)  
AD0INT (ADC0CN.5)  
TF4 (TMR4CN.7)  
EXF4 (TMR4CN.7)  
AD2WINT  
ADC2 Window Comparator 0x008B  
ADC2 End of Conversion 0x0093  
(ADC2CN.0)  
EADC2  
(EIE2.4) (EIP2.4)  
PADC2  
18  
19  
20  
AD2INT (ADC2CN.5)  
RESERVED  
UART1  
0x009B  
0x00A3  
N/A  
N/A N/A N/A N/A  
ES1  
N/A  
PS1  
RI1 (SCON1.0)  
TI1 (SCON1.1)  
Y
1
(EIE2.6) (EIP2.6)  
11.3.3. Interrupt Priorities  
Each interrupt source can be individually programmed to one of two priority levels: low or high. A low prior-  
ity interrupt service routine can be preempted by a high priority interrupt. A high priority interrupt cannot be  
preempted. Each interrupt has an associated interrupt priority bit in an SFR (IP-EIP2) used to configure its  
priority level. Low priority is the default. If two interrupts are recognized simultaneously, the interrupt with  
the higher priority is serviced first. If both interrupts have the same priority level, a fixed priority order is  
used to arbitrate, given in Table 11.4.  
11.3.4. Interrupt Latency  
Interrupt response time depends on the state of the CPU when the interrupt occurs. Pending interrupts are  
sampled and priority decoded each system clock cycle. Therefore, the fastest possible response time is  
5 system clock cycles: 1 clock cycle to detect the interrupt and 4 clock cycles to complete the LCALL to the  
ISR. Additional clock cycles will be required if a cache miss occurs (see Section “16. Branch Target  
Cache” on page 211 for more details). If an interrupt is pending when a RETI is executed, a single instruc-  
tion is executed before an LCALL is made to service the pending interrupt. Therefore, the maximum  
response time for an interrupt (when no other interrupt is currently being serviced or the new interrupt is of  
greater priority) is when the CPU is performing an RETI instruction followed by a DIV as the next instruc-  
tion, and a cache miss event also occurs. If the CPU is executing an ISR for an interrupt with equal or  
higher priority, the new interrupt will not be serviced until the current ISR completes, including the RETI  
and following instruction.  
156  
Rev. 1.4  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
11.3.5. Interrupt Register Descriptions  
The SFRs used to enable the interrupt sources and set their priority level are described below. Refer to the  
datasheet section associated with a particular on-chip peripheral for information regarding valid interrupt  
conditions for the peripheral and the behavior of its interrupt-pending flag(s).  
SFR Definition 11.12. IE: Interrupt Enable  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Reset Value  
EA  
IEGF0  
ET2  
ES0  
ET1  
EX1  
ET0  
EX0  
00000000  
Bit  
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Bit0  
Addressable  
SFR Address: 0xA8  
SFR Page: All Pages  
Bit7:  
EA: Enable All Interrupts.  
This bit globally enables/disables all interrupts. It overrides the individual interrupt mask set-  
tings.  
0: Disable all interrupt sources.  
1: Enable each interrupt according to its individual mask setting.  
IEGF0: General Purpose Flag 0.  
This is a general purpose flag for use under software control.  
ET2: Enabler Timer 2 Interrupt.  
Bit6:  
Bit5:  
This bit sets the masking of the Timer 2 interrupt.  
0: Disable Timer 2 interrupt.  
1: Enable Timer 2 interrupt.  
Bit4:  
Bit3:  
Bit2:  
Bit1:  
Bit0:  
ES0: Enable UART0 Interrupt.  
This bit sets the masking of the UART0 interrupt.  
0: Disable UART0 interrupt.  
1: Enable UART0 interrupt.  
ET1: Enable Timer 1 Interrupt.  
This bit sets the masking of the Timer 1 interrupt.  
0: Disable Timer 1 interrupt.  
1: Enable Timer 1 interrupt.  
EX1: Enable External Interrupt 1.  
This bit sets the masking of External Interrupt 1.  
0: Disable External Interrupt 1.  
1: Enable External Interrupt 1.  
ET0: Enable Timer 0 Interrupt.  
This bit sets the masking of the Timer 0 interrupt.  
0: Disable Timer 0 interrupts.  
1: Enable Timer 0 interrupts.  
EX0: Enable External Interrupt 0.  
This bit sets the masking of External Interrupt 0.  
0: Disable External Interrupt 0.  
1: Enable External Interrupt 0.  
Rev. 1.4  
157  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
SFR Definition 11.13. IP: Interrupt Priority  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Reset Value  
-
-
PT2  
PS0  
PT1  
PX1  
PT0  
PX0  
11000000  
Bit  
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Bit0  
Addressable  
SFR Address: 0xB8  
SFR Page: All Pages  
Bits7–6: UNUSED. Read = 11b, Write = don't care.  
Bit5:  
Bit4:  
Bit3:  
Bit2:  
Bit1:  
Bit0:  
PT2: Timer 2 Interrupt Priority Control.  
This bit sets the priority of the Timer 2 interrupt.  
0: Timer 2 interrupt set to low priority.  
1: Timer 2 interrupt set to high priority.  
PS0: UART0 Interrupt Priority Control.  
This bit sets the priority of the UART0 interrupt.  
0: UART0 interrupt set to low priority.  
1: UART0 interrupts set to high priority.  
PT1: Timer 1 Interrupt Priority Control.  
This bit sets the priority of the Timer 1 interrupt.  
0: Timer 1 interrupt set to low priority.  
1: Timer 1 interrupts set to high priority.  
PX1: External Interrupt 1 Priority Control.  
This bit sets the priority of the External Interrupt 1 interrupt.  
0: External Interrupt 1 set to low priority.  
1: External Interrupt 1 set to high priority.  
PT0: Timer 0 Interrupt Priority Control.  
This bit sets the priority of the Timer 0 interrupt.  
0: Timer 0 interrupt set to low priority.  
1: Timer 0 interrupt set to high priority.  
PX0: External Interrupt 0 Priority Control.  
This bit sets the priority of the External Interrupt 0 interrupt.  
0: External Interrupt 0 set to low priority.  
1: External Interrupt 0 set to high priority.  
158  
Rev. 1.4  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
SFR Definition 11.14. EIE1: Extended Interrupt Enable 1  
R/W  
ECP1R  
Bit7  
R/W  
ECP1F  
Bit6  
R/W  
ECP0R  
Bit5  
R/W  
ECP0F  
Bit4  
R/W  
R/W  
R/W  
R/W  
Reset Value  
EPCA0 EWADC0 ESMB0  
Bit3  
ESPI0 00000000  
Bit0  
Bit2  
Bit1  
SFR Address: 0xE6  
SFR Page: All Pages  
Bit7:  
ECP1R: Enable Comparator1 (CP1) Rising Edge Interrupt.  
This bit sets the masking of the CP1 rising edge interrupt.  
0: Disable CP1 rising edge interrupts.  
1: Enable CP1 rising edge interrupts.  
Bit6:  
Bit5:  
Bit4:  
Bit3:  
Bit2:  
Bit1:  
Bit0:  
ECP1F: Enable Comparator1 (CP1) Falling Edge Interrupt.  
This bit sets the masking of the CP1 falling edge interrupt.  
0: Disable CP1 falling edge interrupts.  
1: Enable CP1 falling edge interrupts.  
ECP0R: Enable Comparator0 (CP0) Rising Edge Interrupt.  
This bit sets the masking of the CP0 rising edge interrupt.  
0: Disable CP0 rising edge interrupts.  
1: Enable CP0 rising edge interrupts.  
ECP0F: Enable Comparator0 (CP0) Falling Edge Interrupt.  
This bit sets the masking of the CP0 falling edge interrupt.  
0: Disable CP0 falling edge interrupts.  
1: Enable CP0 falling edge interrupts.  
EPCA0: Enable Programmable Counter Array (PCA0) Interrupt.  
This bit sets the masking of the PCA0 interrupts.  
0: Disable PCA0 interrupts.  
1: Enable PCA0 interrupts.  
EWADC0: Enable Window Comparison ADC0 Interrupt.  
This bit sets the masking of ADC0 Window Comparison interrupt.  
0: Disable ADC0 Window Comparison Interrupt.  
1: Enable ADC0 Window Comparison Interrupt.  
ESMB0: Enable System Management Bus (SMBus0) Interrupt.  
This bit sets the masking of the SMBus interrupt.  
0: Disable SMBus interrupts.  
1: Enable SMBus interrupts.  
ESPI0: Enable Serial Peripheral Interface (SPI0) Interrupt.  
This bit sets the masking of SPI0 interrupt.  
0: Disable SPI0 interrupts.  
1: Enable SPI0 interrupts.  
Rev. 1.4  
159  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
SFR Definition 11.15. EIE2: Extended Interrupt Enable 2  
R/W  
-
R/W  
ES1  
Bit6  
R/W  
-
R/W  
R/W  
R/W  
ET4  
Bit2  
R/W  
EADC0  
Bit1  
R/W  
ET3  
Bit0  
Reset Value  
EADC2 EWADC2  
Bit4  
00000000  
Bit7  
Bit5  
Bit3  
SFR Address: 0xE7  
SFR Page: All Pages  
Bit7:  
Bit6:  
UNUSED. Read = 0b, Write = don't care.  
ES1: Enable UART1 Interrupt.  
This bit sets the masking of the UART1 interrupt.  
0: Disable UART1 interrupts.  
1: Enable UART1 interrupts.  
Bit5:  
Bit4:  
UNUSED. Read = 0b, Write = don't care.  
EADC2: Enable ADC2 End Of Conversion Interrupt.  
This bit sets the masking of the ADC2 End of Conversion interrupt.  
0: Disable ADC2 End of Conversion interrupts.  
1: Enable ADC2 End of Conversion Interrupts.  
EWADC2: Enable Window Comparison ADC2 Interrupt.  
This bit sets the masking of ADC2 Window Comparison interrupt.  
0: Disable ADC2 Window Comparison Interrupts.  
1: Enable ADC2 Window Comparison Interrupts.  
ET4: Enable Timer 4 Interrupt  
This bit sets the masking of the Timer 4 interrupt.  
0: Disable Timer 4 interrupts.  
1: Enable Timer 4 interrupts.  
EADC0: Enable ADC0 End of Conversion Interrupt.  
This bit sets the masking of the ADC0 End of Conversion Interrupt.  
0: Disable ADC0 End of Conversion Interrupts.  
1: Enable ADC0 End of Conversion Interrupts.  
ET3: Enable Timer 3 Interrupt.  
Bit3:  
Bit2:  
Bit1:  
Bit0:  
This bit sets the masking of the Timer 3 interrupt.  
0: Disable Timer 3 interrupts.  
1: Enable Timer 3 interrupts.  
160  
Rev. 1.4  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
SFR Definition 11.16. EIP1: Extended Interrupt Priority 1  
R/W  
PCP1R  
Bit7  
R/W  
PCP1F  
Bit6  
R/W  
PCP0R  
Bit5  
R/W  
PCP0F  
Bit4  
R/W  
R/W  
R/W  
R/W  
Reset Value  
PPCA0 PWADC0 PSMB0  
Bit3  
PSPI0 00000000  
Bit0  
Bit2  
Bit1  
SFR Address: 0xF6  
SFR Page: All Pages  
Bit7:  
PCP1R: Comparator1 (CP1) Rising Interrupt Priority Control.  
This bit sets the priority of the CP1 interrupt.  
0: CP1 rising interrupt set to low priority.  
1: CP1 rising interrupt set to high priority.  
Bit6:  
Bit5:  
Bit4:  
Bit3:  
Bit2:  
Bit1:  
Bit0:  
PCP1F: Comparator1 (CP1) Falling Interrupt Priority Control.  
This bit sets the priority of the CP1 interrupt.  
0: CP1 falling interrupt set to low priority.  
1: CP1 falling interrupt set to high priority.  
PCP0R: Comparator0 (CP0) Rising Interrupt Priority Control.  
This bit sets the priority of the CP0 interrupt.  
0: CP0 rising interrupt set to low priority.  
1: CP0 rising interrupt set to high priority.  
PCP0F: Comparator0 (CP0) Falling Interrupt Priority Control.  
This bit sets the priority of the CP0 interrupt.  
0: CP0 falling interrupt set to low priority.  
1: CP0 falling interrupt set to high priority.  
PPCA0: Programmable Counter Array (PCA0) Interrupt Priority Control.  
This bit sets the priority of the PCA0 interrupt.  
0: PCA0 interrupt set to low priority.  
1: PCA0 interrupt set to high priority.  
PWADC0: ADC0 Window Comparator Interrupt Priority Control.  
This bit sets the priority of the ADC0 Window interrupt.  
0: ADC0 Window interrupt set to low priority.  
1: ADC0 Window interrupt set to high priority.  
PSMB0: System Management Bus (SMBus0) Interrupt Priority Control.  
This bit sets the priority of the SMBus0 interrupt.  
0: SMBus interrupt set to low priority.  
1: SMBus interrupt set to high priority.  
PSPI0: Serial Peripheral Interface (SPI0) Interrupt Priority Control.  
This bit sets the priority of the SPI0 interrupt.  
0: SPI0 interrupt set to low priority.  
1: SPI0 interrupt set to high priority.  
Rev. 1.4  
161  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
SFR Definition 11.17. EIP2: Extended Interrupt Priority 2  
R/W  
-
R/W  
PS1  
Bit6  
R/W  
-
R/W  
R/W  
R/W  
PT4  
Bit2  
R/W  
PADC0  
Bit1  
R/W  
PT3  
Bit0  
Reset Value  
PADC2 PWADC2  
Bit4  
00000000  
Bit7  
Bit5  
Bit3  
SFR Address: 0xF7  
SFR Page: All Pages  
Bit7:  
Bit6:  
UNUSED. Read = 0b, Write = don't care.  
ES1: UART1 Interrupt Priority Control.  
This bit sets the priority of the UART1 interrupt.  
0: UART1 interrupt set to low priority.  
1: UART1 interrupt set to high priority.  
UNUSED. Read = 0b, Write = don't care.  
Bit5:  
Bit4:  
PADC2: ADC2 End Of Conversion Interrupt Priority Control.  
This bit sets the priority of the ADC2 End of Conversion interrupt.  
0: ADC2 End of Conversion interrupt set to low priority.  
1: ADC2 End of Conversion interrupt set to high priority.  
PWADC2: ADC2 Window Compare Interrupt Priority Control.  
This bit sets the priority of the ADC2 Window Compare interrupt.  
0: ADC2 Window Compare interrupt set to low priority.  
1: ADC2 Window Compare interrupt set to high priority.  
PT4: Timer 4 Interrupt Priority Control.  
This bit sets the priority of the Timer 4 interrupt.  
0: Timer 4 interrupt set to low priority.  
1: Timer 4 interrupt set to high priority.  
PADC0: ADC0 End of Conversion Interrupt Priority Control.  
This bit sets the priority of the ADC0 End of Conversion Interrupt.  
0: ADC0 End of Conversion interrupt set to low priority.  
1: ADC0 End of Conversion interrupt set to high priority.  
PT3: Timer 3 Interrupt Priority Control.  
Bit3:  
Bit2:  
Bit1:  
Bit0:  
This bit sets the priority of the Timer 3 interrupts.  
0: Timer 3 interrupt set to low priority.  
1: Timer 3 interrupt set to high priority.  
162  
Rev. 1.4  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
11.4. Power Management Modes  
The CIP-51 core has two software programmable power management modes: Idle and Stop. Idle mode  
halts the CPU while leaving the external peripherals and internal clocks active. In Stop mode, the CPU is  
halted, all interrupts and timers (except the Missing Clock Detector) are inactive, and the system clock is  
stopped. Since clocks are running in Idle mode, power consumption is dependent upon the system clock  
frequency and the number of peripherals left in active mode before entering Idle. Stop mode consumes the  
least power. SFR Definition 11.18 describes the Power Control Register (PCON) used to control the CIP-  
51's power management modes.  
Although the CIP-51 has Idle and Stop modes built in (as with any standard 8051 architecture), power  
management of the entire MCU is better accomplished by enabling/disabling individual peripherals as  
needed. Each analog peripheral can be disabled when not in use and put into low power mode. Digital  
peripherals, such as timers or serial buses, draw little power whenever they are not in use. Turning off the  
Flash memory saves power, similar to entering Idle mode. Turning off the oscillator saves even more  
power, but requires a reset to restart the MCU.  
11.4.1. Idle Mode  
Setting the Idle Mode Select bit (PCON.0) causes the CIP-51 to halt the CPU and enter Idle mode as soon  
as the instruction that sets the bit completes. All internal registers and memory maintain their original  
data. All analog and digital peripherals can remain active during Idle mode.  
Idle mode is terminated when an enabled interrupt or RST is asserted. The assertion of an enabled inter-  
rupt will cause the Idle Mode Selection bit (PCON.0) to be cleared and the CPU to resume operation. The  
pending interrupt will be serviced and the next instruction to be executed after the return from interrupt  
(RETI) will be the instruction immediately following the one that set the Idle Mode Select bit. If Idle mode is  
terminated by an internal or external reset, the CIP-51 performs a normal reset sequence and begins pro-  
gram execution at address 0x00000.  
If enabled, the WDT will eventually cause an internal watchdog reset and thereby terminate the Idle mode.  
This feature protects the system from an unintended permanent shutdown in the event of an inadvertent  
write to the PCON register. If this behavior is not desired, the WDT may be disabled by software prior to  
entering the Idle mode if the WDT was initially configured to allow this operation. This provides the oppor-  
tunity for additional power savings, allowing the system to remain in the Idle mode indefinitely, waiting for  
an external stimulus to wake up the system. Refer to Section 13 for more information on the use and con-  
figuration of the WDT.  
Note: Any instruction which sets the IDLE bit should be immediately followed by an instruction which has  
two or more opcode bytes. For example:  
// in ‘C’:  
PCON |= 0x01;  
PCON = PCON;  
// Set IDLE bit  
// ... Followed by a 3-cycle Dummy Instruction  
; in assembly:  
ORL PCON, #01h  
MOV PCON, PCON  
; Set IDLE bit  
; ... Followed by a 3-cycle Dummy Instruction  
If the instruction following the write to the IDLE bit is a single-byte instruction and an interrupt occurs during  
the execution of the instruction of the instruction which sets the IDLE bit, the CPU may not wake from IDLE  
mode when a future interrupt occurs.  
Rev. 1.4  
163  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
11.4.2. Stop Mode  
Setting the Stop Mode Select bit (PCON.1) causes the CIP-51 to enter Stop mode as soon as the instruc-  
tion that sets the bit completes. In Stop mode, the CPU and oscillators are stopped, effectively shutting  
down all digital peripherals. Each analog peripheral must be shut down individually prior to entering Stop  
Mode. Stop mode can only be terminated by an internal or external reset. On reset, the CIP-51 performs  
the normal reset sequence and begins program execution at address 0x00000.  
If enabled, the Missing Clock Detector will cause an internal reset and thereby terminate the Stop mode.  
The Missing Clock Detector should be disabled if the CPU is to be put to sleep for longer than the MCD  
timeout of 100 µs.  
SFR Definition 11.18. PCON: Power Control  
R/W  
-
R/W  
-
R/W  
-
R/W  
-
R/W  
-
R/W  
-
R/W  
STOP  
Bit1  
R/W  
IDLE  
Bit0  
Reset Value  
00000000  
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
SFR Address: 0x87  
SFR Page: All Pages  
Bits7–3: Reserved.  
Bit1:  
STOP: STOP Mode Select.  
Writing a ‘1’ to this bit will place the CIP-51 into STOP mode. This bit will always read ‘0’.  
1: CIP-51 forced into power-down mode. (Turns off oscillator).  
IDLE: IDLE Mode Select.  
Bit0:  
Writing a ‘1’ to this bit will place the CIP-51 into IDLE mode. This bit will always read ‘0’.  
1: CIP-51 forced into IDLE mode. (Shuts off clock to CPU, but clock to Timers, Interrupts,  
and all peripherals remain active.)  
164  
Rev. 1.4  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
12. Multiply And Accumulate (MAC0)  
The C8051F120/1/2/3 and C8051F130/1/2/3 devices include a multiply and accumulate engine which can  
be used to speed up many mathematical operations. MAC0 contains a 16-by-16 bit multiplier and a 40-bit  
adder, which can perform integer or fractional multiply-accumulate and multiply operations on signed input  
values in two SYSCLK cycles. A rounding engine provides a rounded 16-bit fractional result after an addi-  
tional (third) SYSCLK cycle. MAC0 also contains a 1-bit arithmetic shifter that will left or right-shift the con-  
tents of the 40-bit accumulator in a single SYSCLK cycle. Figure 12.1 shows a block diagram of the MAC0  
unit and its associated Special Function Registers.  
MAC0 A Register  
MAC0 B Register  
MAC0AH MAC0AL  
MAC0BH MAC0BL  
MAC0MS  
MAC0FM  
16 x 16 Multiply  
0
1
0
40 bit Add  
MAC0 Accumulator  
MAC0OVR  
1 bit Shift  
MAC0ACC3 MAC0ACC2 MAC0ACC1 MAC0ACC0  
Rounding Engine  
Flag Logic  
MAC0 Rounding Register  
MAC0RNDH MAC0RNDL  
MAC0CF  
MAC0STA  
Figure 12.1. MAC0 Block Diagram  
12.1. Special Function Registers  
There are thirteen Special Function Register (SFR) locations associated with MAC0. Two of these regis-  
ters are related to configuration and operation, while the other eleven are used to store multi-byte input  
and output data for MAC0. The Configuration register MAC0CF (SFR Definition 12.1) is used to configure  
and control MAC0. The Status register MAC0STA (SFR Definition 12.2) contains flags to indicate overflow  
conditions, as well as zero and negative results. The 16-bit MAC0A (MAC0AH:MAC0AL) and MAC0B  
(MAC0BH:MAC0BL) registers are used as inputs to the multiplier. The MAC0 Accumulator register is 40  
bits long, and consists of five SFRs: MAC0OVR, MAC0ACC3, MAC0ACC2, MAC0ACC1, and  
MAC0ACC0. The primary results of a MAC0 operation are stored in the Accumulator registers. If they are  
needed, the rounded results are stored in the 16-bit Rounding Register MAC0RND  
(MAC0RNDH:MAC0RNDL).  
Rev. 1.4  
165  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
12.2. Integer and Fractional Math  
MAC0 is capable of interpreting the 16-bit inputs stored in MAC0A and MAC0B as signed integers or as  
signed fractional numbers. When the MAC0FM bit (MAC0CF.1) is cleared to ‘0’, the inputs are treated as  
16-bit, 2’s complement, integer values. After the operation, the accumulator will contain a 40-bit, 2’s com-  
plement, integer value. Figure 12.2 shows how integers are stored in the SFRs.  
MAC0A and MAC0B Bit Weighting  
High Byte  
Low Byte  
-(215) 214  
213  
212  
211  
210  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
MAC0 Accumulator Bit Weighting  
MAC0ACC3 : MAC0ACC2 : MAC0ACC1 : MAC0ACC0  
MAC0OVR  
-(239) 238  
233  
232  
231  
230  
229  
228  
24  
23  
22  
21  
20  
Figure 12.2. Integer Mode Data Representation  
When the MAC0FM bit is set to ‘1’, the inputs are treated at 16-bit, 2’s complement, fractional values. The  
decimal point is located between bits 15 and 14 of the data word. After the operation, the accumulator will  
contain a 40-bit, 2’s complement, fractional value, with the decimal point located between bits 31 and 30.  
Figure 12.3 shows how fractional numbers are stored in the SFRs.  
MAC0A, and MAC0B Bit Weighting  
High Byte  
Low Byte  
-1  
2-1  
27  
1
2-2  
2-3  
2-4  
2-5  
2-6  
2-7  
2-8  
2-9  
2-10 2-11 2-12 2-13 2-14 2-15  
MAC0 Accumulator Bit Weighting  
MAC0OVR  
MAC0ACC3 : MAC0ACC2 : MAC0ACC1 : MAC0ACC0  
-(28)  
22  
21  
20  
2-1  
2-2  
2-3  
2-27 2-28 2-29 2-30 2-31  
MAC0RND Bit Weighting  
High Byte  
2-3  
Low Byte  
2-9 2-10 2-11 2-12 2-13 2-14 2-15  
* -2  
2-1  
2-2  
2-4  
2-5  
2-6  
2-7  
2-8  
* The MAC0RND register contains the 16 LSBs of a two's complement number. The MAC0N Flag can be  
used to determine the sign of the MAC0RND register.  
Figure 12.3. Fractional Mode Data Representation  
166  
Rev. 1.4  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
12.3. Operating in Multiply and Accumulate Mode  
MAC0 operates in Multiply and Accumulate (MAC) mode when the MAC0MS bit (MAC0CF.0) is cleared to  
‘0’. When operating in MAC mode, MAC0 performs a 16-by-16 bit multiply on the contents of the MAC0A  
and MAC0B registers, and adds the result to the contents of the 40-bit MAC0 accumulator. Figure 12.4  
shows the MAC0 pipeline. There are three stages in the pipeline, each of which takes exactly one SYS-  
CLK cycle to complete. The MAC operation is initiated with a write to the MAC0BL register. After the  
MAC0BL register is written, MAC0A and MAC0B are multiplied on the first SYSCLK cycle. During the sec-  
ond stage of the MAC0 pipeline, the results of the multiplication are added to the current accumulator con-  
tents, and the result of the addition is stored in the MAC0 accumulator. The status flags in the MAC0STA  
register are set after the end of the second pipeline stage. During the second stage of the pipeline, the next  
multiplication can be initiated by writing to the MAC0BL register, if it is desired. The rounded (and option-  
ally, saturated) result is available in the MAC0RNDH and MAC0RNDL registers at the end of the third pipe-  
line stage. If the MAC0CA bit (MAC0CF.3) is set to ‘1’ when the MAC operation is initiated, the accumulator  
and all MAC0STA flags will be cleared during the next cycle of the controller’s clock (SYSCLK). The  
MAC0CA bit will clear itself to ‘0’ when the clear operation is complete.  
MAC0 Operation  
Begins  
Accumulator  
Results Available  
Rounded Results  
Available  
Write  
Multiply  
MAC0BL  
Add  
Round  
Write  
MAC0BL  
Multiply  
Add  
Round  
Next MAC0  
Operation May  
Be Initiated  
Here  
Figure 12.4. MAC0 Pipeline  
12.4. Operating in Multiply Only Mode  
MAC0 operates in Multiply Only mode when the MAC0MS bit (MAC0CF.0) is set to ‘1’. Multiply Only mode  
is identical to Multiply and Accumulate mode, except that the multiplication result is added with a value of  
zero before being stored in the MAC0 accumulator (i.e. it overwrites the current accumulator contents).  
The result of the multiplication is available in the MAC0 accumulator registers at the end of the second  
MAC0 pipeline stage (two SYSCLKs after writing to MAC0BL). As in MAC mode, the rounded result is  
available in the MAC0 Rounding Registers after the third pipeline stage. Note that in Multiply Only mode,  
the MAC0HO flag is not affected.  
12.5. Accumulator Shift Operations  
MAC0 contains a 1-bit arithmetic shift function which can be used to shift the contents of the 40-bit accu-  
mulator left or right by one bit. The accumulator shift is initiated by writing a ‘1’ to the MAC0SC bit  
(MAC0CF.5), and takes one SYSCLK cycle (the rounded result is available in the MAC0 Rounding Regis-  
ters after a second SYSCLK cycle, and MAC0SC is cleared to ‘0’). The direction of the arithmetic shift is  
controlled by the MAC0SD bit (MAC0CF.4). When this bit is cleared to ‘0’, the MAC0 accumulator will shift  
left. When the MAC0SD bit is set to ‘1’, the MAC0 accumulator will shift right. Right-shift operations are  
sign-extended with the current value of bit 39. Note that the status flags in the MAC0STA register are not  
affected by shift operations.  
Rev. 1.4  
167  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
12.6. Rounding and Saturation  
A Rounding Engine is included, which can be used to provide a rounded result when operating on frac-  
tional numbers. MAC0 uses an unbiased rounding algorithm to round the data stored in bits 3116 of the  
accumulator, as shown in Table 12.1. Rounding occurs during the third stage of the MAC0 pipeline, after  
any shift operation, or on a write to the LSB of the accumulator. The rounded results are stored in the  
rounding registers: MAC0RNDH (SFR Definition 12.12) and MAC0RNDL (SFR Definition 12.13). The  
accumulator registers are not affected by the rounding engine. Although rounding is primarily used for frac-  
tional data, the data in the rounding registers is updated in the same way when operating in integer mode.  
Table 12.1. MAC0 Rounding (MAC0SAT = 0)  
Accumulator Bits 15–0  
Accumulator Bits 31–16  
Rounding Rounded Results  
(MAC0ACC1:MAC0ACC0) (MAC0ACC3:MAC0ACC2) Direction (MAC0RNDH:MAC0RNDL)  
Greater Than 0x8000  
Less Than 0x8000  
Equal To 0x8000  
Equal To 0x8000  
Anything  
Up  
(MAC0ACC3:MAC0ACC2) + 1  
(MAC0ACC3:MAC0ACC2)  
(MAC0ACC3:MAC0ACC2) + 1  
(MAC0ACC3:MAC0ACC2)  
Anything  
Down  
Up  
Odd (LSB = 1)  
Even (LSB = 0)  
Down  
The rounding engine can also be used to saturate the results stored in the rounding registers. If the  
MAC0SAT bit is set to ‘1’ and the rounding register overflows, the rounding registers will saturate. When a  
positive overflow occurs, the rounding registers will show a value of 0x7FFF when saturated. For a nega-  
tive overflow, the rounding registers will show a value of 0x8000 when saturated. If the MAC0SAT bit is  
cleared to ‘0’, the rounding registers will not saturate.  
12.7. Usage Examples  
This section details some software examples for using MAC0. Section 12.7.1 shows a series of two MAC  
operations using fractional numbers. Section 12.7.2 shows a single operation in Multiply Only mode with  
integer numbers. The last example, shown in Section 12.7.3, demonstrates how the left-shift and right-  
shift operations can be used to modify the accumulator. All of the examples assume that all of the flags in  
the MAC0STA register are initially set to ‘0’.  
12.7.1. Multiply and Accumulate Example  
The example below implements the equation:  
0.5 0.25+ 0.5 –0.25= 0.125 – 0.125 = 0.0  
MOV  
MOV  
MOV  
MOV  
MOV  
MOV  
MOV  
NOP  
NOP  
MAC0CF, #0Ah  
MAC0AH, #40h  
MAC0AL, #00h  
MAC0BH, #20h  
MAC0BL, #00h  
MAC0BH, #E0h  
MAC0BL, #00h  
; Set to Clear Accumulator, Use fractional numbers  
; Load MAC0A register with 4000 hex = 0.5 decimal  
; Load MAC0B register with 2000 hex = 0.25 decimal  
; This line initiates the first MAC operation  
; Load MAC0B register with E000 hex = -0.25 decimal  
; This line initiates the second MAC operation  
; After this instruction, the Accumulator should be equal to 0,  
; and the MAC0STA register should be 0x04, indicating a zero  
; After this instruction, the Rounding register is updated  
NOP  
168  
Rev. 1.4  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
12.7.2. Multiply Only Example  
The example below implements the equation:  
4660 –292 = –1360720  
MOV  
MOV  
MOV  
MOV  
MOV  
NOP  
NOP  
MAC0CF, #01h  
MAC0AH, #12h  
MAC0AL, #34h  
MAC0BH, #FEh  
MAC0BL, #DCh  
; Use integer numbers, and multiply only mode (add to zero)  
; Load MAC0A register with 1234 hex = 4660 decimal  
; Load MAC0B register with FEDC hex = -292 decimal  
; This line initiates the Multiply operation  
; After this instruction, the Accumulator should be equal to  
; FFFFEB3CB0 hex = -1360720 decimal. The MAC0STA register should  
; be 0x01, indicating a negative result.  
NOP  
; After this instruction, the Rounding register is updated  
12.7.3. MAC0 Accumulator Shift Example  
The example below shifts the MAC0 accumulator left one bit, and then right two bits:  
MOV  
MOV  
MOV  
MOV  
MOV  
MOV  
NOP  
NOP  
MOV  
MOV  
NOP  
NOP  
MAC0OVR, #40h  
MAC0ACC3, #88h ; 4088442211 Hex.  
MAC0ACC2, #44h  
MAC0ACC1, #22h  
MAC0ACC0, #11h  
; The next few instructions load the accumulator with the value  
MAC0CF, #20h  
; Initiate a Left-shift  
; After this instruction, the accumulator should be 0x8110884422  
; The rounding register is updated after this instruction  
; Initiate a Right-shift  
; Initiate a second Right-shift  
; After this instruction, the accumulator should be 0xE044221108  
; The rounding register is updated after this instruction  
MAC0CF, #30h  
MAC0CF, #30h  
Rev. 1.4  
169  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
SFR Definition 12.1. MAC0CF: MAC0 Configuration  
R
-
R
-
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Reset Value  
MAC0SC MAC0SD MAC0CA MAC0SAT MAC0FM MAC0MS 00000000  
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Bit0  
SFR Address: 0xC3  
SFR Page: 3  
Bits 76: UNUSED: Read = 00b, Write = don’t care.  
Bit 5:  
Bit 4:  
Bit 3:  
MAC0SC: Accumulator Shift Control.  
When set to 1, the 40-bit MAC0 Accumulator register will be shifted during the next SYSCLK  
cycle. The direction of the shift (left or right) is controlled by the MAC0RS bit.  
This bit is cleared to ‘0’ by hardware when the shift is complete.  
MAC0SD: Accumulator Shift Direction.  
This bit controls the direction of the accumulator shift activated by the MAC0SC bit.  
0: MAC0 Accumulator will be shifted left.  
1: MAC0 Accumulator will be shifted right.  
MAC0CA: Clear Accumulator.  
This bit is used to reset MAC0 before the next operation.  
When set to ‘1’, the MAC0 Accumulator will be cleared to zero and the MAC0 Status regis-  
ter will be reset during the next SYSCLK cycle.  
This bit will be cleared to ‘0’ by hardware when the reset is complete.  
MAC0SAT: Saturate Rounding Register.  
Bit 2:  
This bit controls whether the Rounding Register will saturate. If this bit is set and a Soft  
Overflow occurs, the Rounding Register will saturate. This bit does not affect the operation  
of the MAC0 Accumulator. See Section 12.6 for more details about rounding and saturation.  
0: Rounding Register will not saturate.  
1: Rounding Register will saturate.  
Bit 1:  
Bit 0:  
MAC0FM: Fractional Mode.  
This bit selects between Integer Mode and Fractional Mode for MAC0 operations.  
0: MAC0 operates in Integer Mode.  
1: MAC0 operates in Fractional Mode.  
MAC0MS: Mode Select  
This bit selects between MAC Mode and Multiply Only Mode.  
0: MAC (Multiply and Accumulate) Mode.  
1: Multiply Only Mode.  
Note:  
The contents of this register should not be changed by software during the first two MAC0  
pipeline stages.  
170  
Rev. 1.4  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
SFR Definition 12.2. MAC0STA: MAC0 Status  
R
R
R
R
R/W  
R/W  
R/W  
R/W  
Reset Value  
-
-
-
-
MAC0HO MAC0Z MAC0SO MAC0N 00000100  
Bit  
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Bit0  
Addressable  
SFR Address: 0xC0  
SFR Page: 3  
Bits 74: UNUSED: Read = 0000b, Write = don’t care.  
Bit 3:  
MAC0HO: Hard Overflow Flag.  
This bit is set to ‘1’ whenever an overflow out of the MAC0OVR register occurs during a  
MAC operation (i.e. when MAC0OVR changes from 0x7F to 0x80 or from 0x80 to 0x7F).  
The hard overflow flag must be cleared in software by directly writing it to ‘0’, or by resetting  
the MAC logic using the MAC0CA bit in register MAC0CF.  
MAC0Z: Zero Flag.  
This bit is set to ‘1’ if a MAC0 operation results in an Accumulator value of zero. If the result  
is non-zero, this bit will be cleared to ‘0’.  
MAC0SO: Soft Overflow Flag.  
Bit 2:  
Bit 1:  
This bit is set to ‘1’ when a MAC operation causes an overflow into the sign bit (bit 31) of the  
MAC0 Accumulator. If the overflow condition is corrected after a subsequent MAC opera-  
tion, this bit is cleared to ‘0’.  
Bit 0:  
MAC0N: Negative Flag.  
If the MAC Accumulator result is negative, this bit will be set to ‘1’. If the result is positive or  
zero, this flag will be cleared to ‘0’.  
*Note: The contents of this register should not be changed by software during the first two MAC0 pipeline stages.  
SFR Definition 12.3. MAC0AH: MAC0 A High Byte  
R
R
R
R
R
R
R
R
Reset Value  
00000000  
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Bit0  
SFR Address: 0xC2  
SFR Page: 3  
Bits 70: High Byte (bits 158) of MAC0 A Register.  
Rev. 1.4  
171  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
SFR Definition 12.4. MAC0AL: MAC0 A Low Byte  
R
R
R
R
R
R
R
R
Reset Value  
00000000  
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Bit0  
SFR Address: 0xC1  
SFR Page: 3  
Bits 70: Low Byte (bits 70) of MAC0 A Register.  
SFR Definition 12.5. MAC0BH: MAC0 B High Byte  
R
R
R
R
R
R
R
R
Reset Value  
00000000  
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Bit0  
SFR Address: 0x92  
SFR Page: 3  
Bits 70: High Byte (bits 158) of MAC0 B Register.  
SFR Definition 12.6. MAC0BL: MAC0 B Low Byte  
R
R
R
R
R
R
R
R
Reset Value  
00000000  
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Bit0  
SFR Address: 0x91  
SFR Page: 3  
Bits 70: Low Byte (bits 70) of MAC0 B Register.  
A write to this register initiates a Multiply or Multiply and Accumulate operation.  
*Note: The contents of this register should not be changed by software during the first MAC0 pipeline stage.  
172  
Rev. 1.4  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
SFR Definition 12.7. MAC0ACC3: MAC0 Accumulator Byte 3  
R
R
R
R
R
R
R
R
Reset Value  
00000000  
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Bit0  
SFR Address: 0x96  
SFR Page: 3  
Bits 70: Byte 3 (bits 3124) of MAC0 Accumulator.  
*Note: The contents of this register should not be changed by software during the first two MAC0 pipeline stages.  
SFR Definition 12.8. MAC0ACC2: MAC0 Accumulator Byte 2  
R
R
R
R
R
R
R
R
Reset Value  
00000000  
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Bit0  
SFR Address: 0x95  
SFR Page: 3  
Bits 70: Byte 2 (bits 2316) of MAC0 Accumulator.  
*Note: The contents of this register should not be changed by software during the first two MAC0 pipeline stages.  
SFR Definition 12.9. MAC0ACC1: MAC0 Accumulator Byte 1  
R
R
R
R
R
R
R
R
Reset Value  
00000000  
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Bit0  
SFR Address: 0x94  
SFR Page: 3  
Bits 70: Byte 1 (bits 158) of MAC0 Accumulator.  
*Note: The contents of this register should not be changed by software during the first two MAC0 pipeline stages.  
Rev. 1.4  
173  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
SFR Definition 12.10. MAC0ACC0: MAC0 Accumulator Byte 0  
R
R
R
R
R
R
R
R
Reset Value  
00000000  
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Bit0  
SFR Address: 0x93  
SFR Page: 3  
Bits 70: Byte 0 (bits 70) of MAC0 Accumulator.  
*Note: The contents of this register should not be changed by software during the first two MAC0 pipeline stages.  
SFR Definition 12.11. MAC0OVR: MAC0 Accumulator Overflow  
R
R
R
R
R
R
R
R
Reset Value  
00000000  
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Bit0  
SFR Address: 0x97  
SFR Page: 3  
Bits 70: MAC0 Accumulator Overflow Bits (bits 3932).  
*Note: The contents of this register should not be changed by software during the first two MAC0 pipeline stages.  
SFR Definition 12.12. MAC0RNDH: MAC0 Rounding Register High Byte  
R
R
R
R
R
R
R
R
Reset Value  
00000000  
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Bit0  
SFR Address: 0xCF  
SFR Page: 3  
Bits 70: High Byte (bits 158) of MAC0 Rounding Register.  
174  
Rev. 1.4  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
SFR Definition 12.13. MAC0RNDL: MAC0 Rounding Register Low Byte  
R
R
R
R
R
R
R
R
Reset Value  
00000000  
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Bit0  
SFR Address: 0xCE  
SFR Page: 3  
Bits 70: Low Byte (bits 70) of MAC0 Rounding Register.  
Rev. 1.4  
175  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
176  
Rev. 1.4  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
13. Reset Sources  
Reset circuitry allows the controller to be easily placed in a predefined default condition. On entry to this  
reset state, the following occur:  
CIP-51 halts program execution.  
Special Function Registers (SFRs) are initialized to their defined reset values.  
External port pins are forced to a known configuration.  
Interrupts and timers are disabled.  
All SFRs are reset to the predefined values noted in the SFR detailed descriptions. The contents of internal  
data memory are unaffected during a reset; any previously stored data is preserved. However, since the  
stack pointer SFR is reset, the stack is effectively lost even though the data on the stack are not altered.  
The I/O port latches are reset to 0xFF (all logic 1’s), activating internal weak pullups during and after the  
reset. For V Monitor resets, the RST pin is driven low until the end of the V reset timeout.  
DD  
DD  
On exit from the reset state, the program counter (PC) is reset, and the system clock defaults to the inter-  
nal oscillator running at its lowest frequency. Refer to Section “14. Oscillators” on page 185 for informa-  
tion on selecting and configuring the system clock source. The Watchdog Timer is enabled using its  
longest timeout interval (see Section “13.7. Watchdog Timer Reset” on page 179). Once the system clock  
source is stable, program execution begins at location 0x0000.  
There are seven sources for putting the MCU into the reset state: power-on, power-fail, external RST pin,  
external CNVSTR0 signal, software command, Comparator0, Missing Clock Detector, and Watchdog  
Timer. Each reset source is described in the following sections.  
VDD  
CNVSTR  
(Port  
I/O)  
Crossbar  
Supply  
Monitor  
(CNVSTR  
reset  
enable)  
Supply  
Reset  
Timeout  
+
-
/RST  
(wired-OR)  
Comparator0  
CP0+  
CP0-  
+
-
(CP0  
reset  
enable)  
Reset  
Funnel  
Missing  
Clock  
Detector  
(one-  
shot)  
WDT  
EN  
EN  
PRE  
Internal  
Clock  
Generator  
System  
Clock  
PLL  
Circuitry  
Software Reset  
System Reset  
CIP-51  
Microcontroller  
Core  
XTAL1  
XTAL2  
OSC  
Clock Select  
Extended Interrupt  
Handler  
Figure 13.1. Reset Sources  
Rev. 1.4  
177  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
13.1. Power-on Reset  
The C8051F120/1/2/3/4/5/6/7 family incorporates a power supply monitor that holds the MCU in the reset  
state until V rises above the V  
level during power-up. See Figure 13.2 for timing diagram, and refer  
DD  
RST  
to Table 13.1 for the Electrical Characteristics of the power supply monitor circuit. The RST pin is asserted  
low until the end of the 100 ms V Monitor timeout in order to allow the V supply to stabilize. The V  
DD  
DD  
DD  
Monitor reset is enabled and disabled using the external V monitor enable pin (MONEN). When the V  
DD  
DD  
Monitor is enabled, it is selected as a reset source using the PORSF bit. If the RSTSRC register is written  
by firmware, PORSF (RSTSRC.1) must be written to ‘1’ for the V Monitor to be effective.  
DD  
On exit from a power-on reset, the PORSF flag (RSTSRC.1) is set by hardware to logic 1. All of the other  
reset flags in the RSTSRC Register are indeterminate. PORSF is cleared by all other resets. Since all  
resets cause program execution to begin at the same location (0x0000) software can read the PORSF flag  
to determine if a power-up was the cause of reset. The contents of internal data memory should be  
assumed to be undefined after a power-on reset.  
2.70  
VRST  
2.55  
2.0  
1.0  
t
/RST  
Logic HIGH  
100ms  
100ms  
Logic LOW  
Power-On Reset  
VDD Monitor Reset  
Figure 13.2. Reset Timing  
13.2. Power-fail Reset  
When a power-down transition or power irregularity causes V  
to drop below V , the power supply  
RST  
DD  
monitor will drive the RST pin low and return the CIP-51 to the reset state. When V  
returns to a level  
DD  
above VRST, the CIP-51 will leave the reset state in the same manner as that for the power-on reset (see  
Figure 13.2). Note that even though internal data memory contents are not altered by the power-fail reset,  
it is impossible to determine if V dropped below the level required for data retention. If the PORSF flag is  
DD  
set to logic 1, the data may no longer be valid.  
178  
Rev. 1.4  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
13.3. External Reset  
The external RST pin provides a means for external circuitry to force the MCU into a reset state. Asserting  
the RST pin low will cause the MCU to enter the reset state. It may be desirable to provide an external pul-  
lup and/or decoupling of the RST pin to avoid erroneous noise-induced resets. The MCU will remain in  
reset until at least 12 clock cycles after the active-low RST signal is removed. The PINRSF flag (RST-  
SRC.0) is set on exit from an external reset.  
13.4. Missing Clock Detector Reset  
The Missing Clock Detector is essentially a one-shot circuit that is triggered by the MCU system clock. If  
the system clock goes away for more than 100 µs, the one-shot will time out and generate a reset. After a  
Missing Clock Detector reset, the MCDRSF flag (RSTSRC.2) will be set, signifying the MSD as the reset  
source; otherwise, this bit reads ‘0’. The state of the RST pin is unaffected by this reset. Setting the  
MCDRSF bit, RSTSRC.2 (see Section “14. Oscillators” on page 185) enables the Missing Clock Detector.  
13.5. Comparator0 Reset  
Comparator0 can be configured as a reset input by writing a ‘1’ to the C0RSEF flag (RSTSRC.5).  
Comparator0 should be enabled using CPT0CN.7 (see Section “10. Comparators” on page 119) prior to  
writing to C0RSEF to prevent any turn-on chatter on the output from generating an unwanted reset. The  
Comparator0 reset is active-low: if the non-inverting input voltage (CP0+ pin) is less than the inverting  
input voltage (CP0- pin), the MCU is put into the reset state. After a Comparator0 Reset, the C0RSEF flag  
(RSTSRC.5) will read ‘1’ signifying Comparator0 as the reset source; otherwise, this bit reads ‘0’. The state  
of the RST pin is unaffected by this reset.  
13.6. External CNVSTR0 Pin Reset  
The external CNVSTR0 signal can be configured as a reset input by writing a ‘1’ to the CNVRSEF flag  
(RSTSRC.6). The CNVSTR0 signal can appear on any of the P0, P1, P2 or P3 I/O pins as described in  
Section “18.1. Ports 0 through 3 and the Priority Crossbar Decoder” on page 238. Note that the Cross-  
bar must be configured for the CNVSTR0 signal to be routed to the appropriate Port I/O. The Crossbar  
should be configured and enabled before the CNVRSEF is set. When configured as a reset, CNVSTR0 is  
active-low and level sensitive. CNVSTR0 cannot be used to start ADC0 conversions when it is configured  
as a reset source. After a CNVSTR0 reset, the CNVRSEF flag (RSTSRC.6) will read ‘1’ signifying  
CNVSTR0 as the reset source; otherwise, this bit reads ‘0’. The state of the RST pin is unaffected by this  
reset.  
13.7. Watchdog Timer Reset  
The MCU includes a programmable Watchdog Timer (WDT) running off the system clock. A WDT overflow  
will force the MCU into the reset state. To prevent the reset, the WDT must be restarted by application soft-  
ware before overflow. If the system experiences a software or hardware malfunction preventing the soft-  
ware from restarting the WDT, the WDT will overflow and cause a reset. This should prevent the system  
from running out of control.  
Following a reset the WDT is automatically enabled and running with the default maximum time interval. If  
desired the WDT can be disabled by system software or locked on to prevent accidental disabling. Once  
locked, the WDT cannot be disabled until the next system reset. The state of the RST pin is unaffected by  
this reset.  
The WDT consists of a 21-bit timer running from the programmed system clock. The timer measures the  
period between specific writes to its control register. If this period exceeds the programmed limit, a WDT  
Rev. 1.4  
179  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
reset is generated. The WDT can be enabled and disabled as needed in software, or can be permanently  
enabled if desired. Watchdog features are controlled via the Watchdog Timer Control Register (WDTCN)  
shown in SFR Definition 13.1.  
13.7.1. Enable/Reset WDT  
The watchdog timer is both enabled and reset by writing 0xA5 to the WDTCN register. The user's applica-  
tion software should include periodic writes of 0xA5 to WDTCN as needed to prevent a watchdog timer  
overflow. The WDT is enabled and reset as a result of any system reset.  
13.7.2. Disable WDT  
Writing 0xDE followed by 0xAD to the WDTCN register disables the WDT. The following code segment  
illustrates disabling the WDT:  
CLR  
MOV  
MOV  
SETB  
EA  
; disable all interrupts  
WDTCN,#0DEh ; disable software watchdog timer  
WDTCN,#0ADh  
EA  
; re-enable interrupts  
The writes of 0xDE and 0xAD must occur within 4 clock cycles of each other, or the disable operation is  
ignored. This means that the prefetch engine should be enabled and interrupts should be disabled during  
this procedure to avoid any delay between the two writes.  
13.7.3. Disable WDT Lockout  
Writing 0xFF to WDTCN locks out the disable feature. Once locked out, the disable operation is ignored  
until the next system reset. Writing 0xFF does not enable or reset the watchdog timer. Applications always  
intending to use the watchdog should write 0xFF to WDTCN in the initialization code.  
13.7.4. Setting WDT Interval  
WDTCN.[2:0] control the watchdog timeout interval. The interval is given by the following equation:  
4
3 + WDTCN2 – 0Tsysclk ; where Tsysclk is the system clock period.  
For a 3 MHz system clock, this provides an interval range of 0.021 ms to 349.5 ms. WDTCN.7 must be  
logic 0 when setting this interval. Reading WDTCN returns the programmed interval. WDTCN.[2:0] reads  
111b after a system reset.  
180  
Rev. 1.4  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
SFR Definition 13.1. WDTCN: Watchdog Timer Control  
R/W  
Bit7  
R/W  
Bit6  
R/W  
Bit5  
R/W  
Bit4  
R/W  
Bit3  
R/W  
Bit2  
R/W  
Bit1  
R/W  
Reset Value  
xxxxx111  
Bit0  
SFR Address: 0xFF  
SFR Page: All Pages  
Bits70: WDT Control  
Writing 0xA5 both enables and reloads the WDT.  
Writing 0xDE followed within 4 system clocks by 0xAD disables the WDT.  
Writing 0xFF locks out the disable feature.  
Watchdog Status Bit (when Read)  
Bit4:  
Reading the WDTCN.[4] bit indicates the Watchdog Timer Status.  
0: WDT is inactive  
1: WDT is active  
Bits20: Watchdog Timeout Interval Bits  
The WDTCN.[2:0] bits set the Watchdog Timeout Interval. When writing these bits,  
WDTCN.7 must be set to 0.  
Rev. 1.4  
181  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
SFR Definition 13.2. RSTSRC: Reset Source  
R
-
R/W  
R/W  
R/W  
R
R/W  
R/W  
R/W  
Reset Value  
CNVRSEF C0RSEF SWRSEF WDTRSF MCDRSF PORSF  
PINRSF 00000000  
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Bit0  
SFR Address: 0xEF  
SFR Page: 0  
Bit7:  
Bit6:  
Reserved.  
CNVRSEF: Convert Start 0 Reset Source Enable and Flag  
Write: 0: CNVSTR0 is not a reset source.  
1: CNVSTR0 is a reset source (active low).  
Read: 0: Source of prior reset was not CNVSTR0.  
1: Source of prior reset was CNVSTR0.  
Bit5:  
Bit4:  
C0RSEF: Comparator0 Reset Enable and Flag.  
Write: 0: Comparator0 is not a reset source.  
1: Comparator0 is a reset source (active low).  
Read: 0: Source of last reset was not Comparator0.  
1: Source of last reset was Comparator0.  
SWRSF: Software Reset Force and Flag.  
Write: 0: No effect.  
1: Forces an internal reset. RST pin is not effected.  
Read: 0: Source of last reset was not a write to the SWRSF bit.  
1: Source of last reset was a write to the SWRSF bit.  
WDTRSF: Watchdog Timer Reset Flag.  
0: Source of last reset was not WDT timeout.  
1: Source of last reset was WDT timeout.  
MCDRSF: Missing Clock Detector Flag.  
Bit3:  
Bit2:  
Write: 0: Missing Clock Detector disabled.  
1: Missing Clock Detector enabled; triggers a reset if a missing clock condition is detected.  
Read: 0: Source of last reset was not a Missing Clock Detector timeout.  
1: Source of last reset was a Missing Clock Detector timeout.  
Bit1:  
PORSF: Power-On Reset Flag.  
Write: If the VDD monitor circuitry is enabled (by tying the MONEN pin to a logic high state), this bit can  
be written to select or de-select the VDD monitor as a reset source.  
0: De-select the VDD monitor as a reset source.  
1: Select the VDD monitor as a reset source.  
Important: At power-on, the VDD monitor is enabled/disabled using the external VDD monitor  
enable pin (MONEN). The PORSF bit does not disable or enable the VDD monitor circuit. It sim-  
ply selects the VDD monitor as a reset source.  
Read: This bit is set whenever a power-on reset occurs. This may be due to a true power-on reset or a  
VDD monitor reset. In either case, data memory should be considered indeterminate following the  
reset.  
0: Source of last reset was not a power-on or VDD monitor reset.  
1: Source of last reset was a power-on or VDD monitor reset.  
Note: When this flag is read as '1', all other reset flags are indeterminate.  
PINRSF: HW Pin Reset Flag.  
Bit0:  
Write: 0: No effect.  
1: Forces a Power-On Reset. RST is driven low.  
Read: 0: Source of prior reset was not RST pin.  
1: Source of prior reset was RST pin.  
182  
Rev. 1.4  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
Table 13.1. Reset Electrical Characteristics  
–40 to +85 °C unless otherwise specified.  
Parameter  
Conditions  
= 8.5 mA, V = 2.7 to 3.6 V  
Min  
Typ  
Max  
Units  
I
RST Output Low Voltage  
0.6  
V
OL  
DD  
0.7 x V  
RST Input High Voltage  
RST Input Low Voltage  
RST Input Leakage Current  
0.3 x V  
V
DD  
DD  
RST = 0.0 V  
50  
µA  
V
V
for RST Output Valid  
1.0  
1.0  
2.40  
DD  
AV+ for RST Output Valid  
POR Threshold (V  
V
V
)*  
RST  
2.55  
2.70  
V
DD  
Minimum RST Low Time to Gen-  
erate a System Reset  
10  
80  
ns  
ms  
µs  
RST rising edge after V  
DD  
Reset Time Delay  
100  
220  
120  
500  
crosses V  
threshold  
RST  
Time from last system clock to  
reset initiation  
Missing Clock Detector Timeout  
100  
*Note: When operating at frequencies above 50 MHz, minimum V  
supply Voltage is 3.0 V.  
DD  
Rev. 1.4  
183  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
NOTES:  
184  
Rev. 1.4  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
14. Oscillators  
The devices include a programmable internal oscillator and an external oscillator drive circuit. The internal  
oscillator can be enabled, disabled, and calibrated using the OSCICN and OSCICL registers, as shown in  
Figure 14.1. The system clock can be sourced by the external oscillator circuit, the internal oscillator, or the  
on-chip phase-locked loop (PLL). The internal oscillator's electrical specifications are given in Table 14.1  
on page 185.  
OSCICL  
OSCICN  
CLKSEL  
Option 3  
XTAL1  
AV+  
XTAL2  
Option 4  
XTAL1  
EN  
Calibrated  
Internal  
Oscillator  
n
00  
01  
10  
Option 2  
VDD  
Option 1  
XTAL1  
XTAL2  
SYSCLK  
Input  
Circuit  
OSC  
XTAL1  
PLL  
AGND  
OSCXCN  
Figure 14.1. Oscillator Diagram  
Table 14.1. Oscillator Electrical Characteristics  
–40°C to +85°C unless otherwise specified.  
Parameter  
Calibrated Internal Oscillator  
Frequency  
Conditions  
Min  
Typ  
Max  
Units  
24  
24.5  
25  
MHz  
Internal Oscillator Supply  
OSCICN.7 = 1  
400  
µA  
Current (from V  
)
DD  
External Clock Frequency  
0
30  
MHz  
ns  
T
T
(External Clock High Time)  
(External Clock Low Time)  
15  
15  
XCH  
XCL  
ns  
14.1. Internal Calibrated Oscillator  
All devices include a calibrated internal oscillator that defaults as the system clock after a system reset.  
The internal oscillator period can be adjusted via the OSCICL register as defined by SFR Definition 14.1.  
OSCICL is factory calibrated to obtain a 24.5 MHz frequency.  
Rev. 1.4  
185  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
Electrical specifications for the precision internal oscillator are given in Table 14.1. Note that the system  
clock may be derived from the programmed internal oscillator divided by 1, 2, 4, or 8, as defined by the  
IFCN bits in register OSCICN.  
SFR Definition 14.1. OSCICL: Internal Oscillator Calibration.  
R/W  
Bit7  
R/W  
Bit6  
R/W  
Bit5  
R/W  
Bit4  
R/W  
Bit3  
R/W  
Bit2  
R/W  
Bit1  
R/W  
Reset Value  
Variable  
Bit0  
SFR Address: 0x8B  
SFR Page: F  
Bits 7–0: OSCICL: Internal Oscillator Calibration Register.  
This register calibrates the internal oscillator period. The reset value for OSCICL defines the  
internal oscillator base frequency. The reset value is factory calibrated to generate an inter-  
nal oscillator frequency of 24.5 MHz.  
SFR Definition 14.2. OSCICN: Internal Oscillator Control  
R/W  
IOSCEN  
Bit7  
R
R/W  
-
R
-
R/W  
-
R/W  
-
R/W  
IFCN1  
Bit1  
R/W  
Reset Value  
IFRDY  
Bit6  
IFCN0 11000000  
Bit0  
Bit5  
Bit4  
Bit3  
Bit2  
SFR Address: 0x8A  
SFR Page: F  
Bit 7:  
IOSCEN: Internal Oscillator Enable Bit.  
0: Internal Oscillator Disabled.  
1: Internal Oscillator Enabled.  
Bit 6:  
IFRDY: Internal Oscillator Frequency Ready Flag.  
0: Internal Oscillator not running at programmed frequency.  
1: Internal Oscillator running at programmed frequency.  
Bits 5–2: Reserved.  
Bits 1–0: IFCN1-0: Internal Oscillator Frequency Control Bits.  
00: Internal Oscillator is divided by 8.  
01: Internal Oscillator is divided by 4.  
10: Internal Oscillator is divided by 2.  
11: Internal Oscillator is divided by 1.  
186  
Rev. 1.4  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
14.2. External Oscillator Drive Circuit  
The external oscillator circuit may drive an external crystal, ceramic resonator, capacitor, or RC network. A  
CMOS clock may also provide a clock input. For a crystal or ceramic resonator configuration, the crystal/  
resonator must be wired across the XTAL1 and XTAL2 pins as shown in Option 1 of Figure 14.1. In RC,  
capacitor, or CMOS clock configuration, the clock source should be wired to the XTAL2 and/or XTAL1  
pin(s) as shown in Option 2, 3, or 4 of Figure 14.1. The type of external oscillator must be selected in the  
OSCXCN register, and the frequency control bits (XFCN) must be selected appropriately (see SFR Defini-  
tion 14.4).  
14.3. System Clock Selection  
The CLKSL1-0 bits in register CLKSEL select which oscillator source generates the system clock.  
CLKSL1-0 must be set to ‘01’ for the system clock to run from the external oscillator; however the external  
oscillator may still clock certain peripherals, such as the timers and PCA, when the internal oscillator or the  
PLL is selected as the system clock. The system clock may be switched on-the-fly between the internal  
and external oscillators or the PLL, so long as the selected oscillator source is enabled and settled. The  
internal oscillator requires little start-up time, and may be enabled and selected as the system clock in the  
same write to OSCICN. External crystals and ceramic resonators typically require a start-up time before  
they are settled and ready for use as the system clock. The Crystal Valid Flag (XTLVLD in register  
OSCXCN) is set to ‘1’ by hardware when the external oscillator is settled. To avoid reading a false  
XTLVLD, in crystal mode software should delay at least 1 ms between enabling the external oscillator and  
checking XTLVLD. RC and C modes typically require no startup time. The PLL also requires time to lock  
onto the desired frequency, and the PLL Lock Flag (PLLLCK in register PLL0CN) is set to ‘1’ by hardware  
once the PLL is locked on the correct frequency.  
Rev. 1.4  
187  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
SFR Definition 14.3. CLKSEL: System Clock Selection  
R/W  
-
R/W  
-
R/W  
R/W  
R/W  
-
R/W  
-
R/W  
R/W  
Reset Value  
CLKDIV1 CLKDIV0  
CLKSL1 CLKSL0 00000000  
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Bit0  
SFR Address: 0x97  
SFR Page: F  
Bits 7–6: Reserved.  
Bits 5–4: CLKDIV1–0: Output SYSCLK Divide Factor.  
These bits can be used to pre-divide SYSCLK before it is output to a port pin through the  
crossbar.  
00: Output will be SYSCLK.  
01: Output will be SYSCLK/2.  
10: Output will be SYSCLK/4.  
11: Output will be SYSCLK/8.  
See Section “18. Port Input/Output” on page 235 for more details about routing this out-  
put to a port pin.  
Bits 3–2: Reserved.  
Bits 1–0: CLKSL1–0: System Clock Source Select Bits.  
00: SYSCLK derived from the Internal Oscillator, and scaled as per the IFCN bits in  
OSCICN.  
01: SYSCLK derived from the External Oscillator circuit.  
10: SYSCLK derived from the PLL.  
11: Reserved.  
188  
Rev. 1.4  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
SFR Definition 14.4. OSCXCN: External Oscillator Control  
R
R/W  
R/W  
R/W  
R
-
R/W  
XFCN2  
Bit2  
R/W  
XFCN1  
Bit1  
R/W  
Reset Value  
XTLVLD XOSCMD2 XOSCMD1 XOSCMD0  
XFCN0 00000000  
Bit0  
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
SFR Address: 0x8C  
SFR Page: F  
Bit7:  
XTLVLD: Crystal Oscillator Valid Flag.  
(Valid only when XOSCMD = 11x.)  
0: Crystal Oscillator is unused or not yet stable.  
1: Crystal Oscillator is running and stable.  
Bits6–4: XOSCMD2–0: External Oscillator Mode Bits.  
00x: External Oscillator circuit off.  
010: External CMOS Clock Mode (External CMOS Clock input on XTAL1 pin).  
011: External CMOS Clock Mode with divide by 2 stage (External CMOS Clock input on  
XTAL1 pin).  
10x: RC/C Oscillator Mode with divide by 2 stage.  
110: Crystal Oscillator Mode.  
111: Crystal Oscillator Mode with divide by 2 stage.  
RESERVED. Read = 0, Write = don't care.  
Bit3:  
Bits2–0: XFCN2–0: External Oscillator Frequency Control Bits.  
000-111: see table below:  
XFCN  
000  
001  
010  
011  
100  
101  
110  
Crystal (XOSCMD = 11x) RC (XOSCMD = 10x) C (XOSCMD = 10x)  
f 32 kHz  
f 25 kHz  
K Factor = 0.87  
K Factor = 2.6  
K Factor = 7.7  
K Factor = 22  
K Factor = 65  
K Factor = 180  
K Factor = 664  
K Factor = 1590  
32 kHz f 84 kHz  
84 kHz f 225 kHz  
225 kHz f 590 kHz  
590 kHz f 1.5 MHz  
1.5 MHz f 4 MHz  
4 MHz f 10 MHz  
10 MHz f 30 MHz  
25 kHz f 50 kHz  
50 kHz f 100 kHz  
100 kHz f 200 kHz  
200 kHz f 400 kHz  
400 kHz f 800 kHz  
800 kHz f 1.6 MHz  
1.6 MHz f 3.2 MHz  
111  
CRYSTAL MODE (Circuit from Figure 14.1, Option 1; XOSCMD = 11x)  
Choose XFCN value to match crystal frequency.  
RC MODE (Circuit from Figure 14.1, Option 2; XOSCMD = 10x)  
Choose XFCN value to match frequency range:  
3
f = 1.23(10 ) / (R * C), where  
f = frequency of oscillation in MHz  
C = capacitor value in pF  
R = Pullup resistor value in k  
C MODE (Circuit from Figure 14.1, Option 3; XOSCMD = 10x)  
Choose K Factor (KF) for the oscillation frequency desired:  
f = KF / (C * V ), where  
DD  
f = frequency of oscillation in MHz  
C = capacitor value on XTAL1, XTAL2 pins in pF  
V
= Power Supply on MCU in Volts  
DD  
Rev. 1.4  
189  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
14.4. External Crystal Example  
If a crystal or ceramic resonator is used as an external oscillator source for the MCU, the circuit should be  
configured as shown in Figure 14.1, Option 1. The External Oscillator Frequency Control value (XFCN)  
should be chosen from the Crystal column of the table in SFR Definition 14.4 (OSCXCN register). For  
example, an 11.0592 MHz crystal requires an XFCN setting of 111b.  
When the crystal oscillator is enabled, the oscillator amplitude detection circuit requires a settle time to  
achieve proper bias. Waiting at least 1 ms between enabling the oscillator and checking the XTLVLD bit  
will prevent a premature switch to the external oscillator as the system clock. Switching to the external  
oscillator before the crystal oscillator has stabilized can result in unpredictable behavior. The recom-  
mended procedure is:  
Step 1. Enable the external oscillator.  
Step 2. Wait at least 1 ms.  
Step 3. Poll for XTLVLD => ‘1’.  
Step 4. Switch the system clock to the external oscillator.  
Important Note on External Crystals: Crystal oscillator circuits are quite sensitive to PCB layout. The  
crystal should be placed as close as possible to the XTAL pins on the device. The traces should be as  
short as possible and shielded with ground plane from any other traces which could introduce noise or  
interference.  
14.5. External RC Example  
If an RC network is used as an external oscillator source for the MCU, the circuit should be configured as  
shown in Figure 14.1, Option 2. The capacitor should be no greater than 100 pF; however for very small  
capacitors, the total capacitance may be dominated by parasitic capacitance in the PCB layout. To deter-  
mine the required External Oscillator Frequency Control value (XFCN) in the OSCXCN Register, first  
select the RC network value to produce the desired frequency of oscillation. If the frequency desired is  
100 kHz, let R = 246 kand C = 50 pF:  
3
3
f = 1.23(10 )/RC = 1.23 (10 )/[246 x 50] = 0.1 MHz = 100 kHz  
Referring to the table in SFR Definition 14.4, the required XFCN setting is 010.  
14.6. External Capacitor Example  
If a capacitor is used as an external oscillator for the MCU, the circuit should be configured as shown in  
Figure 14.1, Option 3. The capacitor should be no greater than 100 pF; however for very small capacitors,  
the total capacitance may be dominated by parasitic capacitance in the PCB layout. To determine the  
required External Oscillator Frequency Control value (XFCN) in the OSCXCN Register, select the capaci-  
tor to be used and find the frequency of oscillation from the equations below. Assume V = 3.0 V and  
DD  
C = 50 pF:  
f = KF/( C x V ) = KF/( 50 x 3 )  
DD  
f = KF/150  
If a frequency of roughly 50 kHz is desired, select the K Factor from the table in SFR Definition 14.4  
as KF = 7.7:  
f = 7.7/150 = 0.051 MHz, or 51 kHz  
Therefore, the XFCN value to use in this example is 010.  
190  
Rev. 1.4  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
14.7. Phase-Locked Loop (PLL)  
A Phase-Locked-Loop (PLL) is included, which is used to multiply the internal oscillator or an external  
clock source to achieve higher CPU operating frequencies. The PLL circuitry is designed to produce an  
output frequency between 25 MHz and 100 MHz, from a divided reference frequency between 5 MHz and  
30 MHz. A block diagram of the PLL is shown in Figure 14.2.  
PLL0CN  
PLL0FLT  
Divided  
Reference  
Clock  
Internal  
Oscillator  
0
1
PLL Clock  
Output  
Phase /  
Frequency  
Detection  
Current  
Controlled  
Oscillator  
Loop Filter  
External  
Oscillator  
PLL0DIV  
PLL0MUL  
Figure 14.2. PLL Block Diagram  
14.7.1. PLL Input Clock and Pre-divider  
The PLL circuitry can derive its reference clock from either the internal oscillator or an external clock  
source. The PLLSRC bit (PLL0CN.2) controls which clock source is used for the reference clock (see SFR  
Definition 14.5). If PLLSRC is set to ‘0’, the internal oscillator source is used. Note that the internal oscilla-  
tor divide factor (as specified by bits IFCN1-0 in register OSCICN) will also apply to this clock. When  
PLLSRC is set to ‘1’, an external oscillator source will be used. The external oscillator should be active and  
settled before it is selected as a reference clock for the PLL circuit. The reference clock is divided down  
prior to the PLL circuit, according to the contents of the PLLM4-0 bits in the PLL Pre-divider Register  
(PLL0DIV), shown in SFR Definition 14.6.  
14.7.2. PLL Multiplication and Output Clock  
The PLL circuitry will multiply the divided reference clock by the multiplication factor stored in the  
PLL0MUL register shown in SFR Definition 14.7. To accomplish this, it uses a feedback loop consisting of  
a phase/frequency detector, a loop filter, and a current-controlled oscillator (ICO). It is important to config-  
ure the loop filter and the ICO for the correct frequency ranges. The PLLLP3–0 bits (PLL0FLT.3–0) should  
be set according to the divided reference clock frequency. Likewise, the PLLICO1–0 bits (PLL0FLT.5–4)  
should be set according to the desired output frequency range. SFR Definition 14.8 describes the proper  
settings to use for the PLLLP3–0 and PLLICO1–0 bits. When the PLL is locked and stable at the desired  
frequency, the PLLLCK bit (PLL0CN.5) will be set to a ‘1’. The resulting PLL frequency will be set accord-  
ing to the equation:  
Where “Reference Frequency” is the selected source clock frequency, PLLN is the PLL Multiplier, and  
PLLM is the PLL Pre-divider.  
Rev. 1.4  
191  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
PLLN  
---------------  
PLL Frequency = Reference Frequency   
PLLM  
14.7.3. Powering on and Initializing the PLL  
To set up and use the PLL as the system clock after power-up of the device, the following procedure  
should be implemented:  
Step 1. Ensure that the reference clock to be used (internal or external) is running and stable.  
Step 2. Set the PLLSRC bit (PLL0CN.2) to select the desired clock source for the PLL.  
Step 3. Program the Flash read timing bits, FLRT (FLSCL.5–4) to the appropriate value for the  
new clock rate (see Section “15. Flash Memory” on page 199).  
Step 4. Enable power to the PLL by setting PLLPWR (PLL0CN.0) to ‘1’.  
Step 5. Program the PLL0DIV register to produce the divided reference frequency to the PLL.  
Step 6. Program the PLLLP3–0 bits (PLL0FLT.3–0) to the appropriate range for the divided  
reference frequency.  
Step 7. Program the PLLICO1–0 bits (PLL0FLT.5–4) to the appropriate range for the PLL output  
frequency.  
Step 8. Program the PLL0MUL register to the desired clock multiplication factor.  
Step 9. Wait at least 5 µs, to provide a fast frequency lock.  
Step 10. Enable the PLL by setting PLLEN (PLL0CN.1) to ‘1’.  
Step 11. Poll PLLLCK (PLL0CN.4) until it changes from ‘0’ to ‘1’.  
Step 12. Switch the System Clock source to the PLL using the CLKSEL register.  
If the PLL characteristics need to be changed when the PLL is already running, the following procedure  
should be implemented:  
Step 1. The system clock should first be switched to either the internal oscillator or an external  
clock source that is running and stable, using the CLKSEL register.  
Step 2. Ensure that the reference clock to be used for the new PLL setting (internal or external) is  
running and stable.  
Step 3. Set the PLLSRC bit (PLL0CN.2) to select the new clock source for the PLL.  
Step 4. If moving to a faster frequency, program the Flash read timing bits, FLRT (FLSCL.5–4) to  
the appropriate value for the new clock rate (see Section “15. Flash Memory” on  
page 199).  
Step 5. Disable the PLL by setting PLLEN (PLL0CN.1) to ‘0’.  
Step 6. Program the PLL0DIV register to produce the divided reference frequency to the PLL.  
Step 7. Program the PLLLP3–0 bits (PLL0FLT.3–0) to the appropriate range for the divided  
reference frequency.  
Step 8. Program the PLLICO1-0 bits (PLL0FLT.5–4) to the appropriate range for the PLL output  
frequency.  
Step 9. Program the PLL0MUL register to the desired clock multiplication factor.  
Step 10. Enable the PLL by setting PLLEN (PLL0CN.1) to ‘1’.  
Step 11. Poll PLLLCK (PLL0CN.4) until it changes from ‘0’ to ‘1’.  
Step 12. Switch the System Clock source to the PLL using the CLKSEL register.  
Step 13. If moving to a slower frequency, program the Flash read timing bits, FLRT (FLSCL.5–4)  
to the appropriate value for the new clock rate (see Section “15. Flash Memory” on  
192  
Rev. 1.4  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
page 199). Important Note: Cache reads, cache writes, and the prefetch engine  
should be disabled whenever the FLRT bits are changed to a lower setting.  
To shut down the PLL, the system clock should be switched to the internal oscillator or a stable external  
clock source, using the CLKSEL register. Next, disable the PLL by setting PLLEN (PLL0CN.1) to ‘0’.  
Finally, the PLL can be powered off, by setting PLLPWR (PLL0CN.0) to ‘0’. Note that the PLLEN and  
PLLPWR bits can be cleared at the same time.  
SFR Definition 14.5. PLL0CN: PLL Control  
R/W  
-
R/W  
-
R/W  
-
R
R/W  
0
R/W  
R/W  
R/W  
Reset Value  
PLLLCK  
Bit4  
PLLSRC PLLEN PLLPWR 00000000  
Bit7  
Bit6  
Bit5  
Bit3  
Bit2  
Bit1  
Bit0  
SFR Address: 0x89  
SFR Page: F  
Bits 7–5: UNUSED: Read = 000b; Write = don’t care.  
Bit 4:  
PLLCK: PLL Lock Flag.  
0: PLL Frequency is not locked.  
1: PLL Frequency is locked.  
Bit 3:  
Bit 2:  
RESERVED. Must write to ‘0’.  
PLLSRC: PLL Reference Clock Source Select Bit.  
0: PLL Reference Clock Source is Internal Oscillator.  
1: PLL Reference Clock Source is External Oscillator.  
PLLEN: PLL Enable Bit.  
0: PLL is held in reset.  
1: PLL is enabled. PLLPWR must be ‘1’.  
PLLPWR: PLL Power Enable.  
Bit 1:  
Bit 0:  
0: PLL bias generator is de-activated. No static power is consumed.  
1: PLL bias generator is active. Must be set for PLL to operate.  
Rev. 1.4  
193  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
SFR Definition 14.6. PLL0DIV: PLL Pre-divider  
R/W  
-
R/W  
-
R/W  
-
R/W  
PLLM4  
Bit4  
R/W  
PLLM3  
Bit3  
R/W  
PLLM2  
Bit2  
R/W  
PLLM1  
Bit1  
R/W  
Reset Value  
PLLM0 00000001  
Bit0  
Bit7  
Bit6  
Bit5  
SFR Address: 0x8D  
SFR Page: F  
Bits 7–5: UNUSED: Read = 000b; Write = don’t care.  
Bits 4–0: PLLM4–0: PLL Reference Clock Pre-divider.  
These bits select the pre-divide value of the PLL reference clock. When set to any non-zero  
value, the reference clock will be divided by the value in PLLM4–0. When set to ‘00000b’,  
the reference clock will be divided by 32.  
SFR Definition 14.7. PLL0MUL: PLL Clock Scaler  
R/W  
PLLN7  
Bit7  
R/W  
PLLN6  
Bit6  
R/W  
PLLN5  
Bit5  
R/W  
PLLN4  
Bit4  
R/W  
PLLN3  
Bit3  
R/W  
PLLN2  
Bit2  
R/W  
PLLN1  
Bit1  
R/W  
Reset Value  
PLLN0 00000001  
Bit0  
SFR Address: 0x8E  
SFR Page: F  
Bits 7–0: PLLN7–0: PLL Multiplier.  
These bits select the multiplication factor of the divided PLL reference clock. When set to  
any non-zero value, the multiplication factor will be equal to the value in PLLN7-0. When set  
to ‘00000000b’, the multiplication factor will be equal to 256.  
194  
Rev. 1.4  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
SFR Definition 14.8. PLL0FLT: PLL Filter  
R/W  
-
R/W  
-
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Reset Value  
PLLICO1 PLLICO0 PLLLP3 PLLLP2 PLLLP1 PLLLP0 00110001  
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Bit0  
SFR Address: 0x8F  
SFR Page: F  
Bits 7–6: UNUSED: Read = 00b; Write = don’t care.  
Bits 5–4: PLLICO1-0: PLL Current-Controlled Oscillator Control Bits.  
Selection is based on the desired output frequency, according to the following table:  
PLL Output Clock  
65–100 MHz  
45–80 MHz  
PLLICO1-0  
00  
01  
10  
11  
30–60 MHz  
25–50 MHz  
Bits 3–0: PLLLP3-0: PLL Loop Filter Control Bits.  
Selection is based on the divided PLL reference clock, according to the following table:  
Divided PLL Reference Clock  
19–30 MHz  
PLLLP3-0  
0001  
12.2–19.5 MHz  
7.8–12.5 MHz  
0011  
0111  
5–8 MHz  
1111  
Table 14.2. PLL Frequency Characteristics  
–40 to +85 °C unless otherwise specified  
Parameter  
Input Frequency  
Conditions  
Min  
5
Typ  
Max  
30  
Units  
MHz  
MHz  
(Divided Reference Frequency)  
PLL Output Frequency  
25  
100*  
*Note: The maximum operating frequency of the C8051F124/5/6/7 is 50 MHz  
Rev. 1.4  
195  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
Table 14.3. PLL Lock Timing Characteristics  
–40 to +85 °C unless otherwise specified  
Input  
Frequency  
Multiplier  
(Pll0mul)  
Pll0flt  
Setting  
0x0F  
0x0F  
0x1F  
0x1F  
0x2F  
0x2F  
0x3F  
0x3F  
0x01  
0x01  
0x11  
0x11  
0x21  
0x21  
0x31  
0x31  
Output  
Frequency  
100 MHz  
65 MHz  
80 MHz  
45 MHz  
60 MHz  
30 MHz  
50 MHz  
25 MHz  
100 MHz  
50 MHz  
75 MHz  
50 MHz  
50 MHz  
25 MHz  
50 MHz  
25 MHz  
Min  
Typ  
Max  
Units  
20  
13  
16  
9
12  
6
10  
5
4
2
3
2
2
202  
115  
241  
116  
258  
112  
263  
113  
42  
33  
48  
17  
42  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
5 MHz  
25 MHz  
1
2
1
33  
60  
25  
196  
Rev. 1.4  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
NOTES:  
Rev. 1.4  
197  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
198  
Rev. 1.4  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
15. Flash Memory  
All devices include either 128 kB (C8051F12x and C8051F130/1) or 64 kB (C8051F132/3) of on-chip,  
reprogrammable Flash memory for program code or non-volatile data storage. An additional 256-byte  
page of Flash is also included for non-volatile data storage. The Flash memory can be programmed in-sys-  
tem through the JTAG interface, or by software using the MOVX write instructions. Once cleared to logic 0,  
a Flash bit must be erased to set it back to logic 1. Bytes should be erased (set to 0xFF) before being  
reprogrammed. Flash write and erase operations are automatically timed by hardware for proper execu-  
tion. During a Flash erase or write, the FLBUSY bit in the FLSTAT register is set to ‘1’ (see SFR Definition  
16.5). During this time, instructions that are located in the prefetch buffer or the branch target cache can be  
executed, but the processor will stall until the erase or write is completed if instruction data must be fetched  
from Flash memory. Interrupts that have been pre-loaded into the branch target cache can also be ser-  
viced at this time, if the current code is also executing from the prefetch engine or cache memory. Any  
interrupts that are not pre-loaded into cache, or that occur while the core is halted, will be held in a pending  
state during the Flash write/erase operation, and serviced in priority order once the Flash operation has  
completed. Refer to Table 15.1 for the electrical characteristics of the Flash memory.  
15.1. Programming the Flash Memory  
The simplest means of programming the Flash memory is through the JTAG interface using programming  
tools provided by Silicon Labs or a third party vendor. This is the only means for programming a non-initial-  
ized device. For details on the JTAG commands to program Flash memory, see Section “25. JTAG (IEEE  
1149.1)” on page 341.  
The Flash memory can be programmed from software using the MOVX write instruction with the address  
and data byte to be programmed provided as normal operands. Before writing to Flash memory using  
MOVX, Flash write operations must be enabled by setting the PSWE Program Store Write Enable bit  
(PSCTL.0) to logic 1. This directs the MOVX writes to Flash memory instead of to XRAM, which is the  
default target. The PSWE bit remains set until cleared by software. To avoid errant Flash writes, it is rec-  
ommended that interrupts be disabled while the PSWE bit is logic 1.  
Flash memory is read using the MOVC instruction. MOVX reads are always directed to XRAM, regardless  
of the state of PSWE.  
On the devices with 128 kB of Flash, the COBANK bits in the PSBANK register (SFR Definition 11.1)  
determine which of the upper three Flash banks are mapped to the address range 0x08000 to 0x0FFFF for  
Flash writes, reads and erases.  
For devices with 64 kB of Flash. the COBANK bits should always remain set to ‘01’ to ensure that Flash  
write, erase, and read operations are valid.  
NOTE: To ensure the integrity of Flash memory contents, it is strongly recommended that the on-  
chip V monitor be enabled by connecting the V monitor enable pin (MONEN) to V and set-  
DD  
DD  
DD  
ting the PORSF bit in the RSTSRC register to ‘1’ in any system that writes and/or erases Flash  
memory from software. See “Reset Sources” on page 177 for more information.  
A write to Flash memory can clear bits but cannot set them; only an erase operation can set bits in Flash.  
A byte location to be programmed must be erased before a new value can be written.  
Write/Erase timing is automatically controlled by hardware. Note that on the 128 k Flash versions, 1024  
bytes beginning at location 0x1FC00 are reserved. Flash writes and erases targeting the reserved area  
should be avoided.  
Rev. 1.4  
199  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
Table 15.1. Flash Electrical Characteristics  
= 2.7 to 3.6 V; –40 to +85 °C  
V
DD  
Parameter  
Conditions  
C8051F12x and C8051F130/1  
C8051F132/3  
Min  
Typ  
131328  
65792  
100k  
12  
Max  
Units  
Bytes  
Bytes  
Erase/Write  
ms  
1
2
Flash Size  
Flash Size  
1
20k  
10  
Endurance  
14  
60  
Erase Cycle Time  
Write Cycle Time  
Notes:  
40  
50  
µs  
1. Includes 256-byte Scratch Pad Area  
2. 1024 Bytes at location 0x1FC00 to 0x1FFFF are reserved.  
15.1.1. Non-volatile Data Storage  
The Flash memory can be used for non-volatile data storage as well as program code. This allows data  
such as calibration coefficients to be calculated and stored at run time. Data is written and erased using the  
MOVX write instruction (as described in Section 15.1.2 and Section 15.1.3) and read using the MOVC  
instruction. The COBANK bits in register PSBANK (SFR Definition 11.1) control which portion of the Flash  
memory is targeted by writes and erases of addresses above 0x07FFF. For devices with 64 kB of Flash.  
the COBANK bits should always remain set to ‘01’ to ensure that Flash write, erase, and read operations  
are valid.  
Two additional 128-byte sectors (256 bytes total) of Flash memory are included for non-volatile data stor-  
age. The smaller sector size makes them particularly well suited as general purpose, non-volatile scratch-  
pad memory. Even though Flash memory can be written a single byte at a time, an entire sector must be  
erased first. In order to change a single byte of a multi-byte data set, the data must be moved to temporary  
storage. The 128-byte sector-size facilitates updating data without wasting program memory or RAM  
space. The 128-byte sectors are double-mapped over the normal Flash memory for MOVC reads and  
MOVX writes only; their addresses range from 0x00 to 0x7F and from 0x80 to 0xFF (see Figure 15.2). To  
access the 128-byte sectors, the SFLE bit in PSCTL must be set to logic 1. Code execution from the 128-  
byte Scratchpad areas is not permitted. The 128-byte sectors can be erased individually, or both at the  
same time. To erase both sectors simultaneously, the address 0x0400 should be targeted during the erase  
operation with SFLE set to ‘1’. See Figure 15.1 for the memory map under different COBANK and SFLE  
settings.  
200  
Rev. 1.4  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
SFLE = 0  
COBANK = 0 COBANK = 1 COBANK = 2 COBANK = 3  
SFLE = 1  
Internal  
Address  
0xFFFF  
Bank 0  
Bank 1  
Bank 2  
Bank 3  
Undefined  
0x8000  
0x7FFF  
Bank 0  
Bank 0  
Bank 0  
Bank 0  
0x00FF  
0x0000  
Scratchpad  
Areas (2)  
128k FLASH devices only.  
Figure 15.1. Flash Memory Map for MOVC Read and MOVX Write Operations  
15.1.2. Erasing Flash Pages From Software  
When erasing Flash memory, an entire page is erased (all bytes in the page are set to 0xFF). The Flash  
memory is organized in 1024-byte pages. The 256 bytes of Scratchpad area (addresses 0x20000 to  
0x200FF) consists of two 128 byte pages. To erase any Flash page, the FLWE, PSWE, and PSEE bits  
must be set to ‘1’, and a byte must be written using a MOVX instruction to any address within that page.  
The following is the recommended procedure for erasing a Flash page from software:  
Step 1. Disable interrupts.  
Step 2. If erasing a page in Bank 1, Bank 2, or Bank 3, set the COBANK bits (PSBANK.5-4) for  
the appropriate bank.  
Step 3. If erasing a page in the Scratchpad area, set the SFLE bit (PSCTL.2).  
Step 4. Set FLWE (FLSCL.0) to enable Flash writes/erases via user software.  
Step 5. Set PSEE (PSCTL.1) to enable Flash erases.  
Step 6. Set PSWE (PSCTL.0) to redirect MOVX commands to write to Flash.  
Step 7. Use the MOVX instruction to write a data byte to any location within the page to be  
erased.  
Step 8. Clear PSEE to disable Flash erases.  
Step 9. Clear the PSWE bit to redirect MOVX commands to the XRAM data space.  
Step 10. Clear the FLWE bit, to disable Flash writes/erases.  
Step 11. If erasing a page in the Scratchpad area, clear the SFLE bit.  
Step 12. Re-enable interrupts.  
Rev. 1.4  
201  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
15.1.3. Writing Flash Memory From Software  
Bytes in Flash memory can be written one byte at a time, or in small blocks. The CHBLKW bit in register  
CCH0CN (SFR Definition 16.1) controls whether a single byte or a block of bytes is written to Flash during  
a write operation. When CHBLKW is cleared to ‘0’, the Flash will be written one byte at a time. When  
CHBLKW is set to ‘1’, the Flash will be written in blocks of four bytes for addresses in code space, or  
blocks of two bytes for addresses in the Scratchpad area. Block writes are performed in the same amount  
of time as single byte writes, which can save time when storing large amounts of data to Flash memory.  
For single-byte writes to Flash, bytes are written individually, and the Flash write is performed after each  
MOVX write instruction. The recommended procedure for writing Flash in single bytes is as follows:  
Step 1. Disable interrupts.  
Step 2. Clear CHBLKW (CCH0CN.0) to select single-byte write mode.  
Step 3. If writing to bytes in Bank 1, Bank 2, or Bank 3, set the COBANK bits (PSBANK.5-4) for  
the appropriate bank.  
Step 4. If writing to bytes in the Scratchpad area, set the SFLE bit (PSCTL.2).  
Step 5. Set FLWE (FLSCL.0) to enable Flash writes/erases via user software.  
Step 6. Set PSWE (PSCTL.0) to redirect MOVX commands to write to Flash.  
Step 7. Use the MOVX instruction to write a data byte to the desired location (repeat as  
necessary).  
Step 8. Clear the PSWE bit to redirect MOVX commands to the XRAM data space.  
Step 9. Clear the FLWE bit, to disable Flash writes/erases.  
Step 10. If writing to bytes in the Scratchpad area, clear the SFLE bit.  
Step 11. Re-enable interrupts.  
For block Flash writes, the Flash write procedure is only performed after the last byte of each block is writ-  
ten with the MOVX write instruction. When writing to addresses located in any of the four code banks, a  
Flash write block is four bytes long, from addresses ending in 00b to addresses ending in 11b. Writes must  
be performed sequentially (i.e. addresses ending in 00b, 01b, 10b, and 11b must be written in order). The  
Flash write will be performed following the MOVX write that targets the address ending in 11b. When writ-  
ing to addresses located in the Flash Scratchpad area, a Flash block is two bytes long, from addresses  
ending in 0b to addresses ending in 1b. The Flash write will be performed following the MOVX write that  
targets the address ending in 1b. If any bytes in the block do not need to be updated in Flash, they should  
be written to 0xFF. The recommended procedure for writing Flash in blocks is as follows:  
Step 1. Disable interrupts.  
Step 2. Set CHBLKW (CCH0CN.0) to select block write mode.  
Step 3. If writing to bytes in Bank 1, Bank 2, or Bank 3, set the COBANK bits (PSBANK.5-4) for  
the appropriate bank.  
Step 4. If writing to bytes in the Scratchpad area, set the SFLE bit (PSCTL.2).  
Step 5. Set FLWE (FLSCL.0) to enable Flash writes/erases via user software.  
Step 6. Set PSWE (PSCTL.0) to redirect MOVX commands to write to Flash.  
Step 7. Use the MOVX instruction to write data bytes to the desired block. The data bytes must  
be written sequentially, and the last byte written must be the high byte of the block (see  
text for details, repeat as necessary).  
Step 8. Clear the PSWE bit to redirect MOVX commands to the XRAM data space.  
Step 9. Clear the FLWE bit, to disable Flash writes/erases.  
Step 10. If writing to bytes in the Scratchpad area, clear the SFLE bit.  
Step 11. Re-enable interrupts.  
202  
Rev. 1.4  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
15.2. Security Options  
The CIP-51 provides security options to protect the Flash memory from inadvertent modification by soft-  
ware as well as prevent the viewing of proprietary program code and constants. The Program Store Write  
Enable (PSCTL.0), Program Store Erase Enable (PSCTL.1), and Flash Write/Erase Enable (FLACL.0) bits  
protect the Flash memory from accidental modification by software. These bits must be explicitly set to  
logic 1 before software can write or erase the Flash memory. Additional security features prevent proprie-  
tary program code and data constants from being read or altered across the JTAG interface or by software  
running on the system controller.  
A set of security lock bytes protect the Flash program memory from being read or altered across the JTAG  
interface. Each bit in a security lock-byte protects one 16k-byte block of memory. Clearing a bit to logic 0 in  
the Read Lock Byte prevents the corresponding block of Flash memory from being read across the JTAG  
interface. Clearing a bit in the Write/Erase Lock Byte protects the block from JTAG erasures and/or writes.  
The Scratchpad area is read or write/erase locked when all bits in the corresponding security byte are  
cleared to logic 0.  
On the C8051F12x and C8051F130/1, the security lock bytes are located at 0x1FBFE (Write/Erase Lock)  
and 0x1FBFF (Read Lock), as shown in Figure 15.2. On the C8051F132/3, the security lock bytes are  
located at 0x0FFFE (Write/Erase Lock) and 0x0FFFF (Read Lock), as shown in Figure 15.3. The 1024-  
byte sector containing the lock bytes can be written to, but not erased, by software. An attempted read of a  
read-locked byte returns undefined data. Debugging code in a read-locked sector is not possible through  
the JTAG interface. The lock bits can always be read from and written to logic 0 regardless of the security  
setting applied to the block containing the security bytes. This allows additional blocks to be protected after  
the block containing the security bytes has been locked.  
Important Note: To ensure protection from external access, the block containing the lock bytes  
must be Write/Erase locked. On the 128 kB devices (C8051F12x and C8051F130/1), the block con-  
taining the security bytes is 0x18000-0x1BFFF, and is locked by clearing bit 7 of the Write/Erase  
Lock Byte. On the 64 kB devices (C8051F132/3), the block containing the security bytes is  
0x0C000-0x0FFFF, and is locked by clearing bit 3 of the Write/Erase Lock Byte. If the page contain-  
ing the security bytes is not Write/Erase locked, it is still possible to erase this page of Flash mem-  
ory through the JTAG port and reset the security bytes.  
When the page containing the security bytes has been Write/Erase locked, a JTAG full device erase  
must be performed to unlock any areas of Flash protected by the security bytes. A JTAG full  
device erase is initiated by performing a normal JTAG erase operation on either of the security byte  
locations. This operation must be initiated through the JTAG port, and cannot be performed from  
firmware running on the device.  
Rev. 1.4  
203  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
Read and Write/Erase Security Bits.  
(Bit 7 is MSB.)  
SFLE = 0  
0x1FFFF  
Bit  
Memory Block  
Reserved  
7
6
5
4
3
2
1
0
0x1C000 - 0x1FBFD  
0x18000 - 0x1BFFF  
0x14000 - 0x17FFF  
0x10000 - 0x13FFF  
0x0C000 - 0x0FFFF  
0x08000 - 0x0BFFF  
0x04000 - 0x07FFF  
0x00000 - 0x03FFF  
0x1FC00  
0x1FBFF  
Read Lock Byte  
0x1FBFE  
0x1FBFD  
Write/Erase Lock Byte  
Flash Access Limit  
SFLE = 1  
0x00FF  
0x0000  
Scratchpad Memory  
(Data only)  
0x00000  
Program/Data  
Memory Space  
Flash Read Lock Byte  
Bits7–0: Each bit locks a corresponding block of memory. (Bit7 is MSB).  
0: Read operations are locked (disabled) for corresponding block across the JTAG interface.  
1: Read operations are unlocked (enabled) for corresponding block across the JTAG inter-  
face.  
Flash Write/Erase Lock Byte  
Bits7–0: Each bit locks a corresponding block of memory.  
0: Write/Erase operations are locked (disabled) for corresponding block across the JTAG  
interface.  
1: Write/Erase operations are unlocked (enabled) for corresponding block across the JTAG  
interface.  
NOTE: When the highest block is locked, the security bytes may be written but not erased.  
Flash access Limit Register (FLACL)  
The Flash Access Limit is defined by the setting of the FLACL register, as described in SFR  
Definition 15.1. Firmware running at or above this address is prohibited from using the  
MOVX and MOVC instructions to read, write, or erase Flash locations below this address.  
Figure 15.2. 128 kB Flash Memory Map and Security Bytes  
204  
Rev. 1.4  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
Read and Write/Erase Security Bits.  
(Bit 7 is MSB.)  
SFLE = 0  
0x0FFFF  
0x0FFFE  
Read Lock Byte  
Bit  
Memory Block  
7
6
5
4
3
2
1
0
N/A  
N/A  
N/A  
Write/Erase Lock Byte  
0x0FFFD  
N/A  
0x0C000 - 0x0FFFF  
0x08000 - 0x0BFFF  
0x04000 - 0x07FFF  
0x00000 - 0x03FFF  
Flash Access Limit  
SFLE = 1  
0x00FF  
0x0000  
Scratchpad Memory  
(Data only)  
0x00000  
Program/Data  
Memory Space  
Flash Read Lock Byte  
Bits7–0: Each bit locks a corresponding block of memory. (Bit7 is MSB).  
0: Read operations are locked (disabled) for corresponding block across the JTAG interface.  
1: Read operations are unlocked (enabled) for corresponding block across the JTAG inter-  
face.  
Flash Write/Erase Lock Byte  
Bits7–0: Each bit locks a corresponding block of memory.  
0: Write/Erase operations are locked (disabled) for corresponding block across the JTAG  
interface.  
1: Write/Erase operations are unlocked (enabled) for corresponding block across the JTAG  
interface.  
NOTE: When the highest block is locked, the security bytes may be written but not erased.  
Flash access Limit Register (FLACL)  
The Flash Access Limit is defined by the setting of the FLACL register, as described in SFR  
Definition 15.1. Firmware running at or above this address is prohibited from using the  
MOVX and MOVC instructions to read, write, or erase Flash locations below this address.  
Figure 15.3. 64 kB Flash Memory Map and Security Bytes  
Rev. 1.4  
205  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
The Flash Access Limit security feature (see SFR Definition 15.1) protects proprietary program code and  
data from being read by software running on the device. This feature provides support for OEMs that wish  
to program the MCU with proprietary value-added firmware before distribution. The value-added firmware  
can be protected while allowing additional code to be programmed in remaining program memory space  
later.  
The Flash Access Limit (FAL) is a 17-bit address that establishes two logical partitions in the program  
memory space. The first is an upper partition consisting of all the program memory locations at or above  
the FAL address, and the second is a lower partition consisting of all the program memory locations start-  
ing at 0x00000 up to (but excluding) the FAL address. Software in the upper partition can execute code in  
the lower partition, but is prohibited from reading locations in the lower partition using the MOVC instruc-  
tion. (Executing a MOVC instruction from the upper partition with a source address in the lower partition  
will return indeterminate data.) Software running in the lower partition can access locations in both the  
upper and lower partition without restriction.  
The Value-added firmware should be placed in the lower partition. On reset, control is passed to the value-  
added firmware via the reset vector. Once the value-added firmware completes its initial execution, it  
branches to a predetermined location in the upper partition. If entry points are published, software running  
in the upper partition may execute program code in the lower partition, but it cannot read or change the  
contents of the lower partition. Parameters may be passed to the program code running in the lower parti-  
tion either through the typical method of placing them on the stack or in registers before the call or by plac-  
ing them in prescribed memory locations in the upper partition.  
The FAL address is specified using the contents of the Flash Access Limit Register. The 8 MSBs of the 17-  
bit FAL address are determined by the setting of the FLACL register. Thus, the FAL can be located on 512-  
byte boundaries anywhere in program memory space. However, the 1024-byte erase sector size essen-  
tially requires that a 1024 boundary be used. The contents of a non-initialized FLACL security byte are  
0x00, thereby setting the FAL address to 0x00000 and allowing read access to all locations in program  
memory space by default.  
SFR Definition 15.1. FLACL: Flash Access Limit  
R/W  
Bit7  
R/W  
Bit6  
R/W  
Bit5  
R/W  
Bit4  
R/W  
Bit3  
R/W  
Bit2  
R/W  
Bit1  
R/W  
Bit0  
Reset Value  
00000000  
SFR Address:  
SFR Address: 0xB7  
SFR Page: F  
Bits 7–0: FLACL: Flash Access Limit.  
This register holds the most significant 8 bits of the 17-bit program memory read/write/erase  
limit address. The lower 9 bits of the read/write/erase limit are always set to 0. A write to this  
register sets the Flash Access Limit. This register can only be written once after any reset.  
Any subsequent writes are ignored until the next reset. To fully protect all addresses  
below this limit, bit 0 of FLACL should be set to ‘0’ to align the FAL on a 1024-byte  
Flash page boundary.  
206  
Rev. 1.4  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
15.2.1. Summary of Flash Security Options  
There are three Flash access methods supported on the C8051F12x and C8051F13x devices; 1) Access-  
ing Flash through the JTAG debug interface, 2) Accessing Flash from firmware residing below the Flash  
Access Limit, and 3) Accessing Flash from firmware residing at or above the Flash Access Limit.  
Accessing Flash through the JTAG debug interface:  
1. The Read and Write/Erase Lock bytes (security bytes) provide security for Flash access  
through the JTAG interface.  
2. Any unlocked page may be read from, written to, or erased.  
3. Locked pages cannot be read from, written to, or erased.  
4. Reading the security bytes is always permitted.  
5. Locking additional pages by writing to the security bytes is always permitted.  
6. If the page containing the security bytes is unlocked, it can be directly erased. Doing so will  
reset the security bytes and unlock all pages of Flash.  
7. If the page containing the security bytes is locked, it cannot be directly erased. To unlock the  
page containing the security bytes, a full JTAG device erase is required. A full JTAG  
device erase will erase all Flash pages, including the page containing the security bytes and  
the security bytes themselves.  
8. The Reserved Area cannot be read from, written to, or erased at any time.  
Accessing Flash from firmware residing below the Flash Access Limit:  
1. The Read and Write/Erase Lock bytes (security bytes) do not restrict Flash access from user  
firmware.  
2. Any page of Flash except the page containing the security bytes may be read from, written to,  
or erased.  
3. The page containing the security bytes cannot be erased. Unlocking pages of Flash can  
only be performed via the JTAG interface.  
4. The page containing the security bytes may be read from or written to. Pages of Flash can be  
locked from JTAG access by writing to the security bytes.  
5. The Reserved Area cannot be read from, written to, or erased at any time.  
Accessing Flash from firmware residing at or above the Flash Access Limit:  
1. The Read and Write/Erase Lock bytes (security bytes) do not restrict Flash access from user  
firmware.  
2. Any page of Flash at or above the Flash Access Limit except the page containing the security  
bytes may be read from, written to, or erased.  
3. Any page of Flash below the Flash Access Limit cannot be read from, written to, or erased.  
4. Code branches to locations below the Flash Access Limit are permitted.  
5. The page containing the security bytes cannot be erased. Unlocking pages of Flash can  
only be performed via the JTAG interface.  
6. The page containing the security bytes may be read from or written to. Pages of Flash can be  
locked from JTAG access by writing to the security bytes.  
7. The Reserved Area cannot be read from, written to, or erased at any time.  
Rev. 1.4  
207  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
SFR Definition 15.2. FLSCL: Flash Memory Control  
R/W  
-
R/W  
-
R/W  
Bit5  
R/W  
Bit4  
R/W  
R/W  
R/W  
R/W  
FLWE  
Bit0  
Reset Value  
10000000  
SFR Address:  
FLRT  
Reserved Reserved Reserved  
Bit7  
Bit6  
Bit3  
Bit2  
Bit1  
SFR Address: 0xB7  
SFR Page: 0  
Bits 7–6: Unused.  
Bits 5–4: FLRT: Flash Read Time.  
These bits should be programmed to the smallest allowed value, according to the system  
clock speed.  
00: SYSCLK < 25 MHz.  
01: SYSCLK < 50 MHz.  
10: SYSCLK < 75 MHz.  
11: SYSCLK < 100 MHz.  
Bits 3–1: RESERVED. Read = 000b. Must Write 000b.  
Bit 0:  
FLWE: Flash Write/Erase Enable.  
This bit must be set to allow Flash writes/erasures from user software.  
0: Flash writes/erases disabled.  
1: Flash writes/erases enabled.  
Important Note: When changing the FLRT bits to a lower setting (e.g. when changing from a  
value of 11b to 00b), cache reads, cache writes, and the prefetch engine should be  
disabled using the CCH0CN register (see SFR Definition 16.1).  
208  
Rev. 1.4  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
SFR Definition 15.3. PSCTL: Program Store Read/Write Control  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Reset Value  
-
-
-
-
-
SFLE  
PSEE  
PSWE 00000000  
SFR  
Address:  
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Bit0  
SFR Address: 0x8F  
SFR Page: 0  
Bits 7–3: UNUSED. Read = 00000b, Write = don't care.  
Bit 2:  
Bit 1:  
Bit 0:  
SFLE: Scratchpad Flash Memory Access Enable  
When this bit is set, Flash MOVC reads and writes from user software are directed to the  
two 128-byte Scratchpad Flash sectors. When SFLE is set to logic 1, Flash accesses out of  
the address range 0x00-0xFF should not be attempted (with the exception of address  
0x400, which can be used to simultaneously erase both Scratchpad areas). Reads/Writes  
out of this range will yield undefined results.  
0: Flash access from user software directed to the Program/Data Flash sector.  
1: Flash access from user software directed to the two 128 byte Scratchpad sectors.  
PSEE: Program Store Erase Enable.  
Setting this bit allows an entire page of the Flash program memory to be erased provided  
the PSWE bit is also set. After setting this bit, a write to Flash memory using the MOVX  
instruction will erase the entire page that contains the location addressed by the MOVX  
instruction. The value of the data byte written does not matter. Note: The Flash page con-  
taining the Read Lock Byte and Write/Erase Lock Byte cannot be erased by software.  
0: Flash program memory erasure disabled.  
1: Flash program memory erasure enabled.  
PSWE: Program Store Write Enable.  
Setting this bit allows writing a byte of data to the Flash program memory using the MOVX  
write instruction. The location must be erased prior to writing data.  
0: Write to Flash program memory disabled. MOVX write operations target External RAM.  
1: Write to Flash program memory enabled. MOVX write operations target Flash memory.  
Rev. 1.4  
209  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
NOTES:  
210  
Rev. 1.4  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
16. Branch Target Cache  
The C8051F12x and C8051F13x device families incorporate a 63x4 byte branch target cache with a 4-byte  
prefetch engine. Because the access time of the Flash memory is 40 Flashns, and the minimum instruction  
time is 10ns (C8051F120/1/2/3 and C8051F130/1/2/3) or 20 ns (C8051F124/5/6/7), the branch target  
cache and prefetch engine are necessary for full-speed code execution. Instructions are read from Flash  
memory four bytes at a time by the prefetch engine, and given to the CIP-51 processor core to execute.  
When running linear code (code without any jumps or branches), the prefetch engine alone allows instruc-  
tions to be executed at full speed. When a code branch occurs, a search is performed for the branch tar-  
get (destination address) in the cache. If the branch target information is found in the cache (called a  
“cache hit”), the instruction data is read from the cache and immediately returned to the CIP-51 with no  
delay in code execution. If the branch target is not found in the cache (called a “cache miss”), the proces-  
sor may be stalled for up to four clock cycles while the next set of four instructions is retrieved from Flash  
memory. Each time a cache miss occurs, the requested instruction data is written to the cache if allowed  
by the current cache settings. A data flow diagram of the interaction between the CIP-51 and the Branch  
Target Cache and Prefetch Engine is shown in Figure 16.1.  
Instruction  
Data  
CIP-51  
FLASH  
Memory  
Prefetch  
Engine  
Branch Target  
Cache  
Instruction Address  
Figure 16.1. Branch Target Cache Data Flow  
16.1. Cache and Prefetch Operation  
The branch target cache maintains two sets of memory locations: “slots” and “tags”. A slot is where the  
cached instruction data from Flash is stored. Each slot holds four consecutive code bytes. A tag contains  
the 15 most significant bits of the corresponding Flash address for each four-byte slot. Thus, instruction  
data is always cached along four-byte boundaries in code space. A tag also contains a “valid bit”, which  
indicates whether a cache location contains valid instruction data. A special cache location (called the lin-  
ear tag and slot), is reserved for use by the prefetch engine. The cache organization is shown in  
Figure 16.2. Each time a Flash read is requested, the address is compared with all valid cache tag loca-  
tions (including the linear tag). If any of the tag locations match the requested address, the data from that  
slot is immediately provided to the CIP-51. If the requested address matches a location that is currently  
being read by the prefetch engine, the CIP-51 will be stalled until the read is complete. If a match is not  
found, the current prefetch operation is abandoned, and a new prefetch operation is initiated for the  
requested instruction data. When the prefetch operation is finished, the CIP-51 begins executing the  
instructions that were retrieved, and the prefetch engine begins reading the next four-byte word from Flash  
memory. If the newly-fetched data also meets the criteria necessary to be cached, it will be written to the  
cache in the slot indicated by the current replacement algorithm.  
Rev. 1.4  
211  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
The replacement algorithm is selected with the Cache Algorithm bit, CHALGM (CCH0TN.3). When  
CHALGM is cleared to ‘0’, the cache will use the rebound algorithm to replace cache locations. The  
rebound algorithm replaces locations in order from the beginning of cache memory to the end, and then  
from the end of cache memory to the beginning. When CHALGM is set to ‘1’, the cache will use the  
pseudo-random algorithm to replace cache locations. The pseudo-random algorithm uses a pseudo-ran-  
dom number to determine which cache location to replace. The cache can be manually emptied by writing  
a ‘1’ to the CHFLUSH bit (CCH0CN.4).  
Valid  
Bit  
Address  
Data  
Prefetch Data  
VL  
LINEAR TAG  
LINEAR SLOT  
V0  
V1  
V2  
TAG 0  
TAG 1  
TAG 2  
SLOT 0  
SLOT 1  
SLOT 2  
Cache Data  
V58  
V59  
V60  
V61  
V62  
TAG 58  
TAG 59  
TAG 60  
TAG 61  
TAG 62  
SLOT 58  
SLOT 59  
SLOT 60  
SLOT 61  
SLOT 62  
A16  
A2 A1 A0  
0
0
1
1
0
1
0
1
Byte 0  
Byte 1  
Byte 2  
Byte 3  
TAG = 15 MSBs of Absolute FLASH Address  
SLOT = 4 Instruction  
Data Bytes  
Figure 16.2. Branch Target Cache Organiztion  
16.2. Cache and Prefetch Optimization  
By default, the branch target cache is configured to provide code speed improvements for a broad range of  
circumstances. In most applications, the cache control registers should be left in their reset states.  
Sometimes it is desirable to optimize the execution time of a specific routine or critical timing loop. The  
branch target cache includes options to exclude caching of certain types of data, as well as the ability to  
pre-load and lock time-critical branch locations to optimize execution speed.  
The most basic level of cache control is implemented with the Cache Miss Penalty Threshold bits, CHM-  
STH (CCH0TN.1-0). If the processor is stalled during a prefetch operation for more clock cycles than the  
number stored in CHMSTH, the requested data will be cached when it becomes available. The CHMSTH  
bits are set to zero by default, meaning that any time the processor is stalled, the new data will be cached.  
If, for example, CHMSTH is equal to 2, any cache miss causing a delay of 3 or 4 clock cycles will be  
cached, while a cache miss causing a delay of 1-2 clock cycles will not be cached.  
212  
Rev. 1.4  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
Certain types of instruction data or certain blocks of code can also be excluded from caching. The destina-  
tions of RETI instructions are, by default, excluded from caching. To enable caching of RETI destinations,  
the CHRETI bit (CCH0CN.3) can be set to ‘1’. It is generally not beneficial to cache RETI destinations  
unless the same instruction is likely to be interrupted repeatedly (such as a code loop that is waiting for an  
interrupt to happen). Instructions that are part of an interrupt service routine (ISR) can also be excluded  
from caching. By default, ISR instructions are cached, but this can be disabled by clearing the CHISR bit  
(CCH0CN.2) to ‘0’. The other information that can be explicitly excluded from caching are the data  
returned by MOVC instructions. Clearing the CHMOV bit (CCH0CN.1) to ‘0’ will disable caching of MOVC  
data. If MOVC caching is allowed, it can be restricted to only use slot 0 for the MOVC information (exclud-  
ing cache push operations). The CHFIXM bit (CCH0TN.2) controls this behavior.  
Further cache control can be implemented by disabling all cache writes. Cache writes can be disabled by  
clearing the CHWREN bit (CCH0CN.7) to ‘0’. Although normal cache writes (such as those after a cache  
miss) are disabled, data can still be written to the cache with a cache push operation. Disabling cache  
writes can be used to prevent a non-critical section of code from changing the cache contents. Note that  
regardless of the value of CHWREN, a Flash write or erase operation automatically removes the affected  
bytes from the cache. Cache reads and the prefetch engine can also be individually disabled. Disabling  
cache reads forces all instructions data to execute from Flash memory or from the prefetch engine. To dis-  
able cache reads, the CHRDEN bit (CCH0CN.6) can be cleared to ‘0’. Note that when cache reads are  
disabled, cache writes will still occur (if CHWREN is set to ‘1’). Disabling the prefetch engine is accom-  
plished using the CHPFEN bit (CCH0CN.5). When this bit is cleared to ‘0’, the prefetch engine will be dis-  
abled. If both CHPFEN and CHRDEN are ‘0’, code will execute at a fixed rate, as instructions become  
available from the Flash memory.  
Cache locations can also be pre-loaded and locked with time-critical branch destinations. For example, in  
a system with an ISR that must respond as fast as possible, the entry point for the ISR can be locked into  
a cache location to minimize the response latency of the ISR. Up to 61 locations can be locked into the  
cache at one time. Instructions are locked into cache by enabling cache push operations with the  
CHPUSH bit (CCH0LC.7). When CHPUSH is set to ‘1’, a MOVC instruction will cause the four-byte seg-  
ment containing the data byte to be written to the cache slot location indicated by CHSLOT (CCH0LC.5-0).  
CHSLOT is them decremented to point to the next lockable cache location. This process is called a cache  
push operation. Cache locations that are above CHSLOT are “locked”, and cannot be changed by the pro-  
cessor core, as shown in Figure 16.3. Cache locations can be unlocked by using a cache pop operation.  
A cache pop is performed by writing a ‘1’ to the CHPOP bit (CCH0LC.6). When a cache pop is initiated,  
the value of CHSLOT is incremented. This unlocks the most recently locked cache location, but does not  
remove the information from the cache. Note that a cache pop should not be initiated if CHSLOT is equal  
to 111110b. Doing so may have an adverse effect on cache performance. Important: Although locking  
cache location 1 is not explicitly disabled by hardware, the entire cache will be unlocked when  
CHSLOT is equal to 000000b. Therefore, cache locations 1 and 0 must remain unlocked at all  
times.  
Rev. 1.4  
213  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
Lock Status  
UNLOCKED  
UNLOCKED  
UNLOCKED  
UNLOCKED  
TAG 0  
TAG 1  
SLOT 0  
SLOT 1  
SLOT 2  
Cache Push  
Operations  
Decrement  
CHSLOT  
TAG 2  
TAG 57  
TAG 58  
TAG 59  
TAG 60  
TAG 61  
TAG 62  
SLOT 57  
SLOT 58  
SLOT 59  
SLOT 60  
SLOT 61  
SLOT 62  
UNLOCKED  
UNLOCKED  
LOCKED  
CHSLOT = 58  
LOCKED  
Cache Pop  
Operations  
Increment  
CHSLOT  
LOCKED  
LOCKED  
Figure 16.3. Cache Lock Operation  
214  
Rev. 1.4  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
SFR Definition 16.1. CCH0CN: Cache Control  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Reset Value  
CHWREN CHRDEN CHPFEN CHFLSH CHRETI  
CHISR CHMOVC CHBLKW 11100110  
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Bit0  
SFR Address: 0xA1  
SFR Page: F  
Bit 7:  
CHWREN: Cache Write Enable.  
This bit enables the processor to write to the cache memory.  
0: Cache contents are not allowed to change, except during Flash writes/erasures or cache  
locks.  
1: Writes to cache memory are allowed.  
Bit 6:  
Bit 5:  
CHRDEN: Cache Read Enable.  
This bit enables the processor to read instructions from the cache memory.  
0: All instruction data comes from Flash memory or the prefetch engine.  
1: Instruction data is obtained from cache (when available).  
CHPFEN: Cache Prefetch Enable.  
This bit enables the prefetch engine.  
0: Prefetch engine is disabled.  
1: Prefetch engine is enabled.  
Bit 4:  
Bit 3:  
CHFLSH: Cache Flush.  
When written to a ‘1’, this bit clears the cache contents. This bit always reads ‘0’.  
CHRETI: Cache RETI Destination Enable.  
This bit enables the destination of a RETI address to be cached.  
0: Destinations of RETI instructions will not be cached.  
1: RETI destinations will be cached.  
Bit 2:  
CHISR: Cache ISR Enable.  
This bit allows instructions which are part of an Interrupt Service Rountine (ISR) to be  
cached.  
0: Instructions in ISRs will not be loaded into cache memory.  
1: Instructions in ISRs can be cached.  
Bit 1:  
Bit 0:  
CHMOVC: Cache MOVC Enable.  
This bit allows data requested by a MOVC instruction to be loaded into the cache memory.  
0: Data requested by MOVC instructions will not be cached.  
1: Data requested by MOVC instructions will be loaded into cache memory.  
CHBLKW: Block Write Enable.  
This bit allows block writes to Flash memory from software.  
0: Each byte of a software Flash write is written individually.  
1: Flash bytes are written in groups of four (for code space writes) or two (for scratchpad  
writes).  
Rev. 1.4  
215  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
SFR Definition 16.2. CCH0TN: Cache Tuning  
R/W  
Bit7  
R/W  
R/W  
Bit5  
R/W  
Bit4  
R/W  
R/W  
R/W  
R/W  
Bit0  
Reset Value  
CHMSCTL  
Bit6  
CHALGM CHFIXM  
CHMSTH  
Bit1  
00000100  
Bit3  
Bit2  
SFR Address: 0xA2  
SFR Page: F  
Bits 7–4: CHMSCTL: Cache Miss Penalty Accumulator (Bits 4–1).  
These are bits 4-1 of the Cache Miss Penalty Accumulator. To read these bits, they must first  
be latched by reading the CHMSCTH bits in the CCH0MA Register (See SFR Definition  
16.4).  
Bit 3:  
Bit 2:  
CHALGM: Cache Algorithm Select.  
This bit selects the cache replacement algorithm.  
0: Cache uses Rebound algorithm.  
1: Cache uses Pseudo-random algorithm.  
CHFIXM: Cache Fix MOVC Enable.  
This bit forces MOVC writes to the cache memory to use slot 0.  
0: MOVC data is written according to the current algorithm selected by the CHALGM bit.  
1: MOVC data is always written to cache slot 0.  
Bits 1–0: CHMSTH: Cache Miss Penalty Threshold.  
These bits determine when missed instruction data will be cached.  
If data takes longer than CHMSTH clocks to obtain, it will be cached.  
SFR Definition 16.3. CCH0LC: Cache Lock Control  
R/W  
R/W  
R
R
R
R
R
R
Reset Value  
CHPUSH CHPOP  
CHSLOT  
00111110  
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Bit0  
SFR Address: 0xA3  
SFR Page: F  
Bit 7:  
CHPUSH: Cache Push Enable.  
This bit enables cache push operations, which will lock information in cache slots using  
MOVC instructions.  
0: Cache push operations are disabled.  
1: Cache push operations are enabled. When a MOVC read is executed, the requested 4-  
byte segment containing the data is locked into the cache at the location indicated by  
CHSLOT, and CHSLOT is decremented.  
Note that no more than 61 cache slots should be locked at one time, since the entire cache  
will be unlocked when CHSLOT is equal to 0.  
Bit 6:  
CHPOP: Cache Pop.  
Writing a ‘1’ to this bit will increment CHSLOT and then unlock that location. This bit always  
reads ‘0’. Note that Cache Pop operations should not be performed while CHSLOT =  
111110b. “Pop”ing more Cache slots than have been “Push”ed will have indeterminate  
results on the Cache performance.  
Bits 5–0: CHSLOT: Cache Slot Pointer.  
These read-only bits are the pointer into the cache lock stack. Locations above CHSLOT are  
locked, and will not be changed by the processor, except when CHSLOT equals 0.  
216  
Rev. 1.4  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
SFR Definition 16.4. CCH0MA: Cache Miss Accumulator  
R
R/W  
Bit6  
R/W  
Bit5  
R/W  
Bit4  
R/W  
CHMSCTH  
Bit3  
R/W  
Bit2  
R/W  
Bit1  
R/W  
Reset Value  
CHMSOV  
Bit7  
00000000  
Bit0  
SFR Address: 0x9A  
SFR Page: F  
Bit 7:  
CHMSOV: Cache Miss Penalty Overflow.  
This bit indicates when the Cache Miss Penalty Accumulator has overflowed since it was  
last written.  
0: The Cache Miss Penalty Accumulator has not overflowed since it was last written.  
1: An overflow of the Cache Miss Penalty Accumulator has occurred since it was last written.  
Bits 6–0: CHMSCTH: Cache Miss Penalty Accumulator (bits 11–5)  
These are bits 11-5 of the Cache Miss Penalty Accumulator. The next four bits (bits 4-1) are  
stored in CHMSCTL in the CCH0TN register.  
The Cache Miss Penalty Accumulator is incremented every clock cycle that the processor is  
delayed due to a cache miss. This is primarily used as a diagnostic feature, when optimizing  
code for execution speed.  
Writing to CHMSCTH clears the lower 5 bits of the Cache Miss Penalty Accumulator.  
Reading from CHMSCTH returns the current value of CHMSTCH, and latches bits 4-1 into  
CHMSTCL so that they can be read. Because bit 0 of the Cache Miss Penalty Accumulator  
is not available, the Cumulative Miss Penalty is equal to 2 * (CCHMSTCH:CCHMSTCL).  
SFR Definition 16.5. FLSTAT: Flash Status  
R
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Reset Value  
-
-
-
-
-
-
-
FLBUSY 00000000  
Bit  
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Bit0  
Addressable  
SFR Address: 0x88  
SFR Page: F  
Bit 7–1: Reserved.  
Bit 0: FLBUSY: Flash Busy  
This bit indicates when a Flash write or erase operation is in progress.  
0: Flash is idle or reading.  
1: Flash write/erase operation is currently in progress.  
Rev. 1.4  
217  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
NOTES:  
218  
Rev. 1.4  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
17. External Data Memory Interface and On-Chip XRAM  
There are 8 kB of on-chip RAM mapped into the external data memory space (XRAM), as well as an Exter-  
nal Data Memory Interface which can be used to access off-chip memories and memory-mapped devices  
connected to the GPIO ports. The external memory space may be accessed using the external move  
instruction (MOVX) and the data pointer (DPTR), or using the MOVX indirect addressing mode using R0 or  
R1. If the MOVX instruction is used with an 8-bit address operand (such as @R1), then the high byte of the  
16-bit address is provided by the External Memory Interface Control Register (EMI0CN, shown in SFR  
Definition 17.1). Note: the MOVX instruction can also be used for writing to the Flash memory. See Sec-  
tion “15. Flash Memory” on page 199 for details. The MOVX instruction accesses XRAM by default. The  
EMIF can be configured to appear on the lower GPIO Ports (P0–P3) or the upper GPIO Ports (P4–P7).  
17.1. Accessing XRAM  
The XRAM memory space is accessed using the MOVX instruction. The MOVX instruction has two forms,  
both of which use an indirect addressing method. The first method uses the Data Pointer, DPTR, a 16-bit  
register which contains the effective address of the XRAM location to be read from or written to. The sec-  
ond method uses R0 or R1 in combination with the EMI0CN register to generate the effective XRAM  
address. Examples of both of these methods are given below.  
17.1.1. 16-Bit MOVX Example  
The 16-bit form of the MOVX instruction accesses the memory location pointed to by the contents of the  
DPTR register. The following series of instructions reads the value of the byte at address 0x1234 into the  
accumulator A:  
MOV  
MOVX  
DPTR, #1234h  
A, @DPTR  
; load DPTR with 16-bit address to read (0x1234)  
; load contents of 0x1234 into accumulator A  
The above example uses the 16-bit immediate MOV instruction to set the contents of DPTR. Alternately,  
the DPTR can be accessed through the SFR registers DPH, which contains the upper 8-bits of DPTR, and  
DPL, which contains the lower 8-bits of DPTR.  
17.1.2. 8-Bit MOVX Example  
The 8-bit form of the MOVX instruction uses the contents of the EMI0CN SFR to determine the upper 8-bits  
of the effective address to be accessed and the contents of R0 or R1 to determine the lower 8-bits of the  
effective address to be accessed. The following series of instructions read the contents of the byte at  
address 0x1234 into the accumulator A.  
MOV  
MOV  
MOVX  
EMI0CN, #12h  
R0, #34h  
a, @R0  
; load high byte of address into EMI0CN  
; load low byte of address into R0 (or R1)  
; load contents of 0x1234 into accumulator A  
17.2. Configuring the External Memory Interface  
Configuring the External Memory Interface consists of five steps:  
1. Select EMIF on Low Ports (P3, P2, P1, and P0) or High Ports (P7, P6, P5, and P4).  
2. Configure the Output Modes of the port pins as either push-pull or open-drain (push-pull is  
most common).  
3. Configure Port latches to “park” the EMIF pins in a dormant state (usually by setting them to  
logic ‘1’).  
4. Select Multiplexed mode or Non-multiplexed mode.  
Rev. 1.4  
219  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
5. Select the memory mode (on-chip only, split mode without bank select, split mode with bank  
select, or off-chip only).  
6. Set up timing to interface with off-chip memory or peripherals.  
Each of these five steps is explained in detail in the following sections. The Port selection, Multiplexed  
mode selection, and Mode bits are located in the EMI0CF register shown in SFR Definition 17.2.  
17.3. Port Selection and Configuration  
The External Memory Interface can appear on Ports 3, 2, 1, and 0 (All Devices) or on Ports 7, 6, 5, and 4  
(100-pin TQFP devices only), depending on the state of the PRTSEL bit (EMI0CF.5). If the lower Ports are  
selected, the EMIFLE bit (XBR2.1) must be set to a ‘1’ so that the Crossbar will skip over P0.7 (/WR), P0.6  
(/RD), and if multiplexed mode is selected P0.5 (ALE). For more information about the configuring the  
Crossbar, see Section “18.1. Ports 0 through 3 and the Priority Crossbar Decoder” on page 238.  
The External Memory Interface claims the associated Port pins for memory operations ONLY during the  
execution of an off-chip MOVX instruction. Once the MOVX instruction has completed, control of the Port  
pins reverts to the Port latches or to the Crossbar (on Ports 3, 2, 1, and 0). See Section “18. Port Input/  
Output” on page 235 for more information about the Crossbar and Port operation and configuration. The  
Port latches should be explicitly configured to ‘park’ the External Memory Interface pins in a dor-  
mant state, most commonly by setting them to a logic 1.  
During the execution of the MOVX instruction, the External Memory Interface will explicitly disable the driv-  
ers on all Port pins that are acting as Inputs (Data[7:0] during a READ operation, for example). The Output  
mode of the Port pins (whether the pin is configured as Open-Drain or Push-Pull) is unaffected by the  
External Memory Interface operation, and remains controlled by the PnMDOUT registers. In most cases,  
the output modes of all EMIF pins should be configured for push-pull mode. See“Configuring the Output  
Modes of the Port Pins” on page 239.  
SFR Definition 17.1. EMI0CN: External Memory Interface Control  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Reset Value  
PGSEL7 PGSEL6 PGSEL5 PGSEL4 PGSEL3 PGSEL2 PGSEL1 PGSEL0 00000000  
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Bit0  
SFR Address: 0xA2  
SFR Page: 0  
Bits7–0: PGSEL[7:0]: XRAM Page Select Bits.  
The XRAM Page Select Bits provide the high byte of the 16-bit external data memory  
address when using an 8-bit MOVX command, effectively selecting a 256-byte page of  
RAM.  
0x00: 0x0000 to 0x00FF  
0x01: 0x0100 to 0x01FF  
...  
0xFE: 0xFE00 to 0xFEFF  
0xFF: 0xFF00 to 0xFFFF  
220  
Rev. 1.4  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
SFR Definition 17.2. EMI0CF: External Memory Configuration  
R/W  
-
R/W  
-
R/W  
PRTSEL  
Bit5  
R/W  
EMD2  
Bit4  
R/W  
EMD1  
Bit3  
R/W  
EMD0  
Bit2  
R/W  
EALE1  
Bit1  
R/W  
Reset Value  
EALE0 00000011  
Bit0  
Bit7  
Bit6  
SFR Address: 0xA3  
SFR Page:  
0
Bits7–6: Unused. Read = 00b. Write = don’t care.  
Bit5:  
PRTSEL: EMIF Port Select.  
0: EMIF active on P0–P3.  
1: EMIF active on P4–P7.  
Bit4:  
EMD2: EMIF Multiplex Mode Select.  
0: EMIF operates in multiplexed address/data mode.  
1: EMIF operates in non-multiplexed mode (separate address and data pins).  
Bits3–2: EMD1-0: EMIF Operating Mode Select.  
These bits control the operating mode of the External Memory Interface.  
00: Internal Only: MOVX accesses on-chip XRAM only. All effective addresses alias to on-  
chip memory space.  
01: Split Mode without Bank Select: Accesses below the 8 k boundary are directed on-chip.  
Accesses above the 8 k boundary are directed off-chip. 8-bit off-chip MOVX operations use  
the current contents of the Address High port latches to resolve upper address byte. Note  
that in order to access off-chip space, EMI0CN must be set to a page that is not contained in  
the on-chip address space.  
10: Split Mode with Bank Select: Accesses below the 8 k boundary are directed on-chip.  
Accesses above the 8k boundary are directed off-chip. 8-bit off-chip MOVX operations use  
the contents of EMI0CN to determine the high-byte of the address.  
11: External Only: MOVX accesses off-chip XRAM only. On-chip XRAM is not visible to the  
CPU.  
Bits1–0: EALE1–0: ALE Pulse-Width Select Bits (only has effect when EMD2 = 0).  
00: ALE high and ALE low pulse width = 1 SYSCLK cycle.  
01: ALE high and ALE low pulse width = 2 SYSCLK cycles.  
10: ALE high and ALE low pulse width = 3 SYSCLK cycles.  
11: ALE high and ALE low pulse width = 4 SYSCLK cycles.  
Rev. 1.4  
221  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
17.4. Multiplexed and Non-multiplexed Selection  
The External Memory Interface is capable of acting in a Multiplexed mode or a Non-multiplexed mode,  
depending on the state of the EMD2 (EMI0CF.4) bit.  
17.4.1. Multiplexed Configuration  
In Multiplexed mode, the Data Bus and the lower 8-bits of the Address Bus share the same Port pins:  
AD[7:0]. In this mode, an external latch (74HC373 or equivalent logic gate) is used to hold the lower 8-bits  
of the RAM address. The external latch is controlled by the ALE (Address Latch Enable) signal, which is  
driven by the External Memory Interface logic. An example of a Multiplexed Configuration is shown in  
Figure 17.1.  
In Multiplexed mode, the external MOVX operation can be broken into two phases delineated by the state  
of the ALE signal. During the first phase, ALE is high and the lower 8-bits of the Address Bus are pre-  
sented to AD[7:0]. During this phase, the address latch is configured such that the ‘Q’ outputs reflect the  
states of the ‘D’ inputs. When ALE falls, signaling the beginning of the second phase, the address latch  
outputs remain fixed and are no longer dependent on the latch inputs. Later in the second phase, the Data  
Bus controls the state of the AD[7:0] port at the time /RD or /WR is asserted.  
See Section “17.6.2. Multiplexed Mode” on page 230 for more information.  
A[15:8]  
ADDRESS BUS  
74HC373  
A[15:8]  
A[7:0]  
ALE  
G
E
M
I
AD[7:0]  
ADDRESS/DATA BUS  
VDD  
D
Q
64K X 8  
SRAM  
(Optional)  
8
I/O[7:0]  
F
CE  
WE  
OE  
/WR  
/RD  
Figure 17.1. Multiplexed Configuration Example  
222  
Rev. 1.4  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
17.4.2. Non-multiplexed Configuration  
In Non-multiplexed mode, the Data Bus and the Address Bus pins are not shared. An example of a Non-  
multiplexed Configuration is shown in Figure 17.2. See Section “17.6.1. Non-multiplexed Mode” on  
page 227 for more information about Non-multiplexed operation.  
A[15:0]  
ADDRESS BUS  
A[15:0]  
E
M
I
VDD  
(Optional)  
64K X 8  
SRAM  
I/O[7:0]  
8
D[7:0]  
DATA BUS  
CE  
WE  
OE  
F
/WR  
/RD  
Figure 17.2. Non-multiplexed Configuration Example  
Rev. 1.4  
223  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
17.5. Memory Mode Selection  
The external data memory space can be configured in one of four modes, shown in Figure 17.3, based on  
the EMIF Mode bits in the EMI0CF register (SFR Definition 17.2). These modes are summarized below.  
More information about the different modes can be found in Section “SFR Definition 17.3. EMI0TC:  
External Memory Timing Control” on page 226.  
17.5.1. Internal XRAM Only  
When EMI0CF.[3:2] are set to ‘00’, all MOVX instructions will target the internal XRAM space on the  
device. Memory accesses to addresses beyond the populated space will wrap on 8 k boundaries. As an  
example, the addresses 0x2000 and 0x4000 both evaluate to address 0x0000 in on-chip XRAM space.  
8-bit MOVX operations use the contents of EMI0CN to determine the high-byte of the effective address  
and R0 or R1 to determine the low-byte of the effective address.  
16-bit MOVX operations use the contents of the 16-bit DPTR to determine the effective address.  
17.5.2. Split Mode without Bank Select  
When EMI0CF.[3:2] are set to ‘01’, the XRAM memory map is split into two areas, on-chip space and off-  
chip space.  
Effective addresses below the 8 k boundary will access on-chip XRAM space.  
Effective addresses above the 8 k boundary will access off-chip space.  
8-bit MOVX operations use the contents of EMI0CN to determine whether the memory access is on-  
chip or off-chip. However, in the “No Bank Select” mode, an 8-bit MOVX operation will not drive the  
upper 8-bits A[15:8] of the Address Bus during an off-chip access. This allows the user to manipulate  
the upper address bits at will by setting the Port state directly via the port latches. This behavior is in  
contrast with “Split Mode with Bank Select” described below. The lower 8-bits of the Address Bus  
A[7:0] are driven, determined by R0 or R1.  
16-bit MOVX operations use the contents of DPTR to determine whether the memory access is on-  
chip or off-chip, and unlike 8-bit MOVX operations, the full 16-bits of the Address Bus A[15:0] are  
driven during the off-chip transaction.  
EMI0CF[3:2] = 00  
EMI0CF[3:2] = 01  
EMI0CF[3:2] = 10  
EMI0CF[3:2] = 11  
0xFFFF  
0xFFFF  
0xFFFF  
0xFFFF  
On-Chip XRAM  
On-Chip XRAM  
On-Chip XRAM  
On-Chip XRAM  
On-Chip XRAM  
On-Chip XRAM  
Off-Chip  
Memory  
(No Bank Select)  
Off-Chip  
Memory  
(Bank Select)  
Off-Chip  
Memory  
On-Chip XRAM  
On-Chip XRAM  
0x0000  
0x0000  
0x0000  
0x0000  
Figure 17.3. EMIF Operating Modes  
224  
Rev. 1.4  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
17.5.3. Split Mode with Bank Select  
When EMI0CF.[3:2] are set to ‘10’, the XRAM memory map is split into two areas, on-chip space and off-  
chip space.  
Effective addresses below the 8k boundary will access on-chip XRAM space.  
Effective addresses above the 8k boundary will access off-chip space.  
8-bit MOVX operations use the contents of EMI0CN to determine whether the memory access is on-  
chip or off-chip. The upper 8-bits of the Address Bus A[15:8] are determined by EMI0CN, and the lower  
8-bits of the Address Bus A[7:0] are determined by R0 or R1. All 16-bits of the Address Bus A[15:0] are  
driven in “Bank Select” mode.  
16-bit MOVX operations use the contents of DPTR to determine whether the memory access is on-  
chip or off-chip, and the full 16-bits of the Address Bus A[15:0] are driven during the off-chip transac-  
tion.  
17.5.4. External Only  
When EMI0CF[3:2] are set to ‘11’, all MOVX operations are directed to off-chip space. On-chip XRAM is  
not visible to the CPU. This mode is useful for accessing off-chip memory located between 0x0000 and the  
8k boundary.  
8-bit MOVX operations ignore the contents of EMI0CN. The upper Address bits A[15:8] are not driven  
(identical behavior to an off-chip access in “Split Mode without Bank Select” described above). This  
allows the user to manipulate the upper address bits at will by setting the Port state directly. The lower  
8-bits of the effective address A[7:0] are determined by the contents of R0 or R1.  
16-bit MOVX operations use the contents of DPTR to determine the effective address A[15:0]. The full  
16-bits of the Address Bus A[15:0] are driven during the off-chip transaction.  
17.6. EMIF Timing  
The timing parameters of the External Memory Interface can be configured to enable connection to  
devices having different setup and hold time requirements. The Address Setup time, Address Hold time, /  
RD and /WR strobe widths, and in multiplexed mode, the width of the ALE pulse are all programmable in  
units of SYSCLK periods through EMI0TC, shown in SFR Definition 17.3, and EMI0CF[1:0].  
The timing for an off-chip MOVX instruction can be calculated by adding 4 SYSCLK cycles to the timing  
parameters defined by the EMI0TC register. Assuming non-multiplexed operation, the minimum execution  
time for an off-chip XRAM operation is 5 SYSCLK cycles (1 SYSCLK for /RD or /WR pulse + 4 SYSCLKs).  
For multiplexed operations, the Address Latch Enable signal will require a minimum of 2 additional SYS-  
CLK cycles. Therefore, the minimum execution time for an off-chip XRAM operation in multiplexed mode  
is 7 SYSCLK cycles (2 for /ALE + 1 for /RD or /WR + 4). The programmable setup and hold times default  
to the maximum delay settings after a reset. Table 17.1 lists the ac parameters for the External Memory  
Interface, and Figure 17.4 through Figure 17.9 show the timing diagrams for the different External Memory  
Interface modes and MOVX operations.  
Rev. 1.4  
225  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
SFR Definition 17.3. EMI0TC: External Memory Timing Control  
R/W  
EAS1  
Bit7  
R/W  
EAS0  
Bit6  
R/W  
ERW3  
Bit5  
R/W  
EWR2  
Bit4  
R/W  
EWR1  
Bit3  
R/W  
EWR0  
Bit2  
R/W  
EAH1  
Bit1  
R/W  
EAH0  
Bit0  
Reset Value  
11111111  
SFR Address: 0xA1  
SFR Page: 0  
Bits7–6: EAS1–0: EMIF Address Setup Time Bits.  
00: Address setup time = 0 SYSCLK cycles.  
01: Address setup time = 1 SYSCLK cycle.  
10: Address setup time = 2 SYSCLK cycles.  
11: Address setup time = 3 SYSCLK cycles.  
Bits5–2: EWR3–0: EMIF /WR and /RD Pulse-Width Control Bits.  
0000: /WR and /RD pulse width = 1 SYSCLK cycle.  
0001: /WR and /RD pulse width = 2 SYSCLK cycles.  
0010: /WR and /RD pulse width = 3 SYSCLK cycles.  
0011: /WR and /RD pulse width = 4 SYSCLK cycles.  
0100: /WR and /RD pulse width = 5 SYSCLK cycles.  
0101: /WR and /RD pulse width = 6 SYSCLK cycles.  
0110: /WR and /RD pulse width = 7 SYSCLK cycles.  
0111: /WR and /RD pulse width = 8 SYSCLK cycles.  
1000: /WR and /RD pulse width = 9 SYSCLK cycles.  
1001: /WR and /RD pulse width = 10 SYSCLK cycles.  
1010: /WR and /RD pulse width = 11 SYSCLK cycles.  
1011: /WR and /RD pulse width = 12 SYSCLK cycles.  
1100: /WR and /RD pulse width = 13 SYSCLK cycles.  
1101: /WR and /RD pulse width = 14 SYSCLK cycles.  
1110: /WR and /RD pulse width = 15 SYSCLK cycles.  
1111: /WR and /RD pulse width = 16 SYSCLK cycles.  
Bits1–0: EAH1–0: EMIF Address Hold Time Bits.  
00: Address hold time = 0 SYSCLK cycles.  
01: Address hold time = 1 SYSCLK cycle.  
10: Address hold time = 2 SYSCLK cycles.  
11: Address hold time = 3 SYSCLK cycles.  
226  
Rev. 1.4  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
17.6.1. Non-multiplexed Mode  
17.6.1.1.16-bit MOVX: EMI0CF[4:2] = ‘101’, ‘110’, or ‘111’  
Nonmuxed 16-bit WRITE  
ADDR[15:8]  
ADDR[7:0]  
DATA[7:0]  
P1/P5  
P2/P6  
P3/P7  
EMIF ADDRESS (8 MSBs) from DPH  
EMIF ADDRESS (8 LSBs) from DPL  
EMIF WRITE DATA  
P1/P5  
P2/P6  
P3/P7  
T
T
WDS  
WDH  
T
T
T
ACS  
ACW  
ACH  
/WR  
/RD  
P0.7/P4.7  
P0.6/P4.6  
P0.7/P4.7  
P0.6/P4.6  
Nonmuxed 16-bit READ  
ADDR[15:8]  
ADDR[7:0]  
DATA[7:0]  
P1/P5  
P2/P6  
P3/P7  
EMIF ADDRESS (8 MSBs) from DPH  
EMIF ADDRESS (8 LSBs) from DPL  
EMIF READ DATA  
P1/P5  
P2/P6  
P3/P7  
T
T
RDS  
RDH  
T
T
T
ACS  
ACW  
ACH  
/RD  
P0.6/P4.6  
P0.7/P4.7  
P0.6/P4.6  
P0.7/P4.7  
/WR  
Figure 17.4. Non-multiplexed 16-bit MOVX Timing  
Rev. 1.4  
227  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
17.6.1.2.8-bit MOVX without Bank Select: EMI0CF[4:2] = ‘101’ or ‘111’.  
Nonmuxed 8-bit WRITE without Bank Select  
ADDR[15:8]  
ADDR[7:0]  
DATA[7:0]  
P1/P5  
P2/P6  
P3/P7  
EMIF ADDRESS (8 LSBs) from R0 or R1  
EMIF WRITE DATA  
P2/P6  
P3/P7  
T
T
WDS  
WDH  
T
T
T
ACS  
ACW  
ACH  
/WR  
/RD  
P0.7/P4.7  
P0.6/P4.6  
P0.7/P4.7  
P0.6/P4.6  
Nonmuxed 8-bit READ without Bank Select  
P1/P5  
ADDR[15:8]  
ADDR[7:0]  
DATA[7:0]  
P2/P6  
P3/P7  
EMIF ADDRESS (8 LSBs) from R0 or R1  
EMIF READ DATA  
P2/P6  
P3/P7  
T
T
RDS  
RDH  
T
T
T
ACS  
ACW  
ACH  
/RD  
P0.6/P4.6  
P0.7/P4.7  
P0.6/P4.6  
P0.7/P4.7  
/WR  
Figure 17.5. Non-multiplexed 8-bit MOVX without Bank Select Timing  
228  
Rev. 1.4  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
17.6.1.3.8-bit MOVX with Bank Select: EMI0CF[4:2] = ‘110’.  
Nonmuxed 8-bit WRITE with Bank Select  
ADDR[15:8]  
ADDR[7:0]  
DATA[7:0]  
P1/P5  
P2/P6  
P3/P7  
EMIF ADDRESS (8 MSBs) from EMI0CN  
EMIF ADDRESS (8 LSBs) from R0 or R1  
EMIF WRITE DATA  
P1/P5  
P2/P6  
P3/P7  
T
T
WDS  
WDH  
T
T
T
ACS  
ACW  
ACH  
/WR  
/RD  
P0.7/P4.7  
P0.6/P4.6  
P0.7/P4.7  
P0.6/P4.6  
Nonmuxed 8-bit READ with Bank Select  
EMIF ADDRESS (8 MSBs) from EMI0CN  
ADDR[15:8]  
ADDR[7:0]  
DATA[7:0]  
P1/P5  
P2/P6  
P3/P7  
P1/P5  
P2/P6  
P3/P7  
EMIF ADDRESS (8 LSBs) from R0 or R1  
EMIF READ DATA  
T
T
RDS  
RDH  
T
T
T
ACS  
ACW  
ACH  
/RD  
P0.6/P4.6  
P0.7/P4.7  
P0.6/P4.6  
P0.7/P4.7  
/WR  
Figure 17.6. Non-multiplexed 8-bit MOVX with Bank Select Timing  
Rev. 1.4  
229  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
17.6.2. Multiplexed Mode  
17.6.2.1.16-bit MOVX: EMI0CF[4:2] = ‘001’, ‘010’, or ‘011’  
Muxed 16-bit WRITE  
ADDR[15:8]  
AD[7:0]  
P2/P6  
P3/P7  
EMIF ADDRESS (8 MSBs) from DPH  
P2/P6  
P3/P7  
EMIF ADDRESS (8 LSBs) from  
DPL  
EMIF WRITE DATA  
T
T
ALEL  
ALEH  
ALE  
P0.5/P4.5  
P0.5/P4.5  
T
T
WDS  
WDH  
T
T
T
ACS  
ACW  
ACH  
/WR  
/RD  
P0.7/P4.7  
P0.6/P4.6  
P0.7/P4.7  
P0.6/P4.6  
Muxed 16-bit READ  
ADDR[15:8]  
AD[7:0]  
P2/P6  
P3/P7  
EMIF ADDRESS (8 MSBs) from DPH  
P2/P6  
P3/P7  
EMIF ADDRESS (8 LSBs) from  
DPL  
EMIF READ DATA  
T
T
ALEH  
ALEL  
T
T
RDH  
RDS  
ALE  
P0.5/P4.5  
P0.5/P4.5  
T
T
T
ACH  
ACS  
ACW  
/RD  
P0.6/P4.6  
P0.7/P4.7  
P0.6/P4.6  
P0.7/P4.7  
/WR  
Figure 17.7. Multiplexed 16-bit MOVX Timing  
230  
Rev. 1.4  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
17.6.2.2.8-bit MOVX without Bank Select: EMI0CF[4:2] = ‘001’ or ‘011’.  
Muxed 8-bit WRITE Without Bank Select  
P2/P6  
ADDR[15:8]  
AD[7:0]  
EMIF ADDRESS (8 LSBs) from  
R0 or R1  
P3/P7  
EMIF WRITE DATA  
P3/P7  
T
T
ALEH  
ALEL  
ALE  
P0.5/P4.5  
P0.5/P4.5  
T
T
WDS  
WDH  
T
T
T
ACS  
ACW  
ACH  
/WR  
/RD  
P0.7/P4.7  
P0.6/P4.6  
P0.7/P4.7  
P0.6/P4.6  
Muxed 8-bit READ Without Bank Select  
P2/P6  
ADDR[15:8]  
AD[7:0]  
EMIF ADDRESS (8 LSBs) from  
R0 or R1  
P3/P7  
EMIF READ DATA  
P3/P7  
T
T
ALEL  
ALEH  
T
T
RDH  
RDS  
ALE  
P0.5/P4.5  
P0.5/P4.5  
T
T
T
ACS  
ACW  
ACH  
/RD  
P0.6/P4.6  
P0.7/P4.7  
P0.6/P4.6  
P0.7/P4.7  
/WR  
Figure 17.8. Multiplexed 8-bit MOVX without Bank Select Timing  
Rev. 1.4  
231  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
17.6.2.3.8-bit MOVX with Bank Select: EMI0CF[4:2] = ‘010’.  
Muxed 8-bit WRITE with Bank Select  
ADDR[15:8]  
AD[7:0]  
P2/P6  
P3/P7  
EMIF ADDRESS (8 MSBs) from EMI0CN  
P2/P6  
P3/P7  
EMIF ADDRESS (8 LSBs) from  
R0 or R1  
EMIF WRITE DATA  
T
T
ALEH  
ALEL  
ALE  
P0.5/P4.5  
P0.5/P4.5  
T
T
WDS  
WDH  
T
T
T
ACS  
ACW  
ACH  
/WR  
/RD  
P0.7/P4.7  
P0.6/P4.6  
P0.7/P4.7  
P0.6/P4.6  
Muxed 8-bit READ with Bank Select  
EMIF ADDRESS (8 MSBs) from EMI0CN  
ADDR[15:8]  
AD[7:0]  
P2/P6  
P3/P7  
P2/P6  
P3/P7  
EMIF ADDRESS (8 LSBs) from  
R0 or R1  
EMIF READ DATA  
T
T
ALEL  
ALEH  
T
T
RDS  
RDH  
ALE  
P0.5/P4.5  
P0.5/P4.5  
T
T
T
ACH  
ACS  
ACW  
/RD  
P0.6/P4.6  
P0.7/P4.7  
P0.6/P4.6  
P0.7/P4.7  
/WR  
Figure 17.9. Multiplexed 8-bit MOVX with Bank Select Timing  
232  
Rev. 1.4  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
Table 17.1. AC Parameters for External Memory Interface  
Parameter  
Description  
Min  
Max  
Units  
T
Address/Control Setup Time  
0
3 x TSYSCLK  
ns  
ACS  
T
Address/Control Pulse Width  
Address/Control Hold Time  
Address Latch Enable High Time  
Address Latch Enable Low Time  
Write Data Setup Time  
1 x TSYSCLK 16 x TSYSCLK  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ACW  
T
0
3 x TSYSCLK  
4 x TSYSCLK  
4 x TSYSCLK  
ACH  
T
1 x TSYSCLK  
1 x TSYSCLK  
ALEH  
T
ALEL  
T
1 x TSYSCLK 19 x TSYSCLK  
WDS  
T
Write Data Hold Time  
0
20  
0
3 x TSYSCLK  
WDH  
T
Read Data Setup Time  
RDS  
T
Read Data Hold Time  
RDH  
Note: TSYSCLK is equal to one period of the device system clock (SYSCLK).  
Rev. 1.4  
233  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
NOTES:  
234  
Rev. 1.4  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
18. Port Input/Output  
The devices are fully integrated mixed-signal System on a Chip MCUs with 64 digital I/O pins (100-pin  
TQFP packaging) or 32 digital I/O pins (64-pin TQFP packaging), organized as 8-bit Ports. All ports are  
both bit- and byte-addressable through their corresponding Port Data registers. All Port pins are 5 V-toler-  
ant, and all support configurable Open-Drain or Push-Pull output modes and weak pullups. A block dia-  
gram of the Port I/O cell is shown in Figure 18.1. Complete Electrical Specifications for the Port I/O pins  
are given in Table 18.1.  
/WEAK-PULLUP  
VDD  
VDD  
PUSH-PULL  
/PORT-OUTENABLE  
(WEAK)  
PORT  
PAD  
PORT-OUTPUT  
DGND  
Analog Select  
(Ports 1, 2, and 3)  
ANALOG INPUT  
PORT-INPUT  
Figure 18.1. Port I/O Cell Block Diagram  
Rev. 1.4  
235  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
Table 18.1. Port I/O DC Electrical Characteristics  
VDD = 2.7 to 3.6 V, 40 to +85 °C unless otherwise specified.  
Parameter  
Conditions  
Min  
Typ  
Max  
Units  
IOH = -3 mA, Port I/O Push-Pull  
V
DD – 0.7  
V
Output High Voltage  
IOH = -10 µA, Port I/O Push-Pull  
OH = -10 mA, Port I/O Push-Pull  
VDD – 0.1  
(VOH  
)
I
VDD – 0.8  
IOL = 8.5 mA  
0.6  
0.1  
V
Output Low Voltage  
(VOL  
IOL = 10 µA  
OL = 25 mA  
)
I
1.0  
Input High Voltage (VIH)  
Input Low Voltage (VIL)  
0.7 x VDD  
0.3 x  
VDD  
DGND < Port Pin < VDD, Pin Tri-state  
Weak Pullup Off  
Weak Pullup On  
µA  
pF  
Input Leakage Current  
Input Capacitance  
± 1  
10  
5
236  
Rev. 1.4  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
A wide array of digital resources is available through the four lower I/O Ports: P0, P1, P2, and P3. Each of  
the pins on P0, P1, P2, and P3, can be defined as a General-Purpose I/O (GPIO) pin or can be controlled  
by a digital peripheral or function (like UART0 or /INT1 for example), as shown in Figure 18.2. The system  
designer controls which digital functions are assigned pins, limited only by the number of pins available.  
This resource assignment flexibility is achieved through the use of a Priority Crossbar Decoder. Note that  
the state of a Port I/O pin can always be read from its associated Data register regardless of whether that  
pin has been assigned to a digital peripheral or behaves as GPIO. The Port pins on Port 1 can be used as  
Analog Inputs to ADC2.  
An External Memory Interface which is active during the execution of an off-chip MOVX instruction can be  
active on either the lower Ports or the upper Ports. See Section “17. External Data Memory Interface  
and On-Chip XRAM” on page 219 for more information about the External Memory Interface.  
XBR0, XBR1,  
XBR2, P1MDIN  
Registers  
P0MDOUT, P1MDOUT,  
P2MDOUT, P3MDOUT  
Registers  
2
4
Highest  
Priority  
UART0  
SPI  
External  
Pins  
2
2
7
SMBus  
UART1  
PCA  
Priority  
Decoder  
P0.0  
Highest  
Priority  
P0  
I/O  
Cells  
8
8
8
8
P0.7  
2
Comptr.  
Outputs  
Digital  
Crossbar  
P1.0  
P1.7  
P1  
I/O  
Cells  
T0, T1,  
T2, T2EX,  
T4,T4EX  
/INT0,  
8
P2.0  
P2.7  
/INT1  
P2  
I/O  
Cells  
Lowest  
Priority  
/SYSCLK divided by 1,2,4, or 8  
2
CNVSTR0/2  
P3.0  
P3.7  
P3  
I/O  
Cells  
8
Lowest  
Priority  
P0  
(P0.0-P0.7)  
8
P1  
P2  
P3  
(P1.0-P1.7)  
8
To External  
Memory  
Interface  
(EMIF)  
Port  
Latches  
To ADC2 Input  
(‘F12x Only)  
(P2.0-P2.7)  
8
(P3.0-P3.7)  
Figure 18.2. Port I/O Functional Block Diagram  
Rev. 1.4  
237  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
18.1. Ports 0 through 3 and the Priority Crossbar Decoder  
The Priority Crossbar Decoder, or “Crossbar”, allocates and assigns Port pins on Port 0 through Port 3 to  
the digital peripherals (UARTs, SMBus, PCA, Timers, etc.) on the device using a priority order. The Port  
pins are allocated in order starting with P0.0 and continue through P3.7 if necessary. The digital peripher-  
als are assigned Port pins in a priority order which is listed in Figure 18.3, with UART0 having the highest  
priority and CNVSTR2 having the lowest priority.  
18.1.1. Crossbar Pin Assignment and Allocation  
The Crossbar assigns Port pins to a peripheral if the corresponding enable bits of the peripheral are set to  
a logic 1 in the Crossbar configuration registers XBR0, XBR1, and XBR2, shown in SFR Definition 18.1,  
SFR Definition 18.2, and SFR Definition 18.3. For example, if the UART0EN bit (XBR0.2) is set to a  
logic 1, the TX0 and RX0 pins will be mapped to P0.0 and P0.1 respectively.  
P0  
P1  
P2  
P3  
Crossbar Register Bits  
UART0EN: XBR0.2  
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
PIN I/O  
TX0  
RX0  
SCK  
MISO  
MOSI  
NSS  
SPI0EN: XBR0.1  
NSS is not assigned to a port pin when the SPI is placed in 3-wire mode  
SDA  
SMB0EN: XBR0.0  
UART1EN: XBR2.2  
SCL  
TX1  
RX1  
CEX0  
CEX1  
CEX2  
CEX3  
CEX4  
CEX5  
ECI  
PCA0ME: XBR0.[5:3]  
ECI0E: XBR0.6  
CP0E: XBR0.7  
CP1E: XBR1.0  
T0E: XBR1.1  
CP0  
CP1  
T0  
/INT0  
T1  
INT0E: XBR1.2  
T1E: XBR1.3  
/INT1  
T2  
INT1E: XBR1.4  
T2E: XBR1.5  
T2EX  
T4  
T2EXE: XBR1.6  
T4E: XBR2.3  
T4EX  
/SYSCLK  
CNVSTR0  
CNVSTR2  
T4EXE: XBR2.4  
SYSCKE: XBR1.7  
CNVSTE0: XBR2.0  
CNVSTE2: XBR2.5  
AIN2 Inputs/Non-muxed Addr H Muxed Addr H/Non-muxed Addr L Muxed Data/Non-muxed Data  
Figure 18.3. Priority Crossbar Decode Table (EMIFLE = 0; P1MDIN = 0xFF)  
Because UART0 has the highest priority, its pins will always be mapped to P0.0 and P0.1 when UART0EN  
is set to a logic 1. If a digital peripheral’s enable bits are not set to a logic 1, then its ports are not accessi-  
ble at the Port pins of the device. Also note that the Crossbar assigns pins to all associated functions when  
a serial communication peripheral is selected (i.e. SMBus, SPI, UART). It would be impossible, for exam-  
238  
Rev. 1.4  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
ple, to assign TX0 to a Port pin without assigning RX0 as well. Each combination of enabled peripherals  
results in a unique device pinout.  
All Port pins on Ports 0 through 3 that are not allocated by the Crossbar can be accessed as General-Pur-  
pose I/O (GPIO) pins by reading and writing the associated Port Data registers (See SFR Definition 18.4,  
SFR Definition 18.6, SFR Definition 18.9, and SFR Definition 18.11), a set of SFR’s which are both byte-  
and bit-addressable. The output states of Port pins that are allocated by the Crossbar are controlled by the  
digital peripheral that is mapped to those pins. Writes to the Port Data registers (or associated Port bits)  
will have no effect on the states of these pins.  
A Read of a Port Data register (or Port bit) will always return the logic state present at the pin itself, regard-  
less of whether the Crossbar has allocated the pin for peripheral use or not. An exception to this occurs  
during the execution of a read-modify-write instruction (ANL, ORL, XRL, CPL, INC, DEC, DJNZ, JBC,  
CLR, SETB, and the bitwise MOV write operation). During the read cycle of the read-modify-write instruc-  
tion, it is the contents of the Port Data register, not the state of the Port pins themselves, which is read.  
Note that at clock rates above 50 MHz, when a pin is written and then immediately read (i.e. a write instruc-  
tion followed immediately by a read instruction), the propagation delay of the port drivers may cause the  
read instruction to return the previous logic level of the pin.  
Because the Crossbar registers affect the pinout of the peripherals of the device, they are typically config-  
ured in the initialization code of the system before the peripherals themselves are configured. Once config-  
ured, the Crossbar registers are typically left alone.  
Once the Crossbar registers have been properly configured, the Crossbar is enabled by setting XBARE  
(XBR2.4) to a logic 1. Until XBARE is set to a logic 1, the output drivers on Ports 0 through 3 are  
explicitly disabled in order to prevent possible contention on the Port pins while the Crossbar reg-  
isters and other registers which can affect the device pinout are being written.  
The output drivers on Crossbar-assigned input signals (like RX0, for example) are explicitly disabled; thus  
the values of the Port Data registers and the PnMDOUT registers have no effect on the states of these  
pins.  
18.1.2. Configuring the Output Modes of the Port Pins  
The output drivers on Ports 0 through 3 remain disabled until the Crossbar is enabled by setting XBARE  
(XBR2.4) to a logic 1.  
The output mode of each port pin can be configured to be either Open-Drain or Push-Pull. In the Push-Pull  
configuration, writing a logic 0 to the associated bit in the Port Data register will cause the Port pin to be  
driven to GND, and writing a logic 1 will cause the Port pin to be driven to VDD. In the Open-Drain configu-  
ration, writing a logic 0 to the associated bit in the Port Data register will cause the Port pin to be driven to  
GND, and a logic 1 will cause the Port pin to assume a high-impedance state. The Open-Drain configura-  
tion is useful to prevent contention between devices in systems where the Port pin participates in a shared  
interconnection in which multiple outputs are connected to the same physical wire (like the SDA signal on  
an SMBus connection).  
The output modes of the Port pins on Ports 0 through 3 are determined by the bits in the associated  
PnMDOUT registers (See SFR Definition 18.5, SFR Definition 18.8, SFR Definition 18.10, and SFR Defini-  
tion 18.12). For example, a logic 1 in P3MDOUT.7 will configure the output mode of P3.7 to Push-Pull; a  
logic 0 in P3MDOUT.7 will configure the output mode of P3.7 to Open-Drain. All Port pins default to Open-  
Drain output.  
Rev. 1.4  
239  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
The PnMDOUT registers control the output modes of the port pins regardless of whether the Crossbar has  
allocated the Port pin for a digital peripheral or not. The exceptions to this rule are: the Port pins connected  
to SDA, SCL, RX0 (if UART0 is in Mode 0), and RX1 (if UART1 is in Mode 0) are always configured as  
Open-Drain outputs, regardless of the settings of the associated bits in the PnMDOUT registers.  
18.1.3. Configuring Port Pins as Digital Inputs  
A Port pin is configured as a digital input by setting its output mode to “Open-Drain” and writing a logic 1 to  
the associated bit in the Port Data register. For example, P3.7 is configured as a digital input by setting  
P3MDOUT.7 to a logic 0 and P3.7 to a logic 1.  
If the Port pin has been assigned to a digital peripheral by the Crossbar and that pin functions as an input  
(for example RX0, the UART0 receive pin), then the output drivers on that pin are automatically disabled.  
18.1.4. Weak Pullups  
By default, each Port pin has an internal weak pullup device enabled which provides a resistive connection  
(about 100 k) between the pin and VDD. The weak pullup devices can be globally disabled by writing a  
logic 1 to the Weak Pullup Disable bit, (WEAKPUD, XBR2.7). The weak pullup is automatically deactivated  
on any pin that is driving a logic 0; that is, an output pin will not contend with its own pullup device. The  
weak pullup device can also be explicitly disabled on any Port 1 pin by configuring the pin as an Analog  
Input, as described below.  
18.1.5. Configuring Port 1 Pins as Analog Inputs  
The pins on Port 1 can serve as analog inputs to the ADC2 analog MUX on the C8051F12x devices. A Port  
pin is configured as an Analog Input by writing a logic 0 to the associated bit in the PnMDIN registers. All  
Port pins default to a Digital Input mode. Configuring a Port pin as an analog input:  
1. Disables the digital input path from the pin. This prevents additional power supply current from  
being drawn when the voltage at the pin is near VDD / 2. A read of the Port Data bit will return  
a logic 0 regardless of the voltage at the Port pin.  
2. Disables the weak pullup device on the pin.  
3. Causes the Crossbar to “skip over” the pin when allocating Port pins for digital peripherals.  
Note that the output drivers on a pin configured as an Analog Input are not explicitly disabled. Therefore,  
the associated P1MDOUT bits of pins configured as Analog Inputs should explicitly be set to logic 0  
(Open-Drain output mode), and the associated Port1 Data bits should be set to logic 1 (high-impedance).  
Also note that it is not required to configure a Port pin as an Analog Input in order to use it as an input to  
ADC2, however, it is strongly recommended. See the ADC2 section in this datasheet for further informa-  
tion.  
240  
Rev. 1.4  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
18.1.6. External Memory Interface Pin Assignments  
If the External Memory Interface (EMIF) is enabled on the Low ports (Ports 0 through 3), EMIFLE (XBR2.5)  
should be set to a logic 1 so that the Crossbar will not assign peripherals to P0.7 (/WR), P0.6 (/RD), and if  
the External Memory Interface is in Multiplexed mode, P0.5 (ALE). Figure 18.4 shows an example Cross-  
bar Decode Table with EMIFLE=1 and the EMIF in Multiplexed mode. Figure 18.5 shows an example  
Crossbar Decode Table with EMIFLE=1 and the EMIF in Non-multiplexed mode.  
If the External Memory Interface is enabled on the Low ports and an off-chip MOVX operation occurs, the  
External Memory Interface will control the output states of the affected Port pins during the execution  
phase of the MOVX instruction, regardless of the settings of the Crossbar registers or the Port Data regis-  
ters. The output configuration of the Port pins is not affected by the EMIF operation, except that Read  
operations will explicitly disable the output drivers on the Data Bus. See Section “17. External Data Mem-  
ory Interface and On-Chip XRAM” on page 219 for more information about the External Memory Inter-  
face.  
P0  
P1  
P2  
P3  
Crossbar Register Bits  
UART0EN: XBR0.2  
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
PIN I/O  
TX0  
RX0  
SCK  
MISO  
MOSI  
NSS  
SPI0EN: XBR0.1  
NSS is not assigned to a port pin when the SPI is placed in 3-wire mode  
SDA  
SMB0EN: XBR0.0  
UART1EN: XBR2.2  
SCL  
TX1  
RX1  
CEX0  
CEX1  
CEX2  
CEX3  
CEX4  
CEX5  
ECI  
PCA0ME: XBR0.[5:3]  
ECI0E: XBR0.6  
CP0E: XBR0.7  
CP1E: XBR1.0  
T0E: XBR1.1  
CP0  
CP1  
T0  
/INT0  
T1  
INT0E: XBR1.2  
T1E: XBR1.3  
/INT1  
T2  
INT1E: XBR1.4  
T2E: XBR1.5  
T2EX  
T4  
T2EXE: XBR1.6  
T4E: XBR2.3  
T4EX  
/SYSCLK  
CNVSTR0  
CNVSTR2  
T4EXE: XBR2.4  
SYSCKE: XBR1.7  
CNVSTE0: XBR2.0  
CNVSTE2: XBR2.5  
AIN2 Inputs/Non-muxed Addr H Muxed Addr H/Non-muxed Addr L Muxed Data/Non-muxed Data  
Figure 18.4. Priority Crossbar Decode Table (EMIFLE = 1; EMIF in Multiplexed  
Mode; P1MDIN = 0xFF)  
Rev. 1.4  
241  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
P0  
P1  
P2  
P3  
Crossbar Register Bits  
UART0EN: XBR0.2  
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
PIN I/O  
TX0  
RX0  
SCK  
MISO  
MOSI  
NSS  
SPI0EN: XBR0.1  
NSS is not assigned to a port pin when the SPI is placed in 3-wire mode  
SDA  
SMB0EN: XBR0.0  
UART1EN: XBR2.2  
SCL  
TX1  
RX1  
CEX0  
CEX1  
CEX2  
CEX3  
CEX4  
CEX5  
ECI  
PCA0ME: XBR0.[5:3]  
ECI0E: XBR0.6  
CP0E: XBR0.7  
CP1E: XBR1.0  
T0E: XBR1.1  
CP0  
CP1  
T0  
/INT0  
T1  
INT0E: XBR1.2  
T1E: XBR1.3  
/INT1  
T2  
INT1E: XBR1.4  
T2E: XBR1.5  
T2EX  
T4  
T2EXE: XBR1.6  
T4E: XBR2.3  
T4EX  
/SYSCLK  
CNVSTR0  
CNVSTR2  
T4EXE: XBR2.4  
SYSCKE: XBR1.7  
CNVSTE0: XBR2.0  
CNVSTE2: XBR2.5  
AIN2 Inputs/Non-muxed Addr H Muxed Addr H/Non-muxed Addr L Muxed Data/Non-muxed Data  
Figure 18.5. Priority Crossbar Decode Table (EMIFLE = 1; EMIF in Non-Multiplexed  
Mode; P1MDIN = 0xFF)  
242  
Rev. 1.4  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
18.1.7. Crossbar Pin Assignment Example  
In this example (Figure 18.6), we configure the Crossbar to allocate Port pins for UART0, the SMBus,  
UART1, /INT0, and /INT1 (8 pins total). Additionally, we configure the External Memory Interface to oper-  
ate in Multiplexed mode and to appear on the Low ports. Further, we configure P1.2, P1.3, and P1.4 for  
Analog Input mode so that the voltages at these pins can be measured by ADC2. The configuration steps  
are as follows:  
1. XBR0, XBR1, and XBR2 are set such that UART0EN = 1, SMB0EN = 1, INT0E = 1,  
INT1E = 1, and EMIFLE = 1. Thus: XBR0 = 0x05, XBR1 = 0x14, and XBR2 = 0x02.  
2. We configure the External Memory Interface to use Multiplexed mode and to appear on the  
Low ports. PRTSEL = 0, EMD2 = 0.  
3. We configure the desired Port 1 pins to Analog Input mode by setting P1MDIN to 0xE3  
(P1.4, P1.3, and P1.2 are Analog Inputs, so their associated P1MDIN bits are set to logic 0).  
4. We enable the Crossbar by setting XBARE = 1: XBR2 = 0x42.  
-
-
UART0 has the highest priority, so P0.0 is assigned to TX0, and P0.1 is assigned to RX0.  
The SMBus is next in priority order, so P0.2 is assigned to SDA, and P0.3 is assigned to  
SCL.  
-
UART1 is next in priority order, so P0.4 is assigned to TX1. Because the External Memory  
Interface is selected on the lower Ports, EMIFLE = 1, which causes the Crossbar to skip  
P0.6 (/RD) and P0.7 (/WR). Because the External Memory Interface is configured in Multi-  
plexed mode, the Crossbar will also skip P0.5 (ALE). RX1 is assigned to the next non-  
skipped pin, which in this case is P1.0.  
-
-
/INT0 is next in priority order, so it is assigned to P1.1.  
P1MDIN is set to 0xE3, which configures P1.2, P1.3, and P1.4 as Analog Inputs, causing  
the Crossbar to skip these pins.  
-
-
/INT1 is next in priority order, so it is assigned to the next non-skipped pin, which is P1.5.  
The External Memory Interface will drive Ports 2 and 3 (denoted by red dots in  
Figure 18.6) during the execution of an off-chip MOVX instruction.  
5. We set the UART0 TX pin (TX0, P0.0) and UART1 TX pin (TX1, P0.4) outputs to Push-Pull by  
setting P0MDOUT = 0x11.  
6. We configure all EMIF-controlled pins to push-pull output mode by setting P0MDOUT |= 0xE0;  
P2MDOUT = 0xFF; P3MDOUT = 0xFF.  
7. We explicitly disable the output drivers on the 3 Analog Input pins by setting P1MDOUT =  
0x00 (configure outputs to Open-Drain) and P1 = 0xFF (a logic 1 selects the high-impedance  
state).  
Rev. 1.4  
243  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
P0  
P1  
P2  
P3  
Crossbar Register Bits  
UART0EN: XBR0.2  
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
PIN I/O  
TX0  
RX0  
SCK  
MISO  
MOSI  
NSS  
SPI0EN: XBR0.1  
SDA  
SMB0EN: XBR0.0  
UART1EN: XBR2.2  
SCL  
TX1  
RX1  
CEX0  
CEX1  
CEX2  
CEX3  
CEX4  
CEX5  
ECI  
PCA0ME: XBR0.[5:3]  
ECI0E: XBR0.6  
CP0E: XBR0.7  
CP1E: XBR1.0  
T0E: XBR1.1  
CP0  
CP1  
T0  
/INT0  
T1  
INT0E: XBR1.2  
T1E: XBR1.3  
/INT1  
T2  
INT1E: XBR1.4  
T2E: XBR1.5  
T2EX  
T4  
T2EXE: XBR1.6  
T4E: XBR2.3  
T4EX  
/SYSCLK  
CNVSTR0  
CNVSTR2  
T4EXE: XBR2.4  
SYSCKE: XBR1.7  
CNVSTE0: XBR2.0  
CNVSTE2: XBR2.5  
AIN2 Inputs/Non-muxed Addr H Muxed Addr H/Non-muxed Addr L Muxed Data/Non-muxed Data  
(EMIFLE = 1; EMIF in Multiplexed Mode; P1MDIN = 0xE3;  
XBR0 = 0x05; XBR1 = 0x14; XBR2 = 0x42)  
Figure 18.6. Crossbar Example  
244  
Rev. 1.4  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
SFR Definition 18.1. XBR0: Port I/O Crossbar Register 0  
R/W  
CP0E  
Bit7  
R/W  
ECI0E  
Bit6  
R/W  
Bit5  
R/W  
PCA0ME  
Bit4  
R/W  
Bit3  
R/W  
R/W  
R/W  
Reset Value  
UART0EN SPI0EN SMB0EN 00000000  
Bit2  
Bit1  
Bit0  
SFR Address: 0xE1  
SFR Page: F  
Bit7:  
CP0E: Comparator 0 Output Enable Bit.  
0: CP0 unavailable at Port pin.  
1: CP0 routed to Port pin.  
Bit6:  
ECI0E: PCA0 External Counter Input Enable Bit.  
0: PCA0 External Counter Input unavailable at Port pin.  
1: PCA0 External Counter Input (ECI0) routed to Port pin.  
Bits5–3: PCA0ME: PCA0 Module I/O Enable Bits.  
000: All PCA0 I/O unavailable at port pins.  
001: CEX0 routed to port pin.  
010: CEX0, CEX1 routed to 2 port pins.  
011: CEX0, CEX1, and CEX2 routed to 3 port pins.  
100: CEX0, CEX1, CEX2, and CEX3 routed to 4 port pins.  
101: CEX0, CEX1, CEX2, CEX3, and CEX4 routed to 5 port pins.  
110: CEX0, CEX1, CEX2, CEX3, CEX4, and CEX5 routed to 6 port pins.  
UART0EN: UART0 I/O Enable Bit.  
0: UART0 I/O unavailable at Port pins.  
1: UART0 TX routed to P0.0, and RX routed to P0.1.  
SPI0EN: SPI0 Bus I/O Enable Bit.  
Bit2:  
Bit1:  
0: SPI0 I/O unavailable at Port pins.  
1: SPI0 SCK, MISO, MOSI, and NSS routed to 4 Port pins. Note that the NSS signal is not  
assigned to a port pin if the SPI is in 3-wire mode. See Section “17. External Data Memory  
Interface and On-Chip XRAM” on page 219 for more information.  
SMB0EN: SMBus0 Bus I/O Enable Bit.  
Bit0:  
0: SMBus0 I/O unavailable at Port pins.  
1: SMBus0 SDA and SCL routed to 2 Port pins.  
Rev. 1.4  
245  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
SFR Definition 18.2. XBR1: Port I/O Crossbar Register 1  
R/W  
R/W  
R/W  
T2E  
Bit5  
R/W  
INT1E  
Bit4  
R/W  
T1E  
Bit3  
R/W  
INT0E  
Bit2  
R/W  
T0E  
Bit1  
R/W  
Reset Value  
SYSCKE T2EXE  
CP1E 00000000  
Bit0  
Bit7  
Bit6  
SFR Address: 0xE2  
SFR Page: F  
Bit7:  
SYSCKE: /SYSCLK Output Enable Bit.  
0: /SYSCLK unavailable at Port pin.  
1: /SYSCLK (divided by 1, 2, 4, or 8) routed to Port pin. divide factor is determined by the  
CLKDIV1–0 bits in register CLKSEL (See Section “14. Oscillators” on page 185).  
T2EXE: T2EX Input Enable Bit.  
0: T2EX unavailable at Port pin.  
1: T2EX routed to Port pin.  
T2E: T2 Input Enable Bit.  
0: T2 unavailable at Port pin.  
1: T2 routed to Port pin.  
INT1E: /INT1 Input Enable Bit.  
0: /INT1 unavailable at Port pin.  
1: /INT1 routed to Port pin.  
T1E: T1 Input Enable Bit.  
0: T1 unavailable at Port pin.  
Bit6:  
Bit5:  
Bit4:  
Bit3:  
Bit2:  
Bit1:  
Bit0:  
1: T1 routed to Port pin.  
INT0E: /INT0 Input Enable Bit.  
0: /INT0 unavailable at Port pin.  
1: /INT0 routed to Port pin.  
T0E: T0 Input Enable Bit.  
0: T0 unavailable at Port pin.  
1: T0 routed to Port pin.  
CP1E: CP1 Output Enable Bit.  
0: CP1 unavailable at Port pin.  
1: CP1 routed to Port pin.  
246  
Rev. 1.4  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
SFR Definition 18.3. XBR2: Port I/O Crossbar Register 2  
R/W  
R/W  
R/W  
R/W  
R/W  
T4E  
Bit3  
R/W  
R/W  
R/W  
Reset Value  
WEAKPUD XBARE CNVST2E T4EXE  
UART1E EMIFLE CNVST0E 00000000  
Bit7  
Bit6  
Bit5  
Bit4  
Bit2  
Bit1  
Bit0  
SFR Address: 0xE3  
SFR Page: F  
Bit7:  
Bit6:  
Bit5:  
Bit4:  
Bit3:  
Bit2:  
Bit1:  
WEAKPUD: Weak Pullup Disable Bit.  
0: Weak pullups globally enabled.  
1: Weak pullups globally disabled.  
XBARE: Crossbar Enable Bit.  
0: Crossbar disabled. All pins on Ports 0, 1, 2, and 3, are forced to Input mode.  
1: Crossbar enabled.  
CNVST2E: External Convert Start 2 Input Enable Bit.  
0: CNVSTR2 unavailable at Port pin.  
1: CNVSTR2 routed to Port pin.  
T4EXE: T4EX Input Enable Bit.  
0: T4EX unavailable at Port pin.  
1: T4EX routed to Port pin.  
T4E: T4 Input Enable Bit.  
0: T4 unavailable at Port pin.  
1: T4 routed to Port pin.  
UART1E: UART1 I/O Enable Bit.  
0: UART1 I/O unavailable at Port pins.  
1: UART1 TX and RX routed to 2 Port pins.  
EMIFLE: External Memory Interface Low-Port Enable Bit.  
0: P0.7, P0.6, and P0.5 functions are determined by the Crossbar or the Port latches.  
1: If EMI0CF.4 = ‘0’ (External Memory Interface is in Multiplexed mode)  
P0.7 (/WR), P0.6 (/RD), and P0.5 (ALE) are ‘skipped’ by the Crossbar and their  
output states are determined by the Port latches and the External Memory Interface.  
1: If EMI0CF.4 = ‘1’ (External Memory Interface is in Non-multiplexed mode)  
P0.7 (/WR) and P0.6 (/RD) are ‘skipped’ by the Crossbar and their output states are  
determined by the Port latches and the External Memory Interface.  
CNVST0E: ADC0 External Convert Start Input Enable Bit.  
0: CNVST0 for ADC0 unavailable at Port pin.  
Bit0:  
1: CNVST0 for ADC0 routed to Port pin.  
Rev. 1.4  
247  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
SFR Definition 18.4. P0: Port0 Data  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Reset Value  
P0.7  
P0.6  
P0.5  
P0.4  
P0.3  
P0.2  
P0.1  
P0.0  
11111111  
Bit  
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Bit0  
Addressable  
SFR Address: 0x80  
SFR Page: All Pages  
Bits7–0: P0.[7:0]: Port0 Output Latch Bits.  
(Write - Output appears on I/O pins per XBR0, XBR1, and XBR2 Registers)  
0: Logic Low Output.  
1: Logic High Output (open if corresponding P0MDOUT.n bit = 0).  
(Read - Regardless of XBR0, XBR1, and XBR2 Register settings).  
0: P0.n pin is logic low.  
1: P0.n pin is logic high.  
Note:  
P0.7 (/WR), P0.6 (/RD), and P0.5 (ALE) can be driven by the External Data Memory Interface.  
See Section “17. External Data Memory Interface and On-Chip XRAM” on page 219 for  
more information. See also SFR Definition 18.3 for information about configuring the Crossbar  
for External Memory accesses.  
SFR Definition 18.5. P0MDOUT: Port0 Output Mode  
R/W  
R/W  
Bit6  
R/W  
Bit5  
R/W  
Bit4  
R/W  
Bit3  
R/W  
Bit2  
R/W  
Bit1  
R/W  
Reset Value  
00000000  
Bit7  
Bit0  
SFR Address: 0xA4  
SFR Page: F  
Bits7–0: P0MDOUT.[7:0]: Port0 Output Mode Bits.  
0: Port Pin output mode is configured as Open-Drain.  
1: Port Pin output mode is configured as Push-Pull.  
Note:  
SDA, SCL, and RX0 (when UART0 is in Mode 0) and RX1 (when UART1 is in Mode 0) are  
always configured as Open-Drain when they appear on Port pins.  
248  
Rev. 1.4  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
SFR Definition 18.6. P1: Port1 Data  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Reset Value  
P1.7  
P1.6  
P1.5  
P1.4  
P1.3  
P1.2  
P1.1  
P1.0  
11111111  
Bit  
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Bit0  
Addressable  
SFR Address: 0x90  
SFR Page: All Pages  
Bits7–0: P1.[7:0]: Port1 Output Latch Bits.  
(Write - Output appears on I/O pins per XBR0, XBR1, and XBR2 Registers)  
0: Logic Low Output.  
1: Logic High Output (open if corresponding P1MDOUT.n bit = 0).  
(Read - Regardless of XBR0, XBR1, and XBR2 Register settings).  
0: P1.n pin is logic low.  
1: P1.n pin is logic high.  
Notes:  
1.On C8051F12x devices, P1.[7:0] can be configured as inputs to ADC2 as AIN2.[7:0], in which  
case they are ‘skipped’ by the Crossbar assignment process and their digital input paths are  
disabled, depending on P1MDIN (See SFR Definition 18.7). Note that in analog mode, the  
output mode of the pin is determined by the Port 1 latch and P1MDOUT (SFR Definition 18.8).  
See Section “7. ADC2 (8-Bit ADC, C8051F12x Only)” on page 91 for more information  
about ADC2.  
2. P1.[7:0] can be driven by the External Data Memory Interface (as Address[15:8] in Non-  
multiplexed mode). See Section “17. External Data Memory Interface and On-Chip  
XRAM” on page 219 for more information about the External Memory Interface.  
SFR Definition 18.7. P1MDIN: Port1 Input Mode  
R/W  
Bit7  
R/W  
Bit6  
R/W  
Bit5  
R/W  
Bit4  
R/W  
Bit3  
R/W  
Bit2  
R/W  
Bit1  
R/W  
Bit0  
Reset Value  
11111111  
SFR Address: 0xAD  
SFR Page: F  
Bits7–0: P1MDIN.[7:0]: Port 1 Input Mode Bits.  
0: Port Pin is configured in Analog Input mode. The digital input path is disabled (a read from  
the Port bit will always return ‘0’). The weak pullup on the pin is disabled.  
1: Port Pin is configured in Digital Input mode. A read from the Port bit will return the logic  
level at the Pin. When configured as a digital input, the state of the weak pullup for the port  
pin is determined by the WEAKPUD bit (XBR2.7, see SFR Definition 18.3).  
Rev. 1.4  
249  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
SFR Definition 18.8. P1MDOUT: Port1 Output Mode  
R/W  
Bit7  
R/W  
Bit6  
R/W  
Bit5  
R/W  
Bit4  
R/W  
Bit3  
R/W  
Bit2  
R/W  
Bit1  
R/W  
Reset Value  
00000000  
Bit0  
SFR Address: 0xA5  
SFR Page: F  
Bits7–0: P1MDOUT.[7:0]: Port1 Output Mode Bits.  
0: Port Pin output mode is configured as Open-Drain.  
1: Port Pin output mode is configured as Push-Pull.  
Note:  
SDA, SCL, and RX0 (when UART0 is in Mode 0) and RX1 (when UART1 is in Mode 0) are  
always configured as Open-Drain when they appear on Port pins.  
SFR Definition 18.9. P2: Port2 Data  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Reset Value  
P2.7  
P2.6  
P2.5  
P2.4  
P2.3  
P2.2  
P2.1  
P2.0  
11111111  
Bit  
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Bit0  
Addressable  
SFR  
Address:  
SFR Page:  
0xA0  
All Pages  
Bits7–0: P2.[7:0]: Port2 Output Latch Bits.  
(Write - Output appears on I/O pins per XBR0, XBR1, and XBR2 Registers)  
0: Logic Low Output.  
1: Logic High Output (open if corresponding P2MDOUT.n bit = 0).  
(Read - Regardless of XBR0, XBR1, and XBR2 Register settings).  
0: P2.n pin is logic low.  
1: P2.n pin is logic high.  
Note:  
P2.[7:0] can be driven by the External Data Memory Interface (as Address[15:8] in Multiplexed  
mode, or as Address[7:0] in Non-multiplexed mode). See Section “17. External Data  
Memory Interface and On-Chip XRAM” on page 219 for more information about the  
External Memory Interface.  
250  
Rev. 1.4  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
SFR Definition 18.10. P2MDOUT: Port2 Output Mode  
R/W  
Bit7  
R/W  
Bit6  
R/W  
Bit5  
R/W  
Bit4  
R/W  
Bit3  
R/W  
Bit2  
R/W  
Bit1  
R/W  
Reset Value  
00000000  
Bit0  
SFR Address: 0xA6  
SFR Page: F  
Bits7–0: P2MDOUT.[7:0]: Port2 Output Mode Bits.  
0: Port Pin output mode is configured as Open-Drain.  
1: Port Pin output mode is configured as Push-Pull.  
Note:  
SDA, SCL, and RX0 (when UART0 is in Mode 0) and RX1 (when UART1 is in Mode 0) are  
always configured as Open-Drain when they appear on Port pins.  
SFR Definition 18.11. P3: Port3 Data  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Reset Value  
P3.7  
P3.6  
P3.5  
P3.4  
P3.3  
P3.2  
P3.1  
P3.0  
11111111  
Bit  
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Bit0  
Addressable  
SFR Address: 0xB0  
SFR Page: All Pages  
Bits7–0: P3.[7:0]: Port3 Output Latch Bits.  
(Write - Output appears on I/O pins per XBR0, XBR1, and XBR2 Registers)  
0: Logic Low Output.  
1: Logic High Output (open if corresponding P3MDOUT.n bit = 0).  
(Read - Regardless of XBR0, XBR1, and XBR2 Register settings).  
0: P3.n pin is logic low.  
1: P3.n pin is logic high.  
Note:  
P3.[7:0] can be driven by the External Data Memory Interface (as AD[7:0] in Multiplexed  
mode, or as D[7:0] in Non-multiplexed mode). See Section “17. External Data Memory  
Interface and On-Chip XRAM” on page 219 for more information about the External Memory  
Interface.  
Rev. 1.4  
251  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
SFR Definition 18.12. P3MDOUT: Port3 Output Mode  
R/W  
Bit7  
R/W  
Bit6  
R/W  
Bit5  
R/W  
Bit4  
R/W  
Bit3  
R/W  
Bit2  
R/W  
Bit1  
R/W  
Reset Value  
00000000  
Bit0  
SFR Address: 0xA7  
SFR Page: F  
Bits7–0: P3MDOUT.[7:0]: Port3 Output Mode Bits.  
0: Port Pin output mode is configured as Open-Drain.  
1: Port Pin output mode is configured as Push-Pull.  
18.2. Ports 4 through 7 (100-pin TQFP devices only)  
All Port pins on Ports 4 through 7 can be accessed as General-Purpose I/O (GPIO) pins by reading and  
writing the associated Port Data registers (See SFR Definition 18.13, SFR Definition 18.15, SFR Definition  
18.17, and SFR Definition 18.19), a set of SFR’s which are both bit and byte-addressable. Note also that  
the Port 4, 5, 6, and 7 registers are located on SFR Page F. The SFRPAGE register must be set to 0x0F to  
access these Port registers.  
A Read of a Port Data register (or Port bit) will always return the logic state present at the pin itself, regard-  
less of whether the Crossbar has allocated the pin for peripheral use or not. An exception to this occurs  
during the execution of a read-modify-write instruction (ANL, ORL, XRL, CPL, INC, DEC, DJNZ, JBC,  
CLR, SETB, and the bitwise MOV write operation). During the read cycle of the read-modify-write instruc-  
tion, it is the contents of the Port Data register, not the state of the Port pins themselves, which is read.  
Note that at clock rates above 50 MHz, when a pin is written and then immediately read (i.e. a write instruc-  
tion followed immediately by a read instruction), the propagation delay of the port drivers may cause the  
read instruction to return the previous logic level of the pin.  
18.2.1. Configuring Ports which are not Pinned Out  
Although P4, P5, P6, and P7 are not brought out to pins on the 64-pin TQFP devices, the Port Data regis-  
ters are still present and can be used by software. Because the digital input paths also remain active, it is  
recommended that these pins not be left in a ‘floating’ state in order to avoid unnecessary power dissipa-  
tion arising from the inputs floating to non-valid logic levels. This condition can be prevented by any of the  
following:  
1. Leave the weak pullup devices enabled by setting WEAKPUD (XBR2.7) to a logic 0.  
2. Configure the output modes of P4, P5, P6, and P7 to “Push-Pull” by writing PnMDOUT = 0xFF.  
3. Force the output states of P4, P5, P6, and P7 to logic 0 by writing zeros to the Port Data regis-  
ters: P4 = 0x00, P5 = 0x00, P6= 0x00, and P7 = 0x00.  
18.2.2. Configuring the Output Modes of the Port Pins  
The output mode of each port pin can be configured to be either Open-Drain or Push-Pull. In the Push-Pull  
configuration, a logic 0 in the associated bit in the Port Data register will cause the Port pin to be driven to  
GND, and a logic 1 will cause the Port pin to be driven to VDD. In the Open-Drain configuration, a logic 0 in  
the associated bit in the Port Data register will cause the Port pin to be driven to GND, and a logic 1 will  
cause the Port pin to assume a high-impedance state. The Open-Drain configuration is useful to prevent  
contention between devices in systems where the Port pin participates in a shared interconnection in  
which multiple outputs are connected to the same physical wire.  
252  
Rev. 1.4  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
The output modes of the Port pins on Ports 4 through 7 are determined by the bits in their respective  
PnMDOUT Output Mode Registers. Each bit in PnMDOUT controls the output mode of its corresponding  
port pin (see SFR Definition 18.14, SFR Definition 18.16, SFR Definition 18.18, and SFR Definition 18.20).  
For example, to place Port pin 4.3 in push-pull mode (digital output), set P4MDOUT.3 to logic 1. All port  
pins default to open-drain mode upon device reset.  
18.2.3. Configuring Port Pins as Digital Inputs  
A Port pin is configured as a digital input by setting its output mode to “Open-Drain” and writing a logic 1 to  
the associated bit in the Port Data register. For example, P7.7 is configured as a digital input by setting  
P7MDOUT.7 to a logic 0 and P7.7 to a logic 1.  
18.2.4. Weak Pullups  
By default, each Port pin has an internal weak pullup device enabled which provides a resistive connection  
(about 100 k) between the pin and VDD. The weak pullup devices can be globally disabled by writing a  
logic 1 to the Weak Pullup Disable bit, (WEAKPUD, XBR2.7). The weak pullup is automatically deactivated  
on any pin that is driving a logic 0; that is, an output pin will not contend with its own pullup device.  
18.2.5. External Memory Interface  
If the External Memory Interface (EMIF) is enabled on the High ports (Ports 4 through 7), EMIFLE  
(XBR2.5) should be set to a logic 0.  
If the External Memory Interface is enabled on the High ports and an off-chip MOVX operation occurs, the  
External Memory Interface will control the output states of the affected Port pins during the execution  
phase of the MOVX instruction, regardless of the settings of the Port Data registers. The output configura-  
tion of the Port pins is not affected by the EMIF operation, except that Read operations will explicitly dis-  
able the output drivers on the Data Bus during the MOVX execution. See Section “17. External Data  
Memory Interface and On-Chip XRAM” on page 219 for more information about the External Memory  
Interface.  
Rev. 1.4  
253  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
SFR Definition 18.13. P4: Port4 Data  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Reset Value  
P4.7  
P4.6  
P4.5  
P4.4  
P4.3  
P4.2  
P4.1  
P4.0  
11111111  
Bit  
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Bit0  
Addressable  
SFR Address: 0xC8  
SFR Page: F  
Bits7–0: P4.[7:0]: Port4 Output Latch Bits.  
Write - Output appears on I/O pins.  
0: Logic Low Output.  
1: Logic High Output (Open-Drain if corresponding P4MDOUT.n bit = 0). See SFR Definition  
18.14.  
Read - Returns states of I/O pins.  
0: P4.n pin is logic low.  
1: P4.n pin is logic high.  
Note:  
P4.7 (/WR), P4.6 (/RD), and P4.5 (ALE) can be driven by the External Data Memory Interface.  
See Section “17. External Data Memory Interface and On-Chip XRAM” on page 219 for  
more information.  
SFR Definition 18.14. P4MDOUT: Port4 Output Mode  
R/W  
R/W  
Bit6  
R/W  
Bit5  
R/W  
Bit4  
R/W  
Bit3  
R/W  
Bit2  
R/W  
Bit1  
R/W  
Reset Value  
00000000  
Bit7  
Bit0  
SFR Address: 0x9C  
SFR Page: F  
Bits7–0: P4MDOUT.[7:0]: Port4 Output Mode Bits.  
0: Port Pin output mode is configured as Open-Drain.  
1: Port Pin output mode is configured as Push-Pull.  
254  
Rev. 1.4  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
SFR Definition 18.15. P5: Port5 Data  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Reset Value  
P5.7  
P5.6  
P5.5  
P5.4  
P5.3  
P5.2  
P5.1  
P5.0  
11111111  
Bit  
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Bit0  
Addressable  
SFR Address: 0xD8  
SFR Page: F  
Bits7–0: P5.[7:0]: Port5 Output Latch Bits.  
Write - Output appears on I/O pins.  
0: Logic Low Output.  
1: Logic High Output (Open-Drain if corresponding P5MDOUT bit = 0). See SFR Definition  
18.16.  
Read - Returns states of I/O pins.  
0: P5.n pin is logic low.  
1: P5.n pin is logic high.  
Note:  
P5.[7:0] can be driven by the External Data Memory Interface (as Address[15:8] in Non-  
multiplexed mode). See Section “17. External Data Memory Interface and On-Chip  
XRAM” on page 219 for more information about the External Memory Interface.  
SFR Definition 18.16. P5MDOUT: Port5 Output Mode  
R/W  
R/W  
Bit6  
R/W  
Bit5  
R/W  
Bit4  
R/W  
Bit3  
R/W  
Bit2  
R/W  
Bit1  
R/W  
Reset Value  
00000000  
Bit7  
Bit0  
SFR Address: 0x9D  
SFR Page: F  
Bits7–0: P5MDOUT.[7:0]: Port5 Output Mode Bits.  
0: Port Pin output mode is configured as Open-Drain.  
1: Port Pin output mode is configured as Push-Pull.  
Rev. 1.4  
255  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
SFR Definition 18.17. P6: Port6 Data  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Reset Value  
P6.7  
P6.6  
P6.5  
P6.4  
P6.3  
P6.2  
P6.1  
P6.0  
11111111  
Bit  
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Bit0  
Addressable  
SFR Address: 0xE8  
SFR Page: F  
Bits7–0: P6.[7:0]: Port6 Output Latch Bits.  
Write - Output appears on I/O pins.  
0: Logic Low Output.  
1: Logic High Output (Open-Drain if corresponding P6MDOUT bit = 0). See SFR Definition  
18.18.  
Read - Returns states of I/O pins.  
0: P6.n pin is logic low.  
1: P6.n pin is logic high.  
Note:  
P6.[7:0] can be driven by the External Data Memory Interface (as Address[15:8] in Multiplexed  
mode, or as Address[7:0] in Non-multiplexed mode). See Section “17. External Data  
Memory Interface and On-Chip XRAM” on page 219 for more information about the  
External Memory Interface.  
SFR Definition 18.18. P6MDOUT: Port6 Output Mode  
R/W  
R/W  
Bit6  
R/W  
Bit5  
R/W  
Bit4  
R/W  
Bit3  
R/W  
Bit2  
R/W  
Bit1  
R/W  
Reset Value  
00000000  
Bit7  
Bit0  
SFR Address: 0x9E  
SFR Page: F  
Bits7–0: P6MDOUT.[7:0]: Port6 Output Mode Bits.  
0: Port Pin output mode is configured as Open-Drain.  
1: Port Pin output mode is configured as Push-Pull.  
256  
Rev. 1.4  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
SFR Definition 18.19. P7: Port7 Data  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Reset Value  
P7.7  
P7.6  
P7.5  
P7.4  
P7.3  
P7.2  
P7.1  
P7.0  
11111111  
Bit  
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Bit0  
Addressable  
SFR Address: 0xF8  
SFR Page: F  
Bits7–0: P7.[7:0]: Port7 Output Latch Bits.  
Write - Output appears on I/O pins.  
0: Logic Low Output.  
1: Logic High Output (Open-Drain if corresponding P7MDOUT bit = 0). See SFR Definition  
18.20.  
Read - Returns states of I/O pins.  
0: P7.n pin is logic low.  
1: P7.n pin is logic high.  
Note:  
P7.[7:0] can be driven by the External Data Memory Interface (as AD[7:0] in Multiplexed  
mode, or as D[7:0] in Non-multiplexed mode). See Section “17. External Data Memory  
Interface and On-Chip XRAM” on page 219 for more information about the External Memory  
Interface.  
SFR Definition 18.20. P7MDOUT: Port7 Output Mode  
R/W  
R/W  
Bit6  
R/W  
Bit5  
R/W  
Bit4  
R/W  
Bit3  
R/W  
Bit2  
R/W  
Bit1  
R/W  
Reset Value  
00000000  
Bit7  
Bit0  
SFR Address: 0x9F  
SFR Page: F  
Bits7–0: P7MDOUT.[7:0]: Port7 Output Mode Bits.  
0: Port Pin output mode is configured as Open-Drain.  
1: Port Pin output mode is configured as Push-Pull.  
Rev. 1.4  
257  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
NOTES:  
258  
Rev. 1.4  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
19. System Management Bus / I2C Bus (SMBus0)  
The SMBus0 I/O interface is a two-wire, bi-directional serial bus. SMBus0 is compliant with the System  
Management Bus Specification, version 1.1, and compatible with the I2C serial bus. Reads and writes to  
the interface by the system controller are byte oriented with the SMBus0 interface autonomously control-  
ling the serial transfer of the data. A method of extending the clock-low duration is available to accommo-  
date devices with different speed capabilities on the same bus.  
SMBus0 may operate as a master and/or slave, and may function on a bus with multiple masters. SMBus0  
provides control of SDA (serial data), SCL (serial clock) generation and synchronization, arbitration logic,  
and START/STOP control and generation.  
SFR Bus  
SMB0CN  
SMB0STA  
SMB0CR  
B
U
S
Y
E
N
S
M
B
S
T
A
S
T
O
S
I
A
A
F
T
E
T
O
E
S
T
A
7
S
T
A
6
S
T
A
5
S
T
A
4
S
T
A
3
S
T
A
2
S
T
A
1
S
T
A
0
C
R
7
C
R
6
C
R
5
C
R
4
C
R
3
C
R
2
C
R
1
C
R
0
Clock Divide  
Logic  
SYSCLK  
SCL  
FILTER  
SMBUS CONTROL LOGIC  
Arbitration  
SMBUS  
IRQ  
Interrupt  
Request  
SCL Synchronization  
Status Generation  
SCL Generation (Master Mode)  
IRQ Generation  
SCL  
Control  
N
SDA  
Control  
Data Path  
Control  
C
R
O
S
S
B
A
R
Port I/O  
B
A
B
A
0000000b  
7 MSBs  
8
7
SMB0DAT  
7 6 5 4 3 2 1 0  
SDA  
FILTER  
8
8
1
0
S
L
V
6
S
L
V
5
S
L
V
4
S
L
V
3
S
L
V
2
S
L
V
1
S
L
V
0
N
G
C
Read  
SMB0DAT  
Write to  
SMB0DAT  
SMB0ADR  
SFR Bus  
Figure 19.1. SMBus0 Block Diagram  
Rev. 1.4  
259  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
Figure 19.2 shows a typical SMBus configuration. The SMBus0 interface will work at any voltage between  
3.0 and 5.0 V and different devices on the bus may operate at different voltage levels. The bi-directional  
SCL (serial clock) and SDA (serial data) lines must be connected to a positive power supply voltage  
through a pullup resistor or similar circuit. Every device connected to the bus must have an open-drain or  
open-collector output for both the SCL and SDA lines, so that both are pulled high when the bus is free.  
The maximum number of devices on the bus is limited only by the requirement that the rise and fall times  
on the bus will not exceed 300 ns and 1000 ns, respectively.  
VDD = 5V  
VDD = 3V  
VDD = 5V  
VDD = 3V  
Master  
Device  
Slave  
Device 1  
Slave  
Device 2  
SDA  
SCL  
Figure 19.2. Typical SMBus Configuration  
19.1. Supporting Documents  
It is assumed the reader is familiar with or has access to the following supporting documents:  
1. The I2C-bus and how to use it (including specifications), Philips Semiconductor.  
2. The I2C-Bus Specification -- Version 2.0, Philips Semiconductor.  
3. System Management Bus Specification -- Version 1.1, SBS Implementers Forum.  
19.2. SMBus Protocol  
Two types of data transfers are possible: data transfers from a master transmitter to an addressed slave  
receiver (WRITE), and data transfers from an addressed slave transmitter to a master receiver (READ).  
The master device initiates both types of data transfers and provides the serial clock pulses on SCL. Note:  
multiple master devices on the same bus are supported. If two or more masters attempt to initiate a data  
transfer simultaneously, an arbitration scheme is employed with a single master always winning the arbitra-  
tion. Note that it is not necessary to specify one device as the master in a system; any device who trans-  
mits a START and a slave address becomes the master for that transfer.  
A typical SMBus transaction consists of a START condition followed by an address byte (Bits7–1: 7-bit  
slave address; Bit0: R/W direction bit), one or more bytes of data, and a STOP condition. Each byte that is  
received (by a master or slave) must be acknowledged (ACK) with a low SDA during a high SCL (see  
Figure 19.3). If the receiving device does not ACK, the transmitting device will read a “not acknowledge”  
(NACK), which is a high SDA during a high SCL.  
The direction bit (R/W) occupies the least-significant bit position of the address. The direction bit is set to  
logic 1 to indicate a "READ" operation and cleared to logic 0 to indicate a "WRITE" operation.  
260  
Rev. 1.4  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
All transactions are initiated by a master, with one or more addressed slave devices as the target. The  
master generates the START condition and then transmits the slave address and direction bit. If the trans-  
action is a WRITE operation from the master to the slave, the master transmits the data a byte at a time  
waiting for an ACK from the slave at the end of each byte. For READ operations, the slave transmits the  
data waiting for an ACK from the master at the end of each byte. At the end of the data transfer, the master  
generates a STOP condition to terminate the transaction and free the bus. Figure 19.3 illustrates a typical  
SMBus transaction.  
SCL  
SDA  
SLA6  
SLA5-0  
R/W  
D7  
D6-0  
START  
Slave Address + R/W  
ACK  
Data Byte  
NACK  
STOP  
Figure 19.3. SMBus Transaction  
19.2.1. Arbitration  
A master may start a transfer only if the bus is free. The bus is free after a STOP condition or after the SCL  
and SDA lines remain high for a specified time (see Section 19.2.4). In the event that two or more devices  
attempt to begin a transfer at the same time, an arbitration scheme is employed to force one master to give  
up the bus. The master devices continue transmitting until one attempts a HIGH while the other transmits a  
LOW. Since the bus is open-drain, the bus will be pulled LOW. The master attempting the HIGH will detect  
a LOW SDA and give up the bus. The winning master continues its transmission without interruption; the  
losing master becomes a slave and receives the rest of the transfer. This arbitration scheme is non-  
destructive: one device always wins, and no data is lost.  
19.2.2. Clock Low Extension  
SMBus provides a clock synchronization mechanism, similar to I2C, which allows devices with different  
speed capabilities to coexist on the bus. A clock-low extension is used during a transfer in order to allow  
slower slave devices to communicate with faster masters. The slave may temporarily hold the SCL line  
LOW to extend the clock low period, effectively decreasing the serial clock frequency.  
19.2.3. SCL Low Timeout  
If the SCL line is held low by a slave device on the bus, no further communication is possible. Furthermore,  
the master cannot force the SCL line high to correct the error condition. To solve this problem, the SMBus  
protocol specifies that devices participating in a transfer must detect any clock cycle held low longer than  
25 ms as a “timeout” condition. Devices that have detected the timeout condition must reset the communi-  
cation no later than 10 ms after detecting the timeout condition.  
19.2.4. SCL High (SMBus Free) Timeout  
The SMBus specification stipulates that if the SCL and SDA lines remain high for more that 50 µs, the bus  
is designated as free. If an SMBus device is waiting to generate a Master START, the START will be gen-  
erated following the bus free timeout.  
Rev. 1.4  
261  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
19.3. SMBus Transfer Modes  
The SMBus0 interface may be configured to operate as a master and/or a slave. At any particular time, the  
interface will be operating in one of the following modes: Master Transmitter, Master Receiver, Slave  
Transmitter, or Slave Receiver. See Table 19.1 for transfer mode status decoding using the SMB0STA sta-  
tus register. The following mode descriptions illustrate an interrupt-driven SMBus0 application; SMBus0  
may alternatively be operated in polled mode.  
19.3.1. Master Transmitter Mode  
Serial data is transmitted on SDA while the serial clock is output on SCL. SMBus0 generates a START  
condition and then transmits the first byte containing the address of the target slave device and the data  
direction bit. In this case the data direction bit (R/W) will be logic 0 to indicate a "WRITE" operation. The  
SMBus0 interface transmits one or more bytes of serial data, waiting for an acknowledge (ACK) from the  
slave after each byte. To indicate the end of the serial transfer, SMBus0 generates a STOP condition.  
S
SLA  
W
A
Data Byte  
A
Data Byte  
A
P
Interrupt  
Interrupt  
Interrupt  
Interrupt  
S = START  
P = STOP  
A = ACK  
Received by SMBus  
Interface  
W = WRITE  
Transmitted by  
SLA = Slave Address  
SMBus Interface  
Figure 19.4. Typical Master Transmitter Sequence  
19.3.2. Master Receiver Mode  
Serial data is received on SDA while the serial clock is output on SCL. The SMBus0 interface generates a  
START followed by the first data byte containing the address of the target slave and the data direction bit.  
In this case the data direction bit (R/W) will be logic 1 to indicate a "READ" operation. The SMBus0 inter-  
face receives serial data from the slave and generates the clock on SCL. After each byte is received,  
SMBus0 generates an ACK or NACK depending on the state of the AA bit in register SMB0CN. SMBus0  
generates a STOP condition to indicate the end of the serial transfer.  
S
SLA  
R
A
Data Byte  
A
Data Byte  
N
P
Interrupt  
Interrupt  
Interrupt  
Interrupt  
S = START  
P = STOP  
A = ACK  
Received by SMBus  
Interface  
N = NACK  
R = READ  
SLA = Slave Address  
Transmitted by  
SMBus Interface  
Figure 19.5. Typical Master Receiver Sequence  
262  
Rev. 1.4  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
19.3.3. Slave Transmitter Mode  
Serial data is transmitted on SDA while the serial clock is received on SCL. The SMBus0 interface receives  
a START followed by data byte containing the slave address and direction bit. If the received slave address  
matches the address held in register SMB0ADR, the SMBus0 interface generates an ACK. SMBus0 will  
also ACK if the general call address (0x00) is received and the General Call Address Enable bit  
(SMB0ADR.0) is set to logic 1. In this case the data direction bit (R/W) will be logic 1 to indicate a "READ"  
operation. The SMBus0 interface receives the clock on SCL and transmits one or more bytes of serial  
data, waiting for an ACK from the master after each byte. SMBus0 exits slave mode after receiving a  
STOP condition from the master.  
Interrupt  
S
SLA  
R
A
Data Byte  
A
Data Byte  
N
P
Interrupt  
Interrupt  
Interrupt  
S = START  
P = STOP  
N = NACK  
R = READ  
Received by SMBus  
Interface  
Transmitted by  
SMBus Interface  
SLA = Slave Address  
Figure 19.6. Typical Slave Transmitter Sequence  
19.3.4. Slave Receiver Mode  
Serial data is received on SDA while the serial clock is received on SCL. The SMBus0 interface receives a  
START followed by data byte containing the slave address and direction bit. If the received slave address  
matches the address held in register SMB0ADR, the interface generates an ACK. SMBus0 will also ACK if  
the general call address (0x00) is received and the General Call Address Enable bit (SMB0ADR.0) is set to  
logic 1. In this case the data direction bit (R/W) will be logic 0 to indicate a "WRITE" operation. The  
SMBus0 interface receives one or more bytes of serial data; after each byte is received, the interface  
transmits an ACK or NACK depending on the state of the AA bit in SMB0CN. SMBus0 exits Slave Receiver  
Mode after receiving a STOP condition from the master.  
Interrupt  
S
SLA  
W
A
Data Byte  
A
Data Byte  
A
P
Interrupt  
Interrupt  
Interrupt  
S = START  
P = STOP  
A = ACK  
Received by SMBus  
Interface  
W = WRITE  
SLA = Slave Address  
Transmitted by  
SMBus Interface  
Figure 19.7. Typical Slave Receiver Sequence  
Rev. 1.4  
263  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
19.4. SMBus Special Function Registers  
The SMBus0 serial interface is accessed and controlled through five SFR’s: SMB0CN Control Register,  
SMB0CR Clock Rate Register, SMB0ADR Address Register, SMB0DAT Data Register and SMB0STA Sta-  
tus Register. The five special function registers related to the operation of the SMBus0 interface are  
described in the following sections.  
19.4.1. Control Register  
The SMBus0 Control register SMB0CN is used to configure and control the SMBus0 interface. All of the  
bits in the register can be read or written by software. Two of the control bits are also affected by the  
SMBus0 hardware. The Serial Interrupt flag (SI, SMB0CN.3) is set to logic 1 by the hardware when a valid  
serial interrupt condition occurs. It can only be cleared by software. The Stop flag (STO, SMB0CN.4) is set  
to logic 1 by software. It is cleared to logic 0 by hardware when a STOP condition is detected on the bus.  
Setting the ENSMB flag to logic 1 enables the SMBus0 interface. Clearing the ENSMB flag to logic 0 dis-  
ables the SMBus0 interface and removes it from the bus. Momentarily clearing the ENSMB flag and then  
resetting it to logic 1 will reset SMBus0 communication. However, ENSMB should not be used to tempo-  
rarily remove a device from the bus since the bus state information will be lost. Instead, the Assert  
Acknowledge (AA) flag should be used to temporarily remove the device from the bus (see description of  
AA flag below).  
Setting the Start flag (STA, SMB0CN.5) to logic 1 will put SMBus0 in a master mode. If the bus is free,  
SMBus0 will generate a START condition. If the bus is not free, SMBus0 waits for a STOP condition to free  
the bus and then generates a START condition after a 5 µs delay per the SMB0CR value (In accordance  
with the SMBus protocol, the SMBus0 interface also considers the bus free if the bus is idle for 50 µs and  
no STOP condition was recognized). If STA is set to logic 1 while SMBus0 is in master mode and one or  
more bytes have been transferred, a repeated START condition will be generated.  
When the Stop flag (STO, SMB0CN.4) is set to logic 1 while the SMBus0 interface is in master mode, the  
interface generates a STOP condition. In a slave mode, the STO flag may be used to recover from an error  
condition. In this case, a STOP condition is not generated on the bus, but the SMBus hardware behaves  
as if a STOP condition has been received and enters the "not addressed" slave receiver mode. Note that  
this simulated STOP will not cause the bus to appear free to SMBus0. The bus will remain occupied until a  
STOP appears on the bus or a Bus Free Timeout occurs. Hardware automatically clears the STO flag to  
logic 0 when a STOP condition is detected on the bus.  
The Serial Interrupt flag (SI, SMB0CN.3) is set to logic 1 by hardware when the SMBus0 interface enters  
one of 27 possible states. If interrupts are enabled for the SMBus0 interface, an interrupt request is gener-  
ated when the SI flag is set. The SI flag must be cleared by software.  
Important Note: If SI is set to logic 1 while the SCL line is low, the clock-low period of the serial clock will  
be stretched and the serial transfer is suspended until SI is cleared to logic 0. A high level on SCL is not  
affected by the setting of the SI flag.  
The Assert Acknowledge flag (AA, SMB0CN.2) is used to set the level of the SDA line during the acknowl-  
edge clock cycle on the SCL line. Setting the AA flag to logic 1 will cause an ACK (low level on SDA) to be  
sent during the acknowledge cycle if the device has been addressed. Setting the AA flag to logic 0 will  
cause a NACK (high level on SDA) to be sent during acknowledge cycle. After the transmission of a byte in  
slave mode, the slave can be temporarily removed from the bus by clearing the AA flag. The slave's own  
address and general call address will be ignored. To resume operation on the bus, the AA flag must be  
reset to logic 1 to allow the slave's address to be recognized.  
264  
Rev. 1.4  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
Setting the SMBus0 Free Timer Enable bit (FTE, SMB0CN.1) to logic 1 enables the timer in SMB0CR.  
When SCL goes high, the timer in SMB0CR counts up. A timer overflow indicates a free bus timeout: if  
SMBus0 is waiting to generate a START, it will do so after this timeout. The bus free period should be less  
than 50 µs (see SFR Definition 19.2, SMBus0 Clock Rate Register).  
When the TOE bit in SMB0CN is set to logic 1, Timer 3 is used to detect SCL low timeouts. If Timer 3 is  
enabled (see Section “23.2. Timer 2, Timer 3, and Timer 4” on page 317), Timer 3 is forced to reload  
when SCL is high, and forced to count when SCL is low. With Timer 3 enabled and configured to overflow  
after 25 ms (and TOE set), a Timer 3 overflow indicates a SCL low timeout; the Timer 3 interrupt service  
routine can then be used to reset SMBus0 communication in the event of an SCL low timeout.  
Rev. 1.4  
265  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
SFR Definition 19.1. SMB0CN: SMBus0 Control  
R
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Reset Value  
BUSY  
ENSMB  
STA  
STO  
SI  
AA  
FTE  
TOE  
00000000  
Bit  
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Bit0  
Addressable  
SFR Address: 0xC0  
SFR Page: 0  
Bit7:  
BUSY: Busy Status Flag.  
0: SMBus0 is free  
1: SMBus0 is busy  
Bit6:  
Bit5:  
ENSMB: SMBus Enable.  
This bit enables/disables the SMBus serial interface.  
0: SMBus0 disabled.  
1: SMBus0 enabled.  
STA: SMBus Start Flag.  
0: No START condition is transmitted.  
1: When operating as a master, a START condition is transmitted if the bus is free. (If the  
bus is not free, the START is transmitted after a STOP is received.) If STA is set after one or  
more bytes have been transmitted or received and before a STOP is received, a repeated  
START condition is transmitted.  
Bit4:  
STO: SMBus Stop Flag.  
0: No STOP condition is transmitted.  
1: Setting STO to logic 1 causes a STOP condition to be transmitted. When a STOP condi-  
tion is received, hardware clears STO to logic 0. If both STA and STO are set, a STOP con-  
dition is transmitted followed by a START condition. In slave mode, setting the STO flag  
causes SMBus to behave as if a STOP condition was received.  
SI: SMBus Serial Interrupt Flag.  
This bit is set by hardware when one of 27 possible SMBus0 states is entered. (Status code  
0xF8 does not cause SI to be set.) When the SI interrupt is enabled, setting this bit causes  
the CPU to vector to the SMBus interrupt service routine. This bit is not automatically  
cleared by hardware and must be cleared by software.  
Bit3:  
Bit2:  
AA: SMBus Assert Acknowledge Flag.  
This bit defines the type of acknowledge returned during the acknowledge cycle on the SCL  
line.  
0: A "not acknowledge" (high level on SDA) is returned during the acknowledge cycle.  
1: An "acknowledge" (low level on SDA) is returned during the acknowledge cycle.  
FTE: SMBus Free Timer Enable Bit  
0: No timeout when SCL is high  
1: Timeout when SCL high time exceeds limit specified by the SMB0CR value.  
TOE: SMBus Timeout Enable Bit  
Bit1:  
Bit0:  
0: No timeout when SCL is low.  
1: Timeout when SCL low time exceeds limit specified by Timer 3, if enabled.  
266  
Rev. 1.4  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
19.4.2. Clock Rate Register  
SFR Definition 19.2. SMB0CR: SMBus0 Clock Rate  
R/W  
Bit7  
R/W  
Bit6  
R/W  
Bit5  
R/W  
Bit4  
R/W  
Bit3  
R/W  
Bit2  
R/W  
Bit1  
R/W  
Reset Value  
00000000  
Bit0  
SFR Address: 0xCF  
SFR Page: 0  
Bits7–0: SMB0CR.[7:0]: SMBus0 Clock Rate Preset  
The SMB0CR Clock Rate register controls the frequency of the serial clock SCL in master  
mode. The 8-bit word stored in the SMB0CR Register preloads a dedicated 8-bit timer. The  
timer counts up, and when it rolls over to 0x00, the SCL logic state toggles.  
The SMB0CR setting should be bounded by the following equation , where SMB0CR is the  
unsigned 8-bit value in register SMB0CR, and SYSCLK is the system clock frequency in  
MHz:  
SYSCLK  
---------------------  
SMB0CR 288 – 0.85   
1.125  
4
The resulting SCL signal high and low times are given by the following equations, where  
SYSCLK is the system clock frequency in Hz:  
TLOW = 4  256 – SMB0CR  SYSCLK  
THIGH 4  258 – SMB0CR  SYSCLK + 625ns  
Using the same value of SMB0CR from above, the Bus Free Timeout period is given in the  
following equation:  
4  256 – SMB0CR+ 1  
--------------------------------------------------------------  
TBFT 10   
SYSCLK  
Rev. 1.4  
267  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
19.4.3. Data Register  
The SMBus0 Data register SMB0DAT holds a byte of serial data to be transmitted or one that has just  
been received. Software can read or write to this register while the SI flag is set to logic 1; software should  
not attempt to access the SMB0DAT register when the SMBus is enabled and the SI flag reads logic 0  
since the hardware may be in the process of shifting a byte of data in or out of the register.  
Data in SMB0DAT is always shifted out MSB first. After a byte has been received, the first bit of received  
data is located at the MSB of SMB0DAT. While data is being shifted out, data on the bus is simultaneously  
being shifted in. Therefore, SMB0DAT always contains the last data byte present on the bus. In the event  
of lost arbitration, the transition from master transmitter to slave receiver is made with the correct data in  
SMB0DAT.  
SFR Definition 19.3. SMB0DAT: SMBus0 Data  
R/W  
Bit7  
R/W  
Bit6  
R/W  
Bit5  
R/W  
Bit4  
R/W  
Bit3  
R/W  
Bit2  
R/W  
Bit1  
R/W  
Bit0  
Reset Value  
00000000  
SFR Address: 0xC2  
SFR Page: 0  
Bits7–0: SMB0DAT: SMBus0 Data.  
The SMB0DAT register contains a byte of data to be transmitted on the SMBus0 serial inter-  
face or a byte that has just been received on the SMBus0 serial interface. The CPU can  
read from or write to this register whenever the SI serial interrupt flag (SMB0CN.3) is set to  
logic 1. When the SI flag is not set, the system may be in the process of shifting data and the  
CPU should not attempt to access this register.  
19.4.4. Address Register  
The SMB0ADR Address register holds the slave address for the SMBus0 interface. In slave mode, the  
seven most-significant bits hold the 7-bit slave address. The least significant bit (Bit0) is used to enable the  
recognition of the general call address (0x00). If Bit0 is set to logic 1, the general call address will be recog-  
nized. Otherwise, the general call address is ignored. The contents of this register are ignored when  
SMBus0 is operating in master mode.  
268  
Rev. 1.4  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
SFR Definition 19.4. SMB0ADR: SMBus0 Address  
R/W  
SLV6  
Bit7  
R/W  
SLV5  
Bit6  
R/W  
SLV4  
Bit5  
R/W  
SLV3  
Bit4  
R/W  
SLV2  
Bit3  
R/W  
SLV1  
Bit2  
R/W  
SLV0  
Bit1  
R/W  
GC  
Bit0  
Reset Value  
00000000  
SFR Address:  
SFR Page:  
0xC3  
0
Bits7–1: SLV6–SLV0: SMBus0 Slave Address.  
These bits are loaded with the 7-bit slave address to which SMBus0 will respond when oper-  
ating as a slave transmitter or slave receiver. SLV6 is the most significant bit of the address  
and corresponds to the first bit of the address byte received.  
Bit0:  
GC: General Call Address Enable.  
This bit is used to enable general call address (0x00) recognition.  
0: General call address is ignored.  
1: General call address is recognized.  
19.4.5. Status Register  
The SMB0STA Status register holds an 8-bit status code indicating the current state of the SMBus0 inter-  
face. There are 28 possible SMBus0 states, each with a corresponding unique status code. The five most  
significant bits of the status code vary while the three least-significant bits of a valid status code are fixed at  
zero when SI = ‘1’. Therefore, all possible status codes are multiples of eight. This facilitates the use of sta-  
tus codes in software as an index used to branch to appropriate service routines (allowing 8 bytes of code  
to service the state or jump to a more extensive service routine).  
For the purposes of user software, the contents of the SMB0STA register is only defined when the SI flag is  
logic 1. Software should never write to the SMB0STA register; doing so will yield indeterminate results. The  
28 SMBus0 states, along with their corresponding status codes, are given in Table 1.1.  
SFR Definition 19.5. SMB0STA: SMBus0 Status  
R/W  
STA7  
Bit7  
R/W  
STA6  
Bit6  
R/W  
STA5  
Bit5  
R/W  
STA4  
Bit4  
R/W  
STA3  
Bit3  
R/W  
STA2  
Bit2  
R/W  
STA1  
Bit1  
R/W  
STA0  
Bit0  
Reset Value  
11111000  
SFR Address: 0xC1  
SFR Page: 0  
Bits7–3: STA7–STA3: SMBus0 Status Code.  
These bits contain the SMBus0 Status Code. There are 28 possible status codes; each sta-  
tus code corresponds to a single SMBus state. A valid status code is present in SMB0STA  
when the SI flag (SMB0CN.3) is set to logic 1. The content of SMB0STA is not defined when  
the SI flag is logic 0. Writing to the SMB0STA register at any time will yield indeterminate  
results.  
Bits2–0: STA2–STA0: The three least significant bits of SMB0STA are always read as logic 0 when  
the SI flag is logic 1.  
Rev. 1.4  
269  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
Table 19.1. SMB0STA Status Codes and States  
Status  
Code  
Mode  
SMBus State  
Typical Action  
0x08  
0x10  
0x18  
0x20  
START condition transmitted.  
Load SMB0DAT with Slave Address +  
R/W. Clear STA.  
Repeated START condition transmitted.  
Load SMB0DAT with Slave Address +  
R/W. Clear STA.  
Slave Address + W transmitted. ACK  
received.  
Load SMB0DAT with data to be transmit-  
ted.  
Slave Address + W transmitted. NACK  
received.  
Acknowledge poll to retry. Set STO +  
STA.  
1) Load SMB0DAT with next byte, OR  
2) Set STO, OR  
3) Clear STO then set STA for repeated  
START.  
0x28  
0x30  
Data byte transmitted. ACK received.  
Data byte transmitted. NACK received.  
Arbitration Lost.  
1) Retry transfer OR  
2) Set STO.  
0x38  
0x40  
Save current data.  
Slave Address + R transmitted. ACK received. If only receiving one byte, clear AA (send  
NACK after received byte). Wait for  
received data.  
0x48  
0x50  
0x58  
Slave Address + R transmitted. NACK  
received.  
Acknowledge poll to retry. Set STO +  
STA.  
Data byte received. ACK transmitted.  
Read SMB0DAT. Wait for next byte. If  
next byte is last byte, clear AA.  
Data byte received. NACK transmitted.  
Set STO.  
270  
Rev. 1.4  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
Table 19.1. SMB0STA Status Codes and States (Continued)  
Status  
Code  
Mode  
SMBus State  
Typical Action  
0x60  
Own slave address + W received. ACK trans-  
mitted.  
Wait for data.  
0x68  
Arbitration lost in sending SLA + R/W as mas-  
Save current data for retry when bus is  
ter. Own address + W received. ACK transmit- free. Wait for data.  
ted.  
0x70  
0x78  
General call address received. ACK transmit-  
ted.  
Wait for data.  
Arbitration lost in sending SLA + R/W as mas-  
ter. General call address received. ACK trans-  
mitted.  
Save current data for retry when bus is  
free.  
0x80  
Data byte received. ACK transmitted.  
Read SMB0DAT. Wait for next byte or  
STOP.  
0x88  
0x90  
Data byte received. NACK transmitted.  
Set STO to reset SMBus.  
Data byte received after general call address.  
ACK transmitted.  
Read SMB0DAT. Wait for next byte or  
STOP.  
0x98  
Data byte received after general call address.  
NACK transmitted.  
Set STO to reset SMBus.  
0xA0  
0xA8  
0xB0  
STOP or repeated START received.  
No action necessary.  
Own address + R received. ACK transmitted.  
Load SMB0DAT with data to transmit.  
Arbitration lost in transmitting SLA + R/W as  
master. Own address + R received. ACK  
transmitted.  
Save current data for retry when bus is  
free. Load SMB0DAT with data to trans-  
mit.  
0xB8  
0xC0  
0xC8  
Data byte transmitted. ACK received.  
Data byte transmitted. NACK received.  
Load SMB0DAT with data to transmit.  
Wait for STOP.  
Last data byte transmitted (AA=0). ACK  
received.  
Set STO to reset SMBus.  
0xD0  
SCL Clock High Timer per SMB0CR timed out Set STO to reset SMBus.  
0x00  
0xF8  
Bus Error (illegal START or STOP)  
Idle  
Set STO to reset SMBus.  
State does not set SI.  
Rev. 1.4  
271  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
NOTES:  
272  
Rev. 1.4  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
20. Enhanced Serial Peripheral Interface (SPI0)  
The Enhanced Serial Peripheral Interface (SPI0) provides access to a flexible, full-duplex synchronous  
serial bus. SPI0 can operate as a master or slave device in both 3-wire or 4-wire modes, and supports mul-  
tiple masters and slaves on a single SPI bus. The slave-select (NSS) signal can be configured as an input  
to select SPI0 in slave mode, or to disable Master Mode operation in a multi-master environment, avoiding  
contention on the SPI bus when more than one master attempts simultaneous data transfers. NSS can  
also be configured as a chip-select output in master mode, or disabled for 3-wire operation. Additional gen-  
eral purpose port I/O pins can be used to select multiple slave devices in master mode.  
SFR Bus  
SPI0CKR  
SPI0CFG  
SPI0CN  
Clock Divide  
Logic  
SYSCLK  
SPI CONTROL LOGIC  
SPI IRQ  
Data Path  
Control  
Pin Interface  
Control  
MOSI  
Tx Data  
C
R
O
S
S
B
A
R
SPI0DAT  
SCK  
MISO  
NSS  
Transmit Data Buffer  
Pin  
Control  
Logic  
Port I/O  
Shift Register  
Rx Data  
7 6 5 4 3 2 1 0  
Receive Data Buffer  
Read  
SPI0DAT  
Write  
SPI0DAT  
SFR Bus  
Figure 20.1. SPI Block Diagram  
Rev. 1.4  
273  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
20.1. Signal Descriptions  
The four signals used by SPI0 (MOSI, MISO, SCK, NSS) are described below.  
20.1.1. Master Out, Slave In (MOSI)  
The master-out, slave-in (MOSI) signal is an output from a master device and an input to slave devices. It  
is used to serially transfer data from the master to the slave. This signal is an output when SPI0 is operat-  
ing as a master and an input when SPI0 is operating as a slave. Data is transferred most-significant bit  
first. When configured as a master, MOSI is driven by the MSB of the shift register in both 3- and 4-wire  
mode.  
20.1.2. Master In, Slave Out (MISO)  
The master-in, slave-out (MISO) signal is an output from a slave device and an input to the master device.  
It is used to serially transfer data from the slave to the master. This signal is an input when SPI0 is operat-  
ing as a master and an output when SPI0 is operating as a slave. Data is transferred most-significant bit  
first. The MISO pin is placed in a high-impedance state when the SPI module is disabled and when the SPI  
operates in 4-wire mode as a slave that is not selected. When acting as a slave in 3-wire mode, MISO is  
always driven by the MSB of the shift register.  
20.1.3. Serial Clock (SCK)  
The serial clock (SCK) signal is an output from the master device and an input to slave devices. It is used  
to synchronize the transfer of data between the master and slave on the MOSI and MISO lines. SPI0 gen-  
erates this signal when operating as a master. The SCK signal is ignored by a SPI slave when the slave is  
not selected (NSS = 1) in 4-wire slave mode.  
20.1.4. Slave Select (NSS)  
The function of the slave-select (NSS) signal is dependent on the setting of the NSSMD1 and NSSMD0  
bits in the SPI0CN register. There are three possible modes that can be selected with these bits:  
1. NSSMD[1:0] = 00: 3-Wire Master or 3-Wire Slave Mode: SPI0 operates in 3-wire mode, and  
NSS is disabled. When operating as a slave device, SPI0 is always selected in 3-wire mode.  
Since no select signal is present, SPI0 must be the only slave on the bus in 3-wire mode. This  
is intended for point-to-point communication between a master and one slave.  
2. NSSMD[1:0] = 01: 4-Wire Slave or Multi-Master Mode: SPI0 operates in 4-wire mode, and  
NSS is enabled as an input. When operating as a slave, NSS selects the SPI0 device. When  
operating as a master, a 1-to-0 transition of the NSS signal disables the master function of  
SPI0 so that multiple master devices can be used on the same SPI bus.  
3. NSSMD[1:0] = 1x: 4-Wire Master Mode: SPI0 operates in 4-wire mode, and NSS is enabled as  
an output. The setting of NSSMD0 determines what logic level the NSS pin will output. This  
configuration should only be used when operating SPI0 as a master device.  
See Figure 20.2, Figure 20.3, and Figure 20.4 for typical connection diagrams of the various operational  
modes. Note that the setting of NSSMD bits affects the pinout of the device. When in 3-wire master or  
3-wire slave mode, the NSS pin will not be mapped by the crossbar. In all other modes, the NSS signal will  
be mapped to a pin on the device. See Section “18. Port Input/Output” on page 235 for general purpose  
port I/O and crossbar information.  
274  
Rev. 1.4  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
20.2. SPI0 Master Mode Operation  
A SPI master device initiates all data transfers on a SPI bus. SPI0 is placed in master mode by setting the  
Master Enable flag (MSTEN, SPI0CN.6). Writing a byte of data to the SPI0 data register (SPI0DAT) when  
in master mode writes to the transmit buffer. If the SPI shift register is empty, the byte in the transmit buffer  
is moved to the shift register, and a data transfer begins. The SPI0 master immediately shifts out the data  
serially on the MOSI line while providing the serial clock on SCK. The SPIF (SPI0CN.7) flag is set to logic  
1 at the end of the transfer. If interrupts are enabled, an interrupt request is generated when the SPIF flag  
is set. While the SPI0 master transfers data to a slave on the MOSI line, the addressed SPI slave device  
simultaneously transfers the contents of its shift register to the SPI master on the MISO line in a full-duplex  
operation. Therefore, the SPIF flag serves as both a transmit-complete and receive-data-ready flag. The  
data byte received from the slave is transferred MSB-first into the master's shift register. When a byte is  
fully shifted into the register, it is moved to the receive buffer where it can be read by the processor by  
reading SPI0DAT.  
When configured as a master, SPI0 can operate in one of three different modes: multi-master mode, 3-wire  
single-master mode, and 4-wire single-master mode. The default, multi-master mode is active when  
NSSMD1 (SPI0CN.3) = 0 and NSSMD0 (SPI0CN.2) = 1. In this mode, NSS is an input to the device, and  
is used to disable the master SPI0 when another master is accessing the bus. When NSS is pulled low in  
this mode, MSTEN (SPI0CN.6) and SPIEN (SPI0CN.0) are set to 0 to disable the SPI master device, and  
a Mode Fault is generated (MODF, SPI0CN.5 = 1). Mode Fault will generate an interrupt if enabled. SPI0  
must be manually re-enabled in software under these circumstances. In multi-master systems, devices will  
typically default to being slave devices while they are not acting as the system master device. In multi-mas-  
ter mode, slave devices can be addressed individually (if needed) using general-purpose I/O pins.  
Figure 20.2 shows a connection diagram between two master devices in multiple-master mode.  
3-wire single-master mode is active when NSSMD1 (SPI0CN.3) = 0 and NSSMD0 (SPI0CN.2) = 0. In this  
mode, NSS is not used, and is not mapped to an external port pin through the crossbar. Any slave devices  
that must be addressed in this mode should be selected using general-purpose I/O pins. Figure 20.3  
shows a connection diagram between a master device in 3-wire master mode and a slave device.  
4-wire single-master mode is active when NSSMD1 (SPI0CN.3) = 1. In this mode, NSS is configured as an  
output pin, and can be used as a slave-select signal for a single SPI device. In this mode, the output value  
of NSS is controlled (in software) with the bit NSSMD0 (SPI0CN.2). Additional slave devices can be  
addressed using general-purpose I/O pins. Figure 20.4 shows a connection diagram for a master device in  
4-wire master mode and two slave devices.  
Rev. 1.4  
275  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
NSS  
GPIO  
MISO  
MOSI  
SCK  
MISO  
Master  
Master  
MOSI  
Device 1  
Device 2  
SCK  
GPIO  
NSS  
Figure 20.2. Multiple-Master Mode Connection Diagram  
Master  
Device  
Slave  
Device  
MISO  
MOSI  
SCK  
MISO  
MOSI  
SCK  
Figure 20.3. 3-Wire Single Master and Slave Mode Connection Diagram  
MISO  
MOSI  
SCK  
MISO  
MOSI  
SCK  
Master  
Device  
Slave  
Device  
NSS  
NSS  
GPIO  
MISO  
MOSI  
SCK  
Slave  
Device  
NSS  
Figure 20.4. 4-Wire Single Master and Slave Mode Connection Diagram  
276  
Rev. 1.4  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
20.3. SPI0 Slave Mode Operation  
When SPI0 is enabled and not configured as a master, it will operate as a SPI slave. As a slave, bytes are  
shifted in through the MOSI pin and out through the MISO pin by a master device controlling the SCK sig-  
nal. A bit counter in the SPI0 logic counts SCK edges. When 8 bits have been shifted through the shift reg-  
ister, the SPIF flag is set to logic 1, and the byte is copied into the receive buffer. Data is read from the  
receive buffer by reading SPI0DAT. A slave device cannot initiate transfers. Data to be transferred to the  
master device is pre-loaded into the shift register by writing to SPI0DAT. Writes to SPI0DAT are double-  
buffered, and are placed in the transmit buffer first. If the shift register is empty, the contents of the transmit  
buffer will immediately be transferred into the shift register. When the shift register already contains data,  
the SPI will load the shift register with the transmit buffer’s contents after the last SCK edge of the next (or  
current) SPI transfer.  
When configured as a slave, SPI0 can be configured for 4-wire or 3-wire operation. The default, 4-wire  
slave mode, is active when NSSMD1 (SPI0CN.3) = 0 and NSSMD0 (SPI0CN.2) = 1. In 4-wire mode, the  
NSS signal is routed to a port pin and configured as a digital input. SPI0 is enabled when NSS is logic 0,  
and disabled when NSS is logic 1. The bit counter is reset on a falling edge of NSS. Note that the NSS sig-  
nal must be driven low at least 2 system clocks before the first active edge of SCK for each byte transfer.  
Figure 20.4 shows a connection diagram between two slave devices in 4-wire slave mode and a master  
device.  
3-wire slave mode is active when NSSMD1 (SPI0CN.3) = 0 and NSSMD0 (SPI0CN.2) = 0. NSS is not  
used in this mode, and is not mapped to an external port pin through the crossbar. Since there is no way of  
uniquely addressing the device in 3-wire slave mode, SPI0 must be the only slave device present on the  
bus. It is important to note that in 3-wire slave mode there is no external means of resetting the bit counter  
that determines when a full byte has been received. The bit counter can only be reset by disabling and re-  
enabling SPI0 with the SPIEN bit. Figure 20.3 shows a connection diagram between a slave device in 3-  
wire slave mode and a master device.  
20.4. SPI0 Interrupt Sources  
When SPI0 interrupts are enabled, the following four flags will generate an interrupt when they are set to  
logic 1:  
Note that all of the following bits must be cleared by software.  
1. The SPI Interrupt Flag, SPIF (SPI0CN.7) is set to logic 1 at the end of each byte transfer. This  
flag can occur in all SPI0 modes.  
2. The Write Collision Flag, WCOL (SPI0CN.6) is set to logic 1 if a write to SPI0DAT is attempted  
when the transmit buffer has not been emptied to the SPI shift register. When this occurs, the  
write to SPI0DAT will be ignored, and the transmit buffer will not be written.This flag can occur  
in all SPI0 modes.  
3. The Mode Fault Flag MODF (SPI0CN.5) is set to logic 1 when SPI0 is configured as a master,  
and for multi-master mode and the NSS pin is pulled low. When a Mode Fault occurs, the  
MSTEN and SPIEN bits in SPI0CN are set to logic 0 to disable SPI0 and allow another master  
device to access the bus.  
4. The Receive Overrun Flag RXOVRN (SPI0CN.4) is set to logic 1 when configured as a slave,  
and a transfer is completed and the receive buffer still holds an unread byte from a previous  
transfer. The new byte is not transferred to the receive buffer, allowing the previously received  
data byte to be read. The data byte which caused the overrun is lost.  
Rev. 1.4  
277  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
20.5. Serial Clock Timing  
Four combinations of serial clock phase and polarity can be selected using the clock control bits in the  
SPI0 Configuration Register (SPI0CFG). The CKPHA bit (SPI0CFG.5) selects one of two clock phases  
(edge used to latch the data). The CKPOL bit (SPI0CFG.4) selects between an active-high or active-low  
clock. Both master and slave devices must be configured to use the same clock phase and polarity. SPI0  
should be disabled (by clearing the SPIEN bit, SPI0CN.0) when changing the clock phase or polarity. The  
clock and data line relationships for master mode are shown in Figure 20.5. For slave mode, the clock and  
data relationships are shown in Figure 20.6 and Figure 20.7. Note that CKPHA must be set to ‘0’ on both  
the master and slave SPI when communicating between two of the following devices: C8051F04x,  
C8051F06x, C8051F12x/13x, C8051F31x, C8051F32x, and C8051F33x  
The SPI0 Clock Rate Register (SPI0CKR) as shown in SFR Definition 20.3 controls the master mode  
serial clock frequency. This register is ignored when operating in slave mode. When the SPI is configured  
as a master, the maximum data transfer rate (bits/sec) is one-half the system clock frequency or 12.5 MHz,  
whichever is slower. When the SPI is configured as a slave, the maximum data transfer rate (bits/sec) for  
full-duplex operation is 1/10 the system clock frequency, provided that the master issues SCK, NSS (in 4-  
wire slave mode), and the serial input data synchronously with the slave’s system clock. If the master  
issues SCK, NSS, and the serial input data asynchronously, the maximum data transfer rate (bits/sec)  
must be less than 1/10 the system clock frequency. In the special case where the master only wants to  
transmit data to the slave and does not need to receive data from the slave (i.e. half-duplex operation), the  
SPI slave can receive data at a maximum data transfer rate (bits/sec) of 1/4 the system clock frequency.  
This is provided that the master issues SCK, NSS, and the serial input data synchronously with the slave’s  
system clock.  
SCK  
(CKPOL=0, CKPHA=0)  
SCK  
(CKPOL=0, CKPHA=1)  
SCK  
(CKPOL=1, CKPHA=0)  
SCK  
(CKPOL=1, CKPHA=1)  
MISO/MOSI  
MSB  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
NSS (Must Remain High  
in Multi-Master Mode)  
Figure 20.5. Master Mode Data/Clock Timing  
278  
Rev. 1.4  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
SCK  
(CKPOL=0, CKPHA=0)  
SCK  
(CKPOL=1, CKPHA=0)  
MOSI  
MSB  
MSB  
Bit 6  
Bit 6  
Bit 5  
Bit 5  
Bit 4  
Bit 4  
Bit 3  
Bit 3  
Bit 2  
Bit 2  
Bit 1  
Bit 1  
Bit 0  
Bit 0  
MISO  
NSS (4-Wire Mode)  
Figure 20.6. Slave Mode Data/Clock Timing (CKPHA = 0)  
SCK  
(CKPOL=0, CKPHA=1)  
SCK  
(CKPOL=1, CKPHA=1)  
MOSI  
MSB  
MSB  
Bit 6  
Bit 6  
Bit 5  
Bit 5  
Bit 4  
Bit 4  
Bit 3  
Bit 3  
Bit 2  
Bit 2  
Bit 1  
Bit 1  
Bit 0  
Bit 0  
MISO  
NSS (4-Wire Mode)  
Figure 20.7. Slave Mode Data/Clock Timing (CKPHA = 1)  
Rev. 1.4  
279  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
20.6. SPI Special Function Registers  
SPI0 is accessed and controlled through four special function registers in the system controller: SPI0CN  
Control Register, SPI0DAT Data Register, SPI0CFG Configuration Register, and SPI0CKR Clock Rate  
Register. The four special function registers related to the operation of the SPI0 Bus are described in the  
following figures.  
SFR Definition 20.1. SPI0CFG: SPI0 Configuration  
R
R/W  
R/W  
CKPHA  
Bit5  
R/W  
R
R
R
R
Reset Value  
SPIBSY MSTEN  
CKPOL SLVSEL  
NSSIN  
Bit2  
SRMT  
Bit1  
RXBMT 00000111  
Bit7  
Bit6  
Bit4  
Bit3  
Bit0  
SFR Address: 0x9A  
SFR Page: 0  
Bit 7:  
SPIBSY: SPI Busy (read only).  
This bit is set to logic 1 when a SPI transfer is in progress (Master or slave Mode).  
MSTEN: Master Mode Enable.  
0: Disable master mode. Operate in slave mode.  
1: Enable master mode. Operate as a master.  
CKPHA: SPI0 Clock Phase.  
Bit 6:  
Bit 5:  
This bit controls the SPI0 clock phase.  
0: Data centered on first edge of SCK period.*  
1: Data centered on second edge of SCK period.*  
Bit 4:  
Bit 3:  
CKPOL: SPI0 Clock Polarity.  
This bit controls the SPI0 clock polarity.  
0: SCK line low in idle state.  
1: SCK line high in idle state.  
SLVSEL: Slave Selected Flag (read only).  
This bit is set to logic 1 whenever the NSS pin is low indicating SPI0 is the selected slave. It  
is cleared to logic 0 when NSS is high (slave not selected). This bit does not indicate the  
instantaneous value at the NSS pin, but rather a de-glitched version of the pin input.  
NSSIN: NSS Instantaneous Pin Input (read only).  
This bit mimics the instantaneous value that is present on the NSS port pin at the time that  
the register is read. This input is not de-glitched.  
SRMT: Shift Register Empty (Valid in Slave Mode, read only).  
This bit will be set to logic 1 when all data has been transferred in/out of the shift register,  
and there is no new information available to read from the transmit buffer or write to the  
receive buffer. It returns to logic 0 when a data byte is transferred to the shift register from  
the transmit buffer or by a transition on SCK.  
Bit 2:  
Bit 1:  
NOTE: SRMT = 1 when in Master Mode.  
Bit 0:  
RXBMT: Receive Buffer Empty (Valid in Slave Mode, read only).  
This bit will be set to logic 1 when the receive buffer has been read and contains no new  
information. If there is new information available in the receive buffer that has not been read,  
this bit will return to logic 0.  
NOTE: RXBMT = 1 when in Master Mode.  
*Note:  
In slave mode, data on MOSI is sampled in the center of each data bit. In master mode, data  
on MISO is sampled one SYSCLK before the end of each data bit, to provide maximum  
settling time for the slave device. See Table 20.1 for timing parameters.  
280  
Rev. 1.4  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
SFR Definition 20.2. SPI0CN: SPI0 Control  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R
R/W  
Reset Value  
SPIF  
WCOL  
MODF RXOVRN NSSMD1 NSSMD0 TXBMT  
SPIEN 00000110  
Bit  
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Bit0  
Addressable  
SFR Address: 0xF8  
SFR Page: 0  
Bit 7:  
SPIF: SPI0 Interrupt Flag.  
This bit is set to logic 1 by hardware at the end of a data transfer. If interrupts are enabled,  
setting this bit causes the CPU to vector to the SPI0 interrupt service routine. This bit is not  
automatically cleared by hardware. It must be cleared by software.  
WCOL: Write Collision Flag.  
This bit is set to logic 1 by hardware (and generates a SPI0 interrupt) to indicate a write to  
the SPI0 data register was attempted while a data transfer was in progress. It must be  
cleared by software.  
Bit 6:  
Bit 5:  
Bit 4:  
MODF: Mode Fault Flag.  
This bit is set to logic 1 by hardware (and generates a SPI0 interrupt) when a master mode  
collision is detected (NSS is low, MSTEN = 1, and NSSMD[1:0] = 01). This bit is not auto-  
matically cleared by hardware. It must be cleared by software.  
RXOVRN: Receive Overrun Flag (Slave Mode only).  
This bit is set to logic 1 by hardware (and generates a SPI0 interrupt) when the receive  
buffer still holds unread data from a previous transfer and the last bit of the current transfer is  
shifted into the SPI0 shift register. This bit is not automatically cleared by hardware. It must  
be cleared by software.  
Bits 3–2: NSSMD1–NSSMD0: Slave Select Mode.  
Selects between the following NSS operation modes:  
(See Section “20.2. SPI0 Master Mode Operation” on page 275 and Section “20.3. SPI0  
Slave Mode Operation” on page 277).  
00: 3-Wire Slave or 3-wire Master Mode. NSS signal is not routed to a port pin.  
01: 4-Wire Slave or Multi-Master Mode (Default). NSS is always an input to the device.  
1x: 4-Wire Single-Master Mode. NSS signal is mapped as an output from the device and will  
assume the value of NSSMD0.  
Bit 1:  
Bit 0:  
TXBMT: Transmit Buffer Empty.  
This bit will be set to logic 0 when new data has been written to the transmit buffer. When  
data in the transmit buffer is transferred to the SPI shift register, this bit will be set to logic 1,  
indicating that it is safe to write a new byte to the transmit buffer.  
SPIEN: SPI0 Enable.  
This bit enables/disables the SPI.  
0: SPI disabled.  
1: SPI enabled.  
Rev. 1.4  
281  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
SFR Definition 20.3. SPI0CKR: SPI0 Clock Rate  
R/W  
SCR7  
Bit7  
R/W  
SCR6  
Bit6  
R/W  
SCR5  
Bit5  
R/W  
SCR4  
Bit4  
R/W  
SCR3  
Bit3  
R/W  
SCR2  
Bit2  
R/W  
SCR1  
Bit1  
R/W  
Reset Value  
SCR0 00000000  
Bit0  
SFR Address: 0x9D  
SFR Page: 0  
Bits 7–0: SCR7–SCR0: SPI0 Clock Rate.  
These bits determine the frequency of the SCK output when the SPI0 module is configured  
for master mode operation. The SCK clock frequency is a divided version of the system  
clock, and is given in the following equation, where SYSCLK is the system clock frequency  
and SPI0CKR is the 8-bit value held in the SPI0CKR register.  
SYSCLK  
2  SPI0CKR + 1  
----------------------------------------------  
=
fSCK  
for 0 <= SPI0CKR <= 255  
Example: If SYSCLK = 2 MHz and SPI0CKR = 0x04,  
2000000  
2  4 + 1  
-------------------------  
=
fSCK  
fSCK = 200kHz  
SFR Definition 20.4. SPI0DAT: SPI0 Data  
R/W  
Bit7  
R/W  
Bit6  
R/W  
Bit5  
R/W  
Bit4  
R/W  
Bit3  
R/W  
Bit2  
R/W  
Bit1  
R/W  
Bit0  
Reset Value  
00000000  
SFR Address: 0x9B  
SFR Page: 0  
Bits 7–0: SPI0DAT: SPI0 Transmit and Receive Data.  
The SPI0DAT register is used to transmit and receive SPI0 data. Writing data to SPI0DAT  
places the data into the transmit buffer and initiates a transfer when in Master Mode. A read  
of SPI0DAT returns the contents of the receive buffer.  
282  
Rev. 1.4  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
SCK*  
T
T
MCKL  
MCKH  
T
T
MIS  
MIH  
MISO  
MOSI  
* SCK is shown for CKPOL = 0. SCK is the opposite polarity for CKPOL = 1.  
Figure 20.8. SPI Master Timing (CKPHA = 0)  
SCK*  
T
T
MCKL  
MCKH  
T
T
MIH  
MIS  
MISO  
MOSI  
* SCK is shown for CKPOL = 0. SCK is the opposite polarity for CKPOL = 1.  
Figure 20.9. SPI Master Timing (CKPHA = 1)  
Rev. 1.4  
283  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
NSS  
T
T
T
SD  
SE  
CKL  
SCK*  
T
CKH  
T
T
SIH  
SIS  
MOSI  
MISO  
T
T
T
SDZ  
SEZ  
SOH  
* SCK is shown for CKPOL = 0. SCK is the opposite polarity for CKPOL = 1.  
Figure 20.10. SPI Slave Timing (CKPHA = 0)  
NSS  
T
T
T
SD  
SE  
CKL  
SCK*  
T
CKH  
T
T
SIH  
SIS  
MOSI  
T
T
T
SDZ  
T
SOH  
SLH  
SEZ  
MISO  
* SCK is shown for CKPOL = 0. SCK is the opposite polarity for CKPOL = 1.  
Figure 20.11. SPI Slave Timing (CKPHA = 1)  
284  
Rev. 1.4  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
Table 20.1. SPI Slave Timing Parameters  
Parameter  
Description  
Min  
Max  
Units  
Master Mode Timing* (See Figure 20.8 and Figure 20.9)  
T
1 x TSYSCLK  
1 x TSYSCLK  
1 x TSYSCLK + 20  
0
SCK High Time  
ns  
ns  
ns  
ns  
MCKH  
T
SCK Low Time  
MCKL  
T
MISO Valid to SCK Shift Edge  
SCK Shift Edge to MISO Change  
MIS  
T
MIH  
Slave Mode Timing* (See Figure 20.10 and Figure 20.11)  
T
2 x TSYSCLK  
2 x TSYSCLK  
NSS Falling to First SCK Edge  
Last SCK Edge to NSS Rising  
NSS Falling to MISO Valid  
NSS Rising to MISO High-Z  
SCK High Time  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
SE  
T
SD  
T
4 x TSYSCLK  
4 x TSYSCLK  
SEZ  
T
SDZ  
T
5 x TSYSCLK  
5 x TSYSCLK  
2 x TSYSCLK  
2 x TSYSCLK  
CKH  
T
SCK Low Time  
CKL  
T
MOSI Valid to SCK Sample Edge  
SCK Sample Edge to MOSI Change  
SCK Shift Edge to MISO Change  
SIS  
T
SIH  
T
4 x TSYSCLK  
8 x TSYSCLK  
SOH  
Last SCK Edge to MISO Change  
(CKPHA = 1 ONLY)  
T
6 x TSYSCLK  
ns  
SLH  
*Note: TSYSCLK is equal to one period of the device system clock (SYSCLK).  
Rev. 1.4  
285  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
NOTES:  
286  
Rev. 1.4  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
21. UART0  
UART0 is an enhanced serial port with frame error detection and address recognition hardware. UART0  
may operate in full-duplex asynchronous or half-duplex synchronous modes, and mutiproccessor commu-  
nication is fully supported. Receive data is buffered in a holding register, allowing UART0 to start reception  
of a second incoming data byte before software has finished reading the previous data byte. A Receive  
Overrun bit indicates when new received data is latched into the receive buffer before the previously  
received byte has been read.  
UART0 is accessed via its associated SFR’s, Serial Control (SCON0) and Serial Data Buffer (SBUF0). The  
single SBUF0 location provides access to both transmit and receive registers. Reading SCON0 accesses  
the Receive register and writing SCON0 accesses the Transmit register.  
UART0 may be operated in polled or interrupt mode. UART0 has two sources of interrupts: a Transmit  
Interrupt flag, TI0 (SCON0.1) set when transmission of a data byte is complete, and a Receive Interrupt  
flag, RI0 (SCON0.0) set when reception of a data byte is complete. UART0 interrupt flags are not cleared  
by hardware when the CPU vectors to the interrupt service routine; they must be cleared manually by soft-  
ware. This allows software to determine the cause of the UART0 interrupt (transmit complete or receive  
complete).  
SFR Bus  
Write to  
SBUF0  
TB80  
SET  
D
Q
SBUF0  
TX0  
CLR  
Crossbar  
SSTA0  
F
E
0
R
X
O
V
0
T
X
C
O
L
S
M
O
D
0
S
0
T
C
L
S
0
T
C
L
S
0
R
C
L
S
0
R
C
L
Zero Detector  
0
K
1
K
1
K
1
K
1
Shift  
Stop Bit  
Gen.  
Data  
Tx Control  
Start  
Tx Clock  
Send  
Tx IRQ  
TI0  
RI0  
SCON0  
UART0  
Baud Rate Generation  
Logic  
S
M
0
S
M
1
S
M
2
R
E
N
0
T
B
8
0
R
B
8
T
I
0
R
I
0
Serial Port  
(UART0) Interrupt  
0
0
0
0
EN  
Rx IRQ  
Rx Clock  
Start  
Load  
SBUF  
Rx Control  
Address  
Match  
Port I/O  
Shift  
0x1FF  
Frame Error  
Detection  
Input Shift Register  
(9 bits)  
Load  
SBUF0  
RB80  
SADDR0  
SADEN0  
SBUF0  
Match Detect  
Read  
SBUF0  
SFR Bus  
RX0  
Crossbar  
Figure 21.1. UART0 Block Diagram  
Rev. 1.4  
287  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
21.1. UART0 Operational Modes  
UART0 provides four operating modes (one synchronous and three asynchronous) selected by setting  
configuration bits in the SCON0 register. These four modes offer different baud rates and communication  
protocols. The four modes are summarized in Table 21.1.  
Table 21.1. UART0 Modes  
Mode  
Synchronization  
Synchronous  
Asynchronous  
Asynchronous  
Asynchronous  
Baud Clock  
SYSCLK / 12  
Timer 1, 2, 3, or 4 Overflow  
SYSCLK / 32 or SYSCLK / 64  
Timer 1, 2, 3, or 4 Overflow  
Data Bits  
Start/Stop Bits  
None  
1 Start, 1 Stop  
1 Start, 1 Stop  
1 Start, 1 Stop  
0
1
2
3
8
8
9
9
21.1.1. Mode 0: Synchronous Mode  
Mode 0 provides synchronous, half-duplex communication. Serial data is transmitted and received on the  
RX0 pin. The TX0 pin provides the shift clock for both transmit and receive. The MCU must be the master  
since it generates the shift clock for transmission in both directions (see the interconnect diagram in  
Figure 21.3).  
Data transmission begins when an instruction writes a data byte to the SBUF0 register. Eight data bits are  
transferred LSB first (see the timing diagram in Figure 21.2), and the TI0 Transmit Interrupt Flag  
(SCON0.1) is set at the end of the eighth bit time. Data reception begins when the REN0 Receive Enable  
bit (SCON0.4) is set to logic 1 and the RI0 Receive Interrupt Flag (SCON0.0) is cleared. One cycle after  
the eighth bit is shifted in, the RI0 flag is set and reception stops until software clears the RI0 bit. An inter-  
rupt will occur if enabled when either TI0 or RI0 are set.  
The Mode 0 baud rate is SYSCLK / 12. RX0 is forced to open-drain in Mode 0, and an external pullup will  
typically be required.  
MODE 0 TRANSMIT  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
RX (data out)  
TX (clk out)  
MODE 0 RECEIVE  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
RX (data in)  
TX (clk out)  
Figure 21.2. UART0 Mode 0 Timing Diagram  
TX  
RX  
CLK  
Shift  
Reg.  
C8051Fxxx  
DATA  
8 Extra Outputs  
Figure 21.3. UART0 Mode 0 Interconnect  
288  
Rev. 1.4  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
21.1.2. Mode 1: 8-Bit UART, Variable Baud Rate  
Mode 1 provides standard asynchronous, full duplex communication using a total of 10 bits per data byte:  
one start bit, eight data bits (LSB first), and one stop bit. Data are transmitted from the TX0 pin and  
received at the RX0 pin. On receive, the eight data bits are stored in SBUF0 and the stop bit goes into  
RB80 (SCON0.2).  
Data transmission begins when an instruction writes a data byte to the SBUF0 register. The TI0 Transmit  
Interrupt Flag (SCON0.1) is set at the end of the transmission (the beginning of the stop-bit time). Data  
reception can begin any time after the REN0 Receive Enable bit (SCON0.4) is set to logic 1. After the stop  
bit is received, the data byte will be loaded into the SBUF0 receive register if the following conditions are  
met: RI0 must be logic 0, and if SM20 is logic 1, the stop bit must be logic 1.  
If these conditions are met, the eight bits of data is stored in SBUF0, the stop bit is stored in RB80 and the  
RI0 flag is set. If these conditions are not met, SBUF0 and RB80 will not be loaded and the RI0 flag will not  
be set. An interrupt will occur if enabled when either TI0 or RI0 are set.  
MARK  
START  
BIT  
STOP  
BIT  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
SPACE  
BIT TIMES  
BIT SAMPLING  
Figure 21.4. UART0 Mode 1 Timing Diagram  
The baud rate generated in Mode 1 is a function of timer overflow. UART0 can use Timer 1 operating in 8-  
Bit Auto-Reload Mode, or Timer 2, 3, or 4 operating in Auto-reload Mode to generate the baud rate (note  
that the TX and RX clocks are selected separately). On each timer overflow event (a rollover from all ones  
- (0xFF for Timer 1, 0xFFFF for Timer 2, 3, or 4) - to zero) a clock is sent to the baud rate logic.  
Timers 1, 2, 3, or 4 are selected as the baud rate source with bits in the SSTA0 register (see SFR Defini-  
tion 21.2). The transmit baud rate clock is selected using the S0TCLK1 and S0TCLK0 bits, and the receive  
baud rate clock is selected using the S0RCLK1 and S0RCLK0 bits.  
When Timer 1 is selected as a baud rate source, the SMOD0 bit (SSTA0.4) selects whether or not to divide  
the Timer 1 overflow rate by two. On reset, the SMOD0 bit is logic 0, thus selecting the lower speed baud  
rate by default. The SMOD0 bit affects the baud rate generated by Timer 1 as shown in Equation 21.1.  
The Mode 1 baud rate equations are shown below, where T1M is bit4 of register CKCON, TH1 is the 8-bit  
reload register for Timer 1, and [RCAPnH , RCAPnL] is the 16-bit reload register for Timer 2, 3, or 4.  
Equation 21.1. Mode 1 Baud Rate using Timer 1  
When SMOD0 = 0:  
Mode1_BaudRate = 1 32 Timer1_OverflowRate  
When SMOD0 = 1:  
Mode1_BaudRate = 1 16 Timer1_OverflowRate  
Rev. 1.4  
289  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
The Timer 1 overflow rate is determined by the Timer 1 clock source (T1CLK) and reload value (TH1). The  
frequency of T1CLK is selected as described in Section “23.1. Timer 0 and Timer 1” on page 309. The  
Timer 1 overflow rate is calculated as shown in Equation 21.2.  
Equation 21.2. Timer 1 Overflow Rate  
Timer1_OverflowRate = T1CLK  256 – TH1  
When Timers 2, 3, or 4 are selected as a baud rate source, the baud rate is generated as shown in  
Equation 21.3.  
Equation 21.3. Mode 1 Baud Rate using Timer 2, 3, or 4  
Mode1_BaudRate = 1 16 Timer234_OverflowRate  
The overflow rate for Timer 2, 3, or 4 is determined by the clock source for the timer (TnCLK) and the 16-  
bit reload value stored in the RCAPn register (n = 2, 3, or 4), as shown in Equation 21.4.  
Equation 21.4. Timer 2, 3, or 4 Overflow Rate  
Timer234_OverflowRate = TnCLK  65536 – RCAPn  
290  
Rev. 1.4  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
21.1.3. Mode 2: 9-Bit UART, Fixed Baud Rate  
Mode 2 provides asynchronous, full-duplex communication using a total of eleven bits per data byte: a start  
bit, 8 data bits (LSB first), a programmable ninth data bit, and a stop bit. Mode 2 supports multiprocessor  
communications and hardware address recognition (see Section 21.2). On transmit, the ninth data bit is  
determined by the value in TB80 (SCON0.3). It can be assigned the value of the parity flag P in the PSW or  
used in multiprocessor communications. On receive, the ninth data bit goes into RB80 (SCON0.2) and the  
stop bit is ignored.  
Data transmission begins when an instruction writes a data byte to the SBUF0 register. The TI0 Transmit  
Interrupt Flag (SCON0.1) is set at the end of the transmission (the beginning of the stop-bit time). Data  
reception can begin any time after the REN0 Receive Enable bit (SCON0.4) is set to logic 1. After the stop  
bit is received, the data byte will be loaded into the SBUF0 receive register if RI0 is logic 0 and one of the  
following requirements are met:  
1. SM20 is logic 0  
2. SM20 is logic 1, the received 9th bit is logic 1, and the received address matches the UART0  
address as described in Section 21.2.  
If the above conditions are satisfied, the eight bits of data are stored in SBUF0, the ninth bit is stored in  
RB80 and the RI0 flag is set. If these conditions are not met, SBUF0 and RB80 will not be loaded and the  
RI0 flag will not be set. An interrupt will occur if enabled when either TI0 or RI0 are set.  
The baud rate in Mode 2 is either SYSCLK / 32 or SYSCLK / 64, according to the value of the SMOD0 bit  
in register SSTA0.  
Equation 21.5. Mode 2 Baud Rate  
SYSCLK  
BaudRate = 2SMOD0  
---------------------  
64  
MARK  
START  
BIT  
STOP  
BIT  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D8  
SPACE  
BIT TIMES  
BIT SAMPLING  
Figure 21.5. UART0 Modes 2 and 3 Timing Diagram  
Rev. 1.4  
291  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
TX  
RX  
RS-232  
LEVEL  
XLTR  
RS-232  
C8051Fxxx  
OR  
TX  
RX  
TX  
RX  
MCU  
C8051Fxxx  
Figure 21.6. UART0 Modes 1, 2, and 3 Interconnect Diagram  
21.1.4. Mode 3: 9-Bit UART, Variable Baud Rate  
Mode 3 uses the Mode 2 transmission protocol with the Mode 1 baud rate generation. Mode 3 operation  
transmits 11 bits: a start bit, 8 data bits (LSB first), a programmable ninth data bit, and a stop bit. The baud  
rate is derived from Timer 1 or Timer 2, 3, or 4 overflows, as defined by Equation 21.1 and Equation 21.3.  
Multiprocessor communications and hardware address recognition are supported, as described in Section  
21.2.  
292  
Rev. 1.4  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
21.2. Multiprocessor Communications  
Modes 2 and 3 support multiprocessor communication between a master processor and one or more slave  
processors by special use of the ninth data bit and the built-in UART0 address recognition hardware. When  
a master processor wants to transmit to one or more slaves, it first sends an address byte to select the tar-  
get(s). An address byte differs from a data byte in that its ninth bit is logic 1; in a data byte, the ninth bit is  
always set to logic 0. UART0 will recognize as “valid” (i.e., capable of causing an interrupt) two types of  
addresses: (1) a masked address and (2) a broadcast address at any given time. Both are described  
below.  
21.2.1. Configuration of a Masked Address  
The UART0 address is configured via two SFR’s: SADDR0 (Serial Address) and SADEN0 (Serial Address  
Enable). SADEN0 sets the bit mask for the address held in SADDR0: bits set to logic 1 in SADEN0 corre-  
spond to bits in SADDR0 that are checked against the received address byte; bits set to logic 0 in SADEN0  
correspond to “don’t care” bits in SADDR0.  
Example 1, SLAVE #1  
Example 2, SLAVE #2  
Example 3, SLAVE #3  
SADDR0  
SADEN0  
= 00110101  
= 00001111  
SADDR0  
SADEN0  
= 00110101  
= 11110011  
SADDR0  
SADEN0  
= 00110101  
= 11000000  
UART0 Address = xxxx0101  
UART0 Address = 0011xx01  
UART0 Address = 00xxxxxx  
Setting the SM20 bit (SCON0.5) configures UART0 such that when a stop bit is received, UART0 will gen-  
erate an interrupt only if the ninth bit is logic 1 (RB80 = ‘1’) and the received data byte matches the UART0  
slave address. Following the received address interrupt, the slave will clear its SM20 bit to enable interrupts  
on the reception of the following data byte(s). Once the entire message is received, the addressed slave  
resets its SM20 bit to ignore all transmissions until it receives the next address byte. While SM20 is logic 1,  
UART0 ignores all bytes that do not match the UART0 address and include a ninth bit that is logic 1.  
21.2.2. Broadcast Addressing  
Multiple addresses can be assigned to a single slave and/or a single address can be assigned to multiple  
slaves, thereby enabling "broadcast" transmissions to more than one slave simultaneously. The broadcast  
address is the logical OR of registers SADDR0 and SADEN0, and ‘0’s of the result are treated as “don’t  
cares”. Typically a broadcast address of 0xFF (hexadecimal) is acknowledged by all slaves, assuming  
“don’t care” bits as ‘1’s. The master processor can be configured to receive all transmissions or a protocol  
can be implemented such that the master/slave role is temporarily reversed to enable half-duplex trans-  
mission between the original master and slave(s)..  
Example 4, SLAVE #1  
Example 5, SLAVE #2  
Example 6, SLAVE #3  
SADDR0  
SADEN0  
= 00110101  
= 00001111  
SADDR0  
SADEN0  
= 00110101  
= 11110011  
SADDR0  
SADEN0  
= 00110101  
= 11000000  
Broadcast Address = 00111111  
Broadcast Address = 11110111  
Broadcast Address = 11110101  
Where all ZEROES in the Broadcast address are don’t cares.  
Note in the above examples 4, 5, and 6, each slave would recognize as “valid” an address of 0xFF as a  
broadcast address. Also note that examples 4, 5, and 6 uses the same SADDR0 and SADEN0 register  
values as shown in the examples 1, 2, and 3 respectively (slaves #1, 2, and 3). Thus, a master could  
address each slave device individually using a masked address, and also broadcast to all three slave  
devices. For example, if a Master were to send an address “11110101”, only slave #1 would recognize the  
address as valid. If a master were to then send an address of “11111111”, all three slave devices would rec-  
ognize the address as a valid broadcast address.  
Rev. 1.4  
293  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
Master  
Device  
Slave  
Device  
Slave  
Device  
Slave  
Device  
+5V  
RX  
TX  
RX  
TX  
RX  
TX  
RX  
TX  
Figure 21.7. UART Multi-Processor Mode Interconnect Diagram  
21.3. Frame and Transmission Error Detection  
All Modes:  
The Transmit Collision bit (TXCOL0 bit in register SSTA0) reads ‘1’ if user software writes data to the  
SBUF0 register while a transmit is in progress.  
Modes 1, 2, and 3:  
The Receive Overrun bit (RXOV0 in register SSTA0) reads ‘1’ if a new data byte is latched into the receive  
buffer before software has read the previous byte. The Frame Error bit (FE0 in register SSTA0) reads ‘1’ if  
an invalid (low) STOP bit is detected.  
294  
Rev. 1.4  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
Table 21.2. Oscillator Frequencies for Standard Baud Rates  
Timer 2, 3, or  
4 Reload  
Value  
Timer 1 Reload  
System Clock  
Frequency (MHz)  
2
Divide Factor  
Resulting Baud Rate (Hz)  
1
Value  
100.0  
99.5328  
50.0  
864  
864  
0xCA  
0xCA  
0xE5  
0xE5  
0xF3  
0xF4  
0xF6  
0xFA  
0xFE  
0xFF  
0x27  
0x28  
0x93  
0x94  
0xCC  
0xD0  
0xD8  
0xE8  
0xF8  
0xFC  
-
0xFFCA  
0xFFCA  
0xFFE5  
0xFFE5  
0xFFF3  
0xFFF4  
0xFFF6  
0xFFFA  
0xFFFE  
0xFFFF  
0xFF27  
0xFF28  
0xFF93  
0xFF94  
0xFFCC  
0xFFD0  
0xFFD8  
0xFFE8  
0xFFF8  
0xFFFC  
0xFD75  
0xFD78  
0xFEBA  
0xFEBC  
0xFF64  
0xFF70  
0xFF88  
0xFFB8  
0xFFE8  
0xFFF4  
115200 (115741)  
115200  
432  
115200 (115741)  
115200  
49.7664  
24.0  
432  
208  
115200 (115384)  
115200  
22.1184  
18.432  
11.0592  
3.6864  
1.8432  
100.0  
192  
160  
115200  
96  
115200  
32  
115200  
16  
115200  
3472  
3456  
1744  
1728  
832  
28800 (28802)  
28800  
99.5328  
50.0  
28800 (28670)  
28800  
49.7664  
24.0  
28800 (28846)  
28800  
22.1184  
18.432  
11.0592  
3.6864  
1.8432  
100.0  
768  
640  
28800  
348  
28800  
128  
28800  
64  
28800  
10416  
10368  
5216  
5184  
2496  
2304  
1920  
1152  
384  
9600 (9601)  
9600  
99.5328  
50.0  
-
-
9600 (9586)  
9600  
49.7664  
24.0  
-
0x64  
0x70  
0x88  
0xB8  
0xE8  
0xF4  
9600 (9615)  
9600  
22.1184  
18.432  
11.0592  
3.6864  
1.8432  
9600  
9600  
9600  
192  
9600  
Notes:  
1. Assumes SMOD0 = 1 and T1M = 1.  
2. Numbers in parenthesis show the actual baud rate.  
Rev. 1.4  
295  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
SFR Definition 21.1. SCON0: UART0 Control  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Reset Value  
SM00  
SM10  
SM20  
REN0  
TB80  
RB80  
TI0  
RI0  
00000000  
Bit  
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Bit0  
Addressable  
SFR Address: 0x98  
SFR Page: 0  
Bits7–6: SM00–SM10: Serial Port Operation Mode:  
Write:  
When written, these bits select the Serial Port Operation Mode as follows:  
SM00  
SM10  
Mode  
0
0
1
1
0
1
0
1
Mode 0: Synchronous Mode  
Mode 1: 8-Bit UART, Variable Baud Rate  
Mode 2: 9-Bit UART, Fixed Baud Rate  
Mode 3: 9-Bit UART, Variable Baud Rate  
Reading these bits returns the current UART0 mode as defined above.  
SM20: Multiprocessor Communication Enable.  
Bit5:  
The function of this bit is dependent on the Serial Port Operation Mode.  
Mode 0: No effect  
Mode 1: Checks for valid stop bit.  
0: Logic level of stop bit is ignored.  
1: RI0 will only be activated if stop bit is logic level 1.  
Mode 2 and 3: Multiprocessor Communications Enable.  
0: Logic level of ninth bit is ignored.  
1: RI0 is set and an interrupt is generated only when the ninth bit is logic 1 and the  
received address matches the UART0 address or the broadcast address.  
REN0: Receive Enable.  
Bit4:  
This bit enables/disables the UART0 receiver.  
0: UART0 reception disabled.  
1: UART0 reception enabled.  
Bit3:  
Bit2:  
TB80: Ninth Transmission Bit.  
The logic level of this bit will be assigned to the ninth transmission bit in Modes 2 and 3. It is  
not used in Modes 0 and 1. Set or cleared by software as required.  
RB80: Ninth Receive Bit.  
The bit is assigned the logic level of the ninth bit received in Modes 2 and 3. In Mode 1, if  
SM20 is logic 0, RB80 is assigned the logic level of the received stop bit. RB8 is not used in  
Mode 0.  
Bit1:  
Bit0:  
TI0: Transmit Interrupt Flag.  
Set by hardware when a byte of data has been transmitted by UART0 (after the 8th bit in  
Mode 0, or at the beginning of the stop bit in other modes). When the UART0 interrupt is  
enabled, setting this bit causes the CPU to vector to the UART0 interrupt service routine.  
This bit must be cleared manually by software  
RI0: Receive Interrupt Flag.  
Set by hardware when a byte of data has been received by UART0 (as selected by the  
SM20 bit). When the UART0 interrupt is enabled, setting this bit causes the CPU to vector  
to the UART0 interrupt service routine. This bit must be cleared manually by software.  
296  
Rev. 1.4  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
SFR Definition 21.2. SSTA0: UART0 Status and Clock Selection  
R/W  
FE0  
Bit7  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Reset Value  
RXOV0 TXCOL0 SMOD0 S0TCLK1 S0TCLK0 S0RCLK1 S0RCLK0 00000000  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Bit0  
SFR Address: 0x91  
SFR Page: 0  
Bit7:  
FE0: Frame Error Flag.*  
This flag indicates if an invalid (low) STOP bit is detected.  
0: Frame Error has not been detected  
1: Frame Error has been detected.  
Bit6:  
Bit5:  
Bit4:  
RXOV0: Receive Overrun Flag.*  
This flag indicates new data has been latched into the receive buffer before software has  
read the previous byte.  
0: Receive overrun has not been detected.  
1: Receive Overrun has been detected.  
TXCOL0: Transmit Collision Flag.*  
This flag indicates user software has written to the SBUF0 register while a transmission is  
in progress.  
0: Transmission Collision has not been detected.  
1: Transmission Collision has been detected.  
SMOD0: UART0 Baud Rate Doubler Enable.  
This bit enables/disables the divide-by-two function of the UART0 baud rate logic for config-  
urations described in the UART0 section.  
0: UART0 baud rate divide-by-two enabled.  
1: UART0 baud rate divide-by-two disabled.  
Bits3–2: UART0 Transmit Baud Rate Clock Selection Bits  
.
S0TCLK1 S0TCLK0  
Serial Transmit Baud Rate Clock Source  
0
0
1
1
0
1
0
1
Timer 1 generates UART0 TX Baud Rate  
Timer 2 Overflow generates UART0 TX baud rate  
Timer 3 Overflow generates UART0 TX baud rate  
Timer 4 Overflow generates UART0 TX baud rate  
Bits1–0: UART0 Receive Baud Rate Clock Selection Bits  
S0RCLK1 S0RCLK0  
Serial Receive Baud Rate Clock Source  
0
0
1
1
0
1
0
1
Timer 1 generates UART0 RX Baud Rate  
Timer 2 Overflow generates UART0 RX baud rate  
Timer 3 Overflow generates UART0 RX baud rate  
Timer 4 Overflow generates UART0 RX baud rate  
*Note:  
FE0, RXOV0, and TXCOL0 are flags only, and no interrupt is generated by these conditions.  
Rev. 1.4  
297  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
SFR Definition 21.3. SBUF0: UART0 Data Buffer  
R/W  
Bit7  
R/W  
Bit6  
R/W  
Bit5  
R/W  
Bit4  
R/W  
Bit3  
R/W  
Bit2  
R/W  
Bit1  
R/W  
Bit0  
Reset Value  
00000000  
SFR Address: 0x99  
SFR Page: 0  
Bits7–0: SBUF0.[7:0]: UART0 Buffer Bits 7–0 (MSB–LSB)  
This is actually two registers; a transmit and a receive buffer register. When data is moved  
to SBUF0, it goes to the transmit buffer and is held for serial transmission. Moving a byte to  
SBUF0 is what initiates the transmission. When data is moved from SBUF0, it comes from  
the receive buffer.  
SFR Definition 21.4. SADDR0: UART0 Slave Address  
R/W  
Bit7  
R/W  
Bit6  
R/W  
Bit5  
R/W  
Bit4  
R/W  
Bit3  
R/W  
Bit2  
R/W  
Bit1  
R/W  
Reset Value  
00000000  
Bit0  
SFR Address: 0xA9  
SFR Page: 0  
Bits7–0: SADDR0.[7:0]: UART0 Slave Address  
The contents of this register are used to define the UART0 slave address. Register SADEN0  
is a bit mask to determine which bits of SADDR0 are checked against a received address:  
corresponding bits set to logic 1 in SADEN0 are checked; corresponding bits set to logic 0  
are “don’t cares”.  
SFR Definition 21.5. SADEN0: UART0 Slave Address Enable  
R/W  
Bit7  
R/W  
Bit6  
R/W  
Bit5  
R/W  
Bit4  
R/W  
Bit3  
R/W  
Bit2  
R/W  
Bit1  
R/W  
Reset Value  
00000000  
Bit0  
SFR Address: 0xB9  
SFR Page: 0  
Bits7–0: SADEN0.[7:0]: UART0 Slave Address Enable  
Bits in this register enable corresponding bits in register SADDR0 to determine the UART0  
slave address.  
0: Corresponding bit in SADDR0 is a “don’t care”.  
1: Corresponding bit in SADDR0 is checked against a received address.  
298  
Rev. 1.4  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
22. UART1  
UART1 is an asynchronous, full duplex serial port offering modes 1 and 3 of the standard 8051 UART.  
Enhanced baud rate support allows a wide range of clock sources to generate standard baud rates (details  
in Section “22.1. Enhanced Baud Rate Generation” on page 300). Received data buffering allows  
UART1 to start reception of a second incoming data byte before software has finished reading the previous  
data byte.  
UART1 has two associated SFRs: Serial Control Register 1 (SCON1) and Serial Data Buffer 1 (SBUF1).  
The single SBUF1 location provides access to both transmit and receive registers. Reading SBUF1  
accesses the buffered Receive register; writing SBUF1 accesses the Transmit register.  
With UART1 interrupts enabled, an interrupt is generated each time a transmit is completed (TI1 is set in  
SCON1), or a data byte has been received (RI1 is set in SCON1). The UART1 interrupt flags are not  
cleared by hardware when the CPU vectors to the interrupt service routine. They must be cleared manually  
by software, allowing software to determine the cause of the UART1 interrupt (transmit complete or receive  
complete).  
SFR Bus  
Write to  
SBUF1  
TB81  
SBUF1  
SET  
(TX Shift)  
D
Q
TX1  
CLR  
Crossbar  
Zero Detector  
Stop Bit  
Shift  
Data  
Start  
Tx Control  
Tx Clock  
Send  
Tx IRQ  
SCON1  
TI1  
UART1 Baud  
Rate Generator  
Serial  
Port  
Interrupt  
Port I/O  
RI1  
Rx IRQ  
Rx Clock  
Rx Control  
Load  
SBUF1  
Start  
Shift  
0x1FF  
RB81  
Input Shift Register  
(9 bits)  
Load SBUF1  
SBUF1  
(RX Latch)  
Read  
SBUF1  
SFR Bus  
RX1  
Crossbar  
Figure 22.1. UART1 Block Diagram  
Rev. 1.4  
299  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
22.1. Enhanced Baud Rate Generation  
The UART1 baud rate is generated by Timer 1 in 8-bit auto-reload mode. The TX clock is generated by  
TL1; the RX clock is generated by a copy of TL1 (shown as RX Timer in Figure 22.2), which is not user-  
accessible. Both TX and RX Timer overflows are divided by two to generate the TX and RX baud rates.  
The RX Timer runs when Timer 1 is enabled, and uses the same reload value (TH1). However, an  
RX Timer reload is forced when a START condition is detected on the RX pin. This allows a receive to  
begin any time a START is detected, independent of the TX Timer state.  
Timer 1  
TL1  
UART1  
Overflow  
TX Clock  
2
TH1  
Start  
Detected  
Overflow  
RX Clock  
RX Timer  
2
Figure 22.2. UART1 Baud Rate Logic  
Timer 1 should be configured for Mode 2, 8-bit auto-reload (see Section “23.1.3. Mode 2: 8-bit Counter/  
Timer with Auto-Reload” on page 311). The Timer 1 reload value should be set so that overflows will  
occur at two times the desired baud rate. Note that Timer 1 may be clocked by one of five sources: SYS-  
CLK, SYSCLK / 4, SYSCLK / 12, SYSCLK / 48, or the external oscillator clock / 8. For any given Timer 1  
clock source, the UART1 baud rate is determined by Equation 22.1.  
Equation 22.1. UART1 Baud Rate  
T1CLK  
------------------------------ --  
1
UARTBaudRate =  
256 – T1H2  
Where T1CLK is the frequency of the clock supplied to Timer 1, and T1H is the high byte of Timer 1 (reload  
value). Timer 1 clock frequency is selected as described in Section “23.1. Timer 0 and Timer 1” on  
page 309. A quick reference for typical baud rates and system clock frequencies is given in Table 22.1  
through Table 22.5. Note that the internal oscillator or PLL may still generate the system clock when the  
external oscillator is driving Timer 1 (see Section “23.1. Timer 0 and Timer 1” on page 309 for more  
details).  
300  
Rev. 1.4  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
22.2. Operational Modes  
UART1 provides standard asynchronous, full duplex communication. The UART mode (8-bit or 9-bit) is  
selected by the S1MODE bit (SCON1.7). Typical UART connection options are shown below.  
TX  
RS-232  
RS-232  
LEVEL  
C8051Fxxx  
RX  
XLTR  
OR  
TX  
RX  
TX  
RX  
MCU  
C8051Fxxx  
Figure 22.3. UART Interconnect Diagram  
22.2.1. 8-Bit UART  
8-Bit UART mode uses a total of 10 bits per data byte: one start bit, eight data bits (LSB first), and one stop  
bit. Data are transmitted LSB first from the TX1 pin and received at the RX1 pin. On receive, the eight data  
bits are stored in SBUF1 and the stop bit goes into RB81 (SCON1.2).  
Data transmission begins when software writes a data byte to the SBUF1 register. The TI1 Transmit Inter-  
rupt Flag (SCON1.1) is set at the end of the transmission (the beginning of the stop-bit time). Data recep-  
tion can begin any time after the REN1 Receive Enable bit (SCON1.4) is set to logic 1. After the stop bit is  
received, the data byte will be loaded into the SBUF1 receive register if the following conditions are met:  
RI1 must be logic 0, and if MCE1 is logic 1, the stop bit must be logic 1. In the event of a receive data over-  
run, the first received 8 bits are latched into the SBUF1 receive register and the following overrun data bits  
are lost.  
If these conditions are met, the eight bits of data is stored in SBUF1, the stop bit is stored in RB81 and the  
RI1 flag is set. If these conditions are not met, SBUF1 and RB81 will not be loaded and the RI1 flag will not  
be set. An interrupt will occur if enabled when either TI1 or RI1 is set.  
MARK  
START  
BIT  
STOP  
BIT  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
SPACE  
BIT TIMES  
BIT SAMPLING  
Figure 22.4. 8-Bit UART Timing Diagram  
Rev. 1.4  
301  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
22.2.2. 9-Bit UART  
9-bit UART mode uses a total of eleven bits per data byte: a start bit, 8 data bits (LSB first), a programma-  
ble ninth data bit, and a stop bit. The state of the ninth transmit data bit is determined by the value in TB81  
(SCON1.3), which is assigned by user software. It can be assigned the value of the parity flag (bit P in reg-  
ister PSW) for error detection, or used in multiprocessor communications. On receive, the ninth data bit  
goes into RB81 (SCON1.2) and the stop bit is ignored.  
Data transmission begins when an instruction writes a data byte to the SBUF1 register. The TI1 Transmit  
Interrupt Flag (SCON1.1) is set at the end of the transmission (the beginning of the stop-bit time). Data  
reception can begin any time after the REN1 Receive Enable bit (SCON1.4) is set to ‘1’. After the stop bit  
is received, the data byte will be loaded into the SBUF1 receive register if the following conditions are met:  
(1) RI1 must be logic 0, and (2) if MCE1 is logic 1, the 9th bit must be logic 1 (when MCE1 is logic 0, the  
state of the ninth data bit is unimportant). If these conditions are met, the eight bits of data are stored in  
SBUF1, the ninth bit is stored in RB81, and the RI1 flag is set to ‘1’. If the above conditions are not met,  
SBUF1 and RB81 will not be loaded and the RI1 flag will not be set to ‘1’. A UART1 interrupt will occur if  
enabled when either TI1 or RI1 is set to ‘1’.  
MARK  
START  
BIT  
STOP  
BIT  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D8  
SPACE  
BIT TIMES  
BIT SAMPLING  
Figure 22.5. 9-Bit UART Timing Diagram  
302  
Rev. 1.4  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
22.3. Multiprocessor Communications  
9-Bit UART mode supports multiprocessor communication between a master processor and one or more  
slave processors by special use of the ninth data bit. When a master processor wants to transmit to one or  
more slaves, it first sends an address byte to select the target(s). An address byte differs from a data byte  
in that its ninth bit is logic 1; in a data byte, the ninth bit is always set to logic 0.  
Setting the MCE1 bit (SCON.5) of a slave processor configures its UART such that when a stop bit is  
received, the UART will generate an interrupt only if the ninth bit is logic one (RB81 = 1) signifying an  
address byte has been received. In the UART interrupt handler, software should compare the received  
address with the slave's own assigned 8-bit address. If the addresses match, the slave should clear its  
MCE1 bit to enable interrupts on the reception of the following data byte(s). Slaves that weren't addressed  
leave their MCE1 bits set and do not generate interrupts on the reception of the following data bytes,  
thereby ignoring the data. Once the entire message is received, the addressed slave should reset its  
MCE1 bit to ignore all transmissions until it receives the next address byte.  
Multiple addresses can be assigned to a single slave and/or a single address can be assigned to multiple  
slaves, thereby enabling "broadcast" transmissions to more than one slave simultaneously. The master  
processor can be configured to receive all transmissions or a protocol can be implemented such that the  
master/slave role is temporarily reversed to enable half-duplex transmission between the original master  
and slave(s).  
Master  
Device  
Slave  
Device  
Slave  
Device  
Slave  
Device  
+5V  
RX  
TX  
RX  
TX  
RX  
TX  
RX  
TX  
Figure 22.6. UART Multi-Processor Mode Interconnect Diagram  
Rev. 1.4  
303  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
SFR Definition 22.1. SCON1: Serial Port 1 Control  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Reset Value  
S1MODE  
-
MCE1  
REN1  
TB81  
RB81  
TI1  
RI1  
01000000  
Bit  
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Bit0  
Addressable  
SFR Address: 0x98  
SFR Page: 1  
Bit7:  
S1MODE: Serial Port 1 Operation Mode.  
This bit selects the UART1 Operation Mode.  
0: Mode 0: 8-bit UART with Variable Baud Rate  
1: Mode 1: 9-bit UART with Variable Baud Rate  
UNUSED. Read = 1b. Write = don’t care.  
MCE1: Multiprocessor Communication Enable.  
Bit6:  
Bit5:  
The function of this bit is dependent on the Serial Port 0 Operation Mode.  
Mode 0: Checks for valid stop bit.  
0: Logic level of stop bit is ignored.  
1: RI1 will only be activated if stop bit is logic level 1.  
Mode 1: Multiprocessor Communications Enable.  
0: Logic level of ninth bit is ignored.  
1: RI1 is set and an interrupt is generated only when the ninth bit is logic 1.  
REN1: Receive Enable.  
Bit4:  
This bit enables/disables the UART receiver.  
0: UART1 reception disabled.  
1: UART1 reception enabled.  
Bit3:  
Bit2:  
Bit1:  
TB81: Ninth Transmission Bit.  
The logic level of this bit will be assigned to the ninth transmission bit in 9-bit UART Mode. It  
is not used in 8-bit UART Mode. Set or cleared by software as required.  
RB81: Ninth Receive Bit.  
RB81 is assigned the value of the STOP bit in Mode 0; it is assigned the value of the 9th  
data bit in Mode 1.  
TI1: Transmit Interrupt Flag.  
Set by hardware when a byte of data has been transmitted by UART1 (after the 8th bit in 8-  
bit UART Mode, or at the beginning of the STOP bit in 9-bit UART Mode). When the UART1  
interrupt is enabled, setting this bit causes the CPU to vector to the UART1 interrupt service  
routine. This bit must be cleared manually by software  
RI1: Receive Interrupt Flag.  
Bit0:  
Set to ‘1’ by hardware when a byte of data has been received by UART1 (set at the STOP bit  
sampling time). When the UART1 interrupt is enabled, setting this bit to ‘1’ causes the CPU  
to vector to the UART1 interrupt service routine. This bit must be cleared manually by soft-  
ware.  
304  
Rev. 1.4  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
SFR Definition 22.2. SBUF1: Serial (UART1) Port Data Buffer  
R/W  
Bit7  
R/W  
Bit6  
R/W  
Bit5  
R/W  
Bit4  
R/W  
Bit3  
R/W  
Bit2  
R/W  
Bit1  
R/W  
Reset Value  
00000000  
Bit0  
SFR Address: 0x99  
SFR Page: 1  
Bits7–0: SBUF1[7:0]: Serial Data Buffer Bits 7-0 (MSB-LSB)  
This SFR accesses two registers; a transmit shift register and a receive latch register. When  
data is written to SBUF1, it goes to the transmit shift register and is held for serial transmis-  
sion. Writing a byte to SBUF1 is what initiates the transmission. A read of SBUF1 returns the  
contents of the receive latch.  
Table 22.1. Timer Settings for Standard Baud Rates Using The Internal 24.5 MHz  
Oscillator  
Frequency: 24.5 MHz  
Target  
Baud Rate  
(bps)  
230400  
115200  
57600  
Baud Rate  
% Error  
Oscilla- Timer Clock  
SCA1-SCA0  
(pre-scale  
T1M*  
Timer 1  
Reload  
Value (hex)  
0xCB  
tor Divide  
Factor  
106  
Source  
select)*  
XX  
XX  
XX  
01  
-0.32%  
-0.32%  
0.15%  
-0.32%  
0.15%  
-0.32%  
-0.32%  
0.15%  
SYSCLK  
SYSCLK  
1
1
1
0
0
0
0
0
212  
0x96  
0x2B  
0x96  
0xB9  
0x96  
0x96  
0x2B  
426  
SYSCLK  
28800  
14400  
9600  
2400  
848  
SYSCLK / 4  
SYSCLK / 12  
SYSCLK / 12  
SYSCLK / 48  
SYSCLK / 48  
1704  
2544  
10176  
20448  
00  
00  
10  
10  
1200  
X = Don’t care  
*Note: SCA1-SCA0 and T1M bit definitions can be found in Section 23.1.  
Rev. 1.4  
305  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
Table 22.2. Timer Settings for Standard Baud Rates Using an External 25.0 MHz  
Oscillator  
Frequency: 25.0 MHz  
Target  
Baud Rate  
(bps)  
230400  
115200  
57600  
28800  
14400  
9600  
Baud Rate  
% Error  
Oscilla- Timer Clock  
SCA1-SCA0  
(pre-scale  
T1M*  
Timer 1  
Reload  
Value (hex)  
0xCA  
tor Divide  
Factor  
108  
Source  
select)*  
XX  
XX  
XX  
01  
-0.47%  
0.45%  
-0.01%  
0.45%  
-0.01%  
0.15%  
0.45%  
-0.01%  
-0.47%  
-0.47%  
0.45%  
SYSCLK  
SYSCLK  
1
1
1
0
0
0
0
0
0
0
0
218  
0x93  
0x27  
0x93  
0x27  
0x5D  
0x93  
0x27  
0xE5  
434  
SYSCLK  
872  
SYSCLK / 4  
SYSCLK / 4  
EXTCLK / 8  
SYSCLK / 48  
SYSCLK / 48  
EXTCLK / 8  
EXTCLK / 8  
EXTCLK / 8  
1736  
2608  
10464  
20832  
432  
01  
11  
10  
10  
11  
11  
11  
2400  
1200  
57600  
28800  
14400  
864  
1744  
0xCA  
0x93  
9600  
0.15%  
2608  
EXTCLK / 8  
11  
0
0x5D  
X = Don’t care  
*Note: SCA1-SCA0 and T1M bit definitions can be found in Section 23.1.  
Table 22.3. Timer Settings for Standard Baud Rates Using an External 22.1184 MHz  
Oscillator  
Frequency: 22.1184 MHz  
Target  
Baud Rate  
(bps)  
230400  
115200  
57600  
Baud Rate  
% Error  
Oscilla- Timer Clock  
SCA1-SCA0  
(pre-scale  
T1M*  
Timer 1  
Reload  
Value (hex)  
0xD0  
tor Divide  
Factor  
96  
Source  
select)*  
XX  
XX  
XX  
00  
0.00%  
0.00%  
0.00%  
0.00%  
0.00%  
0.00%  
0.00%  
0.00%  
0.00%  
0.00%  
0.00%  
0.00%  
0.00%  
0.00%  
SYSCLK  
SYSCLK  
1
1
1
0
0
0
0
0
0
0
0
0
0
0
192  
0xA0  
0x40  
0xE0  
0xC0  
0xA0  
0xA0  
0x40  
0xFA  
0xF4  
0xE8  
0xD0  
0xA0  
384  
SYSCLK  
28800  
14400  
9600  
2400  
768  
SYSCLK / 12  
SYSCLK / 12  
SYSCLK / 12  
SYSCLK / 48  
SYSCLK / 48  
EXTCLK / 8  
EXTCLK / 8  
EXTCLK / 8  
EXTCLK / 8  
EXTCLK / 8  
EXTCLK / 8  
1536  
2304  
9216  
18432  
96  
192  
384  
768  
1536  
2304  
00  
00  
10  
10  
11  
11  
11  
11  
1200  
230400  
115200  
57600  
28800  
14400  
11  
11  
9600  
0x70  
X = Don’t care  
*Note: SCA1-SCA0 and T1M bit definitions can be found in Section 23.1.  
306  
Rev. 1.4  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
Table 22.4. Timer Settings for Standard Baud Rates Using the PLL  
Frequency: 50.0 MHz  
Target  
Baud Rate  
(bps)  
230400  
115200  
57600  
Baud Rate  
% Error  
Oscilla- Timer Clock  
SCA1-SCA0  
(pre-scale  
T1M*  
Timer 1  
Reload  
Value (hex)  
0x93  
tor Divide  
Factor  
218  
Source  
select)*  
0.45%  
-0.01%  
0.45%  
-0.01%  
0.22%  
-0.01%  
-0.01%  
SYSCLK  
SYSCLK  
XX  
XX  
01  
01  
00  
00  
10  
1
1
0
0
0
0
0
434  
0x27  
0x93  
0x27  
0x6F  
0x27  
0x27  
872  
1736  
3480  
5208  
SYSCLK / 4  
SYSCLK / 4  
SYSCLK / 12  
SYSCLK / 12  
SYSCLK / 48  
28800  
14400  
9600  
2400  
20832  
X = Don’t care  
*Note: SCA1-SCA0 and T1M bit definitions can be found in Section 23.1.  
Table 22.5. Timer Settings for Standard Baud Rates Using the PLL  
Frequency: 100.0 MHz  
Target  
Baud Rate  
(bps)  
230400  
115200  
57600  
Baud Rate  
% Error  
Oscilla- Timer Clock  
SCA1-SCA0  
(pre-scale  
T1M*  
Timer 1  
Reload  
Value (hex)  
0x27  
tor Divide  
Factor  
434  
Source  
select)*  
-0.01%  
0.45%  
-0.01%  
0.22%  
-0.47%  
0.45%  
SYSCLK  
XX  
01  
01  
00  
10  
10  
1
0
0
0
0
0
872  
1736  
3480  
6912  
SYSCLK / 4  
SYSCLK / 4  
SYSCLK / 12  
SYSCLK / 48  
SYSCLK / 48  
0x93  
0x27  
0x6F  
0xB8  
28800  
14400  
9600  
10464  
0x93  
X = Don’t care  
*Note: SCA1-SCA0 and T1M bit definitions can be found in Section 23.1.  
Rev. 1.4  
307  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
NOTES:  
308  
Rev. 1.4  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
23. Timers  
Each MCU includes 5 counter/timers: Timer 0 and Timer 1 are 16-bit counter/timers compatible with those  
found in the standard 8051. Timer 2, Timer 3, and Timer 4 are 16-bit auto-reload and capture counter/tim-  
ers for use with the ADCs, DACs, square-wave generation, or for general-purpose use. These timers can  
be used to measure time intervals, count external events and generate periodic interrupt requests. Timer 0  
and Timer 1 are nearly identical and have four primary modes of operation. Timer 3 offers 16-bit auto-  
reload and capture. Timers 2 and 4 are identical, and offer not only 16-bit auto-reload and capture, but  
have the ability to produce a 50% duty-cycle square-wave (toggle output) at an external port pin.  
Timer 0 and Timer 1 Modes:  
13-bit counter/timer  
16-bit counter/timer  
8-bit counter/timer with auto-reload  
Two 8-bit counter/timers (Timer 0 only)  
Timer 2, 3 and 4 Modes:  
16-bit counter/timer with auto-reload  
16-bit counter/timer with capture  
Toggle Output (Timer 2 and 4 only)  
Timers 0 and 1 may be clocked by one of five sources, determined by the Timer Mode Select bits (T1M-  
T0M) and the Clock Scale bits (SCA1-SCA0). The Clock Scale bits define a pre-scaled clock by which  
Timer 0 and/or Timer 1 may be clocked (See SFR Definition 23.3 for pre-scaled clock selection). Timers 0  
and 1 can be configured to use either the pre-scaled clock signal or the system clock directly. Timers 2, 3,  
and 4 may be clocked by the system clock, the system clock divided by 12, or the external oscillator clock  
source divided by 8.  
Timer 0 and Timer 1 may also be operated as counters. When functioning as a counter, a counter/timer  
register is incremented on each high-to-low transition at the selected input pin. Events with a frequency of  
up to one-fourth the system clock's frequency can be counted. The input signal need not be periodic, but it  
should be held at a given logic level for at least two full system clock cycles to ensure the level is properly  
sampled.  
23.1. Timer 0 and Timer 1  
Each timer is implemented as a 16-bit register accessed as two separate 8-bit SFRs: a low byte (TL0 or  
TL1) and a high byte (TH0 or TH1). The Counter/Timer Control register (TCON) is used to enable Timer 0  
and Timer 1 as well as indicate their status. Timer 0 interrupts can be enabled by setting the ET0 bit in the  
IE register (Section “11.3.5. Interrupt Register Descriptions” on page 157); Timer 1 interrupts can be  
enabled by setting the ET1 bit in the IE register (Section 11.3.5). Both counter/timers operate in one of  
four primary modes selected by setting the Mode Select bits T1M1–T0M0 in the Counter/Timer Mode reg-  
ister (TMOD). Both timers can be configured independently.  
23.1.1. Mode 0: 13-bit Counter/Timer  
Timer 0 and Timer 1 operate as 13-bit counter/timers in Mode 0. The following describes the configuration  
and operation of Timer 0. However, both timers operate identically, and Timer 1 is configured in the same  
manner as described for Timer 0.  
The TH0 register holds the eight MSBs of the 13-bit counter/timer. TL0 holds the five LSBs in bit positions  
TL0.4–TL0.0. The three upper bits of TL0 (TL0.7–TL0.5) are indeterminate and should be masked out or  
ignored when reading the TL0 register. As the 13-bit timer register increments and overflows from 0x1FFF  
(all ones) to 0x0000, the timer overflow flag TF0 (TCON.5) is set and an interrupt will occur if Timer 0 inter-  
rupts are enabled.  
Rev. 1.4  
309  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
The C/T0 bit (TMOD.2) selects the counter/timer's clock source. When C/T0 is set to logic 1, high-to-low  
transitions at the selected Timer 0 input pin (T0) increment the timer register (Refer to Section  
“18.1. Ports 0 through 3 and the Priority Crossbar Decoder” on page 238 for information on selecting  
and configuring external I/O pins). Clearing C/T selects the clock defined by the T0M bit (CKCON.3). When  
T0M is set, Timer 0 is clocked by the system clock. When T0M is cleared, Timer 0 is clocked by the source  
selected by the Clock Scale bits in CKCON (see SFR Definition 23.3).  
Setting the TR0 bit (TCON.4) enables the timer when either GATE0 (TMOD.3) is logic 0 or the input signal  
/INT0 is logic-level 1. Setting GATE0 to ‘1’ allows the timer to be controlled by the external input signal /  
INT0 (see Section “11.3.5. Interrupt Register Descriptions” on page 157), facilitating pulse width mea-  
surements.  
TR0  
0
1
1
1
GATE0  
/INT0  
Counter/Timer  
Disabled  
X
0
1
1
X
X
0
1
Enabled  
Disabled  
Enabled  
X = Don't Care  
Setting TR0 does not force the timer to reset. The timer registers should be loaded with the desired initial  
value before the timer is enabled.  
TL1 and TH1 form the 13-bit register for Timer 1 in the same manner as described above for TL0 and TH0.  
Timer 1 is configured and controlled using the relevant TCON and TMOD bits just as with Timer 0. The  
input signal /INT1 is used with Timer 1.  
CKCON  
T T S S  
1 0 C C  
M M A A  
1 0  
TMOD  
G C T T G C T T  
A
/
1
1 A  
/ 0 0  
T T M M T T M M  
E 1  
1
1
0 E 0  
0
1 0  
Pre-scaled Clock  
SYSCLK  
0
1
0
1
TF1  
TR1  
TF0  
TR0  
IE1  
IT1  
T0  
Interrupt  
TCLK  
TL0  
(5 bits)  
TH0  
(8 bits)  
TR0  
GATE0  
IE0  
IT0  
Crossbar  
/INT0  
Figure 23.1. T0 Mode 0 Block Diagram  
310  
Rev. 1.4  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
23.1.2. Mode 1: 16-bit Counter/Timer  
Mode 1 operation is the same as Mode 0, except that the counter/timer registers use all 16 bits. The coun-  
ter/timers are enabled and configured in Mode 1 in the same manner as for Mode 0.  
23.1.3. Mode 2: 8-bit Counter/Timer with Auto-Reload  
Mode 2 configures Timer 0 or Timer 1 to operate as 8-bit counter/timers with automatic reload of the start  
value. TL0 holds the count and TH0 holds the reload value. When the counter in TL0 overflows from 0xFF  
to 0x00, the timer overflow flag TF0 (TCON.5) is set and the counter in TL0 is reloaded from TH0. If Timer  
0 interrupts are enabled, an interrupt will occur when the TF0 flag is set. The reload value in TH0 is not  
changed. TL0 must be initialized to the desired value before enabling the timer for the first count to be cor-  
rect. When in Mode 2, Timer 1 operates identically to Timer 0.  
Both counter/timers are enabled and configured in Mode 2 in the same manner as Mode 0. Setting the  
TR0 bit (TCON.4) enables the timer when either GATE0 (TMOD.3) is logic 0 or when the input signal /INT0  
is low  
.
CKCON  
T T S S  
1 0 C C  
M M A A  
1 0  
TMOD  
G C T T G C T T  
/ 1 1 A / 0 0  
T T M M T T M M  
E 1 1 0 E 0 1 0  
A
1
0
Pre-scaled Clock  
SYSCLK  
0
1
0
1
T0  
TF1  
TR1  
TF0  
TR0  
IE1  
IT1  
TCLK  
TL0  
(8 bits)  
Interrupt  
TR0  
IE0  
IT0  
Crossbar  
GATE0  
TH0  
Reload  
(8 bits)  
/INT0  
Figure 23.2. T0 Mode 2 Block Diagram  
Rev. 1.4  
311  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
23.1.4. Mode 3: Two 8-bit Counter/Timers (Timer 0 Only)  
In Mode 3, Timer 0 is configured as two separate 8-bit counter/timers held in TL0 and TH0. The counter/  
timer in TL0 is controlled using the Timer 0 control/status bits in TCON and TMOD: TR0, C/T0, GATE0 and  
TF0. TL0 can use either the system clock or an external input signal as its timebase. The TH0 register is  
restricted to a timer function sourced by the system clock or prescaled clock. TH0 is enabled using the  
Timer 1 run control bit TR1. TH0 sets the Timer 1 overflow flag TF1 on overflow and thus controls the  
Timer 1 interrupt.  
Timer 1 is inactive in Mode 3. When Timer 0 is operating in Mode 3, Timer 1 can be operated in Modes 0,  
1 or 2, but cannot be clocked by external signals nor set the TF1 flag and generate an interrupt. However,  
the Timer 1 overflow can be used to generate baud rates for the SMBus and/or UART, and/or initiate ADC  
conversions. While Timer 0 is operating in Mode 3, Timer 1 run control is handled through its mode set-  
tings. To run Timer 1 while Timer 0 is in Mode 3, set the Timer 1 Mode as 0, 1, or 2. To disable Timer 1,  
configure it for Mode 3.  
CKCON  
T T S S  
1 0 C C  
M M A A  
1 0  
TMOD  
G C T T G C T T  
/ 1 1 A / 0 0  
T T M M T T M M  
E 1 1 0 E 0 1 0  
A
1
0
Pre-scaled Clock  
SYSCLK  
0
1
TH0  
(8 bits)  
TR1  
Interrupt  
Interrupt  
TF1  
TR1  
TF0  
TR0  
IE1  
0
IT1  
IE0  
IT0  
1
T0  
TL0  
(8 bits)  
TR0  
Crossbar  
GATE0  
/INT0  
Figure 23.3. T0 Mode 3 Block Diagram  
312  
Rev. 1.4  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
SFR Definition 23.1. TCON: Timer Control  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Reset Value  
TF1  
TR1  
TF0  
TR0  
IE1  
IT1  
IE0  
IT0  
00000000  
Bit  
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Bit0  
Addressable  
SFR Address: 0x88  
SFR Page: 0  
Bit7:  
TF1: Timer 1 Overflow Flag.  
Set by hardware when Timer 1 overflows. This flag can be cleared by software but is auto-  
matically cleared when the CPU vectors to the Timer 1 interrupt service routine.  
0: No Timer 1 overflow detected.  
1: Timer 1 has overflowed.  
Bit6:  
Bit5:  
TR1: Timer 1 Run Control.  
0: Timer 1 disabled.  
1: Timer 1 enabled.  
TF0: Timer 0 Overflow Flag.  
Set by hardware when Timer 0 overflows. This flag can be cleared by software but is auto-  
matically cleared when the CPU vectors to the Timer 0 interrupt service routine.  
0: No Timer 0 overflow detected.  
1: Timer 0 has overflowed.  
Bit4:  
Bit3:  
TR0: Timer 0 Run Control.  
0: Timer 0 disabled.  
1: Timer 0 enabled.  
IE1: External Interrupt 1.  
This flag is set by hardware when an edge/level of type defined by IT1 is detected. It can be  
cleared by software but is automatically cleared when the CPU vectors to the External Inter-  
rupt 1 service routine if IT1 = 1. This flag is the inverse of the /INT1 signal.  
IT1: Interrupt 1 Type Select.  
Bit2:  
This bit selects whether the configured /INT1 interrupt will be falling-edge sensitive or  
active-low.  
0: /INT1 is level triggered, active-low.  
1: /INT1 is edge triggered, falling-edge.  
Bit1:  
Bit0:  
IE0: External Interrupt 0.  
This flag is set by hardware when an edge/level of type defined by IT0 is detected. It can be  
cleared by software but is automatically cleared when the CPU vectors to the External Inter-  
rupt 0 service routine if IT0 = 1. This flag is the inverse of the /INT0 signal.  
IT0: Interrupt 0 Type Select.  
This bit selects whether the configured /INT0 interrupt will be falling-edge sensitive or  
active-low.  
0: /INT0 is level triggered, active logic-low.  
1: /INT0 is edge triggered, falling-edge.  
Rev. 1.4  
313  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
SFR Definition 23.2. TMOD: Timer Mode  
R/W  
GATE1  
Bit7  
R/W  
C/T1  
Bit6  
R/W  
T1M1  
Bit5  
R/W  
T1M0  
Bit4  
R/W  
GATE0  
Bit3  
R/W  
C/T0  
Bit2  
R/W  
T0M1  
Bit1  
R/W  
T0M0  
Bit0  
Reset Value  
00000000  
SFR Address: 0x89  
SFR Page: 0  
Bit7:  
GATE1: Timer 1 Gate Control.  
0: Timer 1 enabled when TR1 = 1 irrespective of /INT1 logic level.  
1: Timer 1 enabled only when TR1 = 1 AND /INT1 = logic 1.  
C/T1: Counter/Timer 1 Select.  
Bit6:  
0: Timer Function: Timer 1 incremented by clock defined by T1M bit (CKCON.4).  
1: Counter Function: Timer 1 incremented by high-to-low transitions on external input pin  
(T1).  
Bits5–4: T1M1–T1M0: Timer 1 Mode Select.  
These bits select the Timer 1 operation mode.  
T1M1  
T1M0  
Mode  
0
0
1
1
0
1
0
1
Mode 0: 13-bit counter/timer  
Mode 1: 16-bit counter/timer  
Mode 2: 8-bit counter/timer with auto-reload  
Mode 3: Timer 1 inactive  
Bit3:  
Bit2:  
GATE0: Timer 0 Gate Control.  
0: Timer 0 enabled when TR0 = 1 irrespective of /INT0 logic level.  
1: Timer 0 enabled only when TR0 = 1 AND /INT0 = logic 1.  
C/T0: Counter/Timer Select.  
0: Timer Function: Timer 0 incremented by clock defined by T0M bit (CKCON.3).  
1: Counter Function: Timer 0 incremented by high-to-low transitions on external input pin  
(T0).  
Bits1–0: T0M1–T0M0: Timer 0 Mode Select.  
These bits select the Timer 0 operation mode.  
T0M1  
T0M0  
Mode  
0
0
1
1
0
1
0
1
Mode 0: 13-bit counter/timer  
Mode 1: 16-bit counter/timer  
Mode 2: 8-bit counter/timer with auto-reload  
Mode 3: Two 8-bit counter/timers  
314  
Rev. 1.4  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
SFR Definition 23.3. CKCON: Clock Control  
R/W  
-
R/W  
-
R/W  
-
R/W  
T1M  
Bit4  
R/W  
T0M  
Bit3  
R/W  
-
R/W  
SCA1  
Bit1  
R/W  
Reset Value  
SCA0 00000000  
Bit0  
Bit7  
Bit6  
Bit5  
Bit2  
SFR Address: 0x8E  
SFR Page: 0  
Bits7–5: UNUSED. Read = 000b, Write = don’t care.  
Bit4:  
T1M: Timer 1 Clock Select.  
This select the clock source supplied to Timer 1. T1M is ignored when C/T1 is set to logic 1.  
0: Timer 1 uses the clock defined by the prescale bits, SCA1–SCA0.  
1: Timer 1 uses the system clock.  
Bit3:  
T0M: Timer 0 Clock Select.  
This bit selects the clock source supplied to Timer 0. T0M is ignored when C/T0 is set to  
logic 1.  
0: Counter/Timer 0 uses the clock defined by the prescale bits, SCA1-SCA0.  
1: Counter/Timer 0 uses the system clock.  
Bit2:  
UNUSED. Read = 0b, Write = don’t care.  
Bits1–0: SCA1–SCA0: Timer 0/1 Prescale Bits  
These bits control the division of the clock supplied to Timer 0 and/or Timer 1 if configured  
to use prescaled clock inputs.  
SCA1  
SCA0  
Prescaled Clock  
0
0
1
1
0
1
0
1
System clock divided by 12  
System clock divided by 4  
System clock divided by 48  
External clock divided by 8*  
*Note: External clock divided by 8 is synchronized with the system  
clock, and external clock must be less than or equal to the  
system clock frequency to operate the timer in this mode.  
SFR Definition 23.4. TL0: Timer 0 Low Byte  
R/W  
Bit7  
R/W  
Bit6  
R/W  
Bit5  
R/W  
Bit4  
R/W  
Bit3  
R/W  
Bit2  
R/W  
Bit1  
R/W  
Bit0  
Reset Value  
00000000  
SFR Address: 0x8A  
SFR Page: 0  
Bits 7–0: TL0: Timer 0 Low Byte.  
The TL0 register is the low byte of the 16-bit Timer 0.  
Rev. 1.4  
315  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
SFR Definition 23.5. TL1: Timer 1 Low Byte  
R/W  
Bit7  
R/W  
Bit6  
R/W  
Bit5  
R/W  
Bit4  
R/W  
Bit3  
R/W  
Bit2  
R/W  
Bit1  
R/W  
Bit0  
Reset Value  
00000000  
SFR Address: 0x8B  
SFR Page: 0  
Bits 7–0: TL1: Timer 1 Low Byte.  
The TL1 register is the low byte of the 16-bit Timer 1.  
SFR Definition 23.6. TH0: Timer 0 High Byte  
R/W  
Bit7  
R/W  
Bit6  
R/W  
Bit5  
R/W  
Bit4  
R/W  
Bit3  
R/W  
Bit2  
R/W  
Bit1  
R/W  
Bit0  
Reset Value  
00000000  
SFR Address: 0x8C  
SFR Page: 0  
Bits 7–0: TH0: Timer 0 High Byte.  
The TH0 register is the high byte of the 16-bit Timer 0.  
SFR Definition 23.7. TH1: Timer 1 High Byte  
R/W  
Bit7  
R/W  
Bit6  
R/W  
Bit5  
R/W  
Bit4  
R/W  
Bit3  
R/W  
Bit2  
R/W  
Bit1  
R/W  
Bit0  
Reset Value  
00000000  
SFR Address: 0x8D  
SFR Page: 0  
Bits 7–0: TH1: Timer 1 High Byte.  
The TH1 register is the high byte of the 16-bit Timer 1.  
316  
Rev. 1.4  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
23.2. Timer 2, Timer 3, and Timer 4  
Timers 2, 3, and 4 are 16-bit counter/timers, each formed by two 8-bit SFR’s: TMRnL (low byte) and  
TMRnH (high byte) where n = 2, 3, and 4 for timers 2, 3, and 4 respectively. Timers 2 and 4 feature auto-  
reload, capture, and toggle output modes with the ability to count up or down. Timer 3 features auto-reload  
and capture modes, with the ability to count up or down. Capture Mode and Auto-reload mode are selected  
using bits in the Timer 2, 3, and 4 Control registers (TMRnCN). Toggle output mode is selected using the  
Timer 2 or 4 Configuration registers (TMRnCF). These timers may also be used to generate a square-  
wave at an external pin. As with Timers 0 and 1, Timers 2, 3, and 4 can use either the system clock  
(divided by one, two, or twelve), external clock (divided by eight) or transitions on an external input pin as  
its clock source. Timer 2 and 3 can be used to start an ADC Data Conversion and Timers 2, 3, and 4 can  
schedule DAC outputs. Timers 1, 2, 3, or 4 may be used to generate baud rates for UART 0. Only Timer 1  
can be used to generate baud rates for UART 1.  
The Counter/Timer Select bit C/Tn bit (TMRnCN.1) configures the peripheral as a counter or timer. Clear-  
ing C/Tn configures the Timer to be in a timer mode (i.e., the system clock or transitions on an external pin  
as the input for the timer). When C/Tn is set to 1, the timer is configured as a counter (i.e., high-to-low tran-  
sitions at the Tn input pin increment (or decrement) the counter/timer register. Timer 3 and Timer 2 share  
the T2 input pin. Refer to Section “18.1. Ports 0 through 3 and the Priority Crossbar Decoder” on  
page 238 for information on selecting and configuring external I/O pins for digital peripherals, such as the  
Tn pin.  
Timer 2, 3, and 4 can use either SYSCLK, SYSCLK divided by 2, SYSCLK divided by 12, an external clock  
divided by 8, or high-to-low transitions on the Tn input pin as its clock source when operating in Counter/  
Timer with Capture mode. Clearing the C/Tn bit (TMRnCN.1) selects the system clock/external clock as  
the input for the timer. The Timer Clock Select bits TnM0 and TnM1 in TMRnCF can be used to select the  
system clock undivided, system clock divided by two, system clock divided by 12, or an external clock pro-  
vided at the XTAL1/XTAL2 pins divided by 8 (see SFR Definition 23.13). When C/Tn is set to logic 1, a  
high-to-low transition at the Tn input pin increments the counter/timer register (i.e., configured as a coun-  
ter).  
23.2.1. Configuring Timer 2, 3, and 4 to Count Down  
Timers 2, 3, and 4 have the ability to count down. When the timer’s Decrement Enable Bit (DCENn) in the  
Timer Configuration Register (See SFR Definition 23.13) is set to ‘1’, the timer can then count up or down.  
When DCENn = 1, the direction of the timer’s count is controlled by the TnEX pin’s logic level (Timer 3  
shares the T2EX pin with Timer 2). When TnEX = 1, the counter/timer will count up; when TnEX = 0, the  
counter/timer will count down. To use this feature, TnEX must be enabled in the digital crossbar and config-  
ured as a digital input.  
Note: When DCENn = 1, other functions of the TnEX input (i.e., capture and auto-reload) are not  
available. TnEX will only control the direction of the timer when DCENn = 1.  
Rev. 1.4  
317  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
23.2.2. Capture Mode  
In Capture Mode, Timer 2, 3, and 4 will operate as a 16-bit counter/timer with capture facility. When the  
Timer External Enable bit (found in the TMRnCN register) is set to ‘1’, a high-to-low transition on the TnEX  
input pin (Timer 3 shares the T2EX pin with Timer 2) causes the 16-bit value in the associated timer (THn,  
TLn) to be loaded into the capture registers (RCAPnH, RCAPnL). If a capture is triggered in the counter/  
timer, the Timer External Flag (TMRnCN.6) will be set to ‘1’ and an interrupt will occur if the interrupt is  
enabled. See Section “11.3. Interrupt Handler” on page 154 for further information concerning the con-  
figuration of interrupt sources.  
As the 16-bit timer register increments and overflows TMRnH:TMRnL, the TFn Timer Overflow/Underflow  
Flag (TMRnCN.7) is set to ‘1’ and an interrupt will occur if the interrupt is enabled. The timer can be config-  
ured to count down by setting the Decrement Enable Bit (TMRnCF.0) to ‘1’. This will cause the timer to  
decrement with every timer clock/count event and underflow when the timer transitions from 0x0000 to  
0xFFFF. Just as in overflows, the Overflow/Underflow Flag (TFn) will be set to ‘1’, and an interrupt will  
occur if enabled.  
Counter/Timer with Capture mode is selected by setting the Capture/Reload Select bit CP/RLn  
(TMRnCN.0) and the Timer 2, 3, and 4 Run Control bit TRn (TMRnCN.2) to logic 1. The Timer 2, 3, and 4  
respective External Enable EXENn (TMRnCN.3) must also be set to logic 1 to enable captures. If EXENn  
is cleared, transitions on TnEX will be ignored.  
TMRnCF  
T T T T D  
n n O n C  
M M G O E  
1 0 n E n  
Toggle Logic  
0
2
Tn  
(Port Pin)  
0xFF  
0xFF  
SYSCLK  
12  
1
External Clock  
(XTAL1)  
0
1
8
TMRnL  
RCAPnL  
TMRnH  
RCAPnH  
TCLK  
CP/RLn  
C/Tn  
Crossbar  
Tn  
TRn  
EXENn  
TRn  
EXENn  
Crossbar  
Interrupt  
EXFn  
TFn  
TnE  
X
Figure 23.4. T2, 3, and 4 Capture Mode Block Diagram  
318  
Rev. 1.4  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
23.2.3. Auto-Reload Mode  
In Auto-Reload Mode, the counter/timer can be configured to count up or down and cause an interrupt/flag  
to occur upon an overflow/underflow event. When counting up, the counter/timer will set its overflow/under-  
flow flag (TFn) and cause an interrupt (if enabled) upon overflow/underflow, and the values in the Reload/  
Capture Registers (RCAPnH and RCAPnL) are loaded into the timer and the timer is restarted. When the  
Timer External Enable Bit (EXENn) bit is set to ‘1’ and the Decrement Enable Bit (DCENn) is ‘0’, a falling  
edge (‘1’-to-‘0’ transition) on the TnEX pin will cause a timer reload. Note that timer overflows will also  
cause auto-reloads. When DCENn is set to ‘1’, the state of the TnEX pin controls whether the counter/timer  
counts up (increments) or down (decrements), and will not cause an auto-reload or interrupt event (Timer 3  
shares the T2EX pin with Timer 2). See Section 23.2.1 for information concerning configuration of a timer  
to count down.  
When counting down, the counter/timer will set its overflow/underflow flag (TFn) and cause an interrupt (if  
enabled) when the value in the TMRnH and TMRnL registers matches the 16-bit value in the Reload/Cap-  
ture Registers (RCAPnH and RCAPnL). This is considered an underflow event, and will cause the timer to  
load the value 0xFFFF. The timer is automatically restarted when an underflow occurs.  
Counter/Timer with Auto-Reload mode is selected by clearing the CP/RLn bit. Setting TRn to logic 1  
enables and starts the timer.  
In Auto-Reload Mode, the External Flag (EXFn) toggles upon every overflow or underflow and does not  
cause an interrupt. The EXFn flag can be used as the most significant bit (MSB) of a 17-bit counter.  
.
TMRnCF  
D
E
C
T T T T  
n n O n  
M M G O  
E
1 0 n E  
n
Toggle Logic  
0
2
Tn  
(Port Pin)  
0xFF  
0xFF  
1
SYSCLK  
12  
External Clock  
(XTAL1)  
0
1
8
OVF  
TMRnL  
RCAPnL  
TMRnH  
RCAPnH  
TCLK  
CP/RLn  
C/Tn  
TRn  
EXENn  
Tn  
Crossbar  
TRn  
EXENn  
Interrupt  
EXFn  
TFn  
Reload  
Crossbar  
TnE  
X
Figure 23.5. Tn Auto-reload (T2,3,4) and Toggle Mode (T2,4) Block Diagram  
Rev. 1.4  
319  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
23.2.4. Toggle Output Mode (Timer 2 and Timer 4 Only)  
Timers 2 and 4 have the capability to toggle the state of their respective output port pins (T2 or T4) to pro-  
duce a 50% duty cycle waveform output. The port pin state will change upon the overflow or underflow of  
the respective timer (depending on whether the timer is counting up or down). The toggle frequency is  
determined by the clock source of the timer and the values loaded into RCAPnH and RCAPnL. When  
counting DOWN, the auto-reload value for the timer is 0xFFFF, and underflow will occur when the value in  
the timer matches the value stored in RCAPnH:RCAPnL. When counting UP, the auto-reload value for the  
timer is RCAPnH:RCAPnL, and overflow will occur when the value in the timer transitions from 0xFFFF to  
the reload value.  
To output a square wave, the timer is placed in reload mode (the Capture/Reload Select Bit in TMRnCN  
and the Timer/Counter Select Bit in TMRnCN are cleared to ‘0’). The timer output is enabled by setting the  
Timer Output Enable Bit in TMRnCF to ‘1’. The timer should be configured via the timer clock source and  
reload/underflow values such that the timer overflow/underflows at 1/2 the desired output frequency. The  
port pin assigned by the crossbar as the timer’s output pin should be configured as a digital output (see  
Section “18. Port Input/Output” on page 235). Setting the timer’s Run Bit (TRn) to ‘1’ will start the toggle  
of the pin. A Read/Write of the Timer’s Toggle Output State Bit (TMRnCF.2) is used to read the state of the  
toggle output, or to force a value of the output. This is useful when it is desired to start the toggle of a pin in  
a known state, or to force the pin into a desired state when the toggle mode is halted.  
Equation 23.1. Square Wave Frequency (Timer 2 and Timer 4 Only)  
F
TCLK  
------------------------------------------------------  
F
=
sq  
2  65536 – RCAPn  
320  
Rev. 1.4  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
SFR Definition 23.8. TMRnCN: Timer 2, 3, and 4 Control  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Reset Value  
TFn  
EXFn  
-
-
EXENn  
TRn  
C/Tn  
CP/RLn 00000000  
Bit  
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Bit0  
Addressable  
SFR Address: TMR2CN:0xC8;TMR3CN:0xC8;TMR4CN:0xC8  
SFR Page: TMR2CN: page 0;TMR3CN: page 1;TMR4CN: page 2  
Bit7:  
Bit6:  
TFn: Timer 2, 3, and 4 Overflow/Underflow Flag.  
Set by hardware when either the Timer overflows from 0xFFFF to 0x0000, underflows from  
the value placed in RCAPnH:RCAPnL to 0xFFFF (in Auto-reload Mode), or underflows from  
0x0000 to 0xFFFF (in Capture Mode). When the Timer interrupt is enabled, setting this bit  
causes the CPU to vector to the Timer interrupt service routine. This bit is not automatically  
cleared by hardware and must be cleared by software.  
EXFn: Timer 2, 3, or 4 External Flag.  
Set by hardware when either a capture or reload is caused by a high-to-low transition on the  
TnEX input pin and EXENn is logic 1. When the Timer interrupt is enabled, setting this bit  
causes the CPU to vector to the Timer Interrupt service routine. This bit is not automatically  
cleared by hardware and must be cleared by software.  
Bit5–4: Reserved.  
Bit3:  
EXENn: Timer 2, 3, and 4 External Enable.  
Enables high-to-low transitions on TnEX to trigger captures, reloads, and control the direc-  
tion of the timer/counter (up or down count). If DCENn = 1, TnEX will determine if the timer  
counts up or down when in Auto-reload Mode. If EXENn = 1, TnEX should be configured as  
a digital input.  
0: Transitions on the TnEX pin are ignored.  
1: Transitions on the TnEX pin cause capture, reload, or control the direction of timer count  
(up or down) as follows:  
Capture Mode: ‘1’-to-’0’ Transition on TnEX pin causes RCAPnH:RCAPnL to capture timer  
value.  
Auto-Reload Mode:  
DCENn = 0: ‘1’-to-’0’ transition causes reload of timer and sets the EXFn Flag.  
DCENn = 1: TnEX logic level controls direction of timer (up or down).  
TRn: Timer 2, 3, and 4 Run Control.  
This bit enables/disables the respective Timer.  
0: Timer disabled.  
1: Timer enabled and running/counting.  
C/Tn: Counter/Timer Select.  
0: Timer Function: Timer incremented by clock defined by TnM1:TnM0  
(TMRnCF.4:TMRnCF.3).  
1: Counter Function: Timer incremented by high-to-low transitions on external input pin.  
CP/RLn: Capture/Reload Select.  
Bit2:  
Bit1:  
Bit0:  
This bit selects whether the Timer functions in capture or auto-reload mode.  
0: Timer is in Auto-Reload Mode.  
1: Timer is in Capture Mode.  
Note:  
Timer 3 and Timer 2 share the T2 and T2EX pins.  
Rev. 1.4  
321  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
SFR Definition 23.9. TMRnCF: Timer 2, 3, and 4 Configuration  
R/W  
TnM1  
Bit4  
R/W  
TnM0  
Bit3  
R/W  
TOGn  
Bit2  
R/W  
TnOE  
Bit1  
R/W  
Reset Value  
-
-
-
DCENn 00000000  
Bit7  
Bit6  
Bit5  
Bit0  
SFR Address: TMR2CF:0xC9;TMR3CF:0xC9;TMR4CF:0xC9  
SFR Page TMR2CF: page 0;TMR3CF: page 1;TMR4CF: Page 2  
Bit7–5: Reserved.  
Bit4–3: TnM1 and TnM0: Timer Clock Mode Select Bits.  
Bits used to select the Timer clock source. The sources can be the System Clock  
(SYSCLK), SYSCLK divided by 2 or 12, or the external clock divided by 8. Clock source is  
selected as follows:  
00: SYSCLK/12  
01: SYSCLK  
10: EXTERNAL CLOCK/8 (Synchronized to the System Clock)  
11: SYSCLK/2  
Bit2:  
Bit1:  
TOGn: Toggle output state bit.  
When timer is used to toggle a port pin, this bit can be used to read the state of the output, or  
can be written to in order to force the state of the output (Timer 2 and Timer 4 Only).  
TnOE: Timer output enable bit.  
This bit enables the timer to output a 50% duty cycle output to the timer’s assigned external  
port pin.  
NOTE: A timer is configured for Square Wave Output as follows:  
CP/RLn= 0  
C/Tn = 0  
TnOE = 1  
Load RCAPnH:RCAPnL (See “Square Wave Frequency (Timer 2 and Timer 4 Only)” on  
page 320.)  
Configure Port Pin to output squarewave (See Section “18. Port Input/Output” on  
page 235)  
0: Output of toggle mode not available at Timers’s assigned port pin.  
1: Output of toggle mode available at Timers’s assigned port pin.  
DCENn: Decrement Enable Bit.  
Bit0:  
This bit enables the timer to count up or down as determined by the state of TnEX.  
0: Timer will count up, regardless of the state of TnEX.  
1: Timer will count up or down depending on the state of TnEX as follows:  
if TnEX = 0, the timer counts DOWN.  
if TnEX = 1, the timer counts UP.  
Note:  
Timer 3 and Timer 2 share the T2 and T2EX pins.  
322  
Rev. 1.4  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
SFR Definition 23.10. RCAPnL: Timer 2, 3, and 4 Capture Register Low Byte  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Bit2  
R/W  
Bit1  
R/W  
Bit0  
Reset Value  
00000000  
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
SFR Address: RCAP2L: 0xCA; RCAP3L: 0xCA; RCAP4L: 0xCA  
SFR Page: RCAP2L: page 0; RCAP3L: page 1; RCAP4L: page 2  
Bits 7–0: RCAP2, 3, and 4L: Timer 2, 3, and 4 Capture Register Low Byte.  
The RCAP2, 3, and 4L register captures the low byte of Timer 2, 3, and 4 when Timer 2, 3,  
and 4 is configured in capture mode. When Timer 2, 3, and 4 is configured in auto-reload  
mode, it holds the low byte of the reload value.  
SFR Definition 23.11. RCAPnH: Timer 2, 3, and 4 Capture Register High Byte  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Bit2  
R/W  
Bit1  
R/W  
Bit0  
Reset Value  
00000000  
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
SFR Address: RCAP2H: 0xCB; RCAP3H: 0xCB; RCAP4H: 0xCB  
SFR Page: RCAP2H: page 0; RCAP3H: page 1; RCAP4H: page 2  
Bits 7–0: RCAP2, 3, and 4H: Timer 2, 3, and 4 Capture Register High Byte.  
The RCAP2, 3, and 4H register captures the high byte of Timer 2, 3, and 4 when Timer 2, 3,  
and 4 is configured in capture mode. When Timer 2, 3, and 4 is configured in auto-reload  
mode, it holds the high byte of the reload value.  
SFR Definition 23.12. TMRnL: Timer 2, 3, and 4 Low Byte  
R/W  
Bit7  
R/W  
Bit6  
R/W  
Bit5  
R/W  
Bit4  
R/W  
Bit3  
R/W  
Bit2  
R/W  
Bit1  
R/W  
Bit0  
Reset Value  
00000000  
SFR Address: TMR2L: 0xCC; TMR3L: 0xCC; TMR4L: 0xCC  
SFR Page: TMR2L: page 0; TMR3L: page 1; TMR4L: page 2  
Bits 7–0: TL2, 3, and 4: Timer 2, 3, and 4 Low Byte.  
The TL2, 3, and 4 register contains the low byte of the 16-bit Timer 2, 3, and 4  
Rev. 1.4  
323  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
SFR Definition 23.13. TMRnH Timer 2, 3, and 4 High Byte  
R/W  
Bit7  
R/W  
Bit6  
R/W  
Bit5  
R/W  
Bit4  
R/W  
Bit3  
R/W  
Bit2  
R/W  
Bit1  
R/W  
Bit0  
Reset Value  
00000000  
SFR Address: TMR2H: 0xCD; TMR3H: 0xCD; TMR4H: 0xCD  
SFR Page: TMR2H: page 0; TMR3H: page 1; TMR4H: page 2  
Bits 7–0: TH2, 3, and 4: Timer 2, 3, and 4 High Byte.  
The TH2, 3, and 4 register contains the high byte of the 16-bit Timer 2, 3, and 4  
324  
Rev. 1.4  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
24. Programmable Counter Array  
The Programmable Counter Array (PCA0) provides enhanced timer functionality while requiring less CPU  
intervention than the standard 8051 counter/timers. PCA0 consists of a dedicated 16-bit counter/timer and  
six 16-bit capture/compare modules. Each capture/compare module has its own associated I/O line  
(CEXn) which is routed through the Crossbar to Port I/O when enabled (See Section “18.1. Ports 0  
through 3 and the Priority Crossbar Decoder” on page 238). The counter/timer is driven by a program-  
mable timebase that can select between six inputs as its source: system clock, system clock divided by  
four, system clock divided by twelve, the external oscillator clock source divided by 8, Timer 0 overflow, or  
an external clock signal on the ECI line. Each capture/compare module may be configured to operate inde-  
pendently in one of six modes: Edge-Triggered Capture, Software Timer, High-Speed Output, Frequency  
Output, 8-Bit PWM, or 16-Bit PWM (each is described in Section 24.2). The PCA is configured and con-  
trolled through the system controller's Special Function Registers. The basic PCA block diagram is shown  
in Figure 24.1.  
SYSCLK/12  
SYSCLK/4  
Timer 0 Overflow  
PCA  
16-Bit Counter/Timer  
CLOCK  
MUX  
ECI  
SYSCLK  
External Clock/8  
Capture/Compare  
Module 0  
Capture/Compare  
Module 1  
Capture/Compare  
Module 2  
Capture/Compare  
Module 3  
Capture/Compare  
Module 4  
Capture/Compare  
Module 5  
Crossbar  
Port I/O  
Figure 24.1. PCA Block Diagram  
Rev. 1.4  
325  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
24.1. PCA Counter/Timer  
The 16-bit PCA counter/timer consists of two 8-bit SFRs: PCA0L and PCA0H. PCA0H is the high byte  
(MSB) of the 16-bit counter/timer and PCA0L is the low byte (LSB). Reading PCA0L automatically latches  
the value of PCA0H into a “snapshot” register; the following PCA0H read accesses this “snapshot” register.  
Reading the PCA0L Register first guarantees an accurate reading of the entire 16-bit PCA0 counter. Read-  
ing PCA0H or PCA0L does not disturb the counter operation. The CPS2–CPS0 bits in the PCA0MD regis-  
ter select the timebase for the counter/timer as shown in Table 24.1.  
When the counter/timer overflows from 0xFFFF to 0x0000, the Counter Overflow Flag (CF) in PCA0MD is  
set to logic 1 and an interrupt request is generated if CF interrupts are enabled. Setting the ECF bit in  
PCA0MD to logic 1 enables the CF flag to generate an interrupt request. The CF bit is not automatically  
cleared by hardware when the CPU vectors to the interrupt service routine, and must be cleared by soft-  
ware (Note: PCA0 interrupts must be globally enabled before CF interrupts are recognized. PCA0 inter-  
rupts are globally enabled by setting the EA bit (IE.7) and the EPCA0 bit in EIE1 to logic 1). Clearing the  
CIDL bit in the PCA0MD register allows the PCA to continue normal operation while the CPU is in Idle  
mode.  
Table 24.1. PCA Timebase Input Options  
CPS2  
CPS1  
CPS0  
Timebase  
0
0
0
0
1
1
0
0
1
1
0
0
0
1
0
1
0
1
System clock divided by 12  
System clock divided by 4  
Timer 0 overflow  
High-to-low transitions on ECI (max rate = system clock divided by 4)  
System clock  
External oscillator source divided by 8*  
*Note: External clock divided by 8 is synchronized with the system clock.  
IDLE  
PCA0MD  
PCA0CN  
C
I
D
L
W W C C C E  
D D P P P C  
T L S S S F  
E C 2 1 0  
K
C C C C C C C C  
F R C C C C C C  
F F F F F F  
5 4 3 2 1 0  
To SFR Bus  
PCA0L  
read  
Snapshot  
Register  
SYSCLK/12  
SYSCLK/4  
000  
001  
010  
011  
100  
101  
Timer 0 Overflow  
ECI  
0
Overflow  
To PCA Interrupt System  
PCA0H  
PCA0L  
1
SYSCLK  
CF  
External Clock/8  
To PCA Modules  
Figure 24.2. PCA Counter/Timer Block Diagram  
326  
Rev. 1.4  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
Important Note About the PCA0CN Register: If the main PCA counter (PCA0H : PCA0L) overflows dur-  
ing the execution phase of a read-modify-write instruction (bit-wise SETB or CLR, ANL, ORL, XRL) that  
targets the PCA0CN register, the CF (Counter Overflow) bit will not be set. If the CF flag is used by soft-  
ware to keep track of counter overflows, the following steps should be taken when performing a bit-wise  
operation on the PCA0CN register:  
Step 1. Disable global interrupts.  
Step 2. Read PCA0L. This will latch the value of PCA0H.  
Step 3. Read PCA0H, saving the value.  
Step 4. Execute the bit-wise operation on CCFn (for example, CLR CCF0, or CCF0 = 0;).  
Step 5. Read PCA0L.  
Step 6. Read PCA0H, saving the value.  
Step 7. If the value of PCA0H read in Step 3 is 0xFF and the value for PCA0H read in Step 6 is  
0x00, then manually set the CF bit in software (for example, SETB CF, or CF = 1;).  
Step 8. Re-enable interrupts.  
Rev. 1.4  
327  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
24.2. Capture/Compare Modules  
Each module can be configured to operate independently in one of six operation modes: Edge-triggered  
Capture, Software Timer, High Speed Output, Frequency Output, 8-Bit Pulse Width Modulator, or 16-Bit  
Pulse Width Modulator. Each module has Special Function Registers (SFRs) associated with it in the CIP-  
51 system controller. These registers are used to exchange data with a module and configure the module's  
mode of operation.  
Table 24.2 summarizes the bit settings in the PCA0CPMn registers used to select the PCA0 capture/com-  
pare module’s operating modes. Setting the ECCFn bit in a PCA0CPMn register enables the module's  
CCFn interrupt. Note: PCA0 interrupts must be globally enabled before individual CCFn interrupts are rec-  
ognized. PCA0 interrupts are globally enabled by setting the EA bit (IE.7) and the EPCA0 bit (EIE1.3) to  
logic 1. See Figure 24.3 for details on the PCA interrupt configuration.  
(for n = 0 to 5)  
PCA0CPMn  
PCA0CN  
PCA0MD  
C C C E  
P
W
M
1
6
n
E C C M T  
C A A A O  
O P P T G  
M P N n n  
n n n  
P
W
M
n
E
C
C
F
n
C C C C C C C C  
F R C C C C C C  
F F F F F F  
C
I
D
L
P P P C  
S S S F  
2 1 0  
5 4 3 2 1 0  
0
1
PCA Counter/  
Timer Overflow  
ECCF0  
ECCF1  
ECCF2  
ECCF3  
ECCF4  
EPCA0  
(EIE.3)  
EA  
(IE.7)  
0
1
PCA Module 0  
(CCF0)  
Interrupt  
Priority  
Decoder  
0
1
0
1
0
1
PCA Module 1  
(CCF1)  
0
1
PCA Module 2  
(CCF2)  
0
1
PCA Module 3  
(CCF3)  
0
1
PCA Module 4  
(CCF4)  
ECCF5  
0
1
PCA Module 5  
(CCF5)  
Figure 24.3. PCA Interrupt Block Diagram  
328  
Rev. 1.4  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
Table 24.2. PCA0CPM Register Settings for PCA Capture/Compare Modules  
PWM16 ECOM CAPP CAPN MAT TOG PWM ECCF  
Operation Mode  
Capture triggered by positive edge  
on CEXn  
X
X
X
X
X
X
1
0
1
0
1
1
0
0
0
0
0
0
0
0
0
X
X
X
Capture triggered by negative  
edge on CEXn  
Capture triggered by transition on  
CEXn  
X
X
X
0
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
1
1
0
0
0
0
1
1
0
0
0
0
1
1
1
X
X
X
0
Software Timer  
High Speed Output  
Frequency Output  
8-Bit Pulse Width Modulator  
16-Bit Pulse Width Modulator  
1
0
X = Don’t Care  
24.2.1. Edge-triggered Capture Mode  
In this mode, a valid transition on the CEXn pin causes PCA0 to capture the value of the PCA0 counter/  
timer and load it into the corresponding module's 16-bit capture/compare register (PCA0CPLn and  
PCA0CPHn). The CAPPn and CAPNn bits in the PCA0CPMn register are used to select the type of transi-  
tion that triggers the capture: low-to-high transition (positive edge), high-to-low transition (negative edge),  
or either transition (positive or negative edge). When a capture occurs, the Capture/Compare Flag (CCFn)  
in PCA0CN is set to logic 1 and an interrupt request is generated if CCF interrupts are enabled. The CCFn  
bit is not automatically cleared by hardware when the CPU vectors to the interrupt service routine, and  
must be cleared by software.  
PCA Interrupt  
PCA0CPMn  
PCA0CN  
P
W
M
1
E C C M T  
C A A A O  
O P P T G  
M P N n n  
n n n  
P
W
M
n
E
C
C
F
n
C C C C C C C C  
F R C C C C C C  
F F F F F F  
5 4 3 2 1 0  
6
n
PCA0CPLn  
PCA0CPHn  
0
1
CEXn  
Capture  
Port I/O  
Crossbar  
0
1
PCA  
Timebase  
PCA0L  
PCA0H  
Figure 24.4. PCA Capture Mode Diagram  
Note: The signal at CEXn must be high or low for at least 2 system clock cycles in order to be valid.  
Rev. 1.4  
329  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
24.2.2. Software Timer (Compare) Mode  
In Software Timer mode, the PCA0 counter/timer is compared to the module's 16-bit capture/compare reg-  
ister (PCA0CPHn and PCA0CPLn). When a match occurs, the Capture/Compare Flag (CCFn) in PCA0CN  
is set to logic 1 and an interrupt request is generated if CCF interrupts are enabled. The CCFn bit is not  
automatically cleared by hardware when the CPU vectors to the interrupt service routine, and must be  
cleared by software. Setting the ECOMn and MATn bits in the PCA0CPMn register enables Software  
Timer mode.  
Important Note About Capture/Compare Registers: When writing a 16-bit value to the PCA0 Capture/  
Compare registers, the low byte should always be written first. Writing to PCA0CPLn clears the ECOMn bit  
to ‘0’; writing to PCA0CPHn sets ECOMn to ‘1’.  
Write to  
0
PCA0CPLn  
ENB  
Reset  
PCA  
Write to  
PCA0CPHn  
Interrupt  
ENB  
1
PCA0CPMn  
PCA0CN  
P
W
M
1
6
n
E C C M T  
C A A A O  
O P P T G  
M P N n n  
n n n  
P
W
M
n
E
C
C
F
n
C C C C C C C C  
F R C C C C C C  
F F F F F F  
PCA0CPLn  
PCA0CPHn  
5 4 3 2 1 0  
x
0 0  
0 0  
x
0
1
Enable  
Match  
16-bit Comparator  
PCA  
Timebase  
PCA0L  
PCA0H  
Figure 24.5. PCA Software Timer Mode Diagram  
330  
Rev. 1.4  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
24.2.3. High Speed Output Mode  
In High Speed Output mode, a module’s associated CEXn pin is toggled each time a match occurs  
between the PCA Counter and the module's 16-bit capture/compare register (PCA0CPHn and  
PCA0CPLn) Setting the TOGn, MATn, and ECOMn bits in the PCA0CPMn register enables the High-  
Speed Output mode.  
Important Note About Capture/Compare Registers: When writing a 16-bit value to the PCA0 Capture/  
Compare registers, the low byte should always be written first. Writing to PCA0CPLn clears the ECOMn bit  
to ‘0’; writing to PCA0CPHn sets ECOMn to ‘1’.  
Write to  
0
PCA0CPLn  
ENB  
Reset  
PCA0CPMn  
Write to  
PCA0CPHn  
P
W
M
1
E C C M T  
C A A A O  
O P P T G  
M P N n n  
n n n  
P
W
M
n
E
C
C
F
n
ENB  
1
6
n
PCA  
Interrupt  
x
0 0  
0
x
PCA0CN  
C C C C C C C C  
F R C C C C C C  
F F F F F F  
PCA0CPLn  
PCA0CPHn  
5 4 3 2 1 0  
0
1
Enable  
Match  
16-bit Comparator  
TOGn  
Toggle  
0
CEXn  
Crossbar  
Port I/O  
1
PCA  
Timebase  
PCA0L  
PCA0H  
Figure 24.6. PCA High Speed Output Mode Diagram  
Rev. 1.4  
331  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
24.2.4. Frequency Output Mode  
Frequency Output Mode produces a programmable-frequency square wave on the module’s associated  
CEXn pin. The capture/compare module high byte holds the number of PCA clocks to count before the out-  
put is toggled. The frequency of the square wave is then defined by Equation 24.1.  
Equation 24.1. Square Wave Frequency Output  
FPCA  
----------------------------------------  
=
Fsqr  
2 PCA0CPHn  
Note: A value of 0x00 in the PCA0CPHn register is equal to 256 for this equation.  
Where F  
is the frequency of the clock selected by the CPS2–0 bits in the PCA mode register,  
PCA  
PCA0MD. The lower byte of the capture/compare module is compared to the PCA0 counter low byte; on a  
match, CEXn is toggled and the offset held in the high byte is added to the matched value in PCA0CPLn.  
Frequency Output Mode is enabled by setting the ECOMn, TOGn, and PWMn bits in the PCA0CPMn reg-  
ister.  
Important Note About Capture/Compare Registers: When writing a 16-bit value to the PCA0 Capture/  
Compare registers, the low byte should always be written first. Writing to PCA0CPLn clears the ECOMn bit  
to ‘0’; writing to PCA0CPHn sets ECOMn to ‘1’.  
PCA0CPMn  
P
W
M
1
6
n
E C C M T  
C A A A O  
O P P T G  
M P N n n  
n n n  
P
W
M
n
E
C
C
F
n
PCA0CPLn  
8-bit Adder  
PCA0CPHn  
Adder  
Enable  
TOGn  
0
0 0 0 1  
0
Toggle  
0
CEXn  
8-bit  
Comparator  
match  
Enable  
Crossbar  
Port I/O  
1
PCA Timebase  
PCA0L  
Figure 24.7. PCA Frequency Output Mode  
332  
Rev. 1.4  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
24.2.5. 8-Bit Pulse Width Modulator Mode  
Each module can be used independently to generate pulse width modulated (PWM) outputs on its associ-  
ated CEXn pin. The frequency of the output is dependent on the timebase for the PCA0 counter/timer. The  
duty cycle of the PWM output signal is varied using the module's PCA0CPLn capture/compare register.  
When the value in the low byte of the PCA0 counter/timer (PCA0L) is equal to the value in PCA0CPLn, the  
output on the CEXn pin will be high. When the count value in PCA0L overflows, the CEXn output will be  
low (see Figure 24.8). Also, when the counter/timer low byte (PCA0L) overflows from 0xFF to 0x00,  
PCA0CPLn is reloaded automatically with the value stored in the counter/timer's high byte (PCA0H) with-  
out software intervention. Setting the ECOMn and PWMn bits in the PCA0CPMn register enables 8-Bit  
Pulse Width Modulator mode. The duty cycle for 8-Bit PWM Mode is given by Equation 24.2.  
Important Note About Capture/Compare Registers: When writing a 16-bit value to the PCA0 Capture/  
Compare registers, the low byte should always be written first. Writing to PCA0CPLn clears the ECOMn bit  
to ‘0’; writing to PCA0CPHn sets ECOMn to ‘1’.  
Equation 24.2. 8-Bit PWM Duty Cycle  
256 – PCA0CPHn  
---------------------------------------------------  
256  
DutyCycle =  
PCA0CPHn  
PCA0CPMn  
P
W
M
1
E C C M T  
C A A A O  
O P P T G  
M P N n n  
n n n  
P
W
M
n
E
C
C
F
n
PCA0CPLn  
6
n
0
0 0 0 0  
0
SET  
8-bit  
Comparator  
match  
CEXn  
Enable  
S
R
Q
Q
Crossbar  
Port I/O  
CLR  
PCA Timebase  
PCA0L  
Overflow  
Figure 24.8. PCA 8-Bit PWM Mode Diagram  
Rev. 1.4  
333  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
24.2.6. 16-Bit Pulse Width Modulator Mode  
Each PCA0 module may also be operated in 16-Bit PWM mode. In this mode, the 16-bit capture/compare  
module defines the number of PCA0 clocks for the low time of the PWM signal. When the PCA0 counter  
matches the module contents, the output on CEXn is asserted high; when the counter overflows, CEXn is  
asserted low. To output a varying duty cycle, new value writes should be synchronized with PCA0 CCFn  
match interrupts. 16-Bit PWM Mode is enabled by setting the ECOMn, PWMn, and PWM16n bits in the  
PCA0CPMn register. For a varying duty cycle, CCFn should also be set to logic 1 to enable match inter-  
rupts. The duty cycle for 16-Bit PWM Mode is given by Equation 24.3.  
Important Note About Capture/Compare Registers: When writing a 16-bit value to the PCA0 Capture/  
Compare registers, the low byte should always be written first. Writing to PCA0CPLn clears the ECOMn bit  
to ‘0’; writing to PCA0CPHn sets ECOMn to ‘1’.  
Equation 24.3. 16-Bit PWM Duty Cycle  
65536 – PCA0CPn  
----------------------------------------------------  
65536  
DutyCycle =  
PCA0CPMn  
P
W
M
1
E C C M T  
C A A A O  
O P P T G  
M P N n n  
n n n  
P
W
M
n
E
C
C
F
n
PCA0CPHn  
PCA0CPLn  
6
n
1
0 0 0 0  
0
SET  
match  
CEXn  
Enable  
16-bit Comparator  
S
R
Q
Q
Crossbar  
Port I/O  
CLR  
PCA Timebase  
PCA0H  
PCA0L  
Overflow  
Figure 24.9. PCA 16-Bit PWM Mode  
334  
Rev. 1.4  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
24.3. Register Descriptions for PCA0  
Following are detailed descriptions of the special function registers related to the operation of PCA0.  
SFR Definition 24.1. PCA0CN: PCA Control  
R/W  
CF  
Bit7  
R/W  
CR  
Bit6  
R/W  
CCF5  
Bit5  
R/W  
CCF4  
Bit4  
R/W  
CCF3  
Bit3  
R/W  
CCF2  
Bit2  
R/W  
CCF1  
Bit1  
R/W  
CCF0  
Bit0  
Reset Value  
00000000  
SFR Address: 0xD8  
SFR Page: 0  
Bit7:  
CF: PCA Counter/Timer Overflow Flag.  
Set by hardware when the PCA0 Counter/Timer overflows from 0xFFFF to 0x0000. When  
the Counter/Timer Overflow (CF) interrupt is enabled, setting this bit causes the CPU to vec-  
tor to the CF interrupt service routine. This bit is not automatically cleared by hardware and  
must be cleared by software.  
Bit6:  
Bit5:  
Bit4:  
Bit3:  
Bit2:  
Bit1:  
Bit0:  
CR: PCA0 Counter/Timer Run Control.  
This bit enables/disables the PCA0 Counter/Timer.  
0: PCA0 Counter/Timer disabled.  
1: PCA0 Counter/Timer enabled.  
CCF5: PCA0 Module 5 Capture/Compare Flag.  
This bit is set by hardware when a match or capture occurs. When the CCF interrupt is  
enabled, setting this bit causes the CPU to vector to the CCF interrupt service routine. This  
bit is not automatically cleared by hardware and must be cleared by software.  
CCF4: PCA0 Module 4 Capture/Compare Flag.  
This bit is set by hardware when a match or capture occurs. When the CCF interrupt is  
enabled, setting this bit causes the CPU to vector to the CCF interrupt service routine. This  
bit is not automatically cleared by hardware and must be cleared by software.  
CCF3: PCA0 Module 3 Capture/Compare Flag.  
This bit is set by hardware when a match or capture occurs. When the CCF interrupt is  
enabled, setting this bit causes the CPU to vector to the CCF interrupt service routine. This  
bit is not automatically cleared by hardware and must be cleared by software.  
CCF2: PCA0 Module 2 Capture/Compare Flag.  
This bit is set by hardware when a match or capture occurs. When the CCF interrupt is  
enabled, setting this bit causes the CPU to vector to the CCF interrupt service routine. This  
bit is not automatically cleared by hardware and must be cleared by software.  
CCF1: PCA0 Module 1 Capture/Compare Flag.  
This bit is set by hardware when a match or capture occurs. When the CCF interrupt is  
enabled, setting this bit causes the CPU to vector to the CCF interrupt service routine. This  
bit is not automatically cleared by hardware and must be cleared by software.  
CCF0: PCA0 Module 0 Capture/Compare Flag.  
This bit is set by hardware when a match or capture occurs. When the CCF interrupt is  
enabled, setting this bit causes the CPU to vector to the CCF interrupt service routine. This  
bit is not automatically cleared by hardware and must be cleared by software.  
Rev. 1.4  
335  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
SFR Definition 24.2. PCA0MD: PCA0 Mode  
R/W  
CIDL  
Bit7  
R/W  
-
R/W  
-
R/W  
-
R/W  
CPS2  
Bit3  
R/W  
CPS1  
Bit2  
R/W  
CPS0  
Bit1  
R/W  
ECF  
Bit0  
Reset Value  
00000000  
Bit6  
Bit5  
Bit4  
SFR Address: 0xD9  
SFR Page: 0  
Bit7:  
CIDL: PCA0 Counter/Timer Idle Control.  
Specifies PCA0 behavior when CPU is in Idle Mode.  
0: PCA0 continues to function normally while the system controller is in Idle Mode.  
1: PCA0 operation is suspended while the system controller is in Idle Mode.  
Bits6–4: UNUSED. Read = 000b, Write = don't care.  
Bits3–1: CPS2-CPS0: PCA0 Counter/Timer Pulse Select.  
These bits select the timebase source for the PCA0 counter  
CPS2 CPS1 CPS0  
Timebase  
0
0
0
0
0
1
0
1
0
System clock divided by 12  
System clock divided by 4  
Timer 0 overflow  
High-to-low transitions on ECI (max rate = system clock  
divided by 4)  
0
1
1
1
1
1
1
0
0
1
1
0
1
0
1
System clock  
External clock divided by 8 (synchronized with system clock)  
Reserved  
Reserved  
Bit0:  
ECF: PCA Counter/Timer Overflow Interrupt Enable.  
This bit sets the masking of the PCA0 Counter/Timer Overflow (CF) interrupt.  
0: Disable the CF interrupt.  
1: Enable a PCA0 Counter/Timer Overflow interrupt request when CF (PCA0CN.7) is set.  
336  
Rev. 1.4  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
SFR Definition 24.3. PCA0CPMn: PCA0 Capture/Compare Mode  
R/W  
R/W  
R/W  
CAPPn  
Bit5  
R/W  
CAPNn  
Bit4  
R/W  
MATn  
Bit3  
R/W  
TOGn  
Bit2  
R/W  
PWMn  
Bit1  
R/W  
Reset Value  
PWM16n ECOMn  
ECCFn 00000000  
Bit0  
Bit7  
Bit6  
SFR PCA0CPM0: 0xDA, PCA0CPM1: 0xDB, PCA0CPM2: 0xDC, PCA0CPM3: 0xDD, PCA0CPM4: 0xDE,  
Address: PCA0CPM5: 0xDF  
PCA0CPM0: page 0, PCA0CPM1: page 0, PCA0CPM2: page 0, PCA0CPM3: 0, PCA0CPM4: page 0,  
SFR Page:  
PCA0CPM5: page 0  
Bit7:  
Bit6:  
Bit5:  
Bit4:  
Bit3:  
PWM16n: 16-bit Pulse Width Modulation Enable  
This bit selects 16-bit mode when Pulse Width Modulation mode is enabled (PWMn = 1).  
0: 8-bit PWM selected.  
1: 16-bit PWM selected.  
ECOMn: Comparator Function Enable.  
This bit enables/disables the comparator function for PCA0 module n.  
0: Disabled.  
1: Enabled.  
CAPPn: Capture Positive Function Enable.  
This bit enables/disables the positive edge capture for PCA0 module n.  
0: Disabled.  
1: Enabled.  
CAPNn: Capture Negative Function Enable.  
This bit enables/disables the negative edge capture for PCA0 module n.  
0: Disabled.  
1: Enabled.  
MATn: Match Function Enable.  
This bit enables/disables the match function for PCA0 module n. When enabled, matches of  
the PCA0 counter with a module's capture/compare register cause the CCFn bit in PCA0MD  
register to be set to logic 1.  
0: Disabled.  
1: Enabled.  
Bit2:  
Bit1:  
Bit0:  
TOGn: Toggle Function Enable.  
This bit enables/disables the toggle function for PCA0 module n. When enabled, matches of  
the PCA0 counter with a module's capture/compare register cause the logic level on the  
CEXn pin to toggle. If the PWMn bit is also set to logic 1, the module operates in Frequency  
Output Mode.  
0: Disabled.  
1: Enabled.  
PWMn: Pulse Width Modulation Mode Enable.  
This bit enables/disables the PWM function for PCA0 module n. When enabled, a pulse  
width modulated signal is output on the CEXn pin. 8-bit PWM is used if PWM16n is logic 0;  
16-bit mode is used if PWM16n logic 1. If the TOGn bit is also set, the module operates in  
Frequency Output Mode.  
0: Disabled.  
1: Enabled.  
ECCFn: Capture/Compare Flag Interrupt Enable.  
This bit sets the masking of the Capture/Compare Flag (CCFn) interrupt.  
0: Disable CCFn interrupts.  
1: Enable a Capture/Compare Flag interrupt request when CCFn is set.  
Rev. 1.4  
337  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
SFR Definition 24.4. PCA0L: PCA0 Counter/Timer Low Byte  
R/W  
Bit7  
R/W  
Bit6  
R/W  
Bit5  
R/W  
Bit4  
R/W  
Bit3  
R/W  
Bit2  
R/W  
Bit1  
R/W  
Reset Value  
00000000  
Bit0  
SFR Address: 0xF9  
SFR Page: 0  
Bits 7–0: PCA0L: PCA0 Counter/Timer Low Byte.  
The PCA0L register holds the low byte (LSB) of the 16-bit PCA0 Counter/Timer.  
SFR Definition 24.5. PCA0H: PCA0 Counter/Timer High Byte  
R/W  
Bit7  
R/W  
Bit6  
R/W  
Bit5  
R/W  
Bit4  
R/W  
Bit3  
R/W  
Bit2  
R/W  
Bit1  
R/W  
Reset Value  
00000000  
Bit0  
SFR Address: 0xFA  
SFR Page: 0  
Bits 7–0: PCA0H: PCA0 Counter/Timer High Byte.  
The PCA0H register holds the high byte (MSB) of the 16-bit PCA0 Counter/Timer.  
SFR Definition 24.6. PCA0CPLn: PCA0 Capture Module Low Byte  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Reset Value  
00000000  
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Bit0  
PCA0CPL0: 0xFB, PCA0CPL1: 0xFD, PCA0CPL2: 0xE9, PCA0CPL3: 0xEB, PCA0CPL4: 0xED, PCA0CPL5:  
0xE1  
SFR Address:  
PCA0CPL0: page 0, PCA0CPL1: page 0, PCA0CPL2: page 0, PCA0CPL3: page 0, PCA0CPL4: page 0,  
PCA0CPL5: page 0  
SFR Page:  
Bits7–0: PCA0CPLn: PCA0 Capture Module Low Byte.  
The PCA0CPLn register holds the low byte (LSB) of the 16-bit capture module n.  
338  
Rev. 1.4  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
SFR Definition 24.7. PCA0CPHn: PCA0 Capture Module High Byte  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Reset Value  
00000000  
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Bit0  
PCA0CPH0: 0xFC, PCA0CPH1: 0xFD, PCA0CPH2: 0xEA, PCA0CPH3: 0xEC, PCA0CPH4: 0xEE, PCA0CPH5:  
0xE2  
SFR Address:  
PCA0CPH0: page 0, PCA0CPH1: page 0, PCA0CPH2: page 0, PCA0CPH3: page 0, PCA0CPH4: page 0,  
PCA0CPH5: page 0  
SFR Page:  
Bits7–0: PCA0CPHn: PCA0 Capture Module High Byte.  
The PCA0CPHn register holds the high byte (MSB) of the 16-bit capture module n.  
Rev. 1.4  
339  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
NOTES:  
340  
Rev. 1.4  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
25. JTAG (IEEE 1149.1)  
Each MCU has an on-chip JTAG interface and logic to support boundary scan for production and in-sys-  
tem testing, Flash read/write operations, and non-intrusive in-circuit debug. The JTAG interface is fully  
compliant with the IEEE 1149.1 specification. Refer to this specification for detailed descriptions of the Test  
Interface and Boundary-Scan Architecture. Access of the JTAG Instruction Register (IR) and Data Regis-  
ters (DR) are as described in the Test Access Port and Operation of the IEEE 1149.1 specification.  
The JTAG interface is accessed via four dedicated pins on the MCU: TCK, TMS, TDI, and TDO.  
Through the 16-bit JTAG Instruction Register (IR), any of the eight instructions shown in Figure 25.1 can  
be commanded. There are three DR’s associated with JTAG Boundary-Scan, and four associated with  
Flash read/write operations on the MCU.  
JTAG Register Definition 25.1. IR: JTAG Instruction Register  
Reset Value  
0x0000  
Bit15  
Bit0  
IR Value Instruction  
Description  
Selects the Boundary Data Register for control and observability of all  
device pins  
Selects the Boundary Data Register for observability and presetting the  
scan-path latches  
Selects device ID Register  
Selects Bypass Data Register  
0x0000  
0x0002  
EXTEST  
SAMPLE/  
PRELOAD  
IDCODE  
0x0004  
0xFFFF  
BYPASS  
Selects FLASHCON Register to control how the interface logic responds  
to reads and writes to the FLASHDAT Register  
0x0082 Flash Control  
0x0083  
Flash Data Selects FLASHDAT Register for reads and writes to the Flash memory  
Selects FLASHADR Register which holds the address of all Flash read,  
write, and erase operations  
0x0084 Flash Address  
Selects FLASHSCL Register which controls the Flash one-shot timer and  
read-always enable  
0x0085  
Flash Scale  
Rev. 1.4  
341  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
25.1. Boundary Scan  
The DR in the Boundary Scan path is an 134-bit shift register. The Boundary DR provides control and  
observability of all the device pins as well as the SFR bus and Weak Pullup feature via the EXTEST and  
SAMPLE commands.  
Table 25.1. Boundary Data Register Bit Definitions  
EXTEST provides access to both capture and update actions, while Sample only performs a capture.  
Bit  
Action Target  
0
Capture Reset Enable from MCU (64-pin TQFP devices)  
Update  
Capture  
Update  
Capture  
Update  
Capture  
Update  
Reset Enable to RST pin (64-pin TQFP devices)  
Reset input from RST pin (64-pin TQFP devices)  
Reset output to RST pin (64-pin TQFP devices)  
Reset Enable from MCU (100-pin TQFP devices)  
Reset Enable to RST pin (100-pin TQFP devices)  
Reset input from RST pin (100-pin TQFP devices)  
Reset output to RST pin (100-pin TQFP devices)  
1
2
3
4
5
Capture External Clock from XTAL1 pin  
Update Not used  
Capture Weak pullup enable from MCU  
Update Weak pullup enable to Port Pins  
6, 8, 10, 12, 14, Capture P0.n output enable from MCU (e.g. Bit6=P0.0, Bit8=P0.1, etc.)  
16, 18, 20  
7, 9, 11, 13, 15, Capture P0.n input from pin (e.g. Bit7=P0.0, Bit9=P0.1, etc.)  
17, 19, 21  
22, 24, 26, 28, 30, Capture P1.n output enable from MCU  
32, 34, 36  
23, 25, 27, 29, 31, Capture P1.n input from pin  
33, 35, 37  
38, 40, 42, 44, 46, Capture P2.n output enable from MCU  
48, 50, 52  
39, 41, 43, 45, 47, Capture P2.n input from pin  
49, 51, 53  
54, 56, 58, 60, 62, Capture P3.n output enable from MCU  
64, 66, 68  
55, 57, 59, 61, 63, Capture P3.n input from pin  
65, 67, 69  
70, 72, 74, 76, 78, Capture P4.n output enable from MCU  
80, 82, 84  
71, 73, 75, 77, 79, Capture P4.n input from pin  
81, 83, 85  
86, 88, 90, 92, 94, Capture P5.n output enable from MCU  
96, 98, 100  
87, 89, 91, 93, 95, Capture P5.n input from pin  
Update P0.n output enable to pin (e.g. Bit6=P0.0oe, Bit8=P0.1oe, etc.)  
Update P0.n output to pin (e.g. Bit7=P0.0, Bit9=P0.1, etc.)  
Update P1.n output enable to pin  
Update P1.n output to pin  
Update P2.n output enable to pin  
Update P2.n output to pin  
Update P3.n output enable to pin  
Update P3.n output to pin  
Update P4.n output enable to pin  
Update P4.n output to pin  
Update P5.n output enable to pin  
97, 99, 101  
Update P5.n output to pin  
102, 104, 106,  
108, 110, 112, 114,  
116  
Capture P6.n output enable from MCU  
Update P6.n output enable to pin  
342  
Rev. 1.4  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
Table 25.1. Boundary Data Register Bit Definitions (Continued)  
Bit  
Action Target  
103, 105, 107,  
109, 111, 113, 115,  
117  
Capture P6.n input from pin  
Update P6.n output to pin  
118, 120, 122,  
124, 126, 128,  
130, 132  
Capture P7.n output enable from MCU  
Update P7.n output enable to pin  
119, 121, 123,  
125, 127, 129,  
131, 133  
Capture P7.n input from pin  
Update P7.n output to pin  
25.1.1. EXTEST Instruction  
The EXTEST instruction is accessed via the IR. The Boundary DR provides control and observability of all  
the device pins as well as the Weak Pullup feature. All inputs to on-chip logic are set to logic 1.  
25.1.2. SAMPLE Instruction  
The SAMPLE instruction is accessed via the IR. The Boundary DR provides observability and presetting of  
the scan-path latches.  
25.1.3. BYPASS Instruction  
The BYPASS instruction is accessed via the IR. It provides access to the standard JTAG Bypass data reg-  
ister.  
25.1.4. IDCODE Instruction  
The IDCODE instruction is accessed via the IR. It provides access to the 32-bit Device ID register.  
JTAG Register Definition 25.2. DEVICEID: JTAG Device ID  
Reset Value  
Version  
Part Number  
Manufacturer ID  
1
0xn0003243  
Bit31  
Bit28 Bit27  
Bit12 Bit11  
Bit1  
Bit0  
Version = 0000b  
Part Number = 0000 0000 0000 0111b (C8051F120/1/2/3/4/5/6/7 or C8051F130/1/2/3)  
Manufacturer ID = 0010 0100 001b (Silicon Labs)  
Rev. 1.4  
343  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
25.2. Flash Programming Commands  
The Flash memory can be programmed directly over the JTAG interface using the Flash Control, Flash  
Data, Flash Address, and Flash Scale registers. These Indirect Data Registers are accessed via the JTAG  
Instruction Register. Read and write operations on indirect data registers are performed by first setting the  
appropriate DR address in the IR register. Each read or write is then initiated by writing the appropriate  
Indirect Operation Code (IndOpCode) to the selected data register. Incoming commands to this register  
have the following format:  
19:18  
17:0  
IndOpCode  
WriteData  
IndOpCode: These bit set the operation to perform according to the following table:  
IndOpCode  
Operation  
Poll  
0x  
10  
11  
Read  
Write  
The Poll operation is used to check the Busy bit as described below. Although a Capture-DR is performed,  
no Update-DR is allowed for the Poll operation. Since updates are disabled, polling can be accomplished  
by shifting in/out a single bit.  
The Read operation initiates a read from the register addressed by the DRAddress. Reads can be initiated  
by shifting only 2 bits into the indirect register. After the read operation is initiated, polling of the Busy bit  
must be performed to determine when the operation is complete.  
The write operation initiates a write of WriteData to the register addressed by DRAddress. Registers of any  
width up to 18 bits can be written. If the register to be written contains fewer than 18 bits, the data in Write-  
Data should be left-justified, i.e. its MSB should occupy bit 17 above. This allows shorter registers to be  
written in fewer JTAG clock cycles. For example, an 8-bit register could be written by shifting only 10 bits.  
After a Write is initiated, the Busy bit should be polled to determine when the next operation can be initi-  
ated. The contents of the Instruction Register should not be altered while either a read or write operation is  
busy.  
Outgoing data from the indirect Data Register has the following format:  
19  
0
18:1  
0
ReadData  
Busy  
The Busy bit indicates that the current operation is not complete. It goes high when an operation is initiated  
and returns low when complete. Read and Write commands are ignored while Busy is high. In fact, if poll-  
ing for Busy to be low will be followed by another read or write operation, JTAG writes of the next operation  
can be made while checking for Busy to be low. They will be ignored until Busy is read low, at which time  
the new operation will initiate. This bit is placed ate bit 0 to allow polling by single-bit shifts. When waiting  
for a Read to complete and Busy is 0, the following 18 bits can be shifted out to obtain the resulting data.  
ReadData is always right-justified. This allows registers shorter than 18 bits to be read using a reduced  
number of shifts. For example, the results from a byte-read requires 9 bit shifts (Busy + 8 bits).  
344  
Rev. 1.4  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
JTAG Register Definition 25.3. FLASHCON: JTAG Flash Control  
Reset Value  
SFLE  
WRMD2 WRMD1 WRMD0 RDMD3 RDMD2 RDMD1 RDMD0 00000000  
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Bit0  
This register determines how the Flash interface logic will respond to reads and writes to the FLASH-  
DAT Register.  
Bit7:  
SFLE: Scratchpad Flash Memory Access Enable  
When this bit is set, Flash reads and writes are directed to the two 128-byte Scratchpad  
Flash sectors. When SFLE is set to logic 1, Flash accesses out of the address range 0x00-  
0xFF should not be attempted (with the exception of address 0x400, which can be used to  
simultaneously erase both Scratchpad areas). Reads/Writes out of this range will yield  
undefined results.  
0: Flash access directed to the Program/Data Flash sector.  
1: Flash access directed to the two 128 byte Scratchpad sectors.  
Bits6–4: WRMD2–0: Write Mode Select Bits.  
The Write Mode Select Bits control how the interface logic responds to writes to the FLASH-  
DAT Register per the following values:  
000:  
A FLASHDAT write replaces the data in the FLASHDAT register, but is otherwise  
ignored.  
001:  
A FLASHDAT write initiates a write of FLASHDAT into the memory address by the  
FLASHADR register. FLASHADR is incremented by one when complete.  
A FLASHDAT write initiates an erasure (sets all bytes to 0xFF) of the Flash page  
containing the address in FLASHADR. The data written must be 0xA5 for the erase  
to occur. FLASHADR is not affected. If FLASHADR = 0x1FBFE – 0x1FBFF, the  
entire user space will be erased (i.e. entire Flash memory except for Reserved area  
0x1FC00 – 0x1FFFF).  
010:  
(All other values for WRMD2-0 are reserved.)  
Bits3–0: RDMD3–0: Read Mode Select Bits.  
The Read Mode Select Bits control how the interface logic responds to reads from the  
FLASHDAT Register per the following values:  
0000: A FLASHDAT read provides the data in the FLASHDAT register, but is otherwise  
ignored.  
0001: A FLASHDAT read initiates a read of the byte addressed by the FLASHADR register  
if no operation is currently active. This mode is used for block reads.  
0010: A FLASHDAT read initiates a read of the byte addressed by FLASHADR only if no  
operation is active and any data from a previous read has already been read from  
FLASHDAT. This mode allows single bytes to be read (or the last byte of a block)  
without initiating an extra read.  
(All other values for RDMD3–0 are reserved.)  
Rev. 1.4  
345  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
JTAG Register Definition 25.4. FLASHDAT: JTAG Flash Data  
Reset Value  
0000000000  
Bit9  
Bit0  
This register is used to read or write data to the Flash memory across the JTAG interface.  
Bits9–2: DATA7–0: Flash Data Byte.  
Bit1:  
FAIL: Flash Fail Bit.  
0: Previous Flash memory operation was successful.  
1: Previous Flash memory operation failed. Usually indicates the associated memory loca-  
tion was locked.  
Bit0:  
BUSY: Flash Busy Bit.  
0: Flash interface logic is not busy.  
1: Flash interface logic is processing a request. Reads or writes while BUSY = 1 will not ini-  
tiate another operation.  
JTAG Register Definition 25.5. FLASHADR: JTAG Flash Address  
Reset Value  
0x00000  
Bit16  
Bit0  
This register holds the address for all JTAG Flash read, write, and erase operations. This register  
autoincrements after each read or write, regardless of whether the operation succeeded or failed.  
Bits15–0: Flash Operation 17-bit Address.  
346  
Rev. 1.4  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
25.3. Debug Support  
Each MCU has on-chip JTAG and debug logic that provides non-intrusive, full speed, in-circuit debug sup-  
port using the production part installed in the end application, via the four pin JTAG I/F. Silicon Labs' debug  
system supports inspection and modification of memory and registers, breakpoints, and single stepping.  
No additional target RAM, program memory, or communications channels are required. All the digital and  
analog peripherals are functional and work correctly (remain synchronized) while debugging. The Watch-  
dog Timer (WDT) is disabled when the MCU is halted during single stepping or at a breakpoint.  
The C8051F120DK is a development kit with all the hardware and software necessary to develop applica-  
tion code and perform in-circuit debug with each MCU in the C8051F12x and C8051F13x device families.  
Each kit includes development software for the PC, a Serial Adapter (for connection to JTAG) and a target  
application board with a C8051F120 installed. Serial cables and wall-mount power supply are also  
included.  
Rev. 1.4  
347  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
NOTES:  
348  
Rev. 1.4  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
DOCUMENT CHANGE LIST  
Revision 1.3 to Revision 1.4  
Added new paragraph tags: SFR Definition and JTAG Register Definition.  
Product Selection Guide Table 1.1: Added RoHS-compliant ordering information.  
Overview Chapter, Figure 1.8, “On-Chip Memory Map”: Corrected on-chip XRAM size to “8192 Bytes”.  
SAR8 Chapter: Table 7.1, “ADC2 Electrical Characteristics”: Track/Hold minimum spec corrected to  
“300 ns”.  
SAR8 Chapter: Table 7.1, “ADC2 Electrical Characteristics”: Total Harmonic Distortion typical spec  
corrected to “-51 dB”.  
Oscillators Chapter, Figure 14.1, “Oscillator Diagram”: Corrected location of IOSCEN arrow.  
CIP51 Chapter, Section 11.3: Added note describing EA change behavior when followed by single-  
cycle instruction.  
CIP51 Chapter, Interrupt Summary Table: Added “SFRPAGE” column and SFRPAGE value for each  
interrupt source.  
CIP-51 Chapter, Figure 11.2, “Memory Map”: Corrected on-chip XRAM size to “8192 Bytes”.  
Port I/O Chapter, Crossbar Priority Figures: Character formatting problem corrected.  
Port I/O Chapter, P7MDOUT Register Description: Removed references to UART and SMBus periph-  
erals.  
Port I/O Chapter, P3MDOUT Register Description: Corrected text to read “P3MDOUT.[7:0]”.  
Timers Chapter: References to “TnCON” corrected to read “TMRnCN”.  
PCA0 Chapter, Section 24.1: Added note about PCA0CN Register and effects of read-modify-write  
instructions on the CF bit.  
Rev. 1.4  
349  
C8051F120/1/2/3/4/5/6/7  
C8051F130/1/2/3  
CONTACT INFORMATION  
Silicon Laboratories Inc.  
4635 Boston Lane  
Austin, TX 78735  
Tel: 1+(512) 416-8500  
Fax: 1+(512) 416-9669  
Toll Free: 1+(877) 444-3032  
Email: MCUinfo@silabs.com  
Internet: www.silabs.com  
The information in this document is believed to be accurate in all respects at the time of publication but is subject to change without  
notice. Silicon Laboratories assumes no responsibility for errors and omissions, and disclaims responsibility for any consequences  
resulting from the use of information included herein. Additionally, Silicon Laboratories assumes no responsibility for the function-  
ing of undescribed features or parameters. Silicon Laboratories reserves the right to make changes without further notice. Silicon  
Laboratories makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose,  
nor does Silicon Laboratories assume any liability arising out of the application or use of any product or circuit, and specifically  
disclaims any and all liability, including without limitation consequential or incidental damages. Silicon Laboratories products are  
not designed, intended, or authorized for use in applications intended to support or sustain life, or for any other application in which  
the failure of the Silicon Laboratories product could create a situation where personal injury or death may occur. Should Buyer  
purchase or use Silicon Laboratories products for any such unintended or unauthorized application, Buyer shall indemnify and  
hold Silicon Laboratories harmless against all claims and damages.  
Silicon Laboratories and Silicon Labs are trademarks of Silicon Laboratories Inc.  
Other products or brandnames mentioned herein are trademarks or registered trademarks of their respective holders  
350  
Rev. 1.4  

相关型号:

C8051F125

Mixed Signal ISP Flash MCU Family
SILICON

C8051F125-GQ

Mixed Signal ISP Flash MCU Family
SILICON

C8051F126

50 MIPS, 128 kB Flash, 10-Bit ADC, 100-Pin Mixed-Signal MCU
SILICON

C8051F126-GQ

Mixed Signal ISP Flash MCU Family
SILICON

C8051F126-GQR

Microcontroller, 8-Bit, FLASH, 50MHz, CMOS, PQFP100, ROHS COMPLIANT, TQFP-100
SILICON

C8051F127

50 MIPS, 128 kB Flash, 10-Bit ADC, 64-Pin Mixed-Signal MCU
SILICON

C8051F127-GQ

Mixed Signal ISP Flash MCU Family
SILICON

C8051F127-GQR

Microcontroller, 8-Bit, FLASH, 50MHz, CMOS, PQFP64, ROHS COMPLIANT, TQFP-64
SILICON

C8051F130

100 MIPS, 128 kB Flash, 10-Bit ADC, 100-Pin Mixed-Signal MCU
SILICON

C8051F130-GQ

Mixed Signal ISP Flash MCU Family
SILICON

C8051F130-GQR

暂无描述
SILICON

C8051F131

100 MIPS, 128 kB Flash, 10-Bit ADC, 64-Pin Mixed-Signal MCU
SILICON