SGM61040 [SGMICRO]

4A High Efficiency Synchronous Buck Converter;
SGM61040
型号: SGM61040
厂家: Shengbang Microelectronics Co, Ltd    Shengbang Microelectronics Co, Ltd
描述:

4A High Efficiency Synchronous Buck Converter

文件: 总19页 (文件大小:1177K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
SGM61040  
4A High Efficiency  
Synchronous Buck Converter  
GENERAL DESCRIPTION  
FEATURES  
The SGM61040 is a high efficiency and miniature size  
synchronous Buck converter for low input voltage  
applications. This high frequency device does not need  
external compensation and is a perfect solution for  
compact designs. The 2.5V to 5.5V input voltage range  
is suitable for almost all available battery chemistries.  
For the SGM61040A version, to keep the high  
efficiency in the whole load range, the device operates  
in pulse width modulation (PWM) mode at normal load  
and automatically enters the power-save mode (PSM)  
at light loads. For the SGM61040B version, the device  
operates in continuous current mode (CCM) at light and  
heavy loads.  
2.5V to 5.5V Input Voltage Range  
Adjustable Output Voltage from 0.6V to VIN  
Adaptive Off-Time Architecture  
Up to 95% Efficiency  
Low RDSON MOSFET Switches (28/13mΩ)  
SGM61040A: 42μA (TYP) Operating Quiescent  
Current  
Ultra-Low Quiescent Current in Shutdown Mode  
Power-Save Mode at Light Loads (SGM61040A)  
Continuous Current Mode (SGM61040B)  
100% Duty Cycle Capability for Low Dropout  
Startup with Pre-biased Output  
Output Discharge Function  
Power Good Output  
This device is based on adaptive off-time architecture,  
but still allows a wide range of output capacitors up to  
150μF and even more. This flexibility makes the device a  
good choice for system power rails supplies. The  
adaptive off-time architecture provides excellent output  
voltage accuracy and superb load transient response.  
Hiccup Mode Short-Circuit Protection  
Thermal Shutdown Protection  
Available in a Green TDFN-2×2-7L Package  
APPLICATIONS  
The SGM61040 is available in a Green TDFN-2×2-7L  
package.  
Battery-Powered Applications  
Point-of-Load  
Processor Power Supplies  
Hard Disk Drives (HDD)/Solid State Drives (SSD)  
TYPICAL APPLICATION  
L1  
0.47μH  
VIN  
VOUT  
1.8V  
VIN  
EN  
SW  
2.5V to 5.5V  
C1  
22μF  
C2  
10μF  
3 × 22μF  
R1  
C3  
6pF  
100kΩ  
SGM61040  
R3  
1MΩ  
FB  
R2  
GND  
PG  
49.9kΩ  
Power Good  
Figure 1. SGM61040 Typical Application Circuit  
SG Micro Corp  
www.sg-micro.com  
NOVEMBER 2022 – REV. A  
4A High Efficiency  
SGM61040  
Synchronous Buck Converter  
PACKAGE/ORDERING INFORMATION  
SPECIFIED  
TEMPERATURE  
RANGE  
PACKAGE  
DESCRIPTION  
ORDERING  
NUMBER  
PACKAGE  
MARKING  
PACKING  
OPTION  
MODEL  
GAM  
XXXX  
SGM61040A  
SGM61040B  
TDFN-2×2-7L  
TDFN-2×2-7L  
SGM61040AXTEP7G/TR  
SGM61040BXTEP7G/TR  
Tape and Reel, 3000  
Tape and Reel, 3000  
-40to +125℃  
-40to +125℃  
03M  
XXXX  
MARKING INFORMATION  
NOTE: XXXX = Date Code, Trace Code and Vendor Code.  
Serial Number  
Y Y Y  
X X X X  
Vendor Code  
Trace Code  
Date Code - Year  
Green (RoHS & HSF): SG Micro Corp defines "Green" to mean Pb-Free (RoHS compatible) and free of halogen substances. If  
you have additional comments or questions, please contact your SGMICRO representative directly.  
OVERSTRESS CAUTION  
ABSOLUTE MAXIMUM RATINGS  
Stresses beyond those listed in Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to  
absolute maximum rating conditions for extended periods  
may affect reliability. Functional operation of the device at any  
conditions beyond those indicated in the Recommended  
Operating Conditions section is not implied.  
Pin Voltages Referred to GND  
VIN, FB, EN, PG.................................................. -0.3V to 6V  
SW (DC) ...................................................-0.3V to VIN + 0.3V  
SW (AC, Less than 10ns) while Switching.............. -3V to 9V  
Package Thermal Resistance  
TDFN-2×2-7L, θJA .................................................... 109/W  
Junction Temperature.................................................+150℃  
Storage Temperature Range .......................-65to +150℃  
ESD SENSITIVITY CAUTION  
Lead Temperature (Soldering, 10s)............................+260℃  
This integrated circuit can be damaged if ESD protections are  
not considered carefully. SGMICRO recommends that all  
integrated circuits be handled with appropriate precautions.  
Failure to observe proper handling and installation procedures  
can cause damage. ESD damage can range from subtle  
performance degradation tocomplete device failure. Precision  
integrated circuits may be more susceptible to damage  
because even small parametric changes could cause the  
device not to meet the published specifications.  
ESD Susceptibility  
HBM.............................................................................4000V  
CDM ............................................................................1000V  
RECOMMENDED OPERATING CONDITIONS  
Input Voltage Range, VIN ....................................2.5V to 5.5V  
Output Voltage Range, VOUT................................. 0.6V to VIN  
PG Pin Sink Current, ISINK_PG ..........................................1mA  
Maximum Pull-Up Voltage for PG, VPG ...........................5.5V  
Operating Junction Temperature Range......-40to +125℃  
DISCLAIMER  
SG Micro Corp reserves the right to make any change in  
circuit design, or specifications without prior notice.  
SG Micro Corp  
www.sg-micro.com  
NOVEMBER 2022  
2
4A High Efficiency  
SGM61040  
Synchronous Buck Converter  
PIN CONFIGURATION  
(TOP VIEW)  
1
2
3
4
EN  
PG  
7
VIN  
6
5
SW  
FB  
GND  
NC  
TDFN-2×2-7L  
PIN DESCRIPTION  
PIN  
NAME  
I/O  
DESCRIPTION  
Active High Device Enable Input Pin. Pull this pin to logic high to enable the device and pull it  
low to disable it. An internal 550kΩ (TYP) pull-down resistor disables the device by default. This  
resistor is removed when the device is enabled.  
1
EN  
I
Open-Drain Power Good Output Pin. This output is released to go high if the device is in power  
good status. Pull up this pin to a 5.5V or less voltage rail. It can be left open if not used.  
2
3
4
5
6
7
PG  
FB  
O
I
Feedback Pin. Connect a resistor divider between the output voltage sense point and ground,  
and tap it to the FB pin to set the output voltage.  
NC  
G
P
P
No Connection.  
GND  
SW  
VIN  
Ground Pin.  
Switch Node of the Power Converter. Connect it to the output inductor.  
Input Voltage Pin.  
NOTE: I = input, O = output, P = power, G = ground.  
SG Micro Corp  
www.sg-micro.com  
NOVEMBER 2022  
3
4A High Efficiency  
SGM61040  
Synchronous Buck Converter  
ELECTRICAL CHARACTERISTICS  
(VIN = 5V and TJ = -40to +125, all typical values are measured at TJ = +25, unless otherwise noted.)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Supply  
Input Voltage Range  
VIN  
IQ  
2.5  
5.5  
70  
V
Enabled, no load, no switching (SGM61040A)  
Enabled, no load, no switching (SGM61040B)  
TJ = +25, Disabled (EN = Low)  
VIN falling  
42  
420  
0.06  
2.2  
Quiescent Current into VIN  
µA  
600  
1.5  
2.3  
Shutdown Current into VIN  
Under-Voltage Lockout Threshold  
Under-Voltage Lockout Hysteresis  
Thermal Shutdown Threshold  
Thermal Shutdown Hysteresis  
EN Input  
ISD  
µA  
V
VUVLO  
2.1  
1.2  
VUVLO_HYS VIN rising  
210  
160  
25  
mV  
TJ rising  
TJSD  
TJ falling  
Logic High Input Voltage  
VIH  
VIL  
TJ = +25, VIN = 2.5V to 5.5V  
V
V
Logic Low Input Voltage  
TJ = +25, VIN = 2.5V to 5.5V  
EN = High  
0.4  
1
Input Leakage Current (into EN Pin)  
Pull-Down Resistance at EN Pin  
Soft-Start, Power Good  
IEN_LKG  
RPD  
0.01  
550  
µA  
kΩ  
EN = Low  
Time interval from EN rising edge to  
VOUT reaching 95% of nominal  
Soft-Start Time  
tSS  
0.8  
ms  
VOUT rising, as percentage of the nominal VOUT  
VOUT falling, as percentage of the nominal VOUT  
ISINK = 1mA, TJ = -40to +125℃  
95%  
90%  
0.14  
0.01  
VOUT  
(set)  
Power Good Threshold  
VPG  
PG Low State Output Voltage  
PG Leakage Current (into PG Pin)  
Output and Feedback  
VPG_OL  
IPG_LKG  
0.3  
0.5  
V
VPG = 5V, TJ = -40to +125℃  
µA  
TJ = +25℃  
596  
594  
592  
600  
604  
606  
608  
100  
PWM mode,  
VIN = 2.5V to 5.5V  
Feedback Regulation Voltage  
VFB  
TJ = 0to +85℃  
mV  
TJ = -40to +125℃  
Feedback Input Leakage Current  
Output Discharge Resistor  
IFB_LKG  
RDIS  
VFB = 1V  
10  
43  
nA  
EN = Low, VOUT = 1.8V  
Power Switches  
High-side MOSFET On-Resistance  
Low-side MOSFET On-Resistance  
High-side MOSFET Current Limit  
TJ = +25, ISW = 500mA  
TJ = +25, ISW = 500mA  
28  
13  
35  
20  
mΩ  
mΩ  
A
RDSON  
ILIM  
4.5  
5.8  
2.5  
2.0  
7.1  
IOUT = 1A (SGM61040A)  
IOUT = 1A (SGM61040B)  
PWM Switching Frequency  
fSW  
MHz  
SG Micro Corp  
www.sg-micro.com  
NOVEMBER 2022  
4
4A High Efficiency  
SGM61040  
Synchronous Buck Converter  
TYPICAL PERFORMANCE CHARACTERISTICS  
TA = +25, VIN = 5V, VOUT = 1.8V and L1 = 0.47μH, unless otherwise noted.  
Efficiency vs. Load Current (SGM61040A)  
Efficiency vs. Load Current (SGM61040B)  
VOUT = 0.9V  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
VIN = 2.5V  
VIN = 3.3V  
VIN = 4.2V  
VIN = 2.5V  
VIN = 3.3V  
VIN = 4.2V  
VIN = 5V  
VIN = 5V  
VOUT = 0.9V  
4
4
0.001  
0.01  
0.1  
1
0.001  
0.01  
0.1  
1
Load Current (A)  
Load Current (A)  
Efficiency vs. Load Current (SGM61040A)  
Efficiency vs. Load Current (SGM61040B)  
VOUT = 1.2V  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
VIN = 2.5V  
VIN = 3.3V  
VIN = 4.2V  
VIN = 2.5V  
VIN = 3.3V  
VIN = 4.2V  
V
IN = 5V  
VIN = 5V  
VOUT = 1.2V  
0.001  
0.01  
0.1  
1
4
4
0.001  
0.01  
0.1  
1
Load Current (A)  
Load Current (A)  
Efficiency vs. Load Current (SGM61040A)  
Efficiency vs. Load Current (SGM61040B)  
VOUT = 1.8V  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
VIN = 2.5V  
VIN = 3.3V  
VIN = 4.2V  
VIN = 2.5V  
VIN = 3.3V  
VIN = 4.2V  
V
IN = 5V  
VIN = 5V  
VOUT = 1.8V  
0.001  
4
0.01  
0.1  
1
4
0.001  
0.01  
0.1  
1
Load Current (A)  
Load Current (A)  
SG Micro Corp  
www.sg-micro.com  
NOVEMBER 2022  
5
4A High Efficiency  
SGM61040  
Synchronous Buck Converter  
TYPICAL PERFORMANCE CHARACTERISTICS (continued)  
TA = +25, VIN = 5V, VOUT = 1.8V and L1 = 0.47μH, unless otherwise noted.  
Efficiency vs. Load Current (SGM61040A)  
Efficiency vs. Load Current (SGM61040B)  
VOUT = 3.3V  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
VIN = 3.6V  
IN = 4.2V  
VIN = 3.6V  
IN = 4.2V  
V
V
VIN = 5V  
VIN = 5V  
VOUT = 3.3V  
0.001  
4
0.001  
0.01  
0.1  
1
4
0.01  
0.1  
1
Load Current (A)  
Load Current (A)  
Switching Frequency vs. Input Voltage (SGM61040A)  
IOUT = 2A  
Switching Frequency vs. Input Voltage (SGM61040B)  
IOUT = 2A  
3500  
3000  
2500  
2000  
1500  
1000  
500  
3500  
3000  
2500  
2000  
1500  
1000  
500  
VOUT = 1.2V  
VOUT = 1.8V  
VOUT = 2.5V  
VOUT = 1.2V  
VOUT = 1.8V  
VOUT = 2.5V  
V
OUT = 3.3V  
V
OUT = 3.3V  
0
0
2.5  
3
3.5  
4
4.5  
5
5.5  
2.5  
3
3.5  
4
4.5  
5 5.5  
Input Voltage (V)  
Input Voltage (V)  
Switching Frequency vs. Load Current (SGM61040A)  
VIN = 5V  
Switching Frequency vs. Load Current (SGM61040B)  
VIN = 5V  
3500  
3000  
2500  
2000  
1500  
1000  
500  
3500  
3000  
2500  
2000  
1500  
1000  
500  
VOUT = 1.2V  
VOUT = 1.8V  
VOUT = 2.5V  
VOUT = 1.2V  
VOUT = 1.8V  
VOUT = 2.5V  
V
OUT = 3.3V  
V
OUT = 3.3V  
0
0
0
0.4 0.8 1.2 1.6  
2
2.4 2.8 3.2 3.6  
4
0
0.4 0.8 1.2 1.6  
2
2.4 2.8 3.2 3.6  
4
Load Current (A)  
Load Current (A)  
SG Micro Corp  
www.sg-micro.com  
NOVEMBER 2022  
6
4A High Efficiency  
SGM61040  
Synchronous Buck Converter  
TYPICAL PERFORMANCE CHARACTERISTICS (continued)  
TA = +25, VIN = 5V, VOUT = 1.8V and L1 = 0.47μH, unless otherwise noted.  
Line Regulation vs. Input Voltage (SGM61040A)  
VOUT = 1.8V  
Line Regulation vs. Input Voltage (SGM61040B)  
VOUT = 1.8V  
0.5  
0.4  
0.3  
0.2  
0.1  
0
0.5  
0.4  
0.3  
0.2  
0.1  
0
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
IOUT = 0.01A  
IOUT = 2A  
IOUT = 0.01A  
IOUT = 2A  
I
OUT = 2A  
I
OUT = 3A  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
Input Voltage (V)  
Input Voltage (V)  
Load Regulation vs. Load Current (SGM61040A)  
VOUT = 1.8V  
Load Regulation vs. Load Current (SGM61040B)  
VOUT = 1.8V  
1
0.8  
0.6  
0.4  
0.2  
0
1
0.8  
0.6  
0.4  
0.2  
0
-0.2  
-0.4  
-0.6  
-0.8  
-1  
-0.2  
-0.4  
-0.6  
-0.8  
-1  
VIN = 2.5V  
VIN = 3.3V  
VIN = 2.5V  
VIN = 3.3V  
V
IN = 5V  
V
IN = 5V  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
Load Current (A)  
Load Current (A)  
SG Micro Corp  
www.sg-micro.com  
NOVEMBER 2022  
7
4A High Efficiency  
SGM61040  
Synchronous Buck Converter  
TYPICAL PERFORMANCE CHARACTERISTICS (continued)  
TA = +25, VIN = 5V, VOUT = 1.8V, L1 = 0.47μH and CFF = 6pF, unless otherwise noted.  
Typical Application (SGM61040A)  
Typical Application (SGM61040B)  
VSW  
VSW  
AC Coupled  
AC Coupled  
VO  
VO  
IL  
IL  
ILOAD = 0.1A  
ILOAD = 0.1A  
Time (2μs/div)  
Time (200ns/div)  
Load Transient (SGM61040A)  
Load Transient (SGM61040B)  
ILOAD  
VO  
ILOAD  
VO  
AC Coupled  
AC Coupled  
VSW  
VSW  
IL  
IL  
ILOAD = 0.6A to 3.4A, Slew Rate = 6A/µs  
ILOAD = 0.6A to 3.4A, Slew Rate = 6A/µs  
Time (5μs/div)  
Time (5μs/div)  
Short-Circuit, Entry (SGM61040A)  
Short-Circuit, Entry (SGM61040B)  
VPG  
VPG  
VO  
VO  
IL  
IL  
Time (2ms/div)  
Time (2ms/div)  
SG Micro Corp  
NOVEMBER 2022  
www.sg-micro.com  
8
4A High Efficiency  
SGM61040  
Synchronous Buck Converter  
TYPICAL PERFORMANCE CHARACTERISTICS (continued)  
TA = +25, VIN = 5V, VOUT = 1.8V, L1 = 0.47μH and CFF = 6pF, unless otherwise noted.  
Short-Circuit Recovery (SGM61040A)  
Short-Circuit Recovery (SGM61040B)  
VPG  
VPG  
VO  
VO  
IL  
IL  
Time (2ms/div)  
Time (2ms/div)  
Start-up with Load (SGM61040A)  
Start-up with Load (SGM61040B)  
VEN  
VPG  
VO  
IL  
Time (200μs/div)  
Time (200μs/div)  
Start-up without Load (SGM61040A)  
Start-up without Load (SGM61040B)  
VEN  
VPG  
VEN  
VPG  
VO  
VO  
IL  
IL  
Time (200μs/div)  
Time (200μs/div)  
SG Micro Corp  
www.sg-micro.com  
NOVEMBER 2022  
9
4A High Efficiency  
SGM61040  
Synchronous Buck Converter  
TYPICAL PERFORMANCE CHARACTERISTICS (continued)  
TA = +25, VIN = 5V, VOUT = 1.8V, L1 = 0.47μH and CFF = 6pF, unless otherwise noted.  
Shutdown with Load (SGM61040A)  
Shutdown with Load (SGM61040B)  
VEN  
VPG  
VEN  
VPG  
VO  
VO  
IL  
IL  
Time (50μs/div)  
Time (50μs/div)  
Shutdown without Load (SGM61040A)  
Shutdown without Load (SGM61040B)  
VEN  
VPG  
VEN  
VPG  
VO  
VO  
IL  
IL  
Time (2ms/div)  
Time (2ms/div)  
SG Micro Corp  
www.sg-micro.com  
NOVEMBER 2022  
10  
4A High Efficiency  
SGM61040  
Synchronous Buck Converter  
FUNCTIONAL BLOCK DIAGRAM  
VIN  
Current Sense  
Soft-Start  
Hiccup Counter  
PWM  
Comparator  
+
+
+
-
SW  
Control Logic  
and Driver  
R
S
Q
-
VREF  
gm  
FB  
NC  
VZCD  
Zero Current Detector  
GND  
Off-Time  
Calculation  
Output  
Discharge Logic  
EN/TSD/OVP  
Control Contains  
UVLO, TSD, etc.  
EN  
PG  
550kΩ  
V
REF × 95%  
FB  
+
-
Figure 2. SGM61040 Block Diagram  
SG Micro Corp  
www.sg-micro.com  
NOVEMBER 2022  
11  
4A High Efficiency  
SGM61040  
Synchronous Buck Converter  
DETAILED DESCRIPTION  
The PG output is useful for power supply sequencing  
as well. Usually, the multiple power rails of a system  
need to be powered in a specific sequence for proper  
startup. The PG output of the leading power supply is  
connected to the EN input of the subsequent power  
supply to implement such sequencing.  
Overview  
The SGM61040 is a high efficiency Buck switching  
converter optimized for handheld battery-powered  
applications. It operates at a quasi-fixed frequency of  
2.5MHz (SGM61040B 2MHz) and uses adaptive  
off-time PWM control for the moderate to heavy load  
range. This allows using a small inductor and small  
capacitors for compact designs. At light load condition,  
the SGM61040A operates in power-save mode to  
reduce the switching frequency and losses for longer  
battery life. The power-save mode quiescent current is  
42μA (TYP) while the shutdown current is only 0.06μA  
(TYP). For the SGM61040B, it operates in continuous  
current mode from no load to heavy loads.  
Table 1. PG Output State in Different Conditions  
PG State  
Reason  
Condition(s)  
High-Z Low  
EN = High, VFB ≥ VPG  
EN = High, VFB ≤ VPG  
EN = Low  
Output Voltage  
Shutdown by EN  
Thermal Shutdown  
UVLO  
TJ > TJSD  
0.6V < VIN < VUVLO  
VIN ≤ 0.6V  
Power Supply Removal  
Under-Voltage Lockout (UVLO)  
Operating with insufficient supply voltage can cause  
device malfunction or failure. The UVLO protection  
shuts down the device if the input voltage is below the  
VUVLO threshold. The UVLO comparator has a 210mV  
hysteresis band.  
Soft-Start and Pre-biased Output  
An 800μs internal soft-start circuit is designed to  
prevent input inrush current and voltage drops during  
startup. This circuit slowly ramps up the error amplifier  
reference voltage (VREF = 0.6V) after exiting the  
shutdown state or under-voltage lockout (UVLO). Slow  
increase of the output voltage prevents the excessive  
inrush current for charging the output capacitors and  
creates a smooth output voltage rise. The other  
advantage of a soft-start is avoiding supply voltage  
drops especially on the high internal impedance  
sources such as the primary cells and rechargeable  
batteries.  
Device Enable and Disable  
When the input voltage is valid, pulling the EN input to  
logic high will enable the device, and pulling it to logic  
low will shut it down. In the shutdown mode, the  
switches and all control circuits are turned off to reduce  
the device current to 0.06μA (TYP). A 550kΩ pull-down  
resistor is internally placed between EN and GND pins  
when the device is disabled.  
During shutdown, an internal 43Ω resistor is connected  
between SW and GND pins and softly discharges the  
output capacitors. This discharge function is also  
activated when the shutdown is caused by a thermal  
shutdown, UVLO, or short-circuit protection.  
The SGM61040 is also capable of starting with a  
pre-biased output capacitor when it is powered up or  
enabled. When the device is turning on, a bias on the  
output may exist due to the other sources connected to  
the load(s) such as multi-voltage ICs or simply because  
of residual charges on the output capacitors. For  
example, when a device with light load is disabled and  
re-enabled, the output may not drop during the off  
period and the device must restart under pre-biased  
output condition. Without the pre-biased capability, the  
device may not be able to start up properly. The output  
ramp is automatically initiated with the bias voltage and  
ramps up to the nominal output value.  
Power Good Output (PG)  
The PG pin is an open-drain output with 1mA sinking  
capability. This pin should be pulled up with an external  
resistor to a logic high rail no more than 5.5V unless it  
is not used. The PG signal is in high-impedance state  
when the output voltage is in regulation range. PG  
remains low until VOUT exceeds 95% of its nominal (set)  
value and goes low if VOUT drops below 90% of its  
nominal value. Table 1 shows how the PG state is  
changed in different conditions. VPG is the threshold of  
the PG hysteretic comparator. It has a 5% hysteresis  
band and goes high when VFB rises above 95% of the VREF  
.
SG Micro Corp  
www.sg-micro.com  
NOVEMBER 2022  
12  
 
4A High Efficiency  
SGM61040  
Synchronous Buck Converter  
DETAILED DESCRIPTION (continued)  
high-side switch is always turned on, and the output  
voltage is determined by the load current times the  
RDSON composed by the high-side switch and inductor.  
Power-Save Mode (SGM61040A)  
At light load conditions, the SGM61040A shifts to the  
power-save mode to reduce the switching frequency  
and minimize the losses. It also shuts down most of the  
internal circuits in power-save mode. In this mode, one  
or more PWM pulses are sent to charge the output  
capacitor and then the switches are kept off. The output  
capacitor voltage gradually drops due to small load  
current and when it falls below the nominal voltage  
threshold, the PWM pulses resume. If the load is still  
low, the output will go slightly higher than normal value  
again and the switches will be turned off. In power-save  
mode, the output voltage is slightly higher than nominal  
output voltage. This effect can be mitigated by a larger  
output capacitor.  
Current Limit and Hiccup Mode  
Short-Circuit Protection  
Limiting the switch current protects the switch itself and  
also prevents over-current in the source and the  
inductor. If the high-side (HS) switch current exceeds  
the ILIM threshold, HS switch is turned off and the  
low-side (LS) switch will be turned on to reduce the  
inductor current and limit the peak.  
If 2ms consecutive repetition of this event occurs, the  
controller will stop switching and turns the output  
discharge circuit on. Then a new startup will be  
automatically initiated (hiccup) after 2.5ms (TYP). The  
hiccup repeats until the overload or short-circuit fault is  
cleared.  
Continuous Conduction Mode (SGM61040B)  
In continuous conduction mode (CCM), the frequency  
is fixed and the output voltage ripple will be minimal.  
The maximum output current of 4A is supplied in CCM.  
Thermal Shutdown  
Thermal protection is designed to protect the die  
against overheating damage. If the junction  
temperature exceeds TJSD threshold, the switching  
stops and the device shuts down. Automatic recovery  
Low Dropout Operation (100% Duty Cycle)  
When the input voltage reduces, the on-time increases.  
When the input voltage is lower than the regulation  
output voltage, the output voltage drops, and the  
SGM61040 goes into 100% duty cycle mode. The  
with  
a
soft-start will begin when the junction  
temperature drops below the 135falling threshold.  
SG Micro Corp  
www.sg-micro.com  
NOVEMBER 2022  
13  
4A High Efficiency  
SGM61040  
Synchronous Buck Converter  
APPLICATION INFORMATION  
In this section, power supply design with the SGM61040 synchronous Buck converter and selection of the external  
component will be explained based on the typical application that is applicable for various input and output voltage  
combinations.  
L1  
0.47μH  
VIN  
VOUT  
1.8V  
VIN  
EN  
SW  
2.5V to 5.5V  
C4  
22μF  
C5  
C6  
C1  
22μF  
C2  
10μF  
R1  
C3  
6pF  
22μF 22μF  
100kΩ  
SGM61040  
R3  
1MΩ  
FB  
R2  
GND  
PG  
49.9kΩ  
Power Good  
Figure 3. SGM61040 Circuit for 1.8V Output  
Design Requirements  
10μF ceramic capacitor with X5R or better dielectric  
and 0805 or smaller size is sufficient in most cases. A  
larger value can be selected to reduce the input current  
ripple.  
Table 2 summarizes the requirements for this example  
as shown in Figure 3. The selected components are  
given in Table 3.  
Table 2. Design Parameters for the Application Example  
Inductor Selection (L)  
The important factors for inductor selection are  
inductance (L), saturation current (ISAT), RMS rating  
(IRMS), DC resistance (DCR) and dimensions. Use  
Equation 1 to find the inductor peak current (IL_MAX) and  
peak-to-peak ripple current (∆IL) in static conditions:  
Design Parameter  
Input Voltage  
Example Value  
2.5V to 5.5V  
1.8V  
Output Voltage  
Output Current  
4A  
Output Ripple Voltage  
< 30mV  
ΔIL  
IL_MAX = IO_MAX  
+
2
1D  
L× fSW  
Table 3. Selected Components for the Design Example  
(1)  
ΔIL = VOUT  
×
Ref  
Description  
Manufacturer  
C1, C4,  
C5, C6  
22µF, 10V, X5R, 0805, Ceramic  
P/N: GRM21BR61A226ME44L  
10µF, 10V, X7R, 0805, Ceramic  
P/N: GRM21BR71A106KA73L  
IO_MAX is the maximum load current, D = VOUT/VIN represents  
duty cycle and fSW is the switching frequency.  
Murata  
C2  
C3  
L1  
Murata  
Standard  
WE  
ISAT should be higher than IL_MAX, and sufficient margin  
should be reserved. Typically, the saturation current  
above high-side current limit is enough, and a 10% to  
30% ripple current is selected to calculate the  
inductance. Larger inductance values reduce the ripple  
current but lead to sluggish transient response.  
6pF, 50V, C0G, 0603, Ceramic  
0.47μH, DCRTYP = 7.3mΩ, ISAT(10%) = 9.6A  
P/N:744373340047  
Value Depends on VOUT  
,
R1  
Standard  
100k, 1%, 0603, 1/16W Chip Resistor  
49.9kΩ, 1%, 0603, 1/16W Chip Resistor  
1MΩ, 5%, 0603, 1/16W Chip Resistor  
Output Capacitor Selection (COUT  
)
R2  
R3  
Standard  
Standard  
This device is capable to operate with low ESR ceramic  
capacitors to get low voltage ripple and fast response. 3 × 22μF  
capacitors with X7R or X5R dielectric type are  
recommended. If an output capacitor larger than 150μF  
is used, appropriate startup current reduction should be  
considered to avoid current limiting or false triggering of  
the short-circuit protection during startup.  
Input Capacitor Selection (CIN)  
High frequency decoupling input capacitors with low  
ESR are needed to circulate and absorb the high  
frequency switching currents of the converter. Place  
this capacitor right beside the VIN and GND pins. A  
SG Micro Corp  
www.sg-micro.com  
NOVEMBER 2022  
14  
 
 
 
4A High Efficiency  
SGM61040  
Synchronous Buck Converter  
APPLICATION INFORMATION (continued)  
Output Voltage Setting  
L1 = 0.47µH, COUT = 3 × 22µF and C3 = 6pF are the  
Use Equation 2 to select the R1/R2 resistor divider to  
set the VOUT. Select the R2 value less than 100kΩ to  
compromise noise sensitivity and light load losses.  
recommended values for the typical application.  
Table 4. Proper Output Capacitor and Inductor Combination  
L1  
COUT  
22µF × 3  
100µF  
C3  
6pF  
R1  
R2  
R
1   
VOUT = VFB × 1+  
= 0.6V × 1+  
(2)  
R2  
0.47µH (1)  
150µF  
Output Filter Design  
Table 4 can be used to select the proper LC filter  
components for most design requirements. The  
inductor initial tolerance can be as high as -30% to +20%  
of the nominal value and proper current derating is  
usually required. Bias voltage may cause significant  
capacitance drops in the ceramic capacitors. The  
effective deviation of a ceramic capacitor can be as  
high as -50% to +20% of the nominal value.  
6pF  
22µF × 3  
100µF  
1µH (1)  
150µF  
NOTE:  
1. SGM61040A is recommend to use smaller inductor  
at low output voltage, such as 0.24μH.  
SG Micro Corp  
www.sg-micro.com  
NOVEMBER 2022  
15  
 
4A High Efficiency  
SGM61040  
LAYOUT  
Synchronous Buck Converter  
A good printed-circuit-board (PCB) layout is a critical element of any high performance design. Follow the guidelines  
below for designing a good layout for the SGM61040.  
Place the input capacitor close to the device with the shortest possible connection traces.  
Share the same GND return point for the input and output capacitors and locate it as close as possible to the  
device GND pin to minimize the AC current loops. Place the inductor close to the switching node and connect it  
with a short trace to minimize the parasitic capacitances coupled to the SW node.  
Keep the signal traces like the FB sense line away from SW or other noisy sources.  
Use GND planes in mid-layers for shielding and minimizing the ground potential drifts.  
Refer to Figure 4 for a recommended PCB layout.  
Top Layer  
Bottom Layer  
Figure 4. PCB Layout  
REVISION HISTORY  
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.  
Changes from Original (NOVEMBER 2022) to REV.A  
Page  
Changed from product preview to production data .................................................................................................................................................All  
SG Micro Corp  
www.sg-micro.com  
NOVEMBER 2022  
16  
 
PACKAGE INFORMATION  
PACKAGE OUTLINE DIMENSIONS  
TDFN-2×2-7L  
D
b1  
e1  
L1  
E
L
PIN 1#  
e
b
BOTTOM VIEW  
TOP VIEW  
0.60  
0.30  
1.50  
A
1.35  
0.50  
A1  
A2  
0.60  
0.25  
RECOMMENDED LAND PATTERN (Unit: mm)  
SIDE VIEW  
Dimensions In Millimeters  
Symbol  
MIN  
MOD  
0.750  
MAX  
0.800  
0.050  
A
A1  
A2  
b
0.700  
0.000  
-
0.200 REF  
0.250  
0.200  
0.250  
1.900  
1.900  
0.300  
0.350  
2.100  
2.100  
b1  
D
0.300  
2.000  
E
2.000  
e
0.500 BSC  
0.600 BSC  
0.400  
e1  
L
0.300  
1.200  
0.500  
1.400  
L1  
1.300  
NOTE: This drawing is subject to change without notice.  
SG Micro Corp  
TX00261.000  
www.sg-micro.com  
PACKAGE INFORMATION  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
P2  
P0  
W
Q2  
Q4  
Q2  
Q4  
Q2  
Q4  
Q1  
Q3  
Q1  
Q3  
Q1  
Q3  
B0  
Reel Diameter  
P1  
A0  
K0  
Reel Width (W1)  
DIRECTION OF FEED  
NOTE: The picture is only for reference. Please make the object as the standard.  
KEY PARAMETER LIST OF TAPE AND REEL  
Reel Width  
Reel  
Diameter  
A0  
B0  
K0  
P0  
P1  
P2  
W
Pin1  
Package Type  
W1  
(mm)  
(mm) (mm) (mm) (mm) (mm) (mm) (mm) Quadrant  
TDFN-2×2-7L  
7″  
9.5  
2.30  
2.30  
1.00  
4.0  
4.0  
2.0  
8.0  
Q1  
SG Micro Corp  
TX10000.000  
www.sg-micro.com  
PACKAGE INFORMATION  
CARTON BOX DIMENSIONS  
NOTE: The picture is only for reference. Please make the object as the standard.  
KEY PARAMETER LIST OF CARTON BOX  
Length  
(mm)  
Width  
(mm)  
Height  
(mm)  
Reel Type  
Pizza/Carton  
7″ (Option)  
7″  
368  
442  
227  
410  
224  
224  
8
18  
SG Micro Corp  
www.sg-micro.com  
TX20000.000  

相关型号:

SGM61130

4.5V to 18V Input, 4A, Synchronous Buck Converter
SGMICRO

SGM61163

4.5V to 18V Input, 6A, Synchronous Buck Converter
SGMICRO

SGM61164

4.5V to 18V Input, 6A, Synchronous Buck Converter
SGMICRO

SGM61220

4.5V to 28V Input, 2A Output, Synchronous Buck Converter
SGMICRO

SGM61230

4.5V to 28V Input, 3A Output, Synchronous Buck Converter
SGMICRO

SGM61232

28V, 3A, Buck DC/DC Converter
SGMICRO

SGM61234

28V, 2A, 5V Fixed Output, Non-Synchronous Buck Converter
SGMICRO

SGM6130

3A, 28.5V, 385kHz Buck Converter
SGMICRO

SGM6132

3A, 28.5V, 1.4MHz Buck Converter
SGMICRO

SGM61410

1.2MHz, 600mA, 42V Synchronous Buck Converter
SGMICRO

SGM61411

150kHz, 600mA, 42V Synchronous Buck Converter
SGMICRO

SGM61412

1.2MHz, 1.2A, 42V Synchronous Buck Converter
SGMICRO