SGM6029 [SGMICRO]

Ultra-Low Quiescent Current, Synchronous Buck Converter;
SGM6029
型号: SGM6029
厂家: Shengbang Microelectronics Co, Ltd    Shengbang Microelectronics Co, Ltd
描述:

Ultra-Low Quiescent Current, Synchronous Buck Converter

文件: 总24页 (文件大小:1451K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
SGM6029  
Ultra-Low Quiescent Current,  
Synchronous Buck Converter  
GENERAL DESCRIPTION  
FEATURES  
The SGM6029 family is a low voltage, efficient and  
miniature synchronous Buck converter with ultra-low  
quiescent current. Operating at high switching  
frequency (4.0MHz, TYP), miniature inductors and  
capacitors can be used to achieve minimal solution size.  
The rated load current is from 0.6A to 1A depending on  
the input voltage and operating frequency. For high  
light-load efficiency, the operating mode can smoothly  
and automatically change between power-save mode  
and PWM.  
1.95V to 5.5V Input Voltage Range  
2.3μA (TYP) Quiescent Current  
Selectable Switching Frequency of 4.0MHz or  
1.5MHz  
0.4V Internal Reference Voltage  
0.6A to 1A Peak Output Current  
2% Output Voltage Regulation Accuracy Full  
Temperature Range  
Programmable Light Load PSM or FPWM  
Simple Output Voltage Programming with  
Integrated R2D Converter  
The dual-role VSEL/MODE pin sets the output voltage  
to one of the 16 preset values by sensing an external  
resistor during startup using an integrated resistor to  
digital (R2D) converter. After startup, this pin acts as  
MODE input and applying a logic high on it will force the  
device in the pulse width modulation (PWM) mode. This  
will allow using the same part for a wide range of  
voltage rails in different applications and offer a better  
output accuracy compared to the conventional external  
feedback resistor divider. In the forced-PWM (FPWM),  
the device switches at 4.0MHz (A, B and C versions) or  
1.5MHz (D and E versions). High switching frequency  
reduces the output ripple, but at lighter loads, sacrifices  
the efficiency a little bit.  
16 Selectable + 1 Fixed Output Voltage Levels:  
SGM6029A (4.0MHz): 0.4V to 0.775V  
SGM6029B (4.0MHz): 0.8V to 1.55V  
SGM6029C (4.0MHz): 1.8V to 3.3V  
SGM6029D (1.5MHz): 0.4V to 0.775V  
SGM6029E (1.5MHz): 0.8V to 1.55V  
Enable Pin with Auto Pull-Down during Startup  
Miniature 0201 Optimized Pinout  
Output Discharge Feature (When Disabled)  
100% Duty Cycle Operation Capability  
Available in a Green WLCSP-0.74×1.09-6B Package  
APPLICATIONS  
Wearable Electronics  
IoT Applications  
The SGM6029 is available in a Green WLCSP-  
0.74×1.09-6B package.  
2 × 1.5V Battery Powered Applications  
Smart Phones  
TYPICAL APPLICATION  
L1  
0.47μH  
L1  
0.47μH  
VIN  
VOUT  
0.8V to 1.55V  
VIN  
1.2V fixed VOUT  
1.95V to 5.5V  
1.95V to 5.5V  
VIN  
SW  
VIN  
EN  
SW  
SGM6029B  
SGM6029B  
VOS  
VOS  
CIN  
COUT  
10μF  
CIN  
4.7μF  
COUT  
PWM  
VSEL/  
MODE  
VSEL/  
MODE  
4.7μF  
10μF  
PFM  
EN  
*
ON  
ON  
RVSEL  
OFF  
OFF  
GND  
GND  
* 16 selectable VOUT  
Figure 1. Typical Application Circuits  
SG Micro Corp  
www.sg-micro.com  
SEPTEMBER2022REV. A  
Ultra-Low Quiescent Current,  
Synchronous Buck Converter  
SGM6029  
PACKAGE/ORDERING INFORMATION  
SPECIFIED  
TEMPERATURE  
RANGE  
PACKAGE  
DESCRIPTION  
ORDERING  
NUMBER  
PACKAGE  
MARKING  
PACKING  
OPTION  
MODEL  
XXXX  
SVQ  
SGM6029A (1)  
SGM6029B  
WLCSP-0.74×1.09-6B  
WLCSP-0.74×1.09-6B  
WLCSP-0.74×1.09-6B  
WLCSP-0.74×1.09-6B  
WLCSP-0.74×1.09-6B  
-40to +85℃  
-40to +85℃  
-40to +85℃  
-40to +85℃  
-40to +85℃  
SGM6029AYG/TR  
SGM6029BYG/TR  
SGM6029CYG/TR  
SGM6029DYG/TR  
SGM6029EYG/TR  
Tape and Reel, 3000  
Tape and Reel, 3000  
Tape and Reel, 3000  
Tape and Reel, 3000  
Tape and Reel, 3000  
XXXX  
SVR  
XXXX  
SVS  
SGM6029C  
XXXX  
SVT  
SGM6029D (1)  
SGM6029E (1)  
XXXX  
SVU  
NOTE: 1. Product Preview.  
MARKING INFORMATION  
NOTE: XXXX = Date Code, Trace Code and Vendor Code.  
X X X X  
Vendor Code  
Trace Code  
Date Code - Year  
Green (RoHS & HSF): SG Micro Corp defines "Green" to mean Pb-Free (RoHS compatible) and free of halogen substances. If  
you have additional comments or questions, please contact your SGMICRO representative directly.  
DEVICE DESCRIPTION  
Selectable  
Output Voltages  
with RVSEL  
Function  
VSEL/MODE  
IOUT  
(A)  
fSW  
(MHz)  
Soft-Start  
tSS (µs) Discharge  
Output  
Device  
Fixed VOUT (V)  
0.7  
0.4V ~ 0.775V  
in 25mV steps  
SGM6029A  
SGM6029B  
SGM6029C  
SGM6029D  
SGM6029E  
VSEL + MODE  
VSEL + MODE  
VSEL + MODE  
VSEL + MODE  
VSEL + MODE  
1
1
4.0  
4.0  
4.0  
1.5  
1.5  
200  
200  
400  
200  
200  
Yes  
Yes  
Yes  
Yes  
Yes  
(VSEL/MODE = GND)  
1.2  
0.8V ~ 1.55V  
in 50mV steps  
(VSEL/MODE = GND)  
1.8  
1.8V ~ 3.3V  
in 100mV steps  
1
(VSEL/MODE = GND)  
0.7  
0.4V ~ 0.775V  
in 25mV steps  
0.6  
0.6  
(VSEL/MODE = GND)  
1.2  
0.8V ~ 1.55V  
in 50mV steps  
(VSEL/MODE = GND)  
SG Micro Corp  
www.sg-micro.com  
SEPTEMBER 2022  
2
 
Ultra-Low Quiescent Current,  
Synchronous Buck Converter  
SGM6029  
ABSOLUTE MAXIMUM RATINGS  
RECOMMENDED OPERATING CONDITIONS  
Input Voltage Range, VIN..................................1.95V to 5.5V  
Output Current, IOUT (MAX)  
VIN Voltage.......................................................... -0.3V to 6V  
SW Voltage...............................................-0.3V to VIN + 0.3V  
SW (AC), Less than 10ns, while Switching Voltage  
................................................................................ -1V to 8V  
EN, VSEL/MODE Voltages.......................-0.3V to VIN + 0.3V  
VOS Voltage........................................................ -0.3V to 5V  
Package Thermal Resistance  
SGM6029A/SGM6029B/SGM6029C, VIN 2.3V............ 1A  
SGM6029A/SGM6029B/SGM6029C, VIN < 2.3V......... 0.7A  
SGM6029D/SGM6029E .............................................. 0.6A  
Effective Inductance, L  
SGM6029A/B/C....................0.33µH to 1µH, 0.47µH (TYP)  
SGM6029D/SGM6029E ........0.7µH to 1.2µH, 1.0µH (TYP)  
Effective Output Capacitance, COUT  
WLCSP-0.74×1.09-6B, θJA....................................... 214/W  
Junction Temperature.................................................+150℃  
Storage Temperature Range .......................-65to +150℃  
Lead Temperature (Soldering, 10s)............................+260℃  
ESD Susceptibility  
SGM6029A/SGM6029B/SGM6029C............... 5µF to 10µF  
SGM6029D/SGM6029E .................................. 5µF to 10µF  
Effective Input Capacitance, CIN...........2.2µF to 4.7µF (TYP)  
External Parasitic Capacitance at VSEL/MODE Pin, CVSEL/MODE  
........................................................................... 30pF (MAX)  
Resistance Range for External Resistor at VSEL/MODE Pin  
(E96 1% Resistor Values), RVSEL....................10kΩ to 249kΩ  
External Resistor Tolerance E96 Series at VSEL/MODE Pin  
HBM.............................................................................4000V  
CDM ............................................................................1000V  
OVERSTRESS CAUTION  
Stresses beyond the limits listed in Absolute Maximum  
Ratings may cause permanent damage to the device.  
Exposureto absolute maximum rating conditions for extended  
periods may affect device reliability. Functional operation of  
the device at any conditions beyond those indicated in the  
Recommended Operating Conditions section is not implied.  
.............................................................................. 1% (MAX)  
E96 Resistor Series Temperature Coefficient (TC)  
...................................................-200ppm/to +200ppm/℃  
Operating Junction Temperature Range ..... -40to +125℃  
ESD SENSITIVITY CAUTION  
This integrated circuit can be damaged if ESD protections are  
not considered carefully. SGMICRO recommends that all  
integrated circuits be handled with appropriate precautions.  
Failure to observe proper handling and installation procedures  
can cause damage. ESD damage can range from subtle  
performance degradation tocomplete device failure. Precision  
integrated circuits may be more susceptible to damage  
because even small parametric changes could cause the  
device not to meet the published specifications.  
DISCLAIMER  
SG Micro Corp reserves the right to make any change in  
circuit design, or specifications without prior notice.  
SG Micro Corp  
www.sg-micro.com  
SEPTEMBER 2022  
3
Ultra-Low Quiescent Current,  
Synchronous Buck Converter  
SGM6029  
PIN CONFIGURATION  
(TOP VIEW)  
1
2
A
B
C
GND  
VOS  
VIN  
SW  
EN  
VSEL/  
MODE  
WLCSP-0.74×1.09-6B  
PIN DESCRIPTION  
PIN  
NAME  
I/O  
DESCRIPTION  
A1  
GND  
G
Ground Pin. Connect the CIN and COUT ground terminals close to this pin.  
Output Voltage Sense Input. This pin is internally connected to the feedback loop and a MOSFET to  
discharge the output (VOUT) when the device is disabled. Connect it with a short trace to the output  
capacitor.  
A2  
VOS  
I
B1  
B2  
VIN  
SW  
P
Power Supply Input. Connect a ceramic capacitor (CIN) close to this pin and GND.  
Switching Node Output. Connect it to the filter inductor.  
O
Connect an accurate resistor between this pin and GND to select one of the 16 preset output voltage  
values. An R2D converter is only enabled during startup to read this resistor. After startup, this pin  
acts as MODE input. A logic high sets the device in the FPWM mode and a logic low selects the  
power-save mode operation.  
Active High Enable Input. Apply a logic high voltage to enable the device or a logic low to disable it.  
During the initial phase of startup, an internal 570kpull-down resistor is temporarily connected to  
the EN input. The pull-down resistor is removed after all internal circuits are powered up and  
functional.  
C1  
C2  
VSEL/MODE  
EN  
I
I
NOTE: I = input, O = output, P = power, G = ground.  
SG Micro Corp  
www.sg-micro.com  
SEPTEMBER 2022  
4
Ultra-Low Quiescent Current,  
Synchronous Buck Converter  
SGM6029  
ELECTRICAL CHARACTERISTICS  
(VIN = 3.6V, TJ = +-40to +125, typical values are at TJ = +25, unless otherwise noted.)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Power Supplies  
Input Voltage Range  
VIN  
1.95  
5.5  
5.5  
V
VEN = VIN, IOUT = 0µA, VOUT = 1.2V,  
device not switching  
VEN = VIN, IOUT = 0µA, VOUT = 1.2V,  
device switching  
2.3  
2.8  
Quiescent Current (Power-Save Mode)  
µA  
IQ  
VEN = VIN, IOUT = 0mA, VOUT = 1.2V,  
VSEL/MODE = VIN (after power-up),  
device switching  
EN = GND, shutdown current into VIN,  
VSEL/MODE = GND, TJ = -40to +85℃  
Quiescent Current (PWM Mode)  
Shutdown Current  
8.5  
mA  
ISD  
120  
250  
nA  
V
Under-Voltage Lockout Threshold  
Input EN  
VUVLO  
VIN rising  
1.76  
1.95  
High Level Input Voltage  
VIH  
VIL  
IIN  
0.85  
0.89  
V
V
Low Level Input Voltage  
0.40  
100  
Input Bias Current  
10  
nA  
kΩ  
EN = high, TJ = -40to +85℃  
Internal Pull-Down Resistance  
Input VSEL/MODE  
RPD  
EN = low  
570  
High Level Input Voltage (Digital Input)  
Low Level Input Voltage (Digital Input)  
Input Bias Current  
VIH  
VIL  
IIN  
V
V
0.40  
130  
EN = high  
10  
nA  
Power Switches  
Leakage Current into SW Pin  
High-side MOSFET On-Resistance  
Low-side MOSFET On-Resistance  
High-side MOSFET Switch Current Limit  
Low-side MOSFET Switch Current Limit  
ILKG_SW  
RDSON  
1
50  
nA  
V
SW = 1.2V, TJ = -40to +85℃  
IOUT = 100mA  
IOUT = 100mA  
TJ = +25℃  
185  
125  
1.78  
1.20  
310  
230  
1.98  
1.50  
mΩ  
1.58  
0.90  
ILIMF  
A
TJ = +25℃  
EN = GND, ISW = -10mA into SW pin,  
MOSFET On-Resistance  
Bias Current into VOS Pin  
RDSCH_SW  
IIN_VOS  
4
11  
Ω
TJ = -40to +85℃  
EN = VIN, VOUT = 1.2V (internal 7MΩ resistor  
divider), TJ = -40to +85℃  
250  
450  
nA  
Thermal Protection  
Thermal Shutdown Temperature  
Thermal Shutdown Hysteresis  
Output  
TSD  
Rising junction temperature, PWM mode  
160  
20  
THYS  
SGM6029A/SGM6029D, 25mV steps  
SGM6029B/SGM6029E, 50mV steps  
SGM6029C, 100mV steps  
Power-Save mode  
0.4  
0.8  
1.8  
0.775  
1.55  
3.3  
Output Voltage Range  
VOUT  
V
0.5  
0
Output Voltage Accuracy  
%
-2  
2
PWM mode, IOUT = 0mA  
SG Micro Corp  
www.sg-micro.com  
SEPTEMBER 2022  
5
Ultra-Low Quiescent Current,  
Synchronous Buck Converter  
SGM6029  
ELECTRICAL CHARACTERISTICS (continued)  
(VIN = 3.6V, TJ = +-40to +125, typical values are at TJ = +25, unless otherwise noted.)  
PARAMETER  
SYMBOL  
CONDITIONS  
SGM6029A/SGM6029B/SGM6029C  
SGM6029D/SGM6029E  
MIN  
TYP  
4
MAX  
UNITS  
Switching Frequency  
fSW  
MHz  
1.5  
Delay from EN low to high transition until  
device starts switching, VSEL = 16  
SGM6029A/SGM6029B/SGM6029D/SGM6029E,  
VOUT rising from 0V to 0.95% × VOUT nominal  
SGM6029C,  
Regulator Startup Delay Time  
Soft-Start Time  
tSTARTUP_DELAY  
700  
200  
410  
1170  
500  
785  
µs  
µs  
tSS  
VOUT rising from 0V to 0.95% × VOUT nominal  
OUTPUT VOLTAGE SETTING  
Table 1. Selecting the Programming Resistor (RVSEL) for Output Voltage Setting (VSEL/MODE Pin)  
Output Voltage Setting VOUT (V)  
VSEL  
RVSEL Resistance (E96, 1%, TC ±200ppm/)  
SGM6029A/  
SGM6029D  
SGM6029B/  
SGM6029E  
SGM6029C  
0
1
0.700  
0.400  
0.425  
0.450  
0.475  
0.500  
0.525  
0.550  
0.575  
0.600  
0.625  
0.650  
0.675  
0.700  
0.725  
0.750  
0.775  
1.2  
0.8  
1.8  
1.8  
1.9  
2.0  
2.1  
2.2  
2.3  
2.4  
2.5  
2.6  
2.7  
2.8  
2.9  
3.0  
3.1  
3.2  
3.3  
Short to GND  
10.0kΩ  
2
0.85  
0.9  
12.1kΩ  
3
15.4kΩ  
4
0.95  
1.0  
18.7kΩ  
5
23.7kΩ  
6
1.05  
1.1  
28.7kΩ  
7
36.5kΩ  
8
1.15  
1.2  
44.2kΩ  
9
56.2kΩ  
10  
11  
12  
13  
14  
15  
16  
1.25  
1.3  
68.1kΩ  
86.6kΩ  
1.35  
1.4  
105.0kΩ  
133.0kΩ  
162.0kΩ  
205.0kΩ  
249.0or larger  
1.45  
1.5  
1.55  
SG Micro Corp  
SEPTEMBER 2022  
www.sg-micro.com  
6
 
Ultra-Low Quiescent Current,  
Synchronous Buck Converter  
SGM6029  
TYPICAL PERFORMANCE CHARACTERISTICS  
TA = +25, L = 0.47μH for SGM6029A/SGM6029B/SGM6029C, L = 1μH for SGM6028D/SGM6029E, unless otherwise noted.  
SGM6029B PSM Efficiency vs. Load Current  
VOUT = 0.8V  
SGM6029B PSM Efficiency vs. Load Current  
VOUT = 1.2V  
90  
85  
80  
75  
70  
65  
60  
55  
50  
90  
85  
80  
75  
70  
65  
60  
55  
50  
VIN = 2.5V  
VIN = 2.5V  
V
IN = 3.3V  
V
IN = 3.3V  
VIN = 3.7V  
VIN = 3.7V  
V
V
V
IN = 4.3V  
IN = 4.7V  
IN = 5.1V  
V
V
V
IN = 4.3V  
IN = 4.7V  
IN = 5.1V  
VIN = 5.5V  
VIN = 5.5V  
0.001  
0.01  
0.1  
1
1
1
0.001  
0.01  
0.1  
1
1
1
Load Current (A)  
Load Current (A)  
SGM6029B PSM Efficiency vs. Load Current  
VOUT = 1.5V  
SGM6029B PWM Efficiency vs. Load Current  
VOUT = 1.2V  
90  
85  
80  
75  
70  
65  
60  
55  
50  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
VIN = 2.5V  
V
IN = 3.3V  
VIN = 3.7V  
VIN = 2.5V  
V
V
V
IN = 4.3V  
IN = 4.7V  
IN = 5.1V  
V
IN = 3.3V  
VIN = 3.6V  
V
V
IN = 4.2V  
IN = 5V  
VIN = 5.5V  
0.001  
0.01  
0.1  
0.001  
0.01  
0.1  
Load Current (A)  
Load Current (A)  
SGM6029C PSM Efficiency vs. Load Current  
VOUT = 1.8V  
SGM6029C PSM Efficiency vs. Load Current  
VOUT = 2.5V  
100  
95  
90  
85  
80  
75  
70  
65  
60  
100  
95  
90  
85  
80  
75  
70  
65  
60  
VIN = 2.5V  
VIN = 3V  
V
IN = 3.3V  
V
IN = 3.3V  
VIN = 3.6V  
VIN = 3.6V  
V
V
IN = 4.2V  
IN = 5V  
V
V
IN = 4.2V  
IN = 5V  
0.001  
0.01  
0.1  
0.001  
0.01  
0.1  
Load Current (A)  
Load Current (A)  
SG Micro Corp  
www.sg-micro.com  
SEPTEMBER 2022  
7
Ultra-Low Quiescent Current,  
Synchronous Buck Converter  
SGM6029  
TYPICAL PERFORMANCE CHARACTERISTICS (continued)  
TA = +25, L = 0.47μH for SGM6029A/SGM6029B/SGM6029C, L = 1μH for SGM6028D/SGM6029E, unless otherwise noted.  
SGM6029C PSM Efficiency vs. Load Current  
VOUT = 3.3V  
SGM6029C PWM Efficiency vs. Load Current  
VOUT = 2.5V  
100  
95  
90  
85  
80  
75  
70  
65  
60  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
VIN = 3V  
VIN = 3.6V  
V
IN = 3.3V  
V
IN = 3.8V  
VIN = 4.2V  
IN = 5V  
VIN = 3.6V  
V
V
IN = 4.2V  
IN = 5V  
V
0.001  
0.01  
0.1  
1
0.001  
0.01  
0.1  
1
Load Current (A)  
Load Current (A)  
SGM6029C PSM Output Voltage vs. Load Current  
SGM6029C PWM Output Voltage vs. Load Current  
1.817  
1.812  
1.807  
1.802  
1.797  
1.792  
1.787  
1.782  
1.817  
1.812  
1.807  
1.802  
1.797  
1.792  
1.787  
1.782  
VOUT = 1.8V  
VIN = 2.5V  
IN = 3.3V  
VIN = 3.6V  
VOUT = 1.8V  
VIN = 2.5V  
IN = 3.3V  
VIN = 3.6V  
V
V
V
V
IN = 4.2V  
IN = 5V  
V
V
IN = 4.2V  
IN = 5V  
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0  
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0  
Load Current (A)  
Load Current (A)  
Quiescent Current vs. Temperature  
VIN = 3.6V  
Shutdown Current vs. Temperature  
VIN = 3.6V  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
450  
400  
350  
300  
250  
200  
150  
100  
50  
0
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature ()  
Temperature ()  
SG Micro Corp  
www.sg-micro.com  
SEPTEMBER 2022  
8
Ultra-Low Quiescent Current,  
Synchronous Buck Converter  
SGM6029  
TYPICAL PERFORMANCE CHARACTERISTICS (continued)  
TA = +25, L = 0.47μH for SGM6029A/SGM6029B/SGM6029C, L = 1μH for SGM6028D/SGM6029E, unless otherwise noted.  
High-side MOSFET On-Resistance vs. Temperature  
VIN = 3.6V  
Low-side MOSFET On-Resistance vs. Temperature  
VIN = 3.6V  
300  
250  
200  
150  
100  
50  
200  
180  
160  
140  
120  
100  
80  
60  
40  
20  
0
0
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature ()  
Temperature ()  
MOSFET On-Resistance vs. Temperature  
VIN = 3.6V  
9
8
7
6
5
4
3
2
1
0
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature ()  
SG Micro Corp  
www.sg-micro.com  
SEPTEMBER 2022  
9
Ultra-Low Quiescent Current,  
Synchronous Buck Converter  
SGM6029  
TYPICAL PERFORMANCE CHARACTERISTICS (continued)  
TA = +25, L = 0.47μH for SGM6029A/SGM6029B/SGM6029C, L = 1μH for SGM6028D/SGM6029E, unless otherwise noted.  
SGM6029C Output Voltage Ripple  
SGM6029C Output Voltage Ripple  
VSW  
VSW  
AC Coupled, BW = 20MHz  
AC Coupled, BW = 20MHz  
VRIPPLE  
VRIPPLE  
IL  
IL  
VIN = 3.6V, VOUT = 1.8V, ILOAD = 5mA, PSM  
VIN = 3.6V, VOUT = 1.8V, ILOAD = 50mA, PSM  
Time (10μs/div)  
Time (2μs/div)  
SGM6029C Output Voltage Ripple  
SGM6029C Output Voltage Ripple  
VSW  
VRIPPLE  
IL  
VSW  
VRIPPLE  
IL  
AC Coupled, BW = 20MHz  
AC Coupled, BW = 20MHz  
VIN = 3.6V, VOUT = 1.8V, ILOAD = 500mA, PWM/PSM  
VIN = 3.6V, VOUT = 1.8V, ILOAD = 0A, PWM  
Time (1μs/div)  
Time (1μs/div)  
SGM6029C Load Transition  
SGM6029C Load Transition  
VSW  
VSW  
AC Coupled, BW = 20MHz  
AC Coupled, BW = 20MHz  
VRIPPLE  
VRIPPLE  
ILOAD  
ILOAD  
VIN = 3.6V, VOUT = 1.8V,  
ILOAD = 0mA to 100mA, PSM  
VIN = 3.6V, VOUT = 1.8V,  
ILOAD = 0mA to 50mA, PSM  
Time (25μs/div)  
Time (25μs/div)  
SG Micro Corp  
www.sg-micro.com  
SEPTEMBER 2022  
10  
Ultra-Low Quiescent Current,  
Synchronous Buck Converter  
SGM6029  
TYPICAL PERFORMANCE CHARACTERISTICS (continued)  
TA = +25, L = 0.47μH for SGM6029A/SGM6029B/SGM6029C, L = 1μH for SGM6028D/SGM6029E, unless otherwise noted.  
SGM6029C Load Transition  
SGM6029C Load Sweep  
VSW  
VSW  
AC Coupled, BW = 20MHz  
AC Coupled, BW = 20MHz  
VRIPPLE  
VRIPPLE  
ILOAD  
ILOAD  
VIN = 3.6V, VOUT = 1.8V, ILOAD = 1mA to 500mA, PWM  
VIN = 3.6V, VOUT = 1.8V, ILOAD = 0mA to 1000mA, PSM/PWM  
Time (50μs/div)  
Time (5ms/div)  
SGM6029C Line Transition  
AC Coupled, BW = 20MHz  
SGM6029C Line Transition  
AC Coupled, BW = 20MHz  
VRIPPLE  
VRIPPLE  
VSW  
VSW  
VIN  
VIN  
IL  
IL  
VIN = 3.2V to 4.2V, VOUT = 1.8V, ILOAD = 500mA, PSM  
VIN = 3.2V to 4.2V, VOUT = 2.5V, ILOAD = 5mA, PSM  
Time (100μs/div)  
Time (100μs/div)  
SGM6029C Startup Delay Time  
SGM6029C Startup Delay Time  
VOUT  
VOUT  
VSEL  
VSEL  
VEN  
VSW  
VEN  
VSW  
VSEL = 0, ILOAD = 0mA  
VSEL = 1, ILOAD = 0mA  
Time (150μs/div)  
Time (150μs/div)  
SG Micro Corp  
www.sg-micro.com  
SEPTEMBER 2022  
11  
Ultra-Low Quiescent Current,  
Synchronous Buck Converter  
SGM6029  
TYPICAL PERFORMANCE CHARACTERISTICS (continued)  
TA = +25, L = 0.47μH for SGM6029A/SGM6029B/SGM6029C, L = 1μH for SGM6028D/SGM6029E, unless otherwise noted.  
SGM6029C Startup Delay Time  
SGM6029C Startup Delay Time  
VOUT  
VOUT  
VSEL  
VSEL  
VEN  
VSW  
VEN  
VSW  
VSEL = 8, ILOAD = 0mA  
VSEL = 16, ILOAD = 0mA  
Time (150μs/div)  
Time (150μs/div)  
SGM6029C Output Discharge  
VSW  
IIN  
VEN  
VOUT  
VIN = 3.6V, VOUT = 3.3V, ILOAD = 0mA, PSM  
Time (50μs/div)  
SG Micro Corp  
www.sg-micro.com  
SEPTEMBER 2022  
12  
Ultra-Low Quiescent Current,  
Synchronous Buck Converter  
SGM6029  
FUNCTIONAL BLOCK DIAGRAM  
VIN  
HS Current  
Limit  
ON  
EN  
Digital Control  
EN and  
CIN  
OFF  
VIN UVLO  
Mode control  
SW  
L
PWM and  
PFM Control  
On-Timer  
Pulldown  
Gate  
Drive  
Control  
100% Duty  
COUT  
570kΩ  
Protection  
LS Current  
Limit  
OTP  
HS & LS  
Current Limit  
Discharge  
Control  
VOUT  
COT  
Comparator  
Feedback  
Network  
R2D  
Converter  
VSEL/MODE  
-
+
+
4Ω  
VFB  
Soft-  
Start  
VFB  
UVLO  
EN  
PSM or  
FPWM  
Operation  
VREF  
VOS  
VOUT  
GND  
Figure 2. Block Diagram  
SG Micro Corp  
www.sg-micro.com  
SEPTEMBER 2022  
13  
Ultra-Low Quiescent Current,  
Synchronous Buck Converter  
SGM6029  
DETAILED DESCRIPTION  
Overview  
Enable Control and Shutdown Mode (EN  
Pin)  
The SGM6029 family is a low quiescent current and  
high frequency synchronous Buck converter. It offers  
high efficiency over a wide load range including very  
low output currents in the power-save mode. It can be  
set to forced-PWM mode or automatic power-save  
mode/PWM mode. It features seamless and automatic  
transitions between power-save mode and PWM mode  
based on the inductor current continuity (CCM or DCM).  
The controllers have combined benefits of the  
hysteretic and voltage mode control and provide very  
low output ripple, outstanding DC and AC regulation  
and excellent transient response. Other than the  
accurate DC voltage feedback loop, the AC deviations  
of the output are also sensed by the VOS pin and are  
fed back to a second loop that controls the ramp signal  
of the comparator in the modulator stage. This  
arrangement provides fixed operation frequency in  
steady state but quickly changes the frequency upon a  
dynamic load change for instant response. The  
controller is internally compensated and is stable with  
low ESR output ceramic capacitors. These converters  
are perfect for the applications that require high  
efficiency at very light loads like small battery operated  
systems.  
A logic low on the EN input will disable (shut down) the  
device and a high logic turns it on. To avoid problems  
caused by insufficient EN pull-down or floating during  
startup, such as weak pull-down at low voltage startup  
conditions, an internal 570kΩ resistor pulls this pin to  
GND during startup. This pull-down resistor is removed  
when the internal circuit and the reference have been  
powered up and stabilized. If the EN pin goes low, the  
SGM6029 is disabled and the internal pull-down  
resistor will connect.  
Internal Soft-Start  
If VIN voltage is in the operating range, when the EN is  
pulled high, the device is powered up and initialized  
within the startup delay time (tSTARTUP_DELAY). Then the  
converter starts to switch and the output voltage ramps  
up during the soft-start time (tSS) as shown in Figure 3.  
The tSTARTUP_DELAY duration depends on the selected  
output voltage (VSEL). It is the shortest when VSEL = 0  
and the longest when VSEL = 16.  
EN  
VIN Under-Voltage Lockout Protection  
(UVLO)  
Device starts switching  
and ramps VOUT  
To avoid device malfunctioning when the VIN voltage is  
insufficient and for proper powering of the whole  
internal circuit, the input supply is constantly monitored  
to make sure it is above the under-voltage lockout  
(UVLO) threshold. When the device re-enters operation  
from UVLO status (VIN rising), it will act like being  
enabled. Every time the device is disabled and enabled,  
a startup sequence with VSEL R2D converter will  
occur.  
VOUT  
tSTARTUP_DELAY  
tSS  
Figure 3. SGM6029 Startup Timings  
SG Micro Corp  
www.sg-micro.com  
SEPTEMBER 2022  
14  
 
Ultra-Low Quiescent Current,  
Synchronous Buck Converter  
SGM6029  
DETAILED DESCRIPTION (continued)  
device is disabled, a resistor (4, TYP) is connected  
between the converter output and GND through the  
VOS pin as soon as the device is disabled. The output  
voltage discharge feature is present only after enabling  
the device for the first time after the input supply is  
applied. It is not active if the device is disabled and then  
power supply is applied. To keep this feature active, the  
supply voltage must remain above the UVLO falling  
threshold (VIN > VTH_UVLO-).  
The VSEL/MODE Pin  
VSEL/MODE is a dual-role pin. During startup, this pin  
acts as VSEL input and senses the connected resistor  
value for output voltage selection. After startup, it  
functions as MODE selection input to set the device  
operating mode in the forced-PWM (high) or  
power-save mode (low). See the Device Comparison  
Table and the VSEL resistor values (Table 1) for details.  
Resistor to Digital (R2D) Converter and Selection of  
the Output Voltage  
Power-Save Mode Operation  
An external resistor (RVSEL) placed between the  
VSEL/MODE pin and GND determines the output  
voltage. After enabling the device and when the internal  
reference is stable, the resistor to digital (R2D)  
converter starts sensing the RVSEL before the  
tSTARTUP_DELAY ends. A current is injected in the RVSEL  
and an ADC reads the resulting voltage. Based on the  
sensed voltage, one of the preset internal feedback  
resistor dividers is chosen to set the output voltage.  
After completing R2D conversion, current injection is  
stopped and no current flows out of the VSEL/MODE  
pin. The output voltage is selected and fixed once and  
during startup only. Make sure there is no other  
external current leakage or capacitance (>30pF)  
present on this pin during VSEL detection or UVLO  
events to avoid wrong VOUT setting. Use the E96  
resistor values with maximum 1% tolerance and good  
The SGM6029 controller has power-save mode  
operation capability. With power-save mode, the  
modulator can enter the pulse frequency modulation  
(PFM) rather than the fixed-frequency PWM switching  
at light loads. One switching pulse is applied to the LC  
filter to charge the output capacitor and keep the output  
regulated and then the device enters a long sleep  
period while the output capacitor supplies the small  
load current. During the sleep period between  
successive pulses, almost all internal circuits of the  
SGM6029 are turned off to minimize the quiescent  
current. The length of the sleep period is longer when  
the load is lighter. A higher inductor peak-current  
setting can also extend the off-time duration. For the  
SGM6029, the quiescent current can be reduced to the  
ultra-low levels in the order of 2.3μA (TYP). Such low  
quiescent current levels are achieved by integrating  
high impedance feedback divider inside the device,  
using a very low power voltage reference and improved  
power-save mode operation. The switching frequency  
is almost proportional to the load current in PFM mode.  
When the load is increased, the inductor current  
becomes continuous (CCM mode) and the device  
automatically enters the fixed-frequency PWM.  
thermal stability (TC < 200ppm/) to set the output  
voltage as suggested in Table 1. Note that the RVSEL  
does not affect the output accuracy.  
Shorting VSEL to GND sets the default output voltage  
(SGM6029A/SGM6029D  
=
0.7V,  
SGM6029B/  
SGM6029E = 1.2V, SGM6029C = 1.8V) and saves  
more space by reducing one external resistor.  
The nominal PWM switching frequency for SGM6029A/  
SGM6029B/SGM6029C is fSW = 4.0MHz and for  
SGM6029D/SGM6029E is fSW = 1.5MHz. However, the  
exact frequency depends on VIN and VOUT. The change  
between PFM and PWM occurs when the inductor  
current becomes marginally discontinued (valley  
current reaches zero). Using a unified controller to  
manage PFM and PWM operations, this device can  
seamlessly change mode with minimum output voltage  
ripple due to the mode change.  
Power-Save Mode and Forced-PWM (FPWM)  
Operation Mode Selection  
After the power-up period, the VSEL/MODE pin acts as  
mode select input. A logic low applied to this input  
selects the power-save mode and a logic high selects  
FPWM operation. Changing the mode during operation  
(after completing VSEL function) is allowed.  
Output Voltage Discharge  
To ensure that the output voltage drops to 0V in a  
controlled manner and remains close to 0V while the  
SG Micro Corp  
www.sg-micro.com  
SEPTEMBER 2022  
15  
Ultra-Low Quiescent Current,  
Synchronous Buck Converter  
SGM6029  
DETAILED DESCRIPTION (continued)  
and low-side MOSFET switch currents are monitored  
and limited in a cycle-by-cycle basis. If the high-side  
switch current exceeds its limit, it will be turned off and  
the low-side switch will be turned on to decrease the  
inductor current until it falls below the low-side current  
limit. At this time the low-side switch will be turned off  
and the high-side switch will be turned on again.  
Forced-PWM Mode (FPWM) Operation  
If the FPWM mode is selected (MODE = high), the  
device runs at the fixed-frequency PWM in the entire  
load range. The FPWM mode reduces the light load  
efficiency due to the circulating currents, but the high  
frequency interference is significantly reduced due to  
the wider soft switching range of the converter at light  
loads and the relatively fixed-frequency spectrum of the  
noise.  
Thermal Shutdown Protection  
To protect the device from overheating damage,  
thermal protection is included in the device. If the  
junction temperature (TJ) exceeds the thermal  
shutdown threshold (TSD = 160, TYP), both switches  
will be turned off. When the die cools down and TJ falls  
below hysteresis window (20, TYP), the switching  
resumes automatically after a soft-start. There is no  
R2D conversion after thermal shutdown and VOUT sets  
to the previous value. Also please note that there is no  
thermal protection in the power-save mode.  
100% Duty Cycle Operation Mode  
When the voltage of the input source, such as battery,  
falls and its value is close to the output voltage, the  
PWM duty cycle (D = VOUT/VIN) increases to near 100%.  
Eventually the high-side switch remains continuously  
on to keep the output regulated. Even when the input  
voltage falls below the output, the high-side switch is  
turned on to minimize the error.  
Short Circuit and Switch Current Limit  
Protections  
To prevent damage to the SGM6029 or load when an  
output short circuit or over-current occurs, the high-side  
SG Micro Corp  
www.sg-micro.com  
SEPTEMBER 2022  
16  
Ultra-Low Quiescent Current,  
Synchronous Buck Converter  
SGM6029  
APPLICATION INFORMATION  
A few power supply design examples for some typical application with different input and output voltage  
requirements will be discussed in this section that can be used as reference. See Figure 4 and also other circuits  
provided in Figure 5 to Figure 10.  
Typical Application  
L1  
0.47μH  
VIN  
VOUT  
0.8V to 1.55V  
1.95V to 5.5V  
VIN  
SW  
SGM6029B  
VOS  
CIN  
4.7μF  
COUT  
10μF  
PWM  
VSEL/  
MODE  
PFM  
EN  
*
ON  
RVSEL  
OFF  
GND  
* 16 selectable VOUT  
Figure 4. SGM6029B with Adjustable VOUT  
Design Requirements  
The components designed for this application are listed in Table 2.  
Table 2. Components for Application Characteristic Curves  
Designed  
Description/Part Number  
Value/Main Parameters  
Size (L × W × T) (mm3 MAX)  
Manufacturer  
Component  
CIN  
GRT155R61A475ME13D  
GRM155R61A106ME44D  
4.7µF, X5R, 10V, ±20%  
10µF, X5R, 10V, ±20%  
0402 (1 × 0.5 × 0.5)  
0402 (1 × 0.5 × 0.5)  
Murata  
Murata  
COUT  
0.47µH,  
54mΩ (DCRmax @20),  
2.6A (Imax, 40rise),  
3.3A (Isat, 30% L drop)  
±20% (Initial Tolerance)  
Inductor  
DFE18SANR47MG0L  
L1  
0603 (1.6 × 0.8 × 1.0)  
Murata  
VOUT  
Design Procedure  
1. The VIN, VOUT and IOUT requirements must be known  
to start the design.  
1-  
V
IN  
(1)  
ΔIL = VOUT  
×
L×fSW  
In steady state, the maximum inductor current can be  
calculated from Equation 2.  
2. For each application, the design can be optimized for  
efficiency, solution size or other factors.  
ΔIL  
(2)  
IL_MAX = IOUT_MAX  
+
3. Compare your design with solutions provided by  
SGMICRO.  
2
Where, f is switching frequency, L is inductance value,  
ΔIL is the inductor peak-to-peak ripple current and IL_MAX  
is the peak inductor current. The maximum current  
should never reach the inductor saturation level. This  
situation can happen after a large load step. A common  
conservative option is to choose an inductor with a  
saturation current equal to or higher than the high-side  
switch current limit (ILIMF).  
Inductor Selection  
The inductance of the output filter (L) determines the  
peak-to-peak ripple current and indirectly affects the  
converter efficiency and output voltage ripple. It also  
determines the current at which the PWM-to-PFM  
transition occurs (CCM to DCM). The ripple current (ΔIL)  
can be estimated from Equation 1. It shows that ΔIL  
decreases with larger inductance values and increases  
at higher voltage levels (VIN or VOUT).  
Some of the inductor part numbers that satisfy these  
conditions are listed in Table 3.  
SG Micro Corp  
www.sg-micro.com  
SEPTEMBER 2022  
17  
 
 
Ultra-Low Quiescent Current,  
Synchronous Buck Converter  
SGM6029  
APPLICATION INFORMATION (continued)  
Table 3. A List of Inductors Suitable for this Application  
Inductance (µH)  
0.47  
Part Number/Series  
DFE18SANR47ME0  
DFE18SANR47MG0L  
DFE201210U-R47M  
DFE201210U-1R0M  
HTEK12100F-R47MSR  
HTEL1412FE-R47MSR  
HTEL16080H  
Size Imperial (Metric)  
0603(1608)  
0603(1608)  
0805(2012)  
0805(2012)  
0504(1210)  
0505(1412)  
0603(1608)  
0805(2012)  
0805(2013)  
Size (L × W × T) (mm3 MAX)  
1.6 × 0.8 × 1.0  
Manufacturer  
Murata  
0.47  
1.6 × 0.8 × 1.0  
Murata  
0.47  
2.0 × 1.2 × 1.0  
Murata  
1.0  
2.0 × 1.2 × 1.1  
Murata  
0.47  
1.2 × 1.0 × 0.6  
Cyntec  
0.47  
1.4 × 1.2 × 0.65  
1.6 × 0.8 × 0.8  
Cyntec  
0.47/1.0  
1.0  
Cyntec  
HTEG20120G-1R0MDR  
HTEP20120H  
2.0 × 1.2 × 0.7  
Cyntec  
0.47/1.0  
1.6 × 0.8 × 0.8  
Cyntec  
Input Capacitor (CIN)  
A low ESR ceramic capacitor must be connected close to the VIN and GND pins to provide the pulsating input  
current of the converter and minimize switching noise and ringings. A 4.7μF ceramic capacitor is satisfactory for  
most applications, however, if a high impedance source such as a coin cell-battery is used, larger input capacitance  
(CIN ≥ 10μF) is preferred to prevent voltage drops during startup or load steps. There is no high limit for the input  
capacitance, however, note that the higher leakage current of a large input capacitor will increase the total quiescent  
current of the power supply.  
Some applicable input capacitors are listed in Table 4.  
Table 4. Some Potential Part Numbers for the Input Capacitor  
Capacitance (μF)  
Capacitor Part Number  
GRM155R60J106ME  
GRM188R61A106M  
Size Imperial (Metric)  
0402(1005)  
Size (L × W × T) (mm3 MAX)  
1.0 × 0.5 × 0.5  
Manufacturer  
Murata  
10  
10  
10  
0603(1608)  
1.6 × 0.8 × 0.8  
Murata  
GRM188B30J106ME47  
0603(1609)  
1.6 × 0.8 × 0.9  
Murata  
Output Capacitor (COUT  
)
Table 5. Proper Output Capacitor and Inductor Combination  
Table 5 can be used to select the proper LC filter  
components for most design requirements. The  
inductor initial tolerance can be as high as -30% to +20%  
of the nominal value and proper current derating is  
usually required. Bias voltage can cause significant  
capacitance drops in the ceramic capacitors. The  
effective deviation of a ceramic capacitor can be as  
high as -50% to +20% of the nominal value.  
Device  
L1  
0.47µH/1µH  
1µH  
COUT  
10µF  
10µF  
SGM6029A/SGM6029B/SGM6029C  
SGM6029D/SGM6029E  
L1 = 0.47µH or 1µH and COUT = 10µF are the  
recommended values for the typical application of  
SGM6029A/SGM6029B/SGM6029C. L1 = 1µH and  
COUT = 10µF are the recommended values for the  
typical application of SGM6029D/SGM6029E.  
SG Micro Corp  
www.sg-micro.com  
SEPTEMBER 2022  
18  
 
 
 
Ultra-Low Quiescent Current,  
Synchronous Buck Converter  
SGM6029  
APPLICATION INFORMATION (continued)  
L1  
0.47μH  
VIN  
VOUT  
0.8V to 1.55V  
1.95V to 5.5V  
VIN  
SW  
SGM6029B  
VOS  
CIN  
4.7μF  
COUT  
10μF  
PWM  
VSEL/  
MODE  
PFM  
EN  
*
ON  
RVSEL  
OFF  
GND  
* 16 selectable VOUT  
Figure 5. RVSEL Selectable VOUT (0.8V to 1.55V) with SGM6029B  
L1  
VIN  
0.47μH  
1.2V fixed VOUT  
1.95V to 5.5V  
VIN  
EN  
SW  
SGM6029B  
VOS  
CIN  
4.7μF  
COUT  
10μF  
VSEL/  
MODE  
ON  
OFF  
GND  
Figure 6. Fixed 1.2V Output with SGM6029B (VSEL is Grounded)  
L1  
VIN  
0.47μH  
V
OUT = 3.3V  
up to 5.5V  
VIN  
EN  
SW  
SGM6029C  
VOS  
CIN  
4.7μF  
COUT  
10μF  
PWM  
VSEL/  
MODE  
PFM  
RVSEL  
249kΩ  
ON  
OFF  
GND  
Figure 7. Adjustable Output Set to 3.3V with SGM6029C  
SG Micro Corp  
www.sg-micro.com  
SEPTEMBER 2022  
19  
 
Ultra-Low Quiescent Current,  
Synchronous Buck Converter  
SGM6029  
APPLICATION INFORMATION (continued)  
L1  
VIN  
0.47μH  
1.8V fixed VOUT  
1.95V to 5.5V  
VIN  
SW  
SGM6029C  
VOS  
CIN  
COUT  
VSEL/  
MODE  
4.7μF  
10μF  
EN  
ON  
OFF  
GND  
Figure 8. Fixed 1.8V Output with SGM6029C (VSEL is Grounded)  
VOUT  
0.4V to 0.775V  
IOUT up to 600mA  
L1  
1μH  
VIN  
1.95V to 5.5V  
VIN  
EN  
SW  
SGM6029D  
VOS  
CIN  
4.7μF  
COUT  
10μF  
PWM  
VSEL/  
MODE  
PFM  
*
ON  
RVSEL  
OFF  
GND  
* 16 selectable VOUT  
Figure 9. RVSEL Selectable VOUT (0.4V to 0.775V) with SGM6029D  
L1  
1μH  
VIN  
0.7V fixed VOUT  
IOUT up to 600mA  
1.95V to 5.5V  
VIN  
EN  
SW  
SGM6029D  
VOS  
CIN  
4.7μF  
COUT  
10μF  
VSEL/  
MODE  
ON  
OFF  
GND  
Figure 10. Fixed 0.7V Output with SGM6029D (VSEL Grounded)  
SG Micro Corp  
www.sg-micro.com  
SEPTEMBER 2022  
20  
 
Ultra-Low Quiescent Current,  
Synchronous Buck Converter  
SGM6029  
APPLICATION INFORMATION (continued)  
Layout Guidelines  
A good printed-circuit-board (PCB) layout is a critical element of any high performance design. Follow the guidelines  
below for designing a good layout for the SGM6029.  
Place the input capacitor close to the device with the shortest possible connection traces.  
Share the same GND return point for the input and output capacitors and locate it as close as possible to the  
device GND pin to minimize the AC current loops. Place the inductor close to the switching node and connect it  
with a short trace to minimize the parasitic capacitances coupled to the SW node.  
Keep the signal traces like the VOS sense line away from SW or other noisy sources.  
Refer to Figure 11 for a recommended PCB layout.  
VOUT  
SW  
L
COUT  
RVSEL  
CIN  
GND  
GND  
VIN  
Figure 11. PCB Layout  
REVISION HISTORY  
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.  
Changes from Original (SEPTEMBER 2022) to REV.A  
Page  
Changed from product preview to production data .................................................................................................................................................All  
SG Micro Corp  
www.sg-micro.com  
SEPTEMBER 2022  
21  
 
PACKAGE INFORMATION  
PACKAGE OUTLINE DIMENSIONS  
WLCSP-0.74×1.09-6B  
0.19  
6 × Φ  
D
0.17  
A1 CORNER  
E
0.35  
0.35  
RECOMMENDED LAND PATTERN (Unit: mm)  
TOP VIEW  
6 × Φd  
2
1
A
B
C
C
e
A
SEATING PLANE  
A1  
ccc C  
e
SIDE VIEW  
BOTTOM VIEW  
Dimensions In Millimeters  
Symbol  
MIN  
MOD  
0.400  
MAX  
0.438  
0.171  
0.775  
1.125  
0.247  
A
A1  
D
0.362  
0.131  
0.715  
1.065  
0.187  
0.151  
0.745  
E
1.095  
d
0.217  
e
0.350 BSC  
0.050  
ccc  
NOTE: This drawing is subject to change without notice.  
SG Micro Corp  
TX00255.002  
www.sg-micro.com  
PACKAGE INFORMATION  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
P2  
P0  
W
Q2  
Q4  
Q2  
Q4  
Q2  
Q4  
Q1  
Q3  
Q1  
Q3  
Q1  
Q3  
B0  
Reel Diameter  
P1  
A0  
K0  
Reel Width (W1)  
DIRECTION OF FEED  
NOTE: The picture is only for reference. Please make the object as the standard.  
KEY PARAMETER LIST OF TAPE AND REEL  
Reel Width  
Reel  
Diameter  
A0  
B0  
K0  
P0  
P1  
P2  
W
Pin1  
Package Type  
W1  
(mm)  
(mm) (mm) (mm) (mm) (mm) (mm) (mm) Quadrant  
WLCSP-0.74×1.09-6B  
7″  
9.5  
0.81  
1.21  
0.50  
4.0  
4.0  
2.0  
8.0  
Q1  
SG Micro Corp  
TX10000.000  
www.sg-micro.com  
PACKAGE INFORMATION  
CARTON BOX DIMENSIONS  
NOTE: The picture is only for reference. Please make the object as the standard.  
KEY PARAMETER LIST OF CARTON BOX  
Length  
(mm)  
Width  
(mm)  
Height  
(mm)  
Reel Type  
Pizza/Carton  
7″ (Option)  
7″  
368  
442  
227  
410  
224  
224  
8
18  
SG Micro Corp  
www.sg-micro.com  
TX20000.000  

相关型号:

SGM6031

400nA Ultra-Low Power, Buck Converter with 200mA Output Current
SGMICRO

SGM6032

6MHz, 600mA Synchronous Buck Regulator
SGMICRO

SGM6033

4.6MHz, 1A Synchronous Buck Regulator
SGMICRO

SGM6036

450nA Ultra-Low Power, Buck Converter with 600mA Output Current
SGMICRO

SGM6060

55V, 2A High Frequency Buck Converter
SGMICRO

SGM6061

55V, 1.5A High Frequency Buck Converter
SGMICRO

SGM61006

600mA, 1.8V to 5.5V Synchronous Buck Converter
SGMICRO

SGM61012

1.2A/2A High-Efficiency Buck Converter with AHP-COT Mode
SGMICRO

SGM61013

10MHz, 1A Micro-Point-of-Load Buck Converter
SGMICRO

SGM61020/P

2A High Efficiency Synchronous Buck Converter
SGMICRO

SGM61022

1.2A/2A High-Efficiency Buck Converters with AHP-COT Mode
SGMICRO

SGM61030

3A High Efficiency Synchronous Buck Converter
SGMICRO