SC1452EIMSTR [SEMTECH]

Fixed Positive LDO Regulator, 2 Output, 3.3V1, 3.3V2, CMOS, PDSO10, MO-187BA, MSOP-10;
SC1452EIMSTR
型号: SC1452EIMSTR
厂家: SEMTECH CORPORATION    SEMTECH CORPORATION
描述:

Fixed Positive LDO Regulator, 2 Output, 3.3V1, 3.3V2, CMOS, PDSO10, MO-187BA, MSOP-10

光电二极管 输出元件 调节器
文件: 总15页 (文件大小:281K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
SC1452  
Dual 150mA LDO Regulator  
with Programmable Reset  
POWER MANAGEMENT  
ꢀeatures  
Description  
The SC1452 is a state of the art device intended to  
provide maximum performance and flexibility in battery  
operated systems. It has been designed specifically to  
fully support a single Li-Ion battery and its external charger  
voltages.  
u Up to 150mA per regulator output  
u Low quiescent current (130µA typical with both  
outputs at 150mA)  
u Low dropout voltage  
u Wide selection of output voltages  
u Stable operation with ceramic caps  
u Tight load and line regulation  
u Current and thermal limiting  
u Reverse input polarity protection  
u <1µA off-mode current  
The SC1452 contains two independently enabled, ultra  
low dropout voltage regulators (ULDOs). It operates from  
an input voltage range of 2.25V to 6.5V, and a wide  
variety of output voltage options are available which are  
designed to provide an initial tolerance of ±1% and ±2%  
over temperature.  
u Logic controlled enable  
u Active low resets valid for V down to 0V  
IN  
Each regulator has an associated active-low reset signal  
which is asserted when the voltage output declines  
below the preset threshold. Once the output recovers,  
the reset continues to be asserted (delayed) for a  
predetermined time, 50ms for reset A and 150ms for  
reset B. In the case of regulator B, the delay time may be  
reduced by the addition of an external capacitor.  
u Programmable reset  
u ꢀull industrial temperature range  
Applications  
u Cellular telephones  
u Palmtop/Laptop computers  
u Battery-powered equipment  
u Bar code scanners  
The SC1452 has a bypass pin to enable the user to  
capacitively decouple the bandgap reference for very low  
output noise (down to 50µVrms).  
u SMPS post regulator/dc to dc modules  
u High efficiency linear power supplies  
u DSP supplies  
The devices utilize CMOS technology to achieve very low  
operating currents (typically 130uA with both  
outputs supplying 150mA). The dropout voltage is  
typically 155mV at 150mA, helping to prolong battery  
life. In addition, the devices are guaranteed to provide  
400mA of peak current for applications which require  
high initial inrush current. They have been designed to  
be used with low ESR ceramic capacitors to save cost  
and PCB area.  
The SC1452 comes in the low profile 10-lead MSOP  
package.  
Typical Application Circuit  
U1  
1
10  
3.0V OUT  
2.5V OUT  
3.3V IN  
OUTA  
OUTB  
GND  
IN  
ENA  
2
3
4
5
9
ENABLE OUTPUT A  
8
BYP  
7
RESET A  
RESET B  
ENABLE OUTPUT B  
RSTA  
RSTB  
ENB  
6
DLYB  
SC1452FIMS  
COUTA  
1uF  
COUTB  
1uF  
CBYP  
10nF  
CDLYB  
10nF  
CIN  
1uF  
Revision 2, March 2001  
1
www.semtech.com  
SC1452  
POWER MANAGEMENT  
Absolute Maximum Ratings  
Parameter  
Symbol  
Maximum  
Units  
Input Supply Voltage  
VIN  
VEN  
TA  
-5 to +7  
-5 to +VIN  
-40 to +85  
-40 to +125  
-60 to +150  
113  
V
V
Enable Input Voltage  
Operating Ambient Temperature Range  
Operating Junction Temperature Range  
Storage Temperature  
°C  
TJ  
°C  
TSTG  
θJA  
°C  
Thermal Impedance Junction to Ambient  
Thermal Impedance Junction to Case  
ESD Rating (Human Body Model)  
°C/W  
°C/W  
kV  
42  
θJC  
ESD  
2
Electrical Characteristics  
Unless specified: TA = 25°C, VIN = VOUT + 1V, IOUTA = IOUTB = 1mA, CIN = COUT = 1.0 µF, VENA = VENB = VIN.  
Values in bold apply over full operating temperature range.  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max Units  
IN  
Input Supply Voltage  
Quiescent Current  
VIN  
IQ  
2.25  
6.5  
150  
200  
200  
250  
1.0  
V
VENA = 0V, VENB = VIN, IOUTB = 150mA or  
VENB = 0V, VENA = VIN, IOUTA = 150mA  
110  
µA  
V
ENA = VENB = VIN, IOUTA = IOUTB = 150mA  
130  
0.2  
µA  
µA  
VIN = 6.5V, VENA = VENB = 0V (OFF)  
1.5  
OUTA, OUTB  
Output Voltage(1)  
VOUT  
IOUT = 1mA  
-1%  
VOUT  
2.5  
-5  
+1%  
+2%  
10  
V
0mA IOUT 150mA, VOUT +1V VIN 5.5V  
VOUT + 1V VIN 5.5V, IOUT = 1mA  
-2%  
Line Regulation(1)  
Load Regulation(1)  
REG(LINE)  
REG(LOAD)  
mV  
mV  
12  
0.1mA IOUT 150mA  
-20  
-30  
www.semtech.com  
2001 Semtech Corp.  
2
SC1452  
POWER MANAGEMENT  
Electrical Characteristics (Cont.)  
Unless specified: TA = 25°C, VIN = VOUT + 1V, IOUTA = IOUTB = 1mA, CIN = COUT = 1.0 µF, VENA = VENB = VIN.  
Values in bold apply over full operating temperature range.  
Parameter  
Symbol  
Conditions  
Min  
Typ  
1
Max  
Units  
mV  
Dropout Voltage(1)(2)  
VD  
IOUT = 1mA  
IOUT = 50mA  
52  
70  
90  
mV  
IOUT = 150mA  
155  
210  
270  
mV  
Current Limit  
ILIM  
PSRR  
en  
400  
mA  
dB  
Ripple Rejection  
Output Voltage Noise  
f = 120Hz, CBYP = 10nF  
59  
27  
f = 10Hz to 100kHz, IOUT = 50mA,  
µVRMS  
C
C
BYP = 10nF, COUT = 2.2µF, 1.8V output  
f = 10Hz to 100kHz, IOUT = 50mA,  
BYP = 10nF, COUT = 2.2µF, 3.3V output  
55  
BYP  
Start-up Rise Time  
ENA, ENB  
tr  
CBYP = 10nF  
1.25  
ms  
V
Enable Input Threshold  
VIH  
VIL  
1.6  
0.4  
Enable Input Bias Current(3)  
RSTA, RSTB  
IENA/B  
0V VENA/B VIN  
-0.5  
+0.5  
µA  
Reset Threshold  
VTH(RST)  
VOUT falling  
VOUT rising  
88  
90  
30  
90  
90  
92  
92  
94  
%VOUT  
Reset A Delay  
Reset B Delay  
tRSTA  
tRSTB  
50  
70  
ms  
ms  
VDLYB= 0V  
150  
4
210  
C
DLYB= 10nF  
Reset A, B Output Voltage (4)  
VOH  
VOL  
ISOURCE= 0.5mA  
ISINK= 1.2mA  
90  
98  
%VOUT  
V
0.02  
0.10  
3.9  
DLYB  
Delay Voltage Threshold  
Delay Source Current  
VTH(DLYB)  
IDLYB  
1.250  
3.0  
V
VOUTB < VTH  
2.1  
µA  
www.semtech.com  
2001 Semtech Corp.  
3
SC1452  
POWER MANAGEMENT  
Electrical Characteristics (Cont.)  
Unless specified: TA = 25°C, VIN = VOUT + 1V, IOUTA = IOUTB = 1mA, CIN = COUT = 1.0 µF, VENA = VENB = VIN.  
Values in bold apply over full operating temperature range.  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Units  
Over Temperature Protection  
High Trip Level  
Hysteresis  
THI  
150  
20  
°C  
°C  
THYST  
NOTES:  
(1) Low duty cycle pulse testing with Kelvin connections required.  
(2) Defined as the input to output differential at which the output drops 100mV below the value measured at a  
differential of 1V. Not measurable on 1.5V and 1.8V outputs due to minimum V constraints.  
IN  
(3) Guaranteed by design.  
(4) V will be a percentage of V , and V will be a percentage of V .  
OUTB  
OHA  
OUTA  
OHB  
Timing Diagrams  
www.semtech.com  
2001 Semtech Corp.  
4
SC1452  
POWER MANAGEMENT  
Pin Configuration  
Voltage Options  
Replace X in the part number (SC1452XIMS) by the  
letter shown below for the corresponding voltage  
option:  
(Top View)  
X
VOUTA (V)  
VOUTB (V)  
A
B
C
D
E
F
1.8  
2.5  
2.8  
3.0  
3.3  
3.0  
3.0  
3.0  
3.3  
3.3  
1.8  
2.5  
2.8  
3.0  
3.3  
2.5  
1.8  
2.8  
2.5  
2.8  
MSOP-10  
Ordering Information  
Part Numbers  
SC1452XIMSTR (1)(2)  
Notes:  
Package  
MSOP-10  
G
H
J
(1) Where X denotes voltage options - see Voltage  
Options table.  
(2) Only available in tape and reel packaging. A reel  
contains 2500 devices.  
K
Pin Descriptions  
Pin #  
Pin Name  
OUTA  
Pin Function  
1
2
3
4
Regulator A output.  
Regulator B output.  
Ground pin.  
OUTB  
GND  
RSTA  
Power on reset for output A. Active low when OUTA is below the reset threshold. RSTA  
goes high 50ms (typical) after OUTA rises above the reset threshold.  
5
RSTB  
Power on reset for output B. Active low when OUTB is below the reset threshold. RSTB  
goes high 150ms (typical - can be adjusted using CDLYB) after OUTB rises above the reset  
threshold.  
6
7
DLYB  
ENB  
BYP  
ENA  
IN  
Programmable delay for RESETB. Delay time can be set by connecting a capacitor, CDLYB,  
between this pin and ground. Ground this pin if using the default delay time.  
Active high enable pin for output B. CMOS compatible input. Connect to IN if not being  
used.  
8
Bypass pin for bandgap reference. Connect a 10nF capacitor, CBYP, between this pin and  
ground for low noise operation.  
9
Active high enable pin for output A. CMOS compatible input. Connect to IN if not being  
used.  
10  
Input pin for both regulators.  
www.semtech.com  
2001 Semtech Corp.  
5
SC1452  
POWER MANAGEMENT  
Block Diagram  
Marking Information  
# = Voltage options (Example: 452ꢀ)  
yyww = Datecode (Example: 0008)  
XXXX = Lot Number (Example: E01102)  
www.semtech.com  
2001 Semtech Corp.  
6
SC1452  
POWER MANAGEMENT  
Applications Information  
Theory Of Operation  
initial currents for DSP initialization.  
The SC1452 is intended for applications where very low The SC1452 has a fast start-up circuit to speed up the  
dropout voltage, low supply current and low output noise initial charging time of the bypass capacitor to enable  
are critical. ꢀurthermore, the SC1452, by combining two the output voltage to come up quicker.  
ultra low dropout (ULDO) regulators, along with enable  
PIN Descriptions  
controls and power-on resets (which function is usually The SC1452 includes thermal shutdown circuitry to turn  
served by external devices), provides a very space off the device if T exceeds 150°C (typical), with the  
J
efficient solution for multiple supply requirements.  
device remaining off until T drops by 20°C (typical).  
J
Reverse battery protection circuitry ensures that the  
The SC1452 contains two ULDOs, both of which are device cannot be damaged if the input supply is  
supplied by one input supply, between IN and GND. Each accidentally reversed, limiting the reverse current to less  
ULDO has its own active high enable pin (ENA/ENB). than 1.5mA.  
Pulling this pin low causes that specific ULDO to enter a  
very low power shutdown state.  
Adjusting RSTB Delay Time  
Each ULDO also has its own power on reset pin (RSTA/ The power on reset delay for regulator B, t , can be  
RSTB  
RSTB), which asserts low whenever the output voltage is reduced externally by connecting a capacitor to the delay  
below the reset threshold for that output. Each reset time set pin DLYB. If DLYB is connected to ground, the  
remains asserted low until a specific delay time after the internally controlled delay time of 150ms (typ.) will apply.  
output rises back above the reset threshold. ꢀor output  
A, this delay time is typically 50ms. Output B has a Referring to the block diagram, as the output of regulator  
programmable reset delay. If DLYB is grounded, the B (V ) rises and reaches the reset threshold voltage  
OUTB  
reset delay will be controlled by an internal timer to (92% V  
), two things happen:  
OUTB(NOM)  
150ms. If a capacitor is connected between DLYB and 1) the internal 150ms timer starts;  
GND, a constant current, I , charges this capacitor until 2) the 3µA current source turns on, charging C  
(if  
DLYB  
DLYB  
the delay threshold, V  
, is reached, or the internal connected).  
TH(DLYB)  
timer times out. See “Adjusting RSTB Delay Time”. One  
advantage of on-board resets is that they remain asserted If DLYB is connected to ground, RSTB goes high 150ms  
low all the way down to V = 0V, whereas after V crosses the threshold voltage. If a capacitor is  
IN  
OUTB  
external devices may require pull-down resistors.  
connected between DLYB and ground, the voltage at  
DLYB can be described by the following equation:  
A bypass pin (BYP) is provided to decouple the bandgap  
reference to reduce output noise (on both outputs) and  
also to improve power supply rejection.  
6  
t
3 10  
=
VDLYB  
CDLYB  
The SC1452 contains an internal bandgap reference An internal comparator compares this voltage to a 1.25V  
which is fed into the inverting input of two error reference, and triggers the reset high once this voltage  
amplifiers, one for each output. The output voltage of is reached. The delay time can be calculated by  
each regulator is divided down internally using a resistor rearranging the above equation, solving for t:  
divider and compared to the bandgap voltage. The error  
CDLYB 1.25  
3 10 6  
amplifier drives the gate of a low R  
pass device.  
P-channel MOSꢀET  
DS(ON)  
tRSTB  
=
= 416,667 CDLYB  
Each regulator has its own current limit circuitry to Note that the maximum delay time is 150ms, as RSTB  
ensure that the output current will not damage the goes high when either the internal timer or externally set  
device during output short, overload or start-up. The timer times out, so if t  
is set externally for 200ms,  
RSTB  
current limit is guaranteed to be greater than 400mA to the reset delay will still be 150ms. Thus for a 150ms  
allow fast charging of the output capacitor and high delay, DLYB should be grounded, and for a delay time  
www.semtech.com  
2001 Semtech Corp.  
7
SC1452  
POWER MANAGEMENT  
Applications Information (Cont.)  
less than 150ms, C  
can be calculated using the ꢀor all practical purposes, equation (1) can be reduced  
DLYB  
equation above, or read from the chart below.  
to the following expression:  
PD(MAX )  
=
(
VIN(MAX ) VOUTA (MIN )  
)
IOUTA (MAX )  
IOUTB (MAX )  
1000  
(2)  
tRSTB = 150ms max.  
+
(
VIN(MAX ) VOUTB (MIN )  
)
100  
10  
Looking at a typical application:  
V
V
V
I
= 4.2V  
IN(MAX)  
= 3V - 2% (worst case) = 2.94V  
OUTA  
OUTB  
1
= 3.3V - 2% (worst case) = 3.234V  
= I  
= 150mA  
OUTB  
OUTA  
T = 85°C  
0.1  
0.01  
A
Inserting these values into equation (2) above gives us:  
PD(MAX )  
=
(
4.2 2.94  
)
0.15 +  
(
4.2 3.234  
0.15  
)
0.1  
1
10  
100  
1000  
C
DLYB (nF)  
= 0.189 + 0.145  
= 0.334W  
Component Selection  
Using this figure, we can calculate the maximum thermal  
Output capacitor - Semtech recommends a minimum  
capacitance of 1µꢀ at the output with an equivalent  
series resistance (ESR) of < 1over temperature. The  
SC1452 has been designed to be used with ceramic  
capacitors, but does not have to be used with ceramic  
capacitors, allowing the designer a choice. Increasing the  
bulk capacitance will further reduce output noise and  
improve the overall transient response.  
impedance allowable to maintain T 125°C:  
J
(
TJ(MAX) TA(MAX )  
)
θJA(MAX )  
=
PD(MAX)  
125 85  
0.334  
(
)
=
= 120°C/ W  
With the standard MSOP-10 Land Pattern shown at the  
end of this datasheet, and minimum trace widths, the  
thermal impedance junction to ambient for SC1452 is  
113°C/W. Thus no additional heatsinking is required for  
the above conditions. The junction temperature can be  
further reduced by using larger trace widths and  
connecting pcb copper area to the GND pin (pin 3), which  
connects directly to the device substrate. Lower junction  
temperatures improve overall output voltage accuracy.  
Input capacitor - Semtech recommends the use of a 1µꢀ  
ceramic capacitor at the input. This allows for the device  
being some distance from any bulk capacitance on the  
rail. Additionally, input droop due to load transients is  
reduced, improving overall load transient response.  
Bypass capacitor - Semtech recommends the use of a  
10nꢀ ceramic capacitor to bypass the bandgap  
reference. Increasing this capacitor to 100nꢀ will  
further improve power supply rejection. CBYP may be  
omitted if low noise operation is not required.  
Layout Considerations  
While layout for linear devices is generally not as critical  
as for a switching application, careful attention to detail  
will ensure reliable operation.  
Thermal Considerations  
The worst-case power dissipation for this part is given  
by:  
1) Attaching the part to a larger copper footprint will  
enable better heat transfer from the device, especially  
on PCBs where there are internal ground and power  
planes.  
=
(
− •  
)
PD(MAX )  
VIN(MAX ) VOUTA (MIN) IOUTA (MAX )  
(1)  
+
(
)
VIN(MAX ) VOUTB (MIN) IOUTB (MAX )  
2) Place the input, output and bypass capacitors close  
to the device for optimal transient response and device  
behaviour.  
+
VIN(MAX ) IQ(MAX )  
www.semtech.com  
2001 Semtech Corp.  
8
SC1452  
POWER MANAGEMENT  
Applications Information (Cont.)  
3) Connect all ground connections directly to the ground  
plane. If there is no ground plane, connect to a common  
local ground point before connecting to board ground.  
Enable Input Voltage vs. Junction Temperature  
vs. Input Voltage  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
VIH @ VIN = 6.5V  
VIH @ VIN = 4V  
VIL @ VIN = 6.5V  
V
IL @ VIN = 4V  
-50  
-25  
0
25  
50  
75  
100  
125  
125  
125  
Typical Characteristics  
T
J (°C)  
Output Voltage vs. Output Current  
Output Voltage vs. Junction Temperature  
vs. Output Current  
vs. Junction Temperature  
0
0
-2  
TJ = 25°C  
-2  
-4  
-4  
Top to bottom:  
IOUT = 1mA  
IOUT = 50mA  
IOUT = 100mA  
-6  
-6  
TJ = -40°C  
-8  
-8  
I
OUT = 150mA  
-10  
-12  
-10  
TJ = 125°C  
VIN = VOUT + 1V  
-50 -25  
VIN = VOUT + 1V  
-12  
0
25  
50  
75  
100  
125  
150  
0
25  
50  
75  
100  
TJ (°C)  
IOUT (mA)  
Dropout Voltage vs. Output Current  
vs. Junction Temperature  
Dropout Voltage vs. Junction Temperature  
vs. Output Current  
200  
175  
150  
125  
100  
75  
200  
175  
150  
125  
100  
75  
IOUT = 150mA  
Top to bottom:  
50  
50  
TJ = 125°C  
TJ = 25°C  
TJ = -40°C  
IOUT = 50mA  
25  
25  
0
0
0
25  
50  
75  
100  
125  
150  
-50  
-25  
0
25  
50  
75  
100  
IOUT (mA)  
TJ (°C)  
www.semtech.com  
2001 Semtech Corp.  
9
SC1452  
POWER MANAGEMENT  
Typical Characteristics (Cont.)  
Line Regulation vs.  
Load Regulation vs.  
Junction Temperature  
Junction Temperature  
10  
10  
9
8
7
6
5
4
3
2
1
0
IOUT = 1mA  
9
VIN = VOUT + 1V  
OUT = 0.1mA to 150mA  
I
8
V
IN = VOUT + 1V to 6.5V  
7
6
5
4
3
2
1
0
VIN = VOUT + 1V to 5.5V  
-50  
-25  
0
25  
50  
75  
100  
125  
125  
125  
-50  
-25  
0
25  
50  
75  
100  
125  
125  
125  
TJ (°C)  
TJ (°C)  
Current Limit vs. Junction Temperature  
vs. Input Voltage  
Off-State Quiescent Current  
vs. Junction Temperature  
0.80  
0.75  
0.70  
0.65  
0.60  
0.55  
0.50  
0.45  
0.40  
400  
350  
300  
250  
200  
150  
100  
50  
VIN = 6.5V  
VENA = VENB = 0V  
VIN = 6.5V  
VIN = 4V  
0
-50  
-25  
0
25  
50  
75  
100  
-50  
-25  
0
25  
50  
75  
100  
TJ (°C)  
TJ (°C)  
Quiescent Current vs. Junction Temperature  
vs. Output Current  
Quiescent Current vs. Junction Temperature  
vs. Input Voltage  
200  
175  
150  
125  
100  
75  
200  
VIN = 6.5V  
IOUTA = IOUTB = 150mA  
IOUTA = IOUTB = 150mA  
175  
150  
125  
100  
75  
Top to bottom:  
VIN = 6.5V  
VIN = 5V  
I
OUTA or IOUTB = 150mA  
VIN = 4V  
50  
50  
25  
25  
0
0
-50  
-25  
0
25  
50  
75  
100  
-50  
-25  
0
25  
50  
75  
100  
TJ (°C)  
TJ (°C)  
www.semtech.com  
2001 Semtech Corp.  
10  
SC1452  
POWER MANAGEMENT  
Typical Characteristics (Cont.)  
Bypass Start-up Rise Time vs. Junction Temperature  
vs. Input Voltage  
Reset Threshold Voltage  
vs. Junction Temperature  
2.00  
94  
93  
92  
91  
90  
89  
88  
CBYP = 10nF  
V
OUT rising  
1.75  
1.50  
VIN = 4V  
1.25  
1.00  
VIN = 6.5V  
0.75  
0.50  
0.25  
0.00  
VOUT falling  
-50  
-25  
0
25  
50  
75  
100  
125  
-50  
-25  
0
25  
50  
75  
100  
125  
TJ (°C)  
TJ (°C)  
Reset Delay Times  
vs. Junction Temperature  
Delay Source Current and Voltage Threshold  
vs. Junction Temperature  
200  
175  
150  
125  
100  
75  
4.0  
1.275  
V
OUT + 1V VIN 6.5V  
VOUT + 1V VIN 6.5V  
3.8  
3.6  
3.4  
3.2  
3.0  
2.8  
2.6  
2.4  
2.2  
2.0  
1.270  
1.265  
1.260  
1.255  
1.250  
1.245  
1.240  
1.235  
1.230  
1.225  
tRSTB, DLYB = 0V  
IDLYB  
VTH(DLYB)  
tRSTA  
50  
25  
t
RSTB, CDLYB = 10nF  
0
-50  
-25  
0
25  
50  
75  
100  
125  
-50  
-25  
0
25  
50  
75  
100  
125  
TJ (°C)  
TJ (°C)  
Output Spectral Noise Density vs.  
)requency vs. Output Voltage  
Output Spectral Noise Density vs. )requency  
vs. Output Capacitance  
10  
10  
Top to bottom:  
VOUT = 3.3V  
VOUT = 3.0V  
V
OUT = 2.8V  
1
VOUT = 2.5V  
VOUT = 1.8V  
1
0.1  
0.1  
VOUT = 3V  
VIN = VOUT + 1V  
IOUT = 50mA  
V
IN = 4V  
Left to right:  
COUT = 44µF  
COUT = 22µF  
COUT = 10µF  
IOUT = 50mA  
CBYP = 10nF  
CIN = 1µF  
C
IN = 1µF  
0.01  
CBYP = 10nF  
COUT = 2.2µF  
TJ = 25°C  
C
OUT = 2.2µF  
TJ = 25°C  
0.01  
0.001  
0.01  
0.1  
1
10  
100  
1000  
0.01  
0.1  
1
10  
100  
1000  
f (kHz)  
f (kHz)  
www.semtech.com  
2001 Semtech Corp.  
11  
SC1452  
POWER MANAGEMENT  
Typical Characteristics (Cont.)  
Output Spectral Noise Density vs. )requency  
vs. Bypass Capacitance  
Output Spectral Noise Density vs. )requency  
vs. Output Current  
10  
10  
VOUT = 1.8V  
VIN = 2.8V  
Top to bottom:  
OUT = 150mA  
I
IOUT = 100mA  
IOUT = 50mA  
IOUT = 50mA  
1
C
IN = 1µF  
I
OUT = 1mA  
COUT = 2.2µF  
TJ = 25°C  
1
0.1  
0.1  
VOUT = 1.8V  
VIN = 2.8V  
CBYP = 100pF  
CBYP = 1nF  
CBYP = 10nF  
C
IN = 1µF  
0.01  
CBYP = 10nF  
COUT = 2.2µF  
TJ = 25°C  
C
BYP = 100nF  
CBYP = 1µF  
0.01  
0.001  
0.01  
0.1  
1
10  
100  
1000  
0.01  
0.1  
1
10  
100  
1000  
f (kHz)  
f (kHz)  
PSRR vs. )requency vs. Output Voltage  
PSRR vs. )requency vs. Output Voltage  
(C = 10n)ꢀ  
(C = 100n)ꢀ  
BYP  
BYP  
75  
70  
65  
60  
55  
50  
45  
40  
35  
30  
25  
75  
70  
65  
60  
55  
50  
45  
40  
35  
30  
25  
Top to bottom:  
VOUT = 1.8V  
VOUT = 2.5V  
Top to bottom:  
VOUT = 1.8V  
VOUT = 2.8V  
VOUT = 2.5V  
VIN = VOUT + 1V  
IN = COUT = 1µF  
CBYP = 100nF  
IOUT = 1mA  
TJ = 25°C  
VOUT = 3.0V  
VOUT = 3.3V  
VIN = VOUT + 1V  
CIN = COUT = 1µF  
VOUT = 2.8V  
VOUT = 3.0V  
C
CBYP = 10nF  
VOUT = 3.3V  
IOUT = 1mA  
TJ = 25°C  
0.01  
0.1  
1
10  
100  
1000  
0.01  
0.1  
1
10  
100  
1000  
f (kHz)  
f (kHz)  
www.semtech.com  
2001 Semtech Corp.  
12  
SC1452  
POWER MANAGEMENT  
Evaluation Board Schematic  
J1  
J2  
ENA  
ENB  
JP1  
JP2  
J3  
RIPPLE  
J4  
1
2
3
1
2
3
A
RIPPLE B  
J5  
VIN  
1
2
3
4
5
1
2
3
4
5
OUTA ENABLE  
OUTB ENABLE  
U1  
J6  
1
2
3
4
5
10  
9
OUTA  
OUTB  
GND  
IN  
ENA  
OUTA  
J7  
8
R1  
10k  
BYP  
OUTB  
J8  
7
RSTA  
RSTB  
ENB  
6
R2 10k  
DLYB  
RSTA  
J9  
SC1452xIMS  
JP3  
R3  
Open  
R4  
Open  
C1  
220uF  
+
C2  
2.2uF  
C3  
2.2uF  
C4  
1uF  
C5  
10nF  
C6  
10nF  
1
2
RSTB  
IQ MON  
JP4  
JP5  
150mA  
Short  
150mA  
Short  
1
2
3
1
2
3
R5  
(1)  
R6  
(1)  
OUTA LOAD  
OUTB LOAD  
J10  
OUTB LOAD DRV  
U2  
NOTE:  
(1) See table below for resistor values  
8
7
6
5
1
D
D
D
D
S
2
JP6  
S
3
EN  
S
4
1
2
3
Output Voltage  
R
(Ohms) (1W)  
G
1.8  
2.5  
2.8  
3.0  
3.3  
12  
16  
18  
20  
22  
OFF  
Si4410  
OUTB LOAD  
J11  
OUTA LOAD DRV  
J12  
GND  
J13  
GND  
J14  
GND  
J15  
GND  
J16  
GND  
J17  
GND  
J18  
GND  
U3  
8
7
6
5
1
D
D
D
D
S
2
JP7  
S
3
EN  
S
4
1
2
3
G
OFF  
Si4410  
OUTA LOAD  
Evaluation Board Gerber Plots  
Top Copper  
Bottom Copper  
www.semtech.com  
2001 Semtech Corp.  
13  
SC1452  
POWER MANAGEMENT  
Evaluation Board Gerber Plots (Cont.)  
Top Silk Screen  
Evaluation Board Bill of Materials  
Quantity  
Reference  
C1  
Part/Description  
220µF, 10V  
2.2µF ceramic  
1µF ceramic  
10nF ceramic  
Test pin  
Vendor  
Various  
Murata  
Murata  
Various  
Various  
Various  
Various  
Various  
Various  
Various  
Various  
Various  
Various  
Notes  
1
2
1
2
2
2
3
2
2
7
6
1
2
2
2
1
2
C2, C3  
C4  
GRM42-6X7R225K16  
GRM42-6X7R105K25  
C5, C6  
J1, J2  
White  
J3, J4  
BNC socket  
Test pin  
VOUT ripple monitor  
Red  
J5 - J7  
J8, J9  
Test pin  
Yellow  
J10, J11  
J12 - J18  
JP1, JP2, JP4 - JP7  
JP3  
Test pin  
Orange  
Black  
Test pin  
Header, 3 pin  
Header, 2 pin  
10k, 1/10W  
Not placed  
See schematic  
SC1452xIMS  
Si4410  
R1, R2  
R3, R4  
R5, R6  
U1  
Various  
Semtech  
Vishay  
1W  
U2, U3  
www.semtech.com  
2001 Semtech Corp.  
14  
SC1452  
POWER MANAGEMENT  
Outline Drawing - MSOP-10  
Land Pattern - MSOP-10  
Contact Information  
Semtech Corporation  
Power Management Products Division  
652 Mitchell Rd., Newbury Park, CA 91320  
Phone: (805)498-2111 ꢀAX (805)498-3804  
www.semtech.com  
2001 Semtech Corp.  
15  

相关型号:

SC1452EIMSTRT

Fixed Positive LDO Regulator, 2 Output, 3.3V1, 3.3V2, CMOS, PDSO10, ROHS-COMPLIANT, MO-187BA, MSOP-10
SEMTECH

SC1452FIMSTR

Fixed Positive LDO Regulator, 2 Output, 3V1, 2.5V2, CMOS, PDSO10, MO-187BA, MSOP-10
SEMTECH

SC1452FIMSTRT

Fixed Positive LDO Regulator, 2 Output, 3V1, 2.5V2, CMOS, PDSO10, ROHS-COMPLIANT, MO-187BA, MSOP-10
SEMTECH

SC1452GIMSTR

Fixed Positive LDO Regulator, 2 Output, 3V1, 1.8V2, CMOS, PDSO10, MO-187BA, MSOP-10
SEMTECH

SC1452HIMSTR

Fixed Positive LDO Regulator, 2 Output, 3V1, 2.8V2, CMOS, PDSO10, MO-187BA, MSOP-10
SEMTECH

SC1452HIMSTRT

Fixed Positive LDO Regulator, 2 Output, 3V1, 2.8V2, CMOS, PDSO10, ROHS-COMPLIANT, MO-187BA, MSOP-10
SEMTECH

SC1452JIMSTR

Fixed Positive LDO Regulator, 2 Output, 3.3V1, 2.5V2, CMOS, PDSO10, MO-187BA, MSOP-10
SEMTECH

SC1452JIMSTRT

Fixed Positive LDO Regulator, 2 Output, 3.3V1, 2.5V2, CMOS, PDSO10, ROHS-COMPLIANT, MO-187BA, MSOP-10
SEMTECH

SC1452KIMSTR

Fixed Positive LDO Regulator, 2 Output, 3.3V1, 2.8V2, CMOS, PDSO10, MO-187BA, MSOP-10
SEMTECH

SC1452KIMSTRT

Fixed Positive LDO Regulator, 2 Output, 3.3V1, 2.8V2, CMOS, PDSO10, ROHS-COMPLIANT, MO-187BA, MSOP-10
SEMTECH

SC1452XIMSTR

DUAL 150mA LDO REGULATOR WITH PROGRAMMABLE RESET
SEMTECH

SC1452XIMSTRT

Dual 150mA LDO Regulator with Programmable Reset
SEMTECH