ACS8530T [SEMTECH]

Synchronous Equipment Timing Source for Stratum 2/3E Systems; 同步设备定时源用于Stratum 2 / 3E系统
ACS8530T
型号: ACS8530T
厂家: SEMTECH CORPORATION    SEMTECH CORPORATION
描述:

Synchronous Equipment Timing Source for Stratum 2/3E Systems
同步设备定时源用于Stratum 2 / 3E系统

文件: 总152页 (文件大小:1253K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ACS8530 SETS  
Synchronous Equipment Timing Source for  
Stratum 2/3E Systems  
ADVANCED COMMUNICATIONS  
FINAL  
DATASHEET  
Description  
Features  
The ACS8530 is a highly integrated, single-chip solution  
for the Synchronous Equipment Timing Source (SETS)  
function in a SONET or SDH Network Element. The device  
generates SONET or SDH Equipment Clocks (SEC) and  
Frame Synchronization clocks. The ACS8530 is fully  
compliant with the required international specifications  
and standards.  
‹ Suitable for Stratum 2, 3E, 3, 4E and 4 and SONET  
Minimum Clock (SMC) or SONET/SDH Equipment  
Clock (SEC) applications (to Telcordia 1244-CORE[19]  
Stratum 3E, and GR-253[17], and ITU-T G.812[10]  
Type III and G.813[11] specifications)  
‹ Accepts 14 individual input reference clocks, all with  
robust input clock source quality monitoring  
The device supports Free-run, Locked and Holdover  
modes. It also supports all three types of reference clock  
source: recovered line clock, PDH network, and node  
synchronization. The ACS8530 generates independent  
SEC and BITS clocks, an 8 kHz Frame Synchronization  
clock and a 2 kHz Multi-Frame Synchronization clock.  
‹ Simultaneously generates nine output clocks, plus  
two sync pulse outputs  
‹ Absolute Holdover accuracy better than 3 x 10-10  
(manual), 7.5 x 10-14 (instantaneous); Holdover  
stability defined by choice of external XO  
‹ Programmable PLL bandwidth, for wander and jitter  
tracking/attenuation, 0.5 mHz to 70 Hz in 18 steps  
Two ACS8530 devices can be used together in a Master/  
Slave configuration mode allowing system protection  
against a single ACS8530 failure.  
‹ Automatic hit-less source switchover on loss of input  
‹ Phase Transient Protection and Phase Build-out on  
locked to reference and on reference switching  
A microprocessor port is incorporated, providing access to  
the configuration and status registers for device setup  
and monitoring. The ACS8530 supports IEEE 1149.1[5]  
JTAG boundary scan.  
‹ Microprocessor interface - Intel, Motorola, Serial,  
Multiplexed, or boot from EPROM  
‹ Output phase adjustment in 6 ps steps up to ±200 ns  
‹ IEEE 1149.1 JTAG[5] Boundary Scan  
‹ Single 3.3 V operation. 5 V tolerant  
Block Diagram  
‹ Available in LQFP 100 package  
‹ Lead (Pb) - free version available (ACS8530T), RoHS  
and WEEE compliant.  
Figure 1 Block Diagram of the ACS8530 SETS  
Outputs  
T01-TO7:  
E1/DS1 (2.048/  
T4 DPLL/Freq. Synthesis  
1.544 MHz)  
and frequency  
multiples:  
1.5 x, 2 x, 3 x  
4 x, 6 x, 12 x  
16 x and 24 x  
E3/DS3  
Output  
Ports  
T4 APLL  
Digital  
Loop  
Filter  
PFD  
DTO  
Optional  
Frequency  
Dividers  
TO1  
to  
TO7  
T4  
Selector  
2 x AMI  
10 x TTL  
2 x PECL/LVDS  
Programmable;  
64/8 kHz (AMI)  
2 kHz  
Divider, 1/n  
14  
n = 1 to 2  
2 kHz  
8 kHz  
Input  
Port  
Monitors  
and  
and OC-N* rates  
TO8  
&
TO9  
4 kHz  
T08: AMI  
TO9: E1/DS1  
N x 8 kHz  
1.544/2.048 MHz  
6.48 MHz  
Selection  
Control  
T0 DPLL/Freq. Synthesis  
T0 APLL  
(output)  
19.44 MHz  
25.92 MHz  
38.88 MHz  
51.84 MHz  
77.76 MHz  
155.52 MHz  
14 x SEC  
TO10: 8 kHz  
(FrSync)  
TO11: 2 kHz  
(MFrSync)  
TO10  
&
TO11  
Frequency  
Dividers  
Optional  
T0  
Selector  
Divider, 1/n  
Digital  
Loop  
Filter  
14  
n = 1 to 2  
PFD  
DTO  
TO APLL  
(feedback)  
OC-N* rates =  
OC-1 51.84 MHz  
OC-3 155.52 MHz  
and derivatives:  
6.48 MHz  
19.44 MHz  
25.92 MHz  
38.88 MHz  
51.84 MHz  
TCK  
TDI  
TMS  
TRST  
TDO  
Chip  
Clock  
Generator  
IEEE  
1149.1  
JTAG  
Priority  
Table  
Microprocessor  
Port  
Register Set  
77.76 MHz  
155.52 MHz  
311.04 MHz  
OCXO  
F8530D_001BLOCKDIA_09  
Revision 3.02/November 2005 © Semtech Corp.  
Page1  
www.semtech.com  
ACS8530 SETS  
Table of Contents  
ADVANCED COMMUNICATIONS FINAL  
DATASHEET  
Table of Contents  
Section  
Page  
Description................................................................................................................................................................................................. 1  
Block Diagram............................................................................................................................................................................................ 1  
Features ..................................................................................................................................................................................................... 1  
Table of Contents ...................................................................................................................................................................................... 2  
Pin Diagram ............................................................................................................................................................................................... 4  
Pin Description........................................................................................................................................................................................... 5  
Introduction................................................................................................................................................................................................ 8  
General Description................................................................................................................................................................................... 8  
Overview .............................................................................................................................................................................................8  
Input Reference Clock Ports .......................................................................................................................................................... 10  
Locking Frequency Modes.................................................................................................................................................... 10  
PECL/LVDS/AMI Input Port Selection.................................................................................................................................. 11  
Clock Quality Monitoring................................................................................................................................................................. 12  
Activity Monitoring................................................................................................................................................................. 12  
Frequency Monitoring ........................................................................................................................................................... 14  
Selection of Input Reference Clock Source................................................................................................................................... 14  
Forced Control Selection....................................................................................................................................................... 15  
Automatic Control Selection................................................................................................................................................. 15  
Ultra Fast Switching .............................................................................................................................................................. 15  
Fast External Switching Mode-SCRSW Pin .......................................................................................................................... 16  
Output Clock Phase Continuity on Source Switchover ....................................................................................................... 16  
Modes of Operation ........................................................................................................................................................................ 16  
Free-run Mode....................................................................................................................................................................... 16  
Pre-locked Mode ................................................................................................................................................................... 16  
Locked Mode......................................................................................................................................................................... 17  
Lost-phase Mode................................................................................................................................................................... 17  
Holdover Mode ...................................................................................................................................................................... 17  
Pre-locked2 Mode ................................................................................................................................................................. 19  
DPLL Architecture and Configuration ............................................................................................................................................ 20  
TO DPLL Main Features ........................................................................................................................................................ 20  
T4 DPLL Main Features ........................................................................................................................................................ 20  
TO DPLL Automatic Bandwidth Controls.............................................................................................................................. 21  
Phase Detectors.................................................................................................................................................................... 21  
Phase Lock/Loss Detection.................................................................................................................................................. 21  
Damping Factor Programmability......................................................................................................................................... 22  
Local Oscillator Clock............................................................................................................................................................ 22  
Output Wander ...................................................................................................................................................................... 23  
Jitter and Wander Transfer................................................................................................................................................... 25  
Phase Build-out ..................................................................................................................................................................... 25  
Input to Output Phase Adjustment....................................................................................................................................... 26  
Input Wander and Jitter Tolerance....................................................................................................................................... 26  
Using the DPLLs for Accurate Frequency and Phase Reporting ........................................................................................ 28  
Configuration for Redundancy Protection..................................................................................................................................... 29  
Alignment of Priority Tables in Master and Slave ACS8530 .............................................................................................. 30  
T4 Generation in Master and Slave ACS8530.................................................................................................................... 30  
Alignment of the Output Clock Phases in Master and Slave ACS8530............................................................................. 30  
MFrSync and FrSync Alignment-SYNC2K............................................................................................................................. 31  
Output Clock Ports.......................................................................................................................................................................... 32  
PECL/LVDS/AMI Output Port Selection ............................................................................................................................... 32  
Output Frequency Selection and Configuration .................................................................................................................. 32  
Revision 3.02/November 2005 © Semtech Corp.  
Page2  
www.semtech.com  
ACS8530 SETS  
ADVANCED COMMUNICATIONS  
Section  
FINAL  
DATASHEET  
Page  
Microprocessor Interface....................................................................................................................................................................... 43  
Introduction to Microprocessor Modes ......................................................................................................................................... 43  
Motorola Mode ...................................................................................................................................................................... 44  
Intel Mode.............................................................................................................................................................................. 46  
Multiplexed Mode.................................................................................................................................................................. 48  
Serial Mode............................................................................................................................................................................ 50  
EPROM Mode......................................................................................................................................................................... 52  
Power-On Reset............................................................................................................................................................................... 52  
Register Map........................................................................................................................................................................................... 53  
Register Organization ..................................................................................................................................................................... 53  
Multi-word Registers ............................................................................................................................................................. 53  
Register Access ..................................................................................................................................................................... 53  
Interrupt Enable and Clear ................................................................................................................................................... 53  
Defaults.................................................................................................................................................................................. 53  
Register Descriptions ............................................................................................................................................................................. 57  
Electrical Specifications....................................................................................................................................................................... 134  
JTAG ...............................................................................................................................................................................................134  
Over-voltage Protection ................................................................................................................................................................134  
ESD Protection ..............................................................................................................................................................................134  
Latchup Protection........................................................................................................................................................................134  
Maximum Ratings .........................................................................................................................................................................135  
Operating Conditions ....................................................................................................................................................................135  
DC Characteristics ........................................................................................................................................................................135  
DC Characteristics: AMI Input/Output Port ....................................................................................................................... 139  
Jitter Performance ........................................................................................................................................................................141  
Input/Output Timing .....................................................................................................................................................................144  
Package Information ............................................................................................................................................................................ 145  
Thermal Conditions.......................................................................................................................................................................146  
Application Information........................................................................................................................................................................ 147  
References............................................................................................................................................................................................ 148  
Abbreviations ........................................................................................................................................................................................ 148  
Trademark Acknowledgements........................................................................................................................................................... 149  
Revision Status/History ....................................................................................................................................................................... 150  
Notes ..................................................................................................................................................................................................... 151  
Ordering Information ............................................................................................................................................................................ 152  
Disclaimers....................................................................................................................................................................................152  
Contacts.........................................................................................................................................................................................152  
Revision 3.02/November 2005 © Semtech Corp.  
Page3  
www.semtech.com  
ACS8530 SETS  
ADVANCED COMMUNICATIONS  
FINAL  
DATASHEET  
Pin Diagram  
Figure 2 ACS8530 Pin Diagram Synchronous Equipment Timing Source for Stratum 2/3E Systems  
V
S
G
A
O
O
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             4
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             3
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             2
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             1
0
1
7
4
1
7
7
6
1
9
9
9
9
9
9
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             3
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             2
9
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             9
8
8
8
8
8
8
7
7
1
2
3
4
5
6
7
8
AGND  
TRST  
IC1  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
RDY  
PORB  
ALE  
RDB  
WRB  
CSB  
A0  
A1  
A2  
A3  
A4  
IC2  
AGND1  
VA1+  
TMS  
INTREQ  
TCK  
REFCLK  
DGND1  
VD1+  
VD3+  
DGND3  
DGND2  
VD2+  
IC3  
SRCSW  
VA2+  
AGND2  
TDO  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
A5  
A6  
DGNDd  
VDDd  
UPSEL0  
UPSEL1  
UPSEL2  
I14  
I13  
I12  
I11  
I10  
ACS8530  
SONET/SDH SETS  
IC4  
TDI  
I1  
I2  
I9  
I8  
F8530D_002PINDIAG_04  
Revision 3.02/November 2005 © Semtech Corp.  
Page4  
www.semtech.com  
ACS8530 SETS  
ADVANCED COMMUNICATIONS  
FINAL  
DATASHEET  
Pin Description  
Table 1 Power Pins  
Pin Number  
Symbol  
I/O  
Type  
Description  
12, 13,  
16  
VD1+, VD3+,  
VD2+  
P
-
Supply Voltage: Digital supply to gates in analog section, +3.3 Volts  
±10%.  
26  
VAMI+  
P
P
-
-
Supply Voltage: Digital supply to AMI output, +3.3 Volts ±10%.  
33,  
39  
VDD_DIFFa,  
VDD_DIFFb  
Supply Voltage: Digital supply for differential ports, +3.3 Volts ±10%.  
44  
VDD5  
P
-
Digital Supply for +5 Volts Tolerance to Input Pins. Connect to +5 Volts  
(±10%) for clamping to +5 Volts. Connect to VDD for clamping to  
+3.3 Volts. Leave floating for no clamping, input pins tolerant up to  
+5.5 Volts.  
50, 61,  
85, 86  
VDDa, VDDd,  
VDDc, VDDb  
P
-
Supply Voltage: Digital supply to logic, +3.3 Volts ±10%.  
6
VA1+  
P
P
P
-
-
-
Supply Voltage: Analog supply to clock multiplying PLL, +3.3 Volts ±10%.  
Supply Voltage: Analog supply to output PLLs, +3.3 Volts ±10%.  
Supply Ground: Digital ground for components in PLLs.  
19, 91  
VA2+, VA3+  
11, 14,  
15,  
DGND1, DGND3,  
DGND2,  
49, 62,  
84, 87  
DGNDa, DGNDd,  
DGNDc, DGNDb  
P
-
Supply Ground: Digital ground for logic.  
29  
GND_AMI  
P
P
-
-
Supply Ground: Digital ground for AMI output.  
32,  
38  
GND_DIFFa,  
GND_DIFFb  
Supply Ground: Digital ground for differential ports.  
1, 5,  
20, 92  
AGND, AGND1,  
AGND2, AGND3  
P
-
Supply Ground: Analog grounds.  
Note...I = Input, O = Output, P = Power, TTLU = TTL input with pull-up resistor, TTLD = TTL input with pull-down resistor.  
Table 2 Internally Connected  
Pin Number  
Symbol  
I/O  
Type  
Description  
Internally Connected: Leave to Float.  
3, 4, 17, 22,  
96, 97, 98  
IC1, IC2, IC3, IC4,  
IC5, IC6, IC7  
-
-
Revision 3.02/November 2005 © Semtech Corp.  
Page5  
www.semtech.com  
ACS8530 SETS  
ADVANCED COMMUNICATIONS  
Table 3 Other Pins  
FINAL  
DATASHEET  
Pin Number  
Symbol  
I/O  
Type  
Description  
2
7
TRST  
TMS  
I
TTLD  
JTAG Control Reset Input: TRST = 1 to enable JTAG Boundary Scan  
mode. TRST = 0 for Boundary Scan stand-by mode, still allowing correct  
device operation. If not used connect to GND or leave floating.  
I
TTLU  
JTAG Test Mode Select: Boundary Scan enable. Sampled on rising edge  
of TCK. If not used connect to VDD or leave floating.  
8
9
INTREQ  
TCK  
O
I
TTL/CMOS  
TTLD  
Interrupt Request: Active High/Low software Interrupt output.  
JTAG Clock: Boundary Scan clock input. If not used connect to GND or  
leave floating.  
10  
18  
21  
23  
REFCLK  
SRCSW  
TDO  
I
I
TTL  
TTLD  
Reference Clock: 12.800 MHz (refer to section headed Local Oscillator  
Clock).  
Source Switching: Force Fast Source Switching. See “Fast External  
Switching Mode-SCRSW Pin” on page 16.  
O
I
TTL/CMOS  
TTLU  
JTAG Output: Serial test data output. Updated on falling edge of TCK. If  
not used leave floating.  
TDI  
JTAG Input: Serial test data Input. Sampled on rising edge of TCK. If not  
used connect to VDD or leave floating.  
24  
25  
27  
28  
30  
31  
I1  
I
AMI  
AMI  
Input Reference 1: Composite clock 64 kHz + 8 kHz.  
Input Reference 2: Composite clock 64 kHz + 8 kHz.  
Output Reference 8: Composite clock, 64 kHz + 8 kHz negative pulse.  
Output Reference 8: Composite clock, 64 kHz + 8 kHz positive pulse.  
Output Reference 10: 8 kHz Frame Sync output.  
I2  
I
TO8NEG  
TO8POS  
FrSync  
MFrSync  
O
O
O
O
O
AMI  
AMI  
TTL/CMOS  
TTL/CMOS  
LVDS/PECL  
Output Reference 11: 2 kHz Multi-Frame Sync output.  
34,  
35  
TO6POS,  
TO6NEG  
Output Reference 6: Programmable, default 38.88 MHz, default type  
LVDS.  
36,  
37  
TO7POS,  
TO7NEG  
O
I
PECL/LVDS  
LVDS/PECL  
PECL/LVDS  
Output Reference 7: Programmable, default 19.44 MHz, default type  
PECL.  
40,  
41  
I5POS,  
I5NEG  
Input Reference 5: Programmable, default 19.44 MHz, default type  
LVDS.  
42,  
43  
I6POS,  
I6NEG  
I
Input Reference 6: Programmable, default 19.44 MHz, default type  
PECL.  
45  
46  
47  
48  
51  
52  
53  
SYNC2K  
I
I
I
I
I
I
I
TTLD  
TTLD  
TTLD  
TTLD  
TTLD  
TTLD  
TTLD  
External Sync input: 2 kHz, 4 kHz or 8 kHz for frame alignment.  
Input Reference 3: Programmable, default 8 kHz.  
I3  
I4  
Input Reference 4: Programmable, default 8 kHz.  
I7  
Input Reference 7: Programmable, default 19.44 MHz.  
Input Reference 8: Programmable, default 19.44 MHz.  
Input Reference 9: Programmable, default 19.44 MHz.  
Input Reference 10: Programmable, default 19.44 MHz.  
I8  
I9  
I10  
Revision 3.02/November 2005 © Semtech Corp.  
Page6  
www.semtech.com  
ACS8530 SETS  
ADVANCED COMMUNICATIONS  
Table 3 Other Pins (cont...)  
FINAL  
DATASHEET  
Pin Number  
54  
Symbol  
I/O  
Type  
Description  
I11  
I
TTLD  
Input Reference 11: Programmable, default (Master mode)  
1.544/2.048 MHz, default (Slave mode) 6.48 MHz.  
55  
I12  
I13  
I14  
I
I
I
I
TTLD  
TTLD  
TTLD  
TTLD  
Input Reference 12: Programmable, default 1.544/2.048 MHz.  
Input Reference 13: Programmable, default 1.544/2.048 MHz.  
Input Reference 14: Programmable, default 1.544/2.048 MHz.  
56  
57  
58 - 60  
UPSEL(2:0)  
Microprocessor select: Configures the interface for a particular  
microprocessor type at reset.  
63 - 69  
A(6:0)  
I
TTLD  
Microprocessor Interface Address: Address bus for the microprocessor  
interface registers. A(0) is SDI in Serial mode - output in EPROM mode  
only. A(1) is CLKE in serial mode.  
70  
71  
72  
73  
CSB  
WRB  
RDB  
ALE  
I
I
I
I
TTLU  
TTLU  
TTLU  
TTLD  
Chip Select (Active Low): This pin is asserted Low by the microprocessor  
to enable the microprocessor interface - output in EPROM mode only.  
Write (Active Low): This pin is asserted Low by the microprocessor to  
initiate a write cycle. In Motorola mode, WRB = 1 for Read.  
Read (Active Low): This pin is asserted Low by the microprocessor to  
initiate a read cycle.  
Address Latch Enable: This pin becomes the address latch enable from  
the microprocessor. When this pin transitions from High to Low, the  
address bus inputs are latched into the internal registers. ALE = SCLK in  
Serial mode.  
74  
PORB  
RDY  
I
TTLU  
TTL/CMOS  
TTLD  
Power-On Reset: Master reset. If PORB is forced Low, all internal states  
are reset back to default values.  
75  
O
Ready/Data Acknowledge: This pin is asserted High to indicate the  
device has completed a read or write operation.  
76 - 83  
AD(7:0)  
IO  
Address/Data: Multiplexed data/address bus depending on the  
microprocessor mode selection. AD(0) is SDO in Serial mode.  
88  
89  
90  
93  
94  
95  
TO1  
TO2  
TO3  
TO4  
TO5  
TO9  
O
O
O
O
O
O
TTL/CMOS  
TTL/CMOS  
TTL/CMOS  
TTL/CMOS  
TTL/CMOS  
TTL/CMOS  
Output Reference 1: Programmable, default 6.48 MHz.  
Output Reference 2: Programmable, default 38.88 MHz.  
Output Reference 3: Programmable, default 19.44 MHz.  
Output Reference 4: Programmable, default 38.88 MHz.  
Output Reference 5: Programmable, default 77.76 MHz.  
Output Reference 9: 1.544/2.048 MHz, as per ITU G.783 BITS  
requirements.  
99  
MSTSLVB  
SONSDHB  
I
I
TTLU  
TTLD  
Master/Slave Select: sets the state of the Master/Slave selection  
register, Reg. 34, Bit 1.  
100  
SONET or SDH Frequency Select: sets the initial power up state (or state  
after a PORB) of the SONET/SDH frequency selection registers, Reg. 34,  
Bit 2 and Reg. 38, Bit 5, Bit 6 and Reg. 64 Bit 4. When set Low, SDH  
rates are selected (2.048 MHz etc.) and when set High, SONET rates  
are selected (1.544 MHz etc.) The register states can be changed after  
power-up by software.  
Revision 3.02/November 2005 © Semtech Corp.  
Page7  
www.semtech.com  
ACS8530 SETS  
ADVANCED COMMUNICATIONS  
Introduction  
FINAL  
DATASHEET  
oscillator module. This second key advantage confines all  
temperature critical components to one well defined and  
pre-calibrated module, whose performance can be  
chosen to match the application; for example an OCXO for  
Stratum 3E applications.  
The ACS8530 is a highly integrated, single-chip solution  
for the SETS function in a SONET/SDH Network Element,  
for the generation of SEC and Frame/MultiFrame  
Synchronization pulses. Digital Phase Locked Loop (DPLL)  
and direct digital synthesis methods are used in the  
device so that the overall PLL characteristics are very  
stable and consistent compared to traditional analog  
PLLs.  
All performance parameters of the DPLLs are  
programmable without the need to understand detailed  
PLL equations. Bandwidth, damping factor and lock range  
can all be set directly, for example. The PLL bandwidth  
can be set over a wide range, 0.5 mHz to 70 Hz in 18  
steps, to cover all SONET/SDH clock synchronization  
applications.  
In Free-run mode, the ACS8530 generates a stable, low-  
noise clock signal at a frequency to the same accuracy as  
the external oscillator, or it can be made more accurate  
via software calibration to within ±0.02 ppm. In Locked  
mode, the ACS8530 selects the most appropriate input  
reference source and generates a stable, low-noise clock  
signal locked to the selected reference. In Holdover mode,  
the ACS8530 generates a stable, low-noise clock signal,  
adjusted to match the last known good frequency of the  
last selected reference source. A high level of phase and  
frequency accuracy is made possible by an internal  
resolution of up to 54 bits and internal Holdover accuracy  
of up to 7.5 x 10-14 (instantaneous). In all modes, the  
frequency accuracy, jitter and drift performance of the  
clock meet the requirements of ITU G.736[7], G.742[8],  
G783[9], G.812[10], G.813[11], G.823[13], G.824[14] and  
The ACS8530 supports protection. Two ACS8530 devices  
can be configured to provide protection against a single  
ACS8530 failure. The protection maintains alignment of  
the two ACS8530 devices (Master and Slave) and  
ensures that both ACS8530 devices maintain the same  
priority table, choose the same reference input and  
generate the T0 clock, the 8 kHz Frame Synchronization  
clock and the 2 kHz Multi-Frame Synchronization clock  
with the same phase. The ACS8530 includes a multi-  
standard microprocessor port, providing access to the  
configuration and status registers for device setup and  
monitoring.  
Telcordia GR-253-CORE[17] and GR-1244-CORE[19]  
.
General Description  
The ACS8530 supports all three types of reference clock  
source: recovered line clock, PDH network  
Overview  
synchronization timing and node synchronization. The  
ACS8530 generates independent T0 and T4 clocks, an  
8 kHz Frame Synchronization clock and a 2 kHz Multi-  
Frame Synchronization clock.  
The following description refers to the Block Diagram  
(Figure 1 on page 1).  
The ACS8530 SETS device has 14 input clocks, generates  
11 output clocks, and has a total of 55 possible output  
frequencies. There are two main paths through the  
device: T0 and T4. Each path has an independent DPLL  
and APLL pair.  
One key architectural advantage that the ACS8530 has  
over traditional solutions is in the use of DPLL technology  
for precise and repeatable performance over temperature  
or voltage variations and between parts. The overall PLL  
bandwidth, loop damping, pull-in range and frequency  
accuracy are all determined by digital parameters that  
provide a consistent level of performance. An Analog PLL  
(APLL) takes the signal from the DPLL output and provides  
a lower jitter output. The APLL bandwidth is set four orders  
of magnitude higher than the DPLL bandwidth. This  
ensures that the overall system performance still  
maintains the advantage of consistent behavior provided  
by the digital approach.  
The T0 path is a high quality, highly configurable path  
designed to provide features necessary for node timing  
synchronization within a SONET/SDH network. The T4  
path is a simpler and less configurable path designed to  
give a totally independent path for internal equipment  
synchronization. The device supports use of either or both  
paths, either locked together or independent.  
Of the 14 input references, two are AMI composite clock,  
The DPLLs are clocked by the external Oscillator module two are LVDS/PECL and the remaining ten are TTL/CMOS  
(OCXO) so that the Free-run or Holdover frequency compatible inputs. All the TTL/CMOS are 3 V and 5 V  
stability is only determined by the stability of the external compatible (with clamping if required by connecting the  
Revision 3.02/November 2005 © Semtech Corp.  
Page8  
www.semtech.com  
ACS8530 SETS  
ADVANCED COMMUNICATIONS  
FINAL  
DATASHEET  
VDD5 pin). The AMI inputs are ±1 V typically A.C. coupled. There are a number of features supported by the T0 path  
Refer to the electrical characteristics section for more  
information on the electrical compatibility and details.  
Input frequencies supported range from 2 kHz to  
155.52 MHz.  
that are not supported by the T4 path, although these can  
also all be externally controlled by software.  
The additional T0 features supported are:  
z Non-revertive mode  
Common E1, DS1, OC-3 and sub-divisions are supported  
as spot frequencies that the DPLLs will directly lock to.  
Any input frequency, up to 100 MHz, that is a multiple of  
8 kHz can also be locked to via an inbuilt programmable  
divider.  
z Phase Build-out on source switch (hit-less source  
switching)  
z Phase Build-out following phase hit on locked-to  
source  
z I/O phase offset control  
An input reference monitor is assigned to each of the 14  
inputs. The monitors operate continuously such that at all  
times the status of all of the inputs to the device are  
known. Each input can be monitored for both frequency  
and activity, activity alone, or the monitors can be  
disabled.  
z Greater programmable bandwidth from 0.5 mHz to  
70 Hz in 18 steps (T4 path programmable bandwidth  
in 3 steps, 18, 35 and 70 Hz)  
z Noise rejection on low frequency input  
z Manual Holdover frequency control  
z Controllable automatic Holdover frequency filtering  
z Frame Sync pulse alignment.  
The frequency monitors have a “hard” (rejection) alarm  
limit and a “soft” (flag only) alarm limit for monitoring  
frequency, whilst the reference is still within its allowed  
frequency band. Each input reference can be  
programmed with a priority number allowing references to  
be chosen according to the highest priority valid input. The  
two paths (T0 and T4) have independent priorities to allow  
completely independent operation of the two paths. Both  
paths operate either automatic or external source  
selection.  
Either the software or an internal state machine controls  
the operation of the DPLL in the T0 path. The state  
machine for the T4 path is very simple and cannot be  
manually/externally controlled, however the overall  
operation can be controlled by manual reference source  
selection. One additional feature of the T4 path is the  
ability to measure a phase difference between two inputs.  
The T0 path DPLL always produces an output at  
77.76 MHz to feed the APLL, regardless of the frequency  
selected at the output pins. The T4 path can be operated  
at a number of frequencies. This is to enable the  
generation of extra output frequencies, which cannot be  
easily related to 77.76 MHz. When the T4 path is selected  
to lock to the T0 path, the T4 DPLL locks to the 8 kHz from  
the T0 DPLL. This is because all of the frequencies of  
operation of the T4 path can be divided to 8 kHz and this  
will ensure synchronization of all the frequencies within  
the two paths.  
For automatic input reference selection, the T0 path has  
a more complex state machine than the T4 path.  
The T0 and T4 PLL paths support the following common  
features:  
z Automatic source selection according to input  
priorities and quality level  
z Different quality levels (activity alarm thresholds) for  
each input  
z Variable bandwidth, lock range and damping factor.  
z Direct PLL locking to common SONET/SDH input  
Both of the DPLLs’ outputs are connected to multiplying  
and filtering APLLs. The outputs of these APLLs are  
divided making a number of frequencies simultaneously  
available for selection at the output clock ports. The  
various combinations of DPLL, APLL and divider  
configurations allow for generation of a comprehensive  
set of frequencies, as listed in Table 13.  
frequencies or any multiple of 8 kHz  
z Automatic mode switching between Free-run, Locked  
and Holdover states  
z Fast detection on input failure and entry into Holdover  
mode (holds at the last good frequency value)  
z Frequency translation between input and output rates  
via direct digital synthesis  
To synchronize the lower output frequencies when the T0  
PLL is locked to a high frequency reference input, an  
additional input is provided. The SYNC2K pin (pin 45) is  
used to reset the dividers that generate the 2kHz and  
z High accuracy digital architecture for stable PLL  
dynamics combined with an APLL for low jitter final  
output clocks.  
Revision 3.02/November 2005 © Semtech Corp.  
Page9  
www.semtech.com  
ACS8530 SETS  
ADVANCED COMMUNICATIONS  
FINAL  
DATASHEET  
Lock8k Mode  
8 kHz outputs such that the output 2/8 kHz clocks are  
lined up with the input 2 kHz. This synchronization  
method allows for example, a master and a slave device  
to be in precise alignment.  
Lock8k mode automatically sets the divider parameters  
to divide the input frequency down to 8 kHz. Lock8k can  
only be used on the supported spot frequencies (see  
Table 4 Note(i)). Lock8k mode is enabled by setting the  
lock8k bit (Bit 6) in the appropriate  
cnfg_ref_source_frequency register location. Using lower  
frequencies for phase comparisons in the DPLL results in  
a greater tolerance to input jitter. It is possible to choose  
which edge of the input reference clock to lock to, by  
setting 8K edge polarity (Bit 2 of Reg. 03, test_register1).  
The ACS8530 also supports Sync pulse references of  
4 kHz or 8 kHz although in these cases frequencies lower  
than the Sync pulse reference may not necessarily be in  
phase.  
Input Reference Clock Ports  
Table 4 gives details of the input reference ports, showing  
the input technologies and the range of frequencies  
supported on each port; the default spot frequencies and  
default priorities assigned to each port on power-up or by  
reset are also shown. Note that SDH and SONET networks  
use different default frequencies; the network type is pin-  
selectable (using either the SONSDHB pin or via  
software). Specific frequencies and priorities are set by  
configuration.  
DivN Mode  
In DivN mode, the divider parameters are set manually by  
configuration (Bit 7 of the cnfg_ref_source_frequency  
register), but must be set so that the frequency after  
division is 8 kHz.  
The DivN function is defined as:  
DivN = “Divide by N+1”, i.e. it is the dividing factor used  
for the division of the input frequency, and has a value of  
(N+1) where N is an integer from 1 to 12499 inclusive.  
SDH and SONET networks use different default  
frequencies; the network type is selectable using the  
cnfg_input_mode Reg. 34 Bit 2, ip_sonsdhb.  
Therefore, in DivN mode the input frequency can be  
divided by any integer value between 2 to 12500.  
Consequently, any input frequency which is a multiple of  
8 kHz, between 8 kHz to 100 MHz, can be supported by  
using DivN mode.  
z For SONET, ip_sonsdhb = 1  
z For SDH, ip_sonsdhb = 0.  
On power-up or by reset, the default will be set by the state  
of the SONSDHB pin (pin 100). Specific frequencies and  
priorities are set by configuration.  
Note...Any reference input can be set to use DivN  
independently of the frequencies and configurations of the  
other inputs. However only one value of N is allowed, so all  
inputs with DivN selected must be running at the same  
frequency.  
The frequency selection is programmed via the  
cnfg_ref_source_frequency register (Reg. 20 - Reg. 2D).  
DivN Examples  
(a) To lock to 2.000 MHz:  
Locking Frequency Modes  
(i) Set the cnfg_ref_source_frequency register to  
10XX0000 (binary) to enable DivN, and set the  
frequency to 8 kHz - the frequency required after  
division. (XX = “Leaky Bucket” ID for this input).  
There are three locking frequency modes that can be  
configured: Direct Lock, Lock8k and DivN.  
Direct Lock Mode  
(ii) To achieve 8 kHz, the 2 MHz input must be  
divided by 250. So, if DivN = 250 = (N + 1)  
then N must be set to 249. This is done by writing  
F9 hex (249 dec) to the DivN register pair  
Reg. 46/47.  
In Direct Lock Mode, the internal DPLL can lock to the  
selected input at the spot frequency of the input, for  
example 19.44 MHz performs the DPLL phase  
comparisons at 19.44 MHz.  
In Lock8k and DivN modes (and for special case of  
155 MHz), an internal divider is used prior to the DPLL to  
divide the input frequency before it is used for phase  
comparisons in the DPLL.  
(b) To lock to 10.000 MHz:  
(i) The cnfg_ref_source_frequency register is set to  
10XX0000 (binary) to set the DivN and the  
Revision 3.02/November 2005 © Semtech Corp.  
Page10  
www.semtech.com  
ACS8530 SETS  
ADVANCED COMMUNICATIONS  
FINAL  
DATASHEET  
frequency to 8 kHz, the post-division frequency.  
PECL/LVDS/AMI Input Port Selection  
(XX = “Leaky Bucket” ID for this input).  
The choice of PECL or LVDS compatibility is programmed  
via the cnfg_differential_inputs register, Reg. 36. Unused  
PECL differential inputs should be fixed with one input  
High (VDD) and the other input Low (GND), or set in LVDS  
mode and left floating, in which case one input is  
internally pulled High and the other Low.  
(ii) To achieve 8 kHz, the 10 MHz input must be  
divided by 1,250. So, if DivN, = 250 = (N+1)  
then N must be set to 1,249. This is done by  
writing 4E1 hex (1,249 dec to the DivN register  
pair Reg. 46/47.  
An AMI port supports a composite clock, consisting of a  
64 kHz AMI clock with 8 kHz boundaries marked by  
deliberate violations of the AMI coding rules, as specified  
in ITU recommendation G.703[6]. Departures from the  
nominal pattern are detected within the ACS8530, and  
may cause reference-switching if too frequent. See  
section DC Characteristics: AMI Input/Output Port, for  
more details. If the AMI port is unused, the pins (I1 and I2)  
should be tied to GND.  
Direct Lock Mode 155 MHz.  
The max frequency allowed for phase comparison is  
77.76 MHz, so for the special case of a 155 MHz input set  
to Direct Lock Mode, there is a divide-by-two function  
automatically selected to bring the frequency down to  
within the limits of operation.  
Table 4 Input Reference Source Selection and Priority Table  
Port Number  
Channel  
Number (Bin)  
Input Port  
Technology  
Frequencies Supported  
Default  
Priority  
I1  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
AMI  
64/8 kHz (composite clock, 64 kHz + 8 kHz)  
Default (SONET): 64/8 kHz Default (SDH): 64/8 kHz  
2
3
4
5
6
7
8
9
I2  
AMI  
64/8 kHz (composite clock, 64 kHz + 8 kHz)  
Default (SONET): 64/8 kHz Default (SDH): 64/8 kHz  
I3  
TTL/CMOS  
TTL/CMOS  
Up to 100 MHz (see Note (i))  
Default (SONET): 8 kHz Default (SDH): 8 kHz  
I4  
Up to 100 MHz (see Note (i))  
Default (SONET): 8 kHz Default (SDH): 8 kHz  
I5  
LVDS/PECL LVDS Up to 155.52 MHz (see Note (ii))  
default  
Default (SONET): 19.44 MHz Default (SDH): 19.44 MHz  
I6  
PECL/LVDS PECL Up to 155.52 MHz (see Note (ii))  
default  
Default (SONET): 19.44 MHz Default (SDH): 19.44 MHz  
I7  
TTL/CMOS  
Up to 100 MHz (see Note (i))  
Default (SONET): 19.44 MHz Default (SDH): 19.44 MHz  
I8  
TTL/CMOS  
TTL/CMOS  
TTL/CMOS  
TTL/CMOS  
TTL/CMOS  
Up to 100 MHz (see Note (i))  
Default (SONET): 19.44 MHz Default (SDH): 19.44 MHz  
I9  
Up to 100 MHz (see Note (i))  
Default (SONET): 19.44 MHz Default (SDH): 19.44 MHz  
10  
11  
I10  
I11  
I12  
Up to 100 MHz (see Note (i))  
Default (SONET): 19.44 MHz Default (SDH): 19.44 MHz  
Up to 100 MHz (see Note (i)) Default (Master) (SONET): 1.544 MHz Default 12/1  
(Master) (SDH): 2.048 MHz Default (Slave) 6.48 MHz  
(Note (iii))  
Up to 100 MHz (see Note (i))  
13  
Default (SONET): 1.544 MHz Default (SDH): 2.048 MHz  
Revision 3.02/November 2005 © Semtech Corp.  
Page11  
www.semtech.com  
ACS8530 SETS  
ADVANCED COMMUNICATIONS  
FINAL  
DATASHEET  
Table 4 Input Reference Source Selection and Priority Table (cont...)  
Port Number  
Channel  
Number (Bin)  
Input Port  
Technology  
Frequencies Supported  
Default  
Priority  
I13  
I14  
1101  
1110  
TTL/CMOS  
Up to 100 MHz (see Note (i))  
Default (SONET): 1.544 MHz Default (SDH): 2.048 MHz  
14  
TTL/CMOS  
Up to 100 MHz (see Note (i))  
15  
Default (SONET): 1.544 MHz Default (SDH): 2.048 MHz  
Notes: (i) TTL ports (compatible also with CMOS signals) support clock speeds up to 100 MHz, with the highest spot frequency being  
77.76 MHz. The actual spot frequencies are: 2 kHz, 4 kHz, 8 kHz (and N x 8 kHz), 1.544 MHz (SONET)/2.048 MHz (SDH), 6.48 MHz,  
19.44 MHz, 25.92 MHz, 38.88 MHz, 51.84 MHz, 77.76 MHz. SONET or SDH input rate is selected via Reg. 34 Bit 2, ip_sonsdhb).  
(ii) PECL and LVDS ports support the spot clock frequencies listed above plus 155.52 MHz (and 311.04 MHz for TO6 only).  
(iii) Input port I11 is set at priority 12 on the Master SETS IC and priority 1 on the Slave SETS IC, as default on power up (or PORB). The  
default setup of Master or Slave I11 priority is determined by the MSTSLVB pin.  
Anomalies on the currently locked-to input reference  
Clock Quality Monitoring  
clock, whether affecting signal purity or signal frequency,  
Clock quality is monitored and used to modify the priority  
could induce jitter or frequency offsets in the output clock,  
tables of the local and remote ACS8530 devices. For each  
leading to anomalous behavior. Anomalies on the  
input, the following parameters are monitored:  
selected clock, therefore, have to be detected as they  
occur and the phase locked loop must be temporarily  
isolated until the clock is once again pure. The clock  
monitoring process cannot be used for this because the  
high degree of accuracy required dictates that the  
process be slow. To achieve the immediacy required by  
the phase locked loop requires an alternative  
mechanism. The phase locked loop itself contains a fast  
activity detector such that within approximately two  
missing input clock cycles, a no-activity flag is raised and  
the DPLL is frozen in Holdover mode. This flag can also be  
read as the main_ref_failed bit (from Reg. 06, Bit 6) and  
can be set to indicate a phase lost state by enabling  
Reg. 73, Bit 6. With the DPLL in Holdover mode it is  
isolated from further disturbances. If the input becomes  
1. Activity (toggling).  
2. Frequency (this monitoring is only performed when  
there is no irregular operation of the clock or loss of  
clock condition).  
In addition, input ports I1 and I2 carry AMI-encoded  
composite clocks which are monitored by the AMI-  
decoder blocks. Loss of signal is declared by the decoders  
when either the signal amplitude falls below +0.3 V or  
there is no activity for 1 ms.  
Any reference source that suffers a loss-of-activity or  
clock-out-of-band condition will be declared as  
unavailable.  
Clock quality monitoring is a continuous process which is available again before the activity or frequency monitor  
used to identify clock problems. There is a difference in  
dynamics between the selected clock and the other  
reference clocks. Anomalies occurring on non-selected  
reference sources affect only that source's suitability for  
selection, whereas anomalies occurring on the selected  
rejection alarms have been raised, then the DPLL will  
continue to lock to the input, with little disturbance. In this  
scenario, with the DPLL in the “locked” state, the DPLL  
uses “nearest edge locking” mode (±180° capture)  
avoiding cycle slips or glitches caused by trying to lock to  
clock could have a detrimental impact on the accuracy of an edge 360° away, as would happen with traditional  
the output clock.  
PLLs.  
Anomalies detected by the activity detector are integrated  
in a Leaky Bucket Accumulator (one per input channel).  
Occasional anomalies do not cause the Accumulator to  
cross the alarm setting threshold, so the selected  
Activity Monitoring  
The ACS8530 has a combined inactivity and irregularity  
monitor. The ACS8530 uses a Leaky Bucket Accumulator,  
reference source is retained. Persistent anomalies cause which is a digital circuit which mimics the operation of an  
the alarm setting threshold to be crossed and result in the analog integrator, in which input pulses increase the  
selected reference source being rejected.  
output amplitude but die away over time. Such integrators  
Revision 3.02/November 2005 © Semtech Corp.  
Page12  
www.semtech.com  
ACS8530 SETS  
ADVANCED COMMUNICATIONS  
FINAL  
DATASHEET  
are used when alarms have to be triggered either by fairly There is one Leaky Bucket Accumulator per input channel.  
Each Leaky Bucket can select from four configurations  
(Leaky Bucket Configuration 0 to 3). Each Leaky Bucket  
Configuration is programmable for size, alarm set and  
reset thresholds, and decay rate.  
regular defect events, which occur sufficiently close  
together, or by defect events which occur in bursts. Events  
which are sufficiently spread out should not trigger the  
alarm. By adjusting the alarm setting threshold, the point  
at which the alarm is triggered can be controlled. The  
point at which the alarm is cleared depends upon the  
decay rate and the alarm clearing threshold.  
Each source is monitored over a 128 ms period. If, within  
a 128 ms period, an irregularity occurs that is not deemed  
to be due to allowable jitter/wander, then the  
Accumulator is incremented.  
On the alarm setting side, if several events occur close  
together, each event adds to the amplitude and the alarm  
will be triggered quickly; if events occur a little more  
spread out, but still sufficiently close together to  
overcome the decay, the alarm will be triggered  
eventually. If events occur at a rate which is not sufficient  
to overcome the decay, the alarm will not be triggered. On  
the alarm clearing side, if no defect events occur for a  
sufficient time, the amplitude will decay gradually and the  
alarm will be cleared when the amplitude falls below the  
alarm clearing threshold. The ability to decay the  
amplitude over time allows the importance of defect  
events to be reduced as time passes by. This means that,  
in the case of isolated events, the alarm will not be set,  
whereas, once the alarm becomes set, it will be held on  
until normal operation has persisted for a suitable time  
(but if the operation is still erratic, the alarm will remain  
set). See Figure 3.  
The Accumulator will continue to increment up to the  
point that it reaches the programmed Bucket size. The “fill  
rate” of the Leaky Bucket is, therefore, 8 units/second.  
The “leak rate” of the Leaky Bucket is programmable to  
be in multiples of the fill rate (x 1, x 0.5, x 0.25 and  
x 0.125) to give a programmable leak rate from  
8 units/sec down to 1 unit/sec. A conflict between trying  
to “leak” at the same time as a “fill” is avoided by  
preventing a leak when a fill event occurs.  
Disqualification of a non-selected reference source is  
based on inactivity, or on an out-of-band result from the  
frequency monitors. The currently selected reference  
source can be disqualified for phase, frequency, inactivity  
or if the source is outside the DPLL lock range. If the  
currently selected reference source is disqualified, the  
next highest priority, qualified reference source is  
selected.  
Figure 3 Inactivity and Irregularity Monitoring  
Inactivities/Irregularities  
Reference  
Source  
bucket_size  
Leaky  
Bucket  
Response  
upper_threshold  
lower_threshold  
Programmable Fall Slopes  
(all programmable)  
Alarm  
F8530D_026Inact_Irreg_Mon_02  
Revision 3.02/November 2005 © Semtech Corp.  
Page13  
www.semtech.com  
ACS8530 SETS  
ADVANCED COMMUNICATIONS  
Interrupts for Activity Monitors  
FINAL  
DATASHEET  
Leaky Bucket Timing  
The time taken (in seconds) to raise an inactivity alarm on  
a reference source that has previously been fully active  
(Leaky Bucket empty) will be:  
The loss of the currently selected reference source will  
eventually cause the input to be considered invalid,  
triggering an interrupt, if not masked. The time taken to  
raise this interrupt is dependant on the Leaky Bucket  
Configuration of the activity monitors. The fastest Leaky  
Bucket setting will still take up to 128 ms to trigger the  
interrupt. The interrupt caused by the brief loss of the  
currently selected reference source is provided to  
facilitate very fast source failure detection if desired. It is  
triggered after missing just a couple of cycles of the  
reference source. Some applications require the facility to  
switch downstream devices based on the status of the  
reference sources. In order to provide extra flexibility, it is  
possible to flag the main_ref_failed interrupt (Reg. 06  
Bit 6) on the pin TDO. This is simply a copy of the status  
bit in the interrupt register and is independent of the  
mask register settings. The bit is reset by writing to the  
interrupt status register in the normal way. This feature  
can be enabled and disabled by writing to Reg. 48 Bit 6.  
(cnfg_upper_threshold_n) / 8  
where n is the number (0 to 3) of the Leaky Bucket  
Configuration. If an input is intermittently inactive then  
this time can be longer. The default setting of  
cnfg_upper_threshold_n is 6, therefore the default time is  
0.75 s.  
The time taken (in seconds) to cancel the activity alarm on  
a previously completely inactive reference source is  
calculated, for a particular Leaky Bucket, as:  
[2 (a) x (b - c)]/ 8  
where:  
a = cnfg_decay_rate_n  
b = cnfg_bucket_size_n  
c = cnfg_lower_threshold_n  
(where n = the number (0 to 3) of the relevant  
Leaky Bucket Configuration in each case).  
The default setting is shown in the following:  
[21 x (8 - 4)] /8 = 1.0 secs  
Automatic operation selects a reference source based on  
its pre-defined priority and its current availability. A table  
is maintained which lists all reference sources in the order  
of priority. This is initially defined by the default  
configuration and can be changed via the microprocessor  
interface by the Network Manager. In this way, when all  
the defined sources are active and valid, the source with  
the highest programmed priority is selected but, if this  
source fails, the next-highest source is selected, and so  
Frequency Monitoring  
The ACS8530 performs frequency monitoring to identify  
reference sources which have drifted outside the  
acceptable frequency range measured with respect either  
to the output clock or to the XO clock.  
The sts_reference_sources out-of-band alarm for a  
particular reference source is raised when the reference on.  
source is outside the acceptable frequency range. With  
Restoration of repaired reference sources is handled  
the default register settings a soft alarm is raised if the  
drift is outside ±11.43 ppm and a hard alarm is raised if  
the drift is outside ±15.24 ppm. Both of these limits are  
programmable from 3.8 ppm up to 61 ppm.  
carefully to avoid inadvertent disturbance of the output  
clock. For this, the ACS8530 has two modes of operation;  
Revertive and Non-revertive.  
In Revertive mode, if a re-validated (or newly validated)  
source has a higher priority than the reference source  
which is currently selected, a switch over will take place.  
Many applications prefer to minimize the clock switching  
events and choose Non-revertive mode.  
The ACS8530 DPLL has a programmable lock and  
capture range frequency limit up to ±80 ppm (default is  
±9.2 ppm).  
Selection of Input Reference Clock Source  
In Non-revertive mode, when a re-validated (or newly  
Under normal operation, the input reference sources are validated) source has a higher priority then the selected  
selected automatically by an order of priority. But, for source will be maintained. The re-validation of the  
special circumstances, such as chip or board testing, the reference source will be flagged in the sts_sources_valid  
selection may be forced by configuration.  
register and, if not masked, will generate an interrupt.  
Revision 3.02/November 2005 © Semtech Corp.  
Page14  
www.semtech.com  
ACS8530 SETS  
ADVANCED COMMUNICATIONS  
FINAL  
DATASHEET  
Selection of the re-validated source can take place under are 1 to 15 (dec). A value of 0 disables the reference  
software control or if the currently selected source fails.  
source. However if two or more inputs are given the same  
priority number those inputs will be selected on a first in,  
first out basis. If the first of two same priority number  
sources goes invalid the second will be switched in. If the  
first then becomes valid again, it becomes the second  
source on the first in, first out basis, and there will not be  
a switch. If a third source with the same priority number  
as the other two becomes valid, it joins the priority list on  
the same first in, first out basis. There is no implied priority  
based on the channel numbers. Revertive/Non-revertive  
mode has no effect on sources with the same priority  
value.  
To enable software control, the software should briefly  
enable Revertive mode to effect a switch-over to the  
higher priority source. When there is a reference available  
with higher priority than the selected reference, there will  
be NO change of reference source as long as the  
Non-revertive mode remains on, and the currently  
selected source is valid. A failure of the selected  
reference will always trigger a switch-over regardless of  
whether Revertive or Non-revertive mode has been  
chosen.  
Also, in a Master/Slave redundancy-protection scheme,  
the Slave device(s) must follow the Master device. The  
alignment of the Master and Slave devices is part of the  
protection mechanism. The availability of each source is  
determined by a combination of local and remote  
monitoring of each source. Each input reference source  
supplied to each ACS8530 device is monitored locally and  
the results are made available to other devices.  
The input port I11 is also for the connection of the  
synchronous clock of the T0 output of the Master device  
(or the active-Slave device), to be used to align the T0  
output with the Master (or active-Slave) device if this  
device is acting in a subordinate-Slave or subordinate-  
Master role.  
Ultra Fast Switching  
Forced Control Selection  
A configuration register, force_select_reference_source  
Reg. 33, controls both the choice of automatic or forced  
selection and the selection itself (when forced selection is  
required). For Automatic choice of source selection, the 4  
LSB bit value is set to all zeros or all ones (default). To  
force a particular input (In), the Bit value is set to n (bin).  
Forced selection is not the normal mode of operation, and  
the force_select_reference_source variable is defaulted  
to the all-one value on reset, thereby adopting the  
automatic selection of the reference source.  
A reference source is normally disqualified after the Leaky  
Bucket monitor thresholds have been crossed. An option  
for a faster disqualification has been implemented,  
whereby if Reg. 48 Bit 5 (ultra_fast_switch) is set, then a  
loss of activity of just a few reference clock cycles will set  
the main_ref_failed alarm and cause a reference switch.  
This can be configured (see Reg. 06, Bit 6) to cause an  
interrupt to occur instead of, or as well as, causing the  
reference switch.  
The sts_interrupts register Reg. 06 Bit 6 (main_ref_failed)  
is used to flag inactivity on the reference that the device  
is locked to much faster than the activity monitors can  
support. If Reg. 48 Bit 6 of the cnfg_monitors register  
(los_flag_on_TDO) is set, then the state of this bit is driven  
onto the TDO pin of the device.  
Automatic Control Selection  
When an automatic selection is required, the  
force_select_reference_source register LSB 4 bits must  
be set to all zeros or all ones. The configuration registers,  
cnfg_ref_selection_priority, held in the µP port block,  
consist of seven, 8-bit registers organized as one 4-bit  
register per input reference port. Each register holds a  
4-bit value which represents the desired priority of that  
particular port. Unused ports should be given the value,  
0000, in the relevant register to indicate they are not to  
be included in the priority table. On power-up, or following  
a reset, the whole of the configuration file will be  
Note...The flagging of the loss of the main reference failure on  
TDO is simply allowing the status of the sts_interrupts bit  
main_ref_failed Reg. 06 Bit 6, to be reflected in the state of  
the TDO output pin. The pin will, therefore, remain High until  
the interrupt is cleared. This functionality is not enabled by  
default so the usual JTAG functions can be used. When the  
TDO output from the ACS8530 is connected to the TDI pin of  
the next device in the JTAG scan chain, the implementation  
should be such that a logic change caused by the action of the  
interrupt on the TDI input should not effect the operation when  
JTAG is not active.  
defaulted to the values defined by Table 4. The selection  
priority values are all relative to each other, with lower-  
valued numbers taking higher priorities. Each reference  
source should be given a unique number; the valid values  
Revision 3.02/November 2005 © Semtech Corp.  
Page15  
www.semtech.com  
ACS8530 SETS  
ADVANCED COMMUNICATIONS  
Fast External Switching Mode-SCRSW Pin  
FINAL  
DATASHEET  
Output Clock Phase Continuity on Source  
Switchover  
Fast external switching mode, for fast switching between  
inputs I3 or I5 and I4 or I6, can also be triggered directly  
from a dedicated pin SRCSW (Figure 4), once the mode  
has been initialized.  
If either PBO is selected on (default), or, if DPLL frequency  
limit is set to less than ±30 ppm or (±9.2 ppm default), the  
device will always comply with GR-1244-CORE[19]  
specification for Stratum 3 (maximum rate of phase  
change of 81 ns/1.326 ms), for all input frequencies.  
The mode is initialized by either holding SRCSW pin High  
during reset (SRCSW must remain High for at least a  
further 251 ms after PORB has gone High - see following  
Note), or by writing to Reg. 48 Bit 4. After External  
Protection Switching mode has been initialized, the value  
on this pin directly selects either I3/I5 (SRCSW High) or  
I4/I6 (SRCSW Low). If this mode is initialized at reset by  
pulling the SRCSW pin High, then it configures the default  
frequency tolerance of I3/I5 and I4/I6 to ±80 ppm  
(Reg. 41 and Reg. 42) as opposed to the normal  
Modes of Operation  
The ACS8530 has three primary modes of operation  
(Free-run, Locked and Holdover) supported by three  
secondary, temporary modes (Pre-Locked, Lost-Phase  
and Pre-Locked2). These are shown in the State  
Transition Diagram for the T0 DPLL, Figure 5.  
The ACS8530 can operate in Forced or Automatic control.  
On reset, the ACS8530 reverts to Automatic Control,  
where transitions between states are controlled  
completely automatically. Forced Control can be invoked  
by configuration, allowing transitions to be performed  
under external control. This is not the normal mode of  
operation, but is provided for special occasions such as  
testing, or where a high degree of hands-on control is  
required.  
frequency tolerance of ±9.2 ppm. Any of these registers  
can be subsequently set by external software, if required.  
Note...The 251 ms comprises 250 ms allowance for the  
internal reset to be removed plus 1 ms allowance for APLLs to  
start-up and become stable.  
Selection of either input I3 or I5 is determined by the  
Priority value of I3; if the programmed priority of I3 is 0,  
then I5 is selected. Similarly, I6 is selected if the  
programmed priority of I4 is 0.  
Free-run Mode  
The Free-run mode is typically used following a power-on  
reset or a device reset before network synchronization  
has been achieved. In the Free-run mode, the timing and  
synchronization signals generated from the ACS8530 are  
based on the 12.800 MHz clock frequency provided from  
the external oscillator and are not synchronized to an  
input reference source. By default, the frequency of the  
output clock is a fixed multiple of the frequency of the  
external oscillator, and the accuracy of the output clock is  
equal to the accuracy of the oscillator. However the  
external oscillator frequency can be calibrated to improve  
its accuracy by a software calibration routine using  
register cnfg_nominal_frequency (Reg. 3C and 3D). For  
example a 500 ppm offset crystal could be made to look  
like one accurate to within ±0.02 ppm.  
Figure 4 I3/I5 and I4/I6 Switching  
I3 Priority >0  
SRCSW  
I3  
I5  
I4  
I6  
1
0
1
0
T0 DPLL  
1
0
F8530D_006IPSWI3I4I5I6_01  
I4 Priority >0  
The transition from Free-run to Pre-locked occurs when  
the ACS8530 selects a reference source.  
When external protection switching is enabled, the device  
will operate as a simple switch. All clock monitoring is  
disabled and the DPLL will simply be forced to try to lock  
on to the indicated reference source. Consequently the  
device will always indicate “locked” state in the  
sts_operating register (Reg. 09, Bits 2:0).  
Pre-locked Mode  
The ACS8530 will spend a maximum of 100 seconds in  
the Pre-locked mode. If the device is required to spend up  
to 700 seconds acquiring lock (e.g. in a Stratum3E  
Revision 3.02/November 2005 © Semtech Corp.  
Page16  
www.semtech.com  
ACS8530 SETS  
ADVANCED COMMUNICATIONS  
FINAL  
DATASHEET  
application) external software will be required to force the Holdover can be configured to operate in either:  
device into Locked mode until phase lock has been  
z Automatic Mode  
achieved. Without software control, if the device cannot  
achieve lock within 100 seconds, the reference is  
disqualified and a phase alarm is raised on it. The device  
will then revert to Free-run mode and another reference  
source, if available, will be selected.  
(Reg. 34 Bit 4, cnfg_input_mode: man_holdover set  
Low), or  
z Manual Mode  
(Reg. 34 Bit 4, cnfg_input_mode: man_holdover set  
High).  
Locked Mode  
Automatic Mode  
The Locked mode is entered from Pre-locked, Pre-locked2  
or Phase-lost mode when an input reference source has  
been selected and the DPLL has locked. The DPLL is  
considered to be locked when the phase loss/lock  
detectors (See“Phase Lock/Loss Detection” on page 21)  
indicate that the DPLL has remained in phase lock  
continuously for at least one second. When the ACS8530  
is in Locked mode, the output frequency and phase tracks  
that of the selected input reference source.  
In Automatic mode, the device can be configured to  
operate using either:  
z Averaged  
(Reg. 40 Bit 7, cnfg_holdover_modes,  
auto_averaging: set High) or  
z Instantaneous  
(Reg. 40 Bit 7, cnfg_holdover_modes,  
auto_averaging: set Low).  
Lost-phase Mode  
Lost-phase mode is used whenever the phase loss/lock  
detectors (See“Phase Lock/Loss Detection” on page 21)  
indicate that the DPLL has lost phase lock. The DPLL will  
still be trying to lock to the input clock reference, if it  
exists. If the Leaky Bucket Accumulator calculates that  
the anomaly is serious, the device disqualifies the  
reference source. If the device spends more than 100  
seconds in Lost-phase mode, the reference is disqualified  
and a phase alarm is raised on it. If the reference is  
disqualified, one of the following transitions takes place:  
Averaged  
In the Averaged mode, the frequency (as reported by  
sts_current_DPLL_frequency, see Reg. 0C, Reg. 0D and  
Reg. 07) is filtered internally using an Infinite Impulse  
Response filter, which can be set to either:  
z Fast  
(Reg. 40 Bit 6, cnfg_holdover_modes, fast_averaging:  
set High),  
giving a -3 dB filter response point corresponding to a  
period of approx. eight minutes, or  
1. Go to Pre-locked2;  
- If a known good stand-by source is available.  
z Slow  
2. Go to Holdover;  
(Reg. 40 Bit 6, cnfg_holdover_modes, fast_averaging:  
set Low)  
- If no stand-by sources are available.  
giving a -3 dB filter response point corresponding to a  
period of approx. 110 minutes.  
Holdover Mode  
Instantaneous  
Holdover mode is the operating condition the device  
enters when its currently selected input source becomes  
invalid, and no other valid replacement source is  
available. In this mode, the device resorts to using stored  
frequency data, acquired when the input reference source  
was still valid, to control its output frequency.  
In Instantaneous mode, the DPLL freezes at the frequency  
it was operating at the time of entering Holdover mode. It  
does this by using only its internal DPLL integral path  
value (as reported in Reg. 0C, 0D, and 07) to determine  
output frequency. The DPLL proportional path is not used  
In Holdover mode, the ACS8530 provides the timing and so that any recent phase disturbances have a minimal  
synchronization signals to maintain the Network Element effect on the Holdover frequency. The integral value used  
but is not phase locked to any input reference source. Its can be viewed as a filtered version of the locked output  
output frequency is determined by an averaged version of frequency over a short period of time. The period being in  
the DPLL frequency when last in the Locked Mode.  
inverse proportion to the DPLL bandwidth setting.  
Revision 3.02/November 2005 © Semtech Corp.  
Page17  
www.semtech.com  
ACS8530 SETS  
ADVANCED COMMUNICATIONS  
FINAL  
DATASHEET  
Figure 5 Automatic Mode Control State Diagram (T0 DPLL)  
(1) Reset  
Free-run  
select ref  
(state 001)  
(3) no valid standby ref  
&
(2) all refs evaluated  
&
(main ref invalid  
or out of lock > 100s  
at least one ref valid  
Reference sources are flagged as valid when  
active, in-band and have no phase alarm set.  
(4) valid standby ref  
All sources are continuously checked for  
activity and frequency  
&
Pre-locked  
wait for up to 100s  
(state 110)  
[main ref invalid or  
(higher-priority ref valid  
& in revertive mode) or  
out of lock > 100s]  
Only the main source is checked for phase.  
A phase lock alarm is only raised on a  
reference when that reference has lost phase  
whilst being used as the main reference. The  
micro-processor can reset the phase lock  
alarm.  
(5) selected ref  
phase locked  
A source is considered to have phase locked  
when it has been continuously in phase lock  
for between 1 and 2 seconds.  
Locked  
keep ref  
(state 100)  
(6) no valid standby ref  
(10) selected source  
phase locked  
&
main ref invalid  
(8) phase  
regained  
within 100s  
(7) phase lost  
on main ref  
(9) valid standby ref  
&
[main ref invalid or  
(higher priority ref valid  
& in revertive mode)]  
(12) valid standby ref  
&
(main ref invalid  
or out of lock >100s)  
(11) no valid standby ref  
&
(main ref invalid  
or out of lock >100s)  
Lost-phase  
wait for up to 100s  
(state 111)  
Pre-locked2  
wait for up to 100s  
(state 101)  
Holdover  
select ref  
(state 010)  
(13) no valid standby ref  
&
(main ref invalid  
or out of lock >100s)  
(15) valid standby ref  
&
[main ref invalid or  
(higher-priority ref valid  
& in revertive mode) or  
out of lock >100s]  
(14) all refs evaluated  
&
F8530D_018AutoModeContStateDia_02  
at least one ref valid  
Note...The state diagram above is for T0 DPLL only, and the 3-bit state value refers to the register sts_operating Reg. 09 Bits  
[2:0] T0_DPLL_operating _mode. By contrast, the T4 DPLL has only automatic operation and can be in one of only two  
possible states: “Instantaneous Automatic Holdover” with zero frequency offset (its start-up state), or “Locked”. The T4 DPLL  
states are not configurable by the User and there is no “Free-run” state.  
Revision 3.02/November 2005 © Semtech Corp.  
Page18  
www.semtech.com  
ACS8530 SETS  
ADVANCED COMMUNICATIONS  
Manual Mode  
FINAL  
DATASHEET  
appropriate averaged value into the  
cnfg_holdover_frequency register.  
(Reg. 34 Bit 4, cnfg_input_mode, man_holdover set  
High.) The Holdover frequency is determined by the value  
in register cnfg_holdover_frequency (Reg. 3E, Reg. 3F,  
and part of Reg. 40). This is a 19-bit signed number, with  
a LSB resolution of 0.0003068 ppm, which gives an  
adjustment range of ±80 ppm. This value can be derived  
from a reading of the register  
sts_current_DPLL_frequency (Reg. 0D, Reg. 0C and  
Reg. 07), which gives, in the same format, an indication of  
the current output frequency deviation, which would be  
read when the device is locked. If required, this value  
could be read by external software and averaged over  
time. The averaged value could then be fed to the  
cnfg_holdover_frequency register, ready for setting the  
averaged frequency value when the device enters  
Holdover mode. The sts_current_DPLL_frequency value  
is internally derived from the Digital Phase Locked Loop  
(DPLL) integral path, which represents a short-term  
average measure of the current frequency, depending on  
the locked loop bandwidth (Reg. 67) selected.  
Once Holdover mode is entered, software periodically  
updates the cnfg_holdover_frequency register using the  
temperature information (not supplied from ACS8530).  
Mini-holdover Mode  
Holdover mode so far described refers to a state to which  
the internal state machine switches as a result of activity  
or frequency alarms, and this state is reported in Reg. 09.  
To avoid the DPLL’s frequency being pulled off as a result  
of a failed input, then the DPLL has a fast mechanism to  
freeze its current frequency within one or two cycles of the  
input clock source stopping. Under these circumstances  
the DPLL enters Mini-holdover mode; the Mini-holdover  
frequency used being determined by Reg. 40, Bits [4:3],  
cnfg_holdover_modes, mini_holdover_mode.  
Mini-holdover mode only lasts until one of the following  
happens:  
z A new source has been selected, or  
z The state machine enters Holdover mode, or  
z The original fault on the input recovers.  
It is also possible to combine the internal averaging filters  
with some additional software filtering. For example the  
internal fast filter could be used as an anti-aliasing filter  
and the software could further filter this before  
determining the actual Holdover frequency. To support  
this feature, a facility to read out the internally averaged  
frequency has been provided. By setting Reg. 40, Bit 5,  
cnfg_holdover_modes, read_average, the value read  
back from the cnfg_holdover_frequency register will be  
the filtered value. The filtered value is available  
regardless of what actual Holdover mode is selected.  
Clearly this results in the register not reading back the  
data that was written to it.  
External Factors Affecting Holdover Mode  
If the external OCXO frequency is varying due to  
temperature fluctuations in the room, then the  
instantaneous value can be different from the average  
value, and then it may be possible to exceed the  
0.05 ppm limit (depending on how extreme the  
temperature fluctuations are). It is advantageous to  
shield the OCXO to slow down frequency changes due to  
drift and external temperature fluctuations.  
The frequency accuracy of Holdover mode has to meet the  
ITU-T, ETSI and Telcordia performance requirements. The  
performance of the external oscillator clock is critical in  
this mode, although only the frequency stability is  
important - the stability of the output clock in Holdover is  
directly related to the stability of the external oscillator.  
Example: Software averaging to eliminate temperature drift.  
Select Manual Holdover mode by setting Reg. 34 Bit 4,  
cnfg_input_mode, man_holdover High.  
Select Fast Holdover Averaging mode by setting Reg. 40  
Bit 6, cnfg_holdover_modes, auto_averaging High and  
Reg. 40 Bit 7 High.  
Pre-locked2 Mode  
Select to be able to read back filtered output by setting  
Reg. 40 Bit 5, cnfg_holdover_modes, read_average High.  
This state is very similar to the Pre-Locked state. It is  
entered from the Holdover state when a reference source  
has been selected and applied to the phase locked loop.  
It is also entered if the device is operating in Revertive  
mode and a higher-priority reference source is restored.  
Software periodically reads averaged value from the  
cnfg_holdover_frequency register and the temperature  
(not supplied from ACS8530). Software processes  
frequency and temperature and places data in software  
look-up table or other algorithm. Software writes back  
The ACS8530 will spend a maximum of 100 seconds in  
the Pre-locked2 mode. If the device is required to spend  
Revision 3.02/November 2005 © Semtech Corp.  
Page19  
www.semtech.com  
ACS8530 SETS  
ADVANCED COMMUNICATIONS  
up to 700 seconds acquiring lock (e.g. in a Stratum3E  
FINAL  
DATASHEET  
TO DPLL Main Features  
application) external software will be required to force the  
device into Locked mode until phase lock has been  
achieved. Without software control, if the device cannot  
achieve lock within 100 seconds, the reference is  
disqualified and a phase alarm is raised on it. It will then  
revert to Holdover mode and another reference source, if  
available, will be selected.  
z Two programmable DPLL bandwidth controls (Locked  
and Acquisition bandwidth), each with 18 steps from  
0.5 mHz to 70 Hz  
z Programmable damping factor for optional faster  
locking and peaking control. Factors = 1.2, 2.5, 5, 10  
or 20  
z Multiple phase lock detectors  
z Input to output phase offset adjustment  
DPLL Architecture and Configuration  
(Master/Slave), ±200 ns, 6 ps resolution step size  
A Digital PLL gives a stable and consistent level of  
performance that can be easily programmed for different  
dynamic behavior or operating range. It is not affected by  
operating conditions or silicon process variations. Digital  
synthesis is used to generate all required SONET/SDH  
output frequencies. The digital logic operates at  
204.8 MHz that is multiplied up from the external  
12.800 MHz oscillator module. Hence the best resolution  
of the output signals from the DPLL is one 204.8 MHz  
cycle or 4.9 ns.  
z PBO phase offset on source switching - disturbance  
down to ±5 ns  
z Detection of phase jump on the current source:  
programmable limit from 1 - 3.5 us in 100 ms  
z Optional automatic Phase Build-out event on a  
detected input phase jump  
z Multi-cycle phase detection and locking,  
programmable up to ±8192 UI - improves jitter  
tolerance in direct lock mode  
z Holdover frequency averaging with a choice of  
averaging times: 8 minutes or 110 minutes and value  
can be read out  
Additional resolution and lower final output jitter is  
provided by a de-jittering Analog PLL that reduces the  
4.9 ns p-p jitter from the digital down to 500 ps p-p and  
60 ps RMS as typical final outputs measured broadband  
(from 10 Hz to 1 GHz).  
z Multiple E1 and DS1 outputs supported  
z Low jitter MFrSync (2 kHz) and FrSync (8 kHz) outputs  
z 2 kHz and 8 kHz on TO1 to TO7 with programmable  
pulse width and polarity.  
This arrangement combines the advantages of the  
flexibility and repeatability of a DPLL with the low jitter of  
an APLL. The DPLLs in the ACS8530 are uniquely very  
programmable for all PLL parameters of bandwidth (from  
0.5 mHz up to 70 Hz), damping factor (from 1.2 to 20),  
frequency acceptance and output range (from 0 to  
80 ppm, typically 9.2 ppm), input frequency (12 common  
SONET/SDH spot frequencies) and input-to-output phase  
offset (in 6 ps steps up to 200 ns). There is no  
requirement to understand the loop filter equations or  
detailed gain parameters since all high level factors such  
as overall bandwidth can be set directly via registers in  
the microprocessor interface. No external critical  
components are required for either the internal DPLLs or  
APLLs, providing another key advantage over traditional  
discrete designs.  
T4 DPLL Main Features  
z A single programmable DPLL bandwidth control:  
18 Hz, 35 Hz, or 70 Hz  
z Programmable damping factor for optional faster  
locking and peaking control. Factors = 1.2, 2.5, 5, 10  
or 20  
z Multiple phase lock detectors  
z Multi-cycle phase detection and locking,  
programmable up to ±8192 UI - improves jitter  
tolerance in direct lock mode  
z DS3/E3 support (44.736 MHz / 34.368 MHz) at same  
time as OC-N rates from T0  
z Low jitter E1/DS1 options at same time as OC-N rates  
from T0  
The T4 DPLL is similar in structure to the T0 DPLL, but  
since the T4 is only providing a clock synthesis and input  
to output frequency translation function, with no defined  
requirement for jitter attenuation or input phase jump  
absorption, then its bandwidth is limited to the high end  
and the T4 does not incorporate many of the Phase Build-  
out and adjustment facilities of the T0 DPLL.  
z Frequencies of n x E1/DS1 including 16 and 12 x E1,  
and 16 and 24 x DS1 supported  
z Low jitter 2 kHz and 8 kHz outputs on TO1 to TO7  
z Can use the T4 DPLL as an Independent FrSync DPLL  
z Can use the phase detector in T4 DPLL to measure  
the input phase difference between two inputs.  
Revision 3.02/November 2005 © Semtech Corp.  
Page20  
www.semtech.com  
ACS8530 SETS  
ADVANCED COMMUNICATIONS  
FINAL  
DATASHEET  
The structure of the T0 and T4 PLLs are shown later in  
Figure 11 in the section on output clock ports. That  
section also details how the DPLLs and particular output  
frequencies are configured. The following sections detail  
some component parts of the DPLL.  
Bit 6 set to 1. In this setting, frequency locking will always  
be enabled.  
The balance between the first two types of phase detector  
employed can be adjusted via registers 6A to 6D. The  
default settings should be sufficient for all modes.  
Adjustment of these settings affects only small signal  
overshoot and bandwidth.  
TO DPLL Automatic Bandwidth Controls  
In Automatic Bandwidth Selection mode (Reg. 3B Bit 7),  
the T0 DPLL bandwidth setting is selected automatically  
from the Acquisition Bandwidth or Locked Bandwidth  
configurations programmed in cnfg_T0_DPLL_acq_bw  
Reg. 69 and cnfg_T0_DPLL_locked_bw Reg. 67  
respectively. If this mode is not selected, the DPLL  
acquires and locks using only the bandwidth set by  
Reg. 67.  
The multi-cycle phase detector is enabled via Reg. 74, Bit  
6 set to 1 and the range is set in exponentially increasing  
steps from ±1 UI, 3 UI, 7 UI, 15 UI … up to 8191 UI via  
Reg. 74, Bits [3:0]. When this detector is enabled it keeps  
a track of the correct phase position over many cycles of  
phase difference to give excellent jitter tolerance. This  
provides an alternative to switching to Lock8k mode as a  
method of achieving high jitter tolerance.  
An additional control (Reg. 74 Bit 5) enables the multi-  
phase detector value to be used in the final phase value  
as part of the DPLL loop. When enabled by setting High,  
the multi cycle phase value will be used in the loop and  
gives faster pull in (but more overshoot). The  
characteristics of the loop will be similar to Lock8k mode  
where again large input phase differences contribute to  
the loop dynamics. Setting the bit Low only uses a max  
figure of 360 degrees in the loop and will give slower pull-  
in but gives less overshoot. The final phase position that  
the loop has to pull in to is still tracked and remembered  
by the multi-cycle phase detector in either case.  
Phase Detectors  
A Phase and Frequency detector is used to compare input  
and feedback clocks. This operates at input frequencies  
up to 77.76 MHz. The whole DPLL can operate at spot  
frequencies from 2 kHz up to 77.76 MHz (155.52 MHz is  
internally divided down to 77.76 MHz). A common  
arrangement however is to use Lock8k mode (See  
Reg. 22 to 2D, Bit 6) where all input frequencies are  
divided down to 8 kHz internally. Marginally better MTIE  
figures may be possible in direct lock mode due to more  
regular phase updates. This direct locking capability is  
one of the unique features of the ACS8530.  
Phase Lock/Loss Detection  
A patented multi-phase detector is used in order to give  
an infinitesimally small input phase resolution combined  
with large jitter tolerance. The following phase detectors  
are used:  
Phase lock/loss detection is handled in several ways.  
Phase loss can be triggered from:  
z The fine phase lock detector, which measures the  
z Phase and frequency detector (±360 deg or  
phase between input and feedback clock  
± 180 deg range)  
z The coarse phase lock detector, which monitors whole  
z An Early/ Late Phase detector for fine resolution  
cycle slips  
z A multi-cycle phase detector for large input jitter  
tolerance (up to 8191 UI), which captures and  
remembers phase differences of many cycles  
between input and feedback clocks.  
z Detection that the DPLL is at min or max frequency  
z Detection of no activity on the input.  
Each of these sources of phase loss indication is  
individually enabled via register bits (see Reg. 73, 74 and  
4D). Phase lock or lost is used to determine whether to  
switch to nearest edge locking and whether to use  
Acquisition or Locked bandwidth settings for the DPLL.  
Acquisition bandwidth is used for faster pull in from an  
unlocked state.  
The phase detectors can be configured to be immune to  
occasional missing input clock pulses by using nearest  
edge detection (±180 deg capture) or the normal  
± 360 deg phase capture range which gives frequency  
locking. The device will automatically switch to nearest  
edge locking when the multi-UI phase detector is not  
enabled, and the other phase detectors have detected  
that phase lock has been achieved. It is possible to  
The coarse phase lock detector detects phase differences  
of n cycles between input and feedback clocks, where n is  
disable the selection of nearest edge locking via Reg. 03 set by Reg. 74, Bits 3:0; the same register that is used for  
Revision 3.02/November 2005 © Semtech Corp.  
Page21  
www.semtech.com  
ACS8530 SETS  
ADVANCED COMMUNICATIONS  
FINAL  
DATASHEET  
the coarse phase detector range, since these functions go  
hand in hand. This detector may be used in the case  
where it is required that a phase loss indication is not  
given for reasonable amounts of input jitter and so the  
fine phase loss detector is disabled and the coarse  
detector is used instead.  
Local Oscillator Clock  
The Master system clock on the ACS8530 should be  
provided by an external clock oscillator of frequency  
12.800 MHz. The clock specification is important for  
meeting the AT&T, ITU/ETSI and Telcordia performance  
requirements for Holdover mode. Telcordia specifications  
require a non-temperature-related drift of less than 1 ppb  
per day and a drift of 10 ppb over the temperature range  
0 to +50°C.  
Damping Factor Programmability  
The DPLL damping factor is set by default to provide a  
maximum wander gain peak of around 0.1 dB. Many of  
the specifications (e.g. GR-1244-CORE[19], G.812[10] and  
G.813[11]) specify a wander transfer gain of less than  
0.2 dB. GR-253[17] specifies jitter (not wander) transfer of  
less than 0.1 dB. To accommodate the required levels of  
transfer gain, the ACS8530 provides a choice of damping  
factors, with more choice given as the bandwidth setting  
increases into the frequency regions classified as jitter.  
Table 5 shows which damping factors are available for  
selection at the different bandwidth settings, and what  
the corresponding jitter transfer approximate gain peak  
will be.  
Telcordia GR-1244 Specification  
Table 6 Stratum 3E Specification  
Parameter  
Initial Offset  
Value  
±1 x 10-9  
Offset Over Temperature (Note i)  
Drift Rate Due to Ageing  
±10 x 10-9 (Note ii)  
±1.16 x 10-14/second (Note ii)  
(= 1 x 10-9/day)  
Notes: (i) Figure quoted is for long-term drift over the range  
0°C to +40°C, but for short-term (<96 hours) the range is  
-5°C to +50°C.  
Max rate of drift = ±30°C/hr.  
Table 5 Available Damping Factors for different DPLL  
Bandwidths, and associated Jitter Peak Values  
(ii) Determined by external XO  
Please contact Semtech for information on crystal  
oscillator suppliers.  
Bandwidth  
Reg. 6B [2:0]  
Damping  
Factor selected  
Gain Peak/ dB  
0.5 mHz to 4 Hz 1, 2, 3, 4, 5  
5
0.1  
0.2  
0.1  
0.4  
0.2  
0.1  
0.4  
0.2  
0.1  
0.06  
0.4  
0.2  
0.1  
0.06  
0.03  
Crystal Frequency Calibration  
8 Hz  
1
2.5  
5
The absolute crystal frequency accuracy is less important  
than the stability since any frequency offset can be  
compensated by adjustment of register values in the IC.  
This allows for calibration and compensation of any  
crystal frequency variation away from its nominal value.  
± 50 ppm adjustment would be sufficient to cope with  
most crystals, in fact the range is an order of magnitude  
larger due to the use of two 8-bit register locations. The  
setting of the cnfg_nominal_frequency register allows for  
this adjustment. An increase in the register value  
increases the output frequencies by 0.0196229 ppm for  
each LSB step.  
2, 3, 4, 5  
18 Hz  
1
1.2  
2.5  
5
2
3, 4, 5  
35 Hz  
70 Hz  
1
1.2  
2.5  
5
2
3
4, 5  
1
10  
1.2  
2.5  
5
Note...The default register value (in decimal) = 39321  
(9999 hex) = 0 ppm offset. The minimum to maximum offset  
range of the register is 0 to 65535 dec, giving an adjustment  
range of -771 ppm to +514 ppm of the output frequencies, in  
0.0196229 ppm steps. Example: If the crystal was oscillating  
at 12.8 MHz + 5 ppm, then the calibration value in the register  
to give a - 5 ppm adjustment in output frequencies to  
compensate for the crystal inaccuracy, would be:  
2
3
4
10  
20  
5
39321 - (5 / 0.0196229) = 39066 (dec) = 989A (hex).  
Revision 3.02/November 2005 © Semtech Corp.  
Page22  
www.semtech.com  
ACS8530 SETS  
ADVANCED COMMUNICATIONS  
Output Wander  
FINAL  
DATASHEET  
Typical measurements for the ACS8530 are shown in  
Figure 6, for Locked mode operation. Figure 7 shows a  
typical measurement of Phase Error accumulation in  
Holdover mode operation.  
Wander and jitter present on the output clocks are  
dependent on:  
z The magnitude of wander and jitter on the selected  
The required performance for phase variation during  
Holdover is specified in several ways and depends on the  
relevant specification (See “References” on page 148) for  
example:  
input reference clock (in Locked mode)  
z The internal wander and jitter transfer characteristic  
(in Locked mode)  
1. ETSI ETS 300 462-5[4], Section 9.1, requires that the  
short-term phase error during switchover (i.e. Locked  
to Holdover to Locked) be limited to an accumulation  
rate no greater than 0.05 ppm during a 15 second  
interval.  
z The jitter on the local oscillator clock  
z The wander on the local oscillator clock (in Holdover  
mode).  
Wander and jitter are treated in different ways to reflect  
their differing impacts on network design. Jitter is always  
strongly attenuated, whilst wander attenuation can be  
varied to suit the application and operating state. Wander  
and jitter attenuation is performed using a digital phase  
locked loop (DPLL) with a programmable bandwidth. This  
gives a transfer characteristic of a low pass filter, with a  
programmable pole. It is sometimes necessary to change  
the filter dynamics to suit particular circumstances - one  
example being when locking to a new source, the filter can  
be opened up to reduce locking time and can then be  
tightened again to remove wander. A change between  
different bandwidths for locking and for acquisition is  
handled automatically within the ACS8530.  
2. ETSI ETS 300 462-5[4], Section 9.2, requires that the  
long-term phase error in the Holdover mode should  
not exceed  
{(a1+a2)S+0.5bS2+c}, where  
a1 = 50 ns/s (allowance for initial frequency offset)  
a2 = 2000 ns/s (allowance for temperature variation)  
b = 1.16 x 10-4 ns/s2 (allowance for ageing)  
c = 120 ns (allowance for entry into Holdover mode).  
S = Elapsed time (s) after loss of external ref. input.  
3. ANSI Tin1.101-1999[1], Section 8.2.2, requires that  
the phase variation be limited so that no more than  
255 slips (of 125 µs each) occur during the first day of  
Holdover. This requires a frequency accuracy better  
than:  
There may be a phase shift across the ACS8530 between  
the selected input reference source and the output clock  
over time, mainly caused by frequency wander in the  
external oscillator module. Higher stability XOs will give  
better performance for MTIE. The oscillator becomes  
more critical at DPLL bandwidth near to or below 0.1 Hz  
since the rate of change of the DPLL may be slow  
compared to the rate of change of the oscillator  
((24 x 60 x 60)+(255 x 125µs))/(24 x 60 x 60)  
= 0.37 ppm. Temperature variation is not restricted,  
except to within the normal bounds of 0 to 50°C.  
4. Telcordia GR.1244.CORE[19], Section 5.2, shows that  
an initial frequency offset of 50 ppb is permitted on  
entering Holdover, whilst a drift over temperature of  
280 ppb is allowed; an allowance of 40 ppb is  
permitted for all other effects.  
frequency. Shielding of the OCXO can further slow down  
the rate of change of temperature and hence frequency,  
thus improving output wander performance.  
5. ITU G.822[12], Section 2.6, requires that the slip rate  
during category (b) operation (interpreted as being  
applicable to Holdover mode operation) be limited to  
less than 30 slips (of 125 µs each) per hour.  
The phase shift may vary over time but will be constrained  
to lie within specified limits. The phase shift is  
characterized using two parameters, MTIE (Maximum  
Time Interval Error) and TDEV (Time Deviation) which,  
although being specified in all relevant specifications,  
differ in acceptable limits in each one.  
((60 x 60) + (30 x 125 µs))/(60 x 60)) = 1.042 ppm  
Revision 3.02/November 2005 © Semtech Corp.  
Page23  
www.semtech.com  
ACS8530 SETS  
ADVANCED COMMUNICATIONS  
FINAL  
DATASHEET  
Figure 6 Maximum Time Interval Error and Time Deviation of T0 PLL Output Port  
MTIE for G.813 option 1,  
Constant temperature wander limit  
TDEV for G.813 option 1,  
Constant temperature wander limit  
F8530D_027MtieTdevCombF6_01  
Figure 7 Phase Error Accumulation of T0 PLL Output Port in Holdover Mode  
10000000  
1000000  
Permitted Phase Error Limit  
100000  
10000  
Typical measurement, 25°C constant temperature  
1000  
100000  
Observation interval (s)  
10000  
100  
1000  
Revision 3.02/November 2005 © Semtech Corp.  
Page24  
www.semtech.com  
ACS8530 SETS  
ADVANCED COMMUNICATIONS  
Jitter and Wander Transfer  
FINAL  
DATASHEET  
highest priority reference source will be selected, and a  
PBO event triggered.  
The ACS8530 has a programmable jitter and wander  
transfer characteristic. This is set by the DPLL bandwidth.  
The -3 dB jitter transfer attenuation point can be set in the  
range from 0.5 mHz to 70 Hz in 18 steps. The wander and  
jitter transfer characteristic is shown in Figure 8. Wander  
on the local oscillator clock will not have a significant  
effect on the output clock whilst in Locked mode, provided  
that the DPLL bandwidth is set high enough so that the  
DPLL can compensate quickly enough for any frequency  
changes in the crystal.  
ITU-T G.813[11] states that the maximum allowable short-  
term phase transient response, resulting from a switch  
from one clock source to another, with Holdover mode  
entered in between, should be a maximum of 1 µs over a  
15 second interval. The maximum phase transient or  
jump should be less than 120 ns at a rate of change of  
less than 7.5 ppm and the Holdover performance should  
be better than 0.05 ppm. The ACS8530 performance is  
well within this requirement. The typical phase  
disturbance on clock reference source switching will be  
less than 5 ns on the ACS8530.The PBO requirement, as  
specified in Telcordia GR-1244-CORE[19], Section 5.7, is  
that a phase transient of greater than 3.5 µs occurring in  
less than 0.1 seconds should be absorbed for Stratum 3E  
level clocks. The ACS8530 can be configured to trigger a  
PBO event on an input phase transient of between 1 and  
3.5 µs, programmable, via Reg. 76.  
In Free-run or Holdover mode wander on the crystal is  
more significant. Variation in crystal temperature or  
supply voltage both cause drifts in operating frequency,  
as does ageing. These effects must be limited by careful  
selection of a suitable component for the local oscillator,  
as specified in the section See Local Oscillator Clock.  
The PBO operation can be set to operate automatically or  
it can operate under external control. For example an  
input phase jump of > 1 to 3.5 µs could be absorbed  
Phase Build-out  
Phase Build-out (PBO) is the function to minimize phase  
transients on the output SEC clock during input reference automatically or just flagged by the device with an  
switching. If the currently selected input reference clock interrupt raised, the external processor can then decide  
source is lost (due to a short interruption, out of frequency when and whether to perform a PBO event to absorb the  
detection, or complete loss of reference) the second, next phase disturbance. The monitoring block for detecting  
Figure 8 TO DPLL Wander and Jitter Measured Transfer Characteristics (Jitter = 0.2 UI p-p)  
Revision 3.02/November 2005 © Semtech Corp.  
Page25  
www.semtech.com  
ACS8530 SETS  
ADVANCED COMMUNICATIONS  
FINAL  
DATASHEET  
phase shifts within the 0.1 second period operates in the be used to compensate for circuit and board wiring  
following manner: When the input phase changes by more  
than 156 ns with respect to an internal version of the  
DPLL output then the internal 0.1 second interval counter  
is started. This internal DPLL output can be considered as  
representing the previous phase of the input. If the phase  
change is greater than the preset threshold  
(programmable from 1 to 3.5 µs) during any time up to the  
0.1 second limit, then a PBO event will be triggered  
automatically (with Reg. 76, Bits 5 and 4 = 1), hence  
absorbing the phase disturbance. The disturbance to the  
DPLL is minimal with low DPLL bandwidth and when the  
input phase change occurs within a small time interval.  
delays. The output phase can be adjusted in 6 ps steps up  
to 200 ns in a positive or negative direction. The phase  
adjustment actually changes the phase position of the  
feedback clock so that the DPLL adjusts the output clock  
phases to compensate. The rate of change of phase is  
therefore related to the DPLL bandwidth. For the DPLL to  
track large instant changes in phase, either Lock8k mode  
should be on, or the coarse phase detector should be  
enabled. Register cnfg_phase_offset at Reg. 70 and 71  
controls the output phase, which is only used when PBO is  
off (Reg. 48, Bit 2 = 0 and Reg. 76, Bit 4 = 0).  
When a PBO event is triggered, the device enters a  
temporary Holdover state. When in this temporary state,  
the phase of the input reference is measured, relative to  
the output. The device then automatically accounts for  
any measured phase difference and adds the appropriate  
phase offset into the DPLL to compensate. Following a  
PBO event, whatever the phase difference on change of  
input, the output phase transient is minimized to be no  
greater than 5 ns.  
Input Wander and Jitter Tolerance  
The ACS8530 is compliant to the requirements of all  
relevant standards, principally ITU Recommendation  
G.825[15], ANSI DS1.101-1999[1], Telcordia GR1244[19]  
GR253[17], G812[10], G813[11] and ETS 300 462-5  
(1996)[4].  
,
All reference clock inputs have a tight frequency tolerance  
but a generous jitter tolerance. Pull-in, hold-in and pull-out  
ranges are specified in Table 7. Minimum jitter tolerance  
masks are specified in Figures 9 and 10, and Tables 7  
and 9, respectively. The ACS8530 will tolerate wander  
and jitter components greater than those shown in  
Figure 9 and Figure 10, up to a limit determined by a  
combination of the apparent long-term frequency offset  
caused by wander and the eye-closure caused by jitter  
(the input source will be rejected if the offset pushes the  
frequency outside the hold-in range for long enough to be  
detected, whilst the signal will also be rejected if the eye  
closes sufficiently to affect the signal purity). Either the  
Lock8k mode, or one of the extended phase capture  
ranges should be engaged for high jitter tolerance  
according to these masks.  
On the ACS8530, PBO can be enabled, disabled or frozen  
using the microprocessor interface. By default, it is  
enabled. When PBO is enabled, PBO can also be frozen (at  
the current offset setting). The device will then ignore any  
further PBO events occurring on any subsequent  
reference switch, and maintain the current phase offset.  
If PBO is disabled while the device is in the Locked mode,  
there may be a phase shift on the output SEC clocks as  
the DPLL locks back to 0 degrees phase error. The rate of  
phase shift will depend on the programmed bandwidth.  
Enabling PBO whilst in the Locked stated will also trigger  
a PBO event.  
PBO Phase Offset  
In order to minimize the systematic (average) phase error  
for PBO, a PBO Phase Offset can be programmed in  
0.101 ns steps in the cnfg_PBO_phase_offset register,  
Reg.72. The range of the programmable PBO phase offset  
is restricted to ±1.4 ns. This can be used to eliminate an  
accumulation of phase shifts in one direction.  
All reference clock ports are monitored for quality,  
including frequency offset and general activity. Single  
short-term interruptions in selected reference clocks may  
not cause re- arrangements, whilst longer interruptions,  
or multiple, short-term interruptions, will cause re-  
arrangements, as will frequency offsets which are  
sufficiently large or sufficiently long to cause loss-of-lock  
in the phase-locked loop. The failed reference source will  
be removed from the priority table and declared as  
unserviceable, until its perceived quality has been  
Input to Output Phase Adjustment  
When PBO is off (including Auto-PBO on phase transients),  
such that the system always tries to align the outputs to  
the inputs at the 0° position, there is a mechanism  
provided in the ACS8530 for precise fine tuning of the  
output phase position with respect to the input. This can restored to an acceptable level.  
Revision 3.02/November 2005 © Semtech Corp.  
Page26  
www.semtech.com  
ACS8530 SETS  
ADVANCED COMMUNICATIONS  
Table 7 Input Reference Source Jitter Tolerance  
FINAL  
DATASHEET  
Jitter Tolerance  
Frequency  
Monitor  
Frequency Acceptance Range Frequency Acceptance Range Frequency Acceptance Range  
(Pull-in)  
(Hold-in)  
(Pull-out)  
Acceptance  
Range  
G.703[6]  
G.783[9]  
±4.6 ppm (see Note (i))  
±9.2 ppm (see Note (ii))  
±4.6 ppm (see Note (i))  
±9.2 ppm (see Note (ii))  
±4.6 ppm (see Note (i))  
±9.2 ppm (see Note (ii))  
±16.6 ppm  
G.823[13]  
GR-1244-CORE[19]  
Notes: (i) The frequency acceptance and generation range will be ±4.6 ppm around the required frequency when the external crystal  
frequency accuracy is within a tolerance of ±4.6 ppm.  
(ii) The fundamental acceptance range and generation range is ±9.2 ppm with an exact external crystal frequency of 12.800 MHz. This  
is the default DPLL range, the range is also programmable from 0 to 80 ppm in 0.08 ppm steps.  
Figure 9 Minimum Input Jitter Tolerance (OC-3/STM-1)  
A0  
A1  
A2  
A3  
A4  
Jitter and Wander Frequency (log scale)  
f0  
f1  
f2  
f3  
f4  
f5  
f6  
f7  
f8  
f9  
F8530_003MINIPJITTOLOC3STM1_02  
Note...For inputs supporting G.783[9] compliant sources.)  
Table 8 Amplitude and Frequency Values for Jitter Tolerance (OC-3/STM-1)  
STM  
level  
Peak to peak amplitude (unit  
Interval)  
Frequency (Hz)  
A0  
A1 A2 A3  
A4  
F0  
F1  
F2  
F3  
F4  
F5  
F6  
F7  
F8 F9  
STM-1  
2800 311 39 1.5 0.15 12 u 178 u 1.6 m 15.6 m 0.125 19.3 500 6.5 k 65 k 1.3  
Revision 3.02/November 2005 © Semtech Corp.  
Page27  
www.semtech.com  
ACS8530 SETS  
ADVANCED COMMUNICATIONS  
Figure 10 Minimum Input Jitter Tolerance (DS1/E1)  
FINAL  
DATASHEET  
Peak-to-peak Jitter and Wander Amplitude  
(log scale)  
A1  
A2  
Jitter and Wander Frequency (log scale)  
F8530D_004MINIPJITTOLDS1E1_02  
f1  
f2  
f3  
f4  
Table 9 Amplitude and Frequency Values for Jitter Tolerance (DS1/E1)  
Type  
Spec.  
Amplitude (UI p-p)  
A1 A2  
Frequency (Hz)  
F2 F3  
F1  
F4  
DS1 GR-1244-CORE[19]  
E1  
ITU G.823[13]  
5
0.1  
0.2  
10  
20  
500  
8 k  
40 k  
100  
1.5  
2.4 k  
18 k  
input frequency, with an averaging time inversely  
Using the DPLLs for Accurate Frequency and Phase  
Reporting  
proportional to the DPLL bandwidth setting. Reading this  
regularly can show how the currently locked source is  
varying in value e.g. due to frequency wander on its input.  
The frequency monitors in the ACS8530 perform  
frequency monitoring with a programmable acceptable  
limit of up to ±60.96 ppm. The resolution of the  
measurement is 3.8 ppm and the measured frequency  
The input phase, as seen at the DPLL phase detector, can  
be read back from register sts_current_phase, Reg. 77  
can be read back from Reg. 4C, with channel selection at and 78. T0 or T4 DPLL phase detector reporting is again  
Reg. 4B. For more accurate measurement of both  
frequency and phase, the T0 and T4 DPLLs and their  
phase detectors, can be used to monitor both input  
frequency and phase. The T0 DPLL is always monitoring  
the currently locked to source, but if the T4 path is not  
controlled by Reg. 4B, Bit 4. One LSB corresponds to  
approximately 0.7 degrees phase difference. For the T0  
DPLL this will be reporting the phase difference between  
the input and the internal feedback clock. The phase  
result is internally averaged or filtered with a -3 dB  
used then the T4 DPLL can be used as a roving phase and attenuation point at approximately 100 Hz. For low DPLL  
frequency meter. Via software control it could be switched bandwidths, 1 mHz for example, this measured phase  
to monitor each input in turn and both the phase and  
frequency can be reported with a very fine resolution.  
information from the T0 DPLL gives input phase wander in  
the frequency band from for example 1 mHz to 100 Hz.  
This could be used to give a crude input MTIE  
measurement up to an observation period of  
approximately 1000 seconds using external software.  
The registers sts_current_DPLL_frequency (Reg. 0C,  
Reg. 0D and Reg. 07) report the frequency of either the  
T0 or T4 DPLL with respect to the external crystal XO  
frequency (after calibration via Reg. 3C, 3D if used). The  
In addition, the T4 DPLL phase detector can be used to  
selection of T4 or T0 DPLL reporting is made via Reg. 4B, make a phase measurement between two inputs.  
Bit 4. The value is a 19-bit signed number with one LSB  
representing 0.0003068 ppm (range of ±80 ppm). This  
Reg. 65, Bit 7 is used to switch one input to the T4 phase  
detector over to the current T0 input. The other phase  
value is actually the integral path value in the DPLL, and detector input remains connected to the selected T4 input  
as such corresponds to an averaged measurement of the source, the selected source can be forced via Reg. 35,  
Revision 3.02/November 2005 © Semtech Corp.  
Page28  
www.semtech.com  
ACS8530 SETS  
ADVANCED COMMUNICATIONS  
Bits [3:0], or changed via the T4 priority (Reg. 18 to 1E,  
when Reg. 4B, Bit 4 = 1).  
FINAL  
DATASHEET  
It is expected that an NE will use the T0 output for its  
internal operations. The phase of the outputs from the T4  
path (TO8 & TO9) will not be aligned, unless the T4  
outputs are locked to the T0 outputs.  
Consequently the phase detector from the T4 DPLL could  
be used to measure the phase difference between the  
currently selected source and the stand-by source, or it  
could be used to measure the phase wander of all stand-  
by sources with respect to the current source by selecting  
each input in sequence. An MTIE and TDEV calculation  
could be made for each input via external processing.  
In many applications, the clocks supplied into the system  
are required to be aligned not only in frequency, but also  
in phase between the Master and Slave devices. This  
ensures minimal disturbance when any clock sink  
switches between Master and Slave.  
Configuration for Redundancy Protection  
In order to ensure that the outputs of the two ACS8530s  
are always aligned in frequency and phase, the  
procedures in Table 10 should be followed.  
When two ACS8530 devices are to be used in a  
redundancy-protection scheme within a Network Element  
(NE), one will be designated as Master, one as Slave.  
In order to maintain the conditions outlined in Table 10 it  
is necessary for software systems to maintain monitoring  
and control functions. These monitoring functions should  
either poll the device or respond to interrupts in order to  
maintain the correct settings within the two devices.  
Please refer to the descriptions or registers mentioned in  
Table 10 and also Regs 34, 3B, 48, 67 and 69, for more  
details on these associated settings. See also Application  
Note AN-SETS-7.  
Table 10 How to Align the Outputs of Two ACS8530s  
Action  
Result  
If possible, one device (the  
With the Slave locked to the  
nominated Slave) should lock to Master, their output frequencies  
the other device (the nominated will be guaranteed to be the  
Master).  
same.  
All programmed priorities within These two actions ensure that if  
the two devices should be the  
same, except for the fact that:  
(1) the Master output is  
designated the highest priority  
input on the Slave,  
the Master device fails, the Slave  
device will switch to lock to the  
same source that the Master was  
locked to before it failed.  
Table 11 MSTSLVB Pin Operation  
MSTSLVB  
Feature  
Setting  
Reason  
1 =  
Master  
Priority of  
input I11  
As programmed  
(program 0 to  
ensure it gets  
disabled)  
Make sure that the  
designated Master  
device cannot lock to  
the output of the  
Slave device.  
(2) the Slave output is  
designated zero priority  
(disabled) on the Master (Reg. 18  
to 1E).  
Any input detected as invalid in  
one device should be disabled  
within the other device  
Phase  
Build-out  
As programmed in If the system  
register requires PBO, then  
this being enabled  
on the Master will  
give the overall  
(Reg. 0E/0F & 30/31).  
Phase Build-out should be  
This will ensure that the phase of  
disabled on the Slave whilst it is the Slave is locked to the phase  
system performance  
with PBO. The slave  
only needs to track  
the Master (no PBO).  
locked to the Master.  
of the Master. It also enables the  
use of the Phase offset control  
register to compensate for delays  
between the Master and Slave.  
Revertive  
mode  
As programmed in Revertive behavior of  
Revertive mode should be  
enabled.  
This will ensure that the Slave  
locks to the Master although it  
may have been locked to another  
source previously.  
register  
the Master in a  
Master/Slave  
system will define  
the overall Revertive  
behavior of the  
system.  
The bandwidth of the Slave  
This ensures that any transient  
should be set higher than that of occurring on the output of the  
the Master (it is recommended to Master is followed as closely as  
T0 DPLL  
As programmed in Device selects  
configure the slave with the  
possible on the Slave.  
bandwidth register (automatic locked or acquisition  
highest supported bandwidth).  
or manual)  
bandwidth.  
Revision 3.02/November 2005 © Semtech Corp.  
Page29  
www.semtech.com  
ACS8530 SETS  
ADVANCED COMMUNICATIONS  
Table 11 MSTSLVB Pin Operation (cont...)  
FINAL  
DATASHEET  
Reg. 0E & 0F), from one device into the  
cnfg_sts_remote_sources_valid register (Reg. 30 & 31)  
of the other. This will ensure that any source considered  
invalid by one device is also considered invalid by the  
other. If a failure of the Master does occur, this will ensure  
that the Slave will always select the reference that the  
Master was locked to.  
MSTSLVB  
Feature  
Setting  
Reason  
0 =  
Slave  
Priority of  
input I11  
1 (highest priority)  
When a Slave, this  
input is designated  
as that connected to  
the output of the  
Master.  
Phase  
Build-out  
Disabled  
This ensures that the  
Slave locks to the  
Master with the  
minimum phase  
offset possible.  
T4 Generation in Master and Slave ACS8530  
As specified by the I.T.U., there is no need to align the  
phases of the T4 outputs in Master and Slave devices. For  
a fully redundant system, there is a need, however, to  
ensure that all devices select the same reference source.  
As there is no need to guarantee the alignment of phase  
of the T4 outputs, the Slave devices T4 input does not  
need to lock to the Masters T4 output, but only needs to  
ensure that it locks to the same external reference  
source. The actions of aligning the priority tables and  
available reference sources performed for the T0 outputs  
will be equally valid for the T4 outputs. The only difference  
being that the input connected to the Master's output is  
disabled for the T4 path (allowing it only to lock to external  
references). This can be easily achieved as the T4 and T0  
paths have separate programmed priorities. There is no  
defined Holdover requirement for the T4 path.  
Revertive  
mode  
Enabled  
This ensures that the  
Slave always locks to  
the Master when it is  
available.  
T0 DPLL  
bandwidth acquisition  
bandwidth setting  
Forced to the  
A higher bandwidth  
on the Slave ensures  
closer phase  
tracking.  
For direct hardware control of Master or Slave operation  
the Master/Slave control pin (MSTSLVB) can be used to  
externally control some of these functions according to  
Table 11. These functions can also be controlled via  
software.  
Whilst the Master and Slave outputs could be cross-  
connected and connected to any input on the alternative  
device, input I11 has been chosen as the input controlled  
by the MSTSLVB pin.  
Alignment of the Output Clock Phases in Master  
and Slave ACS8530  
When the ACS8530 is locked to a reference source of  
frequency f, the output clocks of frequency f will be in-  
phase with the reference source (with Phase Build-out  
disabled). As all T0 output clocks from the ACS8530 are  
derived from the same T0 frequency, any frequency  
greater than f at the output will be “falling edge aligned”  
with the output at frequency f. Any frequency less than f  
will be effectively a division of f, if possible. Similarly for  
T4, all T4 output clocks will be phase-related to the T4  
input.  
Alignment of Priority Tables in Master and Slave  
ACS8530  
In a redundant system where the Slave is normally locked  
to the Master device, if the Master device fails the Slave  
device must revert to locking to the same external  
reference that the Master was locked to. This will ensure  
that minimum disturbance, both in frequency and phase,  
is created on the output of the Slave device due to the  
failure of the Master device. As stated previously  
(Table 10), it is recommended that the programmed  
priorities of the reference sources are the same in both  
devices, apart from the Master/Slave cross-connect  
inputs.  
The effect of this relationship is that if the Master and  
Slave devices are cross-connected with 19.44 MHz  
clocks, their output clocks at 19.44 MHz, 38.88 MHz,  
77.76 MHz, 155.52 MHz & 311.04 MHz will be aligned  
between the two devices. However, their outputs of  
Both devices can also monitor all their reference sources 6.48 MHZ, 1.544 MHz, 2.048 MHz, 2 kHz and 8 kHz etc.  
and determine the validity of each source. It is  
would not necessarily be aligned. Whilst most  
recommended that the availability of valid sources are  
applications would not be affected by the non-alignment  
also aligned between the two devices. This is achieved by of most of these clocks, the non-alignment of the 2 kHz  
writing the value, as reported by sts_sources_valid  
and/or the 8 kHz may cause framing errors.  
Revision 3.02/November 2005 © Semtech Corp.  
Page30  
www.semtech.com  
ACS8530 SETS  
ADVANCED COMMUNICATIONS  
There are two ways to align the 2 kHz and/or 8 kHz  
outputs:  
FINAL  
DATASHEET  
input sampling. This is based on the principle that FrSync  
alignment is being used on a Slave device that is locked  
to the clock reference of a Master device that is also  
providing the 2 kHz SYNC2K input. Phase Build-out mode  
should be off (Reg. 48, Bit 2 = 0). The 2 kHz MFrSync  
output from the Master device has its falling edge aligned  
with the falling edge of the other output clocks, hence the  
SYNC2K input is normally sampled on the rising edge of  
the current input reference clock, in order to provide the  
most margin. Some modification of the expected timing of  
the SYNC2K with respect to the reference clock can be  
achieved via Reg. 7B, Bits [1:0]. This allows for the  
SYNC2K input to arrive either half a reference clock cycle  
early or up to one and a half cycle late, hence allowing a  
safe sampling margin to be maintained.  
1. the use of the External syncing function, or  
2. directly locking the Slave to 2 kHz or 8 kHz from the  
Master.  
By directly locking the Slave to the 2 kHz (MFrSync) output  
of the Master, all frequencies output from the Slave will  
be in phase alignment with the same frequency  
generated from the Master. If the Slave is directly locked  
to the 8 kHz (FrSync) output from the Master, then all  
frequencies except for 2 kHz MFrSync outputs will be in  
alignment.  
If using the external syncing function then the clock and  
sync signals need to be interconnected between the  
Master and Slave.  
A different sampling resolution is used depending on the  
input reference frequency and the setting of Reg. 7B Bit 6,  
cnfg_sync_phase. With this bit Low, the SYNC2K input  
sampling has a 6.48 MHz resolution, this being the  
preferred reference frequency to lock to from the Master,  
in conjunction with the SYNC2K 2 kHz, since it gives the  
most timing margin on the sampling and aligns all of the  
higher rate OC-3 derived clocks. When Bit 6 is High the  
SYNC2K can have a sampling resolution of either  
19.44 MHz (when the current locked to reference is  
19.44 MHz) or 38.88 MHz (all other frequencies). This  
would allow for instance a 19.44 MHz and 2 kHz pair to  
be used for Slave synchronization or for Line Card  
synchronization. Reg. 7B Bit 7, indep_Fr/MFrSync  
controls whether the 2 kHz MFrSync and 8 kHz FrSync  
outputs keep their precise alignment with the other  
output clocks.  
This requires some configuration enhancements. The  
Sync signal is not locked to, it is sampled using the  
reference clock and used to realign the generated  
outputs. The generated outputs are still always locked to  
the reference clock and related to each other. Details on  
the Master and Slave interconnection wiring and software  
configuration can be found in refer to the application note  
AN-SETS-2. The following section describes the  
resynchronization operation of the MFrSync via the  
SYNC2K input.  
MFrSync and FrSync Alignment-SYNC2K  
The SYNC2K input (pin 45) is monitored by the ACS8530  
for consistent phase and correct frequency and if it does  
not pass these quality checks, an alarm flag is raised  
(Reg. 08, Bit 7 and Reg. 09, Bit 7). The check for  
consistent phase involves checking that each input edge  
is within an expected timing window. The window size is  
set by Reg. 7C, Bits [6:4]. An internal detector senses that  
a correct SYNC2K signal is present and only then allows  
the signal to resynchronize the internal dividers that  
generate the 8 kHz FrSync and 2 kHz MFrSync outputs.  
This sequence avoids spurious resynchronizations that  
may otherwise occur with connections and  
When indep_FrSync/MFrSync Reg. 7B Bit 7 is Low the  
FrSyncs and the other higher rate clocks are not  
independent and their alignment on the falling 8kHz edge  
is maintained. This means that when bit Sync_OC-N_rates  
is High, the OC-N rate dividers and clocks are also  
synchronized by the SYNC2K input. On a change of phase  
position of the SYNC2K, this could result in a shift in  
phase of the 6.48 MHz output clock when a 19.44 MHz  
precision is used for the SYNC2K input. To avoid  
disturbing any of the output clocks and only align the  
MFrSync and FrSync outputs, at the chosen level of  
precision, then independent Frame Sync mode can be  
used (Reg. 7B, Bit 7 = 1). Edge alignment of the FrSync  
output with other clocks outputs may then change  
depending on the SYNC2K sampling precision used. For  
example, with a 19.44 MHz reference input clock and  
Reg. 7B, Bits 6 & 7 both High (Independent mode and  
disconnections of the SYNC2K input.  
The SYNC2K input will normally be a 2 kHz frequency, only  
its falling edge is used. It can however be at a frequencies  
of 4 kHz or 8 kHz without any change to the register  
setups. Only alignment of the 8 kHz will be achieved in  
this case.  
Safe sampling of the SYNC2K input is achieved by using  
the currently selected clock reference source to do the  
Revision 3.02/November 2005 © Semtech Corp.  
Page31  
www.semtech.com  
ACS8530 SETS  
ADVANCED COMMUNICATIONS  
Sync OC-N rates), then the FrSync output will still align  
with the 19.44 MHz output but not with the 6.48 MHz  
output clock.  
FINAL  
DATASHEET  
T0 DPLL and APLLs  
The T0 DPLL always produces 77.76 MHz regardless of  
either the reference frequency (frequency at the input pin  
of the device) or the locking frequency (frequency at the  
input of the DPLL Phase and Frequency Detector (PFD)).  
The FrSync and MFrSync outputs always come from the  
T0 DPLL path. 2kHz and 8kHz outputs can also be  
produced at the TO1 to TO7 outputs. These can come  
from either the T0 DPLL or from the T4 DPLL, controlled  
by Reg. 7A, Bit 7.  
The input reference is either passed directly to the PFD or  
via a pre-divider (not shown) to produce the reference  
input. The feedback 77.76 MHz is either divided or  
synthesized to generate the locking frequency.  
If required, this allows the T4 DPLL to be used as a  
separate PLL for the FrSync and MFrSync path with a  
2 kHz input and 2 kHz and 8 kHz Frame Sync outputs.  
Digital Frequency Synthesis (DFS) is a technique for  
generating an output frequency using a higher frequency  
system clock (204.8 MHz in the case of the 77.76 MHz  
synthesis). However, the edges of the output clock are not  
ideally placed in time, since all edges of the output clock  
will be aligned to the active edge of the system clock. This  
will mean that the generated clock will inherently have  
jitter on it equivalent to one period of the system clock.  
Output Clock Ports  
The device supports a set of main output clocks, T0 and  
T4, and a pair of secondary Sync outputs, FrSync and  
MFrSync. The two main output clocks, T0 and T4, are  
independent of each other and are individually selectable.  
The two secondary output clocks, FrSync and MFrSync,  
are derived from either T0 or T4. The frequencies of the  
main output clocks are selectable from a range of pre-  
defined spot frequencies and a variety of output  
The T0 77M forward DFS block uses DFS clocked by the  
204.8 MHz system clock to synthesize the 77.76 MHz  
and, therefore, has an inherent 4.9 ns of p-p jitter. There  
is an option to use an APLL, the T0 feedback APLL, to filter  
out this jitter before the 77.76 MHz is used to generate  
the feedback locking frequency in the T0 feedback DFS  
block. This analog feedback option allows a lower jitter  
(<1 ns) feedback signal to give maximum performance.  
The digital feedback option is present so that when the  
output path is switched to digital feedback the two paths  
remain synchronized.  
technologies are supported, as defined in Table 12.  
PECL/LVDS/AMI Output Port Selection  
The choice of PECL or LVDS compatibility is programmed  
via the cnfg_differential_outputs register, Reg. 3A.  
AMI port, TO8, supports a composite clock, consisting of a  
64 kHz AMI clock with 8 kHz boundaries marked by  
deliberate violations of the AMI coding rules, as specified  
in ITU recommendation G.703[6]. Departures from the  
nominal pattern are detected within the ACS8530, and  
may cause reference-switching if too frequent. See “DC  
Characteristics: AMI Input/Output Port” on page 139., for  
more details.  
The T0 77M forward DFS block is also the block that  
handles Phase Build-out and any phase offset  
programmed into the device. Hence, the T0 77M forward  
DFS and the T0 77M output DFS blocks are locked in  
frequency but may be offset in phase.  
The T0 77M output DFS block also uses the 204.8 MHz  
system clock and always generates 77.76 MHz for the  
output clocks (with inherent 4.9 ns of jitter). This is fed to  
another DFS block and to the T0 output APLL. The low  
frequency T0 LF output DFS block is used to produce  
three frequencies; two of them, Digital1 and Digital2, are  
available for selection to be produced at outputs TO1-  
TO7, and the third frequency can produce multiple  
E1/DS1 rates via the filtering APLLs. The input clock to  
Output Frequency Selection and Configuration  
The output frequency at many of the outputs is controlled  
by a number of inter-dependent parameters. These  
parameters control the selections within the various  
blocks shown in Figure 11.  
The ACS8530 contains two main DPLL/APLL paths. Whilst the T0 LF output DFS block is either 77.76 MHz from the  
they are largely independent, there are a number of ways T0 output APLL (post jitter filtering) or 77.76 MHz direct  
in which these two structures can interact. Figure 11  
shows an expansion of the original Block Diagram  
(Figure 1) for the PLL paths.  
from the T0 77M output DFS. Utilizing the clock from the  
T0 output APLL will result in lower jitter outputs from the  
T0 LF output DFS block.  
Revision 3.02/November 2005 © Semtech Corp.  
Page32  
www.semtech.com  
ACS8530 SETS  
ADVANCED COMMUNICATIONS  
Figure 11 PLL Block Diagram  
FINAL  
DATASHEET  
Lock_T4_to_T0  
Sts_Current_Phase  
T4_DPLL_Frequency  
Forward  
Control  
T4_APLL_for_T0  
0
T4  
Reference  
Input  
0
T4  
T4  
PFD and  
T4_Dig_Feedback  
TO1 to TO7  
Output  
Dividers  
DFS  
Output  
APLL  
Loop Filter  
T0_DPLL_Freq  
1
1
1
0
1
Feedback  
DFS  
T4_Op_From_TO  
0
0
Locking  
Frequency  
T4 DPLL  
TO8 /TO9  
8 kHz  
requency  
T0_DPLL_F  
1
Control  
0
1
T0  
Output  
Dividers  
T0  
Output  
APLL  
77M  
Output  
DFS  
TO1 to TO7  
1
0
LF  
Output  
DFS  
TO1 to TO7  
TO10/TO11  
Phase  
Offset  
Sts_Current_Phase  
PBO  
requency  
T0_DPLL_F  
Control  
T0  
T0  
Feedback  
APLL  
77M  
Forward  
DFS  
Reference  
Input  
PFD and  
Loop Filter  
1
0
Feedback  
DFS  
Locking  
Frequency  
T0 DPLL  
Analog  
F8530D_017BLOCKDIA_04  
However, when the input to the T0 APLL is taken from the in the table. Similar to the T0 path, the output of the T4  
T0 LF output DFS block, the input to that block comes forward DFS block is generated using DFS clocked by the  
directly from the T0 77M output DFS block so that a “loop” 204.8 MHz system clock and will have an inherent jitter of  
is not created.  
4.9 ns.  
The T0 output APLL is for multiplying and filtering. The  
input to the T0 output APLL can be either 77.76 MHz from  
the T0 77M output DFS block or an alternative frequency  
from the T0 LF output DFS block (offering 77.76 MHz,  
12E1, 16E1, 24DS1 or 16DS1). The frequency from the  
T0 output APLL is four times its input frequency i.e.  
311.04 MHz when used with a 77.76 MHz input. The T0  
output APLL is subsequently divided by 1, 2, 4, 6, 8, 12,  
16 and 48 and these are available at the TO1-TO7  
outputs.  
The T4 feedback DFS also has the facility to be able to use  
the post T4 APLL (jitter-filtered) clock to generate the  
feedback locking frequency. Again, this will give the  
maximum performance by using a low jitter feedback.  
The T4 output APLL block is also for multiplying and  
filtering. The input to the T4 output APLL can come either  
from the T4 forward DFS block or from the T0 path. The  
input to the T4 output APLL can be programmed to be one  
of the following:  
(a) Output from the T4 forward DFS block (12E1, 24DS1,  
16E1, 16DS1, E3, DS3, OC-N),  
T4 DPLL & APLL  
The T4 path is much simpler than the T0 path. This path  
offers no Phase Build-out or phase offset. The T4 input  
can be used to either lock to a reference clock input  
independent of the T0 path, or lock to the T0 path. Unlike  
the T0 path, the T4 forward DFS block does not always  
(b) 12E1 from T0,  
(c) 16E1 from T0,  
(d) 24DS1 from T0,  
generate 77.76 MHz. The possible frequencies are listed (e) 16DS1 from T0.  
Revision 3.02/November 2005 © Semtech Corp.  
Page33  
www.semtech.com  
ACS8530 SETS  
ADVANCED COMMUNICATIONS  
The frequency generated from the T4 output APLL block is  
four times its input frequency i.e. 311.04 MHz when used  
with a 77.76 MHz input. The T4 output APLL is  
subsequently divided by 2, 4, 8, 12, 16, 48 and 64 and  
these are available at the TO1-TO7 outputs.  
FINAL  
DATASHEET  
path can be utilized to produce extra frequencies  
locked to the T0 path.  
2. Refer to Table 14, Frequency Divider Look-up, to  
choose a set of output frequencies- one for each path,  
T4 and T0. Only one set of frequencies can be  
generated simultaneously from each path.  
The TO8 and TO9 outputs are driven from either the T4 or  
the T0 path. The TO10 and TO11 outputs are always  
generated from the T0 path. Reg. 7A Bit 7 selects whether  
the source of the 2 kHz and 8 kHz outputs available from  
TO1-TO7 is derived from either the T0 or the T4 paths.  
3. Refer to the Table 14 to determine the required APLL  
frequency to support the frequency set.  
4. Refer to Table 15, T0 APLL Frequencies, and  
Table 16, T4 APLL Frequencies, to determine what  
mode the T0 and T4 paths need to be configured in,  
considering the output jitter level.  
Output Frequency Configuration Steps  
5. Refer to Table 17, TO1 - TO7 output Frequency  
Selection, and the column headings in Table 14,  
Frequency Divider Look-up, to select the appropriate  
frequency from either of the APLLs on each output as  
required.  
The output frequency selection is performed in the  
following steps:  
1. Does the application require the use of the T4 path as  
an independent PLL path or not. If not, then the T4  
Table 12 Output Reference Source Selection Table  
Port  
Name  
Output Port  
Technology  
Frequencies Supported  
T01  
TTL/CMOS  
TTL/CMOS  
TTL/CMOS  
TTL/CMOS  
TTL/CMOS  
T02  
T03  
T04  
T05  
T06  
Frequency selection as per Table 13 and Table 17  
LVDS/PECL  
(LVDS default)  
T07  
PECL/LVDS  
(PECL default)  
T08  
AMI  
64/8 kHz (composite clock, 64 kHz + 8 kHz), fixed frequency.  
Fixed frequency, either 1.544 MHz or 2.048 MHz.  
T09  
TTL/CMOS  
TTL/CMOS  
TTL/CMOS  
T010  
T011  
FrSync, 8 kHz programmable pulse width and polarity, see Reg. 7A.  
MFrSync, 2 kHz programmable pulse width and polarity, see Reg. 7A.  
Note...1.544 MHz/2.048 MHz are shown for SONET/SDH respectively. Pin SONSDHB controls default, when High SONET is default  
Revision 3.02/November 2005 © Semtech Corp.  
Page34  
www.semtech.com  
ACS8530 SETS  
ADVANCED COMMUNICATIONS  
Table 13 Output Frequency Selection  
FINAL  
DATASHEET  
Frequency (MHz, unless stated otherwise)  
T0 DPLL Mode  
T4 DPLL Mode  
T4 APLL Input Mux  
Jitter Level (typ)  
rms  
(ps)  
p-p  
(ns)  
2 kHz  
2 kHz  
8 kHz  
8 kHz  
77.76 MHz Analog  
-
-
60  
1400  
60  
0.6  
5.0  
0.6  
5.0  
2.3  
1.5  
1.2  
1.0  
13  
Any digital feedback mode  
-
-
77.76 MHz Analog  
-
-
-
Any digital feedback mode  
-
1400  
500  
250  
200  
1.536  
1.536  
1.544  
1.544  
1.544  
1.544  
2.048  
2.048  
2.048  
2.048  
2.048  
2.048  
2.048  
2.059  
2.059  
2.059  
2.316  
2.316  
2.731  
2.731  
2.731  
2.796  
3.088  
3.088  
3.088  
3.088  
3.088  
(not TO4/TO5)  
(not TO4/TO5)  
(not TO4/TO5)  
(not TO4/TO5)  
-
-
-
-
12E1 mode  
Select T4 DPLL  
Select T0 DPLL 12E1  
Select T4 DPLL  
-
16DS1 mode  
-
Select T0 DPLL 16DS1 150  
via Digital1 (not TO7) or Digital2 (not TO6) 77.76 MHz Analog  
-
-
3800  
3800  
500  
via Digital1 (not TO7) or Digital2 (not TO6) Any digital feedback mode  
-
-
18  
-
-
12E1 mode  
Select T4 DPLL  
2.3  
1.5  
2.0  
1.2  
4.5  
13  
-
Select T0 DPLL 12E1  
250  
(not TO4/TO5)  
(not TO4/TO5)  
(not TO6)  
-
-
16E1 mode  
Select T4 DPLL  
400  
-
Select T0 DPLL 16E1  
220  
12E1 mode  
-
-
900  
via Digital1 (not TO7) or Digital2 (not TO6) 77.76 MHz Analog  
-
-
3800  
3800  
200  
via Digital1 (not TO7) or Digital2 (not TO6) Any digital feedback mode  
-
-
18  
-
-
16DS1 mode  
Select T4 DPLL  
1.2  
1.0  
2.6  
0.75  
0.75  
1.5  
1.2  
1.6  
1.0  
0.75  
0.75  
0.75  
13  
-
Select T0 DPLL 16DS1 150  
(not TO6)  
16DS1 mode  
-
-
760  
110  
(not TO4/TO5)  
(not TO4/TO5)  
-
24DS1 mode  
Select T4 DPLL  
-
-
-
-
Select T0 DPLL 24DS1 110  
16E1 mode  
Select T4 DPLL  
Select T0 DPLL 16E1  
-
400  
220  
250  
110  
110  
-
(not TO6)  
16E1 mode  
-
(not TO4/TO5)  
-
-
-
DS3 mode  
Select T4 DPLL  
Select T4 DPLL  
24DS1 mode  
-
-
-
-
Select T0 DPLL 24DS1 110  
(not TO6)  
24DS1 mode  
-
-
-
110  
3800  
3800  
via Digital1 (not TO7) or Digital2 (not TO6) 77.76 MHz Analog  
via Digital1 (not TO7) or Digital2 (not TO6) Any digital feedback mode  
18  
Revision 3.02/November 2005 © Semtech Corp.  
Page35  
www.semtech.com  
ACS8530 SETS  
ADVANCED COMMUNICATIONS  
Table 13 Output Frequency Selection (cont...)  
FINAL  
DATASHEET  
Frequency (MHz, unless stated otherwise)  
T0 DPLL Mode  
T4 DPLL Mode  
T4 APLL Input Mux  
Jitter Level (typ)  
rms  
(ps)  
p-p  
(ns)  
3.728  
-
DS3 mode  
Select T4 DPLL  
110  
3800  
3800  
120  
60  
1.0  
13  
4.096  
4.096  
4.296  
4.86  
via Digital1 (not TO7) or Digital2 (not TO6) 77.76 MHz Analog  
via Digital1 (not TO7) or Digital2 (not TO6) Any digital feedback mode  
-
-
-
-
18  
(not TO4/TO5)  
(not TO4/TO5)  
-
-
-
E3 mode  
Select T4 DPLL  
1.0  
0.6  
1.0  
4.5  
2.3  
1.5  
2.6  
1.2  
1.0  
13  
77.76 MHz mode Select T4 DPLL  
5.728  
6.144  
6.144  
6.144  
6.176  
6.176  
6.176  
6.176  
6.176  
6.48  
E3 mode  
Select T4 DPLL  
120  
900  
500  
250  
760  
200  
12E1 mode  
-
-
Select T4 DPLL  
Select T0 DPLL 12E1  
-
-
-
12E1 mode  
-
16DS1 mode  
-
-
16DS1 mode  
Select T4 DPLL  
-
-
-
-
Select T0 DPLL 16DS1 150  
via Digital1 (not TO7) or Digital2 (not TO6) 77.76 MHz Analog  
-
-
3800  
3800  
60  
via Digital1 (not TO7) or Digital2 (not TO6) Any digital feedback mode  
-
18  
77.76 MHz mode Select T4 DPLL  
0.6  
0.6  
0.6  
4.5  
1.6  
2.0  
1.2  
13  
6.48  
(not TO6)  
(not TO6)  
77.76 MHz analog  
-
-
60  
6.48  
77.76 MHz digital  
-
-
60  
8.192  
8.192  
8.192  
8.192  
8.192  
8.192  
8.235  
9.264  
9.264  
9.264  
10.923  
11.184  
12.288  
12.288  
12E1 mode  
-
-
900  
250  
400  
220  
3800  
3800  
760  
110  
110  
16E1 mode  
-
-
-
-
16E1 mode  
Select T4 DPLL  
-
Select T0 DPLL 16E1  
via Digital1 (not TO7) or Digital2 (not TO6) 77.76 MHz Analog  
-
-
via Digital1 (not TO7) or Digital2 (not TO6) Any digital feedback mode  
-
-
18  
16DS1 mode  
-
-
2.6  
0.75  
0.75  
0.75  
1.6  
1.0  
4.5  
2.3  
24DS1 mode  
-
-
-
24DS1 mode  
Select T4 DPLL  
-
-
Select T0 DPLL 24DS1 110  
16E1 mode  
-
DS3 mode  
-
-
Select T4 DPLL  
-
250  
110  
900  
500  
-
12E1 mode  
-
12E1 mode  
Select T4 DPLL  
Revision 3.02/November 2005 © Semtech Corp.  
Page36  
www.semtech.com  
ACS8530 SETS  
ADVANCED COMMUNICATIONS  
Table 13 Output Frequency Selection (cont...)  
FINAL  
DATASHEET  
Frequency (MHz, unless stated otherwise)  
T0 DPLL Mode  
T4 DPLL Mode  
T4 APLL Input Mux  
Jitter Level (typ)  
rms  
(ps)  
p-p  
(ns)  
12.288  
12.352  
12.352  
12.352  
12.352  
-
-
Select T0 DPLL 12E1  
250  
110  
760  
200  
1.5  
0.75  
2.6  
1.2  
1.0  
13  
24DS1 mode  
16DS1 mode  
-
-
-
-
-
16DS1 mode  
Select T4 DPLL  
-
-
Select T0 DPLL 16DS1 150  
12.352 via Digital1 (not TO7) or Digital2 (not TO6) 77.76 MHz Analog  
-
-
3800  
3800  
900  
12.352 via Digital1 (not TO7) or Digital2 (not TO6) Any digital feedback mode  
-
-
18  
16.384  
16.384  
16.384  
16.384  
12E1 mode  
16E1 mode  
-
-
4.5  
1.6  
2.0  
1.2  
13  
-
-
250  
-
-
16E1 mode  
Select T4 DPLL  
400  
-
Select T0 DPLL 16E1  
220  
16.384 via Digital1 (not TO7) or Digital2 (not TO6) 77.76 MHz Analog  
-
-
3800  
3800  
760  
16.384 via Digital1 (not TO7) or Digital2 (not TO6) Any digital feedback mode  
-
-
18  
16.469  
17.184  
18.528  
18.528  
18.528  
19.44  
16DS1 mode  
-
-
Select T4 DPLL  
-
2.6  
1.0  
0.75  
0.75  
0.75  
0.6  
0.6  
0.6  
1.6  
1.0  
4.5  
2.3  
1.5  
0.75  
2.6  
1.2  
1.0  
0.6  
-
E3 mode  
120  
24DS1 mode  
-
110  
-
24DS1 mode  
Select T4 DPLL  
110  
-
-
-
-
Select T0 DPLL 24DS1 110  
77.76 MHz analog  
-
-
60  
19.44  
77.76 MHz digital  
60  
19.44  
-
77.76MHz mode Select T4 DPLL  
60  
21.845  
22.368  
24.576  
24.576  
24.576  
24.704  
24.704  
24.704  
24.704  
25.92  
16E1 mode  
-
-
250  
110  
900  
500  
250  
110  
760  
200  
-
DS3 mode  
Select T4 DPLL  
12E1 mode  
-
-
-
12E1 mode  
Select T4 DPLL  
-
-
Select T0 DPLL 12E1  
24DS1 mode  
-
-
16DS1 mode  
-
-
-
16DS1 mode  
Select T4 DPLL  
-
-
-
Select T0 DPLL 16DS1 150  
60  
77.76 MHz analog  
-
Revision 3.02/November 2005 © Semtech Corp.  
Page37  
www.semtech.com  
ACS8530 SETS  
ADVANCED COMMUNICATIONS  
Table 13 Output Frequency Selection (cont...)  
FINAL  
DATASHEET  
Frequency (MHz, unless stated otherwise)  
T0 DPLL Mode  
T4 DPLL Mode  
T4 APLL Input Mux  
Jitter Level (typ)  
rms  
(ps)  
p-p  
(ns)  
25.92  
77.76 MHz digital  
16E1 mode  
-
-
-
60  
0.6  
1.6  
2.0  
1.2  
1.0  
0.75  
0.75  
0.75  
0.6  
0.6  
0.6  
1.0  
2.3  
1.5  
4.5  
1.2  
1.0  
2.6  
0.6  
0.6  
2.0  
1.2  
1.6  
1.0  
0.75  
0.75  
0.75  
0.6  
0.6  
0.6  
1.0  
32.768  
-
250  
400  
220  
120  
110  
110  
32.768  
-
-
-
16E1 mode  
Select T4 DPLL  
Select T0 DPLL 16E1  
Select T4 DPLL  
-
32.768  
-
34.368  
E3 mode  
37.056  
24DS1 mode  
-
37.056  
-
24DS1 mode  
Select T4 DPLL  
37.056  
-
-
-
-
Select T0 DPLL 24DS1 110  
38.88  
77.76 MHz analog  
-
-
60  
60  
38.88  
77.76 MHz digital  
38.88  
-
77.76 MHz mode Select T4 DPLL  
60  
44.736  
-
DS3 mode  
Select T4 DPLL  
Select T4 DPLL  
Select T0 DPLL 12E1  
-
110  
500  
250  
900  
200  
49.152 (TO4/TO5 only)  
49.152 (TO4/TO5 only)  
49.152 (TO6/TO7 only)  
49.408 (TO4/TO5 only)  
49.408 (TO4/TO5 only)  
49.408 (TO6/TO7 only)  
51.84  
-
12E1 mode  
-
-
12E1 mode  
-
-
16DS1 mode  
Select T4 DPLL  
-
-
Select T0 DPLL 16DS1 150  
16DS1 mode  
-
-
760  
60  
77.76 MHz analog  
-
-
-
51.84  
77.76 MHz digital  
-
60  
65.536 (TO4/TO5 only)  
65.536 (TO4/TO5 only)  
65.536 (TO6/TO7 only)  
68.736  
-
16E1 mode  
Select T4 DPLL  
Select T0 DPLL 16E1  
-
400  
220  
250  
120  
110  
-
-
16E1 mode  
-
-
E3 mode  
Select T4 DPLL  
Select T4 DPLL  
74.112 (TO4/TO5 only)  
74.112 (TO4/TO5 only)  
74.112 (TO6/TO7 only)  
77.76  
-
24DS1 mode  
-
-
-
-
-
Select T0 DPLL 24DS1 110  
24DS1 mode  
-
-
-
110  
60  
77.76 MHz analog  
77.76  
77.76 MHz digital  
60  
77.76  
-
-
77.76 MHz mode Select T4 DPLL  
DS3 mode Select T4 DPLL  
60  
89.472 (TO4/TO5 only)  
110  
Revision 3.02/November 2005 © Semtech Corp.  
Page38  
www.semtech.com  
ACS8530 SETS  
ADVANCED COMMUNICATIONS  
Table 13 Output Frequency Selection (cont...)  
FINAL  
DATASHEET  
Frequency (MHz, unless stated otherwise)  
T0 DPLL Mode  
T4 DPLL Mode  
T4 APLL Input Mux  
Jitter Level (typ)  
rms  
(ps)  
p-p  
(ns)  
98.304 (TO6 only)  
12E1 mode  
-
-
900  
760  
250  
120  
110  
60  
4.5  
2.6  
1.6  
1.0  
0.75  
0.6  
0.6  
0.6  
0.6  
0.6  
98.816 (TO6 only)  
16DS1 mode  
16E1 mode  
-
-
131.07 (TO6 only)  
-
E3 mode  
-
-
137.47 (TO4/TO5 only)  
148.22 (TO6 only)  
-
Select T4 DPLL  
-
24DS1 mode  
155.52 (TO4/TO5 only)  
155.52 (TO6/TO7 only)  
155.52 (TO6/TO7 only)  
311.04 (TO6 only)  
-
77.76 MHz mode Select T4 DPLL  
77.76 MHz analog  
77.76 MHz digital  
77.76 MHz analog  
77.76 MHz digital  
-
-
-
-
-
-
-
-
60  
60  
60  
311.04 (TO6 only)  
60  
Table 14 Frequency Divider Look-up  
APLL  
APLL/2  
APLL/4  
APLL/6  
APLL/8  
APLL/12  
APLL/16  
APLL/48  
APLL/64  
Frequency  
311.04  
155.52  
77.76  
51.84  
38.88  
25.92  
19.44  
6.48  
4.86  
274.944  
178.944  
148.224  
131.072  
98.816  
137.472  
89.472  
74.112  
65.536  
49.408  
49.152  
68.376  
44.736  
37.056  
32.768  
24.704  
24.576  
-
-
34.368  
22.368  
18.528  
16.384  
12.352  
12.288  
-
-
17.184  
11.184  
9.264  
8.192  
6.176  
6.144  
5.728  
4.296  
2.796  
2.316  
2.048  
1.544  
1.536  
3.728  
24,704  
12.352  
10.92267  
8.234667  
8.192  
3.088  
21.84533  
16.46933  
16.384  
2.730667  
2.058667  
2.048  
98.304  
Note...All frequencies in MHz  
Revision 3.02/November 2005 © Semtech Corp.  
Page39  
www.semtech.com  
ACS8530 SETS  
ADVANCED COMMUNICATIONS  
Table 15 T0 APLL Frequencies  
FINAL  
DATASHEET  
T0 APLL Frequency  
T0 Mode  
T0 DPLL Frequency Control Register Bits  
Reg. 65 Bits[2:0]  
Output Jitter Level  
ns (p-p)  
311.04  
Normal (digital feedback)  
Normal (analog feedback)  
12E1 (digital feedback)  
16E1 (digital feedback)  
24DS1 (digital feedback)  
16DS1 (digital feedback)  
Do not use  
000  
001  
010  
011  
100  
101  
110  
111  
<0.5  
<0.5  
<2  
<2  
<2  
<2  
-
311.04 MHz  
98.304 MHz  
131.072 MHz  
148.224 MHz  
98.816 MHz  
-
-
Do not use  
-
Table 16 T4 APLL Frequencies  
T4 APLL  
T4 Mode  
T4 Forward DFS T4 DPLL Frequency  
T4 APLL for T0  
T0 Frequency to T4 Output Jitter Level  
Frequency  
Frequency  
(MHz)  
Control Register Bits Enable Register Bit  
APLL Register Bits  
Reg. 65 Bits [5:4]  
ns (p-p)  
Reg. 64 Bits [2:0]  
Reg. 65 Bit 6  
311.04 MHz  
311.04 MHz  
98.304 MHz  
131.072 MHz  
148.224 MHz  
Squelched  
Normal  
12E1  
77.76  
000  
001  
010  
011  
100  
0
0
0
0
0
XX  
XX  
XX  
XX  
XX  
<0.5  
<0.5  
<0.5  
<0.5  
<0.5  
77.76  
24.576  
32.768  
16E1  
24DS1  
37.056  
(2*18.528)  
98.816 MHz  
16DS1  
E3  
24.704  
101  
110  
0
0
XX  
XX  
<0.5  
<0.5  
274.944 MHz  
68.736  
(2*34.368)  
178.944 MHz  
98.304 MHz  
131.072 MHz  
148.224 MHz  
98.816 MHz  
DS3  
44.736  
111  
XXX  
XXX  
XXX  
XXX  
0
1
1
1
1
XX  
00  
01  
10  
11  
<0.5  
<2  
T0-12E1  
T0-16E1  
T0-24DS1  
T0-16DS1  
-
-
-
-
<2  
<2  
<2  
Revision 3.02/November 2005 © Semtech Corp.  
Page40  
www.semtech.com  
ACS8530 SETS  
ADVANCED COMMUNICATIONS  
Table 17 TO1 - TO7 Output Frequency Selection  
FINAL  
DATASHEET  
Output Frequency for given “Value in Register” for each Output Port’s Cnfg_output_frequency Register  
Value in Register  
TO1, Reg. 60  
Bits [3:0]  
TO2, Reg. 60  
Bits [7:4]  
TO3, Reg. 61  
Bits [3:0]  
TO4, Reg. 61  
Bits [7:4]  
TO5, Reg. 62  
Bits [3:0]  
TO6, Reg. 62  
Bits [7:4]  
TO7, Reg. 63  
Bits [3:0]  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
Off  
Off  
Off  
Off  
Off  
Off  
Off  
2 kHz  
2 kHz  
2 kHz  
2 kHz  
2 kHz  
2 kHz  
2 kHz  
8 kHz  
8 kHz  
8 kHz  
8 kHz  
8 kHz  
8 kHz  
8 kHz  
Digital2  
Digital2  
Digital2  
Digital2  
Digital2  
T0 APLL/2  
Digital1  
Digital2  
Digital1  
Digital1  
Digital1  
Digital1  
Digital1  
T0 APLL/2  
T0 APLL/48  
T0 APLL/16  
T0 APLL/12  
T0 APLL/8  
T0 APLL/6  
T0 APLL/4  
T4 APLL/64  
T4 APLL/48  
T4 APLL/16  
T4 APLL/8  
T4 APLL/4  
T0 APLL/48  
T0 APLL/16  
T0 APLL/12  
T0 APLL/8  
T0 APLL/6  
T0 APLL/4  
T4 APLL/64  
T4 APLL/48  
T4 APLL/16  
T4 APLL/8  
T4 APLL/4  
T0 APLL/48  
T0 APLL/16  
T0 APLL/12  
T0 APLL/8  
T0 APLL/6  
T0 APLL/4  
T4 APLL/64  
T4 APLL/48  
T4 APLL/16  
T4 APLL/8  
T4 APLL/4  
T0 APLL/48  
T0 APLL/16  
T0 APLL/12  
T0 APLL/8  
T0 APLL/6  
T0 APLL/4  
T4 APLL/64  
T4 APLL/48  
T4 APLL/16  
T4 APLL/8  
T4 APLL/4  
T0 APLL/48  
T0 APLL/16  
T0 APLL/12  
T0 APLL/8  
T0 APLL/6  
T0 APLL/4  
T4 APLL/2  
T4 APLL/48  
T4 APLL/16  
T4 APLL/8  
T4 APLL/4  
T0 APLL/48  
T0 APLL/16  
T0 APLL/12  
T0 APLL/8  
T0 APLL/6  
T0 APLL/4  
T4 APLL/2  
T4 APLL/48  
T4 APLL/16  
T4 APLL/8  
T4 APLL/4  
T0 APLL/1  
T0 APLL/16  
T0 APLL/12  
T0 APLL/8  
T0 APLL/6  
T0 APLL/4  
T4 APLL/64  
T4 APLL/48  
T4 APLL/16  
T4 APLL/8  
T4 APLL/4  
T4 Low Frequency Outputs  
period of between 11 ns and 15 ns. The output of the T4  
forward DFS block will have an inherent p-p jitter of  
approximately 4.9 ns.The clock to the T4 feedback DFS  
block will have <1 ns of jitter when the T4 path is in analog  
feedback mode (Reg. 35 Bit 6 = 0). However, it will have  
4.9 ns when in digital feedback mode.  
TO8 is an AMI composite clock output. If enabled, this  
always produces a 64 kHz/8 kHz composite clock. If  
enabled, TO9 always produces an E1 or DS1 frequency  
output. Both TO8 and TO9 are generated by DFS within  
either the T0 or T4 path, as controlled by Reg. 35 Bit 4.  
The frequencies generated from TO8 and TO9 are  
independent of the Mode (frequency) of either the T4 or  
the T0 paths. The amount of jitter generated on the TO8  
and TO9 outputs will be related to the clock period of the  
source DFS block added to any jitter present on that clock.  
This is detailed in the following text.  
The TO8 output, being 64 kHz/8 kHz, can be directly  
divided from the clock to the T4 feedback DFS block;  
therefore, it will have a similar amount of jitter on it, i.e.  
<1 ns when using analog feedback, and 4.9 ns when  
using digital feedback.  
The TO9 output will have more jitter because it is  
As can be seen in the block diagram, the DFS blocks used synthesized from the clock to the T4 feedback DFS block.  
to generate these outputs are the T4 feedback DFS block The jitter, in addition to that present on the clock to the T4  
in the case of the T4 path and the T0 LF output DFS block feedback DFS block, will be equivalent to a period of that  
for the T0 path. The T4 feedback DFS block is clocked by clock, i.e. between 11 ns and 15 ns. The jitter present on  
the T4 forward DFS, or its APLL. The frequency of the T4  
forward DFS block can be determined by referring to  
Table 16 (T4 APLL frequencies). This is in the region of  
65 MHz to 89 MHz and can be approximated to have a  
the TO9 output will range from 11 ns (when the T4 path is  
in DS3 mode - 89 MHz combined with analog feedback) to  
20 ns (when in 16E1 mode - 65 MHz combined with  
digital feedback).  
Revision 3.02/November 2005 © Semtech Corp.  
Page41  
www.semtech.com  
ACS8530 SETS  
ADVANCED COMMUNICATIONS  
FINAL  
DATASHEET  
The T4 outputs TO8 and TO9 can be enabled/disabled via clock). The maximum jitter is generated when in digital  
feedback mode, when the total is approximately 17 ns.  
Reg. 63 Bits [5:4].  
TO10, TO11, 2 kHz and 8 kHz Clock Outputs  
“Digital” Frequencies  
It can be seen from Table 17 (TO1 - TO7 Output Frequency  
Selection) that frequencies listed as 2 kHz and 8 kHz can  
It can be seen from Table 17 (TO1-TO7 output frequency  
selection) that frequencies listed as Digital1 and Digital2 be selected. Whilst the TO10 and TO11 outputs are  
always supplied from the T0 path, the 2 kHz and 8 kHz  
options available from the TO1 - TO7 outputs are all  
supplied from either the T0 or T4 path (Reg. 7A Bit 7).  
can be selected. Digital1 is a single frequency selected  
from the range shown in Table 18. Digital2 is another  
single frequency selected from the same range. The T0 LF  
output DFS block shown in the diagram and clocked  
either by the T0 77M output DFS block or via the T0  
output APLL, generates these two frequencies. The input  
clock frequency of the DFS is always 77.76 MHz and as  
such has a period of approximately 12 ns. The jitter  
generated on the Digital outputs is relatively high, due to  
the fact that they do not pass through an APLL for jitter  
filtering. The minimum level of jitter is when the T0 path is  
in analog feedback mode, when the p-p jitter will be  
approximately 12 ns (equivalent to a period of the DFS  
The outputs can be either clocks (50:50 mark/space) or  
pulses and can be inverted. When pulses are configured  
on the output, the pulse width will be one cycle of the  
output of TO3 (TO3 must be configured to generate at  
least 1544 kHz to ensure that pulses are generated  
correctly). Figure 12 shows the various options with the  
8 kHz controls in Reg. 7A. There is an identical  
arrangement with Reg. 7A Bits [1:0] and the 2 kHz/TO11  
outputs. Outputs TO10 and TO11 can be disabled via  
Reg. 63 Bits [7:6].  
Figure 12 Control of 8k Options.  
T03 output  
T03 output  
T010/8kHz output  
T010/8kHz output  
a) Clock non-inverted, Reg.7A[3:2] = 00  
c) Clock inverted, Reg.7A[3:2] = 10  
T03 output  
T03 output  
T010/8kHz output  
T010/8kHz output  
b) Pulse non-inverted, Reg.7A[3:2] = 01  
d) Pulse inverted, Reg.7A[3:2] = 11  
Table 18 Digital Frequency Selections  
Digital1 Control  
Reg.39 Bits [5:4]  
Digital1 SONET/  
SDH Reg. 38 Bit 5  
Digital1 Frequency/  
(MHz)  
Digital2 Control  
Reg. 39 Bits [7:6]  
Digital2 SONET/SDH Digital2 Frequency/  
Reg.38 Bit 6  
(MHz)  
2.048  
4.096  
8.192  
16.384  
1.544  
3.088  
6.176  
12.352  
00  
01  
10  
11  
00  
01  
10  
11  
0
0
0
0
1
1
1
1
2.048  
4.096  
8.192  
16.384  
1.544  
3.088  
6.176  
12.352  
00  
01  
10  
11  
00  
01  
10  
11  
0
0
0
0
1
1
1
1
Revision 3.02/November 2005 © Semtech Corp.  
Page42  
www.semtech.com  
ACS8530 SETS  
ADVANCED COMMUNICATIONS  
FINAL  
DATASHEET  
Microprocessor Interface  
Introduction to Microprocessor Modes  
The ACS8530 incorporates a microprocessor interface, which can be configured for all common microprocessor  
interface types, via the bus interface mode control pins UPSEL(2:0) as defined in Table 19.  
These pins are read at power up and set the interface mode.  
The optional EPROM mode allows the internal registers to be loaded from the EPROM when the device comes out of  
“power-on reset” mode. The microprocessor interface type can be altered after power up by Reg. 7F, such that for  
instance the device could boot up in EPROM mode and then switch to Motorola mode, for example, after the EPROM  
data has preconditioned the device. Reading of Data from the EPROM at boot up time is handled automatically by the  
ACS8530. The chip select of the EPROM should be driven from the micro in the case of mixed EPROM and micro  
communication, in order to avoid conflict between EPROM and ACS8530 access from the microprocessor.  
The following sections show the interface timings for each interface type.  
Table 19 Microprocessor Interface Mode Selection  
UPSEL(2:0)  
111 (7)  
110 (6)  
101 (5)  
100 (4)  
011 (3)  
010 (2)  
001 (1)  
000 (0)  
Mode  
Description  
OFF  
Interface disabled  
OFF  
Interface disabled  
SERIAL  
MOTOROLA  
INTEL  
Serial uP bus interface  
Motorola interface  
Intel compatible bus interface  
Multiplexed bus interface  
EPROM read mode  
MULTIPLEXED  
EPROM  
OFF  
Interface disabled  
Timing diagrams for the different microprocessor modes are presented on pages 44 to 52.  
Revision 3.02/November 2005 © Semtech Corp.  
Page43  
www.semtech.com  
ACS8530 SETS  
ADVANCED COMMUNICATIONS  
FINAL  
DATASHEET  
Motorola Mode  
In MOTOROLA mode, the device is configured to interface with a microprocessor using a 680x0 type bus as parallel  
data + address. Figure 13 and Figure 14 show the timing diagrams of read and write accesses for this mode.  
Figure 13 Read Access Timing in MOTOROLA Mode  
t
pw1  
CSB  
WRB  
A
t
t
h2  
su2  
X
X
X
t
t
h1  
su1  
address  
X
Z
t
t
d1  
d3  
data  
AD  
Z
Z
t
t
t
t
d4  
d2  
pw2  
h3  
Z
RDY  
(DTACK)  
F8110D_007ReadAccMotor_01  
Table 20 Read Access Timing in MOTOROLA Mode (for use with Figure 13)  
Symbol  
tsu1  
Parameter  
Setup A valid to CSBfalling edge  
MIN  
TYP  
MAX  
4 ns  
0 ns  
12 ns  
16 ns  
-
-
-
tsu2  
Setup WRB valid to CSBfalling edge  
-
-
td1  
Delay CSBfalling edge to AD valid (consecutive Read - Read)  
Delay CSBfalling edge to AD valid (consecutive Write - Read)  
Delay CSBfalling edge to DTACKrising edge  
Delay CSBrising edge to AD high-Z  
-
40 ns  
-
192 ns  
td2  
td3  
-
13 ns  
-
-
10 ns  
td4  
Delay CSBrising edge to RDY high-Z  
-
-
9 ns  
tpw1  
CSB Low time (consecutive Read - Read)  
CSB Low time (consecutive Write - Read)  
RDY High time (consecutive Read - Read)  
RDY High time (consecutive Write - Read)  
Hold A valid after CSBrising edge  
25 ns  
25 ns  
12 ns  
12 ns  
0 ns  
0 ns  
0 ns  
15 ns  
62 ns  
-
193 ns  
-
tpw2  
-
-
-
-
-
-
49 ns  
182 ns  
th1  
th2  
th3  
tp  
-
-
-
-
Hold WRB valid after CSBrising edge  
Hold CSB Low after RDYfalling edge  
Time between (consecutive Read - Read) accesses (CSBrising edge to  
CSBfalling edge  
Time between (consecutive Write - Read) accesses (CSBrising edge to  
CSBfalling edge  
)
tp  
160 ns  
-
-
)
Revision 3.02/November 2005 © Semtech Corp.  
Page44  
www.semtech.com  
ACS8530 SETS  
ADVANCED COMMUNICATIONS  
Figure 14 Write Access Timing in MOTOROLA Mode  
FINAL  
DATASHEET  
t
pw1  
CSB  
t
t
h2  
su2  
X
X
X
X
X
WRB  
A
t
t
h1  
su1  
address  
t
t
su3  
h4  
data  
AD  
X
Z
t
t
t
t
d4  
d2  
pw2  
h3  
Z
RDY  
(DTACK)  
F8110D_008WriteAccMotor_01  
Table 21 Write Access Timing in MOTOROLA Mode (for use with Figure 14)  
Symbol  
tsu1  
tsu2  
tsu3  
td2  
Parameter  
Setup A valid to CSBfalling edge  
MIN  
4 ns  
0 ns  
8 ns  
-
TYP  
MAX  
-
-
-
-
-
-
-
-
-
-
-
-
-
Setup WRB valid to CSBfalling edge  
Setup AD valid before CSBrising edge  
Delay CSBfalling edge to RDYrising edge  
Delay CSBrising edge to RDY High-Z  
CSB Low time  
-
-
13 ns  
td4  
-
7 ns  
tpw1  
tpw2  
th1  
25 ns  
12 ns  
8 ns  
0 ns  
0 ns  
9 ns  
160 ns  
180 ns  
RDY High time  
166 ns  
Hold A valid after CSBrising edge  
Hold WRB Low after CSBrising edge  
Hold CSB Low after RDYfalling edge  
Hold AD valid after CSBrising edge  
Time between consecutive accesses (CSBrising edge to CSBfalling edge  
-
-
-
-
-
th2  
th3  
th4  
tp  
)
Revision 3.02/November 2005 © Semtech Corp.  
Page45  
www.semtech.com  
ACS8530 SETS  
ADVANCED COMMUNICATIONS  
FINAL  
DATASHEET  
Intel Mode  
In Intel mode, the device is configured to interface with a microprocessor using a 80x86 type bus as parallel data +  
address. Figure 15 and Figure 16 show the timing diagrams of read and write accesses for this mode.  
Figure 15 Read Access Timing in INTEL Mode  
CSB  
WRB  
t
t
t
h2  
su2  
pw1  
RDB  
A
t
t
h1  
su1  
address  
t
t
d4  
d1  
Z
data  
AD  
t
t
t
t
d5  
t
d3  
pw2  
h3  
d2  
Z
RDY  
F8110D_009ReadAccIntel_01  
Table 22 Read Access Timing in INTEL Mode (for use with Figure 15)  
Symbol  
tsu1  
Parameter  
Setup A valid to CSBfalling edge  
MIN  
4 ns  
0 ns  
12 ns  
12 ns  
-
TYP  
MAX  
-
-
tsu2  
Setup CSBfalling edge to RDBfalling edge  
Delay RDBfalling edge to AD valid (consecutive Read - Read)  
Delay RDBfalling edge to AD valid (consecutive Write - Read)  
Delay CSBfalling edge to RDY active  
-
-
td1  
-
40 ns  
-
193 ns  
td2  
td3  
-
13 ns  
Delay RDBfalling edge to RDYfalling edge  
Delay RDBrising edge to AD high-Z  
-
-
14 ns  
td4  
-
-
10 ns  
td5  
Delay CSBrising edge to RDY high-Z  
-
-
11 ns  
tpw1  
RDB Low time (consecutive Read - Read)  
RDB Low time (consecutive Write - Read)  
RDY Low time (consecutive Read - Read)  
RDY Low time (consecutive Write - Read)  
Hold A valid after RDBrising edge  
35 ns  
35 ns  
20 ns  
20 ns  
0 ns  
0 ns  
0 ns  
15 ns  
60 ns  
-
195 ns  
-
tpw2  
-
-
-
-
-
-
45 ns  
182 ns  
th1  
th2  
th3  
tp  
-
-
-
-
Hold CSB Low after RDBrising edge  
Hold RDB Low after RDYrising edge  
Time between (consecutive Read - Read) accesses (RDBrising edge to  
RDBfalling edge, or RDBrising edge to WRBfalling edge)  
tp  
Time between (consecutive Write - Read) accesses (RDBrising edge to  
RDBfalling edge, or RDBrising edge to WRBfalling edge)  
160 ns  
-
-
Revision 3.02/November 2005 © Semtech Corp.  
Page46  
www.semtech.com  
ACS8530 SETS  
ADVANCED COMMUNICATIONS  
Figure 16 Write Access Timing in INTEL Mode  
FINAL  
DATASHEET  
CSB  
t
t
t
h2  
su2  
pw1  
WRB  
RDB  
A
t
t
h1  
su1  
address  
t
t
h4  
su3  
data  
AD  
t
t
t
t
d5  
t
d3  
pw2  
h3  
d2  
Z
Z
RDY  
F8110D_010WriteAccIntel_01  
Table 23 Write Access Timing in INTEL Mode (for use with Figure 16)  
Symbol  
tsu1  
tsu2  
tsu3  
td2  
Parameter  
Setup A valid to CSBfalling edge  
MIN  
TYP  
MAX  
4 ns  
-
-
Setup CSBfalling edge to WRBfalling edge  
Setup AD valid before WRBrising edge  
Delay CSBfalling edge to RDY active  
Delay WRBfalling edge to RDYfalling edge  
Delay CSBrising edge to RDY high-Z  
WRB Low time  
0 ns  
-
-
6 ns  
-
-
-
-
-
-
13 ns  
td3  
-
14 ns  
td5  
-
10 ns  
tpw1  
tpw2  
th1  
25 ns  
10 ns  
12 ns  
0 ns  
185 ns  
-
RDY Low time  
-
-
-
-
-
-
173 ns  
Hold A valid after WRBrising edge  
Hold CSB Low after WRBrising edge  
Hold WRB Low after RDYrising edge  
Hold AD valid after WRBrising edge  
-
-
-
-
-
th2  
th3  
0 ns  
th4  
4 ns  
tp  
Time between consecutive accesses (WRBrising edge to WRBfalling edge  
,
160 ns  
or WRBrising edge to RDBfalling edge)  
Revision 3.02/November 2005 © Semtech Corp.  
Page47  
www.semtech.com  
ACS8530 SETS  
ADVANCED COMMUNICATIONS  
FINAL  
DATASHEET  
Multiplexed Mode  
In Multiplexed Mode, the device is configured to interface with microprocessors (e.g., Intel's 80x86 family) which share  
bus signals between address and data. Figures 17 and 18 show the timing diagrams of read and write accesses.  
Figure 17 Read Access Timing in MULTIPLEXED Mode  
t
t
pw3  
p1  
ALE  
CSB  
WRB  
RDB  
AD  
t
t
h1  
su1  
t
su2  
t
t
h2  
pw1  
t
t
t
d4  
d1  
d3  
address  
t
X
data  
X
Z
t
t
t
d5  
pw2  
h3  
d2  
Z
RDY  
F8110D_011ReadAccMultiplex_01  
Table 24 Read Access Timing in MULTIPLEXED Mode (for use with Figure 17)  
Symbol  
tsu1  
Parameter  
Setup AD address valid to ALEfalling edge  
Setup CSBfalling edge to RDBfalling edge  
MIN  
5 ns  
0 ns  
12 ns  
17 ns  
-
TYP  
MAX  
-
-
tsu2  
-
-
td1  
Delay RDBfalling edge to AD data valid (consecutive Read - Read)  
Delay RDBfalling edge to AD data valid (consecutive Write - Read)  
Delay CSBfalling edge to RDY active  
-
40 ns  
-
193 ns  
td2  
td3  
-
13 ns  
Delay RDBfalling edge to RDYfalling edge  
-
-
15 ns  
td4  
Delay RDBrising edge to AD data high-Z  
-
-
10 ns  
td5  
Delay CSBrising edge to RDY high-Z  
-
-
10 ns  
tpw1  
RDB Low time (consecutive Read - Read)  
RDB Low time (consecutive Write - Read)  
RDY Low time (consecutive Read - Read)  
RDY Low time (consecutive Write - Read)  
ALE High time  
35 ns  
35 ns  
20 ns  
20 ns  
5 ns  
9 ns  
0 ns  
0 ns  
0 ns  
20 ns  
60 ns  
-
200 ns  
-
tpw2  
-
-
-
-
-
-
-
-
40 ns  
185 ns  
tpw3  
th1  
th2  
th3  
tp1  
tp2  
-
-
-
-
-
-
Hold AD address valid after ALEfalling edge  
Hold CSB Low after RDBrising edge  
Hold RDB Low after RDYrising edge  
Time between ALEfalling edge and RDBfalling edge  
Time between (consecutive Read - Read) accesses (RDBrising edge to  
ALErising edge  
)
tp2  
Time between (consecutive Write - Read) accesses (RDBrising edge to  
160 ns  
-
-
ALErising edge  
)
Revision 3.02/November 2005 © Semtech Corp.  
Page48  
www.semtech.com  
ACS8530 SETS  
ADVANCED COMMUNICATIONS  
Figure 18 Write Access Timing in MULTIPLEXED Mode  
FINAL  
DATASHEET  
t
t
p1  
pw3  
ALE  
CSB  
WRB  
RDB  
AD  
t
t
h1  
su1  
t
t
t
h2  
su2  
pw1  
t
t
h4  
su3  
address  
t
X
data  
X
Z
t
t
t
t
d5  
d3  
pw2  
h3  
d2  
Z
RDY  
F8110D_012WriteAccMultiplex_01  
Table 25 Write Access Timing in MULTIPLEXED Mode (For use with Figure 18)  
Symbol  
tsu1  
tsu2  
tsu3  
td2  
Parameter  
Set up AD address valid to ALEfalling edge  
Set up CSBfalling edge to WRBfalling edge  
Set up AD data valid to WRBrising edge  
Delay CSBfalling edge to RDY active  
Delay WRBfalling edge to RDYfalling edge  
Delay CSBrising edge to RDY high-Z  
WRB Low time  
MIN  
5 ns  
0 ns  
5 ns  
-
TYP  
MAX  
-
-
-
-
-
-
-
13 ns  
td3  
-
-
15 ns  
td5  
-
-
9 ns  
tpw1  
tpw2  
tpw3  
th1  
30 ns  
15 ns  
5 ns  
9 ns  
0 ns  
0 ns  
7 ns  
0 ns  
1600 ns  
188 ns  
-
RDY Low time  
-
-
-
-
-
-
-
-
173 ns  
ALE High time  
-
-
-
-
-
-
-
Hold AD address valid after ALEfalling edge  
Hold CSB Low after WRBrising edge  
Hold WRB Low after RDYrising edge  
AD data hold valid after WRBrising edge  
Time between ALEfalling edge and WRBfalling edge  
Time between consecutive accesses (WRBrising edge to ALErising edge  
th2  
th3  
th4  
tp1  
tp2  
)
Revision 3.02/November 2005 © Semtech Corp.  
Page49  
www.semtech.com  
ACS8530 SETS  
ADVANCED COMMUNICATIONS  
FINAL  
DATASHEET  
Serial Mode  
In SERIAL Mode, the device is configured to interface with a serial microprocessor bus. Figure 19 and Figure 20 show  
the timing diagrams of read and write accesses for this mode. The serial interface can be SPI compatible.  
The Motorola SPI convention is such that address and data is transmitted and received MSB first. On the ACS8530,  
device address and data are transmitted and received LSB first. Address, read/write control and data on the SDI pin  
is latched into the device on the rising edge of the SCLK. During a read operation, serial data output on the SDO pin  
can be read out of the device on either the rising or falling edge of the SCLK depending on the logic level of CLKE (note  
CLKE=A(1)). For standard Motorola SPI compliance, data should be clocked out of the SDO pin on the rising edge of  
the SCLK so that it may be latched into the microprocessor on the falling edge of the SCLK.  
The serial interface clock (SCLK) is not required to run between accesses (i.e., when CSB = 1).  
Figure 19 Read Access Timing in SERIAL Mode  
A(1) = CLKE = 0; SDO data is clocked out on the rising edge of SCLK  
CSB  
t
t
t
h2  
su2  
pw2  
ALE=SCLK  
A(0) = SDI  
t
h1  
t
t
pw1  
su1  
_
R/W  
A0 A1 A2 A3 A4 A5 A6  
t
t
d1  
d2  
Output not driven, pulled low by internal resistor  
D0 D1 D2 D3 D4 D5 D6 D7  
AD(0)=SDO  
CSB  
A(1) = CLKE = 1; SDO data is clocked out on the falling edge of SCLK  
t
h2  
ALE=SCLK  
A(0)=SDI  
_
R/W  
A0 A1 A2 A3 A4 A5 A6  
t
t
d1  
d2  
Output not driven, pulled low by internal resistor  
D0 D1 D2 D3 D4 D5 D6 D7  
AD(0)=SDO  
F8530D_013ReadAccSerial_02  
Table 26 Read Access Timing in SERIAL Mode (For use with Figure 19)  
Symbol  
tsu1  
Parameter  
Setup SDI valid to SCLKrising edge  
MIN  
TYP  
MAX  
4 ns  
-
-
-
-
-
tsu2  
Setup CSBfalling edge to SCLKrising edge  
14 ns  
-
td1  
Delay SCLKrising edge (SCLKfalling edge for CLKE = 1) to SDO valid  
Delay CSBrising edge to SDO high-Z  
-
-
18 ns  
16 ns  
td2  
Revision 3.02/November 2005 © Semtech Corp.  
Page50  
www.semtech.com  
ACS8530 SETS  
ADVANCED COMMUNICATIONS  
FINAL  
DATASHEET  
Table 26 Read Access Timing in SERIAL Mode (For use with Figure 19) (cont...)  
Symbol  
tpw1  
tpw2  
th1  
Parameter  
MIN  
22 ns  
22 ns  
6 ns  
TYP  
MAX  
SCLK Low time  
SCLK High time  
-
-
-
-
-
-
-
-
Hold SDI valid after SCLKrising edge  
th2  
Hold CSB Low after SCLKrising edge, for CLKE = 0  
Hold CSB Low after SCLKfalling edge, for CLKE = 1  
5 ns  
tp  
Time between consecutive accesses (CSBrising edge to CSBfalling edge  
)
10 ns  
-
-
Figure 20 Write Access Timing in SERIAL Mode  
CSB  
t
t
t
h2  
su2  
pw2  
ALE=SCLK  
t
h1  
t
t
pw1  
su1  
_
R/W  
A0 A1 A2 A3 A4 A5 A6 D0 D1 D2 D3 D4 D5 D6 D7  
A(0)=SDI  
Output not driven, pulled low by internal resistor  
AD(0)=SDO  
F8110D_014WriteAccSerial_02  
Table 27 Write Access Timing in SERIAL Mode (For use with Figure 20)  
Symbol  
tsu1  
tsu2  
tpw1  
tpw2  
th1  
Parameter  
Setup SDI valid to SCLKrising edge  
MIN  
4 ns  
TYP  
MAX  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
Setup CSBfalling edge to SCLKrising edge  
SCLK Low time  
14 ns  
22 ns  
22 ns  
6 ns  
SCLK High time  
Hold SDI valid after SCLKrising edge  
Hold CSB Low after SCLKrising edge  
Time between consecutive accesses (CSBrising edge to CSBfalling edge  
th2  
5 ns  
tp  
)
10 ns  
Revision 3.02/November 2005 © Semtech Corp.  
Page51  
www.semtech.com  
ACS8530 SETS  
ADVANCED COMMUNICATIONS  
FINAL  
DATASHEET  
EPROM Mode  
This mode is suitable for use with an EPROM, in which configuration data is stored (one-way communication - status  
information will not be accessible). A state machine internal to the ACS8530 device will perform numerous EPROM  
read operations to read the data out of the EPROM. In EPROM Mode, the ACS8530 takes control of the bus as Master  
and reads the device set-up from an AMD AM27C64 type EPROM at lowest speed (250ns) after device set-up (system  
reset). The EPROM access state machine in the up interface sequences the accesses. Figure 21 shows the access  
timing of the device in EPROM mode.  
Further information can be found in the AMD AM27C64 data sheet.  
Figure 21 Access Timing in EPROM mode  
CSB (=OEB)  
address  
A
t
acc  
Z
Z
AD  
data  
F8110D_015ReadAccEEPROM_01  
Table 28 Access Timing in EPROM mode (For use with Figure 21)  
Symbol  
Parameter  
MIN  
TYP  
MAX  
920 ns  
tacc  
Delay CSBfalling edge or A change to AD valid  
-
-
Power-On Reset  
The Power-On Reset (PORB) pin resets the device if forced Low. The reset is asynchronous, the minimum Low pulse  
width is 5 ns. Reset is needed to initialize all of the register values to their defaults. Reset must be asserted at power  
on, and may be re-asserted at any time to restore defaults. This is implemented simply using an external capacitor to  
GND along with the internal pull-up resistor. The ACS8530 is held in a reset state for 250 ms after the PORB pin has  
been pulled High. In normal operation PORB should be held High.  
Revision 3.02/November 2005 © Semtech Corp.  
Page52  
www.semtech.com  
ACS8530 SETS  
ADVANCED COMMUNICATIONS  
Register Map  
Each Register, or register group, is described in the  
following Register Map (Table 29) and subsequent  
Register Description Tables.  
FINAL  
DATASHEET  
cleared by writing a 1 into each bit of the field (writing a 0  
value into a bit will not affect the value of the bit).  
Configuration Registers  
Each configuration register reverts to a default value on  
power-up or following a reset. Most default values are  
fixed, but some will be pin-settable. All configuration  
registers can be read out over the microprocessor port.  
Register Organization  
The ACS8530 SETS uses a total of 118 8-bit register  
locations, identified by a Register Name and  
Status Registers  
corresponding hexadecimal Register Address. They are  
presented here in ascending order of Reg. address. and  
each Register is organized with the most-significant bit  
positioned in the left-most bit, and bit significance  
decreasing towards the right-most bit. Some registers  
carry several individual data fields of various sizes, from  
single-bit values (e.g. flags) upwards. Several data fields  
are spread across multiple registers, as shown in the  
Register Map, (Table 29 on page 54). Shaded areas in the  
map are “don’t care” and writing either 0 or 1 will not  
affect any function of the device. Bits labelled “Set to  
zero” or “Set to one” must be set as stated during  
initialization of the device, either following power- up, or  
after a power-on reset (POR). Failure to correctly set these  
bits may result in the device operating in an unexpected  
way.  
The Status Registers contain readable registers. They may  
all be read from outside the chip but are not writeable  
from outside the chip (except for a clearing operation). All  
status registers are read via shadow registers to avoid  
data hits due to dynamic operation. Each individual status  
register has a unique location.  
Interrupt Enable and Clear  
Interrupt requests are flagged on pin INTREQ; the active  
state (High or Low) is programmable and the pin can  
either be driven, or set to high impedance when non-  
active (Reg 7D refers).  
Bits in the interrupt status register are set (High) by:  
CAUTION! Do not write to any undefined register  
addresses as this may cause the device to operate in a  
test mode. If an undefined register has been  
inadvertently addressed, the device should be reset to  
ensure the undefined registers are at default values.  
1. Any reference source becoming valid or going invalid.  
2. Change in the operating state (e.g. Locked, Holdover)  
3. A brief loss of the currently selected reference source.  
4. An AMI input error.  
All interrupt sources, see Reg. 05, Reg. 06 and Reg. 08,  
are maskable via the mask register, each one being  
enabled by writing a 1 to the appropriate bit. Any  
unmasked bit set in the interrupt status register will cause  
the interrupt request pin to be asserted. All interrupts are  
cleared by writing a 1 to the bit(s) to be cleared in the  
status register. When all pending unmasked interrupts  
are cleared the interrupt pin will go inactive.  
Multi-word Registers  
For Multi-word Registers (e.g. Reg. 0C and 0D), all the  
words have to be written to their separate addresses, and  
without any other access taking place, before their  
combined value can take effect. If the sequence is  
interrupted, the sequence of writes will be ignored.  
Reading a multi-word address freezes the other address  
words of a multi-word address so that the bytes all  
correspond to the same complete word.  
Defaults  
Each Register is given a defined default value at reset and  
these are listed in the Map and Description Tables.  
However, some read-only status registers may not  
necessarily show the same default values after reset as  
those given in the tables. This is because they reflect the  
status of the device, which may have changed in the time  
it takes to carry out the read, or through reasons of  
Register Access  
Most registers are of one of two types, configuration  
registers or status registers, the exceptions being the  
chip_id and chip_revision registers. Configuration  
registers may be written to or read from at any time (the  
complete 8-bit register must be written, even if only one  
bit is being modified). All status registers may be read at configuration. In the same way, the default values given  
any time and, in some status registers (such as the  
sts_interrupts register), any individual data field may be  
for shaded areas could also take different values to those  
stated.  
Revision 3.02/November 2005 © Semtech Corp.  
Page53  
www.semtech.com  
ACS8530 SETS  
ADVANCED COMMUNICATIONS  
Table 29 Register Map  
FINAL  
DATASHEET  
Register Name  
RO = Read Only  
R/W = Read/Write  
s
Data Bit  
s
)
)
x
x
e
e
e
f
7 (MSB)  
6
5
4
3
2
1
0 (LSB)  
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             h
(h  
D
A
chip_id (RO)  
00 52  
01 21  
02 00  
Device part number [7:0] 8 least significant bits of the chip ID  
Device part number [15:8] 8 most significant bits of the chip ID  
Chip revision number [7:0]  
chip_revision (RO)  
test_register1 (R/W)  
03 14 phase_alarm  
disable_180  
resync_  
analog  
Set to zero  
8K edge  
polarity  
Set to zero  
Set to zero  
sts_interrupts (R/W)  
05 FF I8 valid  
change  
I7 valid  
change  
I6 valid  
change  
I5 valid  
change  
I4 valid  
change  
I3 valid  
change  
I2 valid  
change  
I1 valid  
change  
06 3F operating_  
mode  
main_ref_  
failed  
I14 valid  
change  
I13 valid  
change  
I12 valid  
change  
I11 valid  
change  
I10 valid  
change  
I9 valid  
change  
sts_current_DPLL_frequency,see 07 00  
OC/OD  
Bits [18:16] of current DPLL frequency  
AMI2_LOS AMI1_Viol AMI1_LOS  
T0_DPLL_operating_mode  
sts_interrupts (R/W)  
sts_operating (RO)  
sts_priority_table (RO)  
08 50 Sync_ip_alarm T4_status  
phasemon_  
alarm  
T4_inputs_  
failed  
AMI2_Viol  
09 41 SYNC2K_  
alarm  
T4_DPLL_lock TO_DPLL_freq T4_DPLL_freq  
_soft_alarm  
Highest priority validated source  
3rd highest priority validated source  
_soft_alarm  
0A 00  
0B 00  
Currently selected source  
2nd highest priority validated source  
sts_current_DPLL_frequency[7:0] 0C 00  
Bits [7:0] of current DPLL frequency  
Bits [15:8] of current DPLL frequency  
(RO)  
[15:8] 0D 00  
[18:16] 07 00  
Bits [18:16] of current DPLL offset  
sts_sources_valid (RO)  
0E 00 I8  
0F 00  
I7  
I6  
I5  
I4  
I3  
I2  
I1  
I9  
I14  
I13  
I12  
I11  
I10  
sts_reference_sources (RO)  
Out-of-band  
alarm (soft)  
Out-of band  
alarm (hard)  
No Activity  
alarm  
Phase lock  
alarm  
Out-of-band  
alarm (soft)  
Out-of band  
alarm (hard)  
No activity  
alarm  
Phase lock  
alarm  
Status of Input pairs (1 & 2) 10 66  
(3 & 4) 11 66  
Status of I2 Input  
Status of I1 Input  
Status of I3 Input  
Status of I4 Input  
Status of I6 Input  
(5 & 6) 12 66  
Status of I5 Input  
(7 & 8) 13 66  
Status of I8 Input  
Status of I7 Input  
(9 & 10) 14 66  
Status of I10 Input  
Status of I9 Input  
(11 & 12) 15 66  
Status of I12 Input  
Status of I11 Input  
(13 & 14) 16 66  
Status of I14 Input  
Status of I13 Input  
cnfg_ref_selection_priority (1 & 2) 18 32  
programmed_priority I2  
programmed_priority I4  
programmed_priority I6  
programmed_priority I8  
programmed_priority I10  
programmed_priority I12  
programmed_priority I14  
programmed_priority I1  
programmed_priority I3  
programmed_priority I5  
programmed_priority I7  
programmed_priority I9  
programmed_priority I11  
programmed_priority I13  
Set to zero  
(R/W)  
(3 & 4) 19 54  
(5 & 6) 1A 76  
(7 & 8) 1B 98  
(9 & 10) 1C BA  
(11 & 12) 1D DC  
(13 & 14) 1E FE  
cnfg_ref_source_frequency  
(R/W)  
_1 20 00  
_2 21 00  
Set to zero  
Set to zero  
lock8k_3  
bucket_id_1  
bucket_id_2  
bucket_id_3  
bucket_id_4  
bucket_id_5  
bucket_id_6  
bucket_id_7  
bucket_id_8  
bucket_id_9  
bucket_id_10  
bucket_id_11  
bucket_id_12  
bucket_id_13  
bucket_id_14  
Set to zero  
3
4
5
6
7
8
9
22 00 divn_3  
reference_source_frequency_3  
reference_source_frequency_4  
reference_source_frequency_5  
reference_source_frequency_6  
reference_source_frequency_7  
reference_source_frequency_8  
reference_source_frequency_9  
reference_source_frequency_10  
reference_source_frequency_11  
reference_source_frequency_12  
reference_source_frequency_13  
reference_source_frequency_14  
23 00 divn_4  
24 03 divn_5  
25 03 divn_6  
26 03 divn_7  
27 03 divn_8  
28 03 divn_9  
lock8k_4  
lock8k_5  
lock8k_6  
lock8k_7  
lock8k_8  
lock8k_9  
lock8k_10  
lock8k_11  
lock8k_12  
lock8k_13  
lock8k_14  
10 29 03 divn_10  
11 2A 03 divn_11  
12 2B 01 divn_12  
13 2C 01 divn_13  
14 2D 01 divn_14  
30 FF  
cnfg_sts_remote_sources_valid  
(R/W)  
Remote status, channels <8:1>  
Remote status, channels <14:9>  
TO_DPLL_operating_mode  
forced_reference_source  
31 3F  
cnfg_operating_mode (R/W)  
32 00  
force_select_reference_source  
(R/W)  
33 0F  
Revision 3.02/November 2005 © Semtech Corp.  
Page54  
www.semtech.com  
ACS8530 SETS  
ADVANCED COMMUNICATIONS  
Table 29 Register Map (cont...)  
FINAL  
DATASHEET  
Register Name  
RO = Read Only  
R/W = Read/Write  
s
Data Bit  
s
)
)
x
x
e
e
e
f
7 (MSB)  
6
5
4
3
2
1
0 (LSB)  
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             h
(h  
D
A
cnfg_input_mode  
(Bit 1 RO, otherwise R/W)  
34 C2 auto_extsync_ phalarm_  
XO_ edge  
man_holdover extsync_en  
IP_sonsdhb  
master_slaveb reversion_  
mode  
en  
timeout  
cnfg_T4_path (R/W)  
35 40 Lock_T4_to_  
T0  
T4_dig_  
feedback  
T4_op_  
from_T0  
T4_forced_reference_source  
cnfg_differential_inputs (R/W)  
cnfg_uPsel_pins (RO)  
36 02  
37 02  
38 1F  
I6_PECL  
I5_LVDS  
Microprocessor type  
cnfg_dig_outputs_sonsdh (R/W)  
cnfg_digtial_frequencies (R/W)  
cnfg_differential_outputs (R/W)  
cnfg_auto_bw_sel (R/W)  
dig2_sonsdh  
dig1_sonsdh  
digital1_frequency  
39 08  
digital2_frequency  
3A C6  
T07_PECL_LVDS  
T06_LVDS_PECL  
3B FB auto_BW_sel  
T0_lim_int  
Nominal frequency [7:0]  
Nominal frequency [15:8]  
Holdover frequency [7:0]  
Holdover frequency [15:8]  
Mini-holdover_mode  
cnfg_nominal_frequency  
(R/W)  
[7:0] 3C 99  
[15:8] 3D 99  
cnfg_holdover_frequency  
(R/W)  
[7:0] 3E 00  
[15:8] 3F 00  
cnfg_holdover_modes (R/W)  
40 88 auto_  
averaging  
fast_averaging read_average  
Holdover frequency [18:16]  
(with Registers 3E and 3F above)  
cnfg_DPLL_freq_limit (R/W) [7:0] 41 76  
[9:8] 42 00  
DPLL frequency offset limit [7:0]  
DPLL frequency offset limit[9:8]  
cnfg_interrupt_mask (R/W) [7:0] 43 00 I8 interrupt not I7 interrupt not I6 interrupt not I5 interrupt not I4 interrupt not I3 interrupt not I2 interrupt not I1 interrupt not  
masked  
masked  
masked  
masked  
masked  
masked  
masked  
masked  
[15:8] 44 00 Operating_  
Main_ref_  
I14 interrupt  
I13 interrupt  
not masked  
I12 interrupt  
not masked  
I11 interrupt  
not masked  
I10 interrupt  
not masked  
I9 interrupt not  
masked  
mode interrupt failed interrupt not masked  
not masked  
not masked  
[23:16] 45 00 Sync_ip_  
T4_status  
phasemon_  
alarminterrupt failed interrupt interrupt not  
not masked  
T4_inputs_  
AMI2_Viol  
AMI2_ LOS  
interrupt not  
masked  
AMI1_ Viol  
interrupt not  
masked  
AMI1_LOS  
interrupt not  
masked  
alarminterrupt interrupt not  
not masked  
masked  
not masked  
masked  
cnfg_freq_divn (R/W)  
[7:0] 46 FF  
divn_value [7:0]  
[13:8] 47 3F  
divn_value [13:8]  
PBO_freeze PBO_en  
cnfg_monitors (R/W)  
48 05 freq_mon_  
clock  
los_flag_  
on_ TDO  
ultra_fast_  
switch  
ext_switch  
freq_monitor_ freq_monitor_  
soft_enable hard_enable  
cnfg_freq_mon_threshold (R/W)  
49 23  
4A 23  
soft_frequency_alarm_threshold [3:0]  
hard_frequency_alarm_threshold [3:0]  
cnfg_current_freq_mon_  
threshold (R/W)  
current soft frequency alarm threshold [3:0]  
current_hard_frequency_alarm_threshold [3:0]  
cnfg_registers_source_select  
(R/W)  
4B 00  
4C 00  
T4_T0_select  
frequency_measurement_channel_select [3:0]  
sts_freq_measurement (R/W)  
cnfg_DPLL_soft_limit (R/W)  
freq_measurement_value [7:0]  
4D 8E Freq limit  
Phase loss  
DPLL Frequency Soft Alarm Limit [6:0] Resolution = 0.628 ppm  
enable  
cnfg_upper_threshold_0 (R/W)  
cnfg_lower_threshold_0 (R/W)  
cnfg_bucket_size_0 (R/W)  
cnfg_decay_rate_0 (R/W)  
50 06  
51 04  
52 08  
53 01  
54 06  
55 04  
56 08  
57 01  
58 06  
59 04  
5A 08  
5B 01  
5C 06  
5D 04  
5E 08  
5F 01  
Configuration 0: Activity alarm set threshold [7:0]  
Configuration 0: Activity alarm reset threshold [7:0]  
Configuration 0: Activity alarm bucket size [7:0]  
Cfg 0:decay_rate [1:0]  
Cfg 1:decay_rate [1:0]  
Cfg 2:decay_rate [1:0]  
Cfg 3:decay_rate [1:0]  
cnfg_upper_threshold_1 (R/W)  
cnfg_lower_threshold_1 (R/W)  
cnfg_bucket_size_1 (R/W)  
cnfg_decay_rate_1 (R/W)  
Configuration 1: Activity alarm set threshold [7:0]  
Configuration 1: Activity alarm reset threshold [7:0]  
Configuration 1: Activity alarm bucket size [7:0]  
cnfg_upper_threshold_2 (R/W)  
cnfg_lower_threshold_2 (R/W)  
cnfg_bucket_size_2 (R/W)  
cnfg_decay_rate_2 (R/W)  
Configuration 2: Activity alarm set threshold [7:0]  
Configuration 2: Activity alarm reset threshold [7:0]  
Configuration 2: Activity alarm bucket size [7:0]  
cnfg_upper_threshold_3 (R/W)  
cnfg_lower_threshold_3 (R/W)  
cnfg_bucket_size_3 (R/W)  
cnfg_decay_rate_3 (R/W)  
Configuration 3: Activity alarm set threshold [7:0]  
Configuration 3: Activity alarm reset threshold [7:0]  
Configuration 3: Activity alarm bucket size [7:0]  
Revision 3.02/November 2005 © Semtech Corp.  
Page55  
www.semtech.com  
ACS8530 SETS  
ADVANCED COMMUNICATIONS  
Table 29 Register Map (cont...)  
FINAL  
DATASHEET  
Register Name  
RO = Read Only  
R/W = Read/Write  
s
Data Bit  
s
)
)
x
x
e
e
e
f
7 (MSB)  
6
5
4
3
2
1
0 (LSB)  
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             h
(h  
D
A
cnfg_output_frequency (R/W)  
(TO1 & TO2) 60 85  
(TO3 & TO4) 61 86  
(TO5 & TO6) 62 8A  
output_freq_2 (TO2)  
output_freq_4 (TO4)  
output_freq_1 (TO1)  
output_freq_3 (TO3)  
output_freq_5 (TO5)  
output_freq_7 (TO7)  
output_freq_6 (TO6)  
(TO7 to TO11) 63 F6 MFrSync  
enable  
FrSync enable TO9 enable  
TO8 enable  
cnfg_T4_DPLL_frequency (R/W)  
64 01  
Auto Disable  
T4 output  
AMI Duty cycle T4 SONET/  
SDH selection  
T4_DPLL_frequency  
T0_DPLL_frequency  
cnfg_T0_DPLL_frequency (R/W)  
65 01 T4 for  
T4 APLL for T0  
T0 Freq to T4 APLL  
measuring T0 E1/DS1  
phase  
cnfg_T4_DPLL_bw (R/W)  
66 00  
T4_DPLL_bandwidth [1:0]  
T0_DPLL_locked_bandwidth [4:0]  
T0_DPLL_acquisition bandwidth [4:0]  
T4_damping [2:0]  
cnfg_T0_DPLL_locked_bw (R/W) 67 0B  
cnfg_T0_DPLL_acq_bw (R/W)  
cnfg_T4_DPLL_damping (R/W)  
cnfg_T0_DPLL_damping (R/W)  
cnfg_T4_DPLL_PD2_gain (R/W)  
69 0F  
6A 13  
6B 13  
T4_PD2_gain_alog_8K [6:4]  
T0_PD2_gain_alog_8K [6:4]  
T4_PD2_gain_alog [6:4]  
T0_damping [2:0]  
6C C2 T4_PD2_gain_  
enable  
T4_PD2_gain_digital [2:0]  
cnfg_T0_DPLL_PD2_gain (R/W)  
6D C2 T0_PD2_gain_  
enable  
T0_PD2_gain_alog [6:4]  
T0_PD2_gain_digital [2:0]  
cnfg_phase_offset (R/W)  
[7:0] 70 00  
[15:8] 71 00  
phase_offset_value[7:0]  
phase_offset_value[15:8]  
PBO_phase_ offset [5:0]  
cnfg_PBO_phase_offset (R/W)  
72 00  
cnfg_phase_loss_fine_limit (R/W) 73 A2 Fine limit  
No activity for Test Bit  
phase_loss_fine_limit [2:0]  
Phase loss  
enable (1)  
phase loss  
Set to 1  
cnfg_phase_loss_coarse_limit  
(R/W)  
74 85 Coarse limit  
Phase loss  
Wide range  
enable  
Enable Multi  
Phase resp.  
Phase loss coarse limit in UI p-p [3:0]  
Phase monitor limit [3:0]  
enable (2)  
cnfg_phasemon (R/W)  
76 06 Input noise  
window enable  
Phasemon  
Enable  
Phasemon  
Auto PBO  
sts_current_phase (RO)  
[7:0] 77 00  
[15:8] 78 00  
current_phase[7:0]  
current_phase[15:8]  
Timeout value in 2s intervals [5:0]  
cnfg_phase_alarm_timeout  
(R/W)  
79 32  
cnfg_sync_pulses (R/W)  
cnfg_sync_phase (R/W)  
cnfg_sync_monitor (R/W)  
cnfg_interrupt (R/W)  
7A 00 2 k/8 k out  
from T4  
8 k invert  
8 k pulse  
enable  
2 k invert  
2 k pulse  
enable  
7B 00 indep_FrSync/ Sync_OC-N_  
Sync_phase  
MFrSync  
rates  
7C 2B ph_offset_  
ramp  
Sync_monitor_ limit  
Sync_reference_source  
7D 02  
GPO interrupt Interrupt  
enable  
Interrupt  
polarity  
enable  
tristate  
enable  
cnfg_protection(R/W)  
cnfg_uPsel (R/W)  
7E 85  
protection_value  
7F 02  
*
Microprocessor type (*Default value depends on  
value on UPSEL[2:0] pins)  
Revision 3.02/November 2005 © Semtech Corp.  
Page56  
www.semtech.com  
ACS8530 SETS  
ADVANCED COMMUNICATIONS  
FINAL  
DATASHEET  
Register Descriptions  
Address (hex): 00  
Register Name chip_id  
Description  
Bit 4  
(RO) 8 least significant bits of the Default Value  
chip ID.  
0101 0010  
Bit 7  
Bit 6  
Bit 5  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
chip_id[7:0]  
Bit No.  
Description  
Bit Value  
Value Description  
[7:0]  
chip_id  
52 (hex)  
Least significant byte of the device ID  
Address (hex): 01  
Register Name chip_id  
Description  
Bit 4  
(RO) 8 most significant bits of the Default Value  
chip ID.  
0010 0001  
Bit 7  
Bit 6  
Bit 5  
Bit 3  
chip_id[15:8]  
Bit 2  
Bit 1  
Bit 0  
Bit No.  
Description  
Bit Value  
Value Description  
[7:0]  
chip_id  
21 (hex)  
Most significant byte of the device ID  
Address (hex): 02  
Register Name chip_revision  
Description  
Bit 4  
(RO) Silicon revision of the device. Default Value  
0000 0000  
Bit 7  
Bit 6  
Bit 5  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
chip_revision[7:0]  
Bit No.  
Description  
Bit Value  
Value Description  
[7:0]  
chip_revision  
00 (hex)  
Silicon revision of the device  
Revision 3.02/November 2005 © Semtech Corp.  
Page57  
www.semtech.com  
ACS8530 SETS  
ADVANCED COMMUNICATIONS  
FINAL  
DATASHEET  
Address (hex): 03  
Register Name test_register1  
Description  
Bit 4  
(R/W) Register containing various Default Value  
test controls (not normally used).  
0001 0100  
Bit 7  
Bit 6  
Bit 5  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
phase_alarm  
disable_180  
resync_analog Set to zero  
8k Edge Polarity Set to zero  
Set to zero  
Bit No.  
Description  
Bit Value  
Value Description  
7
phase_alarm (phase alarm (R/O))  
Instantaneous result from T0 DPLL  
0
1
T0 DPLL reporting phase locked.  
T0 DPLL reporting phase lost.  
6
disable_180  
0
T0 DPLL automatically determines frequency lock  
enable.  
T0 DPLL forced to always frequency and phase lock.  
Normally the DPLL will try to lock to the nearest  
edge (±180°) for the first 2 seconds when locking to  
a new reference. If the DPLL does not determine  
that it is phase locked after this time, then the  
capture range reverts to ±360°, which corresponds  
to frequency and phase locking. Forcing the DPLL  
into frequency locking mode may reduce the time to  
frequency lock to a new reference by up to 2  
1
seconds. However, this may cause an unnecessary  
phase shift of up to 360° when the new and old  
references are very close in frequency and phase.  
5
4
Not used.  
-
-
resync_analog (analog dividers re-synchronization)  
The analog output dividers include a  
0
Analog divider only synchronized during first 2  
seconds after power-up.  
synchronization mechanism to ensure phase lock at  
low frequencies between the input and the output.  
1
Analog dividers always synchronized.This keeps the  
clocks divided down from the APLL output, in sync  
with equivalent frequency digital clocks in the DPLL.  
Hence ensuring that 6.48 MHz output clocks, and  
above, are in sync with the DPLL even though only a  
77.76 MHz clock drives the APLL.  
3
2
Test Control  
Leave unchanged or set to zero  
0
-
8k Edge Polarity  
0
1
Lock to falling clock edge.  
Lock to rising clock edge.  
When Lock8k mode is selected for the current input  
reference source, this bit allows the system to lock  
on either the rising or the falling edge of the input  
clock.  
1
0
Test Control  
Leave unchanged or set to zero  
0
0
-
-
Test Control  
Leave unchanged or set to zero  
Revision 3.02/November 2005 © Semtech Corp.  
Page58  
www.semtech.com  
ACS8530 SETS  
ADVANCED COMMUNICATIONS  
FINAL  
DATASHEET  
Address (hex): 05  
Register Name sts_interrupts  
Description  
(R/W) Bits [7:0] of the interrupt  
Default Value  
1111 1111  
status register.  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
I8  
I7  
I6  
I5  
I4  
I3  
I2  
I1  
Bit No.  
Description  
Bit Value  
Value Description  
7
I8  
0
1
Input I8 has not changed status (valid/invalid).  
Input I8 has changed status (valid/invalid).  
Writing 1 resets the input to 0.  
Interrupt indicating that input I8 has become valid  
(if it was invalid), or invalid (if it was valid). Latched  
until reset by software writing a 1 to this bit.  
6
5
4
3
2
1
0
I7  
0
1
Input I7 has not changed status (valid/invalid).  
Input I7 has changed status (valid/invalid).  
Writing 1 resets the input to 0.  
Interrupt indicating that input I7 has become valid  
(if it was invalid), or invalid (if it was valid). Latched  
until reset by software writing a 1 to this bit.  
I6  
0
1
Input I6 has not changed status (valid/invalid).  
Input I6 has changed status (valid/invalid).  
Writing 1 resets the input to 0.  
Interrupt indicating that input I6 has become valid  
(if it was invalid), or invalid (if it was valid). Latched  
until reset by software writing a 1 to this bit.  
I5  
0
1
Input I5 has not changed status (valid/invalid).  
Input I5 has changed status (valid/invalid).  
Writing 1 resets the input to 0.  
Interrupt indicating that input I5 has become valid  
(if it was invalid), or invalid (if it was valid). Latched  
until reset by software writing a 1 to this bit.  
I4  
0
1
Input I4 has not changed status (valid/invalid).  
Input I4 has changed status (valid/invalid).  
Writing 1 resets the input to 0.  
Interrupt indicating that input I4 has become valid  
(if it was invalid), or invalid (if it was valid). Latched  
until reset by software writing a 1 to this bit.  
I3  
0
1
Input I3 has not changed status (valid/invalid).  
Input I3 has changed status (valid/invalid).  
Writing 1 resets the input to 0.  
Interrupt indicating that input I3 has become valid  
(if it was invalid), or invalid (if it was valid). Latched  
until reset by software writing a 1 to this bit.  
I2  
0
1
Input I2 has not changed status (valid/invalid).  
Input I2 has changed status (valid/invalid).  
Writing 1 resets the input to 0.  
Interrupt indicating that input I2 has become valid  
(if it was invalid), or invalid (if it was valid). Latched  
until reset by software writing a 1 to this bit.  
I1  
0
1
Input I1 has not changed status (valid/invalid).  
Input I1 has changed status (valid/invalid).  
Writing 1 resets the input to 0.  
Interrupt indicating that input I1 has become valid  
(if it was invalid), or invalid (if it was valid). Latched  
until reset by software writing a 1 to this bit.  
Revision 3.02/November 2005 © Semtech Corp.  
Page59  
www.semtech.com  
ACS8530 SETS  
ADVANCED COMMUNICATIONS  
FINAL  
DATASHEET  
Address (hex): 06  
Register Name sts_interrupts  
Description  
(R/W) Bits [15:8] of the interrupt Default Value  
status register.  
0011 1111  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
operating_  
mode  
main_ref_failed I14  
I13  
I12  
I11  
I10  
I9  
Bit No.  
Description  
Bit Value  
Value Description  
7
operating_mode  
0
1
Operating mode has not changed.  
Operating mode has changed.  
Writing 1 resets the input to 0.  
Interrupt indicating that the operating mode has  
changed. Latched until reset by software writing a 1  
to this bit.  
6
main_ref_failed  
0
1
Input to the T0 DPLL is valid.  
Input to the T0 DPLL has failed.  
Writing 1 resets the input to 0.  
Interrupt indicating that input to the T0 DPLL has  
failed. This interrupt will be raised after 2 missing  
input cycles. This is much quicker than waiting for  
the input to become invalid. This input is not  
generated in Free-run or Holdover modes. Latched  
until reset by software writing a 1 to this bit.  
5
4
3
2
1
0
I14  
0
1
Input I14 has not changed status (valid/invalid).  
Input I14 has changed status (valid/invalid).  
Writing 1 resets the input to 0.  
Interrupt indicating that input I14 has become valid  
(if it was invalid), or invalid (if it was valid). Latched  
until reset by software writing a 1 to this bit.  
I13  
0
1
Input I13 has not changed status (valid/invalid).  
Input I13 has changed status (valid/invalid).  
Writing 1 resets the input to 0.  
Interrupt indicating that input I13 has become valid  
(if it was invalid), or invalid (if it was valid). Latched  
until reset by software writing a 1 to this bit.  
I12  
0
1
Input I12 has not changed status (valid/invalid).  
Input I12 has changed status (valid/invalid).  
Writing 1 resets the input to 0.  
Interrupt indicating that input I12 has become valid  
(if it was invalid), or invalid (if it was valid). Latched  
until reset by software writing a 1 to this bit.  
I11  
0
1
Input I11 has not changed status (valid/invalid).  
Input I11 has changed status (valid/invalid).  
Writing 1 resets the input to 0.  
Interrupt indicating that input I11 has become valid  
(if it was invalid), or invalid (if it was valid). Latched  
until reset by software writing a 1 to this bit.  
I10  
0
1
Input I10 has not changed status (valid/invalid).  
Input I10 has changed status (valid/invalid).  
Writing 1 resets the input to 0.  
Interrupt indicating that input I10 has become valid  
(if it was invalid), or invalid (if it was valid). Latched  
until reset by software writing a 1 to this bit.  
I9  
0
1
Input I9 has not changed status (valid/invalid).  
Input I9 has changed status (valid/invalid).  
Writing 1 resets the input to 0.  
Interrupt indicating that input I9 has become valid  
(if it was invalid), or invalid (if it was valid). Latched  
until reset by software writing a 1 to this bit.  
Revision 3.02/November 2005 © Semtech Corp.  
Page60  
www.semtech.com  
ACS8530 SETS  
ADVANCED COMMUNICATIONS  
FINAL  
DATASHEET  
Address (hex): 07  
Register Name sts_current_DPLL_frequency  
Description  
Bit 4  
(RO) Bits [18:16] of the current  
DPLL frequency.  
Default Value  
Bit 1  
0000 0000  
[18:16]  
Bit 7  
Bit 6  
Bit 5  
Bit 3  
Bit 2  
Bit 0  
sts_current_DPLL_frequency[18:16]  
Value Description  
Bit No.  
Description  
Bit Value  
[7:3]  
[2:0]  
Not used.  
-
-
-
sts_current_DPLL_frequency[18:16]  
When Bit 4 (T4_T0_select) of Reg. 4B  
(cnfg_registers_source_select) = 0 the frequency  
for the T0 path is reported.  
See register description of  
sts_current_DPLL_frequency at Reg. 0D.  
When this Bit 4 = 1 the frequency for the T4 path is  
reported.  
Address (hex): 08  
Register Name sts_interrupts  
Description  
Bit 4  
(R/W) Bits [23:16] of the interrupt Default Value  
status register.  
0101 0000  
Bit 7  
Bit 6  
Bit 5  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Sync_ip_alarm T4_status  
phasemon_  
alarm  
T4_inputs_  
failed  
AMI2_Viol  
AMI2_LOS  
AMI1_Viol  
AMI1_LOS  
Bit No.  
Description  
Bit Value  
Value Description  
7
Sync_ip_alarm  
0
1
Input Frame Sync alarm has not occurred.  
Input Frame Sync alarm has occurred.  
Writing 1 resets the input to 0.  
Interrupt indicating that the Frame Sync input  
monitor has hit its alarm limit. Latched until reset by  
software writing a 1 to this bit.  
6
5
4
3
T4_status  
0
1
Input to the T4 DPLL has not changed.  
Input to the T4 DPLL has lost/gained lock.  
Writing 1 resets the input to 0.  
Interrupt indicating that the T4 DPLL has lost lock (if  
it was locked) or gained lock (if it was not locked).  
Latched until reset by software writing a 1 to this bit.  
phasemon_alarm  
0
1
Alarm condition has not occurred  
Alarm condition has occurred.  
Writing 1 resets the input to 0.  
Interrupt indicating that the phase monitor alarm  
threshold has been exceeded. See Reg. 76.Latched  
until reset by software writing a 1 to this bit.  
T4_inputs_failed  
0
1
T4 DPLL has valid inputs.  
T4 DPLL has no valid inputs.  
Writing 1 resets the input to 0.  
Interrupt indicating that no valid inputs are available  
to the T4 DPLL. Latched until reset by software  
writing a 1 to this bit.  
AMI2_Viol  
0
1
Input I2 has had no violation error.  
Input I2 has had a violation error.  
Writing 1 resets the input to 0.  
Interrupt indicating that an AMI Violation error has  
occurred on input I2. Latched until reset by software  
writing a 1 to this bit.  
Revision 3.02/November 2005 © Semtech Corp.  
Page61  
www.semtech.com  
ACS8530 SETS  
ADVANCED COMMUNICATIONS  
FINAL  
DATASHEET  
Address (hex): 08 (cont...)  
Register Name sts_interrupts  
Description  
Bit 4  
(R/W) Bits [23:16] of the interrupt Default Value  
status register.  
0101 0000  
Bit 7  
Bit 6  
Bit 5  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Sync_ip_alarm T4_status  
phasemon_  
alarm  
T4_inputs_  
failed  
AMI2_Viol  
AMI2_LOS  
AMI1_Viol  
AMI1_LOS  
Bit No.  
Description  
Bit Value  
Value Description  
2
AMI2_LOS  
0
1
Input I2 has had no LOS error.  
Input I2 has had a LOS error.  
Writing 1 resets the input to 0.  
Interrupt indicating that an AMI LOS error has  
occurred on input I2. Latched until reset by software  
writing a 1 to this bit.  
1
0
AMI1_Viol  
0
1
Input I1 has had no violation error.  
Input I1 has had a violation error.  
Writing 1 resets the input to 0.  
Interrupt indicating that an AMI Violation error has  
occurred on input I1. Latched until reset by software  
writing a 1 to this bit.  
AMI1_LOS  
0
1
Input I1 has had no LOS error.  
Input I1 has had a LOS error.  
Writing 1 resets the input to 0.  
Interrupt indicating that an AMI LOS error has  
occurred on input I1. Latched until reset by software  
writing a 1 to this bit.  
Address (hex): 09  
Register Name sts_operating  
Description  
Bit 4  
(RO) Current operating state of  
the device’s internal state  
machine.  
Default Value  
Bit 1  
0100 0001  
Bit 7  
Bit 6  
Bit 5  
Bit 3  
Bit 2  
Bit 0  
SYNC2K_alarm T4_DPLL_Lock T0_DPLL_freq_ T4_DPLL_freq_  
soft_alarm soft_alarm  
T0_DPLL_operating_mode  
Bit No.  
Description  
Bit Value  
Value Description  
7
SYNC2K_alarm  
Reports current status of the external Sync. Monitor  
alarm.  
0
1
External Sync. monitor not in alarm condition.  
External Sync. monitor in alarm condition.  
Revision 3.02/November 2005 © Semtech Corp.  
Page62  
www.semtech.com  
ACS8530 SETS  
ADVANCED COMMUNICATIONS  
FINAL  
DATASHEET  
Address (hex): 09 (cont...)  
Register Name sts_operating  
Description  
Bit 4  
(RO) Current operating state of  
the device’s internal state  
machine.  
Default Value  
0100 0001  
Bit 7  
Bit 6  
Bit 5  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
SYNC2K_alarm T4_DPLL_Lock T0_DPLL_freq_ T4_DPLL_freq_  
soft_alarm soft_alarm  
T0_DPLL_operating_mode  
Bit No.  
Description  
Bit Value  
Value Description  
6
T4_DPLL_Lock  
0
1
T4 DPLL not phase locked to reference source.  
T4 DPLL phase locked to reference source.  
Reports current phase lock status of the T4 DPLL.  
The T4 DPLL does not have the same state machine  
as the T0 DPLL, as it does not support all the  
features of the TO DPLL. It can only report its state  
as locked or unlocked.  
The bit indicates that the T4 DPLL is locked by  
monitoring the T4 DPLL phase loss indicators, which  
potentially come from four sources. The four phase  
loss indicators are enabled by the same registers  
that enable them for the T0 DPLL, as follows: the  
fine phase loss detector enabled by Reg. 73 Bit 7,  
the coarse phase loss detector enabled by Reg. 74  
Bit 7, the phase loss indication from no activity on  
the input enabled by Reg. 73 Bit 6 and phase loss  
from the DPLL being at its minimum or maximum  
frequency limits enabled by Reg. 4D Bit 7. For the  
T4 DPLL lock indicator (at Reg. 09 Bit 6) the bit will  
latch an indication of phase lost from the coarse  
phase lock detector such that when an indication of  
phase lost (or not locked) is set it stays in that  
phase lost or not locked state (so Reg. 09 Bit 6 =0).  
For this bit to give a correct current reading of the  
T4 DPLL locked state, then the coarse phase loss  
detector should be temporarily disabled (set  
Reg. 74 Bit 7 = 0), then the T4 locked bit can be  
read (Reg. 09 Bit 6), then the coarse phase loss  
detector should be re-enabled again (set  
Reg. 74 Bit 7 = 1).  
Once the bit is indicating “locked” (Reg. 09 Bit 6=1),  
it is always a correct indication and no change to  
the coarse phase loss detector enable is required. If  
at any time any cycle slips occur that trigger the  
coarse phase loss detector (which monitors cycle  
slips) then this information is latched so that the  
lock bit (Reg. 09 Bit 6) will go low and stay low,  
indicating that a problem has occurred. It is then a  
requirement that the coarse phase loss detector's  
disable/re-enable sequence is performed during a  
read of the T4 locked bit, in order to get a current  
indication of whether the T4 DPLL is locked.  
Revision 3.02/November 2005 © Semtech Corp.  
Page63  
www.semtech.com  
ACS8530 SETS  
ADVANCED COMMUNICATIONS  
FINAL  
DATASHEET  
Address (hex): 09 (cont...)  
Register Name sts_operating  
Description  
Bit 4  
(RO) Current operating state of  
the device’s internal state  
machine.  
Default Value  
0100 0001  
Bit 7  
Bit 6  
Bit 5  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
SYNC2K_alarm T4_DPLL_Lock T0_DPLL_freq_ T4_DPLL_freq_  
soft_alarm soft_alarm  
T0_DPLL_operating_mode  
Bit No.  
Description  
Bit Value  
Value Description  
5
T0_DPLL_freq_soft_alarm  
0
1
T0 DPLL tracking its reference within the limits of  
the programmed “soft” alarm.  
T0 DPLL tracking its reference beyond the limits of  
the programmed “soft” alarm.  
The T0 DPLL has a programmable frequency limit  
and “soft” alarm limit. The frequency limit is the  
extent to which it will track a reference before  
limiting. The “soft” limit is the point beyond which  
the DPLL tracking a reference will cause an alarm.  
This bit reports the status of the “soft” alarm.  
4
T4_DPLL_freq_soft_alarm  
0
1
T4 DPLL tracking its reference within the limits of  
the programmed “soft” alarm.  
T4 DPLL tracking its reference beyond the limits of  
the programmed “soft” alarm.  
The T4 DPLL has a programmable frequency limit  
and “soft” alarm limit. The frequency limit is the  
extent to which it will track a reference before  
limiting. The “soft” limit is the point beyond which  
the DPLL tracking a reference will cause an alarm.  
This bit reports the status of the “soft” alarm.  
3
Not used.  
-
-
[2:0]  
T0_DPLL_operating_mode  
This field is used to report the state of the internal  
finite state machine controlling the T0 DPLL.  
000  
001  
010  
011  
100  
101  
110  
111  
Not used.  
Free-run.  
Holdover.  
Not used.  
Locked.  
Pre-locked2.  
Pre-locked.  
Phase Lost.  
Revision 3.02/November 2005 © Semtech Corp.  
Page64  
www.semtech.com  
ACS8530 SETS  
ADVANCED COMMUNICATIONS  
FINAL  
DATASHEET  
Address (hex): 0A  
Register Name sts_priority_table  
Description  
Bit 4  
(RO) Bits [7:0] of the validated  
priority table.  
Default Value  
Bit 1  
0000 0000  
Bit 7  
Bit 6  
Bit 5  
Bit 3  
Bit 2  
Bit 0  
Highest priority validated source  
Description  
Currently selected source  
Value Description  
Bit No.  
Bit Value  
[7:4]  
Highest priority validated source  
Reports the input channel number of the highest  
priority validated source.  
Note...If an input is valid and it does not appear in  
this field when otherwise it might, then the input  
may have been disallowed in Reg. 30 and Reg. 31  
(cnfg_sts_remote_sources_valid).  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
No valid source available.  
Input I1 is the highest priority valid source.  
Input I2 is the highest priority valid source.  
Input I3 is the highest priority valid source.  
Input I4 is the highest priority valid source.  
Input I5 is the highest priority valid source.  
Input I6 is the highest priority valid source.  
Input I7 is the highest priority valid source.  
Input I8 is the highest priority valid source.  
Input I9 is the highest priority valid source.  
Input I10 is the highest priority valid source.  
Input I11 is the highest priority valid source.  
Input I12 is the highest priority valid source.  
Input I13 is the highest priority valid source.  
Input I14 is the highest priority valid source.  
Not used.  
*When Bit 4 (T4_T0_select) of Reg. 4B  
(cnfg_registers_source_select) = 0 the highest  
priority validated source for the T0 path is reported.  
When this Bit 4 = 1 the highest priority validated  
source for the T4 path is reported.  
[3:0]  
Currently selected source  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
No source currently selected.  
Reports the input channel number of the currently  
selected source. When in Non-revertive mode, this  
is not necessarily the same as the highest priority  
validated source.  
Note...If an input is valid and it does not appear in  
this field when otherwise it might, then the input  
may have been disallowed in Reg. 30 and Reg. 31  
(cnfg_sts_remote_sources_valid).  
Input I1 is the currently selected source.  
Input I2 is the currently selected source.  
Input I3 is the currently selected source.  
Input I4 is the currently selected source.  
Input I5 is the currently selected source.  
Input I6 is the currently selected source.  
Input I7 is the currently selected source.  
Input I8 is the currently selected source.  
Input I9 is the currently selected source.  
Input I10 is the currently selected source.  
Input I11 is the currently selected source.  
Input I12 is the currently selected source.  
Input I13 is the currently selected source.  
Input I14 is the currently selected source.  
Not used.  
*When Bit 4 (T4_T0_select) of Reg. 4B  
(cnfg_registers_source_select) = 0 the currently  
selected source for the T0 path is reported.  
When this Bit 4 = 1 the currently selected source for  
the T4 path is reported. The T4 path does not have  
a Non-revertive mode so this will always be the  
same as the highest priority validated source.  
Revision 3.02/November 2005 © Semtech Corp.  
Page65  
www.semtech.com  
ACS8530 SETS  
ADVANCED COMMUNICATIONS  
FINAL  
DATASHEET  
Address (hex): 0B  
Register Name sts_priority_table  
Description  
Bit 4  
(RO) Bits [15:8] of the validated  
priority table.  
Default Value  
Bit 1  
0000 0000  
Bit 7  
Bit 6  
Bit 5  
Bit 3  
Bit 2  
Bit 0  
3rd highest priority validated source  
2nd highest priority validated source  
Bit No.  
Description  
Bit Value  
Value Description  
[7:4]  
3rd highest priority validated source  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
Less than 3 valid sources available.  
Reports the input channel number of the 3rd highest  
priority validated source.  
Input I1 is the 3rd highest priority valid source.  
Input I2 is the 3rd highest priority valid source.  
Input I3 is the 3rd highest priority valid source.  
Input I4 is the 3rd highest priority valid source.  
Input I5 is the 3rd highest priority valid source.  
Input I6 is the 3rd highest priority valid source.  
Input I7 is the 3rd highest priority valid source.  
Input I8 is the 3rd highest priority valid source.  
Input I9 is the 3rd highest priority valid source.  
Input I10 is the 3rd highest priority valid source.  
Input I11 is the 3rd highest priority valid source.  
Input I12 is the 3rd highest priority valid source.  
Input I13 is the 3rd highest priority valid source.  
Input I14 is the 3rd highest priority valid source.  
Not used.  
Note...If an input is valid and it does not appear in  
this field when otherwise it might, then the input  
may have been disallowed in Reg. 30 and Reg. 31  
(cnfg_sts_remote_sources_valid).  
*When Bit 4 (T4_T0_select) of Reg. 4B  
(cnfg_registers_source_select) = 0 the 3rd highest  
priority validated source for the T0 path is reported.  
When this Bit 4 = 1 the value will always be zero as  
the T4 path does not maintain the 3rd highest  
priority validated source.  
[3:0]  
2
nd highest priority validated  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
Less than 2 valid sources available.  
Reports the input channel number of the 2nd  
highest priority validated source.  
Input I1 is the 2nd highest priority valid source.  
Input I2 is the 2nd highest priority valid source.  
Input I3 is the 2nd highest priority valid source.  
Input I4 is the 2nd highest priority valid source.  
Input I5 is the 2nd highest priority valid source.  
Input I6 is the 2nd highest priority valid source.  
Input I7 is the 2nd highest priority valid source.  
Input I8 is the 2nd highest priority valid source.  
Input I9 is the 2nd highest priority valid source.  
Input I10 is the 2nd highest priority valid source.  
Input I11 is the 2nd highest priority valid source.  
Input I12 is the 2nd highest priority valid source.  
Input I13 is the 2nd highest priority valid source.  
Input I14 is the 2nd highest priority valid source.  
Not used.  
Note...If an input is valid and it does not appear in  
this field when otherwise it might, then the input  
may have been disallowed in Reg. 30 and Reg. 31  
(cnfg_sts_remote_sources_valid).  
*When Bit 4 (T4_T0_select) of Reg. 4B  
(cnfg_registers_source_select) = 0 the 2nd highest  
priority validated source for the T0 path is reported.  
When this Bit 4 = 1 the 2nd highest priority validated  
source for the T4 path is reported.  
Revision 3.02/November 2005 © Semtech Corp.  
Page66  
www.semtech.com  
ACS8530 SETS  
ADVANCED COMMUNICATIONS  
FINAL  
DATASHEET  
Address (hex): 0C  
Register Name sts_current_DPLL_frequency  
Description  
Bit 4  
(RO) Bits [7:0] of the current DPLL Default Value  
frequency.  
0000 0000  
[7:0]  
Bit 7  
Bit 6  
Bit 5  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Bits [7:0] of sts_current_DPLL_frequency  
Bit No.  
Description  
Bit Value  
Value Description  
[7:0]  
Bits [7:0] of sts_current_DPLL_frequency  
*When Bit 4 (T4_T0_select) of Reg. 4B  
(cnfg_registers_source_select) = 0 the frequency  
for the T0 path is reported.  
-
See register description of  
sts_current_DPLL_frequency at Reg. 0D.  
When this Bit 4 = 1 the frequency for the T4 path is  
reported.  
Address (hex): 0D  
Register Name sts_current_DPLL_frequency  
Description  
Bit 4  
(RO) Bits [15:8] of the current  
DPLL frequency.  
Default Value  
Bit 1  
0000 0000  
[15:8]  
Bit 7  
Bit 6  
Bit 5  
Bit 3  
Bit 2  
Bit 0  
sts_current_DPLL_frequency[15:8]  
Bit No.  
Description  
Bit Value  
Value Description  
[7:0]  
sts_current_DPLL_frequency[15:8]  
-
In order to calculate the ppm offset of the DPLL with  
respect to the crystal oscillator frequency, the value  
in Reg. 07, Reg. 0D and Reg. 0C need to be  
concatenated. This value is a 2’s complement  
signed integer. The value multiplied by  
0.0003068 dec will give the value in ppm offset  
with respect to the XO frequency, allowing for any  
crystal calibration that has been performed, via  
cnfg_nominal_frequency, Reg. 3C and 3D. The  
value is actually the DPLL integral path value so it  
can be viewed as an average frequency, where the  
rate of change is related to the DPLL bandwidth. If  
bit 3 of Reg. 3B is High then this value will freeze if  
the DPLL has been pulled to its min or max  
frequency.  
This value in this register is combined with the value  
in Reg. 0C and Reg. 07 to represent the current  
frequency offset of the DPLL.  
*When Bit 4 (T4_T0_select) of Reg. 4B  
(cnfg_registers_source_select) = 0 the frequency  
for the T0 path is reported.  
When this Bit 4 = 1 the frequency for the T4 path is  
reported.  
Revision 3.02/November 2005 © Semtech Corp.  
Page67  
www.semtech.com  
ACS8530 SETS  
ADVANCED COMMUNICATIONS  
FINAL  
DATASHEET  
Address (hex): 0E  
Register Name sts_sources_valid  
Description  
(RO) 8 least significant bits of the Default Value  
sts_sources_valid register.  
0000 0000  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
I8  
I7  
I6  
I5  
I4  
I3  
I2  
I1  
Bit No.  
Description  
Bit Value  
Value Description  
7
I8  
0
1
Input I8 is invalid.  
Input I8 is valid.  
Bit indicating if I8 is valid. The input is valid if either  
it has no outstanding alarms, or it only has a soft  
frequency alarm.  
6
5
4
3
2
1
0
I7  
0
1
Input I7 is invalid.  
Input I7 is valid.  
Bit indicating if I7 is valid. The input is valid if either  
it has no outstanding alarms, or it only has a soft  
frequency alarm.  
I6  
0
1
Input I6 is invalid.  
Input I6 is valid.  
Bit indicating if I6 is valid. The input is valid if either  
it has no outstanding alarms, or it only has a soft  
frequency alarm.  
I5  
0
1
Input I5 is invalid.  
Input I5 is valid.  
Bit indicating if I5 is valid. The input is valid if either  
it has no outstanding alarms, or it only has a soft  
frequency alarm.  
I4  
0
1
Input I4 is invalid.  
Input I4 is valid.  
Bit indicating if I4 is valid. The input is valid if either  
it has no outstanding alarms, or it only has a soft  
frequency alarm.  
I3  
0
1
Input I3 is invalid.  
Input I3 is valid.  
Bit indicating if I3 is valid. The input is valid if either  
it has no outstanding alarms, or it only has a soft  
frequency alarm.  
I2  
0
1
Input I2 is invalid.  
Input I2 is valid.  
Bit indicating if I2 is valid. The input is valid if either  
it has no outstanding alarms, or it only has a soft  
frequency alarm.  
I1  
0
1
Input I1 is invalid.  
Input I1 is valid.  
Bit indicating if I1 is valid. The input is valid if either  
it has no outstanding alarms, or it only has a soft  
frequency alarm.  
Revision 3.02/November 2005 © Semtech Corp.  
Page68  
www.semtech.com  
ACS8530 SETS  
ADVANCED COMMUNICATIONS  
FINAL  
DATASHEET  
Address (hex): 0F  
Register Name sts_sources_valid  
Description  
(RO) 8 most significant bits of the Default Value  
sts_sources_valid register.  
0000 0000  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
I14  
I13  
I12  
I11  
I10  
I9  
Bit No.  
Description  
Bit Value  
Value Description  
[7:6]  
5
Not used.  
-
-
I14  
0
1
Input I14 is invalid.  
Input I14 is valid.  
Bit indicating if I14 is valid. The input is valid if  
either it has no outstanding alarms, or it only has a  
soft frequency alarm.  
4
3
2
1
0
I13  
0
1
Input I13 is invalid.  
Input I13 is valid.  
Bit indicating if I13 is valid. The input is valid if  
either it has no outstanding alarms, or it only has a  
soft frequency alarm.  
I12  
0
1
Input I12 is invalid.  
Input I12 is valid.  
Bit indicating if I12 is valid. The input is valid if  
either it has no outstanding alarms, or it only has a  
soft frequency alarm.  
I11  
0
1
Input I11 is invalid.  
Input I11 is valid.  
Bit indicating if I11 is valid. The input is valid if  
either it has no outstanding alarms, or it only has a  
soft frequency alarm.  
I10  
0
1
Input I10 is invalid.  
Input I10 is valid.  
Bit indicating if I10 is valid. The input is valid if  
either it has no outstanding alarms, or it only has a  
soft frequency alarm.  
I9  
0
1
Input I9 is invalid.  
Input I9 is valid.  
Bit indicating if I9 is valid. The input is valid if either  
it has no outstanding alarms, or it only has a soft  
frequency alarm.  
Revision 3.02/November 2005 © Semtech Corp.  
Page69  
www.semtech.com  
ACS8530 SETS  
ADVANCED COMMUNICATIONS  
FINAL  
DATASHEET  
Address (hex): 10  
Register Name sts_reference_sources  
Description  
Bit 4  
(RO except for test when R/W)  
Reports any alarms active on  
inputs.  
Default Value  
0110 0110  
Input pairs (1 & 2)  
Bit 7  
Bit 6  
Bit 5  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Address 10: Status of I2 Input  
Address 11: Status of I4 Input  
Address 12: Status of I6 Input  
Address 13: Status of I8 Input  
Address 14: Status of I10 Input  
Address 15: Status of I12 Input  
Address 16: Status of I14 Input  
Address 10: Status of I1 Input  
Address 11: Status of I3 Input  
Address 12: Status of I5 Input  
Address 13: Status of I7 Input  
Address 14: Status of I9 Input  
Address 15: Status of I11 Input  
Address 16: Status of I13 Input  
Bit No.  
Description  
Bit Value  
Value Description  
7 & 3  
Out of Band Alarm (soft)  
Soft out of band alarm bit for input. A “soft” alarm  
will not invalidate an input.  
0
1
No alarm.  
Alarm armed. Alarm thresholds (range) set by  
Reg. 49, or by Reg. 4A, Bits [7:4] if the input is  
currently selected.  
6 & 2  
Out of Band Alarm (hard)  
Hard out of band alarm bit for input. A “hard” alarm  
will invalidate an input.  
0
1
No alarm.  
Alarm armed. Alarm thresholds set by Reg. 49 Bits  
[3:0], or by Reg. 4A Bits [3:0] if the input is currently  
selected.  
5 & 1  
4 & 0  
Input Activity Alarm  
Alarm indication from the activity monitors.  
0
1
No alarm.  
Input has an active no activity alarm.  
Phase Lock Alarm  
0
1
No alarm.  
Phase lock alarm.  
If the DPLL can not indicate that it is phase locked  
onto the current source within 100 seconds this  
alarm will be raised.  
As Reg. 10, but for sts_reference_sources, Input pairs (3 & 4)  
As Reg. 10, but for sts_reference_sources, Input pairs (5 & 6)  
As Reg. 10, but for sts_reference_sources, Input pairs (7 & 8)  
As Reg. 10, but for sts_reference_sources, Input pairs (9 & 10)  
As Reg. 10, but for sts_reference_sources, Input pairs (11 & 12)  
As Reg. 10, but for sts_reference_sources, Input pairs (13 & 14)  
Address (hex): 11  
Address (hex): 12  
Address (hex): 13  
Address (hex): 14  
Address (hex): 15  
Address (hex): 16  
Revision 3.02/November 2005 © Semtech Corp.  
Page70  
www.semtech.com  
ACS8530 SETS  
ADVANCED COMMUNICATIONS  
FINAL  
DATASHEET  
Address (hex): 18  
Register Name cnfg_ref_selection_priority  
Description  
Bit 4  
(R/W) Configures the relative  
priority of input sources I1 and I2.  
Default Value  
(1 & 2)  
(T0)* 0011 0010  
(T4)* 0000 0000  
Bit 7  
Bit 6  
Bit 5  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
cnfg_ref_selection_priority_2  
Description  
cnfg_ref_selection_priority_1  
Bit No.  
Bit Value  
Value Description  
[7:4]  
cnfg_ref_selection_priority_2  
0000  
0001-1111  
Input I2 unavailable for automatic selection.  
Input I2 priority value.  
This 4-bit value represents the relative priority of  
input I2. The smaller the number, the higher the  
priority; zero disables the input.  
*When Bit 4 (T4_T0_select) of Reg. 4B  
(cnfg_registers_source_select) = 0 the priority for  
the T0 path is configured.  
When this Bit 4 = 1 the priority for the T4 path is  
configured.  
[3:0]  
cnfg_ref_selection_priority_1  
0000  
0001-1111  
Input I1 unavailable for automatic selection.  
Input I1 priority value.  
This 4-bit value represents the relative priority of  
input I1. The smaller the number, the higher the  
priority; zero disables the input.  
*When Bit 4 (T4_T0_select) of Reg. 4B  
(cnfg_registers_source_select) = 0 the priority for  
the T0 path is configured.  
When this Bit 4 = 1 the priority for the T4 path is  
configured.  
Address (hex): 19  
Register Name cnfg_ref_selection_priority  
Description  
Bit 4  
(R/W) Configures the relative  
priority of input sources I3 and I4.  
Default Value  
(T0)* 0101 0100  
(3 & 4)  
(T4)* 0000 0000  
Bit 7  
Bit 6  
Bit 5  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
cnfg_ref_selection_priority_4  
Description  
cnfg_ref_selection_priority_3  
Bit No.  
Bit Value  
Value Description  
[7:4]  
cnfg_ref_selection_priority_4  
0000  
0001-1111  
Input I4 unavailable for automatic selection.  
Input I4 priority value.  
This 4-bit value represents the relative priority of  
input I4. The smaller the number, the higher the  
priority; zero disables the input.  
*When Bit 4 (T4_T0_select) of Reg. 4B  
(cnfg_registers_source_select) = 0 the priority for  
the T0 path is configured.  
When this Bit 4 = 1 the priority for the T4 path is  
configured.  
Revision 3.02/November 2005 © Semtech Corp.  
Page71  
www.semtech.com  
ACS8530 SETS  
ADVANCED COMMUNICATIONS  
FINAL  
DATASHEET  
Address (hex): 19 (cont...)  
Register Name cnfg_ref_selection_priority  
Description  
Bit 4  
(R/W) Configures the relative  
priority of input sources I3 and I4.  
Default Value  
(3 & 4)  
(T0)* 0101 0100  
(T4)* 0000 0000  
Bit 7  
Bit 6  
Bit 5  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
cnfg_ref_selection_priority_4  
Description  
cnfg_ref_selection_priority_3  
Bit No.  
Bit Value  
Value Description  
[3:0]  
cnfg_ref_selection_priority_3  
0000  
0001-1111  
Input I3 unavailable for automatic selection.  
Input I3 priority value.  
This 4-bit value represents the relative priority of  
input I3. The smaller the number, the higher the  
priority; zero disables the input.  
*When Bit 4 (T4_T0_select) of Reg. 4B  
(cnfg_registers_source_select) = 0 the priority for  
the T0 path is configured.  
When this Bit 4 = 1 the priority for the T4 path is  
configured.  
Address (hex): 1A  
Register Name cnfg_ref_selection_priority  
Description  
Bit 4  
(R/W) Configures the relative  
priority of input sources I5 and I6.  
Default Value  
(T0)* 0111 0110  
(5 & 6)  
(T4)* 0111 0110  
Bit 7  
Bit 6  
Bit 5  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
cnfg_ref_selection_priority_6  
Description  
cnfg_ref_selection_priority_5  
Bit No.  
Bit Value  
Value Description  
[7:4]  
cnfg_ref_selection_priority_6  
0000  
0001-1111  
Input I6 unavailable for automatic selection.  
Input I6 priority value.  
This 4-bit value represents the relative priority of  
input I6. The smaller the number, the higher the  
priority; zero disables the input.  
*When Bit 4 (T4_T0_select) of Reg. 4B  
(cnfg_registers_source_select) = 0 the priority for  
the T0 path is configured.  
When this Bit 4 = 1 the priority for the T4 path is  
configured.  
[3:0]  
cnfg_ref_selection_priority_5  
0000  
0001-1111  
Input I5 unavailable for automatic selection.  
Input I5 priority value.  
This 4-bit value represents the relative priority of  
input I5. The smaller the number, the higher the  
priority; zero disables the input.  
*When Bit 4 (T4_T0_select) of Reg. 4B  
(cnfg_registers_source_select) = 0 the priority for  
the T0 path is configured.  
When this Bit 4 = 1 the priority for the T4 path is  
configured.  
Revision 3.02/November 2005 © Semtech Corp.  
Page72  
www.semtech.com  
ACS8530 SETS  
ADVANCED COMMUNICATIONS  
FINAL  
DATASHEET  
Address (hex): 1B  
Register Name cnfg_ref_selection_priority  
Description  
Bit 4  
(R/W) Configures the relative  
priority of input sources I7 and I8.  
Default Value  
(7 & 8)  
(T0)* 1001 1000  
(T4)* 1001 1000  
Bit 7  
Bit 6  
Bit 5  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
cnfg_ref_selection_priority_8  
Description  
cnfg_ref_selection_priority_7  
Bit No.  
Bit Value  
Value Description  
[7:4]  
cnfg_ref_selection_priority_8  
0000  
0001-1111  
Input I8 unavailable for automatic selection.  
Input I8 priority value.  
This 4-bit value represents the relative priority of  
input I8. The smaller the number, the higher the  
priority; zero disables the input.  
*When Bit 4 (T4_T0_select) of Reg. 4B  
(cnfg_registers_source_select) = 0 the priority for  
the T0 path is configured.  
When this Bit 4 = 1 the priority for the T4 path is  
configured.  
[3:0]  
cnfg_ref_selection_priority_7  
0000  
0001-1111  
Input I7 unavailable for automatic selection.  
Input I7 priority value.  
This 4-bit value represents the relative priority of  
input I7. The smaller the number, the higher the  
priority; zero disables the input.  
*When Bit 4 (T4_T0_select) of Reg. 4B  
(cnfg_registers_source_select) = 0 the priority for  
the T0 path is configured.  
When this Bit 4 = 1 the priority for the T4 path is  
configured.  
Address (hex): 1C  
Register Name cnfg_ref_selection_priority  
Description  
Bit 4  
(R/W) Configures the relative  
priority of input sources I9 and  
I10.  
Default Value  
(T0)* 1011 1010  
(9 & 10)  
(T4)* 1011 1010  
Bit 7  
Bit 6  
Bit 5  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
cnfg_ref_selection_priority_10  
Description  
cnfg_ref_selection_priority_9  
Bit No.  
Bit Value  
Value Description  
[7:4]  
cnfg_ref_selection_priority_10  
0000  
0001-1111  
Input I10 unavailable for automatic selection.  
Input I10 priority value.  
This 4-bit value represents the relative priority of  
input I10. The smaller the number, the higher the  
priority; zero disables the input.  
*When Bit 4 (T4_T0_select) of Reg. 4B  
(cnfg_registers_source_select) = 0 the priority for  
the T0 path is configured.  
When this Bit 4 = 1 the priority for the T4 path is  
configured.  
Revision 3.02/November 2005 © Semtech Corp.  
Page73  
www.semtech.com  
ACS8530 SETS  
ADVANCED COMMUNICATIONS  
FINAL  
DATASHEET  
Address (hex): 1C (cont...)  
Register Name cnfg_ref_selection_priority  
Description  
Bit 4  
(R/W) Configures the relative  
priority of input sources I9 and  
I10.  
Default Value  
(9 & 10)  
(T0)* 1011 1010  
(T4)* 1011 1010  
Bit 7  
Bit 6  
Bit 5  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
cnfg_ref_selection_priority_10  
Description  
cnfg_ref_selection_priority_9  
Bit No.  
Bit Value  
Value Description  
[3:0]  
cnfg_ref_selection_priority_9  
0000  
0001-1111  
Input I9 unavailable for automatic selection.  
Input I9 priority value.  
This 4-bit value represents the relative priority of  
input I9. The smaller the number, the higher the  
priority; zero disables the input.  
*When Bit 4 (T4_T0_select) of Reg. 4B  
(cnfg_registers_source_select) = 0 the priority for  
the T0 path is configured.  
When this Bit 4 = 1 the priority for the T4 path is  
configured.  
Address (hex): 1D  
Register Name cnfg_ref_selection_priority  
Description  
Bit 4  
(R/W) Configures the relative  
priority of input sources I11 and  
I12.  
Default Value  
(T0)* 1101 1100  
(11 & 12)  
(T4)* 0000 0000  
Bit 7  
Bit 6  
Bit 5  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
cnfg_ref_selection_priority_12  
Description  
cnfg_ref_selection_priority_11  
Bit No.  
Bit Value  
Value Description  
[7:4]  
cnfg_ref_selection_priority_12  
0000  
0001-1111  
Input I12 unavailable for automatic selection.  
Input I12 priority value.  
This 4-bit value represents the relative priority of  
input I12. The smaller the number, the higher the  
priority; zero disables the input.  
*When Bit 4 (T4_T0_select) of Reg. 4B  
(cnfg_registers_source_select) = 0 the priority for  
the T0 path is configured.  
When this Bit 4 = 1 the priority for the T4 path is  
configured.  
Revision 3.02/November 2005 © Semtech Corp.  
Page74  
www.semtech.com  
ACS8530 SETS  
ADVANCED COMMUNICATIONS  
FINAL  
DATASHEET  
Address (hex): 1D (cont...)  
Register Name cnfg_ref_selection_priority  
Description  
Bit 4  
(R/W) Configures the relative  
priority of input sources I11 and  
I12.  
Default Value  
(11 & 12)  
(T0)* 1101 1100  
(T4)* 0000 0000  
Bit 7  
Bit 6  
Bit 5  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
cnfg_ref_selection_priority_12  
Description  
cnfg_ref_selection_priority_11  
Bit No.  
Bit Value  
Value Description  
[3:0]  
cnfg_ref_selection_priority_11  
0000  
0001-1111  
Input I11 unavailable for automatic selection.  
Input I11 priority value.  
This 4-bit value represents the relative priority of  
input I11. The smaller the number, the higher the  
priority; zero disables the input.  
*The priority of input I11 depends on the value of  
the MASTSLVB pin at power-up. If MASTSLVB is High  
(master) at power-up, then the priority will default to  
12. If MASTSLVB is Low (slave) at power-up, then  
the priority will default to 1.  
*When Bit 4 (T4_T0_select) of Reg. 4B  
(cnfg_registers_source_select) = 0 the priority for  
the T0 path is configured.  
When this Bit 4 = 1 the priority for the T4 path is  
configured.  
Address (hex): 1E  
Register Name cnfg_ref_selection_priority  
Description  
Bit 4  
(R/W) Configures the relative  
priority of input sources I13 and  
I14.  
Default Value  
(T0)* 1111 1110  
(13 & 14)  
(T4)* 0000 0000  
Bit 7  
Bit 6  
Bit 5  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
cnfg_ref_selection_priority_14  
Description  
cnfg_ref_selection_priority_13  
Bit No.  
Bit Value  
Value Description  
[7:4]  
cnfg_ref_selection_priority_14  
0000  
0001-1111  
Input I14 unavailable for automatic selection.  
Input I14 priority value.  
This 4-bit value represents the relative priority of  
input I14. The smaller the number, the higher the  
priority; zero disables the input.  
*When Bit 4 (T4_T0_select) of Reg. 4B  
(cnfg_registers_source_select) = 0 the priority for  
the T0 path is configured.  
When this Bit 4 = 1 the priority for the T4 path is  
configured.  
Revision 3.02/November 2005 © Semtech Corp.  
Page75  
www.semtech.com  
ACS8530 SETS  
ADVANCED COMMUNICATIONS  
FINAL  
DATASHEET  
Address (hex): 1E (cont...)  
Register Name cnfg_ref_selection_priority  
Description  
Bit 4  
(R/W) Configures the relative  
priority of input sources I13 and  
I14.  
Default Value  
(13 & 14)  
(T0)* 1111 1110  
(T4)* 0000 0000  
Bit 7  
Bit 6  
Bit 5  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
cnfg_ref_selection_priority_14  
Description  
cnfg_ref_selection_priority_13  
Bit No.  
Bit Value  
Value Description  
[3:0]  
cnfg_ref_selection_priority_13  
0000  
0001-1111  
Input I13 unavailable for automatic selection.  
Input I13 priority value.  
This 4-bit value represents the relative priority of  
input I13. The smaller the number, the higher the  
priority; zero disables the input.  
*When Bit 4 (T4_T0_select) of Reg. 4B  
(cnfg_registers_source_select) = 0 the priority for  
the T0 path is configured.  
When this Bit 4 = 1 the priority for the T4 path is  
configured.  
Address (hex): 20  
Register Name cnfg_ref_source_frequency  
Description  
Bit 4  
(R/W) Configuration of the  
frequency and input monitoring  
for input I1.  
Default Value  
Bit 1  
0000 0000  
_1  
Bit 7  
Bit 6  
Bit 5  
Bit 3  
Bit 2  
Bit 0  
Set to zero  
bucket_id_1  
Set to zero  
Bit No.  
Description  
Bit Value  
Value Description  
[7:6]  
[5:4]  
Set to zero  
00  
00  
Set to zero  
bucket_id_1  
Input I1 activity monitor uses Leaky Bucket  
Configuration 0.  
Input I1 activity monitor uses Leaky Bucket  
Configuration 1.  
Input I1 activity monitor uses Leaky Bucket  
Configuration 2.  
Input I1 activity monitor uses Leaky Bucket  
Configuration 3.  
Every input has its own Leaky Bucket used for  
activity monitoring. There are four possible  
configurations for each Leaky Bucket- see Reg. 50  
to Reg. 5F. This 2-bit field selects the configuration  
used for input I1.  
01  
10  
11  
[3:0]  
Set to zero  
0000  
8 kHz only  
Revision 3.02/November 2005 © Semtech Corp.  
Page76  
www.semtech.com  
ACS8530 SETS  
ADVANCED COMMUNICATIONS  
FINAL  
DATASHEET  
Address (hex): 21  
Register Name cnfg_ref_source_frequency  
Description  
Bit 4  
(R/W) Configuration of the  
frequency and input monitoring  
for input I2.  
Default Value  
Bit 1  
0000 0000  
_2  
Bit 7  
Bit 6  
Bit 5  
Bit 3  
Bit 2  
Bit 0  
Set to zero  
bucket_id_2  
Set to zero  
Bit No.  
Description  
Bit Value  
Value Description  
[7:6]  
[5:4]  
Set to zero  
00  
00  
Set to zero  
bucket_id_2  
Input I2 activity monitor uses Leaky Bucket  
Configuration 0.  
Input I2 activity monitor uses Leaky Bucket  
Configuration 1.  
Input I2 activity monitor uses Leaky Bucket  
Configuration 2.  
Input I2 activity monitor uses Leaky Bucket  
Configuration 3.  
Every input has its own Leaky Bucket used for  
activity monitoring. There are four possible  
configurations for each Leaky Bucket - see Reg. 50  
to Reg. 5F. This 2-bit field selects the configuration  
used for input I2.  
01  
10  
11  
[3:0]  
Set to zero  
0000  
8 kHz only  
Address (hex): 22  
Use <n> = 3  
Register Name cnfg_ref_source_frequency  
Description  
Bit 4  
(R/W) Configuration of the  
frequency and input monitoring  
for input I<n>.  
Default Value  
Bit 1  
0000 0000  
_<n>, where for Reg 22, <n>=  
3
Bit 7  
Bit 6  
Bit 5  
Bit 3  
Bit 2  
Bit 0  
divn_<n>  
lock8k_<n>  
bucket_id_<n>  
reference_source_frequency_<n>  
Bit No.  
Description  
Bit Value  
Value Description  
7
divn_<n>  
0
1
Input I<n> fed directly to DPLL and monitor.  
Input I<n> fed to DPLL and monitor via pre-divider.  
This bit selects whether or not input I<n> is divided  
in the programmable pre-divider prior to being input  
to the DPLL and frequency monitor- see Reg. 46  
and Reg. 47 (cnfg_freq_divn).  
6
lock8k_<n>  
0
1
Input I<n> fed directly to DPLL.  
Input I<n> fed to DPLL via preset pre-divider.  
This bit selects whether or not input I<n> is divided  
in the preset pre-divider prior to being input to the  
DPLL. This results in the DPLL locking to the  
reference after it has been divided to 8 kHz. This bit  
is ignored when divn_<n> is set (bit = 1).  
Revision 3.02/November 2005 © Semtech Corp.  
Page77  
www.semtech.com  
ACS8530 SETS  
ADVANCED COMMUNICATIONS  
FINAL  
DATASHEET  
Address (hex): 22 (cont...)  
Use <n> = 3  
Register Name cnfg_ref_source_frequency  
Description  
Bit 4  
(R/W) Configuration of the  
frequency and input monitoring  
for input I<n>.  
Default Value  
Bit 1  
0000 0000  
_<n>, where for Reg 22, <n>=  
3
Bit 7  
Bit 6  
Bit 5  
Bit 3  
Bit 2  
Bit 0  
divn_<n>  
lock8k_<n>  
bucket_id_<n>  
reference_source_frequency_<n>  
Bit No.  
Description  
Bit Value  
Value Description  
[5:4]  
bucket_id_<n>  
00  
01  
10  
11  
Input I<n> activity monitor uses Leaky Bucket  
Configuration 0.  
Input I<n> activity monitor uses Leaky Bucket  
Configuration 1.  
Input I<n> activity monitor uses Leaky Bucket  
Configuration 2.  
Input I<n> activity monitor uses Leaky Bucket  
Configuration 3.  
Every input has its own Leaky Bucket used for  
activity monitoring. There are four possible  
configurations for each Leaky Bucket- see Reg. 50  
to Reg. 5F. This 2-bit field selects the configuration  
used for input I<n>.  
[3:0]  
reference_source_frequency_<n>  
0000  
0001  
8 kHz.  
Programs the frequency of the reference source  
connected to input I<n>. If divn_<n> is set, then  
this value should be set to 0000 (8 kHz).  
1544/2048 kHz (dependent on Bit 2 (ip_sonsdhb)  
in Reg. 34).  
6.48 MHz.  
19.44 MHz.  
25.92 MHz.  
38.88 MHz.  
51.84 MHz.  
77.76 MHz.  
155.52 MHz.  
2 kHz.  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
4 kHz.  
1011-1111  
Not used.  
cnfg_ref_source_frequency_4  
cnfg_ref_source_frequency_5  
cnfg_ref_source_frequency_6  
cnfg_ref_source_frequency_7  
cnfg_ref_source_frequency_8  
cnfg_ref_source_frequency_9  
Use description for Reg. 22, but use <n> =  
Use description for Reg. 22, but use <n> =  
Use description for Reg. 22, but use <n> =  
Use description for Reg. 22, but use <n> =  
Use description for Reg. 22, but use <n> =  
Use description for Reg. 22, but use <n> =  
4
5
6
7
8
9
Default = 0000 0000  
Default = 0000 0011  
Default = 0000 0011  
Default = 0000 0011  
Default = 0000 0011  
Default = 0000 0011  
Address (hex): 23  
Address (hex): 24  
Address (hex): 25  
Address (hex): 26  
Address (hex): 27  
Address (hex): 28  
Address (hex): 29  
Address (hex): 2A  
Address (hex): 2B  
Address (hex): 2C  
Address (hex): 2D  
cnfg_ref_source_frequency_10 Use description for Reg. 22, but use <n> = 10 Default = 0000 0011  
cnfg_ref_source_frequency_11 Use description for Reg. 22, but use <n> = 11 Default = 0000 0011  
cnfg_ref_source_frequency_12 Use description for Reg. 22, but use <n> = 12 Default = 0000 0001  
cnfg_ref_source_frequency_13 Use description for Reg. 22, but use <n> = 13 Default = 0000 0001  
cnfg_ref_source_frequency_14 Use description for Reg. 22, but use <n> = 14 Default = 0000 0001  
Revision 3.02/November 2005 © Semtech Corp.  
Page78  
www.semtech.com  
ACS8530 SETS  
ADVANCED COMMUNICATIONS  
FINAL  
DATASHEET  
Address (hex): 30  
Register Name cnfg_sts_remote_sources_valid  
Description  
(R/W) Bits [7:0] of the remote  
Default Value  
1111 1111  
sources valid register. A register  
used to disable sources that are  
invalid in another device in a  
redundancy pair.  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
I8  
I7  
I6  
I5  
I4  
I3  
I2  
I1  
Bit No.  
Description  
Bit Value  
Value Description  
7
I8  
0
1
Locking to input I8 disallowed.  
Locking to input I8 allowed.  
Bit enabling input I8 to be considered for locking to.  
If this bit is not set, then even if this input I8 is valid,  
it will still not appear in Reg. 0A and 0B  
(sts_priority_table).  
6
5
4
3
2
1
I7  
0
1
Locking to input I7 disallowed.  
Locking to input I7 allowed.  
Bit enabling input I7 to be considered for locking to.  
If this bit is not set, then even if this input I7 is valid,  
it will still not appear in Reg. 0A and 0B  
(sts_priority_table).  
I6  
0
1
Locking to input I6 disallowed.  
Locking to input I6 allowed.  
Bit enabling input I6 to be considered for locking to.  
If this bit is not set, then even if this input I6 is valid,  
it will still not appear in Reg. 0A and 0B  
(sts_priority_table).  
I5  
0
1
Locking to input I5 disallowed.  
Locking to input I5 allowed.  
Bit enabling input I5 to be considered for locking to.  
If this bit is not set, then even if this input I5 is valid,  
it will still not appear in Reg. 0A and 0B  
(sts_priority_table).  
I4  
0
1
Locking to input I4 disallowed.  
Locking to input I4 allowed.  
Bit enabling input I4 to be considered for locking to.  
If this bit is not set, then even if this input I4 is valid,  
it will still not appear in Reg. 0A and 0B  
(sts_priority_table).  
I3  
0
1
Locking to input I3 disallowed.  
Locking to input I3 allowed.  
Bit enabling input I3 to be considered for locking to.  
If this bit is not set, then even if this input I3 is valid,  
it will still not appear in Reg. 0A and 0B  
(sts_priority_table).  
I2  
0
1
Locking to input I2 disallowed.  
Locking to input I2 allowed.  
Bit enabling input I2 to be considered for locking to.  
If this bit is not set, then even if this input I2 is valid,  
it will still not appear in Reg. 0A and 0B  
(sts_priority_table).  
Revision 3.02/November 2005 © Semtech Corp.  
Page79  
www.semtech.com  
ACS8530 SETS  
ADVANCED COMMUNICATIONS  
FINAL  
DATASHEET  
Address (hex): 30 (cont...)  
Register Name cnfg_sts_remote_sources_valid  
Description  
(R/W) Bits [7:0] of the remote  
Default Value  
1111 1111  
sources valid register. A register  
used to disable sources that are  
invalid in another device in a  
redundancy pair.  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
I8  
I7  
I6  
I5  
I4  
I3  
I2  
I1  
Bit No.  
Description  
Bit Value  
Value Description  
0
I1  
0
1
Locking to input I1 disallowed.  
Locking to input I1 allowed.  
Bit enabling input I1 to be considered for locking to.  
If this bit is not set, then even if this input I1 is valid,  
it will still not appear in Reg. 0A and 0B  
(sts_priority_table).  
Address (hex): 31  
Register Name cnfg_sts_remote_sources_valid  
Description  
(R/W) Bits [13:8] of the remote  
sources valid register. A register  
used to disable source that are  
invalid in another device in a  
redundancy pair.  
Default Value  
0011 1111  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
I14  
I13  
I12  
I11  
I10  
I9  
Bit No.  
Description  
Bit Value  
Value Description  
[7:6]  
5
Not used.  
-
-
I14  
0
1
Locking to input I14 disallowed.  
Locking to input I14 allowed.  
Bit enabling input I14 to be considered for locking  
to. If this bit is not set, then even if this input I14 is  
valid, it will still not appear in Reg. 0A and 0B  
(sts_priority_table).  
4
3
I13  
0
1
Locking to input I13 disallowed.  
Locking to input I13 allowed.  
Bit enabling input I13 to be considered for locking  
to. If this bit is not set, then even if this input I13 is  
valid, it will still not appear in Reg. 0A and 0B  
(sts_priority_table).  
I12  
0
1
Locking to input I12 disallowed.  
Locking to input I12 allowed.  
Bit enabling input I12 to be considered for locking  
to. If this bit is not set, then even if this input I12 is  
valid, it will still not appear in Reg. 0A and 0B  
(sts_priority_table).  
Revision 3.02/November 2005 © Semtech Corp.  
Page80  
www.semtech.com  
ACS8530 SETS  
ADVANCED COMMUNICATIONS  
FINAL  
DATASHEET  
Address (hex): 31 (cont...)  
Register Name cnfg_sts_remote_sources_valid  
Description  
(R/W) Bits [13:8] of the remote  
Default Value  
0011 1111  
sources valid register. A register  
used to disable source that are  
invalid in another device in a  
redundancy pair.  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
I14  
I13  
I12  
I11  
I10  
I9  
Bit No.  
Description  
Bit Value  
Value Description  
2
I11  
0
1
Locking to input I11 disallowed.  
Locking to input I11 allowed.  
Bit enabling input I11 to be considered for locking  
to. If this bit is not set, then even if this input I11 is  
valid, it will still not appear in Reg. 0A and 0B  
(sts_priority_table).  
1
0
I10  
0
1
Locking to input I10 disallowed.  
Locking to input I10 allowed.  
Bit enabling input I10 to be considered for locking  
to. If this bit is not set, then even if this input I10 is  
valid, it will still not appear in Reg. 0A and 0B  
(sts_priority_table).  
I9  
0
1
Locking to input I9 disallowed.  
Locking to input I9 allowed.  
Bit enabling input I9 to be considered for locking to.  
If this bit is not set, then even if this input I9 is valid,  
it will still not appear in Reg. 0A and 0B  
(sts_priority_table).  
Address (hex): 32  
Register Name cnfg_operating_mode  
Description  
Bit 4  
(R/W) Register to force the state Default Value  
of the TO DPLL controlling state  
machine.  
0000 0000  
Bit 7  
Bit 6  
Bit 5  
Bit 3  
Bit 2  
Bit 1  
T0_DPLL_operating_mode  
Bit 0  
Bit No.  
Description  
Bit Value  
Value Description  
[7:3]  
Not used.  
-
-
Revision 3.02/November 2005 © Semtech Corp.  
Page81  
www.semtech.com  
ACS8530 SETS  
ADVANCED COMMUNICATIONS  
FINAL  
DATASHEET  
Address (hex): 32 (cont...)  
Register Name cnfg_operating_mode  
Description  
Bit 4  
(R/W) Register to force the state Default Value  
of the TO DPLL controlling state  
machine.  
0000 0000  
Bit 7  
Bit 6  
Bit 5  
Bit 3  
Bit 2  
Bit 1  
T0_DPLL_operating_mode  
Bit 0  
Bit No.  
Description  
Bit Value  
Value Description  
[2:0]  
T0_DPLL_operating_mode  
000  
001  
010  
011  
100  
101  
110  
111  
Automatic (internal state machine controlled).  
Free-run.  
This field is used to control the state of the internal  
finite state machine controlling the T0 DPLL. A value  
of zero is used to allow the finite state machine to  
control itself. Any other value will force the state  
machine to jump into that state. Care should be  
taken when forcing the state machine. Whilst it is  
forced, the internal monitoring functions cannot  
affect the internal state machine, therefore, the  
user is responsible for all monitoring and control  
functions required to achieve the desired  
functionality.  
Holdover.  
Not used.  
Locked.  
Pre-locked2.  
Pre-locked.  
Phase Lost.  
Address (hex): 33  
Register Name force_select_reference_source  
Description  
Bit 4  
(R/W) Register used to force the Default Value  
selection of a particular reference  
source for the T0 DPLL.  
0000 1111  
Bit 7  
Bit 6  
Bit 5  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
forced_reference_source  
Bit No.  
Description  
Bit Value  
Value Description  
[7:4]  
[3:0]  
Not used.  
-
-
forced_reference_source  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
Automatic state machine source selection  
T0 DPLL forced to select input I1.  
T0 DPLL forced to select input I2.  
T0 DPLL forced to select input I3.  
T0 DPLL forced to select input I4.  
T0 DPLL forced to select input I5.  
T0 DPLL forced to select input I6.  
T0 DPLL forced to select input I7.  
T0 DPLL forced to select input I8.  
T0 DPLL forced to select input I9.  
T0 DPLL forced to select input I10.  
T0 DPLL forced to select input I11.  
T0 DPLL forced to select input I12.  
T0 DPLL forced to select input I13.  
T0 DPLL forced to select input I14.  
Not used.  
Value representing the source to be selected by the  
T0 DPLL. Value of 0hex will leave the selection to  
the automatic control mechanism within the device.  
Using this mechanism will bypass all the monitoring  
functions assuming the selected input to be valid. If  
the device is not in state “Locked” then it will  
progress to state locked in the usual manner. If the  
input fails, the device will not change state to  
Holdover, as it is not allowed to disqualify the  
source. The effect of this register is simply to raise  
the priority of the selected input to “1” (highest). To  
ensure selection of the programmed input  
reference under all circumstances, revertive mode  
should be enabled (Reg. 34 bit 0 set to “1”).  
Revision 3.02/November 2005 © Semtech Corp.  
Page82  
www.semtech.com  
ACS8530 SETS  
ADVANCED COMMUNICATIONS  
FINAL  
DATASHEET  
Address (hex): 34  
Register Name cnfg_input_mode  
Description  
Bit 4  
(Bit 1 RO, otherwise R/W)  
Register controlling various input  
modes of the device.  
Default Value  
1100 0010*  
Bit 7  
Bit 6  
Bit 5  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
auto_extsync_ phalarm_time- XO_edge  
man_holdover extsync_en  
ip_sonsdhb  
master_slaveb reversion_mode  
en  
out  
Bit No.  
Description  
auto_extsync_en  
Bit to enable automatic enabling of the external  
Frame Sync input when locked to source defined in  
Reg. 7C[3:0] (Sync_reference_source).  
Bit Value  
Value Description  
7
0
External Frame Sync enabled/disabled according to  
extsync_en.  
External Frame Sync enabled if extsync_en = 1 AND  
T0 DPLL locked to source assigned to  
Sync_reference_source.  
1
6
5
phalarm_timeout  
0
1
Phase alarms on sources only cancelled by  
software.  
Phase alarms on sources automatically time out.  
Bit to enable the automatic time-out facility on  
phase alarms. When enabled, any source with a  
phase alarm set will have its phase alarm cancelled  
after 128 seconds.  
XO_edge  
0
1
Device uses the rising edge of the external  
oscillator.  
Device uses the falling edge of the external  
oscillator.  
If the 12.800 MHz oscillator module connected to  
REFCLK has one edge faster than the other, then for  
jitter performance reasons, the faster edge should  
be selected. This bit allows either the rising edge or  
the falling edge to be selected.  
4
3
man_holdover  
0
1
Holdover frequency is determined automatically.  
Holdover frequency is taken from  
cnfg_holdover_frequency register.  
Bit to select whether or not the Holdover frequency  
is taken directly from Reg. 3E/Reg. 3F/Reg. 40  
(cnfg_holdover_frequency). If this bit is set then it  
overrides any other Holdover control bits.  
extsync_en  
0
1
No external Sync signal- SYNC2K pin ignored.  
External Sync derived from SYNC2K pin according  
to auto_extsync_en.  
Bit to select whether or not the T0 DPLL will look for  
a reference Sync pulse on the SYNC2K input pin.  
Even though this bit may enable the external Sync  
reference, it may be disabled according to  
auto_extsync_en.  
2
ip_sonsdhb  
0
1
SDH- inputs set to 0001 expected to be 2048 kHz.  
SONET- inputs set to 0001 expected to be  
1544 kHz.  
Bit to configure input frequencies to be either  
SONET or SDH derived. This applies only to  
selections of 0001 (bin) in the  
cnfg_ref_source_frequency registers when the  
input frequency is either 1544 kHz or 2048 kHz.  
of the SONSDHB pin at power-up.  
Note...this bit affects the SONET/SDH output on  
TO9-refer to Reg. 64 Bit 4 and Reg. 35 Bit 4.  
*The default value of this bit is taken from the value  
of the SONSDHB pin at power-up.  
Revision 3.02/November 2005 © Semtech Corp.  
Page83  
www.semtech.com  
ACS8530 SETS  
ADVANCED COMMUNICATIONS  
FINAL  
DATASHEET  
Address (hex): 34 (cont...)  
Register Name cnfg_input_mode  
Description  
Bit 4  
(Bit 1 RO, otherwise R/W)  
Register controlling various input  
modes of the device.  
Default Value  
1100 0010*  
Bit 7  
Bit 6  
Bit 5  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
auto_extsync_ phalarm_time- XO_edge  
man_holdover extsync_en  
ip_sonsdhb  
master_slaveb reversion_mode  
en  
out  
Bit No.  
Description  
Bit Value  
Value Description  
1
master_slaveb (R/O)  
0
Slave mode.  
Bit to reflect the value of the MASTSLVB pin.  
*As this always reflects the value on the pin, the  
default value of this bit will be according to the  
value on the pin at power-up. For software control,  
set MASTSLVB pin to Master mode at all times and  
program the individual registers (as per Value  
Description) to give Master or Slave mode  
functionality.  
I11 set to highest priority.  
T0 DPLL set to acquisition bandwidth.  
Revertive mode enabled.  
Phase Build-out disabled.  
Master mode.  
1
I11 priority, T0 DPLL bandwidth, Revertive mode,  
Phase Build-out, all as programmed in the registers.  
0
reversion_mode  
0
1
Non-revertive mode.  
Revertive mode.  
Bit to select Revertive/Non-revertive mode. When in  
Non-revertive mode, the device will not  
automatically switch to a higher priority source,  
unless the current source fails. When in Revertive  
mode the device will always select the highest  
priority source.  
Address (hex): 35  
Register Name cnfg_T4_path  
Description  
Register to configure the inputs  
and other features in the T4 path.  
Default Value  
Bit 1  
0100 0000  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 0  
lock_T4_to_T0 T4_dig_feed-  
back  
T4_op_from_T0  
T4_forced_reference_source  
Bit No.  
Description  
Bit Value  
Value Description  
7
lock_T4_to_T0  
0
1
T4 path locks independently from the T0 path.  
T4 DPLL locks to the output of the T0 DPLL.  
Bit selects either the T4 direct inputs, or T0 DPLL as  
the input of the T4 path. This allows the T4 DPLL to  
be used to produce different sets of frequencies to  
the T0 DPLL but still maintain lock.  
6
T4_dig_feedback  
Bit to select digital feedback mode for the T4 DPLL.  
0
1
T4 DPLL in analog feedback mode.  
T4 DPLL in digital feedback mode.  
5
4
Not used.  
-
-
T4_op_from_T0  
0
1
T08 and T09 will be generated from T4 DPLL  
T08 and T09 will be generated from T0 DPLL  
Revision 3.02/November 2005 © Semtech Corp.  
Page84  
www.semtech.com  
ACS8530 SETS  
ADVANCED COMMUNICATIONS  
FINAL  
DATASHEET  
Address (hex): 35 (cont...)  
Register Name cnfg_T4_path  
Description  
Register to configure the inputs  
and other features in the T4 path.  
Default Value  
Bit 1  
0100 0000  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 0  
lock_T4_to_T0 T4_dig_feed-  
back  
T4_op_from_T0  
T4_forced_reference_source  
Bit No.  
Description  
T4_forced_reference_source  
This field can be used to force the T4 DPLL to select  
a particular input. A value of zero in this field allows  
the T4 input to be selected automatically via the  
priority and input monitoring functions.  
Bit Value  
Value Description  
[3:0]  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
T4 DPLL automatic source selection.  
T4 DPLL forced to select input I1.  
T4 DPLL forced to select input I2.  
T4 DPLL forced to select input I3.  
T4 DPLL forced to select input I4.  
T4 DPLL forced to select input I5.  
T4 DPLL forced to select input I6.  
T4 DPLL forced to select input I7.  
T4 DPLL forced to select input I8.  
T4 DPLL forced to select input I9.  
T4 DPLL forced to select input I10.  
T4 DPLL forced to select input I11.  
T4 DPLL forced to select input I12.  
T4 DPLL forced to select input I13.  
T4 DPLL forced to select input I14.  
Not used.  
Address (hex): 36  
Register Name cnfg_differential_inputs  
Description  
Bit 4  
(R/W) Configures the differential Default Value  
inputs to be PECL or LVDS type  
inputs.  
0000 0010  
Bit 7  
Bit 6  
Bit 5  
Bit 3  
Bit 2  
Bit 1  
I6_PECL  
Bit 0  
I5_LVDS  
Bit No.  
Description  
Bit Value  
Value Description  
[7:2]  
1
Not used.  
-
-
I6_PECL  
0
1
I6 input LVDS compatible.  
I6 input PECL compatible (Default).  
Configures the I6 input to be compatible with either  
3 V LVDS or 3 V PECL electrical levels.  
0
I5_LVDS  
0
1
I5 input LVDS compatible (Default).  
I5 input PECL compatible.  
Configures the I5 input to be compatible with either  
3 V LVDS or 3 V PECL electrical levels.  
Revision 3.02/November 2005 © Semtech Corp.  
Page85  
www.semtech.com  
ACS8530 SETS  
ADVANCED COMMUNICATIONS  
FINAL  
DATASHEET  
Address (hex): 37  
Register Name cnfg_uPsel_pins  
Description  
Bit 4  
(RO) Register reflecting the value Default Value  
on the UPSEL device pins.  
0000 0010*  
Bit 7  
Bit 6  
Bit 5  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
upsel_pins_value  
Bit No.  
Description  
Bit Value  
Value Description  
[7:3]  
[2:0]  
Not used.  
-
-
upsel_pins_value  
000  
001  
010  
011  
100  
101  
110  
111  
Not used.  
This register always reflects the value present on  
the UPSEL pins of the device. At reset this is used to  
set the mode of the microprocessor interface.  
Following power-up, these pins have no further  
effect on the microprocessor interface, hence it is  
possible to use the pins and register combination as  
a general purpose input for software.  
Interface in EPROM boot mode.  
Interface in Multiplexed mode.  
Interface in Intel mode.  
Interface in Motorola mode.  
Interface in Serial mode.  
Not used.  
Not used.  
*The default of this register is entirely dependent  
on the value of the pins at reset.  
(value at reset)  
Address (hex): 38  
Register Name cnfg_dig_outputs_sonsdh  
Description  
Bit 4  
Configures Digital1 and Digital2  
output frequencies to be SONET  
or SDH compatible frequencies.  
Default Value  
Bit 1  
0001 1111*  
Bit 7  
Bit 6  
Bit 5  
Bit 3  
Bit 2  
Bit 0  
dig2_sonsdh  
dig1_sonsdh  
Bit No.  
Description  
Bit Value  
Value Description  
7
6
Not used.  
-
-
dig2_sonsdh  
1
Digital2 can be selected from 1544/3088/6176/  
12352 kHz.  
Digital2 can be selected from 2048/4096/8192/  
16384 kHz.  
Selects whether the frequencies generated by the  
Digital2 frequency generator are SONET derived or  
SDH.  
0
*Default value of this bit is set by the SONSDHB pin  
at power-up.  
5
dig1_sonsdh  
1
0
Digital1 can be selected from 1544/3088/6176/  
12352 kHz.  
Digital1 can be selected from 2048/4096/8192/  
16384 kHz.  
Selects whether the frequencies generated by the  
Digital1 frequency generator are SONET derived or  
SDH.  
*Default value of this bit is set by the SONSDHB pin  
at power-up.  
[4:0]  
Not used.  
-
-
Revision 3.02/November 2005 © Semtech Corp.  
Page86  
www.semtech.com  
ACS8530 SETS  
ADVANCED COMMUNICATIONS  
FINAL  
DATASHEET  
Address (hex): 39  
Register Name cnfg_digtial_frequencies  
Description  
Bit 4  
(R/W) Configures the actual  
frequencies of Digital1 & Digital2.  
Default Value  
Bit 1  
0000 1000  
Bit 7  
Bit 6  
Bit 5  
Bit 3  
Bit 2  
Bit 0  
digital2_frequency  
digital1_frequency  
Bit No.  
Description  
Bit Value  
Value Description  
[7:6]  
digital2_frequency  
00  
01  
10  
11  
Digital2 set to 1544 kHz or 2048 kHz.  
Digital2 set to 3088 kHz or 4096 kHz.  
Digital2 set to 6176 kHz or 8192 kHz.  
Digital2 set to 12353 kHz or 16384 kHz.  
Configures the frequency of Digital2. Whether this is  
SONET or SDH based is configured by Bit 6  
(dig2_sonsdh) of Reg. 38.  
[5:4]  
[3:0]  
digital1_frequency  
00  
01  
10  
11  
Digital1 set to 1544 kHz or 2048 kHz.  
Digital1 set to 3088 kHz or 4096 kHz.  
Digital1 set to 6176 kHz or 8192 kHz.  
Digital1 set to 12353 kHz or 16384 kHz.  
Configures the frequency of Digital1. Whether this is  
SONET or SDH based is configured by Bit 5  
(dig1_sonsdh) of Reg. 38.  
Not used.  
Address (hex): 3A  
Register Name cnfg_differential_outputs  
Description  
(R/W) Configures the electrical  
compatibility of the differential  
output drivers to be 3 V PECL or  
3 V LVDS.  
Default Value  
1100 0110  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
TO7_PECL_LVDS  
TO6_LVDS_PECL  
Bit No.  
Description  
Bit Value  
Value Description  
[7:4]  
[3:2]  
Not used.  
-
-
TO7_PECL_LVDS  
Selection of the electrical compatibility of TO7  
between 3 V PECL and 3 V LVDS.  
00  
01  
10  
11  
Output TO7 disabled.  
Output T07 3 V PECL compatible.  
Output TO7 3 V LVDS compatible.  
Not used.  
[1:0]  
TO6_LVDS_PECL  
Selection of the electrical compatibility of TO6  
between 3 V PECL and 3 V LVDS.  
00  
01  
10  
11  
Output TO6 disabled.  
Output T06 3 V PECL compatible.  
Output TO6 3 V LVDS compatible.  
Not used.  
Revision 3.02/November 2005 © Semtech Corp.  
Page87  
www.semtech.com  
ACS8530 SETS  
ADVANCED COMMUNICATIONS  
FINAL  
DATASHEET  
Address (hex): 3B  
Register Name cnfg_auto_bw_sel  
Description  
Bit 4  
(R/W) Register to select  
automatic BW selection for the T0  
DPLL path  
Default Value  
Bit 1  
1111 1011  
Bit 7  
Bit 6  
Bit 5  
Bit 3  
Bit 2  
Bit 0  
auto_BW_sel  
T0_lim_int  
Bit No.  
Description  
Bit Value  
Value Description  
7
auto_BW_sel  
Bit to select locked bandwidth (Reg. 67) or  
1
Automatically selects either locked or acquisition  
bandwidth as appropriate  
acquisition bandwidth (Reg. 69) for the T0 DPLL  
0
-
Always selects locked bandwidth  
[6:4]  
3
Not used.  
-
T0_lim_int  
1
0
DPLL value frozen  
DPLL not frozen  
When set to 1 the integral path value of the DPLL is  
limited or frozen when the DPLL reaches either min  
or max frequency. This can be used to minimize  
subsequent overshoot when the DPLL is pulling in.  
Note that when this happens, the reported  
frequency value via sts_current_DPLL_frequency  
(Reg. 0C, 0D and 07) is also frozen.  
[2:0]  
Not used.  
-
-
Address (hex): 3C  
Register Name cnfg_nominal_frequency  
Description  
(R/W) Bits [7:0] of the register  
used to calibrate the crystal  
oscillator used to clock the  
device.  
Default Value  
1001 1001  
[7:0]  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
cnfg_nominal_frequency_value[7:0]  
Bit No.  
Description  
Bit Value  
Value Description  
[7:0]  
cnfg_nominal_frequency_value[7:0]  
-
See register description of Reg. 3D  
(cnfg_nominal_frequency_value[15:8]).  
Revision 3.02/November 2005 © Semtech Corp.  
Page88  
www.semtech.com  
ACS8530 SETS  
ADVANCED COMMUNICATIONS  
FINAL  
DATASHEET  
Address (hex): 3D  
Register Name cnfg_nominal_frequency  
Description  
(R/W) Bits [15:8] of the register  
Default Value  
1001 1001  
[15:8]  
used to calibrate the crystal  
oscillator used to clock the  
device.  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
cnfg_nominal_frequency_value[15:8]  
Bit No.  
Description  
Bit Value  
Value Description  
[7:0]  
cnfg_nominal_frequency_value[15:8]  
-
In order to program the ppm offset of the crystal  
oscillator frequency, the value in Reg. 3C and  
Reg. 3D need to be concatenated. This value is an  
unsigned integer. The value multiplied by  
0.0196229 dec will give the value in ppm. To  
calculate the absolute value, the default 39321  
(9999 hex) needs to be subtracted.  
This register is used in conjunction with Reg. 3C  
(cnfg_nominal_frequency_value[7:0]) to be able to  
offset the frequency of the crystal oscillator by up to  
+514 ppm and –771 ppm. The default value  
represents 0ppm offset from 12.800 MHz.  
This value is an unsigned integer.  
The value in Reg. 3C/3D is used within the DPLL to  
offset the frequency value used in the DPLL only.  
This means that the value programmed will affect  
the value reported in the  
sts_current_DPLL_frequency (Reg 07/0D/0C). It  
will also affect the value programmed into  
holdover_frequency_value in the  
cnfg_holdover_frequency register (Reg 3E/3F/40)  
and the DPLL frequency offset limit programmed  
into the cnfg_DPLL_freq_limit (Reg 41/42). It must  
be noted, however, that this “calibrated” frequency  
is NOT used in the frequency monitors affecting  
Regs 49, 4A, 4C & 4D. These registers  
(cnfg_freq_mon_threshold,  
cnfg_current_freq_mon_ threshold,  
sts_freq_measurement, cnfg_DPLL_soft_limit)  
which all use the uncalibrated crystal frequency.  
The frequency monitors can also use the clock from  
the output of the DPLL by programming bit  
freq_mon_clock in cnfg_monitors (Reg 48).  
Revision 3.02/November 2005 © Semtech Corp.  
Page89  
www.semtech.com  
ACS8530 SETS  
ADVANCED COMMUNICATIONS  
FINAL  
DATASHEET  
Address (hex): 3E  
Register Name cnfg_holdover_frequency  
Description  
Bit 4  
(R/W) Bits [7:0] of the manual  
Holdover frequency register.  
Default Value  
Bit 1  
0000 0000  
[7:0]  
Bit 7  
Bit 6  
Bit 5  
Bit 3  
Bit 2  
Bit 0  
holdover_frequency_value[7:0]  
Bit No.  
Description  
Bit Value  
Value Description  
[7:0]  
holdover_frequency_value[7:0]  
-
See Reg. 3F (cnfg_holdover_frequency) for details.  
Address (hex): 3F  
Register Name cnfg_holdover_frequency  
Description  
Bit 4  
(R/W) Bits [15:8] of the manual  
Holdover frequency register.  
Default Value  
Bit 1  
0000 0000  
[15:8]  
Bit 7  
Bit 6  
Bit 5  
Bit 3  
Bit 2  
Bit 0  
holdover_frequency_value[15:8]  
Bit No.  
Description  
Bit Value  
Value Description  
[7:0]  
holdover_frequency_value[15:8]  
-
In order to calculate the Holdover ppm offset of the  
DPLL with respect to the crystal oscillator frequency,  
the value in Reg. 3E and Bits [2:0] of Reg. 40 need  
to be concatenated. This value is a 2’s complement  
signed integer. The value multiplied by 0.0003068  
dec will give the value in ppm.  
This value in this register is combined with the value  
in Reg. 3E and Bits [2:0] of Reg. 40 to represent the  
programmed Holdover frequency of the T0 DPLL.  
This register is designed such that software can  
read the sts_current_DPLL_frequency register  
(Reg. 0C, Reg. 0D and Reg. 07) and filter the value.  
The result will then be in a suitable format to simply  
write back to the cnfg_holdover_frequency register.  
*This register can be programmed to read back the  
internally averaged Holdover frequency rather than  
the programmed value, see Bit 5 of Reg. 40  
cnfg_holdover_modes.  
Revision 3.02/November 2005 © Semtech Corp.  
Page90  
www.semtech.com  
ACS8530 SETS  
ADVANCED COMMUNICATIONS  
FINAL  
DATASHEET  
Address (hex): 40  
Register Name cnfg_holdover_modes  
Description  
Bit 4  
(R/W) Register to control the  
Holdover modes of the T0 DPLL.  
Default Value  
Bit 1  
1000 1000  
Bit 7  
Bit 6  
Bit 5  
Bit 3  
Bit 2  
Bit 0  
auto_averaging fast_averaging read_average  
mini_holdover_mode  
Bit Value  
holdover_frequency_value [18:16]  
Value Description  
Bit No.  
Description  
7
auto_averaging  
0
1
Averaged frequency not used, Holdover frequency  
either manual or instantaneously frozen.  
Averaged frequency used, providing manual  
Holdover mode is not engaged.  
Bit to enable the use of the averaged frequency  
value during Holdover. This bit is overridden by the  
manual Holdover control (Bit 4, man_holdover, in  
Reg. 34).  
6
5
fast_averaging  
0
1
Slow Holdover frequency averaging enabled.  
Fast Holdover frequency averaging enabled.  
Bit to control the rate of averaging of the Holdover  
frequency. Fast averaging gives a -3db response  
point of approximately 8 minutes. Slow averaging  
give a -3db response point of approximately 110  
minutes.  
read_average  
0
1
Value read from a holdover_frequency_value is the  
value written to it.  
Value read from a holdover_frequency_value is  
either the fast or slow averaged frequency as  
determined by fast_averaging.  
Bit to control whether the value read from the  
holdover_frequency_value register is the value  
written to that register, or the averaged Holdover  
frequency. This allows software to use the internal  
averager as part of the Holdover algorithm, but use  
manual Holdover mode plus software to enhance  
the performance.  
[4:3]  
mini_holdover_mode  
00  
Mini-holdover frequency determined in the same  
way as for full Holdover mode.  
Mini-holdover frequency frozen instantaneously.  
Mini-holdover frequency taken from fast averager.  
Mini-holdover frequency taken from slow averager.  
Mini-holdover is a term used to describe the state of  
the DPLL when it is in locked mode, but it has  
temporarily lost its input. This may be a temporary  
state, or last for many seconds whilst an input is  
checked for inactivity. The DPLL behaves exactly as  
in Holdover, and the frequency can be determined  
in the same selection of ways (instantaneously, fast  
averaged or slow averaged).  
01  
10  
11  
[2:0]  
holdover_frequency_value [18:16]  
-
See Reg. 3F (cnfg_holdover_frequency) for details.  
Revision 3.02/November 2005 © Semtech Corp.  
Page91  
www.semtech.com  
ACS8530 SETS  
ADVANCED COMMUNICATIONS  
FINAL  
DATASHEET  
Address (hex): 41  
Register Name cnfg_DPLL_freq_limit  
Description  
Bit 4  
(R/W) Bits [7:0] of the DPLL  
frequency limit register.  
Default Value  
Bit 1  
0111 0110  
[7:0]  
Bit 7  
Bit 6  
Bit 5  
Bit 3  
Bit 2  
Bit 0  
DPLL_freq_limit_value[7:0]  
Bit No.  
Description  
Bit Value  
Value Description  
[7:0]  
DPLL_freq_limit_value[7:0]  
-
In order to calculate the frequency limit in ppm,  
Bits [1:0] of Reg. 42 and Bits [7:0] of Reg. 41 need  
to be concatenated. This value is a unsigned integer  
and represents limit both positive and negative in  
ppm. The value multiplied by 0.078 will give the  
value in ppm.  
This register defines the extent of frequency offset  
to which either the T0 or the T4 DPLL will track a  
source before limiting- i.e. it represents the pull-in  
range of the DPLLs. The offset of the device is  
determined by the frequency offset of the DPLL  
when compared to the offset of the external crystal  
oscillator clocking the device. If the oscillator is  
calibrated using cnfg_nominal_frequency Reg. 3C  
and 3D, then this calibration is automatically taken  
into account. The DPLL frequency limit limits the  
offset of the DPLL when compared to the calibrated  
oscillator frequency.  
Address (hex): 42  
Register Name cnfg_DPLL_freq_limit  
Description  
Bit 4  
(R/W) Bits [9:8] of the DPLL  
frequency limit register.  
Default Value  
Bit 1  
0000 0000  
[9:8]  
Bit 7  
Bit 6  
Bit 5  
Bit 3  
Bit 2  
Bit 0  
DPLL_freq_limit_value[9:8]  
Bit No.  
Description  
Bit Value  
Value Description  
[7:2]  
[1:0]  
Not used.  
-
-
-
DPLL_freq_limit_value[9:8]  
See Reg. 41 (cnfg_DPLL_freq_limit) for details.  
Revision 3.02/November 2005 © Semtech Corp.  
Page92  
www.semtech.com  
ACS8530 SETS  
ADVANCED COMMUNICATIONS  
FINAL  
DATASHEET  
Address (hex): 43  
Register Name cnfg_interrupt_mask  
Description  
(R/W) Bits [7:0] of the interrupt  
Default Value  
0000 0000  
[7:0]  
mask register.  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
I8  
I7  
I6  
I5  
I4  
I3  
I2  
I1  
Bit No.  
Description  
Bit Value  
Value Description  
7
I8  
0
1
Input I8 cannot generate interrupts.  
Input I8 can generate interrupts.  
Mask bit for input I8 interrupt.  
6
5
4
3
2
1
0
I7  
0
1
Input I7 cannot generate interrupts.  
Input I7 can generate interrupts.  
Mask bit for input I7 interrupt.  
I6  
0
1
Input I6 cannot generate interrupts.  
Input I6 can generate interrupts.  
Mask bit for input I6 interrupt.  
I5  
0
1
Input I5 cannot generate interrupts.  
Input I5 can generate interrupts.  
Mask bit for input I5 interrupt.  
I4  
0
1
Input I4 cannot generate interrupts.  
Input I4 can generate interrupts.  
Mask bit for input I4 interrupt.  
I3  
0
1
Input I3 cannot generate interrupts.  
Input I3 can generate interrupts.  
Mask bit for input I3 interrupt.  
I2  
0
1
Input I2 cannot generate interrupts.  
Input I2 can generate interrupts.  
Mask bit for input I2 interrupt.  
I1  
0
1
Input I1 cannot generate interrupts.  
Input I1 can generate interrupts.  
Mask bit for input I1 interrupt.  
Address (hex): 44  
Register Name cnfg_interrupt_mask  
Description  
(R/W) Bits [15:8] of the interrupt Default Value  
0000 0000  
[15:8]  
mask register.  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
operating_  
mode  
main_ref_failed I14  
I13  
I12  
I11  
I10  
I9  
Bit No.  
Description  
Bit Value  
Value Description  
7
operating_mode  
Mask bit for operating_mode interrupt.  
0
1
Operating mode cannot generate interrupts.  
Operating mode can generate interrupts.  
6
5
main_ref_failed  
Mask bit for main_ref_failed interrupt.  
0
1
Main reference failure cannot generate interrupts.  
Main reference failure can generate interrupts.  
I14  
0
1
Input I14 cannot generate interrupts.  
Input I14 can generate interrupts.  
Mask bit for input I14 interrupt.  
Revision 3.02/November 2005 © Semtech Corp.  
Page93  
www.semtech.com  
ACS8530 SETS  
ADVANCED COMMUNICATIONS  
FINAL  
DATASHEET  
Address (hex): 44 (cont...)  
Register Name cnfg_interrupt_mask  
Description  
(R/W) Bits [15:8] of the interrupt Default Value  
mask register.  
0000 0000  
[15:8]  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
operating_  
mode  
main_ref_failed I14  
I13  
I12  
I11  
I10  
I9  
Bit No.  
Description  
Bit Value  
Value Description  
4
I13  
0
1
Input I13 cannot generate interrupts.  
Input I13 can generate interrupts.  
Mask bit for input I13 interrupt.  
3
2
1
0
I12  
0
1
Input I12 cannot generate interrupts.  
Input I12 can generate interrupts.  
Mask bit for input I12 interrupt.  
I11  
0
1
Input I11 cannot generate interrupts.  
Input I11 can generate interrupts.  
Mask bit for input I11 interrupt.  
I10  
0
1
Input I10 cannot generate interrupts.  
Input I10 can generate interrupts.  
Mask bit for input I10 interrupt.  
I9  
0
1
Input I9 cannot generate interrupts.  
Input I9 can generate interrupts.  
Mask bit for input I9 interrupt.  
Address (hex): 45  
Register Name cnfg_interrupt_mask  
Description  
Bit 4  
(R/W) Bits [23:16] of the interrupt Default Value  
mask register.  
0000 0000  
[23:16]  
Bit 7  
Bit 6  
Bit 5  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Sync_ip_alarm T4_status  
phasemon_  
alarm  
T4_inputs_  
failed  
AMI2_Viol  
AMI2_LOS  
AMI1_Viol  
AMI1_LOS  
Bit No.  
Description  
Bit Value  
Value Description  
7
Sync_ip_alarm  
Mask bit for Sync_ip_alarm interrupt.  
0
1
The external sync input cannot generate interrupts.  
The external sync input can generate interrupts.  
6
5
4
3
2
T4_status  
Mask bit for T4_status interrupt.  
0
1
Change in T4 status cannot generate interrupts.  
Change in T4 status can generate interrupts.  
phasemon_alarm  
Mask bit for phasemon_alarm interrupt.  
0
1
Phase monitor alarm cannot generate interrupts.  
Phase monitor alarm can generate interrupts.  
T4_inputs_failed  
Mask bit for T4_inputs_failed interrupt.  
0
1
Failure of T4 inputs cannot generate interrupts.  
Failure of T4 inputs can generate interrupts.  
AMI2_Viol  
Mask bit for AMI2_Viol interrupt.  
0
1
Input I2 cannot generate AMI violation interrupts.  
Input I2 can generate AMI violation interrupts.  
AMI2_LOS  
Mask bit for AMI2_LOS interrupt.  
0
1
Input I2 cannot generate AMI LOS interrupts.  
Input I2 can generate AMI LOS interrupts.  
Revision 3.02/November 2005 © Semtech Corp.  
Page94  
www.semtech.com  
ACS8530 SETS  
ADVANCED COMMUNICATIONS  
FINAL  
DATASHEET  
Address (hex): 45 (cont...)  
Register Name cnfg_interrupt_mask  
Description  
Bit 4  
(R/W) Bits [23:16] of the interrupt Default Value  
mask register.  
0000 0000  
[23:16]  
Bit 7  
Bit 6  
Bit 5  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Sync_ip_alarm T4_status  
phasemon_  
alarm  
T4_inputs_  
failed  
AMI2_Viol  
AMI2_LOS  
AMI1_Viol  
AMI1_LOS  
Bit No.  
Description  
Bit Value  
Value Description  
1
AMI1_Viol  
Mask bit for AMI1_Viol interrupt.  
0
1
Input I1 cannot generate AMI violation interrupts.  
Input I1 can generate AMI violation interrupts.  
0
AMI1_LOS  
Mask bit for AMI1_LOS interrupt.  
0
1
Input I1 cannot generate AMI LOS interrupts.  
Input I1 can generate AMI LOS interrupts.  
Address (hex): 46  
Register Name cnfg_freq_divn  
Description  
Bit 4  
(R/W) Bits [7:0] of the division  
factor for inputs using the DivN  
feature.  
Default Value  
Bit 1  
1111 1111  
[7:0]  
Bit 7  
Bit 6  
Bit 5  
Bit 3  
divn_value[7:0]  
Bit 2  
Bit 0  
Bit No.  
Description  
Bit Value  
Value Description  
[7:0]  
divn_value[7:0]  
-
See Reg. 47 (cnfg_freq_divn) for details.  
Address (hex): 47  
Register Name cnfg_freq_divn  
Description  
Bit 4  
(R/W) Bits [13:8] of the division  
factor for inputs using the DivN  
feature.  
Default Value  
Bit 1  
0011 1111  
[13:8]  
Bit 7  
Bit 6  
Bit 5  
Bit 3  
Bit 2  
Bit 0  
divn_value[13:8]  
Bit No.  
Description  
Bit Value  
Value Description  
[7:6]  
Not used.  
-
-
Revision 3.02/November 2005 © Semtech Corp.  
Page95  
www.semtech.com  
ACS8530 SETS  
ADVANCED COMMUNICATIONS  
FINAL  
DATASHEET  
Address (hex): 47 (cont...)  
Register Name cnfg_freq_divn  
Description  
Bit 4  
(R/W) Bits [13:8] of the division  
factor for inputs using the DivN  
feature.  
Default Value  
Bit 1  
0011 1111  
[13:8]  
Bit 7  
Bit 6  
Bit 5  
Bit 3  
Bit 2  
Bit 0  
divn_value[13:8]  
Bit No.  
Description  
Bit Value  
Value Description  
[5:0]  
divn_value[13:8]  
This register, in conjunction with Reg. 46  
-
The input frequency will be divided by the value in  
this register plus 1. i.e. to divide by 8, program a  
value of 7.  
(cnfg_freq_divn) represents the integer value by  
which to divide inputs that use the DivN pre-divider.  
The divn feature supports input frequencies up to a  
maximum of 100 MHz; therefore, the maximum  
value that should be written to this register is 30D3  
hex (12499 dec). Use of higher DivN values may  
result in unreliable behavior.  
Address (hex): 48  
Register Name cnfg_monitors  
Description  
(R/W) Configuration register  
controlling several input  
monitoring and switching options.  
Default Value  
Bit 1  
0000 0101*  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
PBO_en  
Bit 0  
freq_mon_clk  
los_flag_on_  
TDO  
ultra_fast_  
switch  
ext_switch  
PBO_freeze  
freq_monitor_  
soft_enable  
freq_monitor_  
hard_enable  
Bit No.  
Description  
Bit Value  
Value Description  
7
freq_mon_clk  
0
1
Frequency monitors clocked by output of TO DPLL.  
Frequency monitors clocked by crystal oscillator  
frequency.  
Bit to select the source of the clock to the frequency  
monitors to be either from the output clock or  
directly from the crystal oscillator.  
6
5
los_flag_on_TDO  
0
1
Normal mode, TDO complies with IEEE 1149.1.  
TDO pin used to indicate the state of the  
main_ref_fail interrupt status. This allows a system  
to have a hardware indication of a source failure  
very rapidly.  
Bit to select whether the main_ref_fail interrupt  
from the T0 DPLL is flagged on the TDO pin. If  
enabled this will not strictly conform to the IEEE  
1149.1 JTAG standard for the function of the TDO  
pin. When enabled the TDO pin will simply mimic the  
state of the main_ref_fail interrupt status bit.  
ultra_fast_switch  
0
1
Currently selected source only disqualified by Leaky  
Bucket or frequency monitors.  
Currently selected source disqualified after less  
than 3 missing input cycles.  
Bit to enable ultra-fast switching mode. When in this  
mode, the device will disqualify a locked-to source  
as soon as it detects a few missing input cycles.  
Revision 3.02/November 2005 © Semtech Corp.  
Page96  
www.semtech.com  
ACS8530 SETS  
ADVANCED COMMUNICATIONS  
FINAL  
DATASHEET  
Address (hex): 48 (cont...)  
Register Name cnfg_monitors  
Description  
(R/W) Configuration register  
Default Value  
0000 0101*  
controlling several input  
monitoring and switching options.  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
PBO_en  
Bit 1  
Bit 0  
freq_mon_clk  
los_flag_on_  
TDO  
ultra_fast_  
switch  
ext_switch  
PBO_freeze  
freq_monitor_  
soft_enable  
freq_monitor_  
hard_enable  
Bit No.  
Description  
Bit Value  
Value Description  
4
ext_switch  
0
1
Normal operation mode.  
Bit to enable external switching mode. When in  
external switching mode, the device is only allowed  
to lock to a pair of sources. If the programmed  
priority of input I3 is non-zero, then the SRCSWIT pin  
is High, the device will be forced to lock to input I3  
regardless of the signal present on that input. If the  
programmed priority of input I3 is zero, then it will  
be forced to lock to input I5 instead. If the  
External source switching mode enabled. Operating  
mode of the device is always forced to be “locked”  
when in this mode.  
programmed priority of input I4 is non-zero, then the  
SRCSW pin is Low, the device will be forced to lock  
to input I4 regardless of the signal present on that  
input. If the programmed priority of input I4 is zero,  
then it will be forced to lock to input I6 instead.  
* The default value of this bit is dependent on the  
value of the SRCSW pin at power-up.  
3
PBO_freeze  
0
1
Phase Build-out not frozen.  
Phase Build-out frozen, no further Phase Build-out  
events will occur.  
Bit to control the freezing of Phase Build-out  
operation. If Phase Build-out has been enabled and  
there have been some source switches, then the  
input-output phase relationship of the T0 DPLL is  
unknown. If Phase Build-out is no longer required,  
then it can be frozen. This will maintain the current  
input-output phase relationship, but not allow  
further Phase Build-out events to take place. Simply  
disabling Phase Build-out could cause a phase shift  
in the output, as the T0 DPLL re-locks the phase to  
zero degrees.  
2
PBO_en  
0
1
Phase Build-out not enabled. T0 DPLL locks to zero  
degrees phase.  
Phase Build-out enabled on source switching.  
Bit to enable Phase Build-out events on source  
switching. When enabled a Phase Build-out event is  
triggered every time the T0 DPLL selects a new  
source- this includes exiting the Holdover or Free-  
run states.  
1
0
freq_monitor_soft_enable  
Control to enable frequency monitoring of input  
reference sources using soft frequency alarms.  
0
1
Soft frequency monitor alarms disabled.  
Soft frequency monitor alarms enabled.  
freq_monitor_hard_enable  
Control to enable frequency monitoring of input  
reference sources using hard frequency alarms.  
0
1
Hard frequency monitor alarms disabled.  
Hard frequency monitor alarms enabled.  
Revision 3.02/November 2005 © Semtech Corp.  
Page97  
www.semtech.com  
ACS8530 SETS  
ADVANCED COMMUNICATIONS  
FINAL  
DATASHEET  
Address (hex): 49  
Register Name cnfg_freq_mon_threshold  
Description  
(R/W) Register to set both the  
Default Value  
0010 0011  
hard and soft frequency alarm  
limits for the monitors on the  
input reference sources.  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
soft_frequency_alarm_threshold  
Description  
hard_frequency_alarm_threshold  
Bit No.  
Bit Value  
Value Description  
[7:4]  
soft_frequency_alarm_threshold  
Threshold to trigger the soft frequency alarms in the  
sts_reference_sources registers.  
-
To calculate the limit in ppm, add one to the 4-bit  
value in the register, and multiply by 3.81 ppm. The  
limit is symmetrical about zero. A value of 0010 bin  
corresponds to an alarm limit of ±11.43 ppm.  
This is only used for monitoring.  
[3:0]  
hard_frequency_alarm_threshold  
To calculate the limit in ppm, add one to the 4-bit  
value in the register, and multiply by 3.81 ppm. The  
limit is symmetrical about zero. A value of 0011 bin  
corresponds to an alarm limit of ±15.24 ppm.  
Threshold to trigger the hard frequency alarms in  
the sts_reference_sources registers, which can  
cause a reference source rejection.  
Address (hex): 4A  
Register Name cnfg_current_freq_mon_  
Description  
(R/W) Register to set both the  
hard and soft frequency alarm  
limits for the monitors on the  
currently selected reference  
source.  
Default Value  
0010 0011  
threshold  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
current_soft_frequency_alarm_threshold  
current_hard_frequency_alarm_threshold  
Bit No.  
Description  
Bit Value  
Value Description  
[7:4]  
current_soft_frequency_alarm_threshold  
Threshold to trigger the soft frequency alarm in the  
sts_reference_sources register applying to the  
currently selected source.The currently selected  
source can be monitored for frequency using  
different limits to all other sources.  
-
To calculate the limit in ppm, add one to the 4-bit  
value in the register, and multiply by 3.81 ppm. The  
limit is symmetrical about zero. A value of 0010 bin  
corresponds to an alarm limit of ±11.43 ppm.  
[3:0]  
current_hard_frequency_alarm_threshold  
Threshold to trigger the hard frequency alarm in the  
sts_reference_sources register applying to the  
currently selected source.  
To calculate the limit in ppm, add one to the 4-bit  
value in the register, and multiply by 3.81 ppm. The  
limit is symmetrical about zero. A value of 0011 bin  
corresponds to an alarm limit of ±15.24 ppm.  
Revision 3.02/November 2005 © Semtech Corp.  
Page98  
www.semtech.com  
ACS8530 SETS  
ADVANCED COMMUNICATIONS  
FINAL  
DATASHEET  
Address (hex): 4B  
Register Name cnfg_registers_source_select  
Description  
(R/W) Register to select the  
source of many of the registers.  
Default Value  
Bit 1  
0000 0000  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 0  
T4_T0_select  
frequency_measurement_channel_select  
Bit No.  
Description  
Bit Value  
Value Description  
[7:5]  
4
Not used.  
-
-
T4_T0_select  
Bit to select between the T0 and T4 path for:  
Reg. 0A, 0B (sts_priority_table)  
0
1
T0 path registers selected.  
T4 path registers selected.  
Reg. 0C, 0D and 07 (sts_current_DPLL_frequency)  
Reg. 18 to 1E (cnfg_ref_selection_priority)  
Reg. 77, 78 (sts_current_phase)  
[3:0]  
frequency_measurement_channel_select  
Register to select which input channel the  
frequency measurement result in Reg. 4C  
(sts_freq_measurement) is taken from.  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
Not used- refers to no input channel.  
Frequency measurement taken from input I1.  
Frequency measurement taken from input I2.  
Frequency measurement taken from input I3.  
Frequency measurement taken from input I4.  
Frequency measurement taken from input I5.  
Frequency measurement taken from input I6.  
Frequency measurement taken from input I7.  
Frequency measurement taken from input I8.  
Frequency measurement taken from input I9.  
Frequency measurement taken from input I10.  
Frequency measurement taken from input I11.  
Frequency measurement taken from input I12.  
Frequency measurement taken from input I13.  
Frequency measurement taken from input I14.  
Not used- refers to no input channel.  
Revision 3.02/November 2005 © Semtech Corp.  
Page99  
www.semtech.com  
ACS8530 SETS  
ADVANCED COMMUNICATIONS  
FINAL  
DATASHEET  
Address (hex): 4C  
Register Name sts_freq_measurement  
Description  
Bit 4  
(R/W) Register from which the  
frequency measurement result  
can be read.  
Default Value  
Bit 1  
0000 0000  
Bit 7  
Bit 6  
Bit 5  
Bit 3  
Bit 2  
Bit 0  
freq_measurement_value  
Bit No.  
Description  
Bit Value  
Value Description  
[7:0]  
freq_measurement_value  
-
This is an 8-bit 2’s complement signed integer. To  
calculate the offset in ppm of the selected input  
channel, this value should be multiplied by  
3.81 ppm.  
This represents the value of the frequency  
measurement on the channel number selected in  
Reg. 4B (cnfg_registers_source_select). This value  
will represent the offset in frequency from the clock  
to the frequency monitors. This can be either the  
crystal oscillator to the device, or the output of the  
T0 DPLL as selected in Bit 7 (freq_mon_clk) of  
Reg. 48 cnfg_monitors.  
Address (hex): 4D  
Register Name cnfg_DPLL_soft_limit  
Description  
(R/W) Register to program the  
soft frequency limit of the two  
DPLLs. Exceeding this limit will  
have no effect beyond triggering a  
flag.  
Default Value  
1000 1110  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
freq_lim_ph_  
loss  
DPLL_soft_limit_value  
Bit No.  
Description  
Bit Value  
Value Description  
7
freq_lim_ph_loss  
0
1
Phase lost/locked determined normally.  
Phase lost forced when DPLL tracks to hard limit.  
Bit to enable the phase lost indication when the  
DPLL hits its hard frequency limit as programmed in  
Reg. 41 and Reg. 42 (cnfg_DPLL_freq_limit). This  
results in the DPLL entering the phase lost state any  
time the DPLL tracks to the extent of its hard limit.  
[6:0]  
DPLL_soft_limit_value  
-
To calculate the ppm offset multiply this 7-bit value  
by 0.628 ppm. The limit is symmetrical about zero.  
A value of 0001110 bin is equivalent to  
± 8.79 ppm.  
Register to program to what extent either of the  
DPLLs tracks a source before raising its soft  
frequency alarm flag (Bits 5 and 4 of Reg. 09,  
sts_operating). This offset is compared to the  
crystal oscillator frequency taking into account any  
programmed calibration.  
Revision 3.02/November 2005 © Semtech Corp.  
Page100  
www.semtech.com  
ACS8530 SETS  
ADVANCED COMMUNICATIONS  
FINAL  
DATASHEET  
Address (hex): 50  
Register Name cnfg_upper_threshold_0  
Description  
Bit 4  
(R/W) Register to program the  
activity alarm setting limit for  
Leaky Bucket Configuration 0.  
Default Value  
Bit 1  
0000 0110  
Bit 7  
Bit 6  
Bit 5  
Bit 3  
Bit 2  
Bit 0  
upper_threshold_0_value  
Bit No.  
Description  
Bit Value  
Value Description  
[7:0]  
upper_threshold_0_value  
-
Value at which the Leaky Bucket will raise an  
inactivity alarm.  
The Leaky Bucket operates on a 128 ms cycle. If,  
during a cycle, it detects that an input has either  
failed or has been erratic, then for each cycle in  
which this occurs, the accumulator is incremented  
by 1, and for each period of 1, 2, 4, or 8 cycles, as  
programmed in Reg. 53 (cnfg_decay_rate_0), in  
which this does not occur, the accumulator is  
decremented by 1.  
When the accumulator count reaches the value  
programmed as the upper_threshold_0_value, the  
Leaky Bucket raises an input inactivity alarm.  
Address (hex): 51  
Register Name cnfg_lower_threshold_0  
Description  
Bit 4  
(R/W) Register to program the  
activity alarm resetting limit for  
Leaky Bucket Configuration 0.  
Default Value  
Bit 1  
0000 0100  
Bit 7  
Bit 6  
Bit 5  
Bit 3  
Bit 2  
Bit 0  
lower_threshold_0_value  
Bit No.  
Description  
Bit Value  
Value Description  
[7:0]  
lower_threshold_0_value  
-
Value at which the Leaky Bucket will reset an  
inactivity alarm.  
The Leaky Bucket operates on a 128 ms cycle. If,  
during a cycle, it detects that an input has either  
failed or has been erratic, then for each cycle in  
which this occurs, the accumulator is incremented  
by 1, and for each period of 1, 2, 4, or 8 cycles, as  
programmed in Reg. 53 (cnfg_decay_rate_0), in  
which this does not occur, the accumulator is  
decremented by 1.  
The lower_threshold_0_value is the value at which  
the Leaky Bucket will reset an inactivity alarm.  
Revision 3.02/November 2005 © Semtech Corp.  
Page101  
www.semtech.com  
ACS8530 SETS  
ADVANCED COMMUNICATIONS  
FINAL  
DATASHEET  
Address (hex): 52  
Register Name cnfg_bucket_size_0  
Description  
Bit 4  
(R/W) Register to program the  
maximum size limit for Leaky  
Bucket Configuration 0.  
Default Value  
Bit 1  
0000 1000  
Bit 7  
Bit 6  
Bit 5  
Bit 3  
Bit 2  
Bit 0  
bucket_size_0_value  
Bit Value  
Bit No.  
Description  
Value Description  
[7:0]  
bucket_size_0_value  
-
Value at which the Leaky Bucket will stop  
The Leaky Bucket operates on a 128 ms cycle. If,  
during a cycle, it detects that an input has either  
failed or has been erratic, then for each cycle in  
which this occurs, the accumulator is incremented  
by 1, and for each period of 1, 2, 4, or 8 cycles, as  
programmed in Reg. 53 (cnfg_decay_rate_0), in  
which this does not occur, the accumulator is  
decremented by 1.  
incrementing, even with further inactive periods.  
The number in the Bucket cannot exceed the value  
programmed into this register.  
Address (hex): 53  
Register Name cnfg_decay_rate_0  
Description  
Bit 4  
(R/W) Register to program the  
“decay” or “leak” rate for Leaky  
Bucket Configuration 0.  
Default Value  
Bit 1  
0000 0001  
Bit 7  
Bit 6  
Bit 5  
Bit 3  
Bit 2  
Bit 0  
decay_rate_0_value  
Bit No.  
Description  
Bit Value  
Value Description  
[7:2]  
[1:0]  
Not used.  
-
-
decay_rate_0_value  
00  
01  
10  
11  
Bucket decay rate of 1 every 128 ms.  
Bucket decay rate of 1 every 256 ms.  
Bucket decay rate of 1 every 512 ms.  
Bucket decay rate of 1 every 1024 ms.  
The Leaky Bucket operates on a 128 ms cycle. If,  
during a cycle, it detects that an input has either  
failed or has been erratic, then for each cycle in  
which this occurs, the accumulator is incremented  
by 1, and for each period of 1, 2, 4, or 8 cycles, as  
programmed in this register, in which this does not  
occur, the accumulator is decremented by 1.  
The Leaky Bucket can be programmed to “leak” or  
“decay” at the same rate as the “fill” cycle, or  
effectively at one half, one quarter, or one eighth of  
the fill rate.  
Revision 3.02/November 2005 © Semtech Corp.  
Page102  
www.semtech.com  
ACS8530 SETS  
ADVANCED COMMUNICATIONS  
FINAL  
DATASHEET  
Address (hex): 54  
Register Name cnfg_upper_threshold_1  
Description  
Bit 4  
(R/W) Register to program the  
activity alarm setting limit for  
Leaky Bucket Configuration 1.  
Default Value  
Bit 1  
0000 0110  
Bit 7  
Bit 6  
Bit 5  
Bit 3  
Bit 2  
Bit 0  
upper_threshold_1_value  
Bit No.  
Description  
Bit Value  
Value Description  
[7:0]  
upper_threshold_1_value  
-
Value at which the Leaky Bucket will raise an  
inactivity alarm.  
The Leaky Bucket operates on a 128 ms cycle. If,  
during a cycle, it detects that an input has either  
failed or has been erratic, then for each cycle in  
which this occurs, the accumulator is incremented  
by 1, and for each period of 1, 2, 4, or 8 cycles, as  
programmed in Reg. 57 (cnfg_decay_rate_1), in  
which this does not occur, the accumulator is  
decremented by 1.  
When the accumulator count reaches the value  
programmed as the upper_threshold_1_value, the  
Leaky Bucket raises an input inactivity alarm.  
Address (hex): 55  
Register Name cnfg_lower_threshold_1  
Description  
Bit 4  
(R/W) Register to program the  
activity alarm resetting limit for  
Leaky Bucket Configuration 1.  
Default Value  
Bit 1  
0000 0100  
Bit 7  
Bit 6  
Bit 5  
Bit 3  
Bit 2  
Bit 0  
lower_threshold_1_value  
Bit No.  
Description  
Bit Value  
Value Description  
[7:0]  
lower_threshold_1_value  
-
Value at which the Leaky Bucket will reset an  
inactivity alarm.  
The Leaky Bucket operates on a 128 ms cycle. If,  
during a cycle, it detects that an input has either  
failed or has been erratic, then for each cycle in  
which this occurs, the accumulator is incremented  
by 1, and for each period of 1, 2, 4, or 8 cycles, as  
programmed in Reg. 57 (cnfg_decay_rate_1), in  
which this does not occur, the accumulator is  
decremented by 1.  
The lower_threshold_1_value is the value at which  
the Leaky Bucket will reset an inactivity alarm.  
Revision 3.02/November 2005 © Semtech Corp.  
Page103  
www.semtech.com  
ACS8530 SETS  
ADVANCED COMMUNICATIONS  
FINAL  
DATASHEET  
Address (hex): 56  
Register Name cnfg_bucket_size_1  
Description  
Bit 4  
(R/W) Register to program the  
maximum size limit for Leaky  
Bucket Configuration 1.  
Default Value  
Bit 1  
0000 1000  
Bit 7  
Bit 6  
Bit 5  
Bit 3  
Bit 2  
Bit 0  
bucket_size_1_value  
Bit Value  
Bit No.  
Description  
Value Description  
[7:0]  
bucket_size_1_value  
-
Value at which the Leaky Bucket will stop  
The Leaky Bucket operates on a 128 ms cycle. If,  
during a cycle, it detects that an input has either  
failed or has been erratic, then for each cycle in  
which this occurs, the accumulator is incremented  
by 1, and for each period of 1, 2, 4, or 8 cycles, as  
programmed in Reg. 57 (cnfg_decay_rate_1), in  
which this does not occur, the accumulator is  
decremented by 1.  
incrementing, even with further inactive periods.  
The number in the Bucket cannot exceed the value  
programmed into this register.  
Address (hex): 57  
Register Name cnfg_decay_rate_1  
Description  
Bit 4  
(R/W) Register to program the  
“decay” or “leak” rate for Leaky  
Bucket Configuration 1.  
Default Value  
Bit 1  
0000 0001  
Bit 7  
Bit 6  
Bit 5  
Bit 3  
Bit 2  
Bit 0  
decay_rate_1_value  
Bit No.  
Description  
Bit Value  
Value Description  
[7:2]  
[1:0]  
Not used.  
-
-
decay_rate_1_value  
00  
01  
10  
11  
Bucket decay rate of 1 every 128 ms.  
Bucket decay rate of 1 every 256 ms.  
Bucket decay rate of 1 every 512 ms.  
Bucket decay rate of 1 every 1024 ms.  
The Leaky Bucket operates on a 128 ms cycle. If,  
during a cycle, it detects that an input has either  
failed or has been erratic, then for each cycle in  
which this occurs, the accumulator is incremented  
by 1, and for each period of 1, 2, 4, or 8 cycles, as  
programmed in this register, in which this does not  
occur, the accumulator is decremented by 1.  
The Leaky Bucket can be programmed to “leak” or  
“decay” at the same rate as the “fill” cycle, or  
effectively at one half, one quarter, or one eighth of  
the fill rate.  
Revision 3.02/November 2005 © Semtech Corp.  
Page104  
www.semtech.com  
ACS8530 SETS  
ADVANCED COMMUNICATIONS  
FINAL  
DATASHEET  
Address (hex): 58  
Register Name cnfg_upper_threshold_2  
Description  
Bit 4  
(R/W) Register to program the  
activity alarm setting limit for  
Leaky Bucket Configuration 2.  
Default Value  
Bit 1  
0000 0110  
Bit 7  
Bit 6  
Bit 5  
Bit 3  
Bit 2  
Bit 0  
upper_threshold_2_value  
Bit No.  
Description  
Bit Value  
Value Description  
[7:0]  
upper_threshold_2_value  
-
Value at which the Leaky Bucket will raise an  
inactivity alarm.  
The Leaky Bucket operates on a 128 ms cycle. If,  
during a cycle, it detects that an input has either  
failed or has been erratic, then for each cycle in  
which this occurs, the accumulator is incremented  
by 1, and for each period of 1, 2, 4, or 8 cycles, as  
programmed in Reg. 5B (cnfg_decay_rate_2), in  
which this does not occur, the accumulator is  
decremented by 1.  
When the accumulator count reaches the value  
programmed as the upper_threshold_2_value, the  
Leaky Bucket raises an input inactivity alarm.  
Address (hex): 59  
Register Name cnfg_lower_threshold_2  
Description  
Bit 4  
(R/W) Register to program the  
activity alarm resetting limit for  
Leaky Bucket Configuration 2.  
Default Value  
Bit 1  
0000 0100  
Bit 7  
Bit 6  
Bit 5  
Bit 3  
Bit 2  
Bit 0  
lower_threshold_2_value  
Bit No.  
Description  
Bit Value  
Value Description  
[7:0]  
lower_threshold_2_value  
-
Value at which the Leaky Bucket will reset an  
inactivity alarm.  
The Leaky Bucket operates on a 128 ms cycle. If,  
during a cycle, it detects that an input has either  
failed or has been erratic, then for each cycle in  
which this occurs, the accumulator is incremented  
by 1, and for each period of 1, 2, 4, or 8 cycles, as  
programmed in Reg. 5B (cnfg_decay_rate_2), in  
which this does not occur, the accumulator is  
decremented by 1.  
The lower_threshold_2_value is the value at which  
the Leaky Bucket will reset an inactivity alarm.  
Revision 3.02/November 2005 © Semtech Corp.  
Page105  
www.semtech.com  
ACS8530 SETS  
ADVANCED COMMUNICATIONS  
FINAL  
DATASHEET  
Address (hex): 5A  
Register Name cnfg_bucket_size_2  
Description  
Bit 4  
(R/W) Register to program the  
maximum size limit for Leaky  
Bucket Configuration 2.  
Default Value  
Bit 1  
0000 1000  
Bit 7  
Bit 6  
Bit 5  
Bit 3  
Bit 2  
Bit 0  
bucket_size_2_value  
Bit Value  
Bit No.  
Description  
Value Description  
[7:0]  
bucket_size_2_value  
-
Value at which the Leaky Bucket will stop  
The Leaky Bucket operates on a 128 ms cycle. If,  
during a cycle, it detects that an input has either  
failed or has been erratic, then for each cycle in  
which this occurs, the accumulator is incremented  
by 1, and for each period of 1, 2, 4, or 8 cycles, as  
programmed in Reg. 5B (cnfg_decay_rate_2), in  
which this does not occur, the accumulator is  
decremented by 1.  
incrementing, even with further inactive periods.  
The number in the Bucket cannot exceed the value  
programmed into this register.  
Address (hex): 5B  
Register Name cnfg_decay_rate_2  
Description  
Bit 4  
(R/W) Register to program the  
“decay” or “leak” rate for Leaky  
Bucket Configuration 2.  
Default Value  
Bit 1  
0000 0001  
Bit 7  
Bit 6  
Bit 5  
Bit 3  
Bit 2  
Bit 0  
decay_rate_2_value  
Bit No.  
Description  
Bit Value  
Value Description  
[7:2]  
[1:0]  
Not used.  
-
-
decay_rate_2_value  
00  
01  
10  
11  
Bucket decay rate of 1 every 128 ms.  
Bucket decay rate of 1 every 256 ms.  
Bucket decay rate of 1 every 512 ms.  
Bucket decay rate of 1 every 1024 ms.  
The Leaky Bucket operates on a 128 ms cycle. If,  
during a cycle, it detects that an input has either  
failed or has been erratic, then for each cycle in  
which this occurs, the accumulator is incremented  
by 1, and for each period of 1, 2, 4, or 8 cycles, as  
programmed in this register, in which this does not  
occur, the accumulator is decremented by 1.  
The Leaky Bucket can be programmed to “leak” or  
“decay” at the same rate as the “fill” cycle, or  
effectively at one half, one quarter, or one eighth of  
the fill rate.  
Revision 3.02/November 2005 © Semtech Corp.  
Page106  
www.semtech.com  
ACS8530 SETS  
ADVANCED COMMUNICATIONS  
FINAL  
DATASHEET  
Address (hex): 5C  
Register Name cnfg_upper_threshold_3  
Description  
Bit 4  
(R/W) Register to program the  
activity alarm setting limit for  
Leaky Bucket Configuration 3.  
Default Value  
Bit 1  
0000 0110  
Bit 7  
Bit 6  
Bit 5  
Bit 3  
Bit 2  
Bit 0  
upper_threshold_3_value  
Bit No.  
Description  
Bit Value  
Value Description  
[7:0]  
upper_threshold_3_value  
-
Value at which the Leaky Bucket will raise an  
inactivity alarm.  
The Leaky Bucket operates on a 128 ms cycle. If,  
during a cycle, it detects that an input has either  
failed or has been erratic, then for each cycle in  
which this occurs, the accumulator is incremented  
by 1, and for each period of 1, 2, 4, or 8 cycles, as  
programmed in Reg. 5F (cnfg_decay_rate_3), in  
which this does not occur, the accumulator is  
decremented by 1.  
When the accumulator count reaches the value  
programmed as the upper_threshold_3_value, the  
Leaky Bucket raises an input inactivity alarm.  
Address (hex): 5D  
Register Name cnfg_lower_threshold_3  
Description  
Bit 4  
(R/W) Register to program the  
activity alarm resetting limit for  
Leaky Bucket Configuration 3.  
Default Value  
Bit 1  
0000 0100  
Bit 7  
Bit 6  
Bit 5  
Bit 3  
Bit 2  
Bit 0  
lower_threshold_3_value  
Bit No.  
Description  
Bit Value  
Value Description  
[7:0]  
lower_threshold_3_value  
-
Value at which the Leaky Bucket will reset an  
inactivity alarm.  
The Leaky Bucket operates on a 128 ms cycle. If,  
during a cycle, it detects that an input has either  
failed or has been erratic, then for each cycle in  
which this occurs, the accumulator is incremented  
by 1, and for each period of 1, 2, 4, or 8 cycles, as  
programmed in Reg. 5F (cnfg_decay_rate_3), in  
which this does not occur, the accumulator is  
decremented by 1.  
The lower_threshold_3_value is the value at which  
the Leaky Bucket will reset an inactivity alarm.  
Revision 3.02/November 2005 © Semtech Corp.  
Page107  
www.semtech.com  
ACS8530 SETS  
ADVANCED COMMUNICATIONS  
FINAL  
DATASHEET  
Address (hex): 5E  
Register Name cnfg_bucket_size_3  
Description  
Bit 4  
(R/W) Register to program the  
maximum size limit for Leaky  
Bucket Configuration 3.  
Default Value  
Bit 1  
0000 1000  
Bit 7  
Bit 6  
Bit 5  
Bit 3  
Bit 2  
Bit 0  
bucket_size_3_value  
Bit Value  
Bit No.  
Description  
Value Description  
[7:0]  
bucket_size_3_value  
-
Value at which the Leaky Bucket will stop  
The Leaky Bucket operates on a 128 ms cycle. If,  
during a cycle, it detects that an input has either  
failed or has been erratic, then for each cycle in  
which this occurs, the accumulator is incremented  
by 1, and for each period of 1, 2, 4, or 8 cycles, as  
programmed in Reg. 5F (cnfg_decay_rate_3), in  
which this does not occur, the accumulator is  
decremented by 1.  
incrementing, even with further inactive periods.  
The number in the Bucket cannot exceed the value  
programmed into this register.  
Address (hex): 5F  
Register Name cnfg_decay_rate_3  
Description  
Bit 4  
(R/W) Register to program the  
“decay” or “leak” rate for Leaky  
Bucket Configuration 3.  
Default Value  
Bit 1  
0000 0001  
Bit 7  
Bit 6  
Bit 5  
Bit 3  
Bit 2  
Bit 0  
decay_rate_3_value  
Bit No.  
Description  
Bit Value  
Value Description  
[7:2]  
[1:0]  
Not used.  
-
-
decay_rate_3_value  
00  
01  
10  
11  
Bucket decay rate of 1 every 128 ms.  
Bucket decay rate of 1 every 256 ms.  
Bucket decay rate of 1 every 512 ms.  
Bucket decay rate of 1 every 1024 ms.  
The Leaky Bucket operates on a 128 ms cycle. If,  
during a cycle, it detects that an input has either  
failed or has been erratic, then for each cycle in  
which this occurs, the accumulator is incremented  
by 1, and for each period of 1, 2, 4, or 8 cycles, as  
programmed in this register, in which this does not  
occur, the accumulator is decremented by 1.  
The Leaky Bucket can be programmed to “leak” or  
“decay” at the same rate as the “fill” cycle, or  
effectively at one half, one quarter, or one eighth of  
the fill rate.  
Revision 3.02/November 2005 © Semtech Corp.  
Page108  
www.semtech.com  
ACS8530 SETS  
ADVANCED COMMUNICATIONS  
FINAL  
DATASHEET  
Address (hex): 60  
Register Name cnfg_output_frequency  
Description  
Bit 4  
(R/W) Register to configure and  
enable the frequencies available  
on outputs TO1 and TO2.  
Default Value  
Bit 1  
1000 0101  
(TO1 & TO2)  
Bit 7  
Bit 6  
Bit 5  
Bit 3  
Bit 2  
Bit 0  
output_freq_2  
output_freq_1  
Bit No.  
Description  
Bit Value  
Value Description  
[7:4]  
output_freq_2  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
Output disabled.  
2 kHz.  
8 kHz.  
Digital2 (Reg. 39 cnfg_digital_frequencies).  
Digital1 (Reg. 39 cnfg_digital_frequencies).  
T0 APLL frequency/48.  
T0 APLL frequency/16.  
T0 APLL frequency/12.  
T0 APLL frequency/8.  
T0 APLL frequency/6.  
T0 APLL frequency/4.  
T4 APLL frequency/64.  
T4 APLL frequency/48.  
T4 APLL frequency/16.  
T4 APLL frequency/8.  
T4 APLL frequency/4.  
Configuration of the output frequency available at  
output TO2. Many of the frequencies available are  
dependent on the frequencies of the T0 APLL and  
the T4 APLL. These are configured in Reg. 64 and  
Reg. 65. For more detail see the detailed section on  
configuring the output frequencies.  
[3:0]  
output_freq_1  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
Output disabled.  
2 kHz.  
8 kHz.  
Configuration of the output frequency available at  
output TO1. Many of the frequencies available are  
dependent on the frequencies of the T0 APLL and  
the T4 APLL. These are configured in Reg. 64 and  
Reg. 65. For more detail see the detailed section on  
configuring the output frequencies.  
Digital2 (Reg. 39 cnfg_digital_frequencies).  
Digital1 (Reg. 39 cnfg_digital_frequencies).  
T0 APLL frequency/48.  
T0 APLL frequency/16.  
T0 APLL frequency/12.  
T0 APLL frequency/8.  
T0 APLL frequency/6.  
T0 APLL frequency/4.  
T4 APLL frequency/64.  
T4 APLL frequency/48.  
T4 APLL frequency/16.  
T4 APLL frequency/8.  
T4 APLL frequency/4.  
Revision 3.02/November 2005 © Semtech Corp.  
Page109  
www.semtech.com  
ACS8530 SETS  
ADVANCED COMMUNICATIONS  
FINAL  
DATASHEET  
Address (hex): 61  
Register Name cnfg_output_frequency  
Description  
Bit 4  
(R/W) Register to configure and  
enable the frequencies available  
on outputs TO3 and TO4.  
Default Value  
Bit 1  
1000 0110  
(TO3 & TO4)  
Bit 7  
Bit 6  
Bit 5  
Bit 3  
Bit 2  
Bit 0  
output_freq_4  
output_freq_3  
Bit No.  
Description  
Bit Value  
Value Description  
[7:4]  
output_freq_4  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
Output disabled.  
2 kHz.  
8 kHz.  
Digital2 (Reg. 39 cnfg_digital_frequencies).  
Digital1 (Reg. 39 cnfg_digital_frequencies).  
T0 APLL frequency/48.  
T0 APLL frequency/16.  
T0 APLL frequency/12.  
T0 APLL frequency/8.  
T0 APLL frequency/6.  
T0 APLL frequency/4.  
T4 APLL frequency/2.  
T4 APLL frequency/48.  
T4 APLL frequency/16.  
T4 APLL frequency/8.  
T4 APLL frequency/4.  
Configuration of the output frequency available at  
output TO4. Many of the frequencies available are  
dependent on the frequencies of the T0 APLL and  
the T4 APLL. These are configured in Reg. 64 and  
Reg. 65. For more detail see the detailed section on  
configuring the output frequencies.  
[3:0]  
output_freq_3  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
Output disabled.  
2 kHz.  
8 kHz.  
Configuration of the output frequency available at  
output TO3. Many of the frequencies available are  
dependent on the frequencies of the T0 APLL and  
the T4 APLL. These are configured in Reg. 64 and  
Reg. 65. For more detail see the detailed section on  
configuring the output frequencies.  
Digital2 (Reg. 39 cnfg_digital_frequencies).  
Digital1 (Reg. 39 cnfg_digital_frequencies).  
T0 APLL frequency/48.  
T0 APLL frequency/16.  
T0 APLL frequency/12.  
T0 APLL frequency/8.  
T0 APLL frequency/6.  
T0 APLL frequency/4.  
T4 APLL frequency/64.  
T4 APLL frequency/48.  
T4 APLL frequency/16.  
T4 APLL frequency/8.  
T4 APLL frequency/4.  
Revision 3.02/November 2005 © Semtech Corp.  
Page110  
www.semtech.com  
ACS8530 SETS  
ADVANCED COMMUNICATIONS  
FINAL  
DATASHEET  
Address (hex): 62  
Register Name cnfg_output_frequency  
Description  
Bit 4  
(R/W) Register to configure and  
enable the frequencies available  
on outputs TO5 and TO6.  
Default Value  
Bit 1  
1000 1010  
(TO5 & TO6)  
Bit 7  
Bit 6  
Bit 5  
Bit 3  
Bit 2  
Bit 0  
output_freq_6  
output_freq_5  
Bit No.  
Description  
Bit Value  
Value Description  
[7:4]  
output_freq_6  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
Output disabled.  
2 kHz.  
8 kHz.  
T0 APLL frequency/2.  
Digital1 (Reg. 39 cnfg_digital_frequencies).  
T0 APLL frequency.  
T0 APLL frequency/16.  
T0 APLL frequency/12.  
T0 APLL frequency/8.  
T0 APLL frequency/6.  
T0 APLL frequency/4.  
Configuration of the output frequency available at  
output TO6. Many of the frequencies available are  
dependent on the frequencies of the T0 APLL and  
the T4 APLL. These are configured in Reg. 64 and  
Reg. 65. For more detail see the detailed section on  
configuring the output frequencies.  
T4 APLL frequency/64.  
T4 APLL frequency/48.  
T4 APLL frequency/16.  
T4 APLL frequency/8.  
T4 APLL frequency/4.  
[3:0]  
output_freq_5  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
Output disabled.  
2 kHz.  
8 kHz.  
Configuration of the output frequency available at  
output TO5. Many of the frequencies available are  
dependent on the frequencies of the T0 APLL and  
the T4 APLL. These are configured in Reg. 64 and  
Reg. 65. For more detail see the detailed section on  
configuring the output frequencies.  
Digital2 (Reg. 39 cnfg_digital_frequencies).  
Digital1 (Reg. 39 cnfg_digital_frequencies).  
T0 APLL frequency/48.  
T0 APLL frequency/16.  
T0 APLL frequency/12.  
T0 APLL frequency/8.  
T0 APLL frequency/6.  
T0 APLL frequency/4.  
T4 APLL frequency/2.  
T4 APLL frequency/48.  
T4 APLL frequency/16.  
T4 APLL frequency/8.  
T4 APLL frequency/4.  
Revision 3.02/November 2005 © Semtech Corp.  
Page111  
www.semtech.com  
ACS8530 SETS  
ADVANCED COMMUNICATIONS  
FINAL  
DATASHEET  
Address (hex): 63  
Register Name cnfg_output_frequency  
Description  
(R/W) Register to configure and  
Default Value  
1111 0110  
(TO7 to TO11)  
enable the frequencies available  
on outputs TO7 through to TO11.  
Bit 7  
Bit 6  
Bit 5  
TO9_en  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
MFrSync_en  
FrSync_en  
TO8_en  
output_freq_7  
Value Description  
Bit No.  
Description  
Bit Value  
7
MFrSync_en  
0
1
Output TO11 disabled.  
Output TO11 enabled.  
Register bit to enable the 2 kHz Sync output (TO11).  
6
5
4
FrSync_en  
0
1
Output TO10 disabled.  
Output TO10 enabled.  
Register bit to enable the 8 kHz Sync output (TO10).  
TO9_en  
0
1
Output TO9 disabled.  
Output TO9 enabled.  
Register bit to enable the BITS output from the TO9.  
TO8_en  
0
1
Output TO8 disabled.  
Output TO8 enabled.  
Register bit to enable the AMI composite clock  
output from TO8.  
[3:0]  
output_freq_7  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
Output disabled.  
2 kHz.  
8 kHz.  
Digital2 (Reg. 39 cnfg_digital_frequencies).  
T0 APLL frequency/2.  
T0 APLL frequency/48.  
T0 APLL frequency/16.  
T0 APLL frequency/12.  
T0 APLL frequency/8.  
T0 APLL frequency/6.  
T0 APLL frequency/4.  
T4 APLL frequency/64.  
T4 APLL frequency/48.  
T4 APLL frequency/16.  
T4 APLL frequency/8.  
Configuration of the output frequency available at  
output TO7. Many of the frequencies available are  
dependent on the frequencies of the T0 APLL and  
the T4 APLL. These are configured in Reg. 64 and  
Reg. 65. For more detail see the detailed section on  
configuring the output frequencies.  
T4 APLL frequency/4.  
Revision 3.02/November 2005 © Semtech Corp.  
Page112  
www.semtech.com  
ACS8530 SETS  
ADVANCED COMMUNICATIONS  
FINAL  
DATASHEET  
Address (hex): 64  
Register Name cnfg_T4_DPLL_frequency  
Description  
Bit 4  
(R/W) Register to configure the T4 Default Value  
DPLL and several other  
parameters for the T4 path.  
0000 0001  
Bit 7  
Bit 6  
Bit 5  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Auto_squelch_ AMI_op_duty  
T4  
T4_op_SONSD  
H
T4_DPLL_frequency  
Bit No.  
Description  
Bit Value  
Value Description  
7
6
Not used.  
-
-
Auto_squelch_T4  
Register bit to automatically squelch the T4 outputs  
on TO8 and TO9 when the T4 inputs have failed.  
0
1
Outputs TO8 and TO9 enabled as in Reg. 63.  
Outputs TO8 and TO9 disabled when T4 inputs fail.  
5
4
AMI_op_duty  
Register bit to configure whether the composite  
clock output of TO8 is 50:50 or 5:8 duty cycle.  
0
1
TO8 output 50:50 duty cycle.  
TO8 output 5:8 duty cycle.  
T4_op_SONSDH  
0
1
TO9 output 2.048 MHz (SDH).  
TO9 output 1.544 MHz (SONET).  
Register bit to configure the BITS output on TO9 to  
be either SONET or SDH frequency, only when  
Reg. 35 Bit 4 = 0, otherwise this bit is ignored and  
SONET/SDH selection for TO9 is controlled by  
Reg. 34 Bit 2.  
Default set by SONSDHB pin - same as Reg. 34 Bit  
2.  
3
Not used.  
-
-
[2:0]  
T4_DPLL_frequency  
000  
001  
T4 DPLL mode = squelched (clock off).  
T4 DPLL mode = 77.76 MHz (OC-N rates), giving  
T4 APLL output frequency (before dividers) =  
311.04 MHz.  
Register to configure the frequency of operation of  
the DPLL in the T4 path. The frequency of the DPLL  
will also affect the frequency of the T4 APLL which,  
in turn, affects the frequencies available at outputs  
TO1 - TO7 see Reg. 60 - Reg. 63. It is also possible  
to not use the T4 DPLL at all, but use the T4 APLL to  
run directly from the T0 DPLL output, see Reg. 65  
(cnfg_TO_DPLL_frequency). If any frequencies are  
required from the T4 APLL then the T4 DPLL should  
not be squelched, as the T4 APLL input is squelched  
and the T4 APLL will Free-run.  
010  
011  
100  
101  
110  
111  
T4 DPLL mode = 12E1, giving T4 APLL output  
frequency (before dividers) = 98.304 MHz.  
T4 DPLL mode = 16E1, giving T4 APLL output  
frequency (before dividers) = 131.072 MHz.  
T4 DPLL mode = 24DS1, giving T4 APLL output  
frequency (before dividers) = 148.224 MHz.  
T4 DPLL mode = 16DS1, giving T4 APLL output  
frequency (before dividers) = 98.816 MHz.  
T4 DPLL mode = E3, giving T4 APLL output  
frequency (before dividers) = 274.944 MHz.  
T4 DPLL mode = DS3, giving T4 APLL output  
frequency (before dividers) = 178.944 MHz.  
Revision 3.02/November 2005 © Semtech Corp.  
Page113  
www.semtech.com  
ACS8530 SETS  
ADVANCED COMMUNICATIONS  
FINAL  
DATASHEET  
Address (hex): 65  
Register Name cnfg_T0_DPLL_frequency  
Description  
Bit 4  
(R/W) Register to configure the T0 Default Value  
DPLL and several other  
parameters for the T0 path.  
0000 0001  
Bit 7  
Bit 6  
Bit 5  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
T4_meas_T0_  
ph  
T4_APLL_for_  
T0  
T0_freq_to_T4_APLL  
T0_DPLL_frequency  
Bit No.  
Description  
Bit Value  
Value Description  
7
T4_meas_T0_ph  
0
1
Normal- T4 Path normal operation.  
Register bit to control the feature to use the T4 path  
to measure phase offset from the T0 path. When  
enabled the T4 path is disabled and the phase  
detector is used to measure the phase between the  
input to the T0 DPLL and the selected T4 input.  
T4 DPLL disabled, T4 phase detector used to  
measure phase between selected T0 input and  
selected T4 input.  
6
T4_APLL_for_T0  
0
1
T4 APLL takes its input from the T4 DPLL.  
T4 APLL takes its input from the T0 DPLL.  
Register bit to select whether the T4 APLL takes its  
input from the T4 DPLL or the T0 DPLL. If the T0  
DPLL is selected then the frequency is controlled by  
Bits [5:4], T0_freq_to_T4_APLL.  
[5:4]  
T0_freq_to_T4_APLL  
00  
01  
10  
11  
T0 DPLL mode = 12E1, giving T4 APLL output  
frequency (before dividers) = 98.304 MHz.  
T0 DPLL mode = 16E1, giving T4 APLL output  
frequency (before dividers) = 131.072 MHz.  
T0 DPLL mode = 24DS1, giving T4 APLL output  
frequency (before dividers) = 148.224 MHz.  
T0 DPLL mode = 16DS1, giving T4 APLL output  
frequency (before dividers) = 98.816 MHz.  
Register to select the T0 frequency driven to the T4  
APLL (T0 DPLL mode*) when selected by Bit 6,  
T4_APLL_for_T0; and consequently the APLL output  
frequency in the T4 path.  
*Note that this is not the operating frequency of the  
T0 DPLL itself - which is fixed at outputting  
77.76 MHz - but is the multiplied output from the LF  
Output DFS block. See “PLL Block Diagram” on  
page 33.  
3
Not used.  
-
-
[2:0]  
T0_DPLL_frequency  
000  
T0 DPLL mode = 77.76 MHz, digital feedback,  
T0 APLL output frequency (before dividers) =  
311.04 MHz.  
T0 DPLL mode = 77.76 MHz, analog feedback,  
T0 APLL output frequency (before dividers) =  
311.04 MHz.  
Register to configure the frequency driven to the T0  
APLL (T0 DPLL mode*) and consequently the APLL  
output frequency in the T0 path. This register  
affects the frequencies available at TO1 - TO7 see  
Reg. 60 - Reg. 63.  
001  
*Note that this is not the operating frequency of the  
T0 DPLL itself - which is fixed at outputting  
77.76 MHz - but is the multiplied output from the LF  
Output DFS block. See “PLL Block Diagram” on  
page 33.  
010  
011  
100  
101  
T0 DPLL mode = 12E1, giving T0 APLL output  
frequency (before dividers) = 98.304 MHz.  
T0 DPLL mode = 16E1, giving T0 APLL output  
frequency (before dividers) = 131.072 MHz.  
T0 DPLL mode = 24DS1, giving T0 APLL output  
frequency (before dividers) = 148.224 MHz.  
T0 DPLL mode = 16DS1, giving T0 APLL output  
frequency (before dividers) = 98.816 MHz.  
Not used.  
110  
111  
Not used.  
Revision 3.02/November 2005 © Semtech Corp.  
Page114  
www.semtech.com  
ACS8530 SETS  
ADVANCED COMMUNICATIONS  
FINAL  
DATASHEET  
Address (hex): 66  
Register Name cnfg_T4_DPLL_bw  
Description  
Bit 4  
(R/W) Register to configure the  
bandwidth of the T4 DPLL.  
Default Value  
Bit 1  
0000 0000  
Bit 7  
Bit 6  
Bit 5  
Bit 3  
Bit 2  
Bit 0  
T4_DPLL_bandwidth  
Bit No.  
Description  
Bit Value  
Value Description  
[7:2]  
[1:0]  
Not used.  
-
-
T4_DPLL_bandwidth  
Register to configure the bandwidth of the T4 DPLL.  
00  
01  
10  
11  
T4 DPLL 18 Hz bandwidth.  
T4 DPLL 35 Hz bandwidth.  
T4 DPLL 70 Hz bandwidth.  
Not used.  
Address (hex): 67  
Register Name cnfg_T0_DPLL_locked_bw  
Description  
Bit 4  
(R/W) Register to configure the  
bandwidth of the T0 DPLL, when  
phase locked to an input.  
Default Value  
Bit 1  
0000 1011  
Bit 7  
Bit 6  
Bit 5  
Bit 3  
Bit 2  
Bit 0  
T0_DPLL_locked_bandwidth  
Bit No.  
Description  
Bit Value  
Value Description  
[7:5]  
[4:0]  
Not used.  
-
-
T0_DPLL_locked_bandwidth  
00000  
00001  
00010  
00011  
00100  
00101  
00110  
00111  
01000  
01001  
01010  
01011  
01100  
01101  
01110  
01111  
10000  
10001  
T0 DPLL 0.5 mHz locked bandwidth.  
T0 DPLL 1 mHz locked bandwidth.  
T0 DPLL 2 mHz locked bandwidth.  
T0 DPLL 4 mHz locked bandwidth.  
T0 DPLL 8 mHz locked bandwidth.  
T0 DPLL 15 mHz locked bandwidth.  
T0 DPLL 30 mHz locked bandwidth.  
T0 DPLL 60 mHz locked bandwidth.  
T0 DPLL 0.1 Hz locked bandwidth.  
T0 DPLL 0.3 Hz locked bandwidth.  
T0 DPLL 0.6 Hz locked bandwidth.  
T0 DPLL 1.2 Hz locked bandwidth.  
T0 DPLL 2.5 Hz locked bandwidth.  
T0 DPLL 4 Hz locked bandwidth.  
T0 DPLL 8 Hz locked bandwidth.  
T0 DPLL 18 Hz locked bandwidth.  
T0 DPLL 35 Hz locked bandwidth.  
T0 DPLL 70 Hz locked bandwidth.  
Register to configure the bandwidth of the T0 DPLL  
when locked to an input reference. Reg. 3B Bit 7 is  
used to control whether this bandwidth is used all of  
the time or automatically switched to when phase  
locked.  
10010-11111 Not used.  
Revision 3.02/November 2005 © Semtech Corp.  
Page115  
www.semtech.com  
ACS8530 SETS  
ADVANCED COMMUNICATIONS  
FINAL  
DATASHEET  
Address (hex): 69  
Register Name cnfg_T0_DPLL_acq_bw  
Description  
Bit 4  
(R/W) Register to configure the  
bandwidth of the T0 DPLL, when  
not phase locked to an input.  
Default Value  
Bit 1  
0000 1111  
Bit 7  
Bit 6  
Bit 5  
Bit 3  
Bit 2  
Bit 0  
T0_DPLL_acquisition_bandwidth  
Bit No.  
Description  
Bit Value  
Value Description  
[7:5]  
[4:0]  
Not used.  
-
-
T0_DPLL_acquisition_bandwidth  
00000  
00001  
00010  
00011  
00100  
00101  
00110  
00111  
01000  
01001  
01010  
01011  
01100  
01101  
01110  
01111  
10000  
10001  
T0 DPLL 0.5 mHz acquisition bandwidth.  
T0 DPLL 1 mHz acquisition bandwidth.  
T0 DPLL 2 mHz acquisition bandwidth.  
T0 DPLL 4 mHz acquisition bandwidth.  
T0 DPLL 8 mHz acquisition bandwidth.  
T0 DPLL 15 mHz acquisition bandwidth.  
T0 DPLL 30 mHz acquisition bandwidth.  
T0 DPLL 60 mHz acquisition bandwidth.  
T0 DPLL 0.1 Hz acquisition bandwidth.  
T0 DPLL 0.3 Hz acquisition bandwidth.  
T0 DPLL 0.6 Hz acquisition bandwidth.  
T0 DPLL 1.2 Hz acquisition bandwidth.  
T0 DPLL 2.5 Hz acquisition bandwidth.  
T0 DPLL 4 Hz acquisition bandwidth.  
T0 DPLL 8 Hz acquisition bandwidth.  
T0 DPLL 18 Hz acquisition bandwidth.  
T0 DPLL 35 Hz acquisition bandwidth.  
T0 DPLL 70 Hz acquisition bandwidth.  
Register to configure the bandwidth of the T0 DPLL  
when acquiring phase lock on an input reference.  
Reg. 3B Bit 7 is used to control whether this  
bandwidth is not used or automatically switched to  
when not phase locked.  
10010-11111 Not used.  
Address (hex): 6A  
Register Name cnfg_T4_DPLL_damping  
Description  
(R/W) Register to configure the  
damping factor of the T4 DPLL,  
along with the gain of Phase  
Detector 2 in some modes.  
Default Value  
0001 0011  
Bit 7  
Bit 6  
Bit 5  
T4_PD2_gain_alog_8k  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
T4_damping  
Bit No.  
Description  
Bit Value  
Value Description  
7
Not used.  
-
-
-
[6:4]  
T4_PD2_gain_alog_8k  
Gain value of the Phase Detector 2 when locking to  
an 8 kHz reference in analog feedback mode.  
Register to control the gain of the Phase Detector 2  
when locking to a reference of 8 kHz or less in  
analog feedback mode. This setting is only used if  
automatic gain selection is enabled in Reg. 6C Bit 7,  
cnfg_T4_DPLL_PD2_gain.  
Revision 3.02/November 2005 © Semtech Corp.  
Page116  
www.semtech.com  
ACS8530 SETS  
ADVANCED COMMUNICATIONS  
FINAL  
DATASHEET  
Address (hex): 6A (cont...)  
Register Name cnfg_T4_DPLL_damping  
Description  
(R/W) Register to configure the  
Default Value  
0001 0011  
damping factor of the T4 DPLL,  
along with the gain of Phase  
Detector 2 in some modes.  
Bit 7  
Bit 6  
Bit 5  
T4_PD2_gain_alog_8k  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
T4_damping  
Bit No.  
Description  
Bit Value  
Value Description  
3
Not used.  
-
-
[2:0]  
T4_damping  
T4 DPLL damping factor at the following bandwidths  
frequency selections:  
Register to configure the damping factor of the T4  
DPLL. The bit values corresponds to different  
damping factors, depending on the bandwidth  
selected. Damping factor of 5 being the default  
(011).  
18 Hz  
1.2  
2.5  
5
35 Hz  
1.2  
2.5  
5
70 Hz  
1.2  
2.5  
5
001  
010  
011  
100  
101  
5
10  
10  
The Gain Peak for the Damping Factors given in the  
Value Description (right) are tabulated below.  
5
10  
20  
000  
110  
111  
Not used.  
Not used.  
Not used.  
Damping Factor  
Gain Peak  
1.2  
2.5  
5
10  
20  
0.4 dB  
0.2 dB  
0.1 dB  
0.06 dB  
0.03 dB  
Address (hex): 6B  
Register Name cnfg_T0_DPLL_damping  
Description  
(R/W) Register to configure the  
damping factor of the T0 DPLL,  
along with the gain of the Phase  
Detector 2 in some modes.  
Default Value  
0001 0011  
Bit 7  
Bit 6  
Bit 5  
T0_PD2_gain_alog_8k  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
T0_damping  
Bit No.  
Description  
Bit Value  
Value Description  
7
Not used.  
-
-
-
[6:4]  
T0_PD2_gain_alog_8k  
Gain value of the Phase Detector 2 when locking to  
an 8 kHz reference in analog feedback mode.  
Register to control the gain of the Phase Detector 2  
when locking to a reference of 8 kHz or less in  
analog feedback mode. This setting is only used if  
automatic gain selection is enabled in Reg. 6D Bit 7,  
cnfg_T0_DPLL_PD2_gain.  
3
Not used.  
-
-
Revision 3.02/November 2005 © Semtech Corp.  
Page117  
www.semtech.com  
ACS8530 SETS  
ADVANCED COMMUNICATIONS  
FINAL  
DATASHEET  
Address (hex): 6B (cont...)  
Register Name cnfg_T0_DPLL_damping  
Description  
(R/W) Register to configure the  
Default Value  
0001 0011  
damping factor of the T0 DPLL,  
along with the gain of the Phase  
Detector 2 in some modes.  
Bit 7  
Bit 6  
Bit 5  
T0_PD2_gain_alog_8k  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
T0_damping  
Bit No.  
Description  
Bit Value  
Value Description  
[2:0]  
T0_damping  
T0 DPLL damping factor at the following bandwidths  
frequency selections:  
Register to configure the damping factor of the T0  
DPLL. The bit values corresponds to different  
damping factors, depending on the bandwidth  
selected. Damping factor of 5 being the default  
(011).  
<4 Hz  
8 Hz  
2.5  
5
18 Hz  
1.2  
2.5  
5
35 Hz  
1.2  
2.5  
5
70 Hz  
1.2  
2.5  
5
001  
010  
011  
100  
101  
5
5
5
5
5
5
5
5
10  
10  
The Gain Peak for the Damping Factors given in the  
Value Description (right) are tabulated below.  
5
5
10  
20  
000  
110  
111  
Not used.  
Not used.  
Not used.  
Damping Factor  
Gain Peak  
1.2  
2.5  
5
10  
20  
0.4 dB  
0.2 dB  
0.1 dB  
0.06 dB  
0.03 dB  
Address (hex): 6C  
Register Name cnfg_T4_DPLL_PD2_gain  
Description  
Bit 4  
(R/W) Register to configure the  
gain of Phase Detector 2 in some  
modes for the T4 DPLL.  
Default Value  
Bit 1  
1100 0010  
Bit 7  
Bit 6  
Bit 5  
Bit 3  
Bit 2  
Bit 0  
T4_PD2_gain_  
enable  
T4_PD2_gain_alog  
T4_PD2_gain_digital  
Bit No.  
Description  
Bit Value  
Value Description  
7
T4_PD2_gain_enable  
0
1
T4 DPLL Phase Detector 2 not used.  
T4 DPLL Phase Detector 2 gain enabled and choice  
of gain determined according to the locking mode:  
- digital feedback mode  
- analog feedback mode  
- analog feedback at 8 kHz.  
Revision 3.02/November 2005 © Semtech Corp.  
Page118  
www.semtech.com  
ACS8530 SETS  
ADVANCED COMMUNICATIONS  
FINAL  
DATASHEET  
Address (hex): 6C (cont...)  
Register Name cnfg_T4_DPLL_PD2_gain  
Description  
Bit 4  
(R/W) Register to configure the  
gain of Phase Detector 2 in some  
modes for the T4 DPLL.  
Default Value  
1100 0010  
Bit 7  
Bit 6  
Bit 5  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
T4_PD2_gain_  
enable  
T4_PD2_gain_alog  
T4_PD2_gain_digital  
Bit No.  
Description  
Bit Value  
Value Description  
[6:4]  
T4_PD2_gain_alog  
-
Gain value of Phase Detector 2 when locking to a  
high frequency reference in analog feedback mode.  
Register to control the gain of Phase Detector 2  
when locking to a reference, higher than 8 kHz, in  
analog feedback mode. This setting is not used if  
automatic gain selection is disabled in Bit 7,  
T4_PD2_gain_enable.  
3
Not used.  
-
-
-
[2:0]  
T4_PD2_gain_digital  
Gain value of Phase Detector 2 when locking to any  
reference in digital feedback mode.  
Register to control the gain of Phase Detector 2  
when locking to a reference in digital feedback  
mode. This setting is always used if automatic gain  
selection is disabled in Bit 7, T4_PD2_gain_enable.  
Address (hex): 6D  
Register Name cnfg_T0_DPLL_PD2_gain  
Description  
Bit 4  
(R/W) Register to configure the  
gain of Phase Detector 2 in some  
modes for the T0 DPLL.  
Default Value  
Bit 1  
1100 0010  
Bit 7  
Bit 6  
Bit 5  
Bit 3  
Bit 2  
Bit 0  
T0_PD2_gain_  
enable  
T0_PD2_gain_alog  
T0_PD2_gain_digital  
Bit No.  
Description  
Bit Value  
Value Description  
7
T0_PD2_gain_enable  
T0_PD2_gain_alog  
Register to control the gain of Phase Detector 2  
when locking to a reference, higher than 8 kHz, in  
analog feedback mode. This setting is not used if  
automatic gain selection is disabled in Bit 7,  
T0_PD2_gain_enable.  
0
1
T0 DPLL Phase Detector 2 not used.  
T0 DPLL Phase Detector 2 gain enabled and choice  
of gain determined according to the locking mode:  
- digital feedback mode  
- analog feedback mode  
- analog feedback at 8 kHz.  
[6:4]  
-
-
Gain value of Phase Detector 2 when locking to a  
high frequency reference in analog feedback mode.  
3
Not used.  
-
Revision 3.02/November 2005 © Semtech Corp.  
Page119  
www.semtech.com  
ACS8530 SETS  
ADVANCED COMMUNICATIONS  
FINAL  
DATASHEET  
Address (hex): 6D (cont...)  
Register Name cnfg_T0_DPLL_PD2_gain  
Description  
Bit 4  
(R/W) Register to configure the  
gain of Phase Detector 2 in some  
modes for the T0 DPLL.  
Default Value  
1100 0010  
Bit 7  
Bit 6  
Bit 5  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
T0_PD2_gain_  
enable  
T0_PD2_gain_alog  
T0_PD2_gain_digital  
Bit No.  
Description  
Bit Value  
Value Description  
[2:0]  
T0_PD2_gain_digital  
-
Gain value of Phase Detector 2 when locking to any  
reference in digital feedback mode.  
Register to control the gain of Phase Detector 2  
when locking to a reference in digital feedback  
mode. This setting is always used if automatic gain  
selection is disabled in Bit 7, T0_PD2_gain_enable.  
Address (hex): 70  
Register Name cnfg_phase_offset  
Description  
Bit 4  
(R/W) Bits [7:0] of the phase  
offset control register.  
Default Value  
Bit 1  
0000 0000  
[7:0]  
Bit 7  
Bit 6  
Bit 5  
Bit 3  
Bit 2  
Bit 0  
phase_offset_value[7:0]  
Bit No.  
Description  
Bit Value  
Value Description  
[7:0]  
phase_offset_value[7:0]  
Register forming part of the phase offset control.  
-
See Reg. 71, cnfg_phase_offset[15:8] for more  
details.  
Revision 3.02/November 2005 © Semtech Corp.  
Page120  
www.semtech.com  
ACS8530 SETS  
ADVANCED COMMUNICATIONS  
FINAL  
DATASHEET  
Address (hex): 71  
Register Name cnfg_phase_offset  
Description  
Bit 4  
(R/W) Bits [15:8] of the phase  
offset control register.  
Default Value  
Bit 1  
0000 0000  
[15:8]  
Bit 7  
Bit 6  
Bit 5  
Bit 3  
Bit 2  
Bit 0  
phase_offset_value[15:8]  
Bit No.  
Description  
Bit Value  
Value Description  
[7:0]  
phase_offset_value[15:8]  
-
The value in this register is to be concatenated with  
the contents of Reg. 70 cnfg_phase_offset[7:0].  
This value is a 16-bit 2’s complement signed  
number. The value multiplied by 6.279 represents  
the extent of the applied phase offset in  
picoseconds.  
Register forming part of the phase offset control. If  
the phase offset register is written to when the DPLL  
is locked to an input, then it is possible that some  
internal signals become out of synchronization. In  
order to avoid this, the phase offset is automatically  
“ramped” to the new value. If the phase offset is  
only ever adjusted when the device is in Holdover,  
then this is not necessary, and this automatic  
“ramping” can be disabled, see Reg. 7C,  
The phase offset register is not a control to a  
“traditional” delay line. This number 6.279 actually  
represents a fractional portion of the period of an  
internal 77.76 MHz cycle and can, therefore, be  
represented more accurately as follows. Each bit  
value of the register represents the period of the  
cnfg_sync_monitor.  
This register is ignored and has no affect when  
Phase Build-out is enabled in either Reg. 48 or  
Reg. 76.  
internal 77.76 MHz clock divided by 211  
.
If, for example, the DPLL is locked to a reference  
that is +1 ppm in frequency with respect to a perfect  
oscillator, then the period, and hence the phase  
offset, will be decreased by 1 ppm. Programming a  
value of 1024 into the phase offset register will  
produce a complete inversion of the 77.76 MHz  
output clock.  
Note...The exact period of the internal 77.76 MHz  
clock is determined by the current state of the DPLL  
i.e. in Locked mode its accuracy depends on that of  
the locked to input, in Holdover or Free-run it  
depends on the accuracy of the external oscillator.  
Revision 3.02/November 2005 © Semtech Corp.  
Page121  
www.semtech.com  
ACS8530 SETS  
ADVANCED COMMUNICATIONS  
FINAL  
DATASHEET  
Address (hex): 72  
Register Name cnfg_PBO_phase_offset  
Description  
Bit 4  
(R/W) Register to offset the mean Default Value  
time error of Phase Build-out  
events.  
0000 0000  
Bit 7  
Bit 6  
Bit 5  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
PBO_phase_offset  
Bit No.  
Description  
Bit Value  
Value Description  
[7:6]  
[5:0]  
Not used.  
-
-
-
PBO_phase_offset  
The value in this register is a 6-bit 2’s complement  
number. The value multiplied by 0.101 gives the  
programmed offset in nanoseconds. Values greater  
than +1.4 ns or less than -1.4 ns should NOT be  
used as they may cause internal mathematical  
errors.  
Each time a Phase Build-out event is triggered,  
there is an uncertainty of up to 5 ns introduced  
which translates to a phase hit on the output. The  
mean error over a large number of events is  
designed to be zero. This register can be used to  
introduce a fixed offset into each PBO event. This  
will have the effect of moving the mean error  
positive or negative in time.  
Address (hex): 73  
Register Name cnfg_phase_loss_fine_limit  
Description  
Bit 4  
(R/W) Register to configure some Default Value  
of the parameters of the T0 DPLL  
phase detector.  
1010 0010  
Bit 7  
Bit 6  
Bit 5  
Bit 3  
Bit 2  
Bit 1  
phase_loss_fine_limit  
Bit 0  
fine_limit_en  
noact_ph_loss narrow_en  
Description  
Bit No.  
Bit Value  
Value Description  
7
fine_limit_en  
0
1
Phase loss indication only triggered by other means.  
Phase loss triggered when phase error exceeds the  
limit programmed in phase_loss_fine_limit,  
Bits [2:0].  
Register bit to enable the phase_loss_fine_limit  
Bits [2:0]. When disabled, phase lock/loss is  
determined by the other means within the device.  
This must be disabled when multi-UI jitter tolerance  
is required, see Reg. 74,  
cnfg_phase_loss_course_limit.  
6
noact_ph_loss  
0
1
No activity on reference does not trigger phase lost  
indication.  
No activity triggers phase lost indication.  
The DPLL detects that an input has failed very  
rapidly. Normally, when the DPLL detects this  
condition, it does not consider phase lock to be lost  
and will phase lock to the nearest edge (±180º)  
when a source becomes available again, hence  
giving tolerance to missing cycles. If phase loss is  
indicated, then frequency and phase locking is  
instigated (±360º locking). This bit can be used to  
force the DPLL to indicate phase loss immediately  
when no activity is detected.  
Revision 3.02/November 2005 © Semtech Corp.  
Page122  
www.semtech.com  
ACS8530 SETS  
ADVANCED COMMUNICATIONS  
FINAL  
DATASHEET  
Address (hex): 73 (cont...)  
Register Name cnfg_phase_loss_fine_limit  
Description  
Bit 4  
(R/W) Register to configure some Default Value  
of the parameters of the T0 DPLL  
phase detector.  
1010 0010  
Bit 7  
Bit 6  
Bit 5  
Bit 3  
Bit 2  
Bit 1  
phase_loss_fine_limit  
Bit 0  
fine_limit_en  
noact_ph_loss narrow_en  
Bit No.  
Description  
Bit Value  
Value Description  
5
narrow_en (test control bit)  
Set to 1 (default value)  
0
1
Set to 1  
-
[4:3]  
[2:0]  
Not used.  
-
phase_loss_fine_limit  
000  
001  
010  
011  
100  
101  
110  
111  
Do not use. Indicates phase loss continuously.  
Small phase window for phase lock indication.  
Recommended value.  
)
When enabled by Bit 7, this register coarsely sets  
the phase limit at which the device indicates phase  
lost or locked. The default value of 2 (010) gives a  
window size of around ±(90 - 180º). The phase  
position of the inputs to the DPLL has to be within  
the window limit for 1 to 2 seconds before the  
device indicates phase lock. If it is outside the  
window for any time then phase loss is immediately  
indicated. For most cases the default value of 2  
(010) is satisfactory. The window size changes in  
proportion to the value, so a value of 1 (001) will  
give a narrow phase acceptance or lock window of  
approximately ±(45 - 90º).  
)
) Larger phase window for phase lock indication.  
)
)
Address (hex): 74  
Register Name cnfg_phase_loss_coarse_limit  
Description  
Bit 4  
(R/W) Register to configure some Default Value  
of the parameters of the T0 DPLL  
phase detector.  
1000 0101  
Bit 7  
Bit 6  
Bit 5  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
coarse_lim-  
wide_range_en multi_ph_resp  
phase_loss_coarse_limit  
phaseloss_en  
Bit No.  
Description  
Bit Value  
Value Description  
7
coarse_lim_phaseloss_en  
Register bit to enable the coarse phase detector,  
whose range is determined by  
phase_loss_coarse_limit Bits [3:0]. This register  
sets the limit in the number of input clock cycles (UI)  
that the input phase can move by before the DPLL  
indicates phase lost.  
0
1
Phase loss not triggered by the coarse phase lock  
detector.  
Phase loss triggered when phase error exceeds the  
limit programmed in phase_loss_coarse_limit,  
Bits [3:0].  
Revision 3.02/November 2005 © Semtech Corp.  
Page123  
www.semtech.com  
ACS8530 SETS  
ADVANCED COMMUNICATIONS  
FINAL  
DATASHEET  
Address (hex): 74 (cont...)  
Register Name cnfg_phase_loss_coarse_limit  
Description  
Bit 4  
(R/W) Register to configure some Default Value  
of the parameters of the T0 DPLL  
phase detector.  
1000 0101  
Bit 7  
Bit 6  
Bit 5  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
coarse_lim-  
wide_range_en multi_ph_resp  
phase_loss_coarse_limit  
phaseloss_en  
Bit No.  
Description  
Bit Value  
Value Description  
6
wide_range_en  
0
1
Wide range phase detector off.  
Wide range phase detector on.  
To enable the device to be tolerant to large amounts  
of applied jitter and still do direct phase locking at  
the input frequency rate (up to 77.76 MHz), a wide  
range phase detector and phase lock detector is  
employed. This bit enables the wide range phase  
detector. This allows the device to be tolerant to,  
and therefore keep track of, drifts in input phase of  
many cycles (UI). The range of the phase detector  
is set by the same register used for the phase loss  
coarse limit (Bits [3:0]).  
5
multi_ph_resp  
0
1
DPLL phase detector limited to ±360º (±1 UI).  
However it will still remember its original phase  
position over many thousands of UI if Bit 6 is set.  
Enables the phase result from the coarse phase  
detector to be used in the DPLL algorithm. Bit 6  
should also be set when this is activated. The  
coarse phase detector can measure and keep track  
over many thousands of input cycles, thus allowing  
excellent jitter and wander tolerance. This bit  
enables that phase result to be used in the DPLL  
algorithm, so that a large phase measurement gives  
a faster pull-in of the DPLL. If this bit is not set then  
the phase measurement is limited to ±360º which  
can give a slower pull-in rate at higher input  
frequencies, but could also be used to give less  
overshoot.  
DPLL phase detector also uses the full coarse  
phase detector result. It can now measure up to:  
±360º X 8191 UI = ±2,948,760º.  
Setting this bit in direct locking mode, for example  
with a 19.44 MHz input, would give the same  
dynamic response as a 19.44 MHz input used with  
8 k locking mode, where the input is divided down  
internally to 8 kHz first.  
4
Not used.  
-
-
Revision 3.02/November 2005 © Semtech Corp.  
Page124  
www.semtech.com  
ACS8530 SETS  
ADVANCED COMMUNICATIONS  
FINAL  
DATASHEET  
Address (hex): 74 (cont...)  
Register Name cnfg_phase_loss_coarse_limit  
Description  
Bit 4  
(R/W) Register to configure some Default Value  
of the parameters of the T0 DPLL  
phase detector.  
1000 0101  
Bit 7  
Bit 6  
Bit 5  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
coarse_lim-  
wide_range_en multi_ph_resp  
phase_loss_coarse_limit  
phaseloss_en  
Bit No.  
Description  
Bit Value  
Value Description  
[3:0]  
phase_loss_coarse_limit  
Sets the range of the coarse phase loss detector  
and the coarse phase detector.  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
Input phase error tracked over ±1 UI.  
Input phase error tracked over ±3 UI.  
Input phase error tracked over ±7 UI.  
Input phase error tracked over ±15 UI.  
Input phase error tracked over ±31 UI.  
Input phase error tracked over ±63 UI.  
Input phase error tracked over ±127 UI.  
Input phase error tracked over ±255 UI.  
Input phase error tracked over ±511 UI.  
Input phase error tracked over ±1023 UI.  
Input phase error tracked over ±2047 UI.  
Input phase error tracked over ±4095 UI.  
Input phase error tracked over ±8191 UI.  
When locking to a high frequency signal, and jitter  
tolerance greater than 0.5 UI is required, then the  
DPLL can be configured to track phase errors over  
many input clock periods. This is particularly useful  
with very low bandwidths. This register configures  
how many UI over which the input phase can be  
tracked. It also sets the range of the coarse phase  
loss detector, which can be used with or without the  
multi-UI phase capture range capability.  
1001  
1010  
1011  
This register value is used by Bits 6 and 7.  
1100-1111  
Address (hex): 76  
Register Name cnfg_phasemon  
Description  
Bit 4  
(R/W) Register to configure the  
noise rejection function for low  
frequency inputs.  
Default Value  
Bit 1  
0000 0110  
Bit 7  
Bit 6  
Bit 5  
Bit 3  
Bit 2  
Bit 0  
ip_noise_  
window  
phasemon_en phmon_PBO_  
en  
phasemon_limit  
Bit No.  
Description  
Bit Value  
Value Description  
7
ip_noise_window  
0
1
DPLL considers all edges for phase locking.  
DPLL ignores input edges outside a 95% to 105%  
window.  
Register bit to enable a window of 5% tolerance  
around low-frequency inputs (2, 4 and 8 kHz). This  
feature ensures that any edge caused by noise  
outside the 5% window where the edge is expected  
will not be considered within the DPLL. This reduces  
any possible phase hit when a low-frequency  
connection is removed and contact bounce is  
possible.  
6
Not used.  
-
-
Revision 3.02/November 2005 © Semtech Corp.  
Page125  
www.semtech.com  
ACS8530 SETS  
ADVANCED COMMUNICATIONS  
FINAL  
DATASHEET  
Address (hex): 76 (cont...)  
Register Name cnfg_phasemon  
Description  
Bit 4  
(R/W) Register to configure the  
noise rejection function for low  
frequency inputs.  
Default Value  
0000 0110  
Bit 7  
Bit 6  
Bit 5  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
ip_noise_  
window  
phasemon_en phmon_PBO_  
en  
phasemon_limit  
Bit No.  
Description  
Bit Value  
Value Description  
5
phasemon_en  
0
1
Phase transient monitor disabled.  
Phase transient monitor enabled.  
Register bit to enable the phase transient monitor,  
which monitors the phase error between the output  
of the DPLL and the reference input. With a low  
bandwidth setting, a phase transient on the input  
will be measured as a phase error by the phase  
transient monitor. As the DPLL tracks the input  
phase, this error will reduce as the phase is pulled  
in. If this measured error is beyond the limit  
specified in Bits [3:0] phasemon_limit, then a phase  
monitor alarm will be raised.  
4
phmon_PBO_en  
0
1
Phase transient alarm will not trigger PBO.  
Phase transient alarm will trigger PBO.  
Register bit to enable a phase transient monitor  
alarm to automatically trigger a Phase Build-out  
event.  
[3:0]  
phasemon_limit  
-
This 4-bit unsigned integer represents the amount  
of phase error required across the DPLL to cause  
the phase transient alarm, Reg. 08 Bit 5. The phase  
transient limit in time can be calculated by adding 7  
to the value in the register, and multiplying by  
156.25 ns. This gives a range of 1094 ns to  
3437 ns.  
Register to set the limit for the phase transient  
monitor. Although this limit is set in microseconds,  
the actual phase transient required to trigger the  
alarm limit will depend on the rate of change of the  
input phase and the bandwidth of the DPLL. With a  
very low bandwidth and a relatively fast input phase  
transient, the alarm will be triggered close to the  
programmed limit. With a slower phase transient or  
a higher bandwidth, the actual phase transient  
required to trigger the alarm will be much greater.  
This is because the monitor’s reference is taken  
from the output of the DPLL and the phase error  
measured will always be reduced as the DPLL  
tracks the input phase.  
Revision 3.02/November 2005 © Semtech Corp.  
Page126  
www.semtech.com  
ACS8530 SETS  
ADVANCED COMMUNICATIONS  
FINAL  
DATASHEET  
Address (hex): 77  
Register Name sts_current_phase  
Description  
Bit 4  
(RO) Bits [7:0] of the current  
phase register.  
Default Value  
Bit 1  
0000 0000  
[7:0]  
Bit 7  
Bit 6  
Bit 5  
Bit 3  
Bit 2  
Bit 0  
current_phase[7:0]  
Bit No.  
Description  
Bit Value  
Value Description  
[7:0]  
current_phase  
-
See Reg. 78 sts_current_phase [15:8] for details.  
Bits [7:0] of the current phase register. See Reg. 78  
sts_current_phase [15:8] for details.  
Address (hex): 78  
Register Name sts_current_phase  
Description  
Bit 4  
(RO) Bits [15:8] of the current  
phase register.  
Default Value  
Bit 1  
0000 0000  
[15:8]  
Bit 7  
Bit 6  
Bit 5  
Bit 3  
Bit 2  
Bit 0  
current_phase[15:8]  
Bit Value  
Bit No.  
Description  
Value Description  
[7:0]  
current_phase  
-
The value in this register should be concatenated  
with the value in Reg. 77 sts_current_phase [7:0].  
This 16-bit value is a 2’s complement signed  
integer. The value multiplied by 0.707 is the  
averaged value of the current phase error, in  
degrees, as measured at the DPLL’s phase  
detector.  
Bits [15:8] of the current phase register. This  
register is used to read either from the phase  
detector of either the T0 DPLL or the T4 DPLL,  
according to Reg. 4B Bit 4 T4_T0_select. The value  
is averaged in the phase averager before being  
made available.  
Address (hex): 79  
Register Name cnfg_phase_alarm_timeout  
Description  
Bit 4  
(R/W) Register to configure how  
long before a phase alarm is  
raised on an input  
Default Value  
Bit 1  
0011 0010  
Bit 7  
Bit 6  
Bit 5  
Bit 3  
Bit 2  
Bit 0  
timeout_value  
Bit No.  
Description  
Bit Value  
Value Description  
[7:6]  
Not used.  
-
-
Revision 3.02/November 2005 © Semtech Corp.  
Page127  
www.semtech.com  
ACS8530 SETS  
ADVANCED COMMUNICATIONS  
FINAL  
DATASHEET  
Address (hex): 79 (cont...)  
Register Name cnfg_phase_alarm_timeout  
Description  
Bit 4  
(R/W) Register to configure how  
long before a phase alarm is  
raised on an input  
Default Value  
Bit 1  
0011 0010  
Bit 7  
Bit 6  
Bit 5  
Bit 3  
Bit 2  
Bit 0  
timeout_value  
Bit No.  
Description  
Bit Value  
Value Description  
[5:0]  
timeout_value  
-
This 6-bit unsigned integer represents the length of  
time before a phase alarm will be raised on an  
input. The value multiplied by 2 gives the time in  
seconds. This time value is the time that the  
controlling state machine will spend in Pre-locked,  
Pre-locked2 or Phase-lost modes before setting the  
phase alarm on the selected input.  
Phase alarms can only be raised on an input when  
the T0 DPLL is attempting to lock to it. Once an  
input has been rejected due to a phase alarm, there  
is no way to measure whether it is good again,  
because it is no longer selected by the DPLL. The  
phase alarms can either remain until reset by  
software, or time-out after 128 seconds, as  
selected in Reg. 34 Bit 6, phalarm_timeout  
Address (hex): 7A  
Register Name cnfg_sync_pulses  
Description  
(R/W) Register to configure the  
Sync outputs available from TO10  
and TO11 and select the source  
for the 2 kHz and 8 kHz outputs  
from T01 - TO7.  
Default Value  
0000 0000  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
8k_pulse  
Bit 1  
Bit 0  
2k_8k_from_T4  
8k_invert  
2k_invert  
2k_pulse  
Bit No.  
Description  
Bit Value  
Value Description  
7
2k_8k_from_T4  
Register to select the source (T0 or T4) for the 2 kHz  
and 8 kHz outputs available from TO1 to TO7.  
0
2/8 kHz on TO1-TO7 generated from the T0 DPLL.  
2/8 kHz on TO1-TO7 generated from the T4 DPLL.  
1
-
[6:4]  
3
Not used.  
-
8k_invert  
0
1
8 kHz TO10 output not inverted.  
8 kHz TO10 output inverted.  
Register bit to invert the 8 kHz output from TO10.  
2
8k_pulse  
0
1
8 kHz TO10 output not pulsed.  
8 kHz TO10 output pulsed.  
Register bit to enable the 8 kHz output from TO10  
to be either pulsed or 50:50 duty cycle. Output TO3  
must be enabled to use “pulsed output” mode on  
output TO10, and then the pulse width on TO10 will  
be defined by the period of the output programmed  
on TO3.  
1
2k_invert  
0
1
2 kHz TO11 output not inverted.  
2 kHz TO11 output inverted.  
Register bit to invert the 2 kHz output from TO11.  
Revision 3.02/November 2005 © Semtech Corp.  
Page128  
www.semtech.com  
ACS8530 SETS  
ADVANCED COMMUNICATIONS  
FINAL  
DATASHEET  
Address (hex): 7A (cont...)  
Register Name cnfg_sync_pulses  
Description  
(R/W) Register to configure the  
Default Value  
0000 0000  
Sync outputs available from TO10  
and TO11 and select the source  
for the 2 kHz and 8 kHz outputs  
from T01 - TO7.  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
8k_pulse  
Bit 1  
Bit 0  
2k_8k_from_T4  
8k_invert  
2k_invert  
2k_pulse  
Bit No.  
Description  
Bit Value  
Value Description  
0
2k_pulse  
0
1
2 kHz TO11 output not pulsed.  
2 kHz TO11 output pulsed.  
Register bit to enable the 2 kHz output from TO11  
to be either pulsed or 50:50 duty cycle. Output TO3  
must be enabled to use “pulsed output” mode on  
output TO10, and then the pulse width on TO11 will  
be defined by the period of the output programmed  
on TO3.  
Address (hex): 7B  
Register Name cnfg_sync_phase  
Description  
Bit 4  
(R/W) Register to configure the  
behavior of the synchronization  
for the external frame reference.  
Default Value  
0000 0000  
Bit 7  
Bit 6  
Bit 5  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
indep_FrSync/  
MFrSync  
Sync_OC-N_  
rates  
Sync_phase  
Bit No.  
Description  
Bit Value  
Value Description  
7
Indep_FrSync/MrSync  
0
1
MFrSync & FrSync outputs are always aligned with  
other output clocks.  
MFrSync & FrSync outputs are independent of other  
output clocks.  
This allows the option of either maintaining  
alignment of FrSync and other clock outputs during  
synchronization from the SYNC2K input, or whether  
to not maintain alignment to all clocks and so not  
disturb any of the output clocks  
6
Sync_OC-N_rates  
0
1
The OC-N rate clocks are not affected by the  
SYNC2K input. The SYNC2K input is sampled with a  
6.48 MHz precision. 6.48MHz should be provided  
as the input reference clock.  
Allows the SYNC2K to operate with a 19.44 MHz or  
38.88 MHz input clock reference. Input sampling  
and output alignment to 19.44 MHz is used when  
the current clock input is 19.44 MHz, otherwise  
38.88MHz sampling precision is used.  
This allows the SYNC2K input to synchronize the  
OC-3 derived clocks in order to maintain alignment  
between the FrSync output and output clocks and  
allow a finer sampling precision of the SYNC2K  
input of either 19.44MHz or 38.88MHz.  
[5:2]  
Not used.  
Revision 3.02/November 2005 © Semtech Corp.  
Page129  
www.semtech.com  
ACS8530 SETS  
ADVANCED COMMUNICATIONS  
FINAL  
DATASHEET  
Address (hex): 7B (cont...)  
Register Name cnfg_sync_phase  
Description  
Bit 4  
(R/W) Register to configure the  
behavior of the synchronization  
for the external frame reference.  
Default Value  
0000 0000  
Bit 7  
Bit 6  
Bit 5  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
indep_FrSync/  
MFrSync  
Sync_OC-N_  
rates  
Sync_phase  
Bit No.  
Description  
Bit Value  
Value Description  
[1:0]  
Sync_phase  
00  
01  
10  
11  
On target.  
0.5 U.I. early  
1 U.I. late  
Register to control the sampling of the external Sync  
input. Nominally the falling edge of the input is  
aligned with the falling edge of the reference clock.  
The margin is ±0.5 U.I. (Unit Interval).  
0.5 U.I. late.  
Address (hex): 7C  
Register Name cnfg_sync_monitor  
Description  
(R/W) Register to configure the  
external Sync input monitor. It  
also has a bit to control the phase  
offset automatic ramping feature.  
Default Value  
0010 1011  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
ph_offset_ramp  
Sync_monitor_limit  
Sync_reference_source  
Bit No.  
Description  
Bit Value  
Value Description  
7
ph_offset_ramp  
0
Phase offset automatically ramped from the old  
value to the new value when there is a change in  
Reg. 70 or 71.  
Start phase offset internal calibration routine. This  
bit is reset to 0 when this is complete.  
Register bit to force an internal phase offset  
calibration, see Reg. 71, Cnfg_Phase_Offset.  
The calibration routine is transparent to the outside  
and puts the device in holdover while it internally  
ramps the phase offset to zero, resets all internal  
output and feedback dividers and then ramps the  
phase offset to the current programmed value from  
Reg. 70 or 71., holdover is then turned off. All this is  
transparent to the outside with no change in output  
phase offset visible.  
1
[6:4]  
Sync_monitor_limit  
000  
001  
010  
011  
100  
101  
110  
111  
Sync alarm raised beyond ±1 UI.  
Sync alarm raised beyond ±2 UI.  
Sync alarm raised beyond ±3 UI.  
Sync alarm raised beyond ±4 UI.  
Sync alarm raised beyond ±5 UI.  
Sync alarm raised beyond ±6 UI.  
Sync alarm raised beyond ±7 UI.  
Sync alarm raised beyond ±8 UI.  
An alternative to allowing the external Sync input to  
synchronize the outputs, is to use the Sync monitor  
block to alarm when the external Sync input does  
not align with the output within a certain number of  
input clock cycles. This register defines the limit in  
UI of the selected reference source. If the alignment  
does not occur within this limit, then Sync alarm will  
be raised, see Reg. 09 Bit 7.  
Revision 3.02/November 2005 © Semtech Corp.  
Page130  
www.semtech.com  
ACS8530 SETS  
ADVANCED COMMUNICATIONS  
FINAL  
DATASHEET  
Address (hex): 7C (cont...)  
Register Name cnfg_sync_monitor  
Description  
(R/W) Register to configure the  
Default Value  
0010 1011  
external Sync input monitor. It  
also has a bit to control the phase  
offset automatic ramping feature.  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
ph_offset_ramp  
Sync_monitor_limit  
Sync_reference_source  
Bit No.  
Description  
Bit Value  
Value Description  
Not used.  
[3:0]  
Sync_reference_source  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
The external Sync reference can only be associated  
with a particular input reference. When automatic  
external Sync enabling is selected in Reg. 34 Bit 7,  
the external Sync input will only be enabled when  
locked to the selected source. This can be used to  
associate the Frame Sync reference with a  
External Sync associated with input I1.  
External Sync associated with input I2.  
External Sync associated with input I3.  
External Sync associated with input I4.  
External Sync associated with input I5.  
External Sync associated with input I6.  
External Sync associated with input I7.  
External Sync associated with input I8.  
External Sync associated with input I9.  
External Sync associated with input I10.  
External Sync associated with input I11.  
External Sync associated with input I12.  
External Sync associated with input I13.  
External Sync associated with input I14.  
Not used.  
reference clock for master/slave operation.  
Address (hex): 7D  
Register Name cnfg_interrupt  
Description  
Bit 4  
(R/W) Register to configure  
interrupt output.  
Default Value  
0000 0010  
Bit 7  
Bit 6  
Bit 5  
Bit 3  
Bit 2  
GPO_en  
Bit 1  
Bit 0  
tristate_en  
int_polarity  
Bit No.  
Description  
Bit Value  
Value Description  
[7:3]  
2
Not used.  
-
-
GPO_en  
0
1
Interrupt output pin used for interrupts.  
Interrupt output pin used for GPO purpose.  
(Interrupt General Purpose Output). If the interrupt  
output pin is not required, then setting this bit will  
allow the pin to be used as a general purpose  
output. The pin will be driven to the state of the  
polarity control bit, int_polarity.  
1
tristate_en  
0
1
Interrupt pin always driven when inactive.  
Interrupt pin only driven when active, high-  
impedance when inactive.  
The interrupt can be configured to be either  
connected directly to a processor, or wired together  
with other sources.  
Revision 3.02/November 2005 © Semtech Corp.  
Page131  
www.semtech.com  
ACS8530 SETS  
ADVANCED COMMUNICATIONS  
FINAL  
DATASHEET  
Address (hex): 7D (cont...)  
Register Name cnfg_interrupt  
Description  
Bit 4  
(R/W) Register to configure  
interrupt output.  
Default Value  
0000 0010  
Bit 7  
Bit 6  
Bit 5  
Bit 3  
Bit 2  
GPO_en  
Bit 1  
Bit 0  
tristate_en  
int_polarity  
Bit No.  
Description  
Bit Value  
Value Description  
0
int_polarity  
0
1
Active Low - pin driven Low to indicate active  
interrupt.  
Active High - pin driven High to indicate active  
The interrupt pin can be configured to be active  
High or Low.  
interrupt.  
Address (hex): 7E  
Register Name cnfg_protection  
Description  
Bit 4  
(R/W) Protection register to  
protect against erroneous  
software writes.  
Default Value  
Bit 1  
1000 0101  
Bit 7  
Bit 6  
Bit 5  
Bit 3  
protection_value  
Bit 2  
Bit 0  
Bit No.  
Description  
Bit Value  
Value Description  
[7:0]  
protection_value  
This register can be used to ensure that the  
software writes a specific value to this register,  
0000 0000 –  
1000 0100  
Protected mode.  
before being able to modify any other register in the 1000 0101  
device. Three modes of protection are offered,  
Fully unprotected.  
(i) protected  
(ii) fully unprotected  
(iii) single unprotected.  
1000 0110  
Single unprotected.  
Protected mode.  
1000 0111 –  
When protected, no other register in the device can 1111 1111  
be written to. When fully unprotected, any writeable  
register in the device can be written to. When single  
unprotected, only one register can be written before  
the device automatically re-protects itself.  
Revision 3.02/November 2005 © Semtech Corp.  
Page132  
www.semtech.com  
ACS8530 SETS  
ADVANCED COMMUNICATIONS  
FINAL  
DATASHEET  
Address (hex): 7F  
Register Name cnfg_uPsel  
Description  
(R/W)* Register reflecting the  
Default Value  
0000 0000**  
value on the UPSEL device pins  
following reset, and writeable in  
EPROM mode.  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
upsel_value  
Bit No.  
Description  
Bit Value  
Value Description  
[7:3]  
[2:0]  
Not used.  
-
-
upsel_value  
000  
001  
010  
011  
100  
Not used.  
This register defaults to reflecting the value present  
on the UPSEL pins of the device at reset. At reset  
this is used to set the mode of the microprocessor  
interface. Following power-up, these pins have no  
further effect on the microprocessor interface.  
Interface in EPROM boot mode.  
Interface in Multiplexed mode.  
Interface in Intel mode.  
Interface in Motorola mode.  
Interface in Serial mode.  
Not used.  
101  
110  
*In order that the device can be “booted” from an  
EPROM and subsequently communicate with a  
processor, this register is programmable in EPROM  
mode. The value programmed in location 7F of the  
EPROM will be the value loaded into this register.  
111  
(value at reset)  
Not used.  
**The default of this register is entirely dependent  
on the value of the pins at reset.  
Revision 3.02/November 2005 © Semtech Corp.  
Page133  
www.semtech.com  
ACS8530 SETS  
ADVANCED COMMUNICATIONS  
FINAL  
DATASHEET  
Electrical Specifications  
recommendation K.41[16]. Semtech protection devices  
are recommended for this purpose (see separate  
Semtech data book).  
JTAG  
The JTAG connections on the ACS8530 allow a full  
boundary scan to be made. The JTAG implementation is  
fully compliant to IEEE 1149.1[5], with the following minor  
exceptions, and the user should refer to the standard for  
further information.  
ESD Protection  
Suitable precautions should be taken to protect against  
electrostatic damage during handling and assembly. This  
device incorporates ESD protection structures that  
protect the device against ESD damage at ESD input  
levels up to at least +/2kV using the Human Body Model  
(HBD) MIL-STD-883D Method 3015.7, for all pins except  
pins 24, 25, 26 and 27 (AMI I/Os) which are protected up  
to at least ±1 kV.  
1. The output boundary scan cells do not capture data  
from the core, and so do not support INTEST. However  
this does not affect board testing.  
2. In common with some other manufacturers, pin TRST  
is internally pulled Low to disable JTAG by default. The  
standard is to pull High. The polarity of TRST is as the  
standard: TRST High to enable JTAG boundary scan  
mode, TRST Low for normal operation.  
The JTAG timing diagram is shown in Figure 22.  
Latchup Protection  
Over-voltage Protection  
This device is protected against latchup for input current  
pulses of magnitude up to at least ±100 mA to JEDEC  
Standard No. 78 August 1997.  
The ACS8530 may require Over-Voltage Protection on  
input reference clock ports according to ITU  
Figure 22 JTAG Timing  
t
CYC  
TCK  
t
t
HT  
SUR  
TMS  
TDI  
t
DOD  
TDO  
F8110D_022JTAGTiming_01  
Table 30 JTAG Timing (for use with Figure 22)  
Parameter  
Symbol  
tCYC  
Minimum  
Typical  
Maximum  
Units  
ns  
Cycle Time  
50  
3
-
-
-
-
-
-
TMS/TDI to TCK rising edge time  
TCK rising to TMS/TDI hold time  
TCK falling to TDO valid  
tSUR  
ns  
tHT  
23  
-
-
ns  
tDOD  
5
ns  
Revision 3.02/November 2005 © Semtech Corp.  
Page134  
www.semtech.com  
ACS8530 SETS  
ADVANCED COMMUNICATIONS  
Maximum Ratings  
FINAL  
DATASHEET  
Important Note: The Absolute Maximum Ratings, Table 31, are stress ratings only, and functional operation of the  
device at conditions other than those indicated in the Operating Conditions sections of this specification are not  
implied. Exposure to the absolute maximum ratings for an extended period may reduce the reliability or useful lifetime  
of the product.  
Table 31 Absolute Maximum Ratings  
Parameter  
Symbol  
Minimum  
Maximum  
Units  
Supply Voltage VDDa, VDDb, VDDc, VDDd,  
VD1+, VD2+, VD3+, VA1+, VA2+, VA3+,  
VAMI+, VDD_DIFFa, VDD_DIFFb  
VDD  
-0.5  
3.6  
V
Power Supply (DC voltage) VDD5  
Input Voltage (non-supply pins)  
Output Voltage (non-supply pins)  
Ambient Operating Temperature Range  
Storage Temperature  
VDD5  
VIN  
VOUT  
TA  
-
-
5.5  
5.5  
V
V
-
5.5  
V
-40  
-50  
+85  
+150  
oC  
oC  
TSTOR  
Operating Conditions  
Table 32 Operating Conditions  
Parameter  
Symbol  
Minimum  
Typical  
Maximum  
Units  
Power Supply (dc voltage)  
VDD  
3.0  
3.3  
3.6  
V
VDDa, VDDb, VDDc, VDDd, VD1+, VD2+,  
VD3+, VA1+, VA2+, VA3+, VAMI+,  
VDD_DIFFa, VDD_DIFFb  
Power Supply (DC voltage) VDD5  
Ambient Temperature Range  
VDD5  
TA  
3.0  
-40  
-
3.3/5.0  
5.5  
+85  
222  
V
-
oC  
mA  
Supply Current  
IDD  
130  
(Typical - one 19 MHz output)  
Total Power Dissipation  
PTOT  
-
430  
800  
mW  
DC Characteristics  
Table 33 DC Characteristics: TTL Input Port  
Across all operating conditions, unless otherwise stated  
Parameter  
Symbol  
Minimum  
Typical  
Maximum  
Units  
V
VIN High  
IN Low  
Input Current  
VIH  
VIL  
IIN  
2
-
-
-
-
-
V
0.8  
10  
V
-
µA  
Revision 3.02/November 2005 © Semtech Corp.  
Page135  
www.semtech.com  
ACS8530 SETS  
ADVANCED COMMUNICATIONS  
FINAL  
DATASHEET  
Table 34 DC Characteristics: TTL Input Port with Internal Pull-up  
Across all operating conditions, unless otherwise stated  
Parameter  
Symbol  
VIH  
Minimum  
Typical  
Maximum  
Units  
V
V
IN High  
IN Low  
2
-
-
-
-
-
-
V
VIL  
0.8  
95  
V
Pull-up Resistor  
Input Current  
PU  
25  
-
kΩ  
µΑ  
IIN  
120  
Table 35 DC Characteristics: TTL Input Port with Internal Pull-down  
Across all operating conditions, unless otherwise stated  
Parameter  
Symbol  
VIH  
Minimum  
Typical  
Maximum  
Units  
V
V
IN High  
2
-
-
-
-
-
-
VIN Low  
VIL  
0.8  
95  
V
Pull-down Resistor  
Input Current  
PD  
25  
-
kΩ  
µA  
IIN  
120  
Table 36 DC Characteristics: TTL Output Port  
Across all operating conditions, unless otherwise stated  
Parameter  
VOUT Low (lOL = 4 mA)  
OUT High (lOL = 4 mA)  
Drive Current  
Symbol  
VOL  
Minimum  
Typical  
Maximum  
Units  
V
0
2.4  
-
-
-
-
0.4  
V
VOH  
-
V
ID  
4
mA  
Table 37 DC Characteristics: PECL Input/Output Port  
Across all operating conditions, unless otherwise stated  
Parameter  
PECL Input Low Voltage  
Symbol  
Minimum  
Typical  
Maximum  
Units  
VILPECL  
VDD-2.5  
-
VDD-0.5  
V
Differential Inputs (Note (ii))  
PECL Input High Voltage  
VIHPECL  
VDD-2.4  
-
VDD-0.4  
V
Differential Inputs (Note (ii))  
Input Differential Voltage  
VIDPECL  
0.1  
-
-
1.4  
V
V
PECL Input Low Voltage  
VILPECL_S  
VDD-2.4  
VDD-1.5  
Single-ended Input (Note (iii))  
Revision 3.02/November 2005 © Semtech Corp.  
Page136  
www.semtech.com  
ACS8530 SETS  
ADVANCED COMMUNICATIONS  
FINAL  
DATASHEET  
Table 37 DC Characteristics: PECL Input/Output Port (cont...)  
Across all operating conditions, unless otherwise stated  
Parameter  
Symbol  
Minimum  
Typical  
Maximum  
Units  
PECL Input High Voltage  
VILPECL_S  
VDD-1.3  
-
VDD-0.5  
V
Single-ended Input (Note (iii))  
Input High Current  
Input Differential Voltage VID = 1.4V  
IIHPECL  
-10  
-10  
-
-
+10  
+10  
µA  
µA  
Input Low Current  
IILPECL  
Input Differential Voltage VID = 1.4V  
PECL Output Low Voltage (Note (iv))  
PECL Output High Voltage (Note (iv))  
PECL Output Differential Voltage (Note (iv))  
VOLPECL  
VOHPECL  
VODPECL  
VDD-2.10  
VDD-1.25  
580  
-
-
-
VDD-1.62  
VDD-0.88  
900  
V
V
mV  
Notes: (i) Unused differential input ports should be left floating and set in LVDS mode, or the positive and negative inputs tied to VDD and GND  
respectively.  
(ii) Assuming a differential input voltage of at least 100 mV.  
(iii) Unused differential input terminated to VDD -1.4 V.  
(iv) With 50 load on each pin to VDD -2 V, i.e. 82 to GND and 130 to VDD  
.
Figure 23 Recommended Line Termination for PECL Input/Output Ports  
VDD  
VDD  
130Ω  
82 Ω  
130Ω  
82 Ω  
n x 8 kHz,  
ZO = 50Ω  
ZO = 50Ω  
ZO = 50Ω  
ZO = 50Ω  
1.544/2.048 MHz,  
6.48 MHz,  
I5POS TO6POS  
I5NEG TO6NEG  
Fully  
19.44 MHz,  
38.88 MHz,  
51.84 MHz,  
77.76 MHz or  
155.52 MHz  
Programmable  
Output Frequencies  
130Ω  
82Ω  
130Ω  
82Ω  
GND  
VDD  
GND  
VDD  
130Ω  
82 Ω  
130Ω  
82Ω  
n x 8 kHz,  
ZO = 50Ω  
ZO = 50Ω  
ZO = 50Ω  
ZO = 50Ω  
1.544/2.048 MHz,  
6.48 MHz,  
I6POS TO7POS  
I6NEG TO7NEG  
19.44 MHz,  
38.88 MHz,  
51.84 MHz,  
77.76 MHz or  
155.52 MHz  
Fully  
Programmable  
Output Frequencies  
130Ω  
82Ω  
130Ω  
82Ω  
ZO = Transmission line Impedance  
VDD = +3.3 V  
F8530D_024PECL_06  
GND  
GND  
n
= Integer 1 to 12,500  
Revision 3.02/November 2005 © Semtech Corp.  
Page137  
www.semtech.com  
ACS8530 SETS  
ADVANCED COMMUNICATIONS  
Table 38 DC Characteristics: LVDS Input/Output Port  
FINAL  
DATASHEET  
Across all operating conditions, unless otherwise stated  
Parameter  
Symbol  
Minimum  
Typical  
Maximum  
Units  
LVDS Input Voltage Range  
VVRLVDS  
0
-
2.40  
V
Differential Input Voltage = 100 mV  
LVDS Differential Input Threshold  
LVDS Input Differential Voltage  
VDITH  
VIDLVTSDS  
RTERM  
-100  
0.1  
95  
-
-
+100  
1.4  
mV  
V
LVDS Input Termination Resistance  
Must be placed externally across the LVDS  
±input pins of ACS8530. Resistor should  
be 100 with 5% tolerance  
100  
105  
LVDS Output High Voltage  
(Note (i))  
VOHLVDS  
-
-
-
1.585  
-
V
V
LVDS Output Low Voltage  
VOLLVDS  
0.885  
(Note (i))  
LVDS Differential Output Voltage  
VODLVDS  
250  
-
-
-
450  
25  
mV  
mV  
LVDS Change in Magnitude of Differential  
Output Voltage for complementary States  
(Note (i))  
VDOSLVDS  
LVDS Output Offset Voltage  
Temperature = 25oC (Note (i))  
VOSLVDS  
1.125  
-
1.275  
V
Note: (i) With 100 load between the differential outputs.  
Revision 3.02/November 2005 © Semtech Corp.  
Page138  
www.semtech.com  
ACS8530 SETS  
ADVANCED COMMUNICATIONS  
FINAL  
DATASHEET  
Figure 24 Recommended Line Termination for LVDS Input/Output Ports  
n x 8 kHz,  
ZO = 50Ω  
ZO = 50Ω  
ZO = 50Ω  
1.544/2.048 MHz,  
6.48 MHz,  
I5POS  
I5NEG  
TO6POS  
TO6NEG  
Fully  
19.44 MHz,  
Programmable  
Output Frequencies  
100  
100  
38.88 MHz,  
ZO = 50Ω  
51.84 MHz,  
77.76 MHz or  
155.52 MHz  
n x 8 kHz,  
1.544/2.048 MHz,  
6.48 MHz,  
19.44 MHz,  
38.88 MHz,  
51.84 MHz,  
77.76 MHz or  
155.52 MHz  
ZO = 50Ω  
ZO = 50Ω  
ZO = 50Ω  
ZO = 50Ω  
I6POS  
I6NEG  
TO7POS  
TO7NEG  
Fully  
100  
Programmable  
Output Frequencies  
100  
ZO = Transmission line Impedance  
VDD = +3.3 V  
n
= integer 1 to 12,500  
F8530D_025LVDS_06  
There should be a symmetrical pair carrying the  
composite timing signal (64 kHz and 8 kHz). The use of  
transformers is recommended.  
DC Characteristics: AMI Input/Output Port  
(Across all operating Conditions, unless otherwise stated.)  
The Alternate Mark Inversion (AMI) signal is DC balanced  
and consists of positive and negative pulses with a peak-  
to-peak voltage of 2.0 ±0.2 V.  
Over-voltage protection requirement: refer to  
Recommendation K.41[16]  
Code conversion rules:  
The electrical specifications are taken from option a) of  
Table 2/G.703 - Digital 64 kbit/s centralized clock  
interface, from ITU G.703[6].  
The data signals are coded in AMI code with 100% duty  
cycle. The composite clock timing signals convey the  
64 kHz bit-timing information using AMI coding with a  
50 % to 70 % duty ratio and the 8 kHz octet phase  
information by introducing violations in the code rule. The  
structure of the signals and voltage level are shown in  
Figure 25, Figure 26 and Figure 27.  
The electrical characteristics of the 64 kbit/s interface  
are as follows:  
Nominal bit rate: 64 kbit/s. The tolerance is determined  
by the network clock stability.  
Table 39 DC Characteristics: AMI Input/Output Port  
Across all operating conditions, unless otherwise stated  
Parameter  
Input Pulse Width  
Symbol  
tPW  
Minimum  
Typical  
Maximum  
14.04  
5
Units  
µs  
µs  
V
1.56  
-
7.8  
Input Pulse Rise/Fall Time  
AMI Input Voltage High  
AMI Input Voltage Middle  
AMI Input Voltage Low  
tR/F  
-
VIH AMI  
VVIM AMI  
VVIL AMI  
2.5  
1.5  
0
-
1.65  
-
VDD + 0.3  
1.8  
V
1.4  
V
Revision 3.02/November 2005 © Semtech Corp.  
Page139  
www.semtech.com  
ACS8530 SETS  
ADVANCED COMMUNICATIONS  
FINAL  
DATASHEET  
Table 39 DC Characteristics: AMI Input/Output Port (cont...)  
Across all operating conditions, unless otherwise stated  
Parameter  
Symbol  
IAMIOUT  
VOH AMI  
Minimum  
-
Typical  
Maximum  
Units  
mA  
V
AMI Output Current Drive  
-
-
20  
-
AMI Output High Voltage  
VDD - 0.16  
Output Current = 20 mA  
AMI Output Low Voltage  
VOL AMI  
-
-
0.16  
V
Output Current = 20 mA  
Nominal Test Load Impedance  
RTEST  
VMARK  
VSPACE  
-
110  
1.0  
0
-
V
“Mark” Amplitude After Transformer  
“Space” Amplitude After Transformer  
0.9  
- 0.1  
1.1  
0.1  
V
Figure 25 Signal Structure of 64 kHz/8 kHz Central Clock Interface)  
Bit Number  
6
7
8
1
2
3
4
5
6
7
8
1
2
Timing  
Violation  
Violation  
Octet Start  
Octet Start  
15.6 us  
7.8 us  
+1.0 VIH  
1V  
2 V p-p  
0 VIM  
1V  
-1.0 VIL  
F8530D_019SigStrucCCI_01  
[6]  
Note...after suitable input/output transformer (also see Figure 6/G.703  
)
Revision 3.02/November 2005 © Semtech Corp.  
Page140  
www.semtech.com  
ACS8530 SETS  
ADVANCED COMMUNICATIONS  
Figure 26 AMI Input and Output Signal Levels  
FINAL  
DATASHEET  
15.6 us  
7.8 us  
Signal structure of 64 kHz/8 kHz central  
clock interface after suitable transformer.  
+VDD  
15.6 us  
7.8 us  
0 V  
+1.0 VIH  
I1  
I2  
T08POS  
T08NEG  
1V  
C1  
C1  
2 V p-p  
0 VIM  
C2  
15.6 us  
7.8 us  
1V  
-1.0 VIL  
+VDD  
0 V  
F8530D_020AMIIPandOPSigLevels_02  
Figure 27 Recommended Line Termination for AMI Input/Output Ports  
Turns  
ratio  
3:1  
AMI input  
signal  
AMI output signal  
to external devices  
TO8POS  
TO8NEG  
I1  
I2  
C1  
C1  
R
load  
C2  
C3  
AMI input  
signal  
GND  
F8530D_023AMI_lineterm_04  
Note...The AMI inputs I1 and I2 should be connected to the external AMI clock source by 470 nF coupling capacitor C1.  
The AMI differential output T08POS/T08NEG should be coupled to a line transformer with a turns ratio of 3:1.  
Components C2 = 470 pF and C3 = 2 nF. If a transformer with a turns ratio of 1:1 is used, a 3:1 ratio potential  
divider Rload must be used to achieve the required 1 V p-p voltage level for the positive and negative pulses.  
Jitter Performance  
Output jitter generation measured over 60 second interval, UI p-p max measured using C-MAC E2747 12.800 MHz  
TCXO on ICT Flexacom tester.  
Note...This table is only for comparing the ACS8530 output jitter performance against values and quoted in various specifications for given  
conditions. It should not be used to infer compliance to any other aspects of these specifications.  
Revision 3.02/November 2005 © Semtech Corp.  
Page141  
www.semtech.com  
ACS8530 SETS  
ADVANCED COMMUNICATIONS  
Table 40 Output Jitter Generation  
FINAL  
DATASHEET  
Test Definition  
Specification  
Conditions  
Bandwidth I/P Freq  
Jitter Spec ACS8530 Jitter  
Filter  
Lock Mode  
UI  
UI (TYP)  
0.067 p-p  
G813[11] for 155 MHz o/p option 1  
65 kHz - 1.3 MHz  
4 Hz  
19 MHz  
Direct lock 0.1 p-p  
8k lock  
0.065 p-p  
0.012 p-p  
0.072 p-p  
G813[11] & G812[10] for 2.048 MHz option 1  
G813[11] for 155 MHz o/p option 2  
20 Hz - 100 kHz  
12 kHz - 1.3 MHz  
4 Hz  
2.048 MHz 8k lock  
0.05 p-p  
18 Hz  
19 MHz  
19 MHz  
19 MHz  
19 MHz  
19 MHz  
19 MHz  
Direct lock/ 0.1 p-p  
8k lock  
12 kHz - 1.3 MHz  
12 kHz - 1.3 MHz  
12 kHz - 1.3 MHz  
12 kHz - 1.3 MHz  
12 kHz - 1.3 MHz  
10 Hz - 40 kHz  
8 Hz  
Direct lock/ 0.1 p-p  
8k lock  
0.072 p-p  
0.078 p-p  
0.078 p-p  
0.078 p-p  
0.076 p-p  
4 Hz  
Direct lock/ 0.1 p-p  
8k lock  
2.5 Hz  
1.2 Hz  
0.6 Hz  
4 Hz  
Direct lock/ 0.1 p-p  
8k lock  
Direct lock/ 0.1 p-p  
8k lock  
Direct lock/ 0.1 p-p  
8k lock  
G812[10] for 1.544 MHz o/p  
1.544 MHz 8k lock  
0.05 p-p  
0.5 p-p  
0.006 p-p  
0.118 p-p  
0.065 p-p  
0.012 p-p  
0.012 p-p  
0.012 p-p  
0.118 p-p  
0.067 p-p  
0.027 p-p  
0.017 p-p  
0.118 p-p  
0.067 p-p  
0.076 p-p  
0.006 rms  
0.018 p-p  
0.003 rms  
0.001 p-p  
<0.001 rms  
<0.001 rms  
G812[10] for 155 MHz electrical  
500 Hz - 1.3 MHz 4 Hz  
19 MHz  
19 MHz  
8k lock  
8k lock  
G812[10] for 155 MHz electrical  
65 kHz - 1.3 MHz  
20 Hz - 100 kHz  
49 Hz - 100 kHz  
20 Hz - 100 kHz  
4 Hz  
4 Hz  
4 Hz  
4 Hz  
0.075 p-p  
0.5 p-p  
ETS-300-462-3[3] for 2.048 MHz SEC o/p  
ETS-300-462-3[3] for 2.048 MHz SEC o/p  
ETS-300-462-3[3] for 2.048 MHz SSU o/p  
ETS-300-462-5[4] for 155 MHz o/p  
ETS-300-462-5[4] for 155 MHz o/p  
GR-253-CORE[17] net i/f, 51.84 MHz o/p  
GR-253-CORE[17] net i/f, 51.84 MHz o/p  
GR-253-CORE[17] net i/f, 155 MHz o/p  
GR-253-CORE[17] net i/f, 155 MHz o/p  
GR-253-CORE[17]cat II elect i/f, 155 MHz  
2.048 MHz 8k lock  
2.048 MHz 8k lock  
2.048 MHz 8k lock  
0.2 p-p  
0.05 p-p  
0.5 p-p  
500 Hz - 1.3 MHz 4 Hz  
65 kHz - 1.3 MHz 4 Hz  
19 MHz  
19 MHz  
19 MHz  
19 MHz  
19 MHz  
19 MHz  
19 MHz  
8k lock  
8k lock  
8k lock  
8k lock  
8k lock  
8k lock  
8k lock  
0.1 p-p  
100 Hz - 0.4 MHz 4 Hz  
20 kHz to 0.4 MHz 4 Hz  
500 Hz - 1.3 MHz 4 Hz  
1.5 p-p  
0.15 p-p  
1.5 p-p  
65 kHz - 1.3 MHz  
12 kHz - 1.3 MHz  
4 Hz  
4 Hz  
0.15 p-p  
0.1 p-p  
0.01 rms  
0.1 p-p  
GR-253-CORE[17] cat II elect i/f, 51.84 MHz  
GR-253-CORE[17] DS1 i/f, 1.544 MHz  
AT&T 62411[2] for 1.544 MHz  
12 kHz - 400 kHz  
10 Hz - 40 kHz  
10 Hz - 8 kHz  
4 Hz  
4 Hz  
4 Hz  
19 MHz  
8k lock  
0.01 rms  
0.1 p-p  
1.544 MHz 8k lock  
1.544 MHz 8k lock  
0.01 rms  
0.02 rms  
Revision 3.02/November 2005 © Semtech Corp.  
Page142  
www.semtech.com  
ACS8530 SETS  
ADVANCED COMMUNICATIONS  
Table 40 Output Jitter Generation  
FINAL  
DATASHEET  
Test Definition  
Specification  
Conditions  
Bandwidth I/P Freq  
Jitter Spec ACS8530 Jitter  
Filter  
8 Hz - 40 kHz  
10 Hz - 40 kHz  
Broadband  
Lock Mode  
1.544 MHz 8k lock  
1.544 MHz 8k lock  
UI  
UI (TYP)  
<0.001 rms  
<0.001 rms  
<0.001 rms  
0.012 rms  
0.012 p-p  
0.012 p-p  
0.006 p-p  
0.006 p-p  
0.006 p-p  
AT&T 62411[2] for 1.544 MHz  
AT&T 62411[2] for 1.544 MHz  
AT&T 62411[2] for 1.544 MHz  
G-742[8] for 2.048 MHz  
4 Hz  
4 Hz  
4 Hz  
4 Hz  
4 Hz  
4 Hz  
4 Hz  
4 Hz  
4 Hz  
0.025 rms  
0.025 rms  
0.05 rms  
0.25 rms  
0.05 p-p  
0.05 p-p  
5.0 p-p  
1.544 MHz 8k lock  
2.048 MHz 8k lock  
2.048 MHz 8k lock  
2.048 MHz 8k lock  
1.544 MHz 8k lock  
1.544 MHz 8k lock  
1.544 MHz 8k lock  
DC - 100 kHz  
18 kHz - 100 kHz  
20 Hz - 100 kHz  
10 Hz - 40kHz  
8 kHz - 40kHz  
> 10 Hz  
G-742[8] for 2.048MHz  
G-736[7] for 2.048MHz  
GR-499-CORE[18] & G824[14] for 1.544 MHz  
GR-499-CORE[18] & G824[14] for 1.544 MHz  
GR-1244-CORE[19] for 1.544 MHz  
0.1 p-p  
0.05 p-p  
Revision 3.02/November 2005 © Semtech Corp.  
Page143  
www.semtech.com  
ACS8530 SETS  
ADVANCED COMMUNICATIONS  
Input/Output Timing  
FINAL  
DATASHEET  
Figure 28 Input/Output Timing  
Delay  
Min/Max Phase Alignment  
Input/Output  
Output  
(FrSync Alignment switched on)  
8 kHz input  
MFrSync (2 kHz)  
+8.2 ± 1.5 ns  
8 kHz output  
FrSync (8 kHz)  
8 kHz  
-1.2 ± 0.5 ns  
-0.4 ± 0.5 ns  
-0.0 ± 0.5 ns  
-1.2 ± 1.25 ns  
6.48 MHz input  
6.48 MHz output  
+4.7 ± 1.5 ns  
+4.3 ± 1.5 ns  
+4.7 ± 1.5 ns  
+4.6 ± 1.5 ns  
+3.0 ± 1.5 ns  
+5.3 ± 1.5 ns  
+5.3 ± 1.5 ns  
19.44 MHz input  
19.44 MHz output  
2 kHz  
DS1 (1.544 MHz)  
E1 (2.048 MHz)  
25.92 MHz input  
25.92 MHz output  
-1.2 ± 1.25 ns  
-3.75 ± 1.25 ns  
38.88 MHz input  
38.88 MHz output  
DS3 (44.736 MHz)  
E3 (34.368 MHz)  
-3.75 ± 1.25 ns  
-3.75 ± 1.25 ns  
-3.75 ± 1.25 ns  
-3.75 ± 1.25 ns  
-3.75 ± 1.25 ns  
-3.75 ± 1.25 ns  
-3.75 ± 1.25 ns  
-3.75 ± 1.25 ns  
51.84 MHz input  
51.84 MHz output  
6.48 MHz  
77.76 MHz input  
77.76 MHz output  
19.44 MHz  
25.92 MHz  
38.88 MHz  
51.84 MHz  
155.52 MHz input  
155.52 MHz output  
77.76 MHz  
155.52 MHz  
311.04 MHz  
-3.75 ± 1.25 ns  
F8525D_021IP_OPTiming_02  
Revision 3.02/November 2005 © Semtech Corp.  
Page144  
www.semtech.com  
ACS8530 SETS  
ADVANCED COMMUNICATIONS  
FINAL  
DATASHEET  
Package Information  
Figure 29 LQFP Package  
2
1
D
3
D1  
AN2  
AN3  
1
Section A-A  
R1  
S
R2  
B
E
E1  
AN1  
2
1
A
A
B
3
AN4  
L
4
L1  
5
1
2
3
Section B-B  
7
7
b
e
A
A2  
c
c1  
7
7
Seating plane  
b1  
8
A1  
6
b
Notes  
1
2
3
The top package body may be smaller than the bottom package body by as much as 0.15 mm.  
To be determined at seating plane.  
Dimensions D1 and E1 do not include mold protrusion. Allowable protrusion is 0.25 mm per side.  
D1 and E1 are maximum plastic body size dimensions including mold mismatch.  
4
5
6
7
8
Details of pin 1 identifier are optional but will be located within the zone indicated.  
Exact shape of corners can vary.  
A1 is defined as the distance from the seating plane to the lowest point of the package body.  
These dimensions apply to the flat section of the lead between 0.10 mm and 0.25 mm from the lead tip.  
Shows plating.  
Table 41 100 Pin LQFP Package Dimension Data (for use with Figure 29)  
100 LQFP  
Package  
Dimensions  
in mm  
D/E  
D1/  
E1  
A
A1  
A2  
e
AN1 AN2 AN3 AN4 R1  
R2  
L
L1  
S
b
b1  
c
c1  
Min.  
-
-
1.40 0.05 1.35  
-
11o 11o 0o  
0o 0.08 0.08 0.45  
-
0.20 0.17 0.17 0.09 0.09  
Nom.  
16.00 14.00 1.50 0.10 1.40 0.50 12o 12o  
-
3.5o  
-
-
0.60 1.00  
(ref)  
-
0.22 0.20  
-
-
Max.  
-
-
1.60 0.15 1.45  
-
13o 13o  
-
7o  
-
0.20 0.75  
-
-
0.27 0.23 0.20 0.16  
Revision 3.02/November 2005 © Semtech Corp.  
Page145  
www.semtech.com  
ACS8530 SETS  
ADVANCED COMMUNICATIONS  
Thermal Conditions  
FINAL  
DATASHEET  
The device is rated for full temperature range when this package is used with a 4 layer or more PCB. Copper coverage  
must exceed 50%. All pins must be soldered to the PCB. Maximum operating temperature must be reduced when the  
device is used with a PCB with less than these requirements.  
Figure 30 Typical 100 Pin LQFP Footprint  
1.85 mm  
Not Drawn to Scale  
Pitch 0.5 mm  
Width 0.3 mm  
F8530D_030QFNFootprt100_02  
Notes: (i) Solderable to this limit.  
(ii) Square package - dimensions apply in both X and Y directions.  
(iii) Typical example. The user is responsible for ensuring compatibility with PCB manufacturing process, etc.  
Revision 3.02/November 2005 © Semtech Corp.  
Page146  
www.semtech.com  
ACS8530 SETS  
ADVANCED COMMUNICATIONS  
FINAL  
DATASHEET  
Application Information  
Figure 31 Simplified Application Schematic  
VDD  
IC2  
VDD2  
VDD5v  
P1  
EZ1086CT-3.3  
VDD3  
VDDA  
3
5v  
0v  
2
VIN  
VOUT  
1
GND  
(+)  
(+)  
Power supply and ground  
connections to 'star'  
connect back to these  
decoupling capacitors at  
the regulator and only  
connect together at this  
point  
C7  
term_connect  
100uF  
C2  
100nF  
C4  
10uF_TANT  
100nF  
C3  
AGND  
DGND3  
DGND2  
ZD1  
Optional EPROM interface  
selection  
Optional Processor/EPROM  
interface type selection  
BZV90C-5.6v  
DGND  
Decoupling capacitor, C21 should be placed close to the xtal  
pins that are being decoupled  
RDY RDB CSB  
ALE WRB  
Int  
CC parts are easily cut links that can also take SM  
capacitors or Ohm resistor links.  
SrSwit  
All tcxo options to be placed as close as possible to IC1,  
with short output track.  
O1  
O2  
O3  
VDD  
O4  
O5  
C29  
C9  
100nF  
VDDA  
AGND  
100nF  
O9  
DGND  
All decoupling capacitors, C29,  
C9, C13, C14, C15, C6, C5,  
C12, C11, C10,C32 should be  
placed close to the IC1 pins that  
are being decoupled  
DGND  
1
2
3
4
5
6
7
8
9
AGND  
TRST  
IC1  
RDY 75  
PORB 74  
ALE 73  
RDB 72  
WRB 71  
CSB 70  
A0 69  
A1 68  
A2 67  
A3 66  
A4 65  
VDD  
C8  
1nF  
DGND  
IC2  
OCXO  
12.8MHz  
C10  
AGND  
R1  
AGND1  
VA1+  
TMS  
INTREQ  
TCK  
VDDA  
100nF  
X1  
10R  
2 vdd  
output  
VDD3  
VDD  
10 REFCLK  
11  
IC1  
ACS8530  
1
DGND1  
12 VD1+  
13  
gnd2  
optn  
100nF  
C13  
A5 64  
A6 63  
5
VD3+  
C11  
100nF  
C21  
14 DGND3  
15 DGND2  
16 VD2+  
17 IC3  
18 SRCSW  
19 VA2+  
20 AGND2  
21 TDO  
22 IC4  
DGNDd 62  
VDDd 61  
UPSEL0 60  
UPSEL1 59  
UPSEL2 58  
I14 57  
I13 56  
I12 55  
I11 54  
I10 53  
Optional  
VDDA  
100nF  
4
DGND  
Processor  
interface type  
selection  
UPSEL0  
UPSEL1  
UPSEL2  
R6 DGND3  
gnd1  
3
10R  
C12  
100nF  
Vectron  
AGND  
DGND  
23 TDI  
24 I1  
25 I2  
I9 52  
I8 51  
VDD2  
C6  
100nF  
(+)  
C5  
10uF_TANT  
VDD  
DGND2  
C14  
100nF  
DGND  
VDD2  
C15  
VDD2  
C32  
100nF  
100nF  
DGND2  
DGND2  
C23  
100n  
T1  
Pe-68865  
R41  
optn  
C16  
C17  
R38  
optn  
470nF  
470nF  
I1  
I2  
optn  
C22  
O8P  
I10  
I12  
I14  
I4  
I8  
I11  
I13  
I3  
I7  
I9  
DGND2  
DGND  
DGND  
F8530D_031EvalBdSchem_01  
Revision 3.02/November 2005 © Semtech Corp.  
Page147  
www.semtech.com  
ACS8530 SETS  
ADVANCED COMMUNICATIONS  
Abbreviations  
FINAL  
References  
DATASHEET  
AMI  
Alternate Mark Inversion  
Analogue Phase Locked Loop  
Building Integrated Timing Supply  
Digital Frequency Synthesis  
Digital Phase Locked Loop  
1544 kbit/s interface rate  
Discrete Time Oscillator  
2048 kbit/s interface rate  
Input - Output  
Loss of Frame Alignment  
Loss Of Signal  
Low profile Quad Flat Pack  
Low Voltage Differential Signal  
Maximum Time Interval Error  
Network Element  
[1] ANSI T1.101-1999 (1999)  
Synchronization Interface Standard  
APLL  
BITS  
DFS  
DPLL  
DS1  
DTO  
E1  
[2] AT & T 62411 (12/1990)  
ACCUNET® T1.5 Service description and Interface  
Specification  
[3] ETSI ETS 300 462-3, (01/1997)  
Transmission and Multiplexing (TM); Generic  
requirements for synchronization networks; Part 3: The  
control of jitter and wander within synchronization  
networks  
I/O  
LOF  
LOS  
LQFP  
LVDS  
MTIE  
NE  
[4] ETSI ETS 300 462-5 (09/1996)  
Transmission and Multiplexing (TM); Generic  
requirements for synchronization networks; Part 5: Timing  
characteristics of slave clocks suitable for operation in  
Synchronous Digital Hierarchy (SDH) equipment  
[5] IEEE 1149.1 (1990)  
Standard Test Access Port and Boundary-Scan  
Architecture  
OCXO  
PBO  
PDH  
PECL  
PFD  
PLL  
Oven Controlled Crystal Oscillator  
Phase Build-out  
Plesiochronous Digital Hierarchy  
Positive Emitter Coupled Logic  
Phase and Frequency Detector  
Phase Locked Loop  
[6] ITU-T G.703 (10/1998)  
(Physical/electrical characteristics of hierarchical digital  
interfaces  
POR  
ppb  
ppm  
p-p  
Power-On Reset  
parts per billion  
parts per million  
peak-to-peak  
[7] ITU-T G.736 (03/1993)  
Characteristics of a synchronous digital multiplex  
equipment operating at 2048 kbit/s  
[8] ITU-T G.742 (1988)  
Second order digital multiplex equipment operating at  
8448 kbit/s, and using positive justification  
R/W  
rms  
Read/Write  
root-mean-square  
RO  
Read Only  
[9] ITU-T G.783 (10/2000)  
RoHS  
Restrictive Use of Certain Hazardous  
Substances (directive)  
Characteristics of synchronous digital hierarchy (SDH)  
equipment functional blocks  
SDH  
SEC  
SETS  
SONET  
SSU  
STM  
TDEV  
TCXO  
Synchronous Digital Hierarchy  
SDH/SONET Equipment Clock  
Synchronous Equipment Timing source  
Synchronous Optical Network  
Synchronization Supply Unit  
Synchronous Transport Module  
Time Deviation  
Temperature Compensated Crystal  
Oscillator  
Unit Interval  
Waste Electrical and Electronic  
Equipment (directive)  
[10] ITU-T G.812 (06/1998)  
Timing requirements of slave clocks suitable for use as  
node clocks in synchronization networks  
[11] ITU-T G.813 (08/1996)  
Timing characteristics of SDH equipment slave clocks  
(SEC)  
[12] ITU-T G.822 (11/1988)  
Controlled slip rate objectives on an international digital  
connection  
UI  
WEEE  
[13] ITU-T G.823 (03/2000)  
The control of jitter and wander within digital networks  
which are based on the 2048 kbit/s hierarchy  
Revision 3.02/November 2005 © Semtech Corp.  
Page148  
www.semtech.com  
ACS8530 SETS  
ADVANCED COMMUNICATIONS  
FINAL  
Trademark Acknowledgements  
DATASHEET  
[14] ITU-T G.824 (03/2000)  
The control of jitter and wander within digital networks  
which are based on the 1544 kbit/s hierarchy  
Semtech and the Semtech S logo are registered  
trademarks of Semtech Corporation.  
[15] ITU-T G.825 (03/2000)  
ACCUNET® is a registered trademark of AT & T.  
The control of jitter and wander within digital networks  
which are based on the Synchronous Digital Hierarchy  
(SDH)  
AMD is a registered trademark of Advanced Micro  
Devices, Inc.  
[16] ITU-T K.41 (05/1998)  
Resistibility of internal interfaces of telecommunication  
centres to surge overvoltages  
C-MAC is a registered trademark of  
C-MAC MicroTechnology - a division of Solectron  
Corporation.  
[17] Telcordia GR-253-CORE, Issue 3 (09/2000)  
Synchronous Optical Network (SONET) Transport  
Systems: Common Generic Criteria  
ICT Flexacom is a registered trademark of ICT Electronics.  
Motorola is a registered trademark of Motorola, Inc.  
[18] Telcordia GR-499-CORE, Issue 2 (12/1998)  
Transport Systems Generic Requirements (TSGR)  
Common requirements  
Telcordia is a registered trademark of Telcordia  
Technologies.  
[19] Telcordia GR-1244-CORE, Issue 2 (12/2000)  
Clocks for the Synchronized Network: Common Generic  
Criteria  
Revision 3.02/November 2005 © Semtech Corp.  
Page149  
www.semtech.com  
ACS8530 SETS  
ADVANCED COMMUNICATIONS  
FINAL  
DATASHEET  
Revision Status/History  
The Revision Status of the datasheet, as shown in the  
center of the datasheet header bar, may be DRAFT,  
PRELIMINARY, or FINAL, and refers to the status of the  
Device (not the datasheet) within the design cycle. DRAFT  
status is used when the design is being realized but is not  
yet physically available, and the datasheet content  
reflects the intention of the design. The datasheet is  
raised to PRELIMINARY status when initial prototype  
devices are physically available, and the datasheet  
content more accurately represents the realization of the  
the device has been fully characterized, and the  
datasheet content updated with measured, rather than  
simulated parameter values.  
This is a FINAL release (Revision 3.02) of the ACS8530  
datasheet. Changes made for this document revision are  
given in Table 42, together with a brief summary of  
previous revisions. For specific changes between earlier  
revisions, refer (where available) to those earlier  
design. The datasheet is only raised to FINAL status after revisions. Always use the current version of the datasheet.  
Table 42 Revision History  
Revision  
Reference  
See particular revision  
Description of changes  
1.00/February 2002  
1.01/February 2002  
1.02/March 2002  
1.03/March 2002  
1.04/April 2002  
Initial datasheet and minor revisions at Preliminary status  
Refer to particular release for changes made for that release.  
1.05/April 2002  
1.06/May 2002  
First public release (Preliminary).  
Minor update.  
1.07/June 2002  
1.08/January 2003  
2.00/January 2003  
3.00/September 2003  
3.01/October 2003  
Minor update.  
Major revision, first at FINAL status and completely revised.  
Major revision.  
Minor revision  
3.02/November 2005 Regs: 1D, 3C, 3D, 63, 64, 65 and 79  
Register description updated.  
Figures updated.  
Figures 23, 24 and 30  
Page 21  
“patent -pending” reference updated to “patented”.  
Title change and note added to Figure.  
New row added for VDD5.  
Figure 5  
Table 31  
Figure 19 and pin 68 (Table 2)  
Back page  
References added such that A(1) = CLKE in serial mode.  
Former US mailing address removed. (Mail now delivered to main  
address).  
Trademark Acknowledgements and Revision  
Status/History  
Sections updated.  
Front page bullets, back page Ordering  
Information and Abbreviations sections  
References to availability of a lead (Pb)-free packaged version  
(ACS8530T) added.  
Revision 3.02/November 2005 © Semtech Corp.  
Page150  
www.semtech.com  
ACS8530 SETS  
ADVANCED COMMUNICATIONS  
FINAL  
DATASHEET  
Notes  
Revision 3.02/November 2005 © Semtech Corp.  
Page151  
www.semtech.com  
ACS8530 SETS  
ADVANCED COMMUNICATIONS  
FINAL  
DATASHEET  
Ordering Information  
Table 43 Parts List  
Part Number  
Description  
ACS8530  
SETS Synchronous Equipment Timing Source for Stratum 2/3E Systems  
Lead (Pb)-free packaged version of ACS8530; RoHS and WEEE compliant.  
ACS8530T  
Disclaimers  
Life support- This product is not designed or intended for use in life support equipment, devices or systems, or other critical  
applications. This product is not authorized or warranted by Semtech for such use.  
Right to change- Semtech Corporation reserves the right to make changes, without notice, to this product. Customers are advised  
to obtain the latest version of the relevant information before placing orders.  
Compliance to relevant standards- Operation of this device is subject to the User’s implementation and design practices. It is the  
responsibility of the User to ensure equipment using this device is compliant to any relevant standards.  
Contacts  
For Additional Information, contact the following:  
Semtech Corporation Advanced Communications Products  
E-mail:  
Internet:  
USA:  
sales@semtech.com  
acsupport@semtech.com  
http://www.semtech.com  
200 Flynn Road, Camarillo, CA 93012-8790  
Tel: +1 805 498 2111, Fax: +1 805 498 3804  
FAR EAST: 11F, No. 46, Lane 11, Kuang Fu North Road, Taipei, R.O.C.  
Tel: +886 2 2748 3380 Fax: +886 2 2748 3390  
EUROPE: Semtech Ltd., Units 2 and 3, Park Court, Premier Way,  
Abbey Park Industrial Estate, Romsey, Hampshire, SO51 9DN  
Tel: +44 (0)1794 527 600  
Fax: +44 (0)1794 527 601  
ISO9001  
CERTIFIED  
Revision 3.02/November 2005 © Semtech Corp.  
Page152  
www.semtech.com  

相关型号:

ACS8595

Line Card Protection Switch for SONET/SDH AdvancedTCA Systems
SEMTECH

ACS8595EVB

Line Card Protection Switch for SONET/SDH AdvancedTCA Systems
SEMTECH

ACS8595T

Line Card Protection Switch for SONET/SDH AdvancedTCA Systems
SEMTECH

ACS86D

Radiation Hardened Quad 2-Input Exclusive OR Gate
INTERSIL

ACS86D/SAMPLE

AC SERIES, QUAD 2-INPUT XOR GATE, CDIP14, SIDE BRAZED, DIP-14
RENESAS

ACS86D/SAMPLE-02

AC SERIES, QUAD 2-INPUT XOR GATE, CDIP14, METAL SEALED, SIDE BRAZED, CERAMIC, DIP-14
RENESAS

ACS86DMSR

Radiation Hardened Quad 2-Input Exclusive OR Gate
INTERSIL

ACS86DMSR-02

AC SERIES, QUAD 2-INPUT XOR GATE, CDIP14, METAL SEALED, SIDE BRAZED, CERAMIC, DIP-14
RENESAS

ACS86HMSR

Radiation Hardened Quad 2-Input Exclusive OR Gate
INTERSIL

ACS86HMSR-02

AC SERIES, QUAD 2-INPUT XOR GATE, UUC14, 2.24 X 2.24 MM, DIE-14
RENESAS

ACS86K

Radiation Hardened Quad 2-Input Exclusive OR Gate
INTERSIL

ACS86K/SAMPLE

AC SERIES, QUAD 2-INPUT XOR GATE, CDFP14, CERAMIC, DFP-14
RENESAS