MGF65A6L [SANKEN]

VCE = 650 V, IC = 60 A Trench Field Stop IGBTs with Fast Recovery Diode;
MGF65A6L
型号: MGF65A6L
厂家: SANKEN ELECTRIC    SANKEN ELECTRIC
描述:

VCE = 650 V, IC = 60 A Trench Field Stop IGBTs with Fast Recovery Diode

双极性晶体管
文件: 总14页 (文件大小:675K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
VCE = 650 V, IC = 60 A  
Trench Field Stop IGBTs with Fast Recovery Diode  
KGF65A6L, MGF65A6L  
Data Sheet  
Description  
Package  
KGF65A6L and MGF65A6L are 650 V Field Stop  
IGBTs. Sanken original trench structure decreases gate  
capacitance, and achieves low saturation voltage and  
switching losses reduction. Thus, Field Stop IGBTs can  
improve the efficiency of your circuit.  
TO247-3L  
TO3P-3L  
(4)  
(4)  
Features  
Low Saturation Voltage  
High Speed Switching  
(1) (2) (3)  
(1) (2) (3)  
With Integrated Fast Recovery Diode  
RoHS Compliant  
(2)(4)  
VCE ------------------------------------------------------ 650 V  
IC (TC = 100 °C)-----------------------------------------60 A  
Short Circuit Withstand Time -------------------------5 μs  
VCE(sat)-----------------------------------------------1.6 V typ.  
tf (TJ = 175 °C) ---------------------------------- 150 ns typ.  
VF----------------------------------------------------1.7 V typ.  
(1) Gate  
(2) Collector  
(3) Emitter  
(4) Collector  
(1)  
(3)  
Applications  
Not to scale  
Uninterruptible Power Supply (UPS)  
Inverter Circuit  
Bridge Circuit  
Selection Guide  
Part Number  
KGF65A6L  
MGF65A6L  
Package  
TO247-3L  
TO3P-3L  
xGF65A6L-DSE Rev.1.0  
Oct. 03, 2016  
SANKEN ELCTRIC CO.,LTD.  
http://www.sanken-ele.co.jp/en  
1
© SANKEN ELECTRIC CO.,LTD. 2016  
KGF65A6L, MGF65A6L  
Absolute Maximum Ratings  
Unless otherwise specified, TA = 25 °C  
Parameter  
Symbol  
VCE  
Conditions  
Rating  
650  
Unit  
V
Remarks  
Collector to Emitter Voltage  
Gate to Emitter Voltage  
VGE  
±30  
80(2)  
60  
V
TC = 25 °C  
A
Continuous Collector Current (1)  
IC  
IC(PULSE)  
IF  
TC = 100 °C  
PW 1 ms,  
duty cycle 1%  
TC = 25 °C  
TC= 100 °C  
A
Pulsed Collector Current  
180  
A
80(2)  
60  
A
A
Diode Continuous Forward Current (1)  
PW 1 ms,  
duty cycle 1%  
TJ 175 °C,  
see Figure 1.  
VGE = 15 V,  
VCE = 400 V  
TJ=175 °C  
Diode Pulsed Forward Current  
IF(PULSE)  
dv/dt  
180  
10  
A
Maximum CollectorEmitter dv/dt  
V/ns  
Short Circuit Withstand Time  
Power Dissipation  
tSC  
5
μs  
PD  
TC = 25 °C  
405  
W
Operating Junction Temperature  
Storage Temperature Range  
TJ  
175  
°C  
°C  
TSTG  
55 to 150  
Thermal Characteristics  
Unless otherwise specified, TA = 25 °C  
Parameter  
Symbol  
Conditions  
Min. Typ. Max.  
Unit  
Remarks  
Thermal Resistance of IGBT  
(Junction to Case)  
Thermal Resistance of Diode  
(Junction to Case)  
RθJC (IGBT)  
RθJC (Di)  
0.37  
0.93  
°C/W  
°C/W  
(1) IC and IF are determined by the maximum junction temperature for TO3P-3L package.  
(2) Determined by bonding wires capability.  
xGF65A6L-DSE Rev.1.0  
Oct. 03, 2016  
SANKEN ELCTRIC CO.,LTD.  
http://www.sanken-ele.co.jp/en  
2
© SANKEN ELECTRIC CO.,LTD. 2016  
KGF65A6L, MGF65A6L  
Electrical Characteristics  
Unless otherwise specified, TA = 25 °C  
Parameter  
Symbol  
V(BR)CES  
Conditions  
Min.  
650  
Typ.  
Max.  
Unit  
V
Collector to Emitter Breakdown  
Voltage  
IC = 100 μA, VGE = 0 V  
Collector to Emitter Leakage Current  
Gate to Emitter Leakage Current  
Gate Threshold Voltage  
ICES  
IGES  
VCE = 650 V, VGE = 0 V  
VGE = ±30 V  
100  
±500  
7.0  
µA  
nA  
V
VGE(TH)  
VCE = 10 V, IC = 1 mA  
4.0  
5.5  
Collector to Emitter Saturation  
Voltage  
VCE(sat)  
VGE = 15 V, IC = 60 A  
1.6  
1.96  
V
Input Capacitance  
Cies  
Coes  
Cres  
3500  
330  
VCE = 20 V,  
VGE = 0 V,  
f = 1.0 MHz,  
Output Capacitance  
pF  
nC  
Reverse Transfer Capacitance  
170  
VCE = 520 V, IC = 60 A,  
VGE = 15 V  
Gate charge  
Qg  
110  
Turn-On Delay Time  
Rise Time  
td(on)  
tr  
td(off)  
tf  
50  
70  
ns  
mJ  
ns  
Turn-Off Delay Time  
130  
60  
TJ = 25 °C,  
see Figure 1.  
Fall Time  
Turn-on Energy (3)  
Turn-off Energy  
Turn-On Delay Time  
Rise Time  
Eon  
Eoff  
td(on)  
tr  
1.7  
1.4  
50  
70  
Turn-Off Delay Time  
Fall Time  
Turn-on Energy (3)  
td(off)  
tf  
160  
150  
2.7  
2.5  
TJ = 175 °C,  
see Figure 1.  
Eon  
Eoff  
mJ  
Turn-off Energy  
Emitter to Collector Diode Forward  
Voltage  
Emitter to Collector Diode Reverse  
Recovery Time  
65  
VF  
trr  
IF = 60 A  
1.7  
65  
V
IF = 60 A,  
di/dt = 500 A/μs  
ns  
(3) Energy losses include the reverse recovery of diode.  
xGF65A6L-DSE Rev.1.0  
Oct. 03, 2016  
SANKEN ELCTRIC CO.,LTD.  
http://www.sanken-ele.co.jp/en  
3
© SANKEN ELECTRIC CO.,LTD. 2016  
 
KGF65A6L, MGF65A6L  
Test Circuits and Waveforms  
Conditions  
VCE = 400 V  
IC = 60 A  
DUT  
(Diode)  
VGE = 15 V  
RG = 10 Ω  
L= 100 μH  
L
VCE  
RG  
IC  
DUT  
(IGBT)  
15V  
VGE  
(a) Test Circuit  
VGE  
90%  
10%  
t
VCE  
dv/dt  
t
t
IC  
90%  
90%  
10%  
10%  
td(on)  
td(off)  
tr  
tf  
(b) Waveform  
Figure 1. Test Circuits and Waveforms of dv/dt and Switching Time  
xGF65A6L-DSE Rev.1.0  
SANKEN ELCTRIC CO.,LTD.  
4
Oct. 03, 2016  
http://www.sanken-ele.co.jp/en  
© SANKEN ELECTRIC CO.,LTD. 2016  
KGF65A6L, MGF65A6L  
Rating and Characteristic Curves  
1000  
1000  
100  
10  
10 μs  
100  
10  
100 μs  
1
1
IGBT  
IGBT  
Single Pulse  
Single Pulse  
TJ = 175 °C  
TJ = 25 °C  
0.1  
0.1  
1
10  
100  
1000  
1
10  
100  
1000  
Collector-Emitter Voltage, VCE (V)  
Collector-Emitter Voltage, VCE (V)  
Figure 2. IGBT Reverse Bias Safe Operating  
Area  
Figure 3. IGBT Safe Operating Area  
450  
400  
350  
300  
250  
200  
150  
100  
80  
60  
40  
20  
0
TO3P-3L,  
100  
TO247-3L  
TO3P-3L,  
TO247-3L  
TJ < 175 °C  
50  
TJ < 175 °C  
0
25  
50  
75  
100  
125  
150  
175  
25  
50  
Case Temperature, TC (°C)  
Figure 5. Collector Current vs. Case Temperature  
75  
100  
125  
150  
175  
Case Temperature, TC (°C)  
Figure 4. Power Dissipation vs. Case  
Temperature  
xGF65A6L-DSE Rev.1.0  
Oct. 03, 2016  
SANKEN ELCTRIC CO.,LTD.  
http://www.sanken-ele.co.jp/en  
5
© SANKEN ELECTRIC CO.,LTD. 2016  
KGF65A6L, MGF65A6L  
180  
180  
160  
140  
120  
100  
80  
TJ = 25 °C  
TJ = 175 °C  
VGE = 20 V  
VGE = 15 V  
VGE = 15 V  
VGE = 12 V  
160  
140  
VGE = 20 V  
120  
100  
80  
60  
40  
20  
0
VGE = 12 V  
VGE = 10 V  
60  
VGE = 10 V  
40  
VGE = 8 V  
20  
VGE = 8 V  
0
0
1
2
3
4
5
0
1
2
3
4
5
Collector-Emitter Voltage, VCE (V)  
Collector-Emitter Voltage, VCE (V)  
Figure 6. Output Characteristics (TJ = 25 °C)  
180  
Figure 7. Output Characteristics (TJ = 175 °C)  
3.0  
VCE = 5 V  
160  
VGE = 15 V  
IC = 120 A  
140  
120  
100  
80  
2.5  
2.0  
IC = 60 A  
TJ = 25 °C  
60  
1.5  
1.0  
TJ = 175 °C  
IC = 30 A  
40  
20  
0
-50 -25  
0
25 50 75 100 125 150 175  
0
5
10  
Gate-Emitter Voltage, VGE (V)  
Figure 8. Transfer Characteristics  
15  
Junction Temperature, TJ (°C)  
Figure 9. Saturation Voltage vs. Junction  
Temperature  
xGF65A6L-DSE Rev.1.0  
Oct. 03, 2016  
SANKEN ELCTRIC CO.,LTD.  
http://www.sanken-ele.co.jp/en  
6
© SANKEN ELECTRIC CO.,LTD. 2016  
KGF65A6L, MGF65A6L  
7
6
5
4
3
2
3.0  
VGE = 15 V  
2.5  
2.0  
1.5  
1.0  
0.5  
TJ = 175 °C  
TJ = 25 °C  
TJ = −55 °C  
-50 -25  
0
25 50 75 100 125 150 175  
0
20  
40  
60  
80  
100  
120  
Collector Current, IC (A)  
Junction Temperature, TJ (°C)  
Figure 10. Saturation Voltage vs. Collector  
Current  
Figure 11. Gate Threshold Voltage vs. Junction  
Temperature  
20  
10000  
IC = 60 A  
Cies  
VCE 130 V  
1000  
100  
10  
Coes  
10  
VCE 520 V  
Cres  
f = 1 MHz  
VGE = 0 V  
0
0
10  
20  
30  
40  
50  
0
20  
40  
Gate charge, Qg (nC)  
Figure 13. Typical Gate Charge  
60  
80  
100  
120  
Collector-Emitter Voltage, VCE (V)  
Figure 12. Capacitance Characteristics  
xGF65A6L-DSE Rev.1.0  
Oct. 03, 2016  
SANKEN ELCTRIC CO.,LTD.  
http://www.sanken-ele.co.jp/en  
7
© SANKEN ELECTRIC CO.,LTD. 2016  
KGF65A6L, MGF65A6L  
1000  
100  
10  
1000  
Inductive Load  
IC = 60 A, VCE = 400 V,  
VGE = 15 V, Rg= 10 Ω  
td(off)  
tf  
td(off)  
td(on)  
100  
tf  
tr  
td(on)  
tr  
Inductive Load  
VCE = 400 V, VGE = 15 V,  
Rg= 10 Ω, TJ = 175 °C  
10  
1
25  
50  
75  
100  
125  
150  
175  
1
10  
Collector Current, IC (A)  
Figure 15. Switching Time vs. Collector Current  
100  
Junction Temperature, TJ (°C)  
Figure 14. Switching Time vs. Junction  
Temperature  
1000  
6
Eon + Eoff  
Inductive Load  
IC = 60 A, VCE = 400 V,  
VGE = 15 V, Rg= 10 Ω  
5
4
3
2
1
0
td(off)  
tr  
tf  
100  
Eon  
td(on)  
Eoff  
Inductive Load  
IC = 60 A, VCE = 400 V,  
VGE = 15 V, Tj = 175 °C  
10  
10  
100  
25  
50  
75  
100  
125  
150  
175  
Junction Temperature, TJ (°C)  
Gate Resistor, RG (Ω)  
Figure 16. Switching Time vs. Gate Resistor  
Figure 17. Switching Loss vs. Junction  
Temperature  
xGF65A6L-DSE Rev.1.0  
Oct. 03, 2016  
SANKEN ELCTRIC CO.,LTD.  
http://www.sanken-ele.co.jp/en  
8
© SANKEN ELECTRIC CO.,LTD. 2016  
KGF65A6L, MGF65A6L  
14  
13  
12  
11  
10  
9
Eon + Eoff  
Inductive Load  
IC = 60 A, VCE = 400 V,  
Inductive Load  
VCE = 400 V, VGE = 15 V,  
12  
VGE = 15 V, TJ = 175 °C  
Rg= 10 Ω, TJ = 175 °C  
Eon + Eoff  
Eon  
10  
8
8
6
4
2
0
Eon  
Eoff  
7
6
5
Eoff  
4
3
2
1
0
0
20  
40  
60  
80  
100  
120  
10 20 30 40 50 60 70 80 90 100  
Collector Current, IC (A)  
Gate Resistor, RG (Ω)  
Figure 18. Switching Loss vs. Collector Current  
8
Figure 19. Switching Loss vs. Gate Resistor  
180  
160  
140  
120  
100  
Inductive Load  
Eon + Eoff  
7
6
5
4
3
2
1
0
IC = 60 A, VGE = 15 V, Rg  
= 10 Ω, TJ = 175 °C  
Eon  
TJ = 175 °C  
80  
60  
40  
20  
0
Eoff  
TJ = -55 °C  
TJ = 25 °C  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
200  
250  
300  
350  
400  
450  
500  
Forward Voltage, VF (V)  
Figure 21. Diode Forward Characteristics  
Collector-Emitter Voltage, VCE (V)  
Figure 20. Switching Loss vs. Collector-Emitter  
Voltage  
xGF65A6L-DSE Rev.1.0  
Oct. 03, 2016  
SANKEN ELCTRIC CO.,LTD.  
http://www.sanken-ele.co.jp/en  
9
© SANKEN ELECTRIC CO.,LTD. 2016  
KGF65A6L, MGF65A6L  
3
160  
140  
120  
100  
80  
Inductive load  
VR = 400 V  
IF = 60 A  
TJ = 175 °C  
2
1
0
IF = 120A  
IF = 60A  
IF = 30A  
60  
TJ = 25 °C  
40  
300  
400  
500  
600  
700  
800  
900  
-50 -25  
0
25 50 75 100 125 150 175  
Junction Temperature, TJ (°C)  
di/dt (A/μs)  
Figure 22. Diode Forward Voltage  
vs. Junction Temperature  
Figure 23. Diode Reverse Recovery Time vs. di/dt  
35  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
TJ = 175 °C  
Inductive load  
VR = 400 V  
IF = 60 A  
30  
25  
20  
TJ = 175 °C  
TJ = 25 °C  
15  
10  
TJ = 25 °C  
Inductive load  
VR = 400 V  
IF = 60 A  
5
0
300  
400  
500  
600  
700  
800  
900  
300  
400  
500  
600  
700  
800  
900  
di/dt (A/µs)  
di/dt (A/μs)  
Figure 24. Diode Reverse Recovery Charge vs.  
di/dt  
Figure 25. Diode Reverse Recovery Current vs.  
di/dt  
xGF65A6L-DSE Rev.1.0  
Oct. 03, 2016  
SANKEN ELCTRIC CO.,LTD.  
http://www.sanken-ele.co.jp/en  
10  
© SANKEN ELECTRIC CO.,LTD. 2016  
KGF65A6L, MGF65A6L  
10  
Diode  
IGBT  
1
0.1  
TO3P  
TO247  
0.01  
0.001  
TC = 25 °C  
Single Pulse  
VCE < 5 V  
1μ  
10μ  
100μ  
1m  
10m  
100m  
1
10  
100  
Pulse Width (s)  
Figure 26. Transient Thermal Resistance  
xGF65A6L-DSE Rev.1.0  
Oct. 03, 2016  
SANKEN ELCTRIC CO.,LTD.  
http://www.sanken-ele.co.jp/en  
11  
© SANKEN ELECTRIC CO.,LTD. 2016  
KGF65A6L, MGF65A6L  
Physical Dimensions  
TO247-3L  
TO3P-3L  
NOTES:  
- All dimensions in millimeters  
- Pin treatment for TO247 and TO3P: Pb-free (RoHS compliant)  
- When soldering the products, make sure to minimize the working time within the following limits:  
260 ± 5 °C  
10 ± 1 s, 2 times (flow)  
380 ± 10 °C  
3.5 ± 0.5 s, 1 time (soldering iron)  
- Soldering should be at a distance of at least 1.5 mm from the body of the products.  
- The recommended screw torque for TO247, TO3P and TO3PF: 0.686 to 0.882 N∙m (7 to 9 kgf∙cm)  
xGF65A6L-DSE Rev.1.0  
Oct. 03, 2016  
SANKEN ELCTRIC CO.,LTD.  
http://www.sanken-ele.co.jp/en  
12  
© SANKEN ELECTRIC CO.,LTD. 2016  
KGF65A6L, MGF65A6L  
Marking Diagram  
TO247-3L  
TO3P-3L  
KGF65A6L  
YMDD XX  
MGF65A6L  
YMDD XX  
(a)  
(b)  
(a)  
(b)  
(a) Part Number  
(b) Lot Number  
Y is the last digit of the year of manufacture (0 to 9)  
M is the month of the year (1 to 9, O, N or D)  
DD is the day of the month (01 to 31)  
XX is the control number  
xGF65A6L-DSE Rev.1.0  
Oct. 03, 2016  
SANKEN ELCTRIC CO.,LTD.  
http://www.sanken-ele.co.jp/en  
13  
© SANKEN ELECTRIC CO.,LTD. 2016  
KGF65A6L, MGF65A6L  
Important Notes  
All data, illustrations, graphs, tables and any other information included in this document as to Sanken’s products listed herein (the  
Sanken Products‖) are current as of the date this document is issued. All contents in this document are subject to any change  
without notice due to improvement of the Sanken Products, etc. Please make sure to confirm with a Sanken sales representative  
that the contents set forth in this document reflect the latest revisions before use.  
The Sanken Products are intended for use as components of electronic equipment or apparatus (transportation equipment and its  
control systems, home appliances, office equipment, telecommunication equipment, measuring equipment, etc.). Prior to use of the  
Sanken Products, please put your signature, or affix your name and seal, on the specification documents of the Sanken Products  
and return them to Sanken. If considering use of the Sanken Products for any applications that require higher reliability (traffic  
signal control systems or equipment, disaster/crime alarm systems, etc.), you must contact a Sanken sales representative to discuss  
the suitability of such use and put your signature, or affix your name and seal, on the specification documents of the Sanken  
Products and return them to Sanken, prior to the use of the Sanken Products. The Sanken Products are not intended for use in any  
applications that require extremely high reliability such as: aerospace equipment; nuclear power control systems; and medical  
equipment or systems, whose failure or malfunction may result in death or serious injury to people, i.e., medical devices in Class  
III or a higher class as defined by relevant laws of Japan (collectively, the ―Specific Applications‖). Sanken assumes no liability or  
responsibility whatsoever for any and all damages and losses that may be suffered by you, users or any third party, resulting from  
the use of the Sanken Products in the Specific Applications or in manner not in compliance with the instructions set forth herein.  
In the event of using the Sanken Products by either (i) combining other products or materials therewith or (ii) physically,  
chemically or otherwise processing or treating the same, you must duly consider all possible risks that may result from all such  
uses in advance and proceed therewith at your own responsibility.  
Although Sanken is making efforts to enhance the quality and reliability of its products, it is impossible to completely avoid the  
occurrence of any failure or defect in semiconductor products at a certain rate. You must take, at your own responsibility,  
preventative measures including using a sufficient safety design and confirming safety of any equipment or systems in/for which  
the Sanken Products are used, upon due consideration of a failure occurrence rate or derating, etc., in order not to cause any human  
injury or death, fire accident or social harm which may result from any failure or malfunction of the Sanken Products. Please refer  
to the relevant specification documents and Sankens official website in relation to derating.  
No anti-radioactive ray design has been adopted for the Sanken Products.  
No contents in this document can be transcribed or copied without Sanken’s prior written consent.  
The circuit constant, operation examples, circuit examples, pattern layout examples, design examples, recommended examples, all  
information and evaluation results based thereon, etc., described in this document are presented for the sole purpose of reference of  
use of the Sanken Products and Sanken assumes no responsibility whatsoever for any and all damages and losses that may be  
suffered by you, users or any third party, or any possible infringement of any and all property rights including intellectual property  
rights and any other rights of you, users or any third party, resulting from the foregoing.  
● All technical information described in this document (the ―Technical Information‖) is presented for the sole purpose of reference  
of use of the Sanken Products and no license, express, implied or otherwise, is granted hereby under any intellectual property  
rights or any other rights of Sanken.  
Unless otherwise agreed in writing between Sanken and you, Sanken makes no warranty of any kind, whether express or implied,  
including, without limitation, any warranty (i) as to the quality or performance of the Sanken Products (such as implied warranty  
of merchantability, or implied warranty of fitness for a particular purpose or special environment), (ii) that any Sanken Product is  
delivered free of claims of third parties by way of infringement or the like, (iii) that may arise from course of performance, course  
of dealing or usage of trade, and (iv) as to any information contained in this document (including its accuracy, usefulness, or  
reliability).  
In the event of using the Sanken Products, you must use the same after carefully examining all applicable environmental laws and  
regulations that regulate the inclusion or use of any particular controlled substances, including, but not limited to, the EU RoHS  
Directive, so as to be in strict compliance with such applicable laws and regulations.  
You must not use the Sanken Products or the Technical Information for the purpose of any military applications or use, including  
but not limited to the development of weapons of mass destruction. In the event of exporting the Sanken Products or the Technical  
Information, or providing them for non-residents, you must comply with all applicable export control laws and regulations in each  
country including the U.S. Export Administration Regulations (EAR) and the Foreign Exchange and Foreign Trade Act of Japan,  
and follow the procedures required by such applicable laws and regulations.  
Sanken assumes no responsibility for any troubles, which may occur during the transportation of the Sanken Products including  
the falling thereof, out of Sanken’s distribution network.  
Although Sanken has prepared this document with its due care to pursue the accuracy thereof, Sanken does not warrant that it is  
error free and Sanken assumes no liability whatsoever for any and all damages and losses which may be suffered by you resulting  
from any possible errors or omissions in connection with the contents included herein.  
Please refer to the relevant specification documents in relation to particular precautions when using the Sanken Products, and refer  
to our official website in relation to general instructions and directions for using the Sanken Products.  
All rights and title in and to any specific trademark or tradename belong to Sanken or such original right holder(s).  
DSGN-AEZ-16002  
xGF65A6L-DSE Rev.1.0  
Oct. 03, 2016  
SANKEN ELCTRIC CO.,LTD.  
http://www.sanken-ele.co.jp/en  
14  
© SANKEN ELECTRIC CO.,LTD. 2016  

相关型号:

MGF7004

Transistor
MITSUBISHI

MGF7006

Wide Band Low Power Amplifier, 200MHz Min, 1800MHz Max,
MITSUBISHI

MGF7006-01

RF Small Signal Field-Effect Transistor, 1-Element, K Band, Gallium Arsenide, N-Channel, High Electron Mobility FET
MITSUBISHI

MGF7051A

SPDT, 800MHz Min, 2000MHz Max, 1.5dB Insertion Loss-Max
MITSUBISHI

MGF7103-01

Narrow Band Medium Power Amplifier, 824MHz Min, 849MHz Max,
MITSUBISHI

MGF7104-01

Narrow Band Medium Power Amplifier, 872MHz Min, 905MHz Max,
MITSUBISHI

MGF7105-01

Narrow Band Medium Power Amplifier, 890MHz Min, 915MHz Max,
MITSUBISHI

MGF7108A

Narrow Band Medium Power Amplifier, 898MHz Min, 925MHz Max, GAAS,
MITSUBISHI

MGF7109A

Narrow Band Medium Power Amplifier, 925MHz Min, 940MHz Max, GAAS,
MITSUBISHI

MGF7110C

Narrow Band Medium Power Amplifier, 898MHz Min, 925MHz Max,
MITSUBISHI

MGF7113C

Narrow Band Medium Power Amplifier, 824MHz Min, 849MHz Max, GAAS,
MITSUBISHI

MGF7113P

Narrow Band Medium Power Amplifier, 824MHz Min, 849MHz Max, GAAS,
MITSUBISHI