S5D0127X01 [SAMSUNG]

MULTISTANDARD VIDEO DECODER/SCALER; 多标准视频解码器/ SCALER
S5D0127X01
型号: S5D0127X01
厂家: SAMSUNG    SAMSUNG
描述:

MULTISTANDARD VIDEO DECODER/SCALER
多标准视频解码器/ SCALER

解码器
文件: 总96页 (文件大小:1508K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
S5D0127X01 Data Sheet  
MULTIMEDIA VIDEO  
MULTISTANDARD VIDEO DECODER/SCALER  
The S5D0127X01 converts analog NTSC, PAL or SECAM  
video in composite, S-video, or component format to  
digitized component video. Output data can be selected for  
CCIR 601 or square pixel sample rates in either YCbCr or  
RGB formats. The digital video can be scaled down in both  
the horizontal and vertical directions. The S5D0127X01  
also decodes Intercast, Teletext, Closed Caption, and WSS  
data with a built-in bit data slicer. Digitized CVBS data can  
be output directly during VBI for external processing.  
100 PQFP  
FEATURES  
• Accepts NTSC-M/N/4.43, PAL-M/N/B/G/H/I/D/K/L and  
SECAM formats with auto detection  
• 6 analog inputs: 3 S-video, 6 composite, or 1 3-wire  
YCbCr component video  
ORDERING INFORMATION  
• 2-line luma and chroma comb filters including adaptive  
luma comb for NTSC  
Device  
Package  
Temperature Range  
• Programmable luma bandwidth, contrast, brightness,  
and edge enhancement  
S5D0127X01-  
Q0R0  
-20°~+70°C  
100 PQFP  
• Programmable chroma bandwidth, hue, and saturation  
• High quality horizontal and vertical down scaler  
• Intercast, Teletext and Closed Caption decoding with  
built-in bit slicer  
• Digital Video  
• Direct output of digitized CVBS during VBI for Intercast  
application  
• Video Capture/Editing  
• Analog square pixel or CCIR 601 sample rates  
RELATED PRODUCTS  
• Output in 4:4:4, 4:2:2, or 4:1:1 YCbCr component, or  
24-bit or 16-bit RGB formats with dithering  
• S5D0123X01  
ENCODER  
MULTISTANDARD  
VIDEO  
• YCbCr 4:2:2 output can be 8 or 16 bits wide with  
embedded timing reference code support for 8-bit mode  
• Simultaneous scaled and non-scaled digital output ports  
outputs for 8-bit mode.  
• Direct access to scaler via bi-directional digital port.  
• Programmable Gamma correction table  
• Programmable timing signals  
• Industry standard IIC interface  
APPLICATIONS  
• Multimedia  
Modified on May/04/2000  
PAGE 1 OF 96  
ELECTRONICS  
S5D0127X01 Data Sheet  
BLOCK DIAGRAM  
MULTIMEDIA VIDEO  
Modified on May/04/2000  
PAGE 2 OF 96  
ELECTRONICS  
S5D0127X01 Data Sheet  
MULTIMEDIA VIDEO  
PIN ASSIGNMENT - 100 PQFP  
80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51  
NCP  
NCP  
81  
82  
NCP  
NCP  
Y3  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
83 VSS  
AY0  
84  
Y2  
VDDA  
Y1  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
100  
AY1  
Y0  
VSS  
AY2  
C7  
VDD3  
VDD3  
VSS  
VDDA  
AC0  
VSS  
AC1  
VSS  
C6  
S5D0127X01  
VDDA  
AC2  
VSS  
TEST  
C5  
C4  
C3  
C2  
COMP2  
VDDA  
C1 34  
C0 33  
NCP  
NCP  
NCP  
32  
31  
NCP  
1
2
3
4
5
6
7
8
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30  
Modified on May/04/2000  
PAGE 3 OF 96  
ELECTRONICS  
S5D0127X01 Data Sheet  
PIN DESCRIPTION  
MULTIMEDIA VIDEO  
Pin Name  
INPUT  
Pin #  
Type  
Description  
AY0  
AY1  
AY2  
84  
86  
88  
I
I
I
1 of 6 analog CVBS or 1of 3 S-video Y inputs.  
1 of 6 analog CVBS or 1of 3 S-video Y inputs.  
1 of 6 analog CVBS input or 1 of 3 S-video Y inputs or Y input for 3  
wire component input  
AC0  
AC1  
90  
92  
I
I
1 of 6 analog CVBS or 1 of 3 S-video C inputs.  
1 of 6 analog CVBS or 1 of 3 S-video C inputs or Cb input for 3 wire  
component input  
AC2  
94  
I
1 of 6 analog CVBS or 1 of 3 S-video C inputs or Cr input for 3 wire  
component input  
XTALI  
XTALO  
RST  
8
I
O
I
Pin 1 for an external crystal or TTL clock input.  
Pin 2 for an external crystal.  
7
10  
Chip reset. Active low signal.  
OUTPUT (All output pins can be selectively three-stated)  
Y0 - Y7, C0 - C7 45-48,53-56,33-  
39,44  
O
Digital video outputs.  
EXV0 - EXV7  
16,27,28,61-63,  
68,71  
I/O Expanded digital video I/O port. Can be configured as an additional  
8-bit output port (no scaling), or additional outputs of the main digital  
output stream for 24 bit output modes, as an 8-bit input for direct  
digital access of the down scaler.  
HS1  
26  
76  
23  
I/O Programmable horizontal timing signal. One pulse every video line.  
When the EXV port is configured as an input, this pin can be  
programmed as an input.  
HS2(IIC)  
VS  
I/O Programmable horizontal timing signal. One pulse every video line.  
At power up, this pin needs a 10 kW pull-down resistor to configure  
the chip to operate in IIC mode.  
I/O Programmable vertical timing signal. When the EXV port is  
configured as an input, this pin can be programmed as an input.  
HAV  
25  
3
O
Programmable horizontal active video flag.  
VAV(OENC0)  
I/O Programmable vertical active video flag.  
During reset, the pin is an input and the logic state of this pin is  
latched into the OENC[0] register bit. Use a 10 kW resistor for pull-up  
or pull-down.  
EHAV  
5
O
Valid pixel data flag. Polarity is programmable. Active when output  
video data is valid.  
Modified on May/04/2000  
PAGE 4 OF 96  
ELECTRONICS  
S5D0127X01 Data Sheet  
MULTIMEDIA VIDEO  
PIN DESCRIPTION (Continued)  
Pin Name  
Pin #  
Type  
Description  
EVAV(OENC1)  
4
I/O Valid line flag. Polarity is programmable. Active when output video  
line is valid. During reset, the pin is an input and the logic state of  
this pin is latched into the OENC[1]register bit. Use a 10 kW resistor  
for pull-up or pull-down.  
ODD  
PID  
22  
17  
15  
18  
O
O
I
Odd field flag. Polarity is programmable. Active for fields 1 and 3.  
PAL ID flag. High for phase alternating line.  
OEN  
CK  
Digital video data, timing and clock output 3-state control.  
I/O Pixel clock. In normal decoding mode, this is an output. When the  
EXV port is used as an input, this can be programmed as an input  
pixel clock.  
CK2  
21  
73  
O
O
Pixel output clock (rate is one half of CK) aligned to HAV signal.  
CCDAT  
Sliced VBI data output. Data can be from Closed Caption, Teletext,  
Intercast, or WSS type encoded data.  
CCEN  
74  
O
When high, this pin indicates that valid VBI data is being clocked out  
at the CCDAT pin or at the digital video output.  
MULTI-PURPOSE I/O PORTS AND TEST ENABLE  
PORTA  
58  
24  
57  
I/O Multi-purpose I/O port.  
I/O Multi-purpose I/O port.  
SCH(PORTB)  
TESTEN  
I
When tied to VDD, the chip is put into the test mode. For normal use,  
this pin should be connected to VSS.  
TEST  
96  
I
When tied to VDD, the chip is put into the test mode. For normal use,  
this pin should be connected to VSS.  
REFERENCE AND COMPENSATION  
VRT  
77  
78  
97  
I/O ADC VRT compensation (requires an external 0.1 mF capacitor  
connected to VSS).  
VRB  
I/O ADC VRB compensation (requires an external 0.1 mF capacitor  
connected to VSS).  
COMP2  
I/O Internal 1.3 V reference (requires an external 0.1 mF capacitor  
connected to VSS).  
HOST INTERFACE  
SCLK  
75  
I
Serial clock for IIC host interface.  
SDAT  
72  
I/O Serial data for IIC host interface.  
AEX0 - AEX1  
69 - 70  
I
Device ID selection for IIC host interface.  
Modified on May/04/2000  
PAGE 5 OF 96  
ELECTRONICS  
S5D0127X01 Data Sheet  
MULTIMEDIA VIDEO  
PIN DESCRIPTION (Continued)  
Pin Name  
Pin #  
Type  
Description  
POWER AND GROUND  
VDD  
20,59  
PWR Digital power supply for output buffers. The voltage can be +5V or  
3.3V depending on interface requirement.  
VDD3  
11,12,42,43,66, +3.3V Digital power supply for internal logic.  
67  
VDDA  
VDDA1  
VSS  
85,89,93,98  
9
+5V Analog power supply for ADC, AGC and reference circuits.  
+5V Analog power supply for clock generation circuitry.  
GND Common ground.  
6,13,14,19,40,  
41,60,64,65,83,  
87,91,95  
NC  
NCP  
1,2,29-32,49-52,  
79-82,99,100  
-
These pins are directly connected to the die substrate. If electrical  
connect is desired (not required) only connection to VSS is allowed.  
Modified on May/04/2000  
PAGE 6 OF 96  
ELECTRONICS  
S5D0127X01 Data Sheet  
MULTIMEDIA VIDEO  
PIN CROSS REFERENCE: NUMERICAL ORDER BY PIN NUMBER  
Pin #  
1
Pin Name  
NCP  
Pin #  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
Pin Name  
HS1  
EXV1  
EXV2  
NCP  
NCP  
NCP  
NCP  
C0  
Pin #  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
Pin Name  
NCP  
Pin #  
Pin Name  
HS2(IIC)  
VRT  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
100  
2
NCP  
NCP  
3
VAV(OENC0)  
EVAV(OENC1)  
EHAV  
VSS  
Y4  
VRB  
4
Y5  
NCP  
5
Y6  
NCP  
6
Y7  
NCP  
7
XTALO  
XTALI  
VDDA1  
RST  
TESTEN  
PORTA  
VDD  
NCP  
8
VSS  
9
C1  
AY0  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
C2  
VSS  
VDDA  
AY1  
VDD3  
VDD3  
VSS  
C3  
EXV3  
EXV4  
EXV5  
VSS  
C4  
VSS  
C5  
AY2  
VSS  
C6  
VDDA  
AC0  
OEN  
VSS  
VSS  
VDD3  
VDD3  
C7  
VSS  
EXV0  
VDD3  
VDD3  
EXV6  
AEX0  
AEX1  
EXV7  
SDAT  
CCDAT  
CCEN  
SCLK  
VSS  
PID  
AC1  
CK  
VDDA  
AC2  
VSS  
VDD  
Y0  
VSS  
CK2  
Y1  
TEST  
COMP2  
VDDA  
NCP  
ODD  
Y2  
VS  
Y3  
SCH(PORTB)  
HAV  
NCP  
NCP  
NCP  
Modified on May/04/2000  
PAGE 7 OF 96  
ELECTRONICS  
S5D0127X01 Data Sheet  
MULTIMEDIA VIDEO  
1. FUNCTIONAL DESCRIPTION  
1.1. VIDEO INPUT  
The S5D0127X01 supports complete video decoding of many analog video standards. In addition, the chip can  
support direct 8-bit YCbCr input for high quality video scaling and other processing.  
1.1.1. Analog Video Input  
Figure 1 shows the detailed block diagram of the analog front end. Up to six composite video sources, three  
S-video sources, one 3-wire YCbCr component video source, or any combination can be selected. The allowed  
inputs are selected using the INSEL[3:0] bits in the CMDB register. Table 1 lists all possible input selections. The  
front end has two paths each containing an analog gain control, a clamping control, and an 8-bit ADC. Composite  
video input uses only the luma path. S-video and analog component YCbCr inputs utilize both the luma and  
chroma paths. The ADC digital data is used to calculate the correct gain and clamp values. The data is feedback to  
the analog clamping and gain control. This architecture eliminates any offset and gain mismatch in the analog front  
end.  
OFFSET  
LPF  
AC0  
AC1  
To Chroma Processing  
8 Bit ADC  
AGC  
AC2  
VRT  
VRB  
COMP1  
AY0  
AY1  
AY2  
To Luma Processing  
To Timing Generation  
8 Bit ADC  
AGC  
LPF  
8-bit  
Digital  
Input  
GAIN  
OFFSET  
Figure 1. Analog Front End  
The analog inputs must be AC coupled through an external 0.1 mF capacitor clamp. Due to the high sampling rate  
of the ADC’s inside the S5D0127X01, most video sources will not require a low-pass filter for alias reduction. For  
those video sources with harmonics above 13 MHz, a simple single order pole at 6 MHz will provide sufficient high  
frequency signal reduction. This can be implemented with a 400 pF capacitor in parallel with the 75 W load.  
Analog  
Video  
S5D0127X01  
0.1 mF  
75 W  
Figure 2. Typical Analog Video Input  
Modified on May/04/2000  
PAGE 8 OF 96  
ELECTRONICS  
S5D0127X01 Data Sheet  
MULTIMEDIA VIDEO  
Table 1: Analog Video Input selections  
INSEL[3:0](hex)  
Selected Input(s)  
Video Type  
0
1
2
4
5
6
8
9
A
F
AY0  
Composite  
Composite  
Composite  
Composite  
Composite  
Composite  
S-Video  
AY1  
AY2  
AC0  
AC1  
AC2  
AY0, AC0  
AY1, AC1  
S-Video  
AY2, AC2  
S-Video  
AY2(Y), AC1(Cb), AC2(Cr)  
YCbCr component video  
1.1.2. Digital AGC Control  
The AGC normally references to the ADC code difference between sync tip and back porch. Two sets of sync  
tip-back porch ADC values are available for different AGC gain requirements: if AGCGN = 0, the sync tip locks to  
code 2, and the back porch locks to code 70; when AGCGN = 1, the sync tip locks to 16, and the back porch locks  
to code 70. Video signal with abnormal sync tip or very bright saturated colors may cause the ADC to limit the  
maximum value. This situation can be corrected by enabling the AGCOVF bit in the CMDB register to force the  
gain tracking loop to reduce AGC when maximum limiting conditions occur. The AGC may also be programmed to  
freeze the AGC at the current value by setting the AGCFRZ bit in the CMDB register. Once the AGC is frozen, the  
gain can be manually adjusted with the AGC register. The tracking time constant for the AGC can be controlled  
with the AGC_LPG[1:0] bits in the TRACKB register. In addition, the AGC tracking time constant can be configured  
as 2X faster during acquisition via the AGC_LKG.  
1.1.3. Digital Video Input  
The high quality digital video down scaler in the S5D0127X01 can be directly accessed via the EXV bi-directional  
port. The S5D0127X01 accepts CCIR 656 compliant 8-bit YCbCr digital video input with embedded or external  
timing. Video timing may also be generated by the S5D0127X01. Data path for 8-bit YCbCr input is shown in  
Figure 3. Selection of analog video input or digital CCIR 656 data is with the INPSL[1:0] register bits. The  
S5D0127X01 can operate in master or slave timing mode when the chip is programmed for digital video input.  
1.1.4. Pixel Clock and Timing Mode Selection for Digital Video Input  
Pixel clock and synchronization timing can be individually selected to either come from an external generator or be  
generated internally. In addition, if synchronization is provided by an external source, the S5D0127X01 supports  
embedded syncs as defined in CCIR 656, or TTL HS and VS inputs. Selection of pixel clock is via CKDIR bit in  
Modified on May/04/2000  
PAGE 9 OF 96  
ELECTRONICS  
S5D0127X01 Data Sheet  
MULTIMEDIA VIDEO  
CMDD register. Timing selection is through either SYNDIR or EAV bit.  
HS1  
VS  
Timing  
Control  
Luma  
Processing  
To Luma Scaler  
Y
C
EXV[7:0]  
Data  
Demux  
Chroma  
Processing  
To Chroma Scaler  
From Luma ADC  
From Chroma ADC  
Figure 3. 8-bit YCbCr Input Data Path  
By using an external pixel clock, the reference clock input at XTALI is no longer required. Additional register bits  
have to be programmed for different selections of pixel clock and timing, which are detailed in Table 2. The  
following register/bit-settings are required for digital video input:  
INSEL[3:0] = 8, 9, A, or F.  
TSTCGN = 1.  
DMCTL[1:0] = 2 or 3.  
UGAIN = 238.  
BRT = 34.  
SAT = 229.  
RGBH = UNIT = PED = 1.  
Table 2: Digital Video Input Pixel Clock and Timing Selection  
Embedded  
Timing  
Pixel Clock TTL Timing  
Additional Register Programming  
*1  
*2  
*3  
CKDIR  
SYNDIR  
EAV  
VMEN TSTGPH TSTGEN TSTGFR PIXSEL MNFMT  
IFMT  
0
0
0
1
1
1
0
0
1
0
0
1
0
1
0
0
1
0
1
0
0
1
0
0
0
1
1
0
1
1
1
1
1
1
1
1
3
3
1
3
1
1
0 if input  
data is at  
square  
pixel  
rate.  
1 if input  
is at  
1
1
1
1
1
1
0 if input  
is 50 Hz  
video.  
1 if input  
is 60 Hz  
video.  
CCIR  
601 rate.  
*1  
*2  
*3  
: CKDIR = 0 - CK is output and is internally generated. CKDIR = 1 - CK is input from an external source.  
: SYNDIR = 0 - HS1 and VS are output. SYNDIR = 1 - HS1 and VS are inputs from external sources.  
: EAV = 0 - chip will not sync to embedded timing. EAV = 1 - chip will sync to embedded timing.  
Note: the combination X11 for CKDIR, SYNDIR, EAV is not valid.  
Modified on May/04/2000  
PAGE 10 OF 96  
ELECTRONICS  
S5D0127X01 Data Sheet  
MULTIMEDIA VIDEO  
When in digital input mode, all programmable timing registers (such as HAVB,HAVE, HS2B etc.) are still functional.  
If HS1 and VS are programmed as inputs, the associated output timing controls such as HS1B,E will have no  
effect. An example of horizontal timing for digital input is shown in Figure 4.  
HS1  
Programmable, when an  
This HS1 location can also come  
From a 656 SAV code  
output - Any input phase  
is acceptable  
Constant to internal counter reference  
EXV[7:0]  
80 10 80 10 80 10 U0 Y0 V0 Y1 U2 2 V2 Y3 U4 Y4 V4 Y5 U6 Y6 V6 Y7 Ux Yx Vx Yx Ux Yx Vx Yx Vx  
Data group delay through chi
Y[7:0]  
80 10 80 10 10 U0 Y0 V0 Y1 U2 Y2 V2 Y3 U4 Y4 V4 Y5 U6 Y6 V6 Y7 Ux Yx Vx Yx Ux  
Y output for OFMT=2 is  
shown, any 8 or 16 bit  
output format is allowed.  
Fully programmable HAVB location  
based on internal counter  
HAV -- fully programmable,  
Defines location of first, last pixel  
and defines Cb,Y,Cr data location  
Fully programmable  
HAVE location  
HAV  
CK  
CK2  
CK can be input or output  
The CK2 output clock phasing  
is aligned to the HAV leading  
edge  
Figure 4. Horizontal Timing for EXV Port as Digital Input  
1.1.5. Additional Information for Analog Component Video Input  
For the S5D0127X01 to correctly set the V component phase in analog component video input mode, PID (pin 17)  
and PORTA (pin 58) need to be connected together. PORTA has to be configured as input (DIRA = 0) and  
connected to the internal CBG signal (DATAA[2:0] = 3).  
It is also recommended that external clamp circuit be used for Cb and Cr inputs (before the coupling caps) and the  
internal chroma clamp be disabled (COFFENB = 1) due to slight Cb/Cr leakage.  
Modified on May/04/2000  
PAGE 11 OF 96  
ELECTRONICS  
S5D0127X01 Data Sheet  
MULTIMEDIA VIDEO  
1.2. VIDEO TRACKING AND TIMING GENERATION  
When the S5D0127X01 is configured for analog video input, the chip tracks the video input and generates a  
sampling clock that is line locked to the input video. The S5D0127X01 requires an external reference clock for  
video tracking. This reference can be supplied via a crystal using the on chip crystal interface or any TTL  
compatible source. These configurations are shown in Figure 5  
1.2.1. Clock Input Timing Reference  
The S5D0127X01 can use either a 24.576 MHz or a 26.8 MHz reference. However, it is recommended that the  
24.576 MHz reference be used for CCIR 601 operation, and the 26.8 MHz reference be used for square pixel or  
dual mode operation. Other specifications for the crystal are:  
• Fundamental or third overtone  
• Load capacitance of ~20 pF  
• Series resistance of 40 W or less  
• Frequency deviation of 50 ppm or less over operating temperature range  
22 pF  
8
7
8
7
24.576 MHz  
TTL Clock  
XTALI  
S5D0127X01  
XTALO  
XTALI  
S5D0127X01  
XTALO  
24.576 MHz  
22 pF  
N. C.  
5.7 mH  
Using a Clock  
Optional for 3rd  
harmonic crystal  
Using a Crystal  
391 pF  
Figure 5. Standard Clock Configurations  
1.2.2. The Sampling Clock  
The sampling clock is generated by multiplying the line rate by N. This ensures that samples are aligned  
horizontally, vertically and in time. The required N factor for the S5D0127X01 is based upon the field rate (60 Hz or  
50 Hz) and the desired sampling rates (CCIR 601 or square pixel). Field rate can be automatically detected and  
can be monitored with the FFRDET bit in the STAT register. Manual control of the field rate can be controlled with  
the MNFMT and IFMT bits. The PIXSEL bit in register CMDA selects CCIR 601 or square pixel. Table 3 shows the  
constants for the various combinations of input formats and output pixel rates.  
Modified on May/04/2000  
PAGE 12 OF 96  
ELECTRONICS  
S5D0127X01 Data Sheet  
MULTIMEDIA VIDEO  
Table 3: Timing for Different Pixel Rates  
CCIR 601 Data Rates  
Square Pixel Data Rates  
Units  
M
N,B,G,H,I,D,K,K1,L  
M
N,B,G,H,I,D,K,K1,L  
50  
Field Rate  
60  
858  
720  
480  
13.5  
27  
50  
864  
720  
580  
13.5  
27  
60  
780  
Hz  
Pixels/Line (N)  
Active Pixels/Line  
Active Lines/Frame  
Pixel Rate  
944  
768  
Pixels  
Pixels  
Lines  
MHz  
640  
480  
580  
12.27  
24.54  
14.75  
29.5  
ADC Sampling Rate  
MHz  
The time constants for the pixel clock tracking loop can be adjusted with the HFSEL[1:0] bits.  
In addition to providing the pixel clock, the S5D0127X01 also outputs various timing signals to indicate the  
beginning of a line, a field, and for field and frame identification. All the timing and clock pins may be optionally put  
into high impedance state. Three-state of these pins are software controlled and initial state of these pins at power  
up is controlled via two configuration pins: 3 and 4.  
The S5D0127X01 can generate all the video timing without video input. This enables the S5D0127X01 to be used  
as a video timing generator for a system that contains both the S5D0127X01 for live video input and a MPEG  
decoder which requires a video timing generator.  
1.2.3. Horizontal Timing  
The S5D0127X01 creates many internal timing signals aligned to the horizontal sync tip (mid-way of the falling  
edge of horizontal sync, typically ADC code 36). These include locations of color burst (CBG, CBGW) used in  
chrominance processing, back porch (BPG), and sync tip timing signals (SLICE, FS_PULSE) used for AGC and  
clamp functions. SLICE is low whenever the input is below half way level of horizontal sync (typically ADC code  
36). FS_PULSE is a single clock pulse coincide with the start of SLICE. One of these internal signals can be made  
available at the PORTA or PORTB pin at any time.  
The chip outputs two horizontal synchronization signals: HS1 and HS2. The start and stop locations for these  
signals are fully programmable. Offset programmed to HSxB, HSxE, and HSxBE0 are added to the default edge  
locations as shown in Table 4. Note that there are different modulo numbers for different input video standards and  
output pixel rates.  
Modified on May/04/2000  
PAGE 13 OF 96  
ELECTRONICS  
S5D0127X01 Data Sheet  
MULTIMEDIA VIDEO  
Table 4: Horizontal Timing Signal Edge Locations (in # of CK)  
60 Hz  
Square Pixel  
50 Hz  
CCIR 601 Square Pixel  
Description  
Signal  
CCIR 601  
(modulo 1716) (modulo 1560) (modulo 1728) (modulo 1888)  
Chip delay  
120  
72  
120  
72  
120  
72  
120  
72  
Sync gate (1-CK pulse)  
Back porch gate  
SYG  
BPG  
[147 222]  
222  
[129 204]  
204  
[154 234]  
234  
[168 254]  
254  
Color burst gate (1-CK pulse)  
Wide color burst gate  
CBG  
CBGW  
FH2  
[159 254]  
42, 900  
[147 233]  
42, 822  
[173 254]  
42, 906  
[186 277]  
42, 986  
Two pulses per line (1-CK each  
pulse)  
Default one pulse per line  
Default one pulse per line  
Default horizontal cropping  
HS1  
HS2  
HAV  
[65 238]  
[65 238]  
[351 75]  
[45 220]  
[45 220]  
[334 58]  
[69 250]  
[69 250]  
[379 91]  
[65 270]  
[65 270]  
[415 59]  
An additional signal, HAV, is provided for horizontal video cropping. This signal has programmable polarity, start  
and stop locations. Two 11-bit registers, HAVB and HAVE, are used to define the first and last pixel locations of the  
horizontal portion of the cropped video. Numbers programmed into these registers are used as offset to the default  
locations as shown in Table 4. Note that even though HAVB and HAVE have 1-CK resolution, the difference  
between them should be maintained at multiple of 4 CKs for correct output.  
Table 4 shows the default edge locations relative to the midway of the falling edge of the analog horizontal sync.  
Note the numbers shown are in multiple of CK clocks. Figure 6 shows the approximate locations for the horizontal  
timing signals. Horizontal timing signals used for scaling will be described in Section 1.6.1.  
Modified on May/04/2000  
PAGE 14 OF 96  
ELECTRONICS  
S5D0127X01 Data Sheet  
MULTIMEDIA VIDEO  
Analog video input  
Digital video output  
Active video  
Blank  
HAVB  
Active video  
Chip delay  
HAVE  
HAV  
HSE  
HSB  
HS1,2  
FS_PULSE  
SLICE  
SYG  
BPG  
CBG  
CBGW  
FH2  
Figure 6. Approximate Locations for the Horizontal Timing Signals  
1.2.4. Vertical Timing  
The vertical timing signals include VS, VAV, ODD, SCH, and PID.  
The VS is used for identifying the first line of video in the vertical position. The VS leading edge can be  
programmed to either track the incoming video’s serration pulses or to be aligned to the beginning of the video line  
or half way, as shown in Figure 36 and Figure 37. If VALIGN = 0, the VS leading edge is based on the output of an  
internal low pass filter, and its location is dependent on the noise conditions of the video input. The trailing edge of  
VS is locked to either the beginning of the video line or half way. The half way location relative to the beginning of  
the video line changes depending on current input standard and output format. If VALIGN = 1, the leading edge of  
the VS is aligned to the beginning of the video line or half way. The trailing edge is always aligned to the beginning  
of the video line. The VSE bit in the CMDA register can be programmed to shorten the VS falling edge by one  
horizontal line.  
The VAV signal is used for vertical cropping. The start and stop lines for VAV are programmable through the VAVB  
and VAVE registers, respectively.  
The ODD signal signifies the current field number. When ODD is active, the current field is 1 or 3 (or 5 or 7 if in PAL  
mode). The leading and trailing edges of ODD can be aligned to either the leading edge of VS (VALIGN = 1) or the  
trailing edge of VS (VALIGN = 0). The signal may be used in conjunction with SCH and PID to exactly identify the  
Modified on May/04/2000  
PAGE 15 OF 96  
ELECTRONICS  
S5D0127X01 Data Sheet  
MULTIMEDIA VIDEO  
current field. To distinguish between fields 1, 2 verse fields 3, 4 (or fields 1, 2, 3, 4 verse fields 5, 6, 7, 8 for PAL) the  
phase of the color burst relative to the sync tip must be measured. That information is provided by the SCH pin.  
The S5D0127X01 provides the output of a comparator that measures whether the current color burst phase  
relative to the falling edge of the sync is greater or less than a predetermined constant. This constant is controlled  
with SCHCMP[3:0]. The polarity of the SCH output pin depends on the current SCHCMP[3:0] value. The SCH  
signal changes every video line. The SCH for line 260 is held for the entire vertical blanking period. By using the  
SCH signal for the same line from each field, proper field identification can be determined. Figure 8 shows field  
identification values for SCHCMP[3:0]=0. It is important to note that the SCH value is only valid for video signals  
that have a constant sync tip to color burst relationship. This is not the case with consumer VCRs.  
.
HS1  
(default)  
ODD FIELD and VALIGN = 0  
VS  
60 Hz - CCIR 601 = 885, Square = 708  
50 Hz - CCIR 601 = 891, Square = 971  
0, except 60 Hz Square = 2  
ODD  
EVEN FIELD or VALIGN = 1  
27, except 60 Hz Square = 28  
VS  
0, except 60 Hz Square = 2  
ODD  
15, except 60 Hz Square = 14  
VAV  
HAV  
default width for each input standard and output mode  
60 Hz - 261  
50 Hz - CCIR 601 = 273, Square = 341  
EVAV  
Note: Numbers shown are in CK. Active high polarities are used. Timing shown for VAV and EVAV are with qualifier off.  
Figure 7. Short Term Vertical Timing  
Modified on May/04/2000  
PAGE 16 OF 96  
ELECTRONICS  
S5D0127X01 Data Sheet  
MULTIMEDIA VIDEO  
VS  
2
ODD  
1
3
4
SCH  
Truth Table  
Note:  
FIELD  
ODD  
SCH  
3
4
L
1
2
L
L
ODD and SCH are  
measured at the trailing  
edge of VS.  
H
H
H
L
H
Figure 8. NTSC Vertical Timing Signals  
The PID pin is used to identify whether the current V-axis is inverted in PAL mode. This signal changes at the color  
burst. By noting this value at the same line of each field, a determination of whether a field is from {1-4} or {5-8} can  
be made. As with the SCH pin, the S5D0127X01 is designed to hold the line 260 PID measurement for the entire  
vertical blank period. This allows easy sampling of the PID or current field identification.  
The ODD, SCH and PID signals change at different times and more than once within the video fields. Proper data  
for field identification is determined by latching all three signals at the trailing edge of VS. Figure 9 shows the VS,  
ODD, SCH, and PID signals and their latched values for each of the 8 possible fields. Figure 10 is the line to line  
timing diagram for these signals in PAL mode.  
VS  
2
6
8
3
4
5
1
7
ODD  
SCH  
PID  
Truth Table  
FIELD  
ODD  
SCH  
PID  
3
4
7
H
L
L
8
L
L
H
1
2
L
5
6
L
Note:  
ODD, SCH and PID are  
measured at the trailing  
edge of VS (VALIGN = 0).  
H
H
H
L
L
L
H
H
H
L
L
L
H
L
H
H
Figure 9. PAL Vertical Timing Signals  
Modified on May/04/2000  
PAGE 17 OF 96  
ELECTRONICS  
S5D0127X01 Data Sheet  
MULTIMEDIA VIDEO  
SCH  
ODD  
PID  
VS  
HS  
Figure 10. Line to Line VS, SCH and PID Timing (PAL input)  
1.3. HORIZONTAL LUMA PROCESSING  
A simplified block diagram for the luma path is shown in Figure 11.  
Programmable  
Low Pass Filter  
Decimation  
Filter  
Horizontal  
Peaking  
Contrast  
Control  
Chroma  
Trap  
Brightness  
Control  
FROM ADC  
HYLPF  
HYBWR  
HYBWI  
CTRAP  
CONT  
HYPK  
BRT  
Figure 11. Horizontal Luma Processing Unit  
1.3.1. Luminance DC Gain  
The S5D0127X01 can accommodate CCIR 624 M/N/H/G standards, which fall into categories of -40 or -43 sync tip  
and inclusion or exclusion of 7.5 setup. The S5D0127X01 can produce correct CCIR 601 luminance output levels  
by controlling the gain and offset in the luminance path via PED. This register should be set for the appropriate  
input standard. The programmable CONT and BRT registers provide the user with additional flexibility to create  
non-standard luminance gain and offset values.  
Modified on May/04/2000  
PAGE 18 OF 96  
ELECTRONICS  
S5D0127X01 Data Sheet  
MULTIMEDIA VIDEO  
Max Input  
Peak White  
Black Level  
Blanking Level  
Sync Tip  
Figure 12. Luminance Signal  
Luminance levels produced by the S5D0127X01 for different broadcast standards (assuming AGCGN=0, CONT=0  
and BRT=0) are summarized in Table 5.  
Table 5: Luminance Digital Level Code  
M/N PED=1  
M/N PED=0  
B/G/H PED=1  
Level ADC  
Level  
ADC  
(IRE) (CVBS)  
Level  
ADC  
(IRE) (CVBS)  
Signal  
Y[7:0]  
Y[7:0]  
Y[7:0]  
(IRE) (CVBS)  
Max Input  
Peak White  
Black  
109  
100  
7.5  
0
255  
240  
83  
255  
235  
16  
1
109  
100  
0
255  
240  
70  
255  
235  
16  
117  
100  
0
255  
229  
70  
255  
235  
16  
Blank  
70  
0
70  
16  
0
70  
Sync  
-40  
2
1
-40  
2
1
-43  
2
KS0127B Data  
Path Equation  
CY = 1.37CVBS80  
CY = 1.288CVBS74  
CY = 1.37CVBS100  
When digital component output is desired in RGB mode, the RGBH register can be programmed to increase the  
0-100% values from standard CCIR 601 levels to full range levels.The gain variations are shown in Table 6.  
Table 6: RGB Output Range  
RGB normal gain (RGBH=0)  
RGB high gain (RGBH=1)  
Signal  
Cy  
RGB (U,V=0)  
Cy  
RGB (U,V=0)  
Peak White  
Black  
235  
16  
235  
16  
255  
0
255  
0
Modified on May/04/2000  
PAGE 19 OF 96  
ELECTRONICS  
S5D0127X01 Data Sheet  
MULTIMEDIA VIDEO  
For CCIR 601 digital video input (INPSL[1:0] = 1), register UNIT must be set to 1 to produce unit gain.  
1.3.2. Horizontal Luma Frequency Shaping  
The luma path contains many programmable filters for different purposes. The combination of these filters will give  
different frequency characteristics.  
The over sampled video data from the ADC pass through a decimation filter. The decimation filter has user  
programmable bandwidth. Three registers are used to control the decimation filter characteristics and each is  
designed for certain purposes. The HYBWI, when set to “1”, provides extra bandwidth for very high quality video  
source. The HYBWR, when set to “1”, reduces the bandwidth so high frequency noise can be eliminated. The 3-bit  
register HYLPF[2:0] provides the necessary bandwidth reduction for horizontal scaling. When all three registers  
are programmed to “0”, the decimation filter has the bandwidth of the normal video. The S5D0127X01 provides the  
option of bypassing the decimation filter. This option should be used only when the input video is band limited and  
with low high frequency noise.  
For composite video input, the notch filter can be enabled (CTRAP set to “1”) to extract the luminance. The notch  
filter has different center frequencies for different input video format. User selectable peaking function is included  
for edge enhancement. The notch filter should be bypassed for S-video and component video input, or if luma  
comb filter is enabled.  
The luminance filter characteristics have been designed to be very similar for all combinations of 60/50 Hz video  
and CCIR 601/square pixel sampling rates. Figure 13 and Figure 14 show the output characteristics of the  
luminance path with different filter combinations for the supported input standards and output pixel rates.  
Modified on May/04/2000  
PAGE 20 OF 96  
ELECTRONICS  
S5D0127X01 Data Sheet  
MULTIMEDIA VIDEO  
Figure 13. Medium to High Frequency Luma Filter Characteristics (CTRAP=0)  
Figure 14. Medium to Low Frequency Luma Filter Characteristics (NTSC, CTRAP=1)  
Modified on May/04/2000  
PAGE 21 OF 96  
ELECTRONICS  
S5D0127X01 Data Sheet  
MULTIMEDIA VIDEO  
Figure 15. Medium to Low Frequency Luma Filter Characteristic (PAL, CTRAP=1)  
Figure 16. Luma Filter Characteristic with Peaking On (NTSC, CTRAP=1)  
Modified on May/04/2000  
PAGE 22 OF 96  
ELECTRONICS  
S5D0127X01 Data Sheet  
MULTIMEDIA VIDEO  
1.4. HORIZONTAL CHROMA PROCESSING  
A simplified block diagram for the horizontal chroma processing unit is shown in Figure 17.  
COS  
SIN  
Frequency  
Tracking  
RTCO  
Control  
CFTC  
HUE, TSTCFR  
Low  
Pass  
RTC_DTO  
RTC_PID  
V
Gain / PAL  
Control  
Saturation  
Control  
SECAM  
Frequency  
Differentiator  
Color  
Killer  
CBW,FSEC  
Low  
Pass  
UGAIN  
VGAIN  
FROM ADC  
U
CKILL  
CBW,FSEC  
Auto  
Offset  
Control  
Coring  
Control  
Detect  
Gain  
Tracking  
SAT  
UOFFST  
VOFFST  
CGTC  
CORE  
CKILL  
TSTCGN  
Figure 17. Horizontal Chroma Processing Unit  
The S5D0127X01 supports chroma input in NTSC, PAL, SECAM and component formats. The color standard is  
automatically detected and the various chroma processing blocks are enabled as required for the given chroma  
standard. Details of the various chroma processing blocks follow.  
1.4.1. IF Compensation  
For improved chroma demodulation when the input video is from a mis-tuned IF source, an IF compensation filter  
is included that has variable gain for the upper chroma side band. This is controlled by the CIFCMP[1:0] bits at  
location CDEM. The frequency response is shown in Figure 18. For convenience, all plots are normalized to the  
NTSC modulation frequency.  
Modified on May/04/2000  
PAGE 23 OF 96  
ELECTRONICS  
S5D0127X01 Data Sheet  
MULTIMEDIA VIDEO  
Figure 18. Chroma IF Compensation Frequency Response  
1.4.2. Demodulation Gain  
The demodulation gain block is controlled by feedback from the gain tracking block. For NTSC and PAL type  
inputs, the gain constant is derived from a programmable reference compared against the U component of the  
input video. This reference is controlled by the SAT register. The default value “0” is the correct gain (saturation for  
nominal output). For SECAM type input, the feedback is calculated such that proper frequency demodulation is  
obtained. When external calibration is desired, the gain feed back loop can be “opened” by setting TSTCGN=1.  
The SAT then controls bits 8 through 1 of a 10 bit multiplier.  
For standard auto tracking applications, it is recommended that the SAT register be used as an end user saturation  
control. This register is 2’s compliment.  
1.4.3. Demodulation Low Pass Filter  
The demodulation circuit also contains a programmable low pass filter and a coring function for noise reduction.  
The chroma low pass filter frequency response for the demodulation circuit for the various video standards are  
shown in Figure 19  
Modified on May/04/2000  
PAGE 24 OF 96  
ELECTRONICS  
S5D0127X01 Data Sheet  
MULTIMEDIA VIDEO  
Figure 19. Chroma Low Pass Filter Frequency Response  
1.4.4. SECAM Demodulation  
SECAM processing includes a frequency differentiator, a Cloche and a de-emphasis filter. Frequency response for  
the filters are shown in Figure 20 and Figure 21.  
Figure 20. Cloche Filter Frequency Characteristic  
Modified on May/04/2000  
PAGE 25 OF 96  
ELECTRONICS  
S5D0127X01 Data Sheet  
MULTIMEDIA VIDEO  
Figure 21. De-emphasis Filter Frequency Response  
1.4.5. Additional Chroma Functions  
S5D0127X01 has many built in auto detection circuits. These allow S5D0127X01 to track any type of video  
standard input automatically.  
For analog component video input, the demodulation function is not enabled. The low pass filter provides a group  
delay for Cb and Cr alignment. This enables the two components to be sampled by one ADC.  
An RTCO serial output is provided that encodes the current chroma and pixel frequency of the decoder. This  
information can be used by an Encoder running off of the decoder clock to produce proper color output. The  
horizontal position of the serial signal is controlled by the HS2 location. The phasing of the DTO and the Encoder  
can be reset using the RTC_DTO bit. For PAL mode, the PID polarity can be controlled with the RTC_PID bit.  
1.5. COMB FILTER  
Comb filters provide superior Y/C separation for composite NTSC and PAL than simple chroma trap filter. The  
S5D0127X01 contains on-chip separate 2-line stored luma and chroma comb filters. An internal signal COMB  
controls for what lines the comb function is enabled. This signal is available through the PORTB pin. Combing is  
part of the vertical processing which also includes vertical scaling, which is discussed in Section 1.6. A block  
diagram for the vertical processing section is shown in Figure 22.  
Modified on May/04/2000  
PAGE 26 OF 96  
ELECTRONICS  
S5D0127X01 Data Sheet  
MULTIMEDIA VIDEO  
Luma  
Vertical  
Scaler  
Vertical  
BW  
Retention  
Horizontal  
Scaler  
Y
Luma  
Luma  
Adaptive  
Comb  
Chroma  
Vertical  
Scaler  
Horizontal  
Scaler  
Chroma  
Sum  
C
Chroma  
Comb  
Figure 22. Vertical Processing  
1.5.1. Luma Comb Filter  
The luma comb filter reduces high frequency chroma leakage into the luminance path. The S5D0127X01 uses  
2-line stored luma data for combing. Filter coefficients for different video input standards are provided and can be  
selected automatically based on the video input. Filter coefficients may also be set manually.  
An optional active comb is employed for NTSC video. Selection of luma comb coefficients is based on line-to-line  
chroma correlation.  
Provision is made to disable luma comb for S-video, component, or digital video input. This is achieved by  
programming the luma comb control register MNYCMB to “1”, and by choosing the value 3 or 4 for YCMBCO[2:0].  
This will result either a 1-line or 2-line luma delay. Care must be exercised when disabling the luma comb so that  
luma line delay matches the chroma path line delay.  
Special filtering is applied to ensure that high vertical bandwidth is retained for the luma path.  
1.5.2. Chroma Comb Filter  
The chroma comb filter provides further color separation from the composite video. Filter coefficients can be  
automatically selected based on the input video standard or manually set using NMCCMB and CCMBCO[2:0].  
Modified on May/04/2000  
PAGE 27 OF 96  
ELECTRONICS  
S5D0127X01 Data Sheet  
MULTIMEDIA VIDEO  
1.6. SCALING  
The S5D0127X01 includes a high quality down scaler. The video images can be down scaled in both horizontal  
and vertical direction to an arbitrary size.  
1.6.1. Horizontal Scaler  
The horizontal scaler uses a 5-tap 32-phase interpolation filter for luma, and a 3-tap 8-phase interpolation filter for  
chroma. Scaled pixel data are stored in an on-chip FIFO so they can be sent out in a continuous stream.  
Horizontal scaling ratio is programmed via the 15-bit register HSCL. The timing signal EHAV is used to indicate  
when scaled pixel data is available at the video output port. EHAV can be programmed so that it is active for every  
line regardless of vertical cropping and scaling. Or it can be programmed to be active only for valid video lines. For  
example, Figure 23 shows the timing for CIF output assuming HAV is programmed to be active for 720 pixels. The  
HSCL register is programmed with the value 4000 (hex). The trailing edge of EHAV is either aligned with the trailing  
edge of HAV if the total number of scaled pixels is even, or is one pixel clock earlier if the number is odd.  
CK2  
720  
HAV  
360  
EHAV  
-
-
Y0  
U0  
Y356  
U356  
Y1  
V0  
Y2  
U2  
Y3  
V2  
Y357 Y358 Y359  
V356 U358 V358  
Y[7:0]  
C[7:0]  
-
-
Figure 23. Horizontal Scaler Timing for CIF Output (CCIR 601 Pixel Rate)  
Frequency response and group delay for the luma scaler are shown in Figure 24 and Figure 25, respectively. The  
luma interpolation filter is designed to achieve relatively flat frequency response and minimal group delay up to the  
normal video bandwidth. A flat full data path frequency response may be obtained with the help of the luma  
peaking control register HYPK[1:0]. The high quality filter ensures minimal artifacts for any scaling ratio.  
Modified on May/04/2000  
PAGE 28 OF 96  
ELECTRONICS  
S5D0127X01 Data Sheet  
MULTIMEDIA VIDEO  
Figure 24. Horizontal Luma Scaler Interpolation Filter Frequency Response  
3
2.5  
2
1.5  
1
Figure 25. Horizontal Luma Scaler Interpolation Filter Group Delay  
Because of the limited bandwidth of the chroma data, a simpler interpolation filter is used for the horizontal chroma  
scaler. The frequency response and group delay for this filter are shown in Figure 26 and Figure 27, respectively.  
Modified on May/04/2000  
PAGE 29 OF 96  
ELECTRONICS  
S5D0127X01 Data Sheet  
MULTIMEDIA VIDEO  
Figure 26. Horizontal Chroma Scaler Interpolation Filter Frequency Response  
1.5  
1.0  
0.5  
Figure 27. Horizontal Chroma Scaler Interpolation Filter Group Delay  
1.6.2. Luma Vertical Scaler  
Vertical luma scaling uses either a 3-tap or 5-tap 8-phase interpolation filter depending on the horizontal scaling  
Modified on May/04/2000  
PAGE 30 OF 96  
ELECTRONICS  
S5D0127X01 Data Sheet  
MULTIMEDIA VIDEO  
ratio.  
Vertical scaling ratio is programmed via the 14-bit register VSCL. A valid scaled line is indicated by the timing  
signal EVAV being active. The EVAV can be programmed to be internally gated by the VAV signal so it can only be  
valid within the vertically cropped region.  
Luma horizontal scaling can use either a 3-tap or a 5-tap interpolation filter depending on the horizontal scaling  
ration. If the scaled horizontal line has less than or equal to 384 pixels, the 5-tap luma interpolation filter can be  
turned on by programming the VRT2X bit to a “1”. Otherwise, the VRT2X bit should be set to “0” and the 3-tap filter  
be used.  
The VYBW bit provides additional vertical bandwidth control for vertical scaling. Typically, when the vertical scaling  
ratio is less than 1/2, this bit should be set to “1” to eliminate any aliasing effect.  
Luma vertical scaler interpolation filter frequency response is shown in Figure 28.  
Figure 28. Luma Vertical Scaler Interpolation Filter Frequency Response  
In vertical scaling, the start of signal VAV controls the phase of the vertical scaler interpolation filter. If VAVB, VAVE,  
VAVOD0, VAVEV0, and VSCL are programmed such that the vertical interpolation filter has the same phase and  
scaling ratio as that of a memory controller (most memory controller has simple line dropping vertical scaling), it is  
possible to interface the S5D0127X01 to the memory controller without using EVAV.  
1.6.3. Chroma Vertical Scaling  
Chroma vertical scaling uses different algorithms depending on video input standard and horizontal scaling ratio. If  
horizontal scaling results in line with less than or equal to 384 pixels, and the VRT2X is set to a “1”, a 5-tap  
interpolation filter will be used for all video inputs. Otherwise, for NTSC, a 3-tap interpolation filter will be used for  
NTSC input, and decimation (line dropping without filtering) will be used for PAL and SECAM. Filter characteristics  
for the 3-tap and 5-tap filters are shown in Figure 29.  
Modified on May/04/2000  
PAGE 31 OF 96  
ELECTRONICS  
S5D0127X01 Data Sheet  
MULTIMEDIA VIDEO  
Figure 29. Chroma Vertical Scaler Interpolation Filter Frequency Response  
Modified on May/04/2000  
PAGE 32 OF 96  
ELECTRONICS  
S5D0127X01 Data Sheet  
MULTIMEDIA VIDEO  
1.7. VBI DATA PROCESSING  
The S5D0127X01 VBI data processing is very flexible in that it supports VBI data formats of:  
• Closed Caption Line 21 Data Service (EIA-608)  
• 525 line / 60Hz Teletext systems B,C,D (ITU-R BT.653-2)  
• 625 line / 50Hz Teletext systems A,B,C,D (ITU-R BT.653-2)  
• Copy Generation Management System (EIA/IS-702)  
• Wide Screen Signalling (WSS ETS 300 294).  
Note that the SMPTE data slicing is removed for the S5D0127X01 and replaced with the WSS / CGMS processing.  
This data can be accessed from the part via four different methods:  
• Enabling the “Raw un-processed 27MHz” Y ADC samples to be output for the appropriate lines in place of the  
normal YUV data.  
• Slicing the data (creating a clock and comparing the data to a threshold at the clock) and bursting this data out  
on Y output.  
• Reading the sliced data from two internal registers via the IIC bus.  
• Via 2 external pins that output the sliced VBI data and the time at which the slice is valid.  
A simplified block diagram for the VBI section is shown in Figure 30.  
Normal  
Decoded Y Data  
MUX /  
VBI  
8
Y[7:0]  
Format  
From Y ADC  
FRAME  
ALIGNMENT  
SLICER  
TTFRAM  
FIFO  
VYFMT  
VBINSRT  
CCEN  
ODD  
MODE  
CTRL  
LOGIC  
ODDEN  
EVENEN  
ODDOS  
VBIL  
CLOCK  
GENERATOR  
PIXSEL  
IFMT  
SECAM  
CCDATA  
Figure 30. VBI Decoder Block Diagram  
Modified on May/04/2000  
PAGE 33 OF 96  
ELECTRONICS  
S5D0127X01 Data Sheet  
MULTIMEDIA VIDEO  
Table 7 lists all the video standards that the VBI data slicer supports. Some of these modes are auto detected  
based on the current video input standard,  
Table 7: Video Standards Supported by VBI Decoder  
Value of Chip Detec- Required Values of Characteristics of the Stan-  
tion Bits  
Registers to enable  
Standard  
dard  
Mode  
Format  
SECAM VBIL0-15 TT_SYS Data Rate  
(MHz)  
Number of  
Bits (bytes)  
60Hz Teletext system C  
(NTSC / Intercast)  
1
0
0
0
0
1
2
2
2
0
0
0
5.727272  
272 (34)  
344 (43)  
304 (38)  
50Hz Teletext system B  
(PAL)  
6.9375  
50Hz Teletext system A  
(SECAM)  
6.203125  
60Hz Teletext system B  
50Hz Teletext system C  
50Hz Teletext system D  
60Hz Teletext system D  
Closed Caption NTSC 601  
CGMS (NTSC 60Hz)  
WSS (PAL 50Hz)  
0
0
1
1
2
2
2
2
1
3
3
1
2
5.727272  
5.734375  
5.6457875  
5.727272  
0.5035  
280 (35)  
272 (34)  
280 (35)  
280 (35)  
16 (2)  
0
1
3
0
1
3
N/A  
1
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
0.447443  
5.0000  
20 (3)  
0
84  
Configuring the VBI processing consists of many different steps which are individually explained below.  
1.7.1. Enabling the VBI Processor  
The VBI processor can be enabled independently for the ODD or EVEN fields with the ODDEN and EVENEN bits.  
Some VBI data is only present on line in 1 of the 2 fields, These independent field enables allow control of the total  
VBI data output from the chip. These controls apply to all VBI Lines, Thus it is not possible to enable Closed  
caption line 21 for the Even field and line 19 Teletext for both the odd and even field.  
1.7.2. Selecting the Type of Output Data  
As previously mentioned, there are 4 different ways the VBI data can be extracted. Three of these are selected as  
shown in the table, the fourth method (CCEN and CCDAT pins) is always available if VBI processing is enabled.  
Modified on May/04/2000  
PAGE 34 OF 96  
ELECTRONICS  
S5D0127X01 Data Sheet  
MULTIMEDIA VIDEO  
Table 8: VBI Data Output Mode (VBILn != 0)  
VBCVBS  
VBINSRT  
Output Mode  
0
0
The VBI data is available via the internal registers CCDAT1 and  
CCDAT2. Only the last 2 extracted bytes are stored in these  
registers. Thus, this mode is only useful for extraction of Closed  
Caption data.  
0
1
1
1
0
1
This mode enables output of the sliced VBI data.  
This mode enables output of direct data from the ADC.  
This mode is invalid.  
The S5D0127X01 adds an additional output mode and flexibility to vary the modes from line to line. If VBCVBS=0  
and VBINSRT=1 S5D0127X01 will output sliced data on enabled lines. By setting VBIMID to 1, any line for which  
VBIL=3 will output raw ADC data instead of WSS or CGMS. This mode allows a mixture of sliced and raw data.  
This can be used to output raw data from a teletext line and sliced data from a closed caption line.  
1.7.3. Select Individual Lines Enabled for VBI Processing  
The S5D0127X01 allows programmable selection of processing for the various video lines. For example  
Teletext/Intercast data can be sliced for lines 14 - 17, and closed caption for line 21.  
Each 2-bit register VBIL0 through VBIL15 defines how a specific VBI line is processed. As can be seen in Figure  
36 for 60 Hz and Figure 37 for 50 Hz video, the following alignments exist:  
Table 9: VBI Line(s) Selection  
Line Number That the VBIL Processing command applies to  
(Assuming ODDOS=1)  
VBIL  
number  
Odd Field  
60 Hz  
Even Field  
60 Hz  
Odd Field  
50 Hz  
Even Field  
50Hz  
VBIL0  
All Lines  
Except 10-24 Except  
273-287  
All Lines  
All lines  
Except 7-21  
All lines Except  
320 - 334  
VBIL1  
VBIL2  
VBIL3  
VBIL4  
VBIL5  
VBIL6  
VBIL7  
VBIL8  
VBIL9  
VBIL10  
VBIL11  
VBIL12  
VBIL13  
VBIL14  
VBIL15  
9&10  
11  
272&273  
6&7  
8
319&320  
321  
274  
275  
12  
9
322  
13  
276  
10  
323  
14  
277  
11  
324  
15  
278  
12  
325  
16  
279  
13  
326  
17  
280  
14  
327  
18  
281  
15  
328  
19  
282  
16  
329  
20  
283  
17  
330  
21  
284  
18  
331  
22  
285  
19  
332  
23  
286  
20  
333  
24&25  
287&288  
21&22  
334&335  
Modified on May/04/2000  
PAGE 35 OF 96  
ELECTRONICS  
S5D0127X01 Data Sheet  
MULTIMEDIA VIDEO  
The ODDOS[1:0] bits allow offset between the odd and even fields. Thus VBIL9 can be lines 17,18 or 19 for ODD  
fields while VBIL9 is still line 281 for EVEN fields. This extra controls account for variations of VBI data locations  
from ODD and EVEN fields.  
When Intercast or Teletext data is selected, an 8-bit user programmable register (TTFRAM) is provided for the  
framing byte. The frame alignment processor uses this information to properly locate the first data bit on each line  
1.7.4. Raw CVBS Data Output Format  
When raw ADC data is selected as output in place of the normal YUV or RGB data. The following rules apply:  
• For 656 type 8 bit outputs, The ADC data outputs with successive data points in place of the Cb, Y, Cr, Y data  
stream.  
• For 16 bit or 24 bit outputs, The ADC data is output on the Y[7:0] and C[7:0] output pins. At any CK2 clock 2  
bytes of ADC data are output. The Y[7:0] bus represents data N while C[7:0] is data N+1.  
• ADC data is only output during the region that HAV is active.  
• All ADC outputs are limited to the range 1-254, thus a 0 or 255 value will not be output.  
For the line selected mode described above using VBCVBS and VBIL, data is from the luma ADC only. If C ADC  
data or the entire video line is required, configure OFMT bits.  
1.7.5. Sliced Data Output Formats  
While sliced data is available for many of the output formats, the target application is 656 output format. The  
description of data format is limited to this mode. The S5D0127X01 allows this data to be output during active  
video.  
Figure 31 shows the timing diagram for VYFMT[1:0]=3.  
Video input  
HAV  
CCEN -VBINSRT=0  
CCEN -VBINSRT=1  
10h  
10h  
Y[7:0] -- VYFMT=3  
VBINSRT=1  
Zoom In - Random data  
Y[7:0] -- VYFMT=3  
VBINSRT=1  
10h 10h 10h  
85h  
45h  
10h  
A4h  
E4h  
45h 2Dh  
54h  
10h 84h  
23h  
Figure 31. VBI Insertion Timing for VYFMT[1:0]=3  
Digitized CVBS data can also be output on the video output port (except for output format 1, 5 and 7). CVBS is  
Modified on May/04/2000  
PAGE 36 OF 96  
ELECTRONICS  
S5D0127X01 Data Sheet  
MULTIMEDIA VIDEO  
always digitized at the CK clock rate. CVBS data is available when HAV is active. Raw CVBS data is output in a  
similar fashion as decoded video. For 8-bit output format, data is output at CK rate using the same 8-bit port as the  
decoded video. For 16-bit and 24-bit output format, data is output at CK2 rate using Y and C ports. The sequence  
of data output is CVBS on Y, and CVBS  
on C (note that EXV port is not used in 24-bit format for outputting  
2n  
2n+1  
raw CVBS data).  
For Closed Caption data, two read-only registers, CCDAT1 and CCDAT2, are provided so the Closed Caption data  
can be read via the host interface. The VBIFLG bit can be polled to see if data captured in the two registers can be  
safely read.  
1.8. COLOR SPACE CONVERTER  
The color space converter processes the video data as YCbCr 4:4:4 when converting to RGB. A programmable  
limiter (YCRANG) can be imposed on the Y/C data to limit the ranges. One can choose to limit the Y/C to 1 - 254,  
or Y to 16 - 235 and C to 16 - 240.  
When selected, YCbCr 4:4:4 is converted to 24 bit RGB according to the following equations:  
R = CY + 1.375CR  
G = CY 0.703CR 0.328CB  
B = CY + 1.734CB  
For 16-bit RGB output, truncation with dithering is used to convert the data from 24 bit to 16 bit.  
1.9. GAMMA CORRECTION  
The S5D0127X01 programmable gamma tables allows the customer to apply many different type of corrections.  
These corrections can be a standard 2.2 factor for NTSC or 2.8 for PAL. These factors can be applied in the RGB  
or YUV domains.  
A basic standard gamma equation of  
R = R'2.2  
when applied to the R, G, or B signals, generates the response shown as the upper curve below. It is the inverse of  
the monitor response and thus compensates to produce a linear response.  
Modified on May/04/2000  
PAGE 37 OF 96  
ELECTRONICS  
S5D0127X01 Data Sheet  
MULTIMEDIA VIDEO  
Gamma correction  
Effective output  
TV tube characteristic  
Figure 32. RGB Gamma Correction  
1.9.1. Programming the S5D0127X01  
The previous response is easily programmed into the S5D0127X01 loading the 0, 8, 16, 24 etc. values into the  
GAMMA0,1,2,3 locations. Thus every 8th value is stored. The S5D0127X01 will use linear interpolation to generate  
the values between every 8th points. This is shown in the following figure.  
Output  
GAMMA7  
GAMMA6  
GAMMA5  
GAMMA4  
GAMMA3  
GAMMAD2  
GAMMA2  
GAMMAD1  
GAMMA1  
GAMMAD0  
GAMMA0  
0
8
16 24 32 40 48 56 64  
192 200 208 216 224 232 240 248  
Input  
Figure 33. Gamma LUT Programming  
Modified on May/04/2000  
PAGE 38 OF 96  
ELECTRONICS  
S5D0127X01 Data Sheet  
MULTIMEDIA VIDEO  
For ease of design, the difference between adjacent points must also be loaded. The complete data values for the  
previous gamma factor of 1/2.2 is shown in the table below.  
Table 10: RGB Gamma LUT Values  
GAMMA  
program at index Offset+40h  
GAMMAD  
program at index Offset+60h  
Offset  
0
1
0
53  
20  
14  
12  
11  
10  
8
53  
2
73  
3
87  
4
99  
5
110  
120  
128  
136  
144  
151  
158  
164  
170  
176  
181  
187  
192  
197  
202  
207  
211  
216  
220  
225  
229  
233  
237  
241  
245  
249  
252  
6
7
8
8
8
9
7
A
7
B
6
C
6
D
6
E
5
F
6
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
1A  
1B  
1C  
1D  
1E  
1F  
5
5
5
5
4
5
4
5
4
4
4
4
4
4
3
4
The flexibility of this architecture is shown in the following example. Here it is assumed that the S5D0127X01 is  
operating in a YUV output mode but some form of Gamma correction is required. By converting the RGB gamma  
correction function back to the YUV color space, the following function can be applied to the U and V signals for  
improved color performance. This flexibility can be extended in software to produce many type of customer defined  
transfer functions.  
Modified on May/04/2000  
PAGE 39 OF 96  
ELECTRONICS  
S5D0127X01 Data Sheet  
MULTIMEDIA VIDEO  
Figure 34. Gamma Correction for Cb and Cr  
Modified on May/04/2000  
PAGE 40 OF 96  
ELECTRONICS  
S5D0127X01 Data Sheet  
MULTIMEDIA VIDEO  
1.10. DIGITAL VIDEO OUTPUT  
The S5D0127X01 can output digital video data in various formats, which are tabulated in Table 11. All 8-bit output  
Table 11: Digital Video Output Format  
Clock  
CK2  
CK  
OFMT  
0
1
4
5
6
7
2, 3  
YCbCr  
4:2:2  
YCbCr RGB RGB RGB  
4:4:4 565 888 888  
Type  
YCbCr 4:1:1  
+1 +2  
YCbCr 4:2:2  
Pin  
C0  
2N  
+1  
4N  
+3  
N
Cb0  
Cb1  
Cb2  
Cb3  
N
B0  
B1  
B2  
B3  
B4  
N
B0  
B1  
B2  
B3  
B4  
N
B3  
B4  
B5  
B6  
B7  
G2  
G3  
G4  
4N  
+1  
+2  
+3  
Cb0 Cr0  
Cb1 Cr1  
Cb2 Cr2  
Cb3 Cr3  
C1  
C2  
C3  
C4  
Cb4 Cr4 Cr6 Cr4 Cr2 Cr0 Cb4  
Cb5 Cr5 Cr7 Cr5 Cr3 Cr1 Cb5  
Cb6 Cr6 Cb6 Cb4 Cb2 Cb0 Cb6  
Cb7 Cr7 Cb7 Cb5 Cb3 Cb1 Cb7  
C5  
G0 B5  
G1 B6  
G2 B7  
C6  
C7  
Y0  
Y0  
Y1  
Y2  
Y3  
Y4  
Y5  
Y6  
Y7  
Y0  
Y1  
Y2  
Y3  
Y4  
Y5  
Y6  
Y7  
Y0  
Y1  
Y2  
Y3  
Y4  
Y5  
Y6  
Y7  
Y0  
Y1  
Y2  
Y3  
Y4  
Y5  
Y6  
Y7  
Y0  
Y1  
Y2  
Y3  
Y4  
Y5  
Y6  
Y7  
Y0  
Y1  
Y2  
Y3  
Y4  
Y5  
Y6  
Y7  
Y0  
G3 G0 G5 Cb0 Y0  
G4 G1 G6 Cb1 Y1  
G5 G2 G7 Cb2 Y2  
R0 G3 R3 Cb3 Y3  
R1 G4 R4 Cb4 Y4  
R2 G5 R5 Cb5 Y5  
R3 G6 R6 Cb6 Y6  
R4 G7 R7 Cb7 Y7  
R0 B0  
Cr0 Y0  
Cr1 Y1  
Cr2 Y2  
Cr3 Y3  
Cr4 Y4  
Cr5 Y5  
Cr6 Y6  
Cr7 Y7  
Y1  
Y1  
Y2  
Y2  
Y3  
Y3  
Y4  
Y4  
Y5  
Y5  
Y6  
Y6  
Y7  
Y7  
EXV0  
EXV1  
EXV2  
EXV3  
EXV4  
EXV5  
EXV6  
EXV7  
Cr0  
Cr1  
Cr2  
Cr3  
Cr4  
Cr5  
Cr6  
Cr7  
R1 B1  
R2 B2  
R3 G0  
R4 G1  
R5 R0  
R6 R1  
R7 R2  
Modified on May/04/2000  
PAGE 41 OF 96  
ELECTRONICS  
S5D0127X01 Data Sheet  
MULTIMEDIA VIDEO  
formats use CK as pixel clock; the other formats use CK2 as pixel clock. The first pixel is always aligned to the  
leading edge of the HAV signal.  
1.10.1. Validation Code Insertion  
S5D0127X01 inserts validation codes during inactive video (HAV is inactive), and invalid video (HAV is active but  
EHAV is inactive) to assist in recognition of scaled data and VBI data. Table 12 lists the available codes, when they  
are inserted, and related programming registers.  
Table 12: Invalid and Unused Code Insertion  
Code  
Description  
INVALY This user programmed code is inserted in the Y or G output stream in scaling operation when  
HAV is active while EHAV is inactive. Insertion of this code is independent of the output  
format. Related register is INVALY.  
INVALU This user programmed code is inserted in the U or B output stream in scaling operation when  
HAV is active while EHAV is inactive. Insertion of this code is independent of the output  
format. Related register is INVALU.  
INVALV This user programmed code is inserted in the V or R output stream in scaling operation when  
HAV is active while EHAV is inactive. Insertion of this code is independent of the output  
format. Related register is INVALV.  
UNUSEY This user programmed code is inserted in the Y or G output stream when HAV is inactive and  
no other reference code is inserted. Insertion of this code is independent of the output format.  
Related register is UNUSEY.  
UNUSEU This user programmed code is inserted in the U or B output stream when HAV is inactive and  
no other reference code is inserted. Insertion of this code is independent of the output format.  
Related register is UNUSEU.  
UNUSEV This user programmed code is inserted in the V or R output stream when HAV is inactive and  
no other reference code is inserted. Insertion of this code is independent of the output format.  
Related register is UNUSEV.  
An example timing diagram for some of the programmable modes is shown in Figure 35. In this diagram, The field  
rate is 60 Hz, A CCIR 601 sampling rate has been selected thus giving 720 active pixels. The horizontal scaling  
ratio has been selected for an output of 718 out of 720 pixels.  
Modified on May/04/2000  
PAGE 42 OF 96  
ELECTRONICS  
S5D0127X01 Data Sheet  
MULTIMEDIA VIDEO  
Legend  
Y0  
U0  
Luma Data with pixel number  
Chroma (Cb) Data with pixel number  
Chroma (Cr) Data with pixel number  
V0  
YI  
UI  
Programmable INVALY data (index 0x32)  
Programmable INVALU data (index 0x33)  
VI  
Programmable INVALV data (index 0x34)  
YU  
UU  
Programmable UNUSEY data (index 0x35)  
Programmable UNUSEU data (index 0x36)  
VU  
Programmable UNUSEV data (index 0x37)  
Invalid data (During  
Active Video but Scaling  
Has made picture smaller  
and right justified)  
If Horizontal Scaling is  
disabled, EHAV will be the same  
as HAV and there will be no  
Invalid data. For this Example,  
Unused Data  
Unused Data  
the last Data would be  
Y719  
HAV  
EHAV  
CK  
CK2  
OFMT=0 (16 bits @ 13.5 Mhz 4:2:2 - 601)  
YU  
YU  
YU  
YI  
YI  
VI  
YI  
UI  
YI  
VI  
Y0  
U0  
Y1  
V0  
Y2  
U2  
Y3  
V2  
0  
0  
Y714  
Y715  
YU  
UU  
YU  
VU  
Y[7:0]  
C[7:0]  
VU  
UU  
VU  
UI  
U714  
V714  
OFMT=2 (8 bits @ 27 Mhz 656 data no SAV EAV)  
Y[7:0] VU YU UU YU VU YU UI YI VI YI UI YI VI YI U0 Y0 V0 Y1 U2 Y2 V2 Y3 Y0 Ux Yx Vx Yx UU YU VU  
OFMT= 3  
SAV -- see Table 12 for details  
EAV -- see table for details  
Same Format as OFMT=2  
A
B
C
D
A
B
C
D
OFMT=4 (24 bits @ 13.5 Mhz YUV 4:4:4)  
Y[7:0]  
YU  
UU  
VU  
YU  
UU  
VU  
YU  
UU  
VU  
YI  
UI  
VI  
YI  
UI  
VI  
YI  
UI  
VI  
YI  
UI  
VI  
Y0  
U0  
V0  
Y1  
U1  
V1  
Y2  
U2  
V2  
Y3  
U3  
V3  
0  
YT714 YY715  
U714 Y715  
V714 V715  
YU  
YU  
C[7:0]  
UU  
VU  
UU  
VU  
EXV[7:0]  
-  
Figure 35. Horizontal Data Timing for Various Output Modes  
1.10.2. 656 Op Codes  
The S5D0127X01 supports timing synchronization through embedded (656) timing reference codes in the output  
video data stream. This mode is available for output format 3 (OFMT[3:0] = 3). The 656 Op Codes follow the CCIR  
656 standard. An optional set of 656 Op Codes can be enabled to identify VBI data using the TASKB bit.  
The (A,B,C,D) inserted codes for 656 output modes are explained below. Locations in the data stream are shown  
in Figure 35. The D’ data is substituted for the standard codes shown in column D if TASKB bit is set and the  
current line is processing VBI data (sliced or raw ADC data format).  
Modified on May/04/2000  
PAGE 43 OF 96  
ELECTRONICS  
S5D0127X01 Data Sheet  
MULTIMEDIA VIDEO  
Fields  
1,3  
60 Hz ODD FIELD  
24  
23  
23  
22  
22  
21  
2
3
2
4
3
5
6
7
6
8
7
9
10  
20  
21  
1
525  
Analog  
Input  
525  
524  
4
5
8
9
10  
20  
1
Digital  
output  
VSE=0  
VSE=0  
VSE=1  
VALIGN=0  
VALIGN=1  
VALIGN=0  
VS  
VSE=1  
VSE=0  
VSE=1  
VS  
VSE=1  
ODD  
VSE=0  
VSE=1  
VSE=0  
VALIGN=1  
ODD  
EAV  
SAV  
656 SAV EAV Codes for VSE=0, VALIGN=1  
Y[0..7]  
9D80  
9D80  
F1EC F1EC F1EC B6AB B6AB B6AB B6AB B6AB B6AB 9D80 9D80 9D80 9D80  
9D80  
DAC7  
DAC7  
TASK B VIP 656 SAV EAV Codes for VSE=0, VALIGN=1, VBIL12-VBIL1=1, TASKB=1  
Y[0..7]  
1380  
F1EC F1EC F1EC B6AB B6AB B6AB B6AB B6AB B624 130E 130E 13 0E 13 80  
9D80 9D80  
15  
13  
DAC7  
DAC7  
VBIL[N]  
0
0
0
0
0
0
0
0
0
1
1
-
11  
12  
14  
0
Fields  
2,4  
60 Hz EVEN FIELD  
286  
284  
287  
285  
283  
264  
265 266  
267  
268  
269  
270 271 272  
273  
263  
262  
Analog  
Input  
285  
283  
286  
284  
263 264  
265 266  
267  
268  
269  
270 271 272  
273  
Digital  
Output  
VSE=0  
VSE=0  
VSE=0  
VALIGN=0  
VALIGN=1  
VS  
VS  
VSE=1  
VSE=1  
VSE=0  
VSE=1  
VALIGN=0  
VALIGN=1  
VSE=1  
ODD  
ODD  
VSE=0  
VSE=1  
EAV  
SAV  
656 SAV EAV Codes for VSE=0, VALIGN=1  
DAC7 DAC7 DAC7  
Y[0..7]  
B6AB B6AB F1EC F1EC F1EC F1EC F1EC F1EC F1EC F1C7 DAC7 DAC7 DAC7  
9D80  
9D80  
TASK B VIP 656 SAV EAV Codes for VSE=0, VALIGN=1, VBIL12-VBIL1=1, TASKB=1  
B6AB B6AB F1EC F1EC F1EC F1EC F1EC F1EC F162 7F62 7F62 7F62 7F62  
7FC7 DAC7 DAC7  
15  
Y[0..7]  
9D80  
9D80  
0
0
0
0
0
0
0
0
0
1
1
-
11  
12  
13  
14  
0
VBIL[N]  
Figure 36. Vertical Timing for 60 Hz Video  
Modified on May/04/2000  
PAGE 44 OF 96  
ELECTRONICS  
S5D0127X01 Data Sheet  
MULTIMEDIA VIDEO  
Fields  
1,3  
50 Hz ODD FIELD  
25  
24  
622  
621  
623  
622  
624  
625  
624  
1
2
3
4
3
5
4
6
7
6
20  
21  
20  
22  
21  
23  
22  
24  
23  
Analog  
Input  
623  
625  
1
2
5
7
Digital  
Output  
VS  
VS  
VSE=0  
VALIGN=0  
VSE=1  
VSE=1  
VSE=1  
VSE=0  
VALIGN=1  
VSE=0, ALT656=1  
VSE=1  
VSE=0, ALT656=0  
VALIGN=0  
ODD  
ODD  
VSE=0  
VSE=0  
VALIGN=1  
VSE=1  
EAV  
SAV  
656 SAV EAV Codes for VSE=0, VALIGN=1  
Y[0..7]  
9D  
B6AB B6AB B6AB B6AB B6AB B6AB B6AB B6AB B6 AB 9D 80 9D 80  
DAC7 DAC7 DAC7 F1EC F1EC  
B6AB B6AB  
TASK B VIP 656 SAV EAV Codes for VSE=0, VALIGN=1, ALT656=1, VBIL15-VBIL1=1, TASKB=1  
Y[0..7]  
DAC7 DAC7 DAC7 DAC7 DAC7 F1EC F1EC B6AB B6AB B6AB B6AB B624 130E 130E 130E 130E 13 80 9D 80  
VBIL[N]  
0
0
0
0
0
0
0
0
0
0
1
1
-
14  
15  
0
15  
Fields  
2,4  
50 Hz EVEN FIELD  
333 334 335  
336  
337  
310 311  
312 313  
314 315  
316  
317 318 319  
320  
Analog  
Input  
310 311  
312 313  
314 315  
316  
317 318 319  
320  
333 334 335  
336  
Digital  
Output  
VALIGN=0  
VSE=0  
VS  
VS  
VSE=0  
VSE=1  
VSE=1  
VSE=1  
VALIGN=1  
VSE=0, ALT656=0  
VSE=1  
VSE=0, ALT656=1  
VSE=0  
ODD  
ODD  
VALIGN=0  
VSE=-0  
VALIGN=1  
VSE=1  
EAV  
SAV  
656 SAV EAV Codes for VSE=0, VALIGN=1  
Y[0..7]  
D
9D80 9D80 B6AB B6AB F1EC F1EC F1EC F1EC F1EC F1EC F1EC F1EC F1EC F1EC F1EC F1 EC DAC7 DAC7  
TASK B VIP 656 SAV EAV Codes for VSE=0, VALIGN=1, ALT656=1, VBIL15-VBIL1=1, TASKB=1  
Y[0..7]  
9D80 9D80 B6AB B6AB F1EC F1EC F1EC F1EC F1EC F1EC F162 5449 5449 5449 5449 54 49 54 C7 DA C7  
VBIL[N]  
0
0
0
0
0
0
0
0
0
0
1
1
-
14  
15  
0
15  
Figure 37. Vertical Timing For 50 Hz Video  
Modified on May/04/2000  
PAGE 45 OF 96  
ELECTRONICS  
S5D0127X01 Data Sheet  
MULTIMEDIA VIDEO  
Table 13: 656 and TASKB 656 Op Codes  
SAV / EAV Output Sequence --  
Reference Output timing pic-  
tures  
Condition  
656 FVH values  
Field  
Vertical  
Horizontal  
A
B
C
D
D’  
F
V
H
Field 2  
Field 2  
Field 2  
Field 2  
Field 1  
Field 1  
Field 1  
Field 1  
Vertical Blank  
Vertical Blank  
Vertical Active  
Vertical Active  
Vertical Blank  
Vertical Blank  
Vertical Active  
Vertical Active  
End Active Video  
FFh  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
F1h  
ECh  
DAh  
C7h  
B6h  
ABh  
9Dh  
80h  
7Fh  
62h  
54h  
49h  
38h  
24h  
13h  
0Eh  
1
1
1
Start Active Video FFh  
End Active Video FFh  
Start Active Video FFh  
End Active Video FFh  
Start Active Video FFh  
End Active Video FFh  
Start Active Video FFh  
1
1
1
0
0
0
0
1
0
0
1
1
0
0
0
1
0
1
0
1
0
1.10.3. 656 Op Code Vertical Transitions  
The vertical transition locations of the various 656 Op Codes are shown in Figure 36 and Figure 37. Note that for  
proper transition locations of the SAV and EAV Op Codes VSE=0 and VALIGN=1.  
1.11. HOST INTERFACE  
The S5D0127X01 supports the IIC serial interface for programming the chip registers.  
1.11.1. IIC Interface  
The two wire interface consists of the SCLK and SDAT signals. Data can be written to or read from the  
S5D0127X01. For both read and write, each byte is transferred MSB first, and the data bit is valid when the SCLK  
is high.  
To write to the slave device, the host initiates a transfer cycle with a START signal. The START signal is HIGH to  
LOW transition on the SDAT while the SCLK is high. The host then sends a byte consisting of the 7-bit slave device  
ID and a 0 in the R/W bit. The arrangement for the slave device ID and the R/W bit is depicted in Figure 38. AEX1  
and AEX0 are configuration pins used to configure the S5D0127X01 to use one of the four addresses. Up to four  
S5D0127X01’s can be used in one system each with a unique address.  
msb  
1
lsb  
1
0
1
1
AEX1  
AEX0  
R/W  
slave device ID  
Figure 38. IIC Slave Device ID and R/W Byte  
Modified on May/04/2000  
PAGE 46 OF 96  
ELECTRONICS  
S5D0127X01 Data Sheet  
MULTIMEDIA VIDEO  
The second byte the host sends is the base register index. The host then sends the data. The S5D0127X01  
increments the index automatically after each byte of data is sent. Therefore, the host can write multiple bytes to  
the slave if they are in sequential order. The host completes the transfer cycle with a STOP signal which is a LOW  
to HIGH transition when the SCLK is high.  
Each byte transfer consists of 9 clocks. When writing to the S5D0127X01, an acknowledge signal is asserted by  
the salve device during the 9th clock.  
SCLK  
data  
device ID  
index  
data  
SDAT  
STOP  
ACK  
START  
ACK  
ACK  
Figure 39. IIC Data Write  
A read cycle takes two START-STOP phases. The first phase is a write to the index register. The second phase is  
the read from the data register.  
The host initiates the first phase by sending the START signal. It then sends the slave device ID along with a 0 in  
the R/W position. The index is then sent followed by the STOP signal.  
The second phase also starts with the START signal. It then sends the slave device ID but with a 1 in the R/W  
position to indicate data is to be read from the slave device. The host uses the SCLK to shift data out from the  
S5D0127X01. A typical second phase in a read transaction is depicted in Figure 40. Auto index increment is  
supported in Read mode.  
SCLK  
index  
device ID  
SDAT  
STOP  
START  
ACK  
ACK  
SCLK  
SDAT  
data  
device ID  
STOP  
START  
NACK  
Figure 40. IIC Data Read  
Modified on May/04/2000  
PAGE 47 OF 96  
ELECTRONICS  
S5D0127X01 Data Sheet  
MULTIMEDIA VIDEO  
2. CONTROL REGISTER DESCRIPTION  
This section contains information concerning the programmable control registers. Table 14 provides the default  
power up values for each index, and a bit map for each register. The following pages describe each register in  
detail and the possible programing values (an * indicates the power-on default). Gamma correction registers are  
write only. When the index register points to any of the Gamma correction register, the Gamma look-up table is put  
into a program mode. Normal operation resumes when the index is outside the range from 0x40 to 0xFF.  
Table 14: Register Summary  
Bit Map  
Index Mnemonic Default  
7
6
5
4
3
2
1
0
0x00  
0x01  
0x02  
0x03  
0x04  
0x05  
0x06  
0x07  
0x08  
0x09  
0x0A  
0x0B  
0x0C  
0x0D  
0x0E  
0x0F  
0x10  
0x11  
0x12  
0x13  
0x14  
0x15  
0x16  
0x17  
0x18  
0x19  
0x1A  
0x1B  
0x1C  
0x1D  
0x1E  
0x1F  
STAT  
RO  
CHIPID VBIFLG NOVID FFRDET PALDET CDET  
POWDN VSE HFSEL[1:0] XT24 PIXSEL MNFMT  
AGCGN VALIGN AGCOVF AGCFRZ  
HLOCK CLOCK  
CMDA  
CMDB  
CMDC  
CMDD  
HAVB  
2C  
IFMT  
20  
INSEL[3:0]  
00  
VMEN TSTGE1  
0
TSTGPK TSTGPH  
INPSL[1:0]  
HAVB[7:0]  
HAVE[7:0]  
HS1B[8:1]  
HS1E[8:1]  
HS2B[8:1]  
HS2E[8:1]  
AGC[7:0]  
TSTGFR[1:0]  
TSTGEN  
00  
EAV  
0
CKDIR  
SYNDIR Y1MHZ GPPORT  
00  
HAVE  
00  
HS1B  
00  
HS1E  
00  
HS2B  
00  
HS2E  
00  
AGC  
50  
HXTRA  
CDEM  
PORTAB  
LUMA  
CON  
00  
HAVB[10:8]  
FSEC  
HAVE[10:8]  
CIFCMP[1:0]  
DIRA  
HS1BE0 HS2BE0  
00  
OUTHIZ  
DIRB  
0
0
0
0
0
00  
DATAB[2:0]  
RGBH  
DATAA[2:0]  
00  
UNIT  
PED  
CONT[7:0]  
BRT[7:0]  
CBW  
HYBWR CTRAP  
HYPK[1:0]  
00  
BRT  
00  
CHROMA  
CHROMB  
DEMOD  
SAT  
08  
ACCFRZ PALM  
PALN  
CORE[1:0]  
CKILL[1:0]  
00  
CDLY[3:0]  
FSCDET SECDET CDMLPF CTRACK  
SAT[7:0]  
HUE[7:0]  
VRT2X  
HYBWI HYDEC  
SCHCMP[3:0]  
00  
MNFSC[1:0]  
MNSECAM[1:0]  
00  
HUE  
00  
VERTIA  
VERTIB  
VERTIC  
HSCLL  
HSCLH  
VSCLL  
VSCLH  
OFMTA  
OFMTB  
00 MNYCMB  
YCMBCO[2:0]  
HYLPF[2:0]  
CCMBCO[2:0]  
HSCL[6:0]  
VCTRL[2:0]  
VSCLEN[1:0]  
00  
0
03 MNCCMB  
ACMBEN VYBW EVAVEV EVAVOD  
CMBMOD  
00  
00  
FC  
FF  
HSCL[14:7]  
VSCL[5:0]  
VSCL[13:6]  
OENC[1:0]  
EVAND[1:0] EVHS1 EVHAV EVEHAV EVAVG EVANDL  
ACMBCO ACMBRE  
-
GAMEN[1:0]  
VSVAV  
OFMT[3:0]  
00  
Modified on May/04/2000  
PAGE 48 OF 96  
ELECTRONICS  
S5D0127X01 Data Sheet  
MULTIMEDIA VIDEO  
Table 14: Register Summary  
Bit Map  
Index Mnemonic Default  
7
6
5
4
3
2
1
0
0x20  
0x21  
0x22  
0x23  
0x24  
0x25  
0x26  
0x27  
0x28  
0x29  
0x2A  
0x2B  
0x2C  
0x2D  
0x2E  
0x2F  
0x30  
0x31  
0x32  
0x33  
0x34  
0x35  
0x36  
0x37  
0x38  
0x39  
0x3A  
0x3B  
0x3C  
0x3D  
0x3E  
0x3F  
0x40-5F  
0x60-7F  
0xC0-DF  
0xE0-FF  
VBICTL  
CCDAT1  
CCDAT2  
VBIL30  
00  
RO  
RO  
00  
00  
00  
00  
00  
00  
00  
33  
00  
00  
23  
82  
00  
00  
00  
10  
80  
80  
10  
80  
80  
00  
00  
VBCVBS  
VYFMT[1:0]  
VBINSRT ODDEN EVENEN  
ODDOS[1:0]  
b0  
b0  
b1  
b1  
b2  
b2  
b3  
b3  
b4  
b4  
b5  
b5  
b6  
b6  
P1  
P2  
VBIL3  
VBIL2  
VBIL6  
VBIL1  
VBIL5  
VBIL9  
VBIL13  
VBIL0  
VBIL4  
VBIL8  
VBIL12  
VBIL74  
VBIL7  
VBIL11  
VBIL15  
VBIL118  
VBIL1512  
TTFRAM  
TESTA  
VBIL10  
VBIL14  
TTFRAM[7:0]  
0
0
0
0
0
0
0
0
0
UVOFFH  
UVOFFL  
UGAIN  
TSTCLC TSTCGN  
TSTCFR  
UOFFST[5:4]  
VOFFST[5:4]  
UOFFST[3:0]  
VOFFST[3:0]  
UGAIN[7:0]  
VGAIN  
VGAIN[7:0]  
VAVB  
VAVB[6:1]  
VAVOD0 VAVEV0  
CFTC[1:0]  
VAVE  
VAVE[8:1]  
CTRACK  
POLCTL  
REFCOD  
INVALY  
INVALU  
INVALV  
UNUSEY  
UNUSEU  
UNUSEV  
EXCTRL  
TRACKA  
VBICTLB  
TRACKB  
RTC  
0
0
VSPL  
0
DMCTL[1:0]  
ODDPL HAVPL EHAVPL HS2PL  
0 0  
CGTC[1:0]  
EVAVPL  
YCRANG  
VAVPL  
0
HS1PL  
0
0
0
INVALY[7:0]  
INVALU[7:0]  
INVALV[7:0]  
UNUSEY[7:0]  
UNUSEU[7:0]  
UNUSEV[7:0]  
0
ENINCST  
MAC_DET  
0
-
AUCPWD  
0
0
CLEVEL  
STCTRL  
VCR_DET VCR_LEV[1:0] ATCTRAP VCTRAP AGCLSB  
YOFFENB COFFENB  
00 VBISWAP  
TT_SYS[1:0]  
VBIMID NEW_CC CC_OVFL  
AGC_LPG[1:0]  
AGC_LKG  
0
00  
00  
09  
00  
00  
-
ALT656 VBI_PH VBI_FR PH_CTRL VNOISCT  
RTC_DTO RTC_PID  
0
TDMOD  
0
0
0
CMDE  
ODFST VSALG  
TR_MS NOVIDC  
CTRAPFSC  
HCORE[1:0]  
CHIPREVID  
VSDEC[5:0]  
VSDEL  
CMDF  
VIPMODE EVAVY UVDLEN UVDLSL REGUD TASKB  
GAMMA0[7:0] - GAMMA31[7:0]  
CBWI  
GAMMA  
GAMMAD  
GAMUV  
GAMUVD  
-
-
-
-
GAMMAD0[5:0] - GAMMAD31[5:0]  
GAMUV0[7:0] - GAMUV31[7:0]  
GAMUVD0[5:0] - GAMUVD31[5:0]  
-
-
-
Modified on May/04/2000  
PAGE 49 OF 96  
ELECTRONICS  
S5D0127X01 Data Sheet  
MULTIMEDIA VIDEO  
Read Only Status Bits  
Index  
00h  
Mnemonic  
STAT  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
CHIPID  
VBIFLG  
NOVID  
FFRDET PALDET  
CDET  
HLOCK  
CLOCK  
CLOCK  
HLOCK  
CDET  
Status for color lock.  
0
1
Not locked.  
Color lock achieved.  
Status for current line tracking mode.  
0
1
Chip is in initial tracking mode.  
Chip is in steady state tracking mode.  
Status for detection of color.  
0
1
No color signal is detected.  
Color signal is detected.  
PALDET  
Status for current detected color format. Information contained in this bit is valid only if  
CLOCK is 1.  
0
1
NTSC color format.  
PAL color format.  
FFRDET  
NOVID  
Status for current detected field frequency.  
0
1
50 Hz field frequency, i.e. N,B,G,H,I,D,K,K1,L system.  
60 Hz field frequency, i.e. M system.  
Video detect flag. This bit should not be used for detecting the presence of a TV channel  
from the output of a TV tuner.  
0
1
Sync has been detected for the last 32 lines.  
No sync has been detected.  
VBIFLG  
CHIPID  
Vertical blanking interval flag.  
0
1
Video is in active region.  
Video is in vertical blanking region.  
Chip version ID. Please refer to the CHIPREVID bits for additional information  
0
1
KS0122S.  
S5D0124D01.  
Modified on May/04/2000  
PAGE 50 OF 96  
ELECTRONICS  
S5D0127X01 Data Sheet  
MULTIMEDIA VIDEO  
Control Register A  
bit 5 bit 4  
HFSEL[1:0]  
Index  
01h  
Mnemonic  
CMDA  
bit 7  
bit 6  
bit 3  
bit 2  
bit 1  
bit 0  
POWDN  
VSE  
XT24  
PIXSEL  
MNFMT  
IFMT  
IFMT  
Manual video input standard select. Standard selection can be controlled automatically if  
MNFMT=0.  
0
1
Chip is forced to assume input is 50 Hz.*  
Chip is forced to assume input is 60 Hz.  
MNFMT  
Manual input format control override. When this bit is 1 the IFMT bit is enabled.  
0
The chip determines the input video standard based on the detected field rate:*  
NTSC if 60 Hz.  
PAL/SECAM if 50 Hz.  
1
Input video standard is selected with the IFMT bit.  
PIXSEL  
XT24  
Select pixel sampling rate.  
0
1
Output data is at square pixel rate.  
Output data is at CCIR 601 rate.*  
Select the external clock reference frequency.  
0
1
External clock is 26.8 MHz.  
External clock is 24.576 MHz.*  
HFSEL[1:0]  
Horizontal tracking loop frequency select.  
0
1
2
3
Force loop to very fast.  
Force loop to fast.  
Force loop to VCR time constant.*  
Force loop to TV time constant.  
VSE  
Change the vertical end location of the VS.  
0
1
Line 10/10.5.*  
Line 9/9.5.  
POWDN  
Power down mode.  
0
1
Normal operation.*  
All chip functions except microprocessor interface and CK/CK2 generation are  
disabled. The output of the CK/CK2 pins retains the most recent frequency when  
the power down mode is enabled.  
Modified on May/04/2000  
PAGE 51 OF 96  
ELECTRONICS  
S5D0127X01 Data Sheet  
MULTIMEDIA VIDEO  
Control Register B  
bit 5 bit 4  
Index  
02h  
Mnemonic  
CMDB  
bit 7  
bit 6  
bit 3  
bit 2  
bit 1  
bit 0  
AGCGN VALIGN AGCOVF AGCFRZ  
INSEL[3:0]  
INSEL[3:0]  
Analog input channel select.  
0
1
2
4
5
6
8
9
A
F
AY0 is composite input.*  
AY1 is composite input.  
AY2 is composite input.  
AC0 is composite input.  
AC1 is composite input.  
AC2 is composite input.  
AY0 is luminance input, AC0 is chrominance input.  
AY1 is luminance input, AC1 is chrominance input.  
AY2 is luminance input, AC2 is chrominance input.  
AY2 is luminance input, AC1 is Cb input, AC2 is Cr input.  
AGCFRZ  
AGCOVF  
Freeze the analog AGC for the Y and C paths at their current values.  
0
1
AGC is running. Reading AGC register returns the current AGC gain.*  
AGC is frozen. Gain can be changed or read with AGC register.  
AGC gain control mode.  
0
1
AGC gain tracks to sync tip and back porch delta.  
If ADC overflows, AGC gain will be reduced (this has higher priority over normal  
sync tip - back porch tracking).*  
VALIGN  
AGCGN  
VS edge alignment control.  
0
VS leading edge occurs during serration pulses (typically within the first serration  
pulse). VS trailing edge is aligned to half line or beginning of the line depending on  
the field.*  
1
VS leading edge is aligned to half line or beginning of the line depending on the  
field. VS trailing edge is always aligned to beginning of the line.  
AGC gain calculation.  
0
Normal mode. AGC gain calculation is based on sync tip to back porch difference  
equal to 68 ADC code.*  
1
AGC gain calculation is base on sync tip to back porch difference equal to 54 ADC  
code. This will reduce the AGC gain by a factor of 1/1.25 compare to normal mode.  
When used in conjunction with PED and RGBH, this effectively increases the input  
dynamic range.  
Modified on May/04/2000  
PAGE 52 OF 96  
ELECTRONICS  
S5D0127X01 Data Sheet  
MULTIMEDIA VIDEO  
Control register C  
Index  
03h  
Mnemonic  
CMDC  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
VMEN  
TSTGE1  
0
TSTGPK TSTGPH  
TSTGFR[1:0]  
TSTGEN  
TSTGEN  
Enable manual control of horizontal phase and frequency tracking.  
0
1
Auto phase and frequency tracking.*  
Enable manual control of horizontal phase and frequency with TSTGFR[1:0] and  
TSTGPH.  
TSTGFR[1:0]  
When TSTGEN == 1, these two bits control the horizontal frequency tracking.  
00  
01  
1X  
Stop frequency tracking and freeze the frequency at the current value.*  
Horizontal frequency tracks the input.  
Horizontal frequency tracking ignores video input and runs at nominal value based  
on the field rate and output pixel rate selected by IFMT and PIXEL bits.  
TSTGPH  
TSTGPK  
TSTGE1  
VMEN  
When TSTGEN == 1, this bit controls the horizontal phase tracking.  
0
1
No phase tracking.*  
Horizontal phase tracks the input video or HS1 input if in slave mode.  
If TSTGE1 == 1, this bit controls AGC.  
0
1
AGC clamps to back porch and gain is set based on sync tip-back porch difference.*  
AGC clamps to sync tip and gain is set based on peak-valley difference.  
Enables the function of TSTGPK.  
0
1
Disables TSTGPK.*  
Enables TSTGPK.  
Vertical master mode.  
0
1
Normal vertical sync operation.*  
Vertical sync ignores input and free runs at 50 Hz or 60 Hz. This mode can be used  
to generate video timing for a slave device.  
Modified on May/04/2000  
PAGE 53 OF 96  
ELECTRONICS  
S5D0127X01 Data Sheet  
MULTIMEDIA VIDEO  
Control Register D  
Index  
04h  
Mnemonic  
CMDD  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
EAV  
0
CKDIR  
INPSL[1:0]  
SYNDIR Y1MHZ GPPORT  
GPPORT  
Y1MHZ  
General purpose port. This register is useful only if DATAA[2:0] == 7. If DIRA == 0, this bit is  
read only and reflects the logic state at PORTA pin. If DIRA == 1, any value written to this bit will  
appear at PORTA pin.  
Luma bandwidth control.  
0
1
Luma bandwidth is controlled by other luma filters in the luma path.*  
Luma data is low pass filtered to 1MHz bandwidth.  
SYNDIR  
HS1 and VS pin direction control.  
0
1
HS1 and VS are output.*  
HS1 and VS are input.  
INPSL[1:0]  
Video input and clock source select.  
0
Video source is analog and connected to the chip’s analog input. Clock is internally  
generated.*  
1
3
Video source is 8-bit digital CbYCr and connected to EXV0 through EXV7 pins.  
Video source is 8-bit digitized CVBS and connected to EXV0 through EXV7 pins.  
CKDIR  
EAV  
Clock select.  
0
1
Clock is from internal clock generator. A reference clock at XTALI pin is required.*  
Clock is from CK pin. When this is selected, the CK pin automatically becomes an  
input.  
In 8-bit digital CbYCr input mode, this bit selects the sync source.  
0
1
Horizontal and vertical syncs are from HS1 and VS pins, respectively.*  
Syncs are embedded in the 8-bit digital data stream (CCIR 656 compatible).  
Modified on May/04/2000  
PAGE 54 OF 96  
ELECTRONICS  
S5D0127X01 Data Sheet  
MULTIMEDIA VIDEO  
HAV Start Control  
bit 5 bit 4  
HAVB[7:0]  
HAVE[10:8]  
Index  
Mnemonic  
bit 7  
bit 6  
bit 3  
bit 2  
bit 1  
bit 0  
05h  
0Ch  
HAVB  
HXTRA  
HAVB[10:8]  
HS1BE0 HS2BE0  
HAVB[10:0]  
This 11-bit register is used to define the start location of the HAV signal relative to the sync tip  
(for CVBS input, this is the composite video sync tip. For 8-bit CbYCr input, this is the leading  
edge of the HS1 or EAV). The content of this register is a 2’s complement number which is  
used as an offset to the default. The resolution for this register is 1 CK clock.  
HAV End Control  
Index  
Mnemonic  
bit 7  
bit 6  
bit 5  
bit 4  
HAVE[7:0]  
HAVE[10:8]  
bit 3  
bit 2  
bit 1  
bit 0  
06h  
0Ch  
HAVE  
HXTRA  
HAVB[10:8]  
HS1BE0 HS2BE0  
HAVE[10:0]  
This 11-bit register is used to define the end location of the HAV signal relative to the sync tip.  
The content of this register is a 2’s complement number which is used as an offset to the  
default The resolution for this register is 1 CK clock.  
HS1 Start Control  
Index  
Mnemonic  
bit 7  
bit 6  
bit 5  
bit 4  
HS1B[8:1]  
HAVE[10:8]  
bit 3  
bit 2  
bit 1  
bit 0  
07h  
0Ch  
HS1B  
HXTRA  
HAVB[10:8]  
HS1BE0 HS2BE0  
HS1B[8:1] -  
HS1BE0  
If HS1 is programmed as an output, this 9-bit register defines the start location of the HS1  
signal. The content of this register is a 2’s complement number which is used as an offset to the  
default. The resolution for this register is 1 CK clock.  
Modified on May/04/2000  
PAGE 55 OF 96  
ELECTRONICS  
S5D0127X01 Data Sheet  
MULTIMEDIA VIDEO  
HS1 End Control  
bit 5 bit 4  
HS1E[8:1]  
HAVE[10:8]  
Index  
Mnemonic  
bit 7  
bit 6  
bit 3  
bit 2  
bit 1  
bit 0  
08h  
0Ch  
HS1E  
HXTRA  
HAVB[10:8]  
HS1BE0 HS2BE0  
HS1E[8:1] -  
HS1BE0  
If HS1 is programmed as an output, this 9-bit register defines the end location of the HS1  
signal. The content of this register is a 2’s complement number which is used as an offset to the  
default. The resolution for this register is 1 CK clock.  
HS2 Start Control  
Index  
Mnemonic  
bit 7  
bit 6  
bit 5  
bit 4  
HS2B[8:1]  
HAVE[10:8]  
bit 3  
bit 2  
bit 1  
bit 0  
09h  
0Ch  
HS2B  
HXTRA  
HAVB[10:8]  
HS1BE0 HS2BE0  
HS2B[8:1] -  
HS2BE0  
This 9-bit register defines the start location of the HS2 signal. The content of this register is a  
2’s complement number which is used as an offset to the default HS2B location. The resolution  
for this register is 1 CK clock.  
HS2 End Control  
Index  
Mnemonic  
bit 7  
bit 6  
bit 5  
bit 4  
HS2E[8:1]  
HAVE[10:8]  
bit 3  
bit 2  
bit 1  
bit 0  
0Ah  
0Ch  
HS2E  
HXTRA  
HAVB[10:8]  
HS1BE0 HS2BE0  
HS2E[8:1] -  
HS2BE0  
This 9-bit register defines the end location of the HS2 signal. The content of this register is a 2’s  
complement number which is used as an offset to the default HS2E location. The resolution for  
this register is 1 CK clock.  
Modified on May/04/2000  
PAGE 56 OF 96  
ELECTRONICS  
S5D0127X01 Data Sheet  
MULTIMEDIA VIDEO  
AGC Control  
bit 5 bit 4  
AGC[7:0]  
Index  
0x0B  
Mnemonic  
AGC  
bit 7  
bit 6  
bit 3  
bit 2  
bit 1  
bit 0  
AGC[7:0]  
This register is used to manually set AGC when AGCFRZ is set to “1”. The content in the  
register is unsigned.  
Chroma Demodulation Control  
Index  
0Dh  
Mnemonic  
CDEM  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
OUTHIZ  
FSEC  
0
CIFCMP[1:0]  
0
0
0
CIFCMP[1:0]  
IF compensation for the chroma path.  
0
1
2
3
No compensation.*  
Upper chroma side band is 1 dB higher than lower side band.  
Upper chroma side band is 3 dB higher than lower side band.  
Upper chroma side band is 6 dB higher than lower side band.  
FSEC  
Chroma frequency demodulation filter select for SECAM video.  
0
1
Select SECAM chroma frequency demodulation filter if SECAM video is detected.*  
Always use SECAM chroma frequency demodulation filter.  
OUTHIZ  
This is the software output three-state control bit. If this bit is set to a “1”, or the OEN pin is at a  
logic LOW level, output pins can be selectively put in the high impedance state using the  
additional software control bits OENC[1:0].  
0
1
This is default setting.*  
This will enable the output pins to be three-stated regardless the state of the OEN  
pin.  
Modified on May/04/2000  
PAGE 57 OF 96  
ELECTRONICS  
S5D0127X01 Data Sheet  
MULTIMEDIA VIDEO  
Port A and B Control  
Index  
0Eh  
Mnemonic  
PORTAB  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
DIRB  
DATAB[2:0]  
DIRA  
DATAA[2:0]  
DATAA[2:0]  
Port A data select. For internal gate signal locations.  
0
1
2
3
4
Port A is disconnected from the internal signal path.*  
Port A is connected to the BPG (back porch gate) signal.  
Port A is connected to the SYG (sync tip gate) signal.  
Port A is connected to the CBG (color burst gate) signal.  
Port A is connected to the CBGW (color burst gate wide) signal. The CBGW is high  
for the entire color burst period.  
5
6
7
Port A is connected to the SLICE (mid way of the sync tip) signal.  
Port A is connected to the VBI (vertical blanking interval) signal.  
Port A is connect to the GPPORT bit.  
DIRA  
Port A direction control.  
0
Port A is configured as input. The input is connected directly to the signal path  
selected by DATAA[2:0]. The internally generated gate signal is disconnected from  
the signal path.*  
1
Port A is an output and is driven by the internally generated signal as selected by  
DATAA[2:0].  
DATAB[2:0]  
Port B data select. For internal gate signal locations.  
0
1
2
3
4
Port B is disconnected from the internal signal path.*  
Port B is connected to the SCH (sync tip to color burst phase) signal.  
Port B is connected to the FH2 (twice per line pulses) signal.  
Port B is connected to the FS_PULSE (falling edge of the sync tip) signal.  
Port B is connected to the VBI_CVBS (VBI raw ADC) signal. This signal is high for  
those lines that output data directly from the ADC (not YUV or RGB data).  
5
Port B is connected to the VBI_PROC (VBI sliced) signal. This signal is high for  
those video lines that output sliced VBI data.  
6
7
Port B is connected to the VS (Vertical Sync) signal.  
Port B is configured as the RTCO (Real Time Control Output). This single pin serial  
interface transmits phase and frequency information to a video encoder so that it  
may operate directly from the S5D0127X01 output clock.  
DIRB  
Port B direction control.  
0
Port B is configured as input. The input is connected directly to the signal path  
selected by DATAB[2:0]. The internally generated gate signal is disconnected from  
the signal path.*  
1
Port B is an output and is driven by the internally generated signal as selected by  
DATAB[2:0].  
Modified on May/04/2000  
PAGE 58 OF 96  
ELECTRONICS  
S5D0127X01 Data Sheet  
MULTIMEDIA VIDEO  
Luma Control Register  
Index  
0x0F  
Mnemonic  
LUMA  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
0
UNIT  
RGBH  
PED  
HYBWR  
CTRAP  
HYPK[1:0]  
HYPK[1:0]  
Luminance horizontal peaking control around 3 MHz.  
0
1
2
3
Less than nominal peaking.*  
Nominal peaking.  
Increased peaking.  
Maximum peaking.  
CTRAP  
HYBWR  
PED  
Chroma trap (notch filter) in the luma path.  
0
1
No chroma trap. This mode is recommended for S-video or component video input.*  
Chroma trap is enabled.  
Luminance horizontal bandwidth reduction control.  
0
1
Full bandwidth.*  
Reduced bandwidth.  
Enable gain correction for 7.5 blank-to-black setup (pedestal).  
0
1
No pedestal. 0% = Y code 16. 100% = Y code 235.*  
Gain adjusted for 7.5% blank-to-black setup (pedestal). 7.5% = Y code 16. 7.5% -  
100% input produce Y code 16 - 235.  
RGBH  
UNIT  
High gain to produce full range Y for 0% (or 7.5% if PED = 1) to 100% input.  
0
1
Black (0% or 7.5%) to peak white(100%) input produce Y code 16 to 235.*.  
Black (0% or 7.5%) to peak white(100%) input produce Y code 0 to 255.  
When PED and RGBH are both set to a “1”, setting this bit to a “1” produces a unit gain for  
CCIR 601 digital input (INPSL[1:0] = 1).  
0
1
Luma DC gain is controlled by PED and RGBH as described for each bit.*  
Luma DC gain is unity for CCIR 601 digital input.  
Modified on May/04/2000  
PAGE 59 OF 96  
ELECTRONICS  
S5D0127X01 Data Sheet  
MULTIMEDIA VIDEO  
Contrast Control  
bit 5 bit 4  
CON[7:0]  
Index  
0x10  
Mnemonic  
CON  
bit 7  
bit 6  
bit 3  
bit 2  
bit 1  
bit 0  
CON[7:0]  
This 8-bit register contains a 2’s compliment number for contrast control.  
Brightness Control  
Index  
0x11  
Mnemonic  
BRT  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
BRT[7:0]  
BRT[7:0]  
Brightness control register. The number contained in the register is 2’s compliment.  
Modified on May/04/2000  
PAGE 60 OF 96  
ELECTRONICS  
S5D0127X01 Data Sheet  
MULTIMEDIA VIDEO  
Chroma Control Register A  
Index  
0x12  
Mnemonic  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
CHROMA ACCFRZ  
PALM  
PALN  
CBW  
CORE[1:0]  
CKILL[1:0]  
CKILL[1:0]  
CORE[1:0]  
Color kill.  
0
Auto detect mode. If color burst is too low or no color burst, chroma data is forced to  
code 128.*  
2
3
Chroma is always ON.  
Chroma data is always forced to code 128.  
Chroma data coring.  
0
1
2
3
No coring.  
Chroma data within the range 128+/-1, inclusive, will be force to 128.  
Chroma data within the range 128+/-3, inclusive, will be force to 128.*  
Chroma data within the range 128+/-7, inclusive, will be force to 128.  
CBW  
Chroma bandwidth control.  
0
1
Chroma 3 dB bandwidth is 850 kHz.*  
Chroma 3 dB bandwidth is 550 kHz.  
PALN  
Select color tracking for PAL-N, or NTSC-N when input field rate is 50 Hz and Fsc is 3.58 MHz.  
0
1
Select NTSC-N.*  
Select PAL-N.  
PALM  
ACCFRZ  
Select color tracking for PAL-M or NTSC-M when input field rate is 60 Hz.  
0
1
Select color tracking for NTSC-M.*  
Select color tracking for PAL-M.  
Chroma gain tracking freeze control.  
0
1
Chroma gain tracks the input. Color saturation can be adjusted with SAT.*  
Chroma gain freezes at the current saturation level.  
Modified on May/04/2000  
PAGE 61 OF 96  
ELECTRONICS  
S5D0127X01 Data Sheet  
MULTIMEDIA VIDEO  
Chroma Control Register B  
bit 5 bit 4  
CDLY[3:0]  
Index  
0x13  
Mnemonic  
CHROMB  
bit 7  
bit 6  
bit 3  
bit 2  
bit 1  
bit 0  
SCHCMP[3:0]  
SCHCMP[3:0]  
CDLY[3:0]  
Phase constant compare value for color burst phase relative to sync tip. Each step is 22.5  
degrees with the value of 0 equal to 0 degree.  
Chroma path group delay relative to the luma path (in unit of CK):  
0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F
No delay.*  
-0.5  
1
0.5  
2
1.5  
3
2.5  
-4  
-4.5  
-3  
-3.5  
-2  
-2.5  
-1  
-1.5  
Modified on May/04/2000  
PAGE 62 OF 96  
ELECTRONICS  
S5D0127X01 Data Sheet  
MULTIMEDIA VIDEO  
Chroma Demodulation Control and Status  
bit 6 bit 5 bit 4 bit 3  
FSCDET SECDET CDMLPF CTRACK  
Index  
0x14  
Mnemonic  
DEMOD  
bit 7  
bit 2  
bit 1  
bit 0  
MNFSC[1:0]  
MNSECAM[1:0]  
MNSECAM[1:0] Enable manual SECAM input detection.  
0
2
3
Detection of SECAM input is automatic.*  
Force the chip to assume input is not SECAM.  
Force the chip to assume input is SECAM.  
MNFSC[1:0]  
Enable manual Fsc detection.  
0
2
3
Detection of Fsc frequency is automatic.*  
Force chip to assume input Fsc is 4.43 MHz or 4.286 MHz.  
Force chip to assume input Fsc is 3.58 MHz.  
CTRACK  
CDMLPF  
SECDET  
FSCDET  
Chroma frequency tracking mode.  
0
1
Chroma frequency tracking is based on the field rate and Fsc.*  
Chroma frequency tracking is based on field rate only.  
Bypass the LPF in the chroma demodulator.  
0
1
Chroma data pass through the LPF for color demodulation.*  
Chroma data bypass the LPF. This setting is used for component video input.  
SECAM detection (read only).  
0
1
Chip did not detect SECAM input.  
Chip detected SECAM input.  
Color subcarrier detection (read only).  
0
1
Chip detected 4.43 MHz or 4.286 MHz Fsc.  
Chip detected 3.58 MHz Fsc.  
Modified on May/04/2000  
PAGE 63 OF 96  
ELECTRONICS  
S5D0127X01 Data Sheet  
MULTIMEDIA VIDEO  
Color Saturation Control  
bit 5 bit 4  
SAT[7:0]  
Index  
0x15  
Mnemonic  
SAT  
bit 7  
bit 6  
bit 3  
bit 2  
bit 1  
bit 0  
SAT[7:0]  
Color saturation control register. Register content is in 2’s compliment if TSTCGN=0. 0 value  
corresponds to nominal saturation.  
Hue Control  
Index  
0x16  
Mnemonic  
HUE  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
HUE[7:0]  
HUE[7:0]  
Hue control register. The register content is in 2’s compliment format. It covers the range from  
-180° to +178.59° degree. The resolution is 1.41°/LSB.  
Modified on May/04/2000  
PAGE 64 OF 96  
ELECTRONICS  
S5D0127X01 Data Sheet  
MULTIMEDIA VIDEO  
Vertical Processing Control A  
Index  
0x17  
Mnemonic  
VERTIA  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
MNYCMB  
YCMBCO[2:0]  
VRT2X  
VCTRL[2:0]  
VCTRL[2:0]  
Luminance vertical filter control.  
0
1
2
3
4
Scaler uses LPF path, comb uses HPF.*  
Scaler uses full bandwidth, comb is disabled.  
Scaler is disabled, comb uses full bandwidth.  
Scaler uses LPF, comb is disabled.  
Scaler is disabled, comb uses HPF.  
VRT2X  
3/5-tap vertical scaler filter select.  
0
1
Select 3-tap vertical scaler filter.*  
Select 5-tap vertical scaler filter. This option can be used only if horizontally cropped  
line is less than or equal to 384 pixels.  
YCMBCO[2:0]  
Luma comb filter coefficients selection when the MNYCMB is set to “1”.  
0
1
2
3
4
5
6
7
[1/4 1/2 1/4].*  
[3/8 1/2 1/8].  
[1/2 1/2 0].  
[1 0 0].  
[0 1 0].  
[1/2 0 1/2].  
[0 1/2 1/2].  
[1/8 1/2 3/8].  
MNYCMB  
Select between auto and manual luma comb filter coefficients.  
0
Luma comb filter coefficients are automatically selected based on input video  
standard.*  
1
Luma comb filter coefficients are selected with YCMBCO[2:0].  
Modified on May/04/2000  
PAGE 65 OF 96  
ELECTRONICS  
S5D0127X01 Data Sheet  
MULTIMEDIA VIDEO  
Vertical Processing Control B  
Index  
0x18  
Mnemonic  
VERTIB  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
HYLPF[2:0]  
HYBWI  
HYDEC  
VSCLEN[1:0]  
0
VSCLEN[1:0]  
Vertical scaling enable.  
0
1
2
3
Vertical scaling is enabled.*  
Vertical scaling is disabled.  
Vertical scaling is disabled. Video is 1-line delayed.  
Vertical scaling is disabled. Video is 2-line delayed.  
HYDEC  
Luma path decimation filter enable.  
0
1
Luma path decimation is enabled.*  
Luma path decimation is disabled.  
HYBWI  
Luma path decimation filter bandwidth select.  
0
1
Normal bandwidth.*  
Bandwidth is 1 MHz higher.  
HYLPF[2:0]  
Horizontal luma LPF bandwidth control.  
0
1
2
3
4
Full bandwidth.*  
4.5 MHz bandwidth.  
3.5 MHz bandwidth.  
2.5 MHz bandwidth.  
1.5 MHz bandwidth.  
Modified on May/04/2000  
PAGE 66 OF 96  
ELECTRONICS  
S5D0127X01 Data Sheet  
MULTIMEDIA VIDEO  
Vertical Processing Control C  
Index  
0x19  
Mnemonic  
VERTIC  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
MNCCMB  
CCMBCO[2:0]  
ACMBEN VYBW  
EVAVEV EVAVOD  
EVAVOD  
EVAVEV  
Enable VAV signal output during ODD field.  
0
1
VAV signal is disabled (always inactive) during ODD field.  
VAV signal is enabled during ODD field.*  
Enable VAV signal output during EVEN field.  
0
1
VAV signal is disabled (always inactive) during EVEN field.  
VAV signal is enabled during EVEN field.*  
VYBW  
Luma vertical bandwidth control.  
0
1
Full bandwidth.*  
Reduced bandwidth.  
ACMBEN  
CCMBCO[2:0]  
Enable luma active comb for NTSC.  
0
1
Active comb is disabled.*  
Active comb is enabled.  
Manual chorma comb filter coefficients select.  
0
1
2
3
4
5
6
7
Select the coefficient set [1/2 1/2 0] (if VRT2X = 0).*  
Select the coefficient set [1/4 1/2 1/4] (if VRT2X = 0).  
Select the coefficient set [0 1/2 1/2 0 0] (if VRT2X = 1).  
Select the coefficient set [0 1/4 1/2 1/4 0] (if VRT2X = 1).  
Select the coefficient set [1 0 0].  
Select the coefficient set [0 1 0].  
Select the coefficient set [0 0 1].  
No output (disabled).  
MNCCMB  
Chroma comb filter coefficients are selected automatically or manually.  
0
Filter coefficients are automatically selected based on the selected video input  
standard. SECAM must use this value.*  
1
Filter coefficients are selected manually with CCMBCO[2:0].  
Modified on May/04/2000  
PAGE 67 OF 96  
ELECTRONICS  
S5D0127X01 Data Sheet  
MULTIMEDIA VIDEO  
Horizontal Scaling Ratio  
Index  
Mnemonic  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
0x1A  
0x1B  
HSCLL  
HSCLH  
HSCL[6:0]  
CMBMOD  
HSCL[14:7]  
CMBMOD  
This bit controls when comb is enabled internally.  
0
1
Comb is enabled by the internal signal COMB_EN.*  
Comb is enabled when VAV is active.  
15  
HSCL[14:0]  
The 15-bit register defines a horizontal scaling ratio of HSCL[14:0]/2 . Any change to this  
value will become effective during the next vertical sync.  
Vertical Scaling Ratio  
Index  
Mnemonic  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
0x1C  
0x1D  
VSCLL  
VSCLH  
VSCL[5:0]  
ACMBCO ACMBRE  
VSCL[13:6]  
ACMBRE  
ACMBCO  
VSCL[13:0]  
Active comb filter threshold select.  
0
1
High threshold.*  
Low threshold.  
Active comb filter coefficient set select.  
0
1
Use the set of coefficients for 100% comb.*  
Use the set of coefficients for 75% comb.  
14  
The 14-bit register defines a vertical scaling ratio of VSCL[13:0]/2 . Any change to this value  
will become effective during the next vertical sync.  
Modified on May/04/2000  
PAGE 68 OF 96  
ELECTRONICS  
S5D0127X01 Data Sheet  
MULTIMEDIA VIDEO  
Output Control A  
bit 5 bit 4  
OENC[1:0]  
Index  
0x1E  
Mnemonic  
OFMTA  
bit 7  
bit 6  
bit 3  
bit 2  
bit 1  
bit 0  
GAMEN[1:0]  
OFMT[3:0]  
OFMT[3:0]  
Digital video output format select. 16 and 24 bit data are output at CK2 clock rate. 8 bit data are  
output at CK clock rate.  
0
1
2
3
4
5
6
7
8
16-bit YCbCr 4:2:2 output on the Y and C output ports.*  
12-bit YCbCr 4:1:1 output on the Y and C output ports.  
8-bit YCbCr 4:2:2 without embedded timing reference codes.  
8-bit YCbCr 4:2:2 with embedded timing reference codes.  
24-bit YCbCr 4:4:4.  
16-bit RGB 565.  
24-bit RGB 888 with linear bit ordering.  
24-bit RGB 888, bit ordering is an extension of the 16-bit RGB 565 format.  
Same as mode 2 with the additional of 8-bit YCbCr 4:2:2 data output on the EXV  
port. While the Y port can be scaled down, the EXV port will always be a full size  
picture.  
9
Same as 8 with the addition of SAV and EAV codes.  
A
output Y ADC data all the time (including syncs) on the Y port, C port is non-scaled  
656 data with no timing codes.  
B
Output Y ADC data all the time (including syncs) on the Y port,  
Output C ADC data all the time (including syncs) on the C port,  
OENC[1:0]  
When either the OEN pin is low or the OUTHIZ is a “1”, these two bits will determine which  
output pins are three-stated.  
0
1
All video pins are three-stated.  
All video pins, plus HAV, VAV, EVAV, EHAV, PID, ODD, HS1, HS2, VS, and SCH are  
three-stated.  
2
3
All pins listed above, plus CK and CK2 are three-stated.  
Always output data.  
GAMEN[1:0]  
Gamma correction enable.  
0
1
2
3
No gamma correction.*  
Gamma correction is applied to Y/G data.  
Gamma correction is applied to U/B and V/R data.  
Gamma correction is applied to Y/G, U/B, and V/R data.  
Modified on May/04/2000  
PAGE 69 OF 96  
ELECTRONICS  
S5D0127X01 Data Sheet  
MULTIMEDIA VIDEO  
Output Control B  
Index  
0x1F  
Mnemonic  
OFMTB  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
VSVAV  
EVAND[1:0]  
EVHS1  
EVHAV EVEHAV EVAVG EVANDL  
EVAVG  
EVEHAV  
EVHAV  
EVHS1  
Gate EVAV with VAV before sending to output.  
0
1
EVAV is not gated with VAV. EVAV may be active outside of active VAV region.*  
EVAV is gated with VAV. EVAV can be active only when VAV is active.  
Additional qualifier for EHAV.  
0
1
No additional qualifier.*  
EHAV uses qualifier from EVAND[1:0].  
Additional qualifier for HAV.  
0
1
No additional qualifier.*  
HAV uses qualifier from EVAND[1:0].  
Additional qualifier for HS1.  
0
1
No additional qualifier.*  
HS1 uses qualifier from EVAND[1:0].  
EVAND[1:0],  
EVANDL  
Qualifier signal that defines active video lines. This control enables 656 codes, HAV, EHAV and  
HS1.  
EVANDL is the EVAND LSB. These three bits are grouped together and explained below  
0
1
2
Qualifier is active for all lines.*  
Qualifier is EVAV. -- Any line during vertical active or blank will be output.  
Qualifier is EVAV and VAV -- All lines during vertical blank (VAV==0) and all lines  
when EVAV is active during vertical active will be output.  
3
4
Qualifier is VAV -- All lines during vertical active will be output.  
Qualifier is EVAV and VAV -- All lines that EVAV is active during vertical active will  
be output.  
5
6
7
Qualifier is EVAV, VAV and VBI_RAW_EN -- All lines as in option 4 plus the VBI  
RAW ADC lines.  
Qualifier is EVAV, VAV, VBI_RAW_EN and VBI_SLC_EN-- All lines as in option 5  
plus the VBI Sliced Lines.  
All VBI sliced and VBI RAW Lines only.  
VSVAV  
Enable VAV to be output to VS.  
0
1
Output normal VS.*  
VS has the same output as VAV  
Modified on May/04/2000  
PAGE 70 OF 96  
ELECTRONICS  
S5D0127X01 Data Sheet  
MULTIMEDIA VIDEO  
VBI Decoder Control  
bit 5 bit 4  
VYFMT[1:0] VBINSRT ODDEN EVENEN  
Index  
0x20  
Mnemonic  
VBICTL  
bit 7  
bit 6  
bit 3  
bit 2  
bit 1  
bit 0  
VBCVBS  
ODDOS[1:0]  
ODDOS[1:0]  
Line offset for ODD field. See also VBIL[15:0].  
0
1
2
3
ODD field line offset is -1 compared to EVEN field.*  
No offset.  
ODD field line offset is 1 compared to EVEN field.  
ODD field line offset is 2 compared to EVEN field.  
EVENEN  
ODDEN  
VBI data processing for EVEN field.  
0
1
No processing.*  
VBI processing is enabled for EVEN field.  
VBI data processing for ODD field.  
0
1
No processing.*  
VBI processing is enabled for ODD field.  
VBINSRT  
VYFMT[1:0]  
Enable VBI data to be output on the Y bus.  
0
1
VBI data is not output on the Y bus.*  
VBI data is output on the Y bus.  
When VBINSRT = 1, these bits control how VBI data are output on the Y bus.  
0
1
2
3
1 bit on Y7 per CK2 clock.*  
1 bit on Y7 plus a “1” on Y3 per CK2 clock.  
4 bits on Y7..Y4, with first bit on Y7, last bit on Y4, plus a “1” on Y3 per CK2 clock.  
8 bits on Y7..Y0, with first bit on Y7, last bit on Y0, per CK2 clock.  
VBCVBS  
Enable digitized CVBS data from ADC to be output for the selected VBI line instead of sliced  
VBI data. The new VBIMID bit allows simultaneous output (line by line bases) of sliced data  
and raw ADC data.  
0
1
Output sliced VBI data for any line whose VBIL value ~= 0.*  
Output digitized CVBS data for any line whose VBIL value ~=0.  
Modified on May/04/2000  
PAGE 71 OF 96  
ELECTRONICS  
S5D0127X01 Data Sheet  
MULTIMEDIA VIDEO  
First Decoded Close-Caption Data Byte (Read Only)  
Index  
0x21  
Mnemonic  
CCDAT1  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
b0  
b1  
b2  
b3  
b4  
b5  
b6  
P1  
CCDAT1  
This byte contains the first byte of the decoded close-caption data as defined in EIA-608. In  
order for this register to receive the CC data, VBINSRT must be programmed to a “1”, and  
VYFMT[1:0] must be programmed with the value 3. The same applies to CCDAT2. For normal  
NTSC Closed Caption decoding, ODDEN should be set to a “1”, VBIL12 should be  
programmed with the value 1.  
Second Decoded Close-Caption Data Byte (Read Only)  
Index  
0x22  
Mnemonic  
CCDAT2  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
b0  
b1  
b2  
b3  
b4  
b5  
b6  
P2  
CCDAT2  
This byte contains the second byte of the decoded close-caption data as defined in EIA-608.  
VBI Data Decoding  
Index  
Mnemonic  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
0x23  
0x24  
0x25  
0x26  
VBIL30  
VBIL74  
VBIL3  
VBIL7  
VBIL2  
VBIL6  
VBIL1  
VBIL5  
VBIL9  
VBIL13  
VBIL0  
VBIL4  
VBIL8  
VBIL118  
VBIL1512  
VBIL11  
VBIL15  
VBIL10  
VBIL14  
VBIL12  
VBIL0..VBLI15  
These 16 2-bit numbers select how the chip should decode the VBI data for each VBI line. For  
60 Hz video, VBIL1 through VBIL15 correspond to lines 10 through 24 in the ODD field, and  
lines 273 through 286 in the EVEN filed for NTSC (refer to NTSC line numbering convention).  
For 50 Hz video, VBIL1 corresponds to line 7 in the ODD field, and line 320 in the EVEN field.  
VBIL0 is used for all other lines not covered by VBIL1 through VBIL15.  
0
1
2
3
Decode normal video.*  
Decode Closed Caption data.  
Decode Teletext data.  
Decode WSS data.  
Modified on May/04/2000  
PAGE 72 OF 96  
ELECTRONICS  
S5D0127X01 Data Sheet  
MULTIMEDIA VIDEO  
Teletext Frame Alignment Pattern  
bit 6 bit 5 bit 4 bit 3  
TTFRAM[7:0]  
Index  
0x27  
Mnemonic  
TTFRAM  
bit 7  
bit 2  
bit 1  
bit 0  
TTFRAM[7:0]  
User programmable Teletext frame alignment pattern.  
UV Offset Adjustment  
Index  
Mnemonic  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
UOFFST[5:4]  
VOFFST[3:0]  
bit 2  
bit 1  
bit 0  
0x29  
0x2A  
UVOFFH  
UVOFFL  
TSTCLC TSTCGN  
0
TSTCFR  
VOFFST[5:4]  
UOFFST[3:0]  
VOFFST[5:0],  
UOFFST[5:0]  
These two 6-bit 2’s compliment values are for offset adjustment to the U and V components of  
the chroma data. The resolution is 1/4 LSB of the 8-bit U and V.  
TSTCFR  
TSTCGN  
TSTCLC  
Chroma frequency tracking control.  
0
1
Chroma frequency tracking is enabled.*  
Chroma frequency tracking is open loop.  
Chroma gain control.  
0
1
Chroma gain tracks input.*  
Chroma gain is controlled by SAT only.  
Cloche filter bypass.  
0
1
Cloche filter is enabled for SECAM input.*  
DC bypass of the cloche filter.  
Modified on May/04/2000  
PAGE 73 OF 96  
ELECTRONICS  
S5D0127X01 Data Sheet  
MULTIMEDIA VIDEO  
U Component Gain Adjustment  
bit 6 bit 5 bit 4 bit 3  
UGAIN[7:0]  
Index  
0x2B  
Mnemonic  
UGAIN  
bit 7  
bit 2  
bit 2  
bit 2  
bit 1  
bit 1  
bit 1  
bit 0  
bit 0  
bit 0  
UGAIN[7:0]  
U component gain adjustment. The nominal value is 0.  
V Component Gain Adjustment  
Index  
0x2C  
Mnemonic  
VGAIN  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
VGAIN[7:0]  
VGAIN[7:0]  
V component gain adjustment. The nominal value is 0.  
VAV Begin  
Index  
0x2D  
Mnemonic  
VAVB  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
VAVB[6:1]  
VAVOD0 VAVEV0  
VAVEV0  
VAVOD0  
VAVB[6:1]  
The LSB for VAVB and VAVE for the even field.  
The LSB for VAVB and VAVE for the odd field.  
The 6 MSB’s of a 7-bit unsigned number which defines the start of VAV. The value “0”  
corresponds to line 4.  
VAV End  
Index  
0x2E  
Mnemonic  
VAVE  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
VAVE[8:1]  
VAVE[8:1]  
The 8 MSB’s of a 9-bit unsigned number which defines the end of VAV. The value “0”  
corresponds to line 4.  
Modified on May/04/2000  
PAGE 74 OF 96  
ELECTRONICS  
S5D0127X01 Data Sheet  
MULTIMEDIA VIDEO  
Chroma Tracking Control Register  
Index  
0x2F  
Mnemonic  
CTRACK  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
0
0
DMCTL[1:0]  
CGTC[1:0]  
CFTC[1:0]  
CFTC[1:0]  
CGTC[1:0]  
DMCTL[1:0]  
Chroma frequency tracking time constant.  
0
1
2
3
Slower.*  
Slow.  
Fast.  
Faster.  
Chroma gain tracking time constant.  
0
1
2
3
Slower.*  
Slow.  
Fast.  
Faster.  
Chroma demodulation bypass mode.  
0
1
2
Chroma demodulation is enabled.*  
Chroma demodulation is bypassed for digital YCbCr input.  
Chroma demodulation is bypassed for analog YCbCr input. Cb path is phase  
delayed by one half of CK2 clock period.  
3
Chroma demodulation is bypassed for analog YCbCr input. Cr path is phase  
delayed by one half of CK2 clock period.  
Modified on May/04/2000  
PAGE 75 OF 96  
ELECTRONICS  
S5D0127X01 Data Sheet  
MULTIMEDIA VIDEO  
Timing Signal Polarity Control  
Index  
0x30  
Mnemonic  
POLCTL  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
EVAVPL  
VSPL  
ODDPL  
HAVPL EHAVPL  
HS2PL  
VAVPL  
HS1PL  
HS1PL  
VAVPL  
HS2PL  
EHAVPL  
HAVPL  
ODDPL  
VSPL  
HS1 polarity.  
0
1
Active high.*  
Active low.  
VAV polarity.  
0
1
Active high.*  
Active low.  
HS2 polarity.  
0
1
Active high.*  
Active low.*  
EHAV polarity.  
0
1
Active high.*  
Active low.  
HAV polarity.  
0
1
Active high.*  
Active low.  
ODD polarity (this also affects the F bit in 656 code).  
0
1
Active high.*  
Active low.  
VS polarity (this also affect the V bit in 656 code).  
0
1
Active high.*  
Active low.  
EVAVPL  
EVAV polarity.  
0
1
Active high.*  
Active low.  
Modified on May/04/2000  
PAGE 76 OF 96  
ELECTRONICS  
S5D0127X01 Data Sheet  
MULTIMEDIA VIDEO  
Reference Code Insertion Control  
Index  
0x31  
Mnemonic  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
REFCOD YCRANG  
0
0
0
0
0
0
0
YCRANG  
Digital video output range control.  
0
1
Y and C ranges are limited to 1 - 254; R, G, and B ranges are limited to 1 - 254.*  
Y range is limited to 16 - 235; C range is limited to 16 - 240; R, G, and B ranges are  
limited to 16 - 240.  
Invalid Y Code  
Index  
0x32  
Mnemonic  
INVALY  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
INVALY[7:0]  
INVALY[7:0]  
User programmed code to be output for Y data when HAV is active but EHAV is inactive.  
Invalid U Code  
Index  
0x33  
Mnemonic  
INVALU  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
INVALU[7:0]  
INVALU[7:0]  
User programmed code to be output for U data when HAV is active but EHAV is inactive.  
Invalid V Code  
Index  
0x34  
Mnemonic  
INVALV  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
INVALV[7:0]  
INVALV[7:0]  
User programmed code to be output for V data when HAV is active but EHAV is inactive.  
Modified on May/04/2000  
PAGE 77 OF 96  
ELECTRONICS  
S5D0127X01 Data Sheet  
MULTIMEDIA VIDEO  
Unused Y Code  
bit 5 bit 4  
UNUSEY[7:0]  
Index  
0x35  
Mnemonic  
UNUSEY  
bit 7  
bit 6  
bit 3  
bit 2  
bit 1  
bit 1  
bit 1  
bit 0  
bit 0  
bit 0  
UNUSEY[7:0]  
User programmed code to be output for Y data when HAV is inactive.  
Unused U Code  
Index  
0x36  
Mnemonic  
UNUSEU  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
UNUSEU[7:0]  
UNUSEU[7:0]  
User programmed code to be output for U data when HAV is inactive.  
Unused V Code  
Index  
0x37  
Mnemonic  
UNUSEV  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
UNUSEV[7:0]  
UNUSEV[7:0]  
User programmed code to be output for V data when HAV is inactive.  
Modified on May/04/2000  
PAGE 78 OF 96  
ELECTRONICS  
S5D0127X01 Data Sheet  
MULTIMEDIA VIDEO  
Extra Control Bits for the S5D0127X01 Version  
Index  
0x38  
Mnemonic  
EXCTRL  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
0
ENINCST  
0
-
AUCPWD  
0
0
CLEVEL  
CLEVEL  
Programmable CKILL burst level select bit.  
0
1
Burst peak level is 11 IRE.*  
Burst peak level is 5.5 IRE.  
AUCPWD  
ENINCST  
Auto chroma ADC power down mode enabled when appropriate input format is selected.  
0
1
Chroma ADC powered down only during entire chip power down mode.*  
Chroma ADC is power downed when CVBS input or case ‘0’ condition.  
Scaler enable control bit during VBI.  
0
1
Scaler on during VBI interval (defined by VAV).*  
Scaler off during VBI interval.  
Modified on May/04/2000  
PAGE 79 OF 96  
ELECTRONICS  
S5D0127X01 Data Sheet  
MULTIMEDIA VIDEO  
Tracking Configuration Controls A  
bit 6 bit 5 bit 4 bit 3  
STCTRL MAC_DET VCR_DET VCR_LEV[1:0]  
Index  
0x39  
Mnemonic  
TRACKA  
bit 7  
bit 2  
bit 1  
bit 0  
ATCTRAP VBCTRAP AGCLSB  
AGCLSB  
AGC LSB for control of the 9 bit AGC gain value. This bit only write to AGC when AGCFRZ is  
1.  
0
1
Write ‘0’ to AGC 9 bit control LSB if AGCFRZ = 1.*  
Write ‘1’ to AGC 9 bit control LSB if AGCFRZ = 1.  
VBCTRAP  
ATCTRAP  
VCR_LEV  
Chroma trap enabled during the VBI.  
0
1
Chroma trap is controlled by CTRAP only.*  
Chroma trap enabled during VBI.  
Auto Chroma Trap on luma path when VCR input is detected.  
0
1
Chroma trap is controlled by CTRAP only.*  
If VCR type input is detected, then CTRAP is enabled.  
Set the Fh variation from nominal for detection of VCR type input.  
0
1
2
3
50 PPM.*  
100 PPM.  
200 PPM.  
400 PPM.  
VCR_DET  
MAC_DET  
STCTRL  
Status bit. Detect input that is not SCH locked such as consumer type VCR (Read only).  
0
1
SCH locked video.  
Color burst not locked to Fh (VCR).  
Status bit. Macrovision Encoded Data detected as input video source (Read only).  
0
1
Standard video detected.  
Macrovision Encoded data detected.  
State machine transition control.  
0
1
Normal state machine transitions.*  
Steady state sync level removed as condition for lock.  
Modified on May/04/2000  
PAGE 80 OF 96  
ELECTRONICS  
S5D0127X01 Data Sheet  
MULTIMEDIA VIDEO  
VBI Control Register B  
bit 5 bit 4  
TT_SYS[1:0] VBIMID NEW_CC CC_OVFL YOFFENB COFFENB  
Index  
0x3A  
Mnemonic  
bit 7  
bit 6  
bit 3  
bit 2  
bit 1  
bit 0  
VBICTLB VBISWAP  
COFFENB  
YOFFENB  
CC_OVFL  
Disable control for the C-path clamp control.  
0
1
C-path clamp works as normal.*  
C-path clamp disabled.  
Disable control for the Y-path clamp control.*  
0
1
Y-path clamp works as normal.*  
Y-path clamp disabled.  
Defines when the current CCDAT1,2 data has over written previous data that was not read.  
(Read Only)  
0
1
Current data has not generated an overflow condition.  
Current data as written over data that was not read.  
NEW_CC  
Defines when new Closed Caption data is ready for reading from the CCDAT1,2 bytes. (Read  
Only)  
0
1
Current data in CCDAT1,2 has already been read.  
Current data in CCDAT1,2 is new.  
VBIMID  
TT_SYS  
Changes function of WSS enable (per line bases during VBI) to a raw CVBS enable.  
0
1
When VBIL(0-15) = 3, current line is enabled for WSS slicing.*  
When VBIL(0-15) = 3, current line is enabled for raw ADC output.  
Select Teletext input system when auto detect is not possible.  
0
1
2
3
Auto Teletext Select.*  
Teletext System B.  
Teletext System C.  
Teletext System D.  
VBISWAP  
Reverse the bit order for data output from the closed caption or Teletext slicer.  
0
1
Same as S5D0124D01 -- First bit sliced is located in MSB position.*  
First bit sliced (in time) is located in LSB position.  
Modified on May/04/2000  
PAGE 81 OF 96  
ELECTRONICS  
S5D0127X01 Data Sheet  
MULTIMEDIA VIDEO  
Tracking Configuration Controls B  
Index  
0x3B  
Mnemonic  
TRACKB  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
ALT656  
VBI_PH  
VBI_FR PH_CTRL VNOISCT  
AGC_LPG[1:0]  
AGC_LKG  
AGC_LKG  
AGC_LPG  
AGC gain tracking loop time constant for initial tracking mode.  
0
1
Same as steady state time constant.*  
2X faster than selected steady state time constant.  
AGC gain steady state tracking loop time constant.  
0
1
2
3
Fastest.*  
Fast.  
Slow.  
Slowest.  
VNOISCT  
PH_CTRL  
VBI_FR  
Vertical sync noise control enable.  
0
1
Vertical sync adjusts with all sync phase changes.*  
Vertical sync large phase errors must occur for 4 lines to activate a phase change.  
Controls phase detector response.  
0
1
Syncs after the “0” point reference have priority.*  
Syncs prior to “0” point reference have priority.  
Disables frequency compensation for VCR head switch lines only.  
0
1
Frequency tracking independent of this control.*  
Frequency tracking disabled for VCR head switch lines.  
VBI_PH  
ALT656  
Enables phase compensation for VCR head switch lines only.  
0
1
Phase tracking independent of this control.*  
Phase tracking enabled for VCR head switch lines only.  
Alternate 656 Vertical blank location for 50 Hz video.  
0
1
Vertical blank size per the ITU 656 Specification (ends at 656 digital line 23).*  
Vertical blank size same as 60 Hz (ends at 656 digital line (50 Hz) 6).  
Modified on May/04/2000  
PAGE 82 OF 96  
ELECTRONICS  
S5D0127X01 Data Sheet  
MULTIMEDIA VIDEO  
RTC Genlock output signal control  
Index  
0x3C  
Mnemonic  
RTC  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
RTC_DTO RTC_PID  
0
TDMOD  
0
0
0
0
TDMOD  
Test bit for chroma demodulation mode.  
0
1
Normal operation.*  
Test mode.  
RTC_PID  
RTC_DTO  
Polarity control for PAL ID transferred within the RTC data stream.  
0
1
Same polarity as default PID pin.*  
Inverted polarity.  
Enables a DTO reset inside the S5D0127X01 and sends a DTO reset within the RTC data  
stream. Function is activated on the rising edge of RTC_DTO.  
0
1
Function disabled.*  
Function enabled one time when set to 1.  
Modified on May/04/2000  
PAGE 83 OF 96  
ELECTRONICS  
S5D0127X01 Data Sheet  
MULTIMEDIA VIDEO  
Command Register E  
bit 5 bit 4  
HCORE[1:0]  
Index  
0x3D  
Mnemonic  
CMDE  
bit 7  
bit 6  
bit 3  
bit 2  
bit 1  
bit 0  
ODFST  
VSALG  
CHIPREVID  
CHIPREVID  
HCORE  
Four additional bits for determination of current Revision and differentiation from the  
S5D0124D01.  
0
9
S5D0124D01.  
S5D0127X01 Revision A.*  
Luma path horizontal coring. Noise limiter for high frequency portion of luma.  
0
1
2
3
Coring function is disabled.*  
1 bit of coring.  
2 bits of coring.  
4 bits of coring.  
VSALG  
ODFST  
Vertical scaling line dropping algorithm.  
0
Vertical scaling drops the same lines in the Odd and Even fields -- good for fast  
motion video.*  
1
Vertical scaling drops lines based on the final de-interlaced video. This is a better  
vertical scaling but may be sensitive to fast motion video.  
Alternate the first scaling line between Odd and Even fields.  
0
1
Even field is the first scaled field.*  
Odd field is the first scaled field.  
Modified on May/04/2000  
PAGE 84 OF 96  
ELECTRONICS  
S5D0127X01 Data Sheet  
MULTIMEDIA VIDEO  
VS Delay Control  
bit 5 bit 4  
Index  
0x3E  
Mnemonic  
VSDEL  
bit 7  
bit 6  
bit 3  
bit 2  
bit 1  
bit 0  
TR_MS NOVIDC  
VSDEL[5:0]  
VSDEL[5:0]  
NOVIDC  
When the chip is programmed for digital video input operation, this register provides an offset  
for the internal line counter to align with input video (VS can be either from the VS pin or from  
embedded timing code). The register content is unsigned.  
Allows NOVID bit to be output to PORTB (pin 24).  
0
1
Normal operation.*  
The NOVID bit is output to PORTB if DATAB[2:0]=1 and DIRB=1.  
TR_MS  
Enable alternative initial tracking mode state machine.  
0
1
Normal operation - Horizontal tracking mode is controlled by the HFSEL[1:0] bits.*  
Variable tracking modes during locking time.  
Modified on May/04/2000  
PAGE 85 OF 96  
ELECTRONICS  
S5D0127X01 Data Sheet  
MULTIMEDIA VIDEO  
Command Register F  
bit 5 bit 4  
VIPMODE EVAVY UVDLEN UVDLSL REGUD  
Index  
0x3F  
Mnemonic  
CMDF  
bit 7  
bit 6  
bit 3  
bit 2  
bit 1  
bit 0  
CTRAPFSC  
TASKB  
CBWI  
CBWI  
Chroma bandwidth increase. This function should be used for digital video input mode only.  
0
1
Normal chroma bandwidth.*  
Increased chroma bandwidth.  
TASKB  
Select between task A and B as described in “VIP Specification V. 1.0”.  
0
1
Select CCIR 656 timing codes (T-bit is always 1).*  
Select between task A and B when VBI data is output. If active video is output, T-bit  
is set to 1(task A). If VBI data is output, T-bit is set to 0 (task B).  
REGUD  
Control register update control.  
0
1
Registers are updated immediately after being written to.*  
The following registers and register bits are updated only during the start of vertical  
sync after they are written to:  
Index 0x02, indices 0x17 through 0x1D, bit 0 of index 0x04, bits [2:0] and [6:4] of  
index 0x0E.  
UVDLSL  
UVDLEN  
EVAVY  
U or V delay control when UVDLEN is set to 1.  
0
1
V is delayed by 1 CK period.*  
U is delayed by 1 CK period.  
Enable the function of UVDLSL.  
0
1
UVDLSL is disabled.*  
UVDLSL is enabled.  
Control the output of INVALY, INVALU, and INVALV codes when EVAV is inactive.  
0
1
Output of these codes are not affected by EVAV.*  
These codes are output when EVAV is inactive (line is being dropped by the vertical  
scaler).  
VIPMODE  
Allows transfer of hardware sliced VBI data as ancillary data during the following line’s  
horizontal blanking period.  
0
1
Standard S5D0124D01 original sliced VBI data transfer.*  
Optional ancillary sliced VBI data transfer.  
CTRAPFSC  
Enable chroma trap location based on Fsc frequency instead of field rate.  
0
1
Chroma trap based on field rate (same as S5D0124D01).*  
Chroma trap based on detected Fsc frequency.  
Modified on May/04/2000  
PAGE 86 OF 96  
ELECTRONICS  
S5D0127X01 Data Sheet  
MULTIMEDIA VIDEO  
Gamma Base  
bit 5 bit 4  
Index  
Mnemonic  
bit 7  
bit 6  
bit 3  
bit 2  
bit 1  
bit 0  
0x40  
0x41  
:
GAMMA0  
GAMMA0[7:0]  
GAMMA1  
GAMMA1[7:0]  
:
:
:
:
:
0x5F  
GAMMA31  
GAMMA31[7:0]  
GAMMA0  
-GAMMA31  
Gamma correction base. The desired output for 8*N, where N = 0, .., 31, is programmed into  
GAMMAN. Note that data written into these addresses are simultaneously written into  
addresses 0xC0 through 0xDF.  
Gamma Correction Delta  
Index  
Mnemonic  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
0x60  
GAMMAD0  
-
-
:
-
-
:
GAMMAD0[5:0]  
0x61  
GAMMAD1  
GAMMAD1[5:0]  
:
:
:
:
:
:
:
:
0x7F GAMMAD31  
-
-
GAMMAD31[5:0]  
GAMMAD0  
..GAMMAD31  
The Nth location of the 32 locations is programmed with a 6-bit unsigned number which  
represents the gamma correction delta for the gamma bases N and N + 1. The last location  
will contain the gamma correction delta for gamma base 31 and presumed base 32 which has  
the value of 256. Note that data written into these addresses are simultaneously written into  
addresses 0xE0 through 0xFF.  
Modified on May/04/2000  
PAGE 87 OF 96  
ELECTRONICS  
S5D0127X01 Data Sheet  
MULTIMEDIA VIDEO  
U/V Gamma Base  
bit 5 bit 4  
Index  
Mnemonic  
bit 7  
bit 6  
bit 3  
bit 2  
bit 1  
bit 0  
0xC0  
0xC1  
:
GAMUV0  
GAMUV0[7:0]  
GAMUV1  
GAMUV1[7:0]  
:
:
:
:
:
0xDF  
GAMUV31  
GAMUV31[7:0]  
GAMUV0  
U and V gamma correction base. The desired output for 8*N, where N = 0, .., 31, is  
-GAMUV31  
programmed into GAMUVN.  
U/V Gamma Correction Delta  
Index  
Mnemonic  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
0xE0  
GAMUVD0  
-
-
:
-
-
:
GAMUVD0[5:0]  
0xE1  
GAMUVD1  
GAMUVD1[5:0]  
:
:
:
:
:
:
:
:
0xFF GAMUVD31  
-
-
GAMUVD31[5:0]  
GAMUVD0  
..GAMUVD31  
U and V gamma correction delta. The Nth location of the 32 locations is programmed with a  
6-bit unsigned number which represents the gamma correction delta for the gamma bases N  
and N + 1. The last location will contain the gamma correction delta for gamma base 31 and  
presumed base 32 which has the value of 256.  
Modified on May/04/2000  
PAGE 88 OF 96  
ELECTRONICS  
S5D0127X01 Data Sheet  
ABSOLUTE MAXIMUM RATINGS  
Characteristics  
MULTIMEDIA VIDEO  
Symbol  
Value  
Units  
5-V supply voltage (measured to VSS)  
3.3-V supply voltage (measured to VSS)  
Voltage on any digital pin  
V
-0.5 to + 7.0  
-0.5 to + 4.5  
V
DD  
V
V
DD3  
V
-0.5 to (V +0.5)  
V
PIN  
DD  
Ambient operating temperature (case)  
Storage temperature  
T
-35 to + 100  
-65 to + 150  
150  
°C  
°C  
°C  
°C  
A
T
S
Junction temperature  
T
J
Vapor phase soldering (1 min.)  
Tvsol  
220  
Notes: 1.Absolute maximum ratings are limiting values applied individually while all other parameters are within  
specified operating conditions.  
2.Functional operation under any of these conditions is not implied.  
3.Applied voltage must be current limited to a specified range.  
OPERATING CONDITIONS  
Characteristics  
Symbol  
Min  
Typ  
Max  
Units  
5-V supply voltage (measured to VSS)  
3.3-V supply voltage (measured to VSS)  
Ambient operating temperature, still air  
V
V
4.75  
3.0  
5.0  
3.3  
5.25  
3.6  
70  
V
V
DD5  
DD3  
T
-20  
°C  
A
Modified on May/04/2000  
PAGE 89 OF 96  
ELECTRONICS  
S5D0127X01 Data Sheet  
ELECTRICAL CHARACTERISTICS  
Characteristics  
MULTIMEDIA VIDEO  
Symbol  
Min  
Typ  
Max  
Units  
Supply  
+5V (VDD, VDDA, VDDA1), normal operation  
+3.3V (VDD3), normal operation  
I
I
150  
141  
90  
mA  
mA  
mA  
mA  
DD5  
DD3  
DD5  
DD3  
+5V (VDD, VDDA, VDDA1), power down mode I  
+3.3V (VDD3), power down mode  
Analog Characteristics  
I
5
Integral linearity error (AGC/ADC only)  
Differential linearity error (AGC/ADC only)  
Total harmonic distortion (4 MHz full scale)  
Signal to noise ratio (4 MHz full scale)  
Analog bandwidth (50 IRE to 3 dB point)  
Input voltage range (peak-peak) 100 IRE input  
Input resistance AY0-AY2,AC0-AC2  
Input capacitance for analog video inputs  
Charge current for offset control  
E
E
1.0  
0.5  
54  
3.0  
1.5  
lsb  
lsb  
I-ADC  
D-ADC  
THD  
SNR  
BW  
V
dB  
42  
dB  
4
MHz  
0.5  
200  
1.5  
-50  
V
pp  
I(PP)  
R
kW  
pF  
mA  
dB  
IN  
IN  
C
10  
±4  
I
OFF  
Cross talk between analog inputs  
Video Performance  
a
-42  
Luminance frequency response (maximum  
variation to 4.2 MHz - multi burst)  
F
1.5  
1.5  
dB  
%
LUMA  
Differential gain - complete chip (Modulated 40  
IRE ramp)  
D
D
G
Differential phase - complete chip (Modulated  
40 IRE ramp)  
1.0  
degree  
kHz  
P
Chrominance frequency response (3 dB point) - F  
CBWR=0/1  
800/500  
1
CHROMA  
Chroma nonlinear gain distortion (NTC-7  
Combination)  
C
%
NGD  
NPD  
LI  
Chroma nonlinear phase distortion (NTC-7  
Combination)  
C
C
1.25  
1
degree  
IRE  
Chroma to luma intermodulation (NTC-7  
Combination)  
Chroma luma gain equality (NTC-7 Composite) DEL  
±20  
98-101  
-58  
ns  
%
CL  
Chroma luma delay equality (NTC-7 Composite) AMP  
CL  
Noise level for unified weighting 10 kHz-5 MHz N  
(100 IRE unmodulated ramp)  
dB  
LUMA  
Chroma AM noise (red field)  
Chroma PM noise (red field)  
N
N
-60  
-54  
dB  
dB  
CAM  
CPM  
Modified on May/04/2000  
PAGE 90 OF 96  
ELECTRONICS  
S5D0127X01 Data Sheet  
MULTIMEDIA VIDEO  
Characteristics  
Symbol  
Min  
Typ  
Max  
Units  
Digital I/O Characteristics  
Input low voltage (other digital I/O)  
Input high voltage (other digital I/O)  
Input low voltage (SCLK,SDAT,RST)  
Input high voltage (SCLK,SDAT,RST)  
V
V
V
V
VSS-0.5  
2.0  
0.8  
VDD+0.5  
0.3VDD  
VDD+0.5  
-1  
V
V
IL  
IH  
VSS-0.5  
0.7VDD  
V
ILI2C  
IHI2C  
V
Input low current (V = 0.4 V)  
I
I
mA  
mA  
V
IN  
IL  
IH  
Input high current(VIN=2.4)  
-1  
Digital output low voltage (I =3.2mA)  
V
V
0.4  
OL  
OL  
Digital output high voltage (IOH=400mA)  
Digital three-state current  
2.4  
V
OH  
I
50  
7
mA  
pF  
pF  
pF  
OZ  
Digital output capacitance  
C
OUT  
Maximum capacitance load for digital data pins C  
30  
60  
L-DATA  
C
L-CK  
Maximum capacitance load for CK and CK2  
outputs  
Timing Characteristics - Digital Inputs  
XTALI input pulse width low  
t
t
15  
15  
20  
20  
ns  
ns  
pwlX  
XTALI input pulse width high  
pwhX  
Clock and Data Timing  
Analog video input to digital video output delay  
t
t
120  
CK  
ns  
dCHIP  
Pulse width high for CK (KS0112 operates at  
frequencies from 24.5 MHz to 29 MHz)  
15  
30  
18.5  
22  
44  
pwhCK  
Pulse width high for CK2  
t
t
t
37  
4
ns  
ns  
ns  
pwhCK2  
Delay from rising edge of CK to CK2  
CK2  
Delay from rising edge CK to data change  
(including pins Y0-Y7, C0-C7, HAV, VAV, EHAV,  
EVAV, HS1, HS2, VS, ODD, PID, SCH)  
16  
23  
21  
dD  
(CK is output)  
t
14  
ns  
ns  
ns  
ns  
dD  
(CK is input)  
Minimum hold time from rising edge of CK for  
data output)  
t
t
t
7
hD  
Delay from falling edge of OEN to data bits in  
3-state  
20  
18  
zD  
Delay from rising edge OEN to data bits  
enabled  
enD  
Timing Characteristics -IIC Host Interface  
SCLK clock frequency  
r
0
400  
400  
kHz  
pF  
ms  
SCLK  
Capacitive load for each bus line  
Hold time for START condition  
Setup time for STOP condition  
Rise and fall times for SCLK and SDAT  
C
b
t
t
0.6  
0.6  
20  
hSTA  
sSTO  
ms  
t , t  
300  
ns  
R
F
Modified on May/04/2000  
PAGE 91 OF 96  
ELECTRONICS  
S5D0127X01 Data Sheet  
MULTIMEDIA VIDEO  
Characteristics  
Symbol  
Min  
Typ  
Max  
Units  
SCLK minimum pulse width low  
t
t
t
t
1.3  
0.6  
100  
0
ms  
ms  
ns  
ns  
pwlSCLK  
SCLK minimum pulse width high  
pwhSCLK  
SDAT setup time to rising edge of SCLK  
SDAT hold time from rising edge of SCLK  
SDAT  
s
hSDAT  
Note: AC/DC characteristics provided are per design specifications.  
Modified on May/04/2000  
PAGE 92 OF 96  
ELECTRONICS  
S5D0127X01 Data Sheet  
MULTIMEDIA VIDEO  
tpwhCK  
CK  
tpwhCK2  
CK2  
tCK2  
OEN  
thD  
Y,C,AV  
VS,HS,ODD  
SCH,PID  
tdD  
tzD  
tenD  
Figure 41. Data Output  
Analog Video  
Input  
Digital Video  
Active video  
Blank  
Active video  
Output  
tdCHIP  
Figure 42. Analog Video Input to Digital Video Output Delay  
SDAT  
SCLK  
tBUF  
thSDAT  
tsSTO  
tR  
tpwhSCLK  
tF  
thSDA  
tsSDAT  
tpwlSCLK  
Figure 43. IIC Host Interface Detailed Timing  
Modified on May/04/2000  
PAGE 93 OF 96  
ELECTRONICS  
S5D0127X01 Data Sheet  
MULTIMEDIA VIDEO  
VCC  
FE. BEAD  
0.1 mF  
3.3V  
10 mF  
84  
AY0  
AY1  
56  
55  
54  
53  
48  
47  
86  
88  
Y7  
Y6  
Y5  
Y4  
Y3  
Y2  
AY2  
90  
92  
AC0  
AC1  
46  
45  
Y1  
Y0  
44  
39  
38  
37  
36  
35  
C7  
C6  
C5  
C4  
C3  
C2  
94  
AC2  
0.1 mF  
75  
34  
33  
C1  
C0  
77  
VRT  
78  
96  
97  
S5D0127X01  
VRB  
26  
76  
23  
25  
5
3
4
22  
17  
24  
15  
18  
21  
HS1  
HS2  
VS  
HAV  
EHAV  
VAV  
EVAV  
ODD  
PID  
SCH  
OEN  
TEST  
COMP2  
0.1 mF  
8
7
XTALI  
24.576 MHz  
XTALO  
22 pF  
22 pF  
CK  
CK2  
75  
72  
69  
70  
SCLK  
SDAT  
AEX0  
AEX1  
57  
TESTEN  
HS2  
20 k  
Modified on May/04/2000  
PAGE 94 OF 96  
ELECTRONICS  
S5D0127X01 Data Sheet  
Package Dimension  
MULTIMEDIA VIDEO  
100-QFP-1420D  
23.90±0.30  
20.00±0.20  
0.10MAX  
#100  
#1  
0.30±0.10  
0.10MAX  
(0.58)  
0.00MIN  
3.00MAX  
0.65  
2.65±0.10  
0.80±0.20  
Dimensions are in Millimeters  
Modified on May/04/2000  
PAGE 95 OF 96  
ELECTRONICS  
S5D0127X01 Data Sheet  
MULTIMEDIA VIDEO  
SAMSUNG SEMICONDUCTOR WORLDWIDE OFFICES  
HEAD OFFICE  
SAMSUNG ELECTRONICS JAPAN CO., LTD.  
8/11FL., SAMUNG MAIN BLDG.  
250, 2-KA, TAEPYUNG-RO,  
CHUNG-KU, SEOUL, KOREA  
TEL: 2-727-7114  
HAMACHO CENTER BLDG.  
31-1, NIHONBASHI-HAMACHO, 2-CHOME  
CHUO-KU, TOKYO 103, JAPAN  
TEL: 3-5641-9850  
FAX: 2-753-0967  
FAX: 3-5641-9851  
SEMICONDUCTOR BUSINESS  
SALES & MARKETING DIVISION  
SAMSUNG ELECTRONICS HONG KONG CO., LTD.  
65TH FL., CENTRAL PLAZA  
18 HARBOUR ROAD  
WANCHAI, HONG KONG  
TEL: 852-2862-6900  
15/16FL., SEVERANCE BLDG.  
84-11, 5-KA, NAMDAEMOON-RO  
CHUNG-KU, SEOUL, KOREA  
TEL: 2-259-1114  
FAX: 852-2866-1343  
FAX: 2-259-2468  
SAMSUNG ELECTRONICS TAIWAN CO., LTD.  
SAMSUNG SEMICONDUCTOR INC.  
30FL., NO.333 KEELUNG RD.  
SEC 1, TAIPEI, TAIWAN, R.O.C  
TEL: 886-2-757-9292  
3655 NORTH FIRST STREET  
SAN JOSE, CA 95134, U.S.A.  
TEL: 408-954-7000  
FAX: 886-2-757-7311  
FAX: 408-954-7873  
SAMSUNG ASIA PRT., LTD.  
SAMSUNG SEMICONDUCTOR EUROPE GMBH  
80 ROBINSON RD., #20-01  
SINGAPORE 068898  
TEL: 65-535-2808  
SAMSUNG HOUSE  
AM KRONBERGER HANG 6  
65824, SCHWALBACH/TS  
TEL: 49-6196-663300  
FAX: 49-6196-663311  
FAX: 65-227-2792  
SAMSUNG ELECTRONICS CO., LTD.  
SHANGHAI OFFICE  
SAMSUNG SEMICONDUCTOR EUROPE LTD.  
9F, SHANGHAI INTERNATIONAL TRADE CENTRE  
NO.2200 YANAN(W) RD.  
SHANGHAI, P.R.C. 200335  
TEL: 8621-6270-4168  
GREAT WEST HOUSE  
GREAT WEST ROAD, BRENTFORD  
MIDDLESEX TW8 9DQ  
TEL: 181-380-7132  
FAX: 8621-6275-2975  
FAX: 181-380-7220  
SAMSUNG ELECTRONICS CO., LTD.  
SEMICONDUCTOR BUSINESS BEIJING OFFICE  
15FL., BRIGHT CHINA CHANG AN BLDG.,  
NO.7, JIANGUOMEN, NEI AVENUE  
BEIJING, CHINA 100005  
TEL: 8610-6510-1234(0)  
.
Circuit diagrams utilizing SAMSUNG and/or SAMSUNG ELECTRONICS products are included as a means of illustrating typical  
semiconductor applications; consequently, complete information sufficient for construction purposes is not necessarily given.  
The information has been carefully checked and is believed to be entirely reliable. However, no responsibility is assumed for  
inaccuracies. Furthermore, such information does not convey to the purchaser of the semiconductor devices described herein  
any license under the patent rights of SAMSUNG and/or SAMSUNG ELECTRONICS, or others. SAMSUNG and/or SAMSUNG  
ELECTRONICS, reserve the right to change device specifications.  
LIFE SUPPORT APPLICATIONS  
SAMSUNG and/or SAMSUNG ELECTRONICS products are not designed for use in life support applications, devices, or  
systems where malfunction of a SAMSUNG product can reasonably be expected to result in a personal injury. SAMSUNG  
and/or SAMSUNG ELECTRONICS’ customers using or selling SAMSUNG and/or SAMSUNG ELECTRONICS products for use  
in such applications do so at their own risk and agree to fully indemnify SAMSUNG and/or SAMSUNG ELECTRONICS for any  
damages resulting from such improper use or sale.  
Modified on May/04/2000  
PAGE 96 OF 96  
ELECTRONICS  

相关型号:

S5D0127X01-Q0R0

MULTISTANDARD VIDEO DECODER/SCALER
SAMSUNG

S5D2400X

S5D2400X scaling image processor
SAMSUNG

S5D2400XXX-T0

Consumer Circuit, MOS, PQFP100
SAMSUNG

S5D2501F

OSD PROCESSOR FOR MONITORS
SAMSUNG

S5D2508A

OSD PROCESSOR FOR MONITOR
SAMSUNG

S5D2508A01

OSD PROCESSOR FOR MONITOR
SAMSUNG

S5D2508A01-D0B0

OSD PROCESSOR FOR MONITOR
SAMSUNG

S5D2509

OSD PRESSOR FOR MONITOR (PRELIMINARY)
SAMSUNG

S5D2510

stand-alone OSD Processor
SAMSUNG

S5D2650

MULTISTANDARD VIDEO DECODER/SCALER
SAMSUNG

S5D2650100PQFP

MULTISTANDARD VIDEO DECODER/SCALER
SAMSUNG

S5D4100X

Digital Interface Including Scaler, Image Enhancement
SAMSUNG